]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/fib_trie.c
Merge tag 'armsoc-dt' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally described in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
49 */
50
51 #define VERSION "0.409"
52
53 #include <asm/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <linux/vmalloc.h>
76 #include <net/net_namespace.h>
77 #include <net/ip.h>
78 #include <net/protocol.h>
79 #include <net/route.h>
80 #include <net/tcp.h>
81 #include <net/sock.h>
82 #include <net/ip_fib.h>
83 #include <net/switchdev.h>
84 #include "fib_lookup.h"
85
86 #define MAX_STAT_DEPTH 32
87
88 #define KEYLENGTH (8*sizeof(t_key))
89 #define KEY_MAX ((t_key)~0)
90
91 typedef unsigned int t_key;
92
93 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
94 #define IS_TNODE(n) ((n)->bits)
95 #define IS_LEAF(n) (!(n)->bits)
96
97 struct key_vector {
98 t_key key;
99 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
100 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
101 unsigned char slen;
102 union {
103 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
104 struct hlist_head leaf;
105 /* This array is valid if (pos | bits) > 0 (TNODE) */
106 struct key_vector __rcu *tnode[0];
107 };
108 };
109
110 struct tnode {
111 struct rcu_head rcu;
112 t_key empty_children; /* KEYLENGTH bits needed */
113 t_key full_children; /* KEYLENGTH bits needed */
114 struct key_vector __rcu *parent;
115 struct key_vector kv[1];
116 #define tn_bits kv[0].bits
117 };
118
119 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
120 #define LEAF_SIZE TNODE_SIZE(1)
121
122 #ifdef CONFIG_IP_FIB_TRIE_STATS
123 struct trie_use_stats {
124 unsigned int gets;
125 unsigned int backtrack;
126 unsigned int semantic_match_passed;
127 unsigned int semantic_match_miss;
128 unsigned int null_node_hit;
129 unsigned int resize_node_skipped;
130 };
131 #endif
132
133 struct trie_stat {
134 unsigned int totdepth;
135 unsigned int maxdepth;
136 unsigned int tnodes;
137 unsigned int leaves;
138 unsigned int nullpointers;
139 unsigned int prefixes;
140 unsigned int nodesizes[MAX_STAT_DEPTH];
141 };
142
143 struct trie {
144 struct key_vector kv[1];
145 #ifdef CONFIG_IP_FIB_TRIE_STATS
146 struct trie_use_stats __percpu *stats;
147 #endif
148 };
149
150 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
151 static size_t tnode_free_size;
152
153 /*
154 * synchronize_rcu after call_rcu for that many pages; it should be especially
155 * useful before resizing the root node with PREEMPT_NONE configs; the value was
156 * obtained experimentally, aiming to avoid visible slowdown.
157 */
158 static const int sync_pages = 128;
159
160 static struct kmem_cache *fn_alias_kmem __read_mostly;
161 static struct kmem_cache *trie_leaf_kmem __read_mostly;
162
163 static inline struct tnode *tn_info(struct key_vector *kv)
164 {
165 return container_of(kv, struct tnode, kv[0]);
166 }
167
168 /* caller must hold RTNL */
169 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
170 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
171
172 /* caller must hold RCU read lock or RTNL */
173 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
174 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
175
176 /* wrapper for rcu_assign_pointer */
177 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
178 {
179 if (n)
180 rcu_assign_pointer(tn_info(n)->parent, tp);
181 }
182
183 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
184
185 /* This provides us with the number of children in this node, in the case of a
186 * leaf this will return 0 meaning none of the children are accessible.
187 */
188 static inline unsigned long child_length(const struct key_vector *tn)
189 {
190 return (1ul << tn->bits) & ~(1ul);
191 }
192
193 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
194
195 static inline unsigned long get_index(t_key key, struct key_vector *kv)
196 {
197 unsigned long index = key ^ kv->key;
198
199 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
200 return 0;
201
202 return index >> kv->pos;
203 }
204
205 /* To understand this stuff, an understanding of keys and all their bits is
206 * necessary. Every node in the trie has a key associated with it, but not
207 * all of the bits in that key are significant.
208 *
209 * Consider a node 'n' and its parent 'tp'.
210 *
211 * If n is a leaf, every bit in its key is significant. Its presence is
212 * necessitated by path compression, since during a tree traversal (when
213 * searching for a leaf - unless we are doing an insertion) we will completely
214 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
215 * a potentially successful search, that we have indeed been walking the
216 * correct key path.
217 *
218 * Note that we can never "miss" the correct key in the tree if present by
219 * following the wrong path. Path compression ensures that segments of the key
220 * that are the same for all keys with a given prefix are skipped, but the
221 * skipped part *is* identical for each node in the subtrie below the skipped
222 * bit! trie_insert() in this implementation takes care of that.
223 *
224 * if n is an internal node - a 'tnode' here, the various parts of its key
225 * have many different meanings.
226 *
227 * Example:
228 * _________________________________________________________________
229 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
230 * -----------------------------------------------------------------
231 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
232 *
233 * _________________________________________________________________
234 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
235 * -----------------------------------------------------------------
236 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
237 *
238 * tp->pos = 22
239 * tp->bits = 3
240 * n->pos = 13
241 * n->bits = 4
242 *
243 * First, let's just ignore the bits that come before the parent tp, that is
244 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
245 * point we do not use them for anything.
246 *
247 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
248 * index into the parent's child array. That is, they will be used to find
249 * 'n' among tp's children.
250 *
251 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
252 * for the node n.
253 *
254 * All the bits we have seen so far are significant to the node n. The rest
255 * of the bits are really not needed or indeed known in n->key.
256 *
257 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
258 * n's child array, and will of course be different for each child.
259 *
260 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
261 * at this point.
262 */
263
264 static const int halve_threshold = 25;
265 static const int inflate_threshold = 50;
266 static const int halve_threshold_root = 15;
267 static const int inflate_threshold_root = 30;
268
269 static void __alias_free_mem(struct rcu_head *head)
270 {
271 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
272 kmem_cache_free(fn_alias_kmem, fa);
273 }
274
275 static inline void alias_free_mem_rcu(struct fib_alias *fa)
276 {
277 call_rcu(&fa->rcu, __alias_free_mem);
278 }
279
280 #define TNODE_KMALLOC_MAX \
281 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
282 #define TNODE_VMALLOC_MAX \
283 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
284
285 static void __node_free_rcu(struct rcu_head *head)
286 {
287 struct tnode *n = container_of(head, struct tnode, rcu);
288
289 if (!n->tn_bits)
290 kmem_cache_free(trie_leaf_kmem, n);
291 else if (n->tn_bits <= TNODE_KMALLOC_MAX)
292 kfree(n);
293 else
294 vfree(n);
295 }
296
297 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
298
299 static struct tnode *tnode_alloc(int bits)
300 {
301 size_t size;
302
303 /* verify bits is within bounds */
304 if (bits > TNODE_VMALLOC_MAX)
305 return NULL;
306
307 /* determine size and verify it is non-zero and didn't overflow */
308 size = TNODE_SIZE(1ul << bits);
309
310 if (size <= PAGE_SIZE)
311 return kzalloc(size, GFP_KERNEL);
312 else
313 return vzalloc(size);
314 }
315
316 static inline void empty_child_inc(struct key_vector *n)
317 {
318 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
319 }
320
321 static inline void empty_child_dec(struct key_vector *n)
322 {
323 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
324 }
325
326 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
327 {
328 struct key_vector *l;
329 struct tnode *kv;
330
331 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
332 if (!kv)
333 return NULL;
334
335 /* initialize key vector */
336 l = kv->kv;
337 l->key = key;
338 l->pos = 0;
339 l->bits = 0;
340 l->slen = fa->fa_slen;
341
342 /* link leaf to fib alias */
343 INIT_HLIST_HEAD(&l->leaf);
344 hlist_add_head(&fa->fa_list, &l->leaf);
345
346 return l;
347 }
348
349 static struct key_vector *tnode_new(t_key key, int pos, int bits)
350 {
351 unsigned int shift = pos + bits;
352 struct key_vector *tn;
353 struct tnode *tnode;
354
355 /* verify bits and pos their msb bits clear and values are valid */
356 BUG_ON(!bits || (shift > KEYLENGTH));
357
358 tnode = tnode_alloc(bits);
359 if (!tnode)
360 return NULL;
361
362 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
363 sizeof(struct key_vector *) << bits);
364
365 if (bits == KEYLENGTH)
366 tnode->full_children = 1;
367 else
368 tnode->empty_children = 1ul << bits;
369
370 tn = tnode->kv;
371 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
372 tn->pos = pos;
373 tn->bits = bits;
374 tn->slen = pos;
375
376 return tn;
377 }
378
379 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
380 * and no bits are skipped. See discussion in dyntree paper p. 6
381 */
382 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
383 {
384 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
385 }
386
387 /* Add a child at position i overwriting the old value.
388 * Update the value of full_children and empty_children.
389 */
390 static void put_child(struct key_vector *tn, unsigned long i,
391 struct key_vector *n)
392 {
393 struct key_vector *chi = get_child(tn, i);
394 int isfull, wasfull;
395
396 BUG_ON(i >= child_length(tn));
397
398 /* update emptyChildren, overflow into fullChildren */
399 if (!n && chi)
400 empty_child_inc(tn);
401 if (n && !chi)
402 empty_child_dec(tn);
403
404 /* update fullChildren */
405 wasfull = tnode_full(tn, chi);
406 isfull = tnode_full(tn, n);
407
408 if (wasfull && !isfull)
409 tn_info(tn)->full_children--;
410 else if (!wasfull && isfull)
411 tn_info(tn)->full_children++;
412
413 if (n && (tn->slen < n->slen))
414 tn->slen = n->slen;
415
416 rcu_assign_pointer(tn->tnode[i], n);
417 }
418
419 static void update_children(struct key_vector *tn)
420 {
421 unsigned long i;
422
423 /* update all of the child parent pointers */
424 for (i = child_length(tn); i;) {
425 struct key_vector *inode = get_child(tn, --i);
426
427 if (!inode)
428 continue;
429
430 /* Either update the children of a tnode that
431 * already belongs to us or update the child
432 * to point to ourselves.
433 */
434 if (node_parent(inode) == tn)
435 update_children(inode);
436 else
437 node_set_parent(inode, tn);
438 }
439 }
440
441 static inline void put_child_root(struct key_vector *tp, t_key key,
442 struct key_vector *n)
443 {
444 if (IS_TRIE(tp))
445 rcu_assign_pointer(tp->tnode[0], n);
446 else
447 put_child(tp, get_index(key, tp), n);
448 }
449
450 static inline void tnode_free_init(struct key_vector *tn)
451 {
452 tn_info(tn)->rcu.next = NULL;
453 }
454
455 static inline void tnode_free_append(struct key_vector *tn,
456 struct key_vector *n)
457 {
458 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
459 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
460 }
461
462 static void tnode_free(struct key_vector *tn)
463 {
464 struct callback_head *head = &tn_info(tn)->rcu;
465
466 while (head) {
467 head = head->next;
468 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
469 node_free(tn);
470
471 tn = container_of(head, struct tnode, rcu)->kv;
472 }
473
474 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
475 tnode_free_size = 0;
476 synchronize_rcu();
477 }
478 }
479
480 static struct key_vector *replace(struct trie *t,
481 struct key_vector *oldtnode,
482 struct key_vector *tn)
483 {
484 struct key_vector *tp = node_parent(oldtnode);
485 unsigned long i;
486
487 /* setup the parent pointer out of and back into this node */
488 NODE_INIT_PARENT(tn, tp);
489 put_child_root(tp, tn->key, tn);
490
491 /* update all of the child parent pointers */
492 update_children(tn);
493
494 /* all pointers should be clean so we are done */
495 tnode_free(oldtnode);
496
497 /* resize children now that oldtnode is freed */
498 for (i = child_length(tn); i;) {
499 struct key_vector *inode = get_child(tn, --i);
500
501 /* resize child node */
502 if (tnode_full(tn, inode))
503 tn = resize(t, inode);
504 }
505
506 return tp;
507 }
508
509 static struct key_vector *inflate(struct trie *t,
510 struct key_vector *oldtnode)
511 {
512 struct key_vector *tn;
513 unsigned long i;
514 t_key m;
515
516 pr_debug("In inflate\n");
517
518 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
519 if (!tn)
520 goto notnode;
521
522 /* prepare oldtnode to be freed */
523 tnode_free_init(oldtnode);
524
525 /* Assemble all of the pointers in our cluster, in this case that
526 * represents all of the pointers out of our allocated nodes that
527 * point to existing tnodes and the links between our allocated
528 * nodes.
529 */
530 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
531 struct key_vector *inode = get_child(oldtnode, --i);
532 struct key_vector *node0, *node1;
533 unsigned long j, k;
534
535 /* An empty child */
536 if (!inode)
537 continue;
538
539 /* A leaf or an internal node with skipped bits */
540 if (!tnode_full(oldtnode, inode)) {
541 put_child(tn, get_index(inode->key, tn), inode);
542 continue;
543 }
544
545 /* drop the node in the old tnode free list */
546 tnode_free_append(oldtnode, inode);
547
548 /* An internal node with two children */
549 if (inode->bits == 1) {
550 put_child(tn, 2 * i + 1, get_child(inode, 1));
551 put_child(tn, 2 * i, get_child(inode, 0));
552 continue;
553 }
554
555 /* We will replace this node 'inode' with two new
556 * ones, 'node0' and 'node1', each with half of the
557 * original children. The two new nodes will have
558 * a position one bit further down the key and this
559 * means that the "significant" part of their keys
560 * (see the discussion near the top of this file)
561 * will differ by one bit, which will be "0" in
562 * node0's key and "1" in node1's key. Since we are
563 * moving the key position by one step, the bit that
564 * we are moving away from - the bit at position
565 * (tn->pos) - is the one that will differ between
566 * node0 and node1. So... we synthesize that bit in the
567 * two new keys.
568 */
569 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
570 if (!node1)
571 goto nomem;
572 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
573
574 tnode_free_append(tn, node1);
575 if (!node0)
576 goto nomem;
577 tnode_free_append(tn, node0);
578
579 /* populate child pointers in new nodes */
580 for (k = child_length(inode), j = k / 2; j;) {
581 put_child(node1, --j, get_child(inode, --k));
582 put_child(node0, j, get_child(inode, j));
583 put_child(node1, --j, get_child(inode, --k));
584 put_child(node0, j, get_child(inode, j));
585 }
586
587 /* link new nodes to parent */
588 NODE_INIT_PARENT(node1, tn);
589 NODE_INIT_PARENT(node0, tn);
590
591 /* link parent to nodes */
592 put_child(tn, 2 * i + 1, node1);
593 put_child(tn, 2 * i, node0);
594 }
595
596 /* setup the parent pointers into and out of this node */
597 return replace(t, oldtnode, tn);
598 nomem:
599 /* all pointers should be clean so we are done */
600 tnode_free(tn);
601 notnode:
602 return NULL;
603 }
604
605 static struct key_vector *halve(struct trie *t,
606 struct key_vector *oldtnode)
607 {
608 struct key_vector *tn;
609 unsigned long i;
610
611 pr_debug("In halve\n");
612
613 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
614 if (!tn)
615 goto notnode;
616
617 /* prepare oldtnode to be freed */
618 tnode_free_init(oldtnode);
619
620 /* Assemble all of the pointers in our cluster, in this case that
621 * represents all of the pointers out of our allocated nodes that
622 * point to existing tnodes and the links between our allocated
623 * nodes.
624 */
625 for (i = child_length(oldtnode); i;) {
626 struct key_vector *node1 = get_child(oldtnode, --i);
627 struct key_vector *node0 = get_child(oldtnode, --i);
628 struct key_vector *inode;
629
630 /* At least one of the children is empty */
631 if (!node1 || !node0) {
632 put_child(tn, i / 2, node1 ? : node0);
633 continue;
634 }
635
636 /* Two nonempty children */
637 inode = tnode_new(node0->key, oldtnode->pos, 1);
638 if (!inode)
639 goto nomem;
640 tnode_free_append(tn, inode);
641
642 /* initialize pointers out of node */
643 put_child(inode, 1, node1);
644 put_child(inode, 0, node0);
645 NODE_INIT_PARENT(inode, tn);
646
647 /* link parent to node */
648 put_child(tn, i / 2, inode);
649 }
650
651 /* setup the parent pointers into and out of this node */
652 return replace(t, oldtnode, tn);
653 nomem:
654 /* all pointers should be clean so we are done */
655 tnode_free(tn);
656 notnode:
657 return NULL;
658 }
659
660 static struct key_vector *collapse(struct trie *t,
661 struct key_vector *oldtnode)
662 {
663 struct key_vector *n, *tp;
664 unsigned long i;
665
666 /* scan the tnode looking for that one child that might still exist */
667 for (n = NULL, i = child_length(oldtnode); !n && i;)
668 n = get_child(oldtnode, --i);
669
670 /* compress one level */
671 tp = node_parent(oldtnode);
672 put_child_root(tp, oldtnode->key, n);
673 node_set_parent(n, tp);
674
675 /* drop dead node */
676 node_free(oldtnode);
677
678 return tp;
679 }
680
681 static unsigned char update_suffix(struct key_vector *tn)
682 {
683 unsigned char slen = tn->pos;
684 unsigned long stride, i;
685
686 /* search though the list of children looking for nodes that might
687 * have a suffix greater than the one we currently have. This is
688 * why we start with a stride of 2 since a stride of 1 would
689 * represent the nodes with suffix length equal to tn->pos
690 */
691 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
692 struct key_vector *n = get_child(tn, i);
693
694 if (!n || (n->slen <= slen))
695 continue;
696
697 /* update stride and slen based on new value */
698 stride <<= (n->slen - slen);
699 slen = n->slen;
700 i &= ~(stride - 1);
701
702 /* if slen covers all but the last bit we can stop here
703 * there will be nothing longer than that since only node
704 * 0 and 1 << (bits - 1) could have that as their suffix
705 * length.
706 */
707 if ((slen + 1) >= (tn->pos + tn->bits))
708 break;
709 }
710
711 tn->slen = slen;
712
713 return slen;
714 }
715
716 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
717 * the Helsinki University of Technology and Matti Tikkanen of Nokia
718 * Telecommunications, page 6:
719 * "A node is doubled if the ratio of non-empty children to all
720 * children in the *doubled* node is at least 'high'."
721 *
722 * 'high' in this instance is the variable 'inflate_threshold'. It
723 * is expressed as a percentage, so we multiply it with
724 * child_length() and instead of multiplying by 2 (since the
725 * child array will be doubled by inflate()) and multiplying
726 * the left-hand side by 100 (to handle the percentage thing) we
727 * multiply the left-hand side by 50.
728 *
729 * The left-hand side may look a bit weird: child_length(tn)
730 * - tn->empty_children is of course the number of non-null children
731 * in the current node. tn->full_children is the number of "full"
732 * children, that is non-null tnodes with a skip value of 0.
733 * All of those will be doubled in the resulting inflated tnode, so
734 * we just count them one extra time here.
735 *
736 * A clearer way to write this would be:
737 *
738 * to_be_doubled = tn->full_children;
739 * not_to_be_doubled = child_length(tn) - tn->empty_children -
740 * tn->full_children;
741 *
742 * new_child_length = child_length(tn) * 2;
743 *
744 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
745 * new_child_length;
746 * if (new_fill_factor >= inflate_threshold)
747 *
748 * ...and so on, tho it would mess up the while () loop.
749 *
750 * anyway,
751 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
752 * inflate_threshold
753 *
754 * avoid a division:
755 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
756 * inflate_threshold * new_child_length
757 *
758 * expand not_to_be_doubled and to_be_doubled, and shorten:
759 * 100 * (child_length(tn) - tn->empty_children +
760 * tn->full_children) >= inflate_threshold * new_child_length
761 *
762 * expand new_child_length:
763 * 100 * (child_length(tn) - tn->empty_children +
764 * tn->full_children) >=
765 * inflate_threshold * child_length(tn) * 2
766 *
767 * shorten again:
768 * 50 * (tn->full_children + child_length(tn) -
769 * tn->empty_children) >= inflate_threshold *
770 * child_length(tn)
771 *
772 */
773 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
774 {
775 unsigned long used = child_length(tn);
776 unsigned long threshold = used;
777
778 /* Keep root node larger */
779 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
780 used -= tn_info(tn)->empty_children;
781 used += tn_info(tn)->full_children;
782
783 /* if bits == KEYLENGTH then pos = 0, and will fail below */
784
785 return (used > 1) && tn->pos && ((50 * used) >= threshold);
786 }
787
788 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
789 {
790 unsigned long used = child_length(tn);
791 unsigned long threshold = used;
792
793 /* Keep root node larger */
794 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
795 used -= tn_info(tn)->empty_children;
796
797 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
798
799 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
800 }
801
802 static inline bool should_collapse(struct key_vector *tn)
803 {
804 unsigned long used = child_length(tn);
805
806 used -= tn_info(tn)->empty_children;
807
808 /* account for bits == KEYLENGTH case */
809 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
810 used -= KEY_MAX;
811
812 /* One child or none, time to drop us from the trie */
813 return used < 2;
814 }
815
816 #define MAX_WORK 10
817 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
818 {
819 #ifdef CONFIG_IP_FIB_TRIE_STATS
820 struct trie_use_stats __percpu *stats = t->stats;
821 #endif
822 struct key_vector *tp = node_parent(tn);
823 unsigned long cindex = get_index(tn->key, tp);
824 int max_work = MAX_WORK;
825
826 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
827 tn, inflate_threshold, halve_threshold);
828
829 /* track the tnode via the pointer from the parent instead of
830 * doing it ourselves. This way we can let RCU fully do its
831 * thing without us interfering
832 */
833 BUG_ON(tn != get_child(tp, cindex));
834
835 /* Double as long as the resulting node has a number of
836 * nonempty nodes that are above the threshold.
837 */
838 while (should_inflate(tp, tn) && max_work) {
839 tp = inflate(t, tn);
840 if (!tp) {
841 #ifdef CONFIG_IP_FIB_TRIE_STATS
842 this_cpu_inc(stats->resize_node_skipped);
843 #endif
844 break;
845 }
846
847 max_work--;
848 tn = get_child(tp, cindex);
849 }
850
851 /* update parent in case inflate failed */
852 tp = node_parent(tn);
853
854 /* Return if at least one inflate is run */
855 if (max_work != MAX_WORK)
856 return tp;
857
858 /* Halve as long as the number of empty children in this
859 * node is above threshold.
860 */
861 while (should_halve(tp, tn) && max_work) {
862 tp = halve(t, tn);
863 if (!tp) {
864 #ifdef CONFIG_IP_FIB_TRIE_STATS
865 this_cpu_inc(stats->resize_node_skipped);
866 #endif
867 break;
868 }
869
870 max_work--;
871 tn = get_child(tp, cindex);
872 }
873
874 /* Only one child remains */
875 if (should_collapse(tn))
876 return collapse(t, tn);
877
878 /* update parent in case halve failed */
879 tp = node_parent(tn);
880
881 /* Return if at least one deflate was run */
882 if (max_work != MAX_WORK)
883 return tp;
884
885 /* push the suffix length to the parent node */
886 if (tn->slen > tn->pos) {
887 unsigned char slen = update_suffix(tn);
888
889 if (slen > tp->slen)
890 tp->slen = slen;
891 }
892
893 return tp;
894 }
895
896 static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
897 {
898 while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
899 if (update_suffix(tp) > l->slen)
900 break;
901 tp = node_parent(tp);
902 }
903 }
904
905 static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
906 {
907 /* if this is a new leaf then tn will be NULL and we can sort
908 * out parent suffix lengths as a part of trie_rebalance
909 */
910 while (tn->slen < l->slen) {
911 tn->slen = l->slen;
912 tn = node_parent(tn);
913 }
914 }
915
916 /* rcu_read_lock needs to be hold by caller from readside */
917 static struct key_vector *fib_find_node(struct trie *t,
918 struct key_vector **tp, u32 key)
919 {
920 struct key_vector *pn, *n = t->kv;
921 unsigned long index = 0;
922
923 do {
924 pn = n;
925 n = get_child_rcu(n, index);
926
927 if (!n)
928 break;
929
930 index = get_cindex(key, n);
931
932 /* This bit of code is a bit tricky but it combines multiple
933 * checks into a single check. The prefix consists of the
934 * prefix plus zeros for the bits in the cindex. The index
935 * is the difference between the key and this value. From
936 * this we can actually derive several pieces of data.
937 * if (index >= (1ul << bits))
938 * we have a mismatch in skip bits and failed
939 * else
940 * we know the value is cindex
941 *
942 * This check is safe even if bits == KEYLENGTH due to the
943 * fact that we can only allocate a node with 32 bits if a
944 * long is greater than 32 bits.
945 */
946 if (index >= (1ul << n->bits)) {
947 n = NULL;
948 break;
949 }
950
951 /* keep searching until we find a perfect match leaf or NULL */
952 } while (IS_TNODE(n));
953
954 *tp = pn;
955
956 return n;
957 }
958
959 /* Return the first fib alias matching TOS with
960 * priority less than or equal to PRIO.
961 */
962 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
963 u8 tos, u32 prio, u32 tb_id)
964 {
965 struct fib_alias *fa;
966
967 if (!fah)
968 return NULL;
969
970 hlist_for_each_entry(fa, fah, fa_list) {
971 if (fa->fa_slen < slen)
972 continue;
973 if (fa->fa_slen != slen)
974 break;
975 if (fa->tb_id > tb_id)
976 continue;
977 if (fa->tb_id != tb_id)
978 break;
979 if (fa->fa_tos > tos)
980 continue;
981 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
982 return fa;
983 }
984
985 return NULL;
986 }
987
988 static void trie_rebalance(struct trie *t, struct key_vector *tn)
989 {
990 while (!IS_TRIE(tn))
991 tn = resize(t, tn);
992 }
993
994 static int fib_insert_node(struct trie *t, struct key_vector *tp,
995 struct fib_alias *new, t_key key)
996 {
997 struct key_vector *n, *l;
998
999 l = leaf_new(key, new);
1000 if (!l)
1001 goto noleaf;
1002
1003 /* retrieve child from parent node */
1004 n = get_child(tp, get_index(key, tp));
1005
1006 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1007 *
1008 * Add a new tnode here
1009 * first tnode need some special handling
1010 * leaves us in position for handling as case 3
1011 */
1012 if (n) {
1013 struct key_vector *tn;
1014
1015 tn = tnode_new(key, __fls(key ^ n->key), 1);
1016 if (!tn)
1017 goto notnode;
1018
1019 /* initialize routes out of node */
1020 NODE_INIT_PARENT(tn, tp);
1021 put_child(tn, get_index(key, tn) ^ 1, n);
1022
1023 /* start adding routes into the node */
1024 put_child_root(tp, key, tn);
1025 node_set_parent(n, tn);
1026
1027 /* parent now has a NULL spot where the leaf can go */
1028 tp = tn;
1029 }
1030
1031 /* Case 3: n is NULL, and will just insert a new leaf */
1032 NODE_INIT_PARENT(l, tp);
1033 put_child_root(tp, key, l);
1034 trie_rebalance(t, tp);
1035
1036 return 0;
1037 notnode:
1038 node_free(l);
1039 noleaf:
1040 return -ENOMEM;
1041 }
1042
1043 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1044 struct key_vector *l, struct fib_alias *new,
1045 struct fib_alias *fa, t_key key)
1046 {
1047 if (!l)
1048 return fib_insert_node(t, tp, new, key);
1049
1050 if (fa) {
1051 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1052 } else {
1053 struct fib_alias *last;
1054
1055 hlist_for_each_entry(last, &l->leaf, fa_list) {
1056 if (new->fa_slen < last->fa_slen)
1057 break;
1058 if ((new->fa_slen == last->fa_slen) &&
1059 (new->tb_id > last->tb_id))
1060 break;
1061 fa = last;
1062 }
1063
1064 if (fa)
1065 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1066 else
1067 hlist_add_head_rcu(&new->fa_list, &l->leaf);
1068 }
1069
1070 /* if we added to the tail node then we need to update slen */
1071 if (l->slen < new->fa_slen) {
1072 l->slen = new->fa_slen;
1073 leaf_push_suffix(tp, l);
1074 }
1075
1076 return 0;
1077 }
1078
1079 /* Caller must hold RTNL. */
1080 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1081 {
1082 struct trie *t = (struct trie *)tb->tb_data;
1083 struct fib_alias *fa, *new_fa;
1084 struct key_vector *l, *tp;
1085 unsigned int nlflags = 0;
1086 struct fib_info *fi;
1087 u8 plen = cfg->fc_dst_len;
1088 u8 slen = KEYLENGTH - plen;
1089 u8 tos = cfg->fc_tos;
1090 u32 key;
1091 int err;
1092
1093 if (plen > KEYLENGTH)
1094 return -EINVAL;
1095
1096 key = ntohl(cfg->fc_dst);
1097
1098 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1099
1100 if ((plen < KEYLENGTH) && (key << plen))
1101 return -EINVAL;
1102
1103 fi = fib_create_info(cfg);
1104 if (IS_ERR(fi)) {
1105 err = PTR_ERR(fi);
1106 goto err;
1107 }
1108
1109 l = fib_find_node(t, &tp, key);
1110 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1111 tb->tb_id) : NULL;
1112
1113 /* Now fa, if non-NULL, points to the first fib alias
1114 * with the same keys [prefix,tos,priority], if such key already
1115 * exists or to the node before which we will insert new one.
1116 *
1117 * If fa is NULL, we will need to allocate a new one and
1118 * insert to the tail of the section matching the suffix length
1119 * of the new alias.
1120 */
1121
1122 if (fa && fa->fa_tos == tos &&
1123 fa->fa_info->fib_priority == fi->fib_priority) {
1124 struct fib_alias *fa_first, *fa_match;
1125
1126 err = -EEXIST;
1127 if (cfg->fc_nlflags & NLM_F_EXCL)
1128 goto out;
1129
1130 /* We have 2 goals:
1131 * 1. Find exact match for type, scope, fib_info to avoid
1132 * duplicate routes
1133 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1134 */
1135 fa_match = NULL;
1136 fa_first = fa;
1137 hlist_for_each_entry_from(fa, fa_list) {
1138 if ((fa->fa_slen != slen) ||
1139 (fa->tb_id != tb->tb_id) ||
1140 (fa->fa_tos != tos))
1141 break;
1142 if (fa->fa_info->fib_priority != fi->fib_priority)
1143 break;
1144 if (fa->fa_type == cfg->fc_type &&
1145 fa->fa_info == fi) {
1146 fa_match = fa;
1147 break;
1148 }
1149 }
1150
1151 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1152 struct fib_info *fi_drop;
1153 u8 state;
1154
1155 fa = fa_first;
1156 if (fa_match) {
1157 if (fa == fa_match)
1158 err = 0;
1159 goto out;
1160 }
1161 err = -ENOBUFS;
1162 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1163 if (!new_fa)
1164 goto out;
1165
1166 fi_drop = fa->fa_info;
1167 new_fa->fa_tos = fa->fa_tos;
1168 new_fa->fa_info = fi;
1169 new_fa->fa_type = cfg->fc_type;
1170 state = fa->fa_state;
1171 new_fa->fa_state = state & ~FA_S_ACCESSED;
1172 new_fa->fa_slen = fa->fa_slen;
1173 new_fa->tb_id = tb->tb_id;
1174 new_fa->fa_default = -1;
1175
1176 err = switchdev_fib_ipv4_add(key, plen, fi,
1177 new_fa->fa_tos,
1178 cfg->fc_type,
1179 cfg->fc_nlflags,
1180 tb->tb_id);
1181 if (err) {
1182 switchdev_fib_ipv4_abort(fi);
1183 kmem_cache_free(fn_alias_kmem, new_fa);
1184 goto out;
1185 }
1186
1187 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1188
1189 alias_free_mem_rcu(fa);
1190
1191 fib_release_info(fi_drop);
1192 if (state & FA_S_ACCESSED)
1193 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1194 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1195 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1196
1197 goto succeeded;
1198 }
1199 /* Error if we find a perfect match which
1200 * uses the same scope, type, and nexthop
1201 * information.
1202 */
1203 if (fa_match)
1204 goto out;
1205
1206 if (cfg->fc_nlflags & NLM_F_APPEND)
1207 nlflags = NLM_F_APPEND;
1208 else
1209 fa = fa_first;
1210 }
1211 err = -ENOENT;
1212 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1213 goto out;
1214
1215 err = -ENOBUFS;
1216 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1217 if (!new_fa)
1218 goto out;
1219
1220 new_fa->fa_info = fi;
1221 new_fa->fa_tos = tos;
1222 new_fa->fa_type = cfg->fc_type;
1223 new_fa->fa_state = 0;
1224 new_fa->fa_slen = slen;
1225 new_fa->tb_id = tb->tb_id;
1226 new_fa->fa_default = -1;
1227
1228 /* (Optionally) offload fib entry to switch hardware. */
1229 err = switchdev_fib_ipv4_add(key, plen, fi, tos, cfg->fc_type,
1230 cfg->fc_nlflags, tb->tb_id);
1231 if (err) {
1232 switchdev_fib_ipv4_abort(fi);
1233 goto out_free_new_fa;
1234 }
1235
1236 /* Insert new entry to the list. */
1237 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1238 if (err)
1239 goto out_sw_fib_del;
1240
1241 if (!plen)
1242 tb->tb_num_default++;
1243
1244 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1245 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1246 &cfg->fc_nlinfo, nlflags);
1247 succeeded:
1248 return 0;
1249
1250 out_sw_fib_del:
1251 switchdev_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
1252 out_free_new_fa:
1253 kmem_cache_free(fn_alias_kmem, new_fa);
1254 out:
1255 fib_release_info(fi);
1256 err:
1257 return err;
1258 }
1259
1260 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1261 {
1262 t_key prefix = n->key;
1263
1264 return (key ^ prefix) & (prefix | -prefix);
1265 }
1266
1267 /* should be called with rcu_read_lock */
1268 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1269 struct fib_result *res, int fib_flags)
1270 {
1271 struct trie *t = (struct trie *) tb->tb_data;
1272 #ifdef CONFIG_IP_FIB_TRIE_STATS
1273 struct trie_use_stats __percpu *stats = t->stats;
1274 #endif
1275 const t_key key = ntohl(flp->daddr);
1276 struct key_vector *n, *pn;
1277 struct fib_alias *fa;
1278 unsigned long index;
1279 t_key cindex;
1280
1281 pn = t->kv;
1282 cindex = 0;
1283
1284 n = get_child_rcu(pn, cindex);
1285 if (!n)
1286 return -EAGAIN;
1287
1288 #ifdef CONFIG_IP_FIB_TRIE_STATS
1289 this_cpu_inc(stats->gets);
1290 #endif
1291
1292 /* Step 1: Travel to the longest prefix match in the trie */
1293 for (;;) {
1294 index = get_cindex(key, n);
1295
1296 /* This bit of code is a bit tricky but it combines multiple
1297 * checks into a single check. The prefix consists of the
1298 * prefix plus zeros for the "bits" in the prefix. The index
1299 * is the difference between the key and this value. From
1300 * this we can actually derive several pieces of data.
1301 * if (index >= (1ul << bits))
1302 * we have a mismatch in skip bits and failed
1303 * else
1304 * we know the value is cindex
1305 *
1306 * This check is safe even if bits == KEYLENGTH due to the
1307 * fact that we can only allocate a node with 32 bits if a
1308 * long is greater than 32 bits.
1309 */
1310 if (index >= (1ul << n->bits))
1311 break;
1312
1313 /* we have found a leaf. Prefixes have already been compared */
1314 if (IS_LEAF(n))
1315 goto found;
1316
1317 /* only record pn and cindex if we are going to be chopping
1318 * bits later. Otherwise we are just wasting cycles.
1319 */
1320 if (n->slen > n->pos) {
1321 pn = n;
1322 cindex = index;
1323 }
1324
1325 n = get_child_rcu(n, index);
1326 if (unlikely(!n))
1327 goto backtrace;
1328 }
1329
1330 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1331 for (;;) {
1332 /* record the pointer where our next node pointer is stored */
1333 struct key_vector __rcu **cptr = n->tnode;
1334
1335 /* This test verifies that none of the bits that differ
1336 * between the key and the prefix exist in the region of
1337 * the lsb and higher in the prefix.
1338 */
1339 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1340 goto backtrace;
1341
1342 /* exit out and process leaf */
1343 if (unlikely(IS_LEAF(n)))
1344 break;
1345
1346 /* Don't bother recording parent info. Since we are in
1347 * prefix match mode we will have to come back to wherever
1348 * we started this traversal anyway
1349 */
1350
1351 while ((n = rcu_dereference(*cptr)) == NULL) {
1352 backtrace:
1353 #ifdef CONFIG_IP_FIB_TRIE_STATS
1354 if (!n)
1355 this_cpu_inc(stats->null_node_hit);
1356 #endif
1357 /* If we are at cindex 0 there are no more bits for
1358 * us to strip at this level so we must ascend back
1359 * up one level to see if there are any more bits to
1360 * be stripped there.
1361 */
1362 while (!cindex) {
1363 t_key pkey = pn->key;
1364
1365 /* If we don't have a parent then there is
1366 * nothing for us to do as we do not have any
1367 * further nodes to parse.
1368 */
1369 if (IS_TRIE(pn))
1370 return -EAGAIN;
1371 #ifdef CONFIG_IP_FIB_TRIE_STATS
1372 this_cpu_inc(stats->backtrack);
1373 #endif
1374 /* Get Child's index */
1375 pn = node_parent_rcu(pn);
1376 cindex = get_index(pkey, pn);
1377 }
1378
1379 /* strip the least significant bit from the cindex */
1380 cindex &= cindex - 1;
1381
1382 /* grab pointer for next child node */
1383 cptr = &pn->tnode[cindex];
1384 }
1385 }
1386
1387 found:
1388 /* this line carries forward the xor from earlier in the function */
1389 index = key ^ n->key;
1390
1391 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1392 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1393 struct fib_info *fi = fa->fa_info;
1394 int nhsel, err;
1395
1396 if ((index >= (1ul << fa->fa_slen)) &&
1397 ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
1398 continue;
1399 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1400 continue;
1401 if (fi->fib_dead)
1402 continue;
1403 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1404 continue;
1405 fib_alias_accessed(fa);
1406 err = fib_props[fa->fa_type].error;
1407 if (unlikely(err < 0)) {
1408 #ifdef CONFIG_IP_FIB_TRIE_STATS
1409 this_cpu_inc(stats->semantic_match_passed);
1410 #endif
1411 return err;
1412 }
1413 if (fi->fib_flags & RTNH_F_DEAD)
1414 continue;
1415 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1416 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1417 struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
1418
1419 if (nh->nh_flags & RTNH_F_DEAD)
1420 continue;
1421 if (in_dev &&
1422 IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1423 nh->nh_flags & RTNH_F_LINKDOWN &&
1424 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1425 continue;
1426 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1427 continue;
1428
1429 if (!(fib_flags & FIB_LOOKUP_NOREF))
1430 atomic_inc(&fi->fib_clntref);
1431
1432 res->prefixlen = KEYLENGTH - fa->fa_slen;
1433 res->nh_sel = nhsel;
1434 res->type = fa->fa_type;
1435 res->scope = fi->fib_scope;
1436 res->fi = fi;
1437 res->table = tb;
1438 res->fa_head = &n->leaf;
1439 #ifdef CONFIG_IP_FIB_TRIE_STATS
1440 this_cpu_inc(stats->semantic_match_passed);
1441 #endif
1442 return err;
1443 }
1444 }
1445 #ifdef CONFIG_IP_FIB_TRIE_STATS
1446 this_cpu_inc(stats->semantic_match_miss);
1447 #endif
1448 goto backtrace;
1449 }
1450 EXPORT_SYMBOL_GPL(fib_table_lookup);
1451
1452 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1453 struct key_vector *l, struct fib_alias *old)
1454 {
1455 /* record the location of the previous list_info entry */
1456 struct hlist_node **pprev = old->fa_list.pprev;
1457 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1458
1459 /* remove the fib_alias from the list */
1460 hlist_del_rcu(&old->fa_list);
1461
1462 /* if we emptied the list this leaf will be freed and we can sort
1463 * out parent suffix lengths as a part of trie_rebalance
1464 */
1465 if (hlist_empty(&l->leaf)) {
1466 put_child_root(tp, l->key, NULL);
1467 node_free(l);
1468 trie_rebalance(t, tp);
1469 return;
1470 }
1471
1472 /* only access fa if it is pointing at the last valid hlist_node */
1473 if (*pprev)
1474 return;
1475
1476 /* update the trie with the latest suffix length */
1477 l->slen = fa->fa_slen;
1478 leaf_pull_suffix(tp, l);
1479 }
1480
1481 /* Caller must hold RTNL. */
1482 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1483 {
1484 struct trie *t = (struct trie *) tb->tb_data;
1485 struct fib_alias *fa, *fa_to_delete;
1486 struct key_vector *l, *tp;
1487 u8 plen = cfg->fc_dst_len;
1488 u8 slen = KEYLENGTH - plen;
1489 u8 tos = cfg->fc_tos;
1490 u32 key;
1491
1492 if (plen > KEYLENGTH)
1493 return -EINVAL;
1494
1495 key = ntohl(cfg->fc_dst);
1496
1497 if ((plen < KEYLENGTH) && (key << plen))
1498 return -EINVAL;
1499
1500 l = fib_find_node(t, &tp, key);
1501 if (!l)
1502 return -ESRCH;
1503
1504 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1505 if (!fa)
1506 return -ESRCH;
1507
1508 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1509
1510 fa_to_delete = NULL;
1511 hlist_for_each_entry_from(fa, fa_list) {
1512 struct fib_info *fi = fa->fa_info;
1513
1514 if ((fa->fa_slen != slen) ||
1515 (fa->tb_id != tb->tb_id) ||
1516 (fa->fa_tos != tos))
1517 break;
1518
1519 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1520 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1521 fa->fa_info->fib_scope == cfg->fc_scope) &&
1522 (!cfg->fc_prefsrc ||
1523 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1524 (!cfg->fc_protocol ||
1525 fi->fib_protocol == cfg->fc_protocol) &&
1526 fib_nh_match(cfg, fi) == 0) {
1527 fa_to_delete = fa;
1528 break;
1529 }
1530 }
1531
1532 if (!fa_to_delete)
1533 return -ESRCH;
1534
1535 switchdev_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
1536 cfg->fc_type, tb->tb_id);
1537
1538 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1539 &cfg->fc_nlinfo, 0);
1540
1541 if (!plen)
1542 tb->tb_num_default--;
1543
1544 fib_remove_alias(t, tp, l, fa_to_delete);
1545
1546 if (fa_to_delete->fa_state & FA_S_ACCESSED)
1547 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1548
1549 fib_release_info(fa_to_delete->fa_info);
1550 alias_free_mem_rcu(fa_to_delete);
1551 return 0;
1552 }
1553
1554 /* Scan for the next leaf starting at the provided key value */
1555 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1556 {
1557 struct key_vector *pn, *n = *tn;
1558 unsigned long cindex;
1559
1560 /* this loop is meant to try and find the key in the trie */
1561 do {
1562 /* record parent and next child index */
1563 pn = n;
1564 cindex = key ? get_index(key, pn) : 0;
1565
1566 if (cindex >> pn->bits)
1567 break;
1568
1569 /* descend into the next child */
1570 n = get_child_rcu(pn, cindex++);
1571 if (!n)
1572 break;
1573
1574 /* guarantee forward progress on the keys */
1575 if (IS_LEAF(n) && (n->key >= key))
1576 goto found;
1577 } while (IS_TNODE(n));
1578
1579 /* this loop will search for the next leaf with a greater key */
1580 while (!IS_TRIE(pn)) {
1581 /* if we exhausted the parent node we will need to climb */
1582 if (cindex >= (1ul << pn->bits)) {
1583 t_key pkey = pn->key;
1584
1585 pn = node_parent_rcu(pn);
1586 cindex = get_index(pkey, pn) + 1;
1587 continue;
1588 }
1589
1590 /* grab the next available node */
1591 n = get_child_rcu(pn, cindex++);
1592 if (!n)
1593 continue;
1594
1595 /* no need to compare keys since we bumped the index */
1596 if (IS_LEAF(n))
1597 goto found;
1598
1599 /* Rescan start scanning in new node */
1600 pn = n;
1601 cindex = 0;
1602 }
1603
1604 *tn = pn;
1605 return NULL; /* Root of trie */
1606 found:
1607 /* if we are at the limit for keys just return NULL for the tnode */
1608 *tn = pn;
1609 return n;
1610 }
1611
1612 static void fib_trie_free(struct fib_table *tb)
1613 {
1614 struct trie *t = (struct trie *)tb->tb_data;
1615 struct key_vector *pn = t->kv;
1616 unsigned long cindex = 1;
1617 struct hlist_node *tmp;
1618 struct fib_alias *fa;
1619
1620 /* walk trie in reverse order and free everything */
1621 for (;;) {
1622 struct key_vector *n;
1623
1624 if (!(cindex--)) {
1625 t_key pkey = pn->key;
1626
1627 if (IS_TRIE(pn))
1628 break;
1629
1630 n = pn;
1631 pn = node_parent(pn);
1632
1633 /* drop emptied tnode */
1634 put_child_root(pn, n->key, NULL);
1635 node_free(n);
1636
1637 cindex = get_index(pkey, pn);
1638
1639 continue;
1640 }
1641
1642 /* grab the next available node */
1643 n = get_child(pn, cindex);
1644 if (!n)
1645 continue;
1646
1647 if (IS_TNODE(n)) {
1648 /* record pn and cindex for leaf walking */
1649 pn = n;
1650 cindex = 1ul << n->bits;
1651
1652 continue;
1653 }
1654
1655 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1656 hlist_del_rcu(&fa->fa_list);
1657 alias_free_mem_rcu(fa);
1658 }
1659
1660 put_child_root(pn, n->key, NULL);
1661 node_free(n);
1662 }
1663
1664 #ifdef CONFIG_IP_FIB_TRIE_STATS
1665 free_percpu(t->stats);
1666 #endif
1667 kfree(tb);
1668 }
1669
1670 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1671 {
1672 struct trie *ot = (struct trie *)oldtb->tb_data;
1673 struct key_vector *l, *tp = ot->kv;
1674 struct fib_table *local_tb;
1675 struct fib_alias *fa;
1676 struct trie *lt;
1677 t_key key = 0;
1678
1679 if (oldtb->tb_data == oldtb->__data)
1680 return oldtb;
1681
1682 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1683 if (!local_tb)
1684 return NULL;
1685
1686 lt = (struct trie *)local_tb->tb_data;
1687
1688 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1689 struct key_vector *local_l = NULL, *local_tp;
1690
1691 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1692 struct fib_alias *new_fa;
1693
1694 if (local_tb->tb_id != fa->tb_id)
1695 continue;
1696
1697 /* clone fa for new local table */
1698 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1699 if (!new_fa)
1700 goto out;
1701
1702 memcpy(new_fa, fa, sizeof(*fa));
1703
1704 /* insert clone into table */
1705 if (!local_l)
1706 local_l = fib_find_node(lt, &local_tp, l->key);
1707
1708 if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1709 NULL, l->key))
1710 goto out;
1711 }
1712
1713 /* stop loop if key wrapped back to 0 */
1714 key = l->key + 1;
1715 if (key < l->key)
1716 break;
1717 }
1718
1719 return local_tb;
1720 out:
1721 fib_trie_free(local_tb);
1722
1723 return NULL;
1724 }
1725
1726 /* Caller must hold RTNL */
1727 void fib_table_flush_external(struct fib_table *tb)
1728 {
1729 struct trie *t = (struct trie *)tb->tb_data;
1730 struct key_vector *pn = t->kv;
1731 unsigned long cindex = 1;
1732 struct hlist_node *tmp;
1733 struct fib_alias *fa;
1734
1735 /* walk trie in reverse order */
1736 for (;;) {
1737 unsigned char slen = 0;
1738 struct key_vector *n;
1739
1740 if (!(cindex--)) {
1741 t_key pkey = pn->key;
1742
1743 /* cannot resize the trie vector */
1744 if (IS_TRIE(pn))
1745 break;
1746
1747 /* resize completed node */
1748 pn = resize(t, pn);
1749 cindex = get_index(pkey, pn);
1750
1751 continue;
1752 }
1753
1754 /* grab the next available node */
1755 n = get_child(pn, cindex);
1756 if (!n)
1757 continue;
1758
1759 if (IS_TNODE(n)) {
1760 /* record pn and cindex for leaf walking */
1761 pn = n;
1762 cindex = 1ul << n->bits;
1763
1764 continue;
1765 }
1766
1767 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1768 struct fib_info *fi = fa->fa_info;
1769
1770 /* if alias was cloned to local then we just
1771 * need to remove the local copy from main
1772 */
1773 if (tb->tb_id != fa->tb_id) {
1774 hlist_del_rcu(&fa->fa_list);
1775 alias_free_mem_rcu(fa);
1776 continue;
1777 }
1778
1779 /* record local slen */
1780 slen = fa->fa_slen;
1781
1782 if (!fi || !(fi->fib_flags & RTNH_F_OFFLOAD))
1783 continue;
1784
1785 switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
1786 fi, fa->fa_tos, fa->fa_type,
1787 tb->tb_id);
1788 }
1789
1790 /* update leaf slen */
1791 n->slen = slen;
1792
1793 if (hlist_empty(&n->leaf)) {
1794 put_child_root(pn, n->key, NULL);
1795 node_free(n);
1796 }
1797 }
1798 }
1799
1800 /* Caller must hold RTNL. */
1801 int fib_table_flush(struct fib_table *tb)
1802 {
1803 struct trie *t = (struct trie *)tb->tb_data;
1804 struct key_vector *pn = t->kv;
1805 unsigned long cindex = 1;
1806 struct hlist_node *tmp;
1807 struct fib_alias *fa;
1808 int found = 0;
1809
1810 /* walk trie in reverse order */
1811 for (;;) {
1812 unsigned char slen = 0;
1813 struct key_vector *n;
1814
1815 if (!(cindex--)) {
1816 t_key pkey = pn->key;
1817
1818 /* cannot resize the trie vector */
1819 if (IS_TRIE(pn))
1820 break;
1821
1822 /* resize completed node */
1823 pn = resize(t, pn);
1824 cindex = get_index(pkey, pn);
1825
1826 continue;
1827 }
1828
1829 /* grab the next available node */
1830 n = get_child(pn, cindex);
1831 if (!n)
1832 continue;
1833
1834 if (IS_TNODE(n)) {
1835 /* record pn and cindex for leaf walking */
1836 pn = n;
1837 cindex = 1ul << n->bits;
1838
1839 continue;
1840 }
1841
1842 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1843 struct fib_info *fi = fa->fa_info;
1844
1845 if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
1846 slen = fa->fa_slen;
1847 continue;
1848 }
1849
1850 switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
1851 fi, fa->fa_tos, fa->fa_type,
1852 tb->tb_id);
1853 hlist_del_rcu(&fa->fa_list);
1854 fib_release_info(fa->fa_info);
1855 alias_free_mem_rcu(fa);
1856 found++;
1857 }
1858
1859 /* update leaf slen */
1860 n->slen = slen;
1861
1862 if (hlist_empty(&n->leaf)) {
1863 put_child_root(pn, n->key, NULL);
1864 node_free(n);
1865 }
1866 }
1867
1868 pr_debug("trie_flush found=%d\n", found);
1869 return found;
1870 }
1871
1872 static void __trie_free_rcu(struct rcu_head *head)
1873 {
1874 struct fib_table *tb = container_of(head, struct fib_table, rcu);
1875 #ifdef CONFIG_IP_FIB_TRIE_STATS
1876 struct trie *t = (struct trie *)tb->tb_data;
1877
1878 if (tb->tb_data == tb->__data)
1879 free_percpu(t->stats);
1880 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1881 kfree(tb);
1882 }
1883
1884 void fib_free_table(struct fib_table *tb)
1885 {
1886 call_rcu(&tb->rcu, __trie_free_rcu);
1887 }
1888
1889 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
1890 struct sk_buff *skb, struct netlink_callback *cb)
1891 {
1892 __be32 xkey = htonl(l->key);
1893 struct fib_alias *fa;
1894 int i, s_i;
1895
1896 s_i = cb->args[4];
1897 i = 0;
1898
1899 /* rcu_read_lock is hold by caller */
1900 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1901 if (i < s_i) {
1902 i++;
1903 continue;
1904 }
1905
1906 if (tb->tb_id != fa->tb_id) {
1907 i++;
1908 continue;
1909 }
1910
1911 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1912 cb->nlh->nlmsg_seq,
1913 RTM_NEWROUTE,
1914 tb->tb_id,
1915 fa->fa_type,
1916 xkey,
1917 KEYLENGTH - fa->fa_slen,
1918 fa->fa_tos,
1919 fa->fa_info, NLM_F_MULTI) < 0) {
1920 cb->args[4] = i;
1921 return -1;
1922 }
1923 i++;
1924 }
1925
1926 cb->args[4] = i;
1927 return skb->len;
1928 }
1929
1930 /* rcu_read_lock needs to be hold by caller from readside */
1931 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1932 struct netlink_callback *cb)
1933 {
1934 struct trie *t = (struct trie *)tb->tb_data;
1935 struct key_vector *l, *tp = t->kv;
1936 /* Dump starting at last key.
1937 * Note: 0.0.0.0/0 (ie default) is first key.
1938 */
1939 int count = cb->args[2];
1940 t_key key = cb->args[3];
1941
1942 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1943 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1944 cb->args[3] = key;
1945 cb->args[2] = count;
1946 return -1;
1947 }
1948
1949 ++count;
1950 key = l->key + 1;
1951
1952 memset(&cb->args[4], 0,
1953 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1954
1955 /* stop loop if key wrapped back to 0 */
1956 if (key < l->key)
1957 break;
1958 }
1959
1960 cb->args[3] = key;
1961 cb->args[2] = count;
1962
1963 return skb->len;
1964 }
1965
1966 void __init fib_trie_init(void)
1967 {
1968 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1969 sizeof(struct fib_alias),
1970 0, SLAB_PANIC, NULL);
1971
1972 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1973 LEAF_SIZE,
1974 0, SLAB_PANIC, NULL);
1975 }
1976
1977 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
1978 {
1979 struct fib_table *tb;
1980 struct trie *t;
1981 size_t sz = sizeof(*tb);
1982
1983 if (!alias)
1984 sz += sizeof(struct trie);
1985
1986 tb = kzalloc(sz, GFP_KERNEL);
1987 if (!tb)
1988 return NULL;
1989
1990 tb->tb_id = id;
1991 tb->tb_num_default = 0;
1992 tb->tb_data = (alias ? alias->__data : tb->__data);
1993
1994 if (alias)
1995 return tb;
1996
1997 t = (struct trie *) tb->tb_data;
1998 t->kv[0].pos = KEYLENGTH;
1999 t->kv[0].slen = KEYLENGTH;
2000 #ifdef CONFIG_IP_FIB_TRIE_STATS
2001 t->stats = alloc_percpu(struct trie_use_stats);
2002 if (!t->stats) {
2003 kfree(tb);
2004 tb = NULL;
2005 }
2006 #endif
2007
2008 return tb;
2009 }
2010
2011 #ifdef CONFIG_PROC_FS
2012 /* Depth first Trie walk iterator */
2013 struct fib_trie_iter {
2014 struct seq_net_private p;
2015 struct fib_table *tb;
2016 struct key_vector *tnode;
2017 unsigned int index;
2018 unsigned int depth;
2019 };
2020
2021 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2022 {
2023 unsigned long cindex = iter->index;
2024 struct key_vector *pn = iter->tnode;
2025 t_key pkey;
2026
2027 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2028 iter->tnode, iter->index, iter->depth);
2029
2030 while (!IS_TRIE(pn)) {
2031 while (cindex < child_length(pn)) {
2032 struct key_vector *n = get_child_rcu(pn, cindex++);
2033
2034 if (!n)
2035 continue;
2036
2037 if (IS_LEAF(n)) {
2038 iter->tnode = pn;
2039 iter->index = cindex;
2040 } else {
2041 /* push down one level */
2042 iter->tnode = n;
2043 iter->index = 0;
2044 ++iter->depth;
2045 }
2046
2047 return n;
2048 }
2049
2050 /* Current node exhausted, pop back up */
2051 pkey = pn->key;
2052 pn = node_parent_rcu(pn);
2053 cindex = get_index(pkey, pn) + 1;
2054 --iter->depth;
2055 }
2056
2057 /* record root node so further searches know we are done */
2058 iter->tnode = pn;
2059 iter->index = 0;
2060
2061 return NULL;
2062 }
2063
2064 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2065 struct trie *t)
2066 {
2067 struct key_vector *n, *pn;
2068
2069 if (!t)
2070 return NULL;
2071
2072 pn = t->kv;
2073 n = rcu_dereference(pn->tnode[0]);
2074 if (!n)
2075 return NULL;
2076
2077 if (IS_TNODE(n)) {
2078 iter->tnode = n;
2079 iter->index = 0;
2080 iter->depth = 1;
2081 } else {
2082 iter->tnode = pn;
2083 iter->index = 0;
2084 iter->depth = 0;
2085 }
2086
2087 return n;
2088 }
2089
2090 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2091 {
2092 struct key_vector *n;
2093 struct fib_trie_iter iter;
2094
2095 memset(s, 0, sizeof(*s));
2096
2097 rcu_read_lock();
2098 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2099 if (IS_LEAF(n)) {
2100 struct fib_alias *fa;
2101
2102 s->leaves++;
2103 s->totdepth += iter.depth;
2104 if (iter.depth > s->maxdepth)
2105 s->maxdepth = iter.depth;
2106
2107 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2108 ++s->prefixes;
2109 } else {
2110 s->tnodes++;
2111 if (n->bits < MAX_STAT_DEPTH)
2112 s->nodesizes[n->bits]++;
2113 s->nullpointers += tn_info(n)->empty_children;
2114 }
2115 }
2116 rcu_read_unlock();
2117 }
2118
2119 /*
2120 * This outputs /proc/net/fib_triestats
2121 */
2122 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2123 {
2124 unsigned int i, max, pointers, bytes, avdepth;
2125
2126 if (stat->leaves)
2127 avdepth = stat->totdepth*100 / stat->leaves;
2128 else
2129 avdepth = 0;
2130
2131 seq_printf(seq, "\tAver depth: %u.%02d\n",
2132 avdepth / 100, avdepth % 100);
2133 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2134
2135 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2136 bytes = LEAF_SIZE * stat->leaves;
2137
2138 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2139 bytes += sizeof(struct fib_alias) * stat->prefixes;
2140
2141 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2142 bytes += TNODE_SIZE(0) * stat->tnodes;
2143
2144 max = MAX_STAT_DEPTH;
2145 while (max > 0 && stat->nodesizes[max-1] == 0)
2146 max--;
2147
2148 pointers = 0;
2149 for (i = 1; i < max; i++)
2150 if (stat->nodesizes[i] != 0) {
2151 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2152 pointers += (1<<i) * stat->nodesizes[i];
2153 }
2154 seq_putc(seq, '\n');
2155 seq_printf(seq, "\tPointers: %u\n", pointers);
2156
2157 bytes += sizeof(struct key_vector *) * pointers;
2158 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2159 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2160 }
2161
2162 #ifdef CONFIG_IP_FIB_TRIE_STATS
2163 static void trie_show_usage(struct seq_file *seq,
2164 const struct trie_use_stats __percpu *stats)
2165 {
2166 struct trie_use_stats s = { 0 };
2167 int cpu;
2168
2169 /* loop through all of the CPUs and gather up the stats */
2170 for_each_possible_cpu(cpu) {
2171 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2172
2173 s.gets += pcpu->gets;
2174 s.backtrack += pcpu->backtrack;
2175 s.semantic_match_passed += pcpu->semantic_match_passed;
2176 s.semantic_match_miss += pcpu->semantic_match_miss;
2177 s.null_node_hit += pcpu->null_node_hit;
2178 s.resize_node_skipped += pcpu->resize_node_skipped;
2179 }
2180
2181 seq_printf(seq, "\nCounters:\n---------\n");
2182 seq_printf(seq, "gets = %u\n", s.gets);
2183 seq_printf(seq, "backtracks = %u\n", s.backtrack);
2184 seq_printf(seq, "semantic match passed = %u\n",
2185 s.semantic_match_passed);
2186 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2187 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2188 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2189 }
2190 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2191
2192 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2193 {
2194 if (tb->tb_id == RT_TABLE_LOCAL)
2195 seq_puts(seq, "Local:\n");
2196 else if (tb->tb_id == RT_TABLE_MAIN)
2197 seq_puts(seq, "Main:\n");
2198 else
2199 seq_printf(seq, "Id %d:\n", tb->tb_id);
2200 }
2201
2202
2203 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2204 {
2205 struct net *net = (struct net *)seq->private;
2206 unsigned int h;
2207
2208 seq_printf(seq,
2209 "Basic info: size of leaf:"
2210 " %Zd bytes, size of tnode: %Zd bytes.\n",
2211 LEAF_SIZE, TNODE_SIZE(0));
2212
2213 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2214 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2215 struct fib_table *tb;
2216
2217 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2218 struct trie *t = (struct trie *) tb->tb_data;
2219 struct trie_stat stat;
2220
2221 if (!t)
2222 continue;
2223
2224 fib_table_print(seq, tb);
2225
2226 trie_collect_stats(t, &stat);
2227 trie_show_stats(seq, &stat);
2228 #ifdef CONFIG_IP_FIB_TRIE_STATS
2229 trie_show_usage(seq, t->stats);
2230 #endif
2231 }
2232 }
2233
2234 return 0;
2235 }
2236
2237 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2238 {
2239 return single_open_net(inode, file, fib_triestat_seq_show);
2240 }
2241
2242 static const struct file_operations fib_triestat_fops = {
2243 .owner = THIS_MODULE,
2244 .open = fib_triestat_seq_open,
2245 .read = seq_read,
2246 .llseek = seq_lseek,
2247 .release = single_release_net,
2248 };
2249
2250 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2251 {
2252 struct fib_trie_iter *iter = seq->private;
2253 struct net *net = seq_file_net(seq);
2254 loff_t idx = 0;
2255 unsigned int h;
2256
2257 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2258 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2259 struct fib_table *tb;
2260
2261 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2262 struct key_vector *n;
2263
2264 for (n = fib_trie_get_first(iter,
2265 (struct trie *) tb->tb_data);
2266 n; n = fib_trie_get_next(iter))
2267 if (pos == idx++) {
2268 iter->tb = tb;
2269 return n;
2270 }
2271 }
2272 }
2273
2274 return NULL;
2275 }
2276
2277 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2278 __acquires(RCU)
2279 {
2280 rcu_read_lock();
2281 return fib_trie_get_idx(seq, *pos);
2282 }
2283
2284 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2285 {
2286 struct fib_trie_iter *iter = seq->private;
2287 struct net *net = seq_file_net(seq);
2288 struct fib_table *tb = iter->tb;
2289 struct hlist_node *tb_node;
2290 unsigned int h;
2291 struct key_vector *n;
2292
2293 ++*pos;
2294 /* next node in same table */
2295 n = fib_trie_get_next(iter);
2296 if (n)
2297 return n;
2298
2299 /* walk rest of this hash chain */
2300 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2301 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2302 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2303 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2304 if (n)
2305 goto found;
2306 }
2307
2308 /* new hash chain */
2309 while (++h < FIB_TABLE_HASHSZ) {
2310 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2311 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2312 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2313 if (n)
2314 goto found;
2315 }
2316 }
2317 return NULL;
2318
2319 found:
2320 iter->tb = tb;
2321 return n;
2322 }
2323
2324 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2325 __releases(RCU)
2326 {
2327 rcu_read_unlock();
2328 }
2329
2330 static void seq_indent(struct seq_file *seq, int n)
2331 {
2332 while (n-- > 0)
2333 seq_puts(seq, " ");
2334 }
2335
2336 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2337 {
2338 switch (s) {
2339 case RT_SCOPE_UNIVERSE: return "universe";
2340 case RT_SCOPE_SITE: return "site";
2341 case RT_SCOPE_LINK: return "link";
2342 case RT_SCOPE_HOST: return "host";
2343 case RT_SCOPE_NOWHERE: return "nowhere";
2344 default:
2345 snprintf(buf, len, "scope=%d", s);
2346 return buf;
2347 }
2348 }
2349
2350 static const char *const rtn_type_names[__RTN_MAX] = {
2351 [RTN_UNSPEC] = "UNSPEC",
2352 [RTN_UNICAST] = "UNICAST",
2353 [RTN_LOCAL] = "LOCAL",
2354 [RTN_BROADCAST] = "BROADCAST",
2355 [RTN_ANYCAST] = "ANYCAST",
2356 [RTN_MULTICAST] = "MULTICAST",
2357 [RTN_BLACKHOLE] = "BLACKHOLE",
2358 [RTN_UNREACHABLE] = "UNREACHABLE",
2359 [RTN_PROHIBIT] = "PROHIBIT",
2360 [RTN_THROW] = "THROW",
2361 [RTN_NAT] = "NAT",
2362 [RTN_XRESOLVE] = "XRESOLVE",
2363 };
2364
2365 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2366 {
2367 if (t < __RTN_MAX && rtn_type_names[t])
2368 return rtn_type_names[t];
2369 snprintf(buf, len, "type %u", t);
2370 return buf;
2371 }
2372
2373 /* Pretty print the trie */
2374 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2375 {
2376 const struct fib_trie_iter *iter = seq->private;
2377 struct key_vector *n = v;
2378
2379 if (IS_TRIE(node_parent_rcu(n)))
2380 fib_table_print(seq, iter->tb);
2381
2382 if (IS_TNODE(n)) {
2383 __be32 prf = htonl(n->key);
2384
2385 seq_indent(seq, iter->depth-1);
2386 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2387 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2388 tn_info(n)->full_children,
2389 tn_info(n)->empty_children);
2390 } else {
2391 __be32 val = htonl(n->key);
2392 struct fib_alias *fa;
2393
2394 seq_indent(seq, iter->depth);
2395 seq_printf(seq, " |-- %pI4\n", &val);
2396
2397 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2398 char buf1[32], buf2[32];
2399
2400 seq_indent(seq, iter->depth + 1);
2401 seq_printf(seq, " /%zu %s %s",
2402 KEYLENGTH - fa->fa_slen,
2403 rtn_scope(buf1, sizeof(buf1),
2404 fa->fa_info->fib_scope),
2405 rtn_type(buf2, sizeof(buf2),
2406 fa->fa_type));
2407 if (fa->fa_tos)
2408 seq_printf(seq, " tos=%d", fa->fa_tos);
2409 seq_putc(seq, '\n');
2410 }
2411 }
2412
2413 return 0;
2414 }
2415
2416 static const struct seq_operations fib_trie_seq_ops = {
2417 .start = fib_trie_seq_start,
2418 .next = fib_trie_seq_next,
2419 .stop = fib_trie_seq_stop,
2420 .show = fib_trie_seq_show,
2421 };
2422
2423 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2424 {
2425 return seq_open_net(inode, file, &fib_trie_seq_ops,
2426 sizeof(struct fib_trie_iter));
2427 }
2428
2429 static const struct file_operations fib_trie_fops = {
2430 .owner = THIS_MODULE,
2431 .open = fib_trie_seq_open,
2432 .read = seq_read,
2433 .llseek = seq_lseek,
2434 .release = seq_release_net,
2435 };
2436
2437 struct fib_route_iter {
2438 struct seq_net_private p;
2439 struct fib_table *main_tb;
2440 struct key_vector *tnode;
2441 loff_t pos;
2442 t_key key;
2443 };
2444
2445 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2446 loff_t pos)
2447 {
2448 struct fib_table *tb = iter->main_tb;
2449 struct key_vector *l, **tp = &iter->tnode;
2450 struct trie *t;
2451 t_key key;
2452
2453 /* use cache location of next-to-find key */
2454 if (iter->pos > 0 && pos >= iter->pos) {
2455 pos -= iter->pos;
2456 key = iter->key;
2457 } else {
2458 t = (struct trie *)tb->tb_data;
2459 iter->tnode = t->kv;
2460 iter->pos = 0;
2461 key = 0;
2462 }
2463
2464 while ((l = leaf_walk_rcu(tp, key)) != NULL) {
2465 key = l->key + 1;
2466 iter->pos++;
2467
2468 if (--pos <= 0)
2469 break;
2470
2471 l = NULL;
2472
2473 /* handle unlikely case of a key wrap */
2474 if (!key)
2475 break;
2476 }
2477
2478 if (l)
2479 iter->key = key; /* remember it */
2480 else
2481 iter->pos = 0; /* forget it */
2482
2483 return l;
2484 }
2485
2486 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2487 __acquires(RCU)
2488 {
2489 struct fib_route_iter *iter = seq->private;
2490 struct fib_table *tb;
2491 struct trie *t;
2492
2493 rcu_read_lock();
2494
2495 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2496 if (!tb)
2497 return NULL;
2498
2499 iter->main_tb = tb;
2500
2501 if (*pos != 0)
2502 return fib_route_get_idx(iter, *pos);
2503
2504 t = (struct trie *)tb->tb_data;
2505 iter->tnode = t->kv;
2506 iter->pos = 0;
2507 iter->key = 0;
2508
2509 return SEQ_START_TOKEN;
2510 }
2511
2512 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2513 {
2514 struct fib_route_iter *iter = seq->private;
2515 struct key_vector *l = NULL;
2516 t_key key = iter->key;
2517
2518 ++*pos;
2519
2520 /* only allow key of 0 for start of sequence */
2521 if ((v == SEQ_START_TOKEN) || key)
2522 l = leaf_walk_rcu(&iter->tnode, key);
2523
2524 if (l) {
2525 iter->key = l->key + 1;
2526 iter->pos++;
2527 } else {
2528 iter->pos = 0;
2529 }
2530
2531 return l;
2532 }
2533
2534 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2535 __releases(RCU)
2536 {
2537 rcu_read_unlock();
2538 }
2539
2540 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2541 {
2542 unsigned int flags = 0;
2543
2544 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2545 flags = RTF_REJECT;
2546 if (fi && fi->fib_nh->nh_gw)
2547 flags |= RTF_GATEWAY;
2548 if (mask == htonl(0xFFFFFFFF))
2549 flags |= RTF_HOST;
2550 flags |= RTF_UP;
2551 return flags;
2552 }
2553
2554 /*
2555 * This outputs /proc/net/route.
2556 * The format of the file is not supposed to be changed
2557 * and needs to be same as fib_hash output to avoid breaking
2558 * legacy utilities
2559 */
2560 static int fib_route_seq_show(struct seq_file *seq, void *v)
2561 {
2562 struct fib_route_iter *iter = seq->private;
2563 struct fib_table *tb = iter->main_tb;
2564 struct fib_alias *fa;
2565 struct key_vector *l = v;
2566 __be32 prefix;
2567
2568 if (v == SEQ_START_TOKEN) {
2569 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2570 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2571 "\tWindow\tIRTT");
2572 return 0;
2573 }
2574
2575 prefix = htonl(l->key);
2576
2577 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2578 const struct fib_info *fi = fa->fa_info;
2579 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2580 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2581
2582 if ((fa->fa_type == RTN_BROADCAST) ||
2583 (fa->fa_type == RTN_MULTICAST))
2584 continue;
2585
2586 if (fa->tb_id != tb->tb_id)
2587 continue;
2588
2589 seq_setwidth(seq, 127);
2590
2591 if (fi)
2592 seq_printf(seq,
2593 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2594 "%d\t%08X\t%d\t%u\t%u",
2595 fi->fib_dev ? fi->fib_dev->name : "*",
2596 prefix,
2597 fi->fib_nh->nh_gw, flags, 0, 0,
2598 fi->fib_priority,
2599 mask,
2600 (fi->fib_advmss ?
2601 fi->fib_advmss + 40 : 0),
2602 fi->fib_window,
2603 fi->fib_rtt >> 3);
2604 else
2605 seq_printf(seq,
2606 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2607 "%d\t%08X\t%d\t%u\t%u",
2608 prefix, 0, flags, 0, 0, 0,
2609 mask, 0, 0, 0);
2610
2611 seq_pad(seq, '\n');
2612 }
2613
2614 return 0;
2615 }
2616
2617 static const struct seq_operations fib_route_seq_ops = {
2618 .start = fib_route_seq_start,
2619 .next = fib_route_seq_next,
2620 .stop = fib_route_seq_stop,
2621 .show = fib_route_seq_show,
2622 };
2623
2624 static int fib_route_seq_open(struct inode *inode, struct file *file)
2625 {
2626 return seq_open_net(inode, file, &fib_route_seq_ops,
2627 sizeof(struct fib_route_iter));
2628 }
2629
2630 static const struct file_operations fib_route_fops = {
2631 .owner = THIS_MODULE,
2632 .open = fib_route_seq_open,
2633 .read = seq_read,
2634 .llseek = seq_lseek,
2635 .release = seq_release_net,
2636 };
2637
2638 int __net_init fib_proc_init(struct net *net)
2639 {
2640 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2641 goto out1;
2642
2643 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2644 &fib_triestat_fops))
2645 goto out2;
2646
2647 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2648 goto out3;
2649
2650 return 0;
2651
2652 out3:
2653 remove_proc_entry("fib_triestat", net->proc_net);
2654 out2:
2655 remove_proc_entry("fib_trie", net->proc_net);
2656 out1:
2657 return -ENOMEM;
2658 }
2659
2660 void __net_exit fib_proc_exit(struct net *net)
2661 {
2662 remove_proc_entry("fib_trie", net->proc_net);
2663 remove_proc_entry("fib_triestat", net->proc_net);
2664 remove_proc_entry("route", net->proc_net);
2665 }
2666
2667 #endif /* CONFIG_PROC_FS */