]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - net/ipv4/fib_trie.c
[NET]: Make /proc/net per network namespace
[mirror_ubuntu-kernels.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $
26 *
27 *
28 * Code from fib_hash has been reused which includes the following header:
29 *
30 *
31 * INET An implementation of the TCP/IP protocol suite for the LINUX
32 * operating system. INET is implemented using the BSD Socket
33 * interface as the means of communication with the user level.
34 *
35 * IPv4 FIB: lookup engine and maintenance routines.
36 *
37 *
38 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
39 *
40 * This program is free software; you can redistribute it and/or
41 * modify it under the terms of the GNU General Public License
42 * as published by the Free Software Foundation; either version
43 * 2 of the License, or (at your option) any later version.
44 *
45 * Substantial contributions to this work comes from:
46 *
47 * David S. Miller, <davem@davemloft.net>
48 * Stephen Hemminger <shemminger@osdl.org>
49 * Paul E. McKenney <paulmck@us.ibm.com>
50 * Patrick McHardy <kaber@trash.net>
51 */
52
53 #define VERSION "0.408"
54
55 #include <asm/uaccess.h>
56 #include <asm/system.h>
57 #include <asm/bitops.h>
58 #include <linux/types.h>
59 #include <linux/kernel.h>
60 #include <linux/mm.h>
61 #include <linux/string.h>
62 #include <linux/socket.h>
63 #include <linux/sockios.h>
64 #include <linux/errno.h>
65 #include <linux/in.h>
66 #include <linux/inet.h>
67 #include <linux/inetdevice.h>
68 #include <linux/netdevice.h>
69 #include <linux/if_arp.h>
70 #include <linux/proc_fs.h>
71 #include <linux/rcupdate.h>
72 #include <linux/skbuff.h>
73 #include <linux/netlink.h>
74 #include <linux/init.h>
75 #include <linux/list.h>
76 #include <net/net_namespace.h>
77 #include <net/ip.h>
78 #include <net/protocol.h>
79 #include <net/route.h>
80 #include <net/tcp.h>
81 #include <net/sock.h>
82 #include <net/ip_fib.h>
83 #include "fib_lookup.h"
84
85 #undef CONFIG_IP_FIB_TRIE_STATS
86 #define MAX_STAT_DEPTH 32
87
88 #define KEYLENGTH (8*sizeof(t_key))
89
90 typedef unsigned int t_key;
91
92 #define T_TNODE 0
93 #define T_LEAF 1
94 #define NODE_TYPE_MASK 0x1UL
95 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
96
97 #define IS_TNODE(n) (!(n->parent & T_LEAF))
98 #define IS_LEAF(n) (n->parent & T_LEAF)
99
100 struct node {
101 t_key key;
102 unsigned long parent;
103 };
104
105 struct leaf {
106 t_key key;
107 unsigned long parent;
108 struct hlist_head list;
109 struct rcu_head rcu;
110 };
111
112 struct leaf_info {
113 struct hlist_node hlist;
114 struct rcu_head rcu;
115 int plen;
116 struct list_head falh;
117 };
118
119 struct tnode {
120 t_key key;
121 unsigned long parent;
122 unsigned short pos:5; /* 2log(KEYLENGTH) bits needed */
123 unsigned short bits:5; /* 2log(KEYLENGTH) bits needed */
124 unsigned short full_children; /* KEYLENGTH bits needed */
125 unsigned short empty_children; /* KEYLENGTH bits needed */
126 struct rcu_head rcu;
127 struct node *child[0];
128 };
129
130 #ifdef CONFIG_IP_FIB_TRIE_STATS
131 struct trie_use_stats {
132 unsigned int gets;
133 unsigned int backtrack;
134 unsigned int semantic_match_passed;
135 unsigned int semantic_match_miss;
136 unsigned int null_node_hit;
137 unsigned int resize_node_skipped;
138 };
139 #endif
140
141 struct trie_stat {
142 unsigned int totdepth;
143 unsigned int maxdepth;
144 unsigned int tnodes;
145 unsigned int leaves;
146 unsigned int nullpointers;
147 unsigned int nodesizes[MAX_STAT_DEPTH];
148 };
149
150 struct trie {
151 struct node *trie;
152 #ifdef CONFIG_IP_FIB_TRIE_STATS
153 struct trie_use_stats stats;
154 #endif
155 int size;
156 unsigned int revision;
157 };
158
159 static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
160 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull);
161 static struct node *resize(struct trie *t, struct tnode *tn);
162 static struct tnode *inflate(struct trie *t, struct tnode *tn);
163 static struct tnode *halve(struct trie *t, struct tnode *tn);
164 static void tnode_free(struct tnode *tn);
165
166 static struct kmem_cache *fn_alias_kmem __read_mostly;
167 static struct trie *trie_local = NULL, *trie_main = NULL;
168
169 static inline struct tnode *node_parent(struct node *node)
170 {
171 struct tnode *ret;
172
173 ret = (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
174 return rcu_dereference(ret);
175 }
176
177 static inline void node_set_parent(struct node *node, struct tnode *ptr)
178 {
179 rcu_assign_pointer(node->parent,
180 (unsigned long)ptr | NODE_TYPE(node));
181 }
182
183 /* rcu_read_lock needs to be hold by caller from readside */
184
185 static inline struct node *tnode_get_child(struct tnode *tn, int i)
186 {
187 BUG_ON(i >= 1 << tn->bits);
188
189 return rcu_dereference(tn->child[i]);
190 }
191
192 static inline int tnode_child_length(const struct tnode *tn)
193 {
194 return 1 << tn->bits;
195 }
196
197 static inline t_key mask_pfx(t_key k, unsigned short l)
198 {
199 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
200 }
201
202 static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
203 {
204 if (offset < KEYLENGTH)
205 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
206 else
207 return 0;
208 }
209
210 static inline int tkey_equals(t_key a, t_key b)
211 {
212 return a == b;
213 }
214
215 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
216 {
217 if (bits == 0 || offset >= KEYLENGTH)
218 return 1;
219 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
220 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
221 }
222
223 static inline int tkey_mismatch(t_key a, int offset, t_key b)
224 {
225 t_key diff = a ^ b;
226 int i = offset;
227
228 if (!diff)
229 return 0;
230 while ((diff << i) >> (KEYLENGTH-1) == 0)
231 i++;
232 return i;
233 }
234
235 /*
236 To understand this stuff, an understanding of keys and all their bits is
237 necessary. Every node in the trie has a key associated with it, but not
238 all of the bits in that key are significant.
239
240 Consider a node 'n' and its parent 'tp'.
241
242 If n is a leaf, every bit in its key is significant. Its presence is
243 necessitated by path compression, since during a tree traversal (when
244 searching for a leaf - unless we are doing an insertion) we will completely
245 ignore all skipped bits we encounter. Thus we need to verify, at the end of
246 a potentially successful search, that we have indeed been walking the
247 correct key path.
248
249 Note that we can never "miss" the correct key in the tree if present by
250 following the wrong path. Path compression ensures that segments of the key
251 that are the same for all keys with a given prefix are skipped, but the
252 skipped part *is* identical for each node in the subtrie below the skipped
253 bit! trie_insert() in this implementation takes care of that - note the
254 call to tkey_sub_equals() in trie_insert().
255
256 if n is an internal node - a 'tnode' here, the various parts of its key
257 have many different meanings.
258
259 Example:
260 _________________________________________________________________
261 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
262 -----------------------------------------------------------------
263 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
264
265 _________________________________________________________________
266 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
267 -----------------------------------------------------------------
268 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
269
270 tp->pos = 7
271 tp->bits = 3
272 n->pos = 15
273 n->bits = 4
274
275 First, let's just ignore the bits that come before the parent tp, that is
276 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
277 not use them for anything.
278
279 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
280 index into the parent's child array. That is, they will be used to find
281 'n' among tp's children.
282
283 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
284 for the node n.
285
286 All the bits we have seen so far are significant to the node n. The rest
287 of the bits are really not needed or indeed known in n->key.
288
289 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
290 n's child array, and will of course be different for each child.
291
292
293 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
294 at this point.
295
296 */
297
298 static inline void check_tnode(const struct tnode *tn)
299 {
300 WARN_ON(tn && tn->pos+tn->bits > 32);
301 }
302
303 static int halve_threshold = 25;
304 static int inflate_threshold = 50;
305 static int halve_threshold_root = 8;
306 static int inflate_threshold_root = 15;
307
308
309 static void __alias_free_mem(struct rcu_head *head)
310 {
311 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
312 kmem_cache_free(fn_alias_kmem, fa);
313 }
314
315 static inline void alias_free_mem_rcu(struct fib_alias *fa)
316 {
317 call_rcu(&fa->rcu, __alias_free_mem);
318 }
319
320 static void __leaf_free_rcu(struct rcu_head *head)
321 {
322 kfree(container_of(head, struct leaf, rcu));
323 }
324
325 static void __leaf_info_free_rcu(struct rcu_head *head)
326 {
327 kfree(container_of(head, struct leaf_info, rcu));
328 }
329
330 static inline void free_leaf_info(struct leaf_info *leaf)
331 {
332 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
333 }
334
335 static struct tnode *tnode_alloc(unsigned int size)
336 {
337 struct page *pages;
338
339 if (size <= PAGE_SIZE)
340 return kcalloc(size, 1, GFP_KERNEL);
341
342 pages = alloc_pages(GFP_KERNEL|__GFP_ZERO, get_order(size));
343 if (!pages)
344 return NULL;
345
346 return page_address(pages);
347 }
348
349 static void __tnode_free_rcu(struct rcu_head *head)
350 {
351 struct tnode *tn = container_of(head, struct tnode, rcu);
352 unsigned int size = sizeof(struct tnode) +
353 (1 << tn->bits) * sizeof(struct node *);
354
355 if (size <= PAGE_SIZE)
356 kfree(tn);
357 else
358 free_pages((unsigned long)tn, get_order(size));
359 }
360
361 static inline void tnode_free(struct tnode *tn)
362 {
363 if (IS_LEAF(tn)) {
364 struct leaf *l = (struct leaf *) tn;
365 call_rcu_bh(&l->rcu, __leaf_free_rcu);
366 } else
367 call_rcu(&tn->rcu, __tnode_free_rcu);
368 }
369
370 static struct leaf *leaf_new(void)
371 {
372 struct leaf *l = kmalloc(sizeof(struct leaf), GFP_KERNEL);
373 if (l) {
374 l->parent = T_LEAF;
375 INIT_HLIST_HEAD(&l->list);
376 }
377 return l;
378 }
379
380 static struct leaf_info *leaf_info_new(int plen)
381 {
382 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
383 if (li) {
384 li->plen = plen;
385 INIT_LIST_HEAD(&li->falh);
386 }
387 return li;
388 }
389
390 static struct tnode* tnode_new(t_key key, int pos, int bits)
391 {
392 int nchildren = 1<<bits;
393 int sz = sizeof(struct tnode) + nchildren * sizeof(struct node *);
394 struct tnode *tn = tnode_alloc(sz);
395
396 if (tn) {
397 memset(tn, 0, sz);
398 tn->parent = T_TNODE;
399 tn->pos = pos;
400 tn->bits = bits;
401 tn->key = key;
402 tn->full_children = 0;
403 tn->empty_children = 1<<bits;
404 }
405
406 pr_debug("AT %p s=%u %u\n", tn, (unsigned int) sizeof(struct tnode),
407 (unsigned int) (sizeof(struct node) * 1<<bits));
408 return tn;
409 }
410
411 /*
412 * Check whether a tnode 'n' is "full", i.e. it is an internal node
413 * and no bits are skipped. See discussion in dyntree paper p. 6
414 */
415
416 static inline int tnode_full(const struct tnode *tn, const struct node *n)
417 {
418 if (n == NULL || IS_LEAF(n))
419 return 0;
420
421 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
422 }
423
424 static inline void put_child(struct trie *t, struct tnode *tn, int i, struct node *n)
425 {
426 tnode_put_child_reorg(tn, i, n, -1);
427 }
428
429 /*
430 * Add a child at position i overwriting the old value.
431 * Update the value of full_children and empty_children.
432 */
433
434 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull)
435 {
436 struct node *chi = tn->child[i];
437 int isfull;
438
439 BUG_ON(i >= 1<<tn->bits);
440
441
442 /* update emptyChildren */
443 if (n == NULL && chi != NULL)
444 tn->empty_children++;
445 else if (n != NULL && chi == NULL)
446 tn->empty_children--;
447
448 /* update fullChildren */
449 if (wasfull == -1)
450 wasfull = tnode_full(tn, chi);
451
452 isfull = tnode_full(tn, n);
453 if (wasfull && !isfull)
454 tn->full_children--;
455 else if (!wasfull && isfull)
456 tn->full_children++;
457
458 if (n)
459 node_set_parent(n, tn);
460
461 rcu_assign_pointer(tn->child[i], n);
462 }
463
464 static struct node *resize(struct trie *t, struct tnode *tn)
465 {
466 int i;
467 int err = 0;
468 struct tnode *old_tn;
469 int inflate_threshold_use;
470 int halve_threshold_use;
471 int max_resize;
472
473 if (!tn)
474 return NULL;
475
476 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
477 tn, inflate_threshold, halve_threshold);
478
479 /* No children */
480 if (tn->empty_children == tnode_child_length(tn)) {
481 tnode_free(tn);
482 return NULL;
483 }
484 /* One child */
485 if (tn->empty_children == tnode_child_length(tn) - 1)
486 for (i = 0; i < tnode_child_length(tn); i++) {
487 struct node *n;
488
489 n = tn->child[i];
490 if (!n)
491 continue;
492
493 /* compress one level */
494 node_set_parent(n, NULL);
495 tnode_free(tn);
496 return n;
497 }
498 /*
499 * Double as long as the resulting node has a number of
500 * nonempty nodes that are above the threshold.
501 */
502
503 /*
504 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
505 * the Helsinki University of Technology and Matti Tikkanen of Nokia
506 * Telecommunications, page 6:
507 * "A node is doubled if the ratio of non-empty children to all
508 * children in the *doubled* node is at least 'high'."
509 *
510 * 'high' in this instance is the variable 'inflate_threshold'. It
511 * is expressed as a percentage, so we multiply it with
512 * tnode_child_length() and instead of multiplying by 2 (since the
513 * child array will be doubled by inflate()) and multiplying
514 * the left-hand side by 100 (to handle the percentage thing) we
515 * multiply the left-hand side by 50.
516 *
517 * The left-hand side may look a bit weird: tnode_child_length(tn)
518 * - tn->empty_children is of course the number of non-null children
519 * in the current node. tn->full_children is the number of "full"
520 * children, that is non-null tnodes with a skip value of 0.
521 * All of those will be doubled in the resulting inflated tnode, so
522 * we just count them one extra time here.
523 *
524 * A clearer way to write this would be:
525 *
526 * to_be_doubled = tn->full_children;
527 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
528 * tn->full_children;
529 *
530 * new_child_length = tnode_child_length(tn) * 2;
531 *
532 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
533 * new_child_length;
534 * if (new_fill_factor >= inflate_threshold)
535 *
536 * ...and so on, tho it would mess up the while () loop.
537 *
538 * anyway,
539 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
540 * inflate_threshold
541 *
542 * avoid a division:
543 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
544 * inflate_threshold * new_child_length
545 *
546 * expand not_to_be_doubled and to_be_doubled, and shorten:
547 * 100 * (tnode_child_length(tn) - tn->empty_children +
548 * tn->full_children) >= inflate_threshold * new_child_length
549 *
550 * expand new_child_length:
551 * 100 * (tnode_child_length(tn) - tn->empty_children +
552 * tn->full_children) >=
553 * inflate_threshold * tnode_child_length(tn) * 2
554 *
555 * shorten again:
556 * 50 * (tn->full_children + tnode_child_length(tn) -
557 * tn->empty_children) >= inflate_threshold *
558 * tnode_child_length(tn)
559 *
560 */
561
562 check_tnode(tn);
563
564 /* Keep root node larger */
565
566 if (!tn->parent)
567 inflate_threshold_use = inflate_threshold_root;
568 else
569 inflate_threshold_use = inflate_threshold;
570
571 err = 0;
572 max_resize = 10;
573 while ((tn->full_children > 0 && max_resize-- &&
574 50 * (tn->full_children + tnode_child_length(tn) - tn->empty_children) >=
575 inflate_threshold_use * tnode_child_length(tn))) {
576
577 old_tn = tn;
578 tn = inflate(t, tn);
579 if (IS_ERR(tn)) {
580 tn = old_tn;
581 #ifdef CONFIG_IP_FIB_TRIE_STATS
582 t->stats.resize_node_skipped++;
583 #endif
584 break;
585 }
586 }
587
588 if (max_resize < 0) {
589 if (!tn->parent)
590 printk(KERN_WARNING "Fix inflate_threshold_root. Now=%d size=%d bits\n",
591 inflate_threshold_root, tn->bits);
592 else
593 printk(KERN_WARNING "Fix inflate_threshold. Now=%d size=%d bits\n",
594 inflate_threshold, tn->bits);
595 }
596
597 check_tnode(tn);
598
599 /*
600 * Halve as long as the number of empty children in this
601 * node is above threshold.
602 */
603
604
605 /* Keep root node larger */
606
607 if (!tn->parent)
608 halve_threshold_use = halve_threshold_root;
609 else
610 halve_threshold_use = halve_threshold;
611
612 err = 0;
613 max_resize = 10;
614 while (tn->bits > 1 && max_resize-- &&
615 100 * (tnode_child_length(tn) - tn->empty_children) <
616 halve_threshold_use * tnode_child_length(tn)) {
617
618 old_tn = tn;
619 tn = halve(t, tn);
620 if (IS_ERR(tn)) {
621 tn = old_tn;
622 #ifdef CONFIG_IP_FIB_TRIE_STATS
623 t->stats.resize_node_skipped++;
624 #endif
625 break;
626 }
627 }
628
629 if (max_resize < 0) {
630 if (!tn->parent)
631 printk(KERN_WARNING "Fix halve_threshold_root. Now=%d size=%d bits\n",
632 halve_threshold_root, tn->bits);
633 else
634 printk(KERN_WARNING "Fix halve_threshold. Now=%d size=%d bits\n",
635 halve_threshold, tn->bits);
636 }
637
638 /* Only one child remains */
639 if (tn->empty_children == tnode_child_length(tn) - 1)
640 for (i = 0; i < tnode_child_length(tn); i++) {
641 struct node *n;
642
643 n = tn->child[i];
644 if (!n)
645 continue;
646
647 /* compress one level */
648
649 node_set_parent(n, NULL);
650 tnode_free(tn);
651 return n;
652 }
653
654 return (struct node *) tn;
655 }
656
657 static struct tnode *inflate(struct trie *t, struct tnode *tn)
658 {
659 struct tnode *inode;
660 struct tnode *oldtnode = tn;
661 int olen = tnode_child_length(tn);
662 int i;
663
664 pr_debug("In inflate\n");
665
666 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
667
668 if (!tn)
669 return ERR_PTR(-ENOMEM);
670
671 /*
672 * Preallocate and store tnodes before the actual work so we
673 * don't get into an inconsistent state if memory allocation
674 * fails. In case of failure we return the oldnode and inflate
675 * of tnode is ignored.
676 */
677
678 for (i = 0; i < olen; i++) {
679 struct tnode *inode = (struct tnode *) tnode_get_child(oldtnode, i);
680
681 if (inode &&
682 IS_TNODE(inode) &&
683 inode->pos == oldtnode->pos + oldtnode->bits &&
684 inode->bits > 1) {
685 struct tnode *left, *right;
686 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
687
688 left = tnode_new(inode->key&(~m), inode->pos + 1,
689 inode->bits - 1);
690 if (!left)
691 goto nomem;
692
693 right = tnode_new(inode->key|m, inode->pos + 1,
694 inode->bits - 1);
695
696 if (!right) {
697 tnode_free(left);
698 goto nomem;
699 }
700
701 put_child(t, tn, 2*i, (struct node *) left);
702 put_child(t, tn, 2*i+1, (struct node *) right);
703 }
704 }
705
706 for (i = 0; i < olen; i++) {
707 struct node *node = tnode_get_child(oldtnode, i);
708 struct tnode *left, *right;
709 int size, j;
710
711 /* An empty child */
712 if (node == NULL)
713 continue;
714
715 /* A leaf or an internal node with skipped bits */
716
717 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
718 tn->pos + tn->bits - 1) {
719 if (tkey_extract_bits(node->key, oldtnode->pos + oldtnode->bits,
720 1) == 0)
721 put_child(t, tn, 2*i, node);
722 else
723 put_child(t, tn, 2*i+1, node);
724 continue;
725 }
726
727 /* An internal node with two children */
728 inode = (struct tnode *) node;
729
730 if (inode->bits == 1) {
731 put_child(t, tn, 2*i, inode->child[0]);
732 put_child(t, tn, 2*i+1, inode->child[1]);
733
734 tnode_free(inode);
735 continue;
736 }
737
738 /* An internal node with more than two children */
739
740 /* We will replace this node 'inode' with two new
741 * ones, 'left' and 'right', each with half of the
742 * original children. The two new nodes will have
743 * a position one bit further down the key and this
744 * means that the "significant" part of their keys
745 * (see the discussion near the top of this file)
746 * will differ by one bit, which will be "0" in
747 * left's key and "1" in right's key. Since we are
748 * moving the key position by one step, the bit that
749 * we are moving away from - the bit at position
750 * (inode->pos) - is the one that will differ between
751 * left and right. So... we synthesize that bit in the
752 * two new keys.
753 * The mask 'm' below will be a single "one" bit at
754 * the position (inode->pos)
755 */
756
757 /* Use the old key, but set the new significant
758 * bit to zero.
759 */
760
761 left = (struct tnode *) tnode_get_child(tn, 2*i);
762 put_child(t, tn, 2*i, NULL);
763
764 BUG_ON(!left);
765
766 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
767 put_child(t, tn, 2*i+1, NULL);
768
769 BUG_ON(!right);
770
771 size = tnode_child_length(left);
772 for (j = 0; j < size; j++) {
773 put_child(t, left, j, inode->child[j]);
774 put_child(t, right, j, inode->child[j + size]);
775 }
776 put_child(t, tn, 2*i, resize(t, left));
777 put_child(t, tn, 2*i+1, resize(t, right));
778
779 tnode_free(inode);
780 }
781 tnode_free(oldtnode);
782 return tn;
783 nomem:
784 {
785 int size = tnode_child_length(tn);
786 int j;
787
788 for (j = 0; j < size; j++)
789 if (tn->child[j])
790 tnode_free((struct tnode *)tn->child[j]);
791
792 tnode_free(tn);
793
794 return ERR_PTR(-ENOMEM);
795 }
796 }
797
798 static struct tnode *halve(struct trie *t, struct tnode *tn)
799 {
800 struct tnode *oldtnode = tn;
801 struct node *left, *right;
802 int i;
803 int olen = tnode_child_length(tn);
804
805 pr_debug("In halve\n");
806
807 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
808
809 if (!tn)
810 return ERR_PTR(-ENOMEM);
811
812 /*
813 * Preallocate and store tnodes before the actual work so we
814 * don't get into an inconsistent state if memory allocation
815 * fails. In case of failure we return the oldnode and halve
816 * of tnode is ignored.
817 */
818
819 for (i = 0; i < olen; i += 2) {
820 left = tnode_get_child(oldtnode, i);
821 right = tnode_get_child(oldtnode, i+1);
822
823 /* Two nonempty children */
824 if (left && right) {
825 struct tnode *newn;
826
827 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
828
829 if (!newn)
830 goto nomem;
831
832 put_child(t, tn, i/2, (struct node *)newn);
833 }
834
835 }
836
837 for (i = 0; i < olen; i += 2) {
838 struct tnode *newBinNode;
839
840 left = tnode_get_child(oldtnode, i);
841 right = tnode_get_child(oldtnode, i+1);
842
843 /* At least one of the children is empty */
844 if (left == NULL) {
845 if (right == NULL) /* Both are empty */
846 continue;
847 put_child(t, tn, i/2, right);
848 continue;
849 }
850
851 if (right == NULL) {
852 put_child(t, tn, i/2, left);
853 continue;
854 }
855
856 /* Two nonempty children */
857 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
858 put_child(t, tn, i/2, NULL);
859 put_child(t, newBinNode, 0, left);
860 put_child(t, newBinNode, 1, right);
861 put_child(t, tn, i/2, resize(t, newBinNode));
862 }
863 tnode_free(oldtnode);
864 return tn;
865 nomem:
866 {
867 int size = tnode_child_length(tn);
868 int j;
869
870 for (j = 0; j < size; j++)
871 if (tn->child[j])
872 tnode_free((struct tnode *)tn->child[j]);
873
874 tnode_free(tn);
875
876 return ERR_PTR(-ENOMEM);
877 }
878 }
879
880 static void trie_init(struct trie *t)
881 {
882 if (!t)
883 return;
884
885 t->size = 0;
886 rcu_assign_pointer(t->trie, NULL);
887 t->revision = 0;
888 #ifdef CONFIG_IP_FIB_TRIE_STATS
889 memset(&t->stats, 0, sizeof(struct trie_use_stats));
890 #endif
891 }
892
893 /* readside must use rcu_read_lock currently dump routines
894 via get_fa_head and dump */
895
896 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
897 {
898 struct hlist_head *head = &l->list;
899 struct hlist_node *node;
900 struct leaf_info *li;
901
902 hlist_for_each_entry_rcu(li, node, head, hlist)
903 if (li->plen == plen)
904 return li;
905
906 return NULL;
907 }
908
909 static inline struct list_head * get_fa_head(struct leaf *l, int plen)
910 {
911 struct leaf_info *li = find_leaf_info(l, plen);
912
913 if (!li)
914 return NULL;
915
916 return &li->falh;
917 }
918
919 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
920 {
921 struct leaf_info *li = NULL, *last = NULL;
922 struct hlist_node *node;
923
924 if (hlist_empty(head)) {
925 hlist_add_head_rcu(&new->hlist, head);
926 } else {
927 hlist_for_each_entry(li, node, head, hlist) {
928 if (new->plen > li->plen)
929 break;
930
931 last = li;
932 }
933 if (last)
934 hlist_add_after_rcu(&last->hlist, &new->hlist);
935 else
936 hlist_add_before_rcu(&new->hlist, &li->hlist);
937 }
938 }
939
940 /* rcu_read_lock needs to be hold by caller from readside */
941
942 static struct leaf *
943 fib_find_node(struct trie *t, u32 key)
944 {
945 int pos;
946 struct tnode *tn;
947 struct node *n;
948
949 pos = 0;
950 n = rcu_dereference(t->trie);
951
952 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
953 tn = (struct tnode *) n;
954
955 check_tnode(tn);
956
957 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
958 pos = tn->pos + tn->bits;
959 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
960 } else
961 break;
962 }
963 /* Case we have found a leaf. Compare prefixes */
964
965 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
966 return (struct leaf *)n;
967
968 return NULL;
969 }
970
971 static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
972 {
973 int wasfull;
974 t_key cindex, key = tn->key;
975 struct tnode *tp;
976
977 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
978 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
979 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
980 tn = (struct tnode *) resize (t, (struct tnode *)tn);
981 tnode_put_child_reorg((struct tnode *)tp, cindex,(struct node*)tn, wasfull);
982
983 tp = node_parent((struct node *) tn);
984 if (!tp)
985 break;
986 tn = tp;
987 }
988
989 /* Handle last (top) tnode */
990 if (IS_TNODE(tn))
991 tn = (struct tnode*) resize(t, (struct tnode *)tn);
992
993 return (struct node*) tn;
994 }
995
996 /* only used from updater-side */
997
998 static struct list_head *
999 fib_insert_node(struct trie *t, int *err, u32 key, int plen)
1000 {
1001 int pos, newpos;
1002 struct tnode *tp = NULL, *tn = NULL;
1003 struct node *n;
1004 struct leaf *l;
1005 int missbit;
1006 struct list_head *fa_head = NULL;
1007 struct leaf_info *li;
1008 t_key cindex;
1009
1010 pos = 0;
1011 n = t->trie;
1012
1013 /* If we point to NULL, stop. Either the tree is empty and we should
1014 * just put a new leaf in if, or we have reached an empty child slot,
1015 * and we should just put our new leaf in that.
1016 * If we point to a T_TNODE, check if it matches our key. Note that
1017 * a T_TNODE might be skipping any number of bits - its 'pos' need
1018 * not be the parent's 'pos'+'bits'!
1019 *
1020 * If it does match the current key, get pos/bits from it, extract
1021 * the index from our key, push the T_TNODE and walk the tree.
1022 *
1023 * If it doesn't, we have to replace it with a new T_TNODE.
1024 *
1025 * If we point to a T_LEAF, it might or might not have the same key
1026 * as we do. If it does, just change the value, update the T_LEAF's
1027 * value, and return it.
1028 * If it doesn't, we need to replace it with a T_TNODE.
1029 */
1030
1031 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1032 tn = (struct tnode *) n;
1033
1034 check_tnode(tn);
1035
1036 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1037 tp = tn;
1038 pos = tn->pos + tn->bits;
1039 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
1040
1041 BUG_ON(n && node_parent(n) != tn);
1042 } else
1043 break;
1044 }
1045
1046 /*
1047 * n ----> NULL, LEAF or TNODE
1048 *
1049 * tp is n's (parent) ----> NULL or TNODE
1050 */
1051
1052 BUG_ON(tp && IS_LEAF(tp));
1053
1054 /* Case 1: n is a leaf. Compare prefixes */
1055
1056 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1057 struct leaf *l = (struct leaf *) n;
1058
1059 li = leaf_info_new(plen);
1060
1061 if (!li) {
1062 *err = -ENOMEM;
1063 goto err;
1064 }
1065
1066 fa_head = &li->falh;
1067 insert_leaf_info(&l->list, li);
1068 goto done;
1069 }
1070 t->size++;
1071 l = leaf_new();
1072
1073 if (!l) {
1074 *err = -ENOMEM;
1075 goto err;
1076 }
1077
1078 l->key = key;
1079 li = leaf_info_new(plen);
1080
1081 if (!li) {
1082 tnode_free((struct tnode *) l);
1083 *err = -ENOMEM;
1084 goto err;
1085 }
1086
1087 fa_head = &li->falh;
1088 insert_leaf_info(&l->list, li);
1089
1090 if (t->trie && n == NULL) {
1091 /* Case 2: n is NULL, and will just insert a new leaf */
1092
1093 node_set_parent((struct node *)l, tp);
1094
1095 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1096 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1097 } else {
1098 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1099 /*
1100 * Add a new tnode here
1101 * first tnode need some special handling
1102 */
1103
1104 if (tp)
1105 pos = tp->pos+tp->bits;
1106 else
1107 pos = 0;
1108
1109 if (n) {
1110 newpos = tkey_mismatch(key, pos, n->key);
1111 tn = tnode_new(n->key, newpos, 1);
1112 } else {
1113 newpos = 0;
1114 tn = tnode_new(key, newpos, 1); /* First tnode */
1115 }
1116
1117 if (!tn) {
1118 free_leaf_info(li);
1119 tnode_free((struct tnode *) l);
1120 *err = -ENOMEM;
1121 goto err;
1122 }
1123
1124 node_set_parent((struct node *)tn, tp);
1125
1126 missbit = tkey_extract_bits(key, newpos, 1);
1127 put_child(t, tn, missbit, (struct node *)l);
1128 put_child(t, tn, 1-missbit, n);
1129
1130 if (tp) {
1131 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1132 put_child(t, (struct tnode *)tp, cindex, (struct node *)tn);
1133 } else {
1134 rcu_assign_pointer(t->trie, (struct node *)tn); /* First tnode */
1135 tp = tn;
1136 }
1137 }
1138
1139 if (tp && tp->pos + tp->bits > 32)
1140 printk(KERN_WARNING "fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1141 tp, tp->pos, tp->bits, key, plen);
1142
1143 /* Rebalance the trie */
1144
1145 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1146 done:
1147 t->revision++;
1148 err:
1149 return fa_head;
1150 }
1151
1152 /*
1153 * Caller must hold RTNL.
1154 */
1155 static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
1156 {
1157 struct trie *t = (struct trie *) tb->tb_data;
1158 struct fib_alias *fa, *new_fa;
1159 struct list_head *fa_head = NULL;
1160 struct fib_info *fi;
1161 int plen = cfg->fc_dst_len;
1162 u8 tos = cfg->fc_tos;
1163 u32 key, mask;
1164 int err;
1165 struct leaf *l;
1166
1167 if (plen > 32)
1168 return -EINVAL;
1169
1170 key = ntohl(cfg->fc_dst);
1171
1172 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1173
1174 mask = ntohl(inet_make_mask(plen));
1175
1176 if (key & ~mask)
1177 return -EINVAL;
1178
1179 key = key & mask;
1180
1181 fi = fib_create_info(cfg);
1182 if (IS_ERR(fi)) {
1183 err = PTR_ERR(fi);
1184 goto err;
1185 }
1186
1187 l = fib_find_node(t, key);
1188 fa = NULL;
1189
1190 if (l) {
1191 fa_head = get_fa_head(l, plen);
1192 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1193 }
1194
1195 /* Now fa, if non-NULL, points to the first fib alias
1196 * with the same keys [prefix,tos,priority], if such key already
1197 * exists or to the node before which we will insert new one.
1198 *
1199 * If fa is NULL, we will need to allocate a new one and
1200 * insert to the head of f.
1201 *
1202 * If f is NULL, no fib node matched the destination key
1203 * and we need to allocate a new one of those as well.
1204 */
1205
1206 if (fa && fa->fa_info->fib_priority == fi->fib_priority) {
1207 struct fib_alias *fa_orig;
1208
1209 err = -EEXIST;
1210 if (cfg->fc_nlflags & NLM_F_EXCL)
1211 goto out;
1212
1213 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1214 struct fib_info *fi_drop;
1215 u8 state;
1216
1217 err = -ENOBUFS;
1218 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1219 if (new_fa == NULL)
1220 goto out;
1221
1222 fi_drop = fa->fa_info;
1223 new_fa->fa_tos = fa->fa_tos;
1224 new_fa->fa_info = fi;
1225 new_fa->fa_type = cfg->fc_type;
1226 new_fa->fa_scope = cfg->fc_scope;
1227 state = fa->fa_state;
1228 new_fa->fa_state &= ~FA_S_ACCESSED;
1229
1230 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1231 alias_free_mem_rcu(fa);
1232
1233 fib_release_info(fi_drop);
1234 if (state & FA_S_ACCESSED)
1235 rt_cache_flush(-1);
1236 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1237 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1238
1239 goto succeeded;
1240 }
1241 /* Error if we find a perfect match which
1242 * uses the same scope, type, and nexthop
1243 * information.
1244 */
1245 fa_orig = fa;
1246 list_for_each_entry(fa, fa_orig->fa_list.prev, fa_list) {
1247 if (fa->fa_tos != tos)
1248 break;
1249 if (fa->fa_info->fib_priority != fi->fib_priority)
1250 break;
1251 if (fa->fa_type == cfg->fc_type &&
1252 fa->fa_scope == cfg->fc_scope &&
1253 fa->fa_info == fi) {
1254 goto out;
1255 }
1256 }
1257 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1258 fa = fa_orig;
1259 }
1260 err = -ENOENT;
1261 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1262 goto out;
1263
1264 err = -ENOBUFS;
1265 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1266 if (new_fa == NULL)
1267 goto out;
1268
1269 new_fa->fa_info = fi;
1270 new_fa->fa_tos = tos;
1271 new_fa->fa_type = cfg->fc_type;
1272 new_fa->fa_scope = cfg->fc_scope;
1273 new_fa->fa_state = 0;
1274 /*
1275 * Insert new entry to the list.
1276 */
1277
1278 if (!fa_head) {
1279 err = 0;
1280 fa_head = fib_insert_node(t, &err, key, plen);
1281 if (err)
1282 goto out_free_new_fa;
1283 }
1284
1285 list_add_tail_rcu(&new_fa->fa_list,
1286 (fa ? &fa->fa_list : fa_head));
1287
1288 rt_cache_flush(-1);
1289 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1290 &cfg->fc_nlinfo, 0);
1291 succeeded:
1292 return 0;
1293
1294 out_free_new_fa:
1295 kmem_cache_free(fn_alias_kmem, new_fa);
1296 out:
1297 fib_release_info(fi);
1298 err:
1299 return err;
1300 }
1301
1302
1303 /* should be called with rcu_read_lock */
1304 static inline int check_leaf(struct trie *t, struct leaf *l,
1305 t_key key, int *plen, const struct flowi *flp,
1306 struct fib_result *res)
1307 {
1308 int err, i;
1309 __be32 mask;
1310 struct leaf_info *li;
1311 struct hlist_head *hhead = &l->list;
1312 struct hlist_node *node;
1313
1314 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1315 i = li->plen;
1316 mask = inet_make_mask(i);
1317 if (l->key != (key & ntohl(mask)))
1318 continue;
1319
1320 if ((err = fib_semantic_match(&li->falh, flp, res, htonl(l->key), mask, i)) <= 0) {
1321 *plen = i;
1322 #ifdef CONFIG_IP_FIB_TRIE_STATS
1323 t->stats.semantic_match_passed++;
1324 #endif
1325 return err;
1326 }
1327 #ifdef CONFIG_IP_FIB_TRIE_STATS
1328 t->stats.semantic_match_miss++;
1329 #endif
1330 }
1331 return 1;
1332 }
1333
1334 static int
1335 fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1336 {
1337 struct trie *t = (struct trie *) tb->tb_data;
1338 int plen, ret = 0;
1339 struct node *n;
1340 struct tnode *pn;
1341 int pos, bits;
1342 t_key key = ntohl(flp->fl4_dst);
1343 int chopped_off;
1344 t_key cindex = 0;
1345 int current_prefix_length = KEYLENGTH;
1346 struct tnode *cn;
1347 t_key node_prefix, key_prefix, pref_mismatch;
1348 int mp;
1349
1350 rcu_read_lock();
1351
1352 n = rcu_dereference(t->trie);
1353 if (!n)
1354 goto failed;
1355
1356 #ifdef CONFIG_IP_FIB_TRIE_STATS
1357 t->stats.gets++;
1358 #endif
1359
1360 /* Just a leaf? */
1361 if (IS_LEAF(n)) {
1362 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1363 goto found;
1364 goto failed;
1365 }
1366 pn = (struct tnode *) n;
1367 chopped_off = 0;
1368
1369 while (pn) {
1370 pos = pn->pos;
1371 bits = pn->bits;
1372
1373 if (!chopped_off)
1374 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1375 pos, bits);
1376
1377 n = tnode_get_child(pn, cindex);
1378
1379 if (n == NULL) {
1380 #ifdef CONFIG_IP_FIB_TRIE_STATS
1381 t->stats.null_node_hit++;
1382 #endif
1383 goto backtrace;
1384 }
1385
1386 if (IS_LEAF(n)) {
1387 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1388 goto found;
1389 else
1390 goto backtrace;
1391 }
1392
1393 #define HL_OPTIMIZE
1394 #ifdef HL_OPTIMIZE
1395 cn = (struct tnode *)n;
1396
1397 /*
1398 * It's a tnode, and we can do some extra checks here if we
1399 * like, to avoid descending into a dead-end branch.
1400 * This tnode is in the parent's child array at index
1401 * key[p_pos..p_pos+p_bits] but potentially with some bits
1402 * chopped off, so in reality the index may be just a
1403 * subprefix, padded with zero at the end.
1404 * We can also take a look at any skipped bits in this
1405 * tnode - everything up to p_pos is supposed to be ok,
1406 * and the non-chopped bits of the index (se previous
1407 * paragraph) are also guaranteed ok, but the rest is
1408 * considered unknown.
1409 *
1410 * The skipped bits are key[pos+bits..cn->pos].
1411 */
1412
1413 /* If current_prefix_length < pos+bits, we are already doing
1414 * actual prefix matching, which means everything from
1415 * pos+(bits-chopped_off) onward must be zero along some
1416 * branch of this subtree - otherwise there is *no* valid
1417 * prefix present. Here we can only check the skipped
1418 * bits. Remember, since we have already indexed into the
1419 * parent's child array, we know that the bits we chopped of
1420 * *are* zero.
1421 */
1422
1423 /* NOTA BENE: CHECKING ONLY SKIPPED BITS FOR THE NEW NODE HERE */
1424
1425 if (current_prefix_length < pos+bits) {
1426 if (tkey_extract_bits(cn->key, current_prefix_length,
1427 cn->pos - current_prefix_length) != 0 ||
1428 !(cn->child[0]))
1429 goto backtrace;
1430 }
1431
1432 /*
1433 * If chopped_off=0, the index is fully validated and we
1434 * only need to look at the skipped bits for this, the new,
1435 * tnode. What we actually want to do is to find out if
1436 * these skipped bits match our key perfectly, or if we will
1437 * have to count on finding a matching prefix further down,
1438 * because if we do, we would like to have some way of
1439 * verifying the existence of such a prefix at this point.
1440 */
1441
1442 /* The only thing we can do at this point is to verify that
1443 * any such matching prefix can indeed be a prefix to our
1444 * key, and if the bits in the node we are inspecting that
1445 * do not match our key are not ZERO, this cannot be true.
1446 * Thus, find out where there is a mismatch (before cn->pos)
1447 * and verify that all the mismatching bits are zero in the
1448 * new tnode's key.
1449 */
1450
1451 /* Note: We aren't very concerned about the piece of the key
1452 * that precede pn->pos+pn->bits, since these have already been
1453 * checked. The bits after cn->pos aren't checked since these are
1454 * by definition "unknown" at this point. Thus, what we want to
1455 * see is if we are about to enter the "prefix matching" state,
1456 * and in that case verify that the skipped bits that will prevail
1457 * throughout this subtree are zero, as they have to be if we are
1458 * to find a matching prefix.
1459 */
1460
1461 node_prefix = mask_pfx(cn->key, cn->pos);
1462 key_prefix = mask_pfx(key, cn->pos);
1463 pref_mismatch = key_prefix^node_prefix;
1464 mp = 0;
1465
1466 /* In short: If skipped bits in this node do not match the search
1467 * key, enter the "prefix matching" state.directly.
1468 */
1469 if (pref_mismatch) {
1470 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1471 mp++;
1472 pref_mismatch = pref_mismatch <<1;
1473 }
1474 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1475
1476 if (key_prefix != 0)
1477 goto backtrace;
1478
1479 if (current_prefix_length >= cn->pos)
1480 current_prefix_length = mp;
1481 }
1482 #endif
1483 pn = (struct tnode *)n; /* Descend */
1484 chopped_off = 0;
1485 continue;
1486
1487 backtrace:
1488 chopped_off++;
1489
1490 /* As zero don't change the child key (cindex) */
1491 while ((chopped_off <= pn->bits) && !(cindex & (1<<(chopped_off-1))))
1492 chopped_off++;
1493
1494 /* Decrease current_... with bits chopped off */
1495 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1496 current_prefix_length = pn->pos + pn->bits - chopped_off;
1497
1498 /*
1499 * Either we do the actual chop off according or if we have
1500 * chopped off all bits in this tnode walk up to our parent.
1501 */
1502
1503 if (chopped_off <= pn->bits) {
1504 cindex &= ~(1 << (chopped_off-1));
1505 } else {
1506 struct tnode *parent = node_parent((struct node *) pn);
1507 if (!parent)
1508 goto failed;
1509
1510 /* Get Child's index */
1511 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1512 pn = parent;
1513 chopped_off = 0;
1514
1515 #ifdef CONFIG_IP_FIB_TRIE_STATS
1516 t->stats.backtrack++;
1517 #endif
1518 goto backtrace;
1519 }
1520 }
1521 failed:
1522 ret = 1;
1523 found:
1524 rcu_read_unlock();
1525 return ret;
1526 }
1527
1528 /* only called from updater side */
1529 static int trie_leaf_remove(struct trie *t, t_key key)
1530 {
1531 t_key cindex;
1532 struct tnode *tp = NULL;
1533 struct node *n = t->trie;
1534 struct leaf *l;
1535
1536 pr_debug("entering trie_leaf_remove(%p)\n", n);
1537
1538 /* Note that in the case skipped bits, those bits are *not* checked!
1539 * When we finish this, we will have NULL or a T_LEAF, and the
1540 * T_LEAF may or may not match our key.
1541 */
1542
1543 while (n != NULL && IS_TNODE(n)) {
1544 struct tnode *tn = (struct tnode *) n;
1545 check_tnode(tn);
1546 n = tnode_get_child(tn ,tkey_extract_bits(key, tn->pos, tn->bits));
1547
1548 BUG_ON(n && node_parent(n) != tn);
1549 }
1550 l = (struct leaf *) n;
1551
1552 if (!n || !tkey_equals(l->key, key))
1553 return 0;
1554
1555 /*
1556 * Key found.
1557 * Remove the leaf and rebalance the tree
1558 */
1559
1560 t->revision++;
1561 t->size--;
1562
1563 tp = node_parent(n);
1564 tnode_free((struct tnode *) n);
1565
1566 if (tp) {
1567 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1568 put_child(t, (struct tnode *)tp, cindex, NULL);
1569 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1570 } else
1571 rcu_assign_pointer(t->trie, NULL);
1572
1573 return 1;
1574 }
1575
1576 /*
1577 * Caller must hold RTNL.
1578 */
1579 static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
1580 {
1581 struct trie *t = (struct trie *) tb->tb_data;
1582 u32 key, mask;
1583 int plen = cfg->fc_dst_len;
1584 u8 tos = cfg->fc_tos;
1585 struct fib_alias *fa, *fa_to_delete;
1586 struct list_head *fa_head;
1587 struct leaf *l;
1588 struct leaf_info *li;
1589
1590 if (plen > 32)
1591 return -EINVAL;
1592
1593 key = ntohl(cfg->fc_dst);
1594 mask = ntohl(inet_make_mask(plen));
1595
1596 if (key & ~mask)
1597 return -EINVAL;
1598
1599 key = key & mask;
1600 l = fib_find_node(t, key);
1601
1602 if (!l)
1603 return -ESRCH;
1604
1605 fa_head = get_fa_head(l, plen);
1606 fa = fib_find_alias(fa_head, tos, 0);
1607
1608 if (!fa)
1609 return -ESRCH;
1610
1611 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1612
1613 fa_to_delete = NULL;
1614 fa_head = fa->fa_list.prev;
1615
1616 list_for_each_entry(fa, fa_head, fa_list) {
1617 struct fib_info *fi = fa->fa_info;
1618
1619 if (fa->fa_tos != tos)
1620 break;
1621
1622 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1623 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1624 fa->fa_scope == cfg->fc_scope) &&
1625 (!cfg->fc_protocol ||
1626 fi->fib_protocol == cfg->fc_protocol) &&
1627 fib_nh_match(cfg, fi) == 0) {
1628 fa_to_delete = fa;
1629 break;
1630 }
1631 }
1632
1633 if (!fa_to_delete)
1634 return -ESRCH;
1635
1636 fa = fa_to_delete;
1637 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1638 &cfg->fc_nlinfo, 0);
1639
1640 l = fib_find_node(t, key);
1641 li = find_leaf_info(l, plen);
1642
1643 list_del_rcu(&fa->fa_list);
1644
1645 if (list_empty(fa_head)) {
1646 hlist_del_rcu(&li->hlist);
1647 free_leaf_info(li);
1648 }
1649
1650 if (hlist_empty(&l->list))
1651 trie_leaf_remove(t, key);
1652
1653 if (fa->fa_state & FA_S_ACCESSED)
1654 rt_cache_flush(-1);
1655
1656 fib_release_info(fa->fa_info);
1657 alias_free_mem_rcu(fa);
1658 return 0;
1659 }
1660
1661 static int trie_flush_list(struct trie *t, struct list_head *head)
1662 {
1663 struct fib_alias *fa, *fa_node;
1664 int found = 0;
1665
1666 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1667 struct fib_info *fi = fa->fa_info;
1668
1669 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1670 list_del_rcu(&fa->fa_list);
1671 fib_release_info(fa->fa_info);
1672 alias_free_mem_rcu(fa);
1673 found++;
1674 }
1675 }
1676 return found;
1677 }
1678
1679 static int trie_flush_leaf(struct trie *t, struct leaf *l)
1680 {
1681 int found = 0;
1682 struct hlist_head *lih = &l->list;
1683 struct hlist_node *node, *tmp;
1684 struct leaf_info *li = NULL;
1685
1686 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1687 found += trie_flush_list(t, &li->falh);
1688
1689 if (list_empty(&li->falh)) {
1690 hlist_del_rcu(&li->hlist);
1691 free_leaf_info(li);
1692 }
1693 }
1694 return found;
1695 }
1696
1697 /* rcu_read_lock needs to be hold by caller from readside */
1698
1699 static struct leaf *nextleaf(struct trie *t, struct leaf *thisleaf)
1700 {
1701 struct node *c = (struct node *) thisleaf;
1702 struct tnode *p;
1703 int idx;
1704 struct node *trie = rcu_dereference(t->trie);
1705
1706 if (c == NULL) {
1707 if (trie == NULL)
1708 return NULL;
1709
1710 if (IS_LEAF(trie)) /* trie w. just a leaf */
1711 return (struct leaf *) trie;
1712
1713 p = (struct tnode*) trie; /* Start */
1714 } else
1715 p = node_parent(c);
1716
1717 while (p) {
1718 int pos, last;
1719
1720 /* Find the next child of the parent */
1721 if (c)
1722 pos = 1 + tkey_extract_bits(c->key, p->pos, p->bits);
1723 else
1724 pos = 0;
1725
1726 last = 1 << p->bits;
1727 for (idx = pos; idx < last ; idx++) {
1728 c = rcu_dereference(p->child[idx]);
1729
1730 if (!c)
1731 continue;
1732
1733 /* Decend if tnode */
1734 while (IS_TNODE(c)) {
1735 p = (struct tnode *) c;
1736 idx = 0;
1737
1738 /* Rightmost non-NULL branch */
1739 if (p && IS_TNODE(p))
1740 while (!(c = rcu_dereference(p->child[idx]))
1741 && idx < (1<<p->bits)) idx++;
1742
1743 /* Done with this tnode? */
1744 if (idx >= (1 << p->bits) || !c)
1745 goto up;
1746 }
1747 return (struct leaf *) c;
1748 }
1749 up:
1750 /* No more children go up one step */
1751 c = (struct node *) p;
1752 p = node_parent(c);
1753 }
1754 return NULL; /* Ready. Root of trie */
1755 }
1756
1757 /*
1758 * Caller must hold RTNL.
1759 */
1760 static int fn_trie_flush(struct fib_table *tb)
1761 {
1762 struct trie *t = (struct trie *) tb->tb_data;
1763 struct leaf *ll = NULL, *l = NULL;
1764 int found = 0, h;
1765
1766 t->revision++;
1767
1768 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
1769 found += trie_flush_leaf(t, l);
1770
1771 if (ll && hlist_empty(&ll->list))
1772 trie_leaf_remove(t, ll->key);
1773 ll = l;
1774 }
1775
1776 if (ll && hlist_empty(&ll->list))
1777 trie_leaf_remove(t, ll->key);
1778
1779 pr_debug("trie_flush found=%d\n", found);
1780 return found;
1781 }
1782
1783 static int trie_last_dflt = -1;
1784
1785 static void
1786 fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1787 {
1788 struct trie *t = (struct trie *) tb->tb_data;
1789 int order, last_idx;
1790 struct fib_info *fi = NULL;
1791 struct fib_info *last_resort;
1792 struct fib_alias *fa = NULL;
1793 struct list_head *fa_head;
1794 struct leaf *l;
1795
1796 last_idx = -1;
1797 last_resort = NULL;
1798 order = -1;
1799
1800 rcu_read_lock();
1801
1802 l = fib_find_node(t, 0);
1803 if (!l)
1804 goto out;
1805
1806 fa_head = get_fa_head(l, 0);
1807 if (!fa_head)
1808 goto out;
1809
1810 if (list_empty(fa_head))
1811 goto out;
1812
1813 list_for_each_entry_rcu(fa, fa_head, fa_list) {
1814 struct fib_info *next_fi = fa->fa_info;
1815
1816 if (fa->fa_scope != res->scope ||
1817 fa->fa_type != RTN_UNICAST)
1818 continue;
1819
1820 if (next_fi->fib_priority > res->fi->fib_priority)
1821 break;
1822 if (!next_fi->fib_nh[0].nh_gw ||
1823 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1824 continue;
1825 fa->fa_state |= FA_S_ACCESSED;
1826
1827 if (fi == NULL) {
1828 if (next_fi != res->fi)
1829 break;
1830 } else if (!fib_detect_death(fi, order, &last_resort,
1831 &last_idx, &trie_last_dflt)) {
1832 if (res->fi)
1833 fib_info_put(res->fi);
1834 res->fi = fi;
1835 atomic_inc(&fi->fib_clntref);
1836 trie_last_dflt = order;
1837 goto out;
1838 }
1839 fi = next_fi;
1840 order++;
1841 }
1842 if (order <= 0 || fi == NULL) {
1843 trie_last_dflt = -1;
1844 goto out;
1845 }
1846
1847 if (!fib_detect_death(fi, order, &last_resort, &last_idx, &trie_last_dflt)) {
1848 if (res->fi)
1849 fib_info_put(res->fi);
1850 res->fi = fi;
1851 atomic_inc(&fi->fib_clntref);
1852 trie_last_dflt = order;
1853 goto out;
1854 }
1855 if (last_idx >= 0) {
1856 if (res->fi)
1857 fib_info_put(res->fi);
1858 res->fi = last_resort;
1859 if (last_resort)
1860 atomic_inc(&last_resort->fib_clntref);
1861 }
1862 trie_last_dflt = last_idx;
1863 out:;
1864 rcu_read_unlock();
1865 }
1866
1867 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fib_table *tb,
1868 struct sk_buff *skb, struct netlink_callback *cb)
1869 {
1870 int i, s_i;
1871 struct fib_alias *fa;
1872
1873 __be32 xkey = htonl(key);
1874
1875 s_i = cb->args[4];
1876 i = 0;
1877
1878 /* rcu_read_lock is hold by caller */
1879
1880 list_for_each_entry_rcu(fa, fah, fa_list) {
1881 if (i < s_i) {
1882 i++;
1883 continue;
1884 }
1885 BUG_ON(!fa->fa_info);
1886
1887 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1888 cb->nlh->nlmsg_seq,
1889 RTM_NEWROUTE,
1890 tb->tb_id,
1891 fa->fa_type,
1892 fa->fa_scope,
1893 xkey,
1894 plen,
1895 fa->fa_tos,
1896 fa->fa_info, 0) < 0) {
1897 cb->args[4] = i;
1898 return -1;
1899 }
1900 i++;
1901 }
1902 cb->args[4] = i;
1903 return skb->len;
1904 }
1905
1906 static int fn_trie_dump_plen(struct trie *t, int plen, struct fib_table *tb, struct sk_buff *skb,
1907 struct netlink_callback *cb)
1908 {
1909 int h, s_h;
1910 struct list_head *fa_head;
1911 struct leaf *l = NULL;
1912
1913 s_h = cb->args[3];
1914
1915 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
1916 if (h < s_h)
1917 continue;
1918 if (h > s_h)
1919 memset(&cb->args[4], 0,
1920 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1921
1922 fa_head = get_fa_head(l, plen);
1923
1924 if (!fa_head)
1925 continue;
1926
1927 if (list_empty(fa_head))
1928 continue;
1929
1930 if (fn_trie_dump_fa(l->key, plen, fa_head, tb, skb, cb)<0) {
1931 cb->args[3] = h;
1932 return -1;
1933 }
1934 }
1935 cb->args[3] = h;
1936 return skb->len;
1937 }
1938
1939 static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb)
1940 {
1941 int m, s_m;
1942 struct trie *t = (struct trie *) tb->tb_data;
1943
1944 s_m = cb->args[2];
1945
1946 rcu_read_lock();
1947 for (m = 0; m <= 32; m++) {
1948 if (m < s_m)
1949 continue;
1950 if (m > s_m)
1951 memset(&cb->args[3], 0,
1952 sizeof(cb->args) - 3*sizeof(cb->args[0]));
1953
1954 if (fn_trie_dump_plen(t, 32-m, tb, skb, cb)<0) {
1955 cb->args[2] = m;
1956 goto out;
1957 }
1958 }
1959 rcu_read_unlock();
1960 cb->args[2] = m;
1961 return skb->len;
1962 out:
1963 rcu_read_unlock();
1964 return -1;
1965 }
1966
1967 /* Fix more generic FIB names for init later */
1968
1969 #ifdef CONFIG_IP_MULTIPLE_TABLES
1970 struct fib_table * fib_hash_init(u32 id)
1971 #else
1972 struct fib_table * __init fib_hash_init(u32 id)
1973 #endif
1974 {
1975 struct fib_table *tb;
1976 struct trie *t;
1977
1978 if (fn_alias_kmem == NULL)
1979 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1980 sizeof(struct fib_alias),
1981 0, SLAB_HWCACHE_ALIGN,
1982 NULL);
1983
1984 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1985 GFP_KERNEL);
1986 if (tb == NULL)
1987 return NULL;
1988
1989 tb->tb_id = id;
1990 tb->tb_lookup = fn_trie_lookup;
1991 tb->tb_insert = fn_trie_insert;
1992 tb->tb_delete = fn_trie_delete;
1993 tb->tb_flush = fn_trie_flush;
1994 tb->tb_select_default = fn_trie_select_default;
1995 tb->tb_dump = fn_trie_dump;
1996 memset(tb->tb_data, 0, sizeof(struct trie));
1997
1998 t = (struct trie *) tb->tb_data;
1999
2000 trie_init(t);
2001
2002 if (id == RT_TABLE_LOCAL)
2003 trie_local = t;
2004 else if (id == RT_TABLE_MAIN)
2005 trie_main = t;
2006
2007 if (id == RT_TABLE_LOCAL)
2008 printk(KERN_INFO "IPv4 FIB: Using LC-trie version %s\n", VERSION);
2009
2010 return tb;
2011 }
2012
2013 #ifdef CONFIG_PROC_FS
2014 /* Depth first Trie walk iterator */
2015 struct fib_trie_iter {
2016 struct tnode *tnode;
2017 struct trie *trie;
2018 unsigned index;
2019 unsigned depth;
2020 };
2021
2022 static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
2023 {
2024 struct tnode *tn = iter->tnode;
2025 unsigned cindex = iter->index;
2026 struct tnode *p;
2027
2028 /* A single entry routing table */
2029 if (!tn)
2030 return NULL;
2031
2032 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2033 iter->tnode, iter->index, iter->depth);
2034 rescan:
2035 while (cindex < (1<<tn->bits)) {
2036 struct node *n = tnode_get_child(tn, cindex);
2037
2038 if (n) {
2039 if (IS_LEAF(n)) {
2040 iter->tnode = tn;
2041 iter->index = cindex + 1;
2042 } else {
2043 /* push down one level */
2044 iter->tnode = (struct tnode *) n;
2045 iter->index = 0;
2046 ++iter->depth;
2047 }
2048 return n;
2049 }
2050
2051 ++cindex;
2052 }
2053
2054 /* Current node exhausted, pop back up */
2055 p = node_parent((struct node *)tn);
2056 if (p) {
2057 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2058 tn = p;
2059 --iter->depth;
2060 goto rescan;
2061 }
2062
2063 /* got root? */
2064 return NULL;
2065 }
2066
2067 static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2068 struct trie *t)
2069 {
2070 struct node *n ;
2071
2072 if (!t)
2073 return NULL;
2074
2075 n = rcu_dereference(t->trie);
2076
2077 if (!iter)
2078 return NULL;
2079
2080 if (n) {
2081 if (IS_TNODE(n)) {
2082 iter->tnode = (struct tnode *) n;
2083 iter->trie = t;
2084 iter->index = 0;
2085 iter->depth = 1;
2086 } else {
2087 iter->tnode = NULL;
2088 iter->trie = t;
2089 iter->index = 0;
2090 iter->depth = 0;
2091 }
2092 return n;
2093 }
2094 return NULL;
2095 }
2096
2097 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2098 {
2099 struct node *n;
2100 struct fib_trie_iter iter;
2101
2102 memset(s, 0, sizeof(*s));
2103
2104 rcu_read_lock();
2105 for (n = fib_trie_get_first(&iter, t); n;
2106 n = fib_trie_get_next(&iter)) {
2107 if (IS_LEAF(n)) {
2108 s->leaves++;
2109 s->totdepth += iter.depth;
2110 if (iter.depth > s->maxdepth)
2111 s->maxdepth = iter.depth;
2112 } else {
2113 const struct tnode *tn = (const struct tnode *) n;
2114 int i;
2115
2116 s->tnodes++;
2117 if (tn->bits < MAX_STAT_DEPTH)
2118 s->nodesizes[tn->bits]++;
2119
2120 for (i = 0; i < (1<<tn->bits); i++)
2121 if (!tn->child[i])
2122 s->nullpointers++;
2123 }
2124 }
2125 rcu_read_unlock();
2126 }
2127
2128 /*
2129 * This outputs /proc/net/fib_triestats
2130 */
2131 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2132 {
2133 unsigned i, max, pointers, bytes, avdepth;
2134
2135 if (stat->leaves)
2136 avdepth = stat->totdepth*100 / stat->leaves;
2137 else
2138 avdepth = 0;
2139
2140 seq_printf(seq, "\tAver depth: %d.%02d\n", avdepth / 100, avdepth % 100 );
2141 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2142
2143 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2144
2145 bytes = sizeof(struct leaf) * stat->leaves;
2146 seq_printf(seq, "\tInternal nodes: %d\n\t", stat->tnodes);
2147 bytes += sizeof(struct tnode) * stat->tnodes;
2148
2149 max = MAX_STAT_DEPTH;
2150 while (max > 0 && stat->nodesizes[max-1] == 0)
2151 max--;
2152
2153 pointers = 0;
2154 for (i = 1; i <= max; i++)
2155 if (stat->nodesizes[i] != 0) {
2156 seq_printf(seq, " %d: %d", i, stat->nodesizes[i]);
2157 pointers += (1<<i) * stat->nodesizes[i];
2158 }
2159 seq_putc(seq, '\n');
2160 seq_printf(seq, "\tPointers: %d\n", pointers);
2161
2162 bytes += sizeof(struct node *) * pointers;
2163 seq_printf(seq, "Null ptrs: %d\n", stat->nullpointers);
2164 seq_printf(seq, "Total size: %d kB\n", (bytes + 1023) / 1024);
2165
2166 #ifdef CONFIG_IP_FIB_TRIE_STATS
2167 seq_printf(seq, "Counters:\n---------\n");
2168 seq_printf(seq,"gets = %d\n", t->stats.gets);
2169 seq_printf(seq,"backtracks = %d\n", t->stats.backtrack);
2170 seq_printf(seq,"semantic match passed = %d\n", t->stats.semantic_match_passed);
2171 seq_printf(seq,"semantic match miss = %d\n", t->stats.semantic_match_miss);
2172 seq_printf(seq,"null node hit= %d\n", t->stats.null_node_hit);
2173 seq_printf(seq,"skipped node resize = %d\n", t->stats.resize_node_skipped);
2174 #ifdef CLEAR_STATS
2175 memset(&(t->stats), 0, sizeof(t->stats));
2176 #endif
2177 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2178 }
2179
2180 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2181 {
2182 struct trie_stat *stat;
2183
2184 stat = kmalloc(sizeof(*stat), GFP_KERNEL);
2185 if (!stat)
2186 return -ENOMEM;
2187
2188 seq_printf(seq, "Basic info: size of leaf: %Zd bytes, size of tnode: %Zd bytes.\n",
2189 sizeof(struct leaf), sizeof(struct tnode));
2190
2191 if (trie_local) {
2192 seq_printf(seq, "Local:\n");
2193 trie_collect_stats(trie_local, stat);
2194 trie_show_stats(seq, stat);
2195 }
2196
2197 if (trie_main) {
2198 seq_printf(seq, "Main:\n");
2199 trie_collect_stats(trie_main, stat);
2200 trie_show_stats(seq, stat);
2201 }
2202 kfree(stat);
2203
2204 return 0;
2205 }
2206
2207 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2208 {
2209 return single_open(file, fib_triestat_seq_show, NULL);
2210 }
2211
2212 static const struct file_operations fib_triestat_fops = {
2213 .owner = THIS_MODULE,
2214 .open = fib_triestat_seq_open,
2215 .read = seq_read,
2216 .llseek = seq_lseek,
2217 .release = single_release,
2218 };
2219
2220 static struct node *fib_trie_get_idx(struct fib_trie_iter *iter,
2221 loff_t pos)
2222 {
2223 loff_t idx = 0;
2224 struct node *n;
2225
2226 for (n = fib_trie_get_first(iter, trie_local);
2227 n; ++idx, n = fib_trie_get_next(iter)) {
2228 if (pos == idx)
2229 return n;
2230 }
2231
2232 for (n = fib_trie_get_first(iter, trie_main);
2233 n; ++idx, n = fib_trie_get_next(iter)) {
2234 if (pos == idx)
2235 return n;
2236 }
2237 return NULL;
2238 }
2239
2240 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2241 {
2242 rcu_read_lock();
2243 if (*pos == 0)
2244 return SEQ_START_TOKEN;
2245 return fib_trie_get_idx(seq->private, *pos - 1);
2246 }
2247
2248 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2249 {
2250 struct fib_trie_iter *iter = seq->private;
2251 void *l = v;
2252
2253 ++*pos;
2254 if (v == SEQ_START_TOKEN)
2255 return fib_trie_get_idx(iter, 0);
2256
2257 v = fib_trie_get_next(iter);
2258 BUG_ON(v == l);
2259 if (v)
2260 return v;
2261
2262 /* continue scan in next trie */
2263 if (iter->trie == trie_local)
2264 return fib_trie_get_first(iter, trie_main);
2265
2266 return NULL;
2267 }
2268
2269 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2270 {
2271 rcu_read_unlock();
2272 }
2273
2274 static void seq_indent(struct seq_file *seq, int n)
2275 {
2276 while (n-- > 0) seq_puts(seq, " ");
2277 }
2278
2279 static inline const char *rtn_scope(enum rt_scope_t s)
2280 {
2281 static char buf[32];
2282
2283 switch (s) {
2284 case RT_SCOPE_UNIVERSE: return "universe";
2285 case RT_SCOPE_SITE: return "site";
2286 case RT_SCOPE_LINK: return "link";
2287 case RT_SCOPE_HOST: return "host";
2288 case RT_SCOPE_NOWHERE: return "nowhere";
2289 default:
2290 snprintf(buf, sizeof(buf), "scope=%d", s);
2291 return buf;
2292 }
2293 }
2294
2295 static const char *rtn_type_names[__RTN_MAX] = {
2296 [RTN_UNSPEC] = "UNSPEC",
2297 [RTN_UNICAST] = "UNICAST",
2298 [RTN_LOCAL] = "LOCAL",
2299 [RTN_BROADCAST] = "BROADCAST",
2300 [RTN_ANYCAST] = "ANYCAST",
2301 [RTN_MULTICAST] = "MULTICAST",
2302 [RTN_BLACKHOLE] = "BLACKHOLE",
2303 [RTN_UNREACHABLE] = "UNREACHABLE",
2304 [RTN_PROHIBIT] = "PROHIBIT",
2305 [RTN_THROW] = "THROW",
2306 [RTN_NAT] = "NAT",
2307 [RTN_XRESOLVE] = "XRESOLVE",
2308 };
2309
2310 static inline const char *rtn_type(unsigned t)
2311 {
2312 static char buf[32];
2313
2314 if (t < __RTN_MAX && rtn_type_names[t])
2315 return rtn_type_names[t];
2316 snprintf(buf, sizeof(buf), "type %d", t);
2317 return buf;
2318 }
2319
2320 /* Pretty print the trie */
2321 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2322 {
2323 const struct fib_trie_iter *iter = seq->private;
2324 struct node *n = v;
2325
2326 if (v == SEQ_START_TOKEN)
2327 return 0;
2328
2329 if (!node_parent(n)) {
2330 if (iter->trie == trie_local)
2331 seq_puts(seq, "<local>:\n");
2332 else
2333 seq_puts(seq, "<main>:\n");
2334 }
2335
2336 if (IS_TNODE(n)) {
2337 struct tnode *tn = (struct tnode *) n;
2338 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2339
2340 seq_indent(seq, iter->depth-1);
2341 seq_printf(seq, " +-- %d.%d.%d.%d/%d %d %d %d\n",
2342 NIPQUAD(prf), tn->pos, tn->bits, tn->full_children,
2343 tn->empty_children);
2344
2345 } else {
2346 struct leaf *l = (struct leaf *) n;
2347 int i;
2348 __be32 val = htonl(l->key);
2349
2350 seq_indent(seq, iter->depth);
2351 seq_printf(seq, " |-- %d.%d.%d.%d\n", NIPQUAD(val));
2352 for (i = 32; i >= 0; i--) {
2353 struct leaf_info *li = find_leaf_info(l, i);
2354 if (li) {
2355 struct fib_alias *fa;
2356 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2357 seq_indent(seq, iter->depth+1);
2358 seq_printf(seq, " /%d %s %s", i,
2359 rtn_scope(fa->fa_scope),
2360 rtn_type(fa->fa_type));
2361 if (fa->fa_tos)
2362 seq_printf(seq, "tos =%d\n",
2363 fa->fa_tos);
2364 seq_putc(seq, '\n');
2365 }
2366 }
2367 }
2368 }
2369
2370 return 0;
2371 }
2372
2373 static const struct seq_operations fib_trie_seq_ops = {
2374 .start = fib_trie_seq_start,
2375 .next = fib_trie_seq_next,
2376 .stop = fib_trie_seq_stop,
2377 .show = fib_trie_seq_show,
2378 };
2379
2380 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2381 {
2382 struct seq_file *seq;
2383 int rc = -ENOMEM;
2384 struct fib_trie_iter *s = kmalloc(sizeof(*s), GFP_KERNEL);
2385
2386 if (!s)
2387 goto out;
2388
2389 rc = seq_open(file, &fib_trie_seq_ops);
2390 if (rc)
2391 goto out_kfree;
2392
2393 seq = file->private_data;
2394 seq->private = s;
2395 memset(s, 0, sizeof(*s));
2396 out:
2397 return rc;
2398 out_kfree:
2399 kfree(s);
2400 goto out;
2401 }
2402
2403 static const struct file_operations fib_trie_fops = {
2404 .owner = THIS_MODULE,
2405 .open = fib_trie_seq_open,
2406 .read = seq_read,
2407 .llseek = seq_lseek,
2408 .release = seq_release_private,
2409 };
2410
2411 static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2412 {
2413 static unsigned type2flags[RTN_MAX + 1] = {
2414 [7] = RTF_REJECT, [8] = RTF_REJECT,
2415 };
2416 unsigned flags = type2flags[type];
2417
2418 if (fi && fi->fib_nh->nh_gw)
2419 flags |= RTF_GATEWAY;
2420 if (mask == htonl(0xFFFFFFFF))
2421 flags |= RTF_HOST;
2422 flags |= RTF_UP;
2423 return flags;
2424 }
2425
2426 /*
2427 * This outputs /proc/net/route.
2428 * The format of the file is not supposed to be changed
2429 * and needs to be same as fib_hash output to avoid breaking
2430 * legacy utilities
2431 */
2432 static int fib_route_seq_show(struct seq_file *seq, void *v)
2433 {
2434 const struct fib_trie_iter *iter = seq->private;
2435 struct leaf *l = v;
2436 int i;
2437 char bf[128];
2438
2439 if (v == SEQ_START_TOKEN) {
2440 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2441 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2442 "\tWindow\tIRTT");
2443 return 0;
2444 }
2445
2446 if (iter->trie == trie_local)
2447 return 0;
2448 if (IS_TNODE(l))
2449 return 0;
2450
2451 for (i=32; i>=0; i--) {
2452 struct leaf_info *li = find_leaf_info(l, i);
2453 struct fib_alias *fa;
2454 __be32 mask, prefix;
2455
2456 if (!li)
2457 continue;
2458
2459 mask = inet_make_mask(li->plen);
2460 prefix = htonl(l->key);
2461
2462 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2463 const struct fib_info *fi = fa->fa_info;
2464 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
2465
2466 if (fa->fa_type == RTN_BROADCAST
2467 || fa->fa_type == RTN_MULTICAST)
2468 continue;
2469
2470 if (fi)
2471 snprintf(bf, sizeof(bf),
2472 "%s\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2473 fi->fib_dev ? fi->fib_dev->name : "*",
2474 prefix,
2475 fi->fib_nh->nh_gw, flags, 0, 0,
2476 fi->fib_priority,
2477 mask,
2478 (fi->fib_advmss ? fi->fib_advmss + 40 : 0),
2479 fi->fib_window,
2480 fi->fib_rtt >> 3);
2481 else
2482 snprintf(bf, sizeof(bf),
2483 "*\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2484 prefix, 0, flags, 0, 0, 0,
2485 mask, 0, 0, 0);
2486
2487 seq_printf(seq, "%-127s\n", bf);
2488 }
2489 }
2490
2491 return 0;
2492 }
2493
2494 static const struct seq_operations fib_route_seq_ops = {
2495 .start = fib_trie_seq_start,
2496 .next = fib_trie_seq_next,
2497 .stop = fib_trie_seq_stop,
2498 .show = fib_route_seq_show,
2499 };
2500
2501 static int fib_route_seq_open(struct inode *inode, struct file *file)
2502 {
2503 struct seq_file *seq;
2504 int rc = -ENOMEM;
2505 struct fib_trie_iter *s = kmalloc(sizeof(*s), GFP_KERNEL);
2506
2507 if (!s)
2508 goto out;
2509
2510 rc = seq_open(file, &fib_route_seq_ops);
2511 if (rc)
2512 goto out_kfree;
2513
2514 seq = file->private_data;
2515 seq->private = s;
2516 memset(s, 0, sizeof(*s));
2517 out:
2518 return rc;
2519 out_kfree:
2520 kfree(s);
2521 goto out;
2522 }
2523
2524 static const struct file_operations fib_route_fops = {
2525 .owner = THIS_MODULE,
2526 .open = fib_route_seq_open,
2527 .read = seq_read,
2528 .llseek = seq_lseek,
2529 .release = seq_release_private,
2530 };
2531
2532 int __init fib_proc_init(void)
2533 {
2534 if (!proc_net_fops_create(&init_net, "fib_trie", S_IRUGO, &fib_trie_fops))
2535 goto out1;
2536
2537 if (!proc_net_fops_create(&init_net, "fib_triestat", S_IRUGO, &fib_triestat_fops))
2538 goto out2;
2539
2540 if (!proc_net_fops_create(&init_net, "route", S_IRUGO, &fib_route_fops))
2541 goto out3;
2542
2543 return 0;
2544
2545 out3:
2546 proc_net_remove(&init_net, "fib_triestat");
2547 out2:
2548 proc_net_remove(&init_net, "fib_trie");
2549 out1:
2550 return -ENOMEM;
2551 }
2552
2553 void __init fib_proc_exit(void)
2554 {
2555 proc_net_remove(&init_net, "fib_trie");
2556 proc_net_remove(&init_net, "fib_triestat");
2557 proc_net_remove(&init_net, "route");
2558 }
2559
2560 #endif /* CONFIG_PROC_FS */