]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/ipv4/fib_trie.c
Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
49 */
50
51 #define VERSION "0.408"
52
53 #include <asm/uaccess.h>
54 #include <asm/system.h>
55 #include <linux/bitops.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/mm.h>
59 #include <linux/string.h>
60 #include <linux/socket.h>
61 #include <linux/sockios.h>
62 #include <linux/errno.h>
63 #include <linux/in.h>
64 #include <linux/inet.h>
65 #include <linux/inetdevice.h>
66 #include <linux/netdevice.h>
67 #include <linux/if_arp.h>
68 #include <linux/proc_fs.h>
69 #include <linux/rcupdate.h>
70 #include <linux/skbuff.h>
71 #include <linux/netlink.h>
72 #include <linux/init.h>
73 #include <linux/list.h>
74 #include <net/net_namespace.h>
75 #include <net/ip.h>
76 #include <net/protocol.h>
77 #include <net/route.h>
78 #include <net/tcp.h>
79 #include <net/sock.h>
80 #include <net/ip_fib.h>
81 #include "fib_lookup.h"
82
83 #define MAX_STAT_DEPTH 32
84
85 #define KEYLENGTH (8*sizeof(t_key))
86
87 typedef unsigned int t_key;
88
89 #define T_TNODE 0
90 #define T_LEAF 1
91 #define NODE_TYPE_MASK 0x1UL
92 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
93
94 #define IS_TNODE(n) (!(n->parent & T_LEAF))
95 #define IS_LEAF(n) (n->parent & T_LEAF)
96
97 struct node {
98 unsigned long parent;
99 t_key key;
100 };
101
102 struct leaf {
103 unsigned long parent;
104 t_key key;
105 struct hlist_head list;
106 struct rcu_head rcu;
107 };
108
109 struct leaf_info {
110 struct hlist_node hlist;
111 struct rcu_head rcu;
112 int plen;
113 struct list_head falh;
114 };
115
116 struct tnode {
117 unsigned long parent;
118 t_key key;
119 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
120 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
121 unsigned int full_children; /* KEYLENGTH bits needed */
122 unsigned int empty_children; /* KEYLENGTH bits needed */
123 union {
124 struct rcu_head rcu;
125 struct work_struct work;
126 };
127 struct node *child[0];
128 };
129
130 #ifdef CONFIG_IP_FIB_TRIE_STATS
131 struct trie_use_stats {
132 unsigned int gets;
133 unsigned int backtrack;
134 unsigned int semantic_match_passed;
135 unsigned int semantic_match_miss;
136 unsigned int null_node_hit;
137 unsigned int resize_node_skipped;
138 };
139 #endif
140
141 struct trie_stat {
142 unsigned int totdepth;
143 unsigned int maxdepth;
144 unsigned int tnodes;
145 unsigned int leaves;
146 unsigned int nullpointers;
147 unsigned int prefixes;
148 unsigned int nodesizes[MAX_STAT_DEPTH];
149 };
150
151 struct trie {
152 struct node *trie;
153 #ifdef CONFIG_IP_FIB_TRIE_STATS
154 struct trie_use_stats stats;
155 #endif
156 };
157
158 static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
159 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
160 int wasfull);
161 static struct node *resize(struct trie *t, struct tnode *tn);
162 static struct tnode *inflate(struct trie *t, struct tnode *tn);
163 static struct tnode *halve(struct trie *t, struct tnode *tn);
164
165 static struct kmem_cache *fn_alias_kmem __read_mostly;
166 static struct kmem_cache *trie_leaf_kmem __read_mostly;
167
168 static inline struct tnode *node_parent(struct node *node)
169 {
170 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
171 }
172
173 static inline struct tnode *node_parent_rcu(struct node *node)
174 {
175 struct tnode *ret = node_parent(node);
176
177 return rcu_dereference(ret);
178 }
179
180 /* Same as rcu_assign_pointer
181 * but that macro() assumes that value is a pointer.
182 */
183 static inline void node_set_parent(struct node *node, struct tnode *ptr)
184 {
185 smp_wmb();
186 node->parent = (unsigned long)ptr | NODE_TYPE(node);
187 }
188
189 static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
190 {
191 BUG_ON(i >= 1U << tn->bits);
192
193 return tn->child[i];
194 }
195
196 static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
197 {
198 struct node *ret = tnode_get_child(tn, i);
199
200 return rcu_dereference(ret);
201 }
202
203 static inline int tnode_child_length(const struct tnode *tn)
204 {
205 return 1 << tn->bits;
206 }
207
208 static inline t_key mask_pfx(t_key k, unsigned short l)
209 {
210 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
211 }
212
213 static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
214 {
215 if (offset < KEYLENGTH)
216 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
217 else
218 return 0;
219 }
220
221 static inline int tkey_equals(t_key a, t_key b)
222 {
223 return a == b;
224 }
225
226 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
227 {
228 if (bits == 0 || offset >= KEYLENGTH)
229 return 1;
230 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
231 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
232 }
233
234 static inline int tkey_mismatch(t_key a, int offset, t_key b)
235 {
236 t_key diff = a ^ b;
237 int i = offset;
238
239 if (!diff)
240 return 0;
241 while ((diff << i) >> (KEYLENGTH-1) == 0)
242 i++;
243 return i;
244 }
245
246 /*
247 To understand this stuff, an understanding of keys and all their bits is
248 necessary. Every node in the trie has a key associated with it, but not
249 all of the bits in that key are significant.
250
251 Consider a node 'n' and its parent 'tp'.
252
253 If n is a leaf, every bit in its key is significant. Its presence is
254 necessitated by path compression, since during a tree traversal (when
255 searching for a leaf - unless we are doing an insertion) we will completely
256 ignore all skipped bits we encounter. Thus we need to verify, at the end of
257 a potentially successful search, that we have indeed been walking the
258 correct key path.
259
260 Note that we can never "miss" the correct key in the tree if present by
261 following the wrong path. Path compression ensures that segments of the key
262 that are the same for all keys with a given prefix are skipped, but the
263 skipped part *is* identical for each node in the subtrie below the skipped
264 bit! trie_insert() in this implementation takes care of that - note the
265 call to tkey_sub_equals() in trie_insert().
266
267 if n is an internal node - a 'tnode' here, the various parts of its key
268 have many different meanings.
269
270 Example:
271 _________________________________________________________________
272 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
273 -----------------------------------------------------------------
274 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
275
276 _________________________________________________________________
277 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
278 -----------------------------------------------------------------
279 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
280
281 tp->pos = 7
282 tp->bits = 3
283 n->pos = 15
284 n->bits = 4
285
286 First, let's just ignore the bits that come before the parent tp, that is
287 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
288 not use them for anything.
289
290 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
291 index into the parent's child array. That is, they will be used to find
292 'n' among tp's children.
293
294 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
295 for the node n.
296
297 All the bits we have seen so far are significant to the node n. The rest
298 of the bits are really not needed or indeed known in n->key.
299
300 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
301 n's child array, and will of course be different for each child.
302
303
304 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
305 at this point.
306
307 */
308
309 static inline void check_tnode(const struct tnode *tn)
310 {
311 WARN_ON(tn && tn->pos+tn->bits > 32);
312 }
313
314 static const int halve_threshold = 25;
315 static const int inflate_threshold = 50;
316 static const int halve_threshold_root = 8;
317 static const int inflate_threshold_root = 15;
318
319
320 static void __alias_free_mem(struct rcu_head *head)
321 {
322 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
323 kmem_cache_free(fn_alias_kmem, fa);
324 }
325
326 static inline void alias_free_mem_rcu(struct fib_alias *fa)
327 {
328 call_rcu(&fa->rcu, __alias_free_mem);
329 }
330
331 static void __leaf_free_rcu(struct rcu_head *head)
332 {
333 struct leaf *l = container_of(head, struct leaf, rcu);
334 kmem_cache_free(trie_leaf_kmem, l);
335 }
336
337 static inline void free_leaf(struct leaf *l)
338 {
339 call_rcu_bh(&l->rcu, __leaf_free_rcu);
340 }
341
342 static void __leaf_info_free_rcu(struct rcu_head *head)
343 {
344 kfree(container_of(head, struct leaf_info, rcu));
345 }
346
347 static inline void free_leaf_info(struct leaf_info *leaf)
348 {
349 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
350 }
351
352 static struct tnode *tnode_alloc(size_t size)
353 {
354 if (size <= PAGE_SIZE)
355 return kzalloc(size, GFP_KERNEL);
356 else
357 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
358 }
359
360 static void __tnode_vfree(struct work_struct *arg)
361 {
362 struct tnode *tn = container_of(arg, struct tnode, work);
363 vfree(tn);
364 }
365
366 static void __tnode_free_rcu(struct rcu_head *head)
367 {
368 struct tnode *tn = container_of(head, struct tnode, rcu);
369 size_t size = sizeof(struct tnode) +
370 (sizeof(struct node *) << tn->bits);
371
372 if (size <= PAGE_SIZE)
373 kfree(tn);
374 else {
375 INIT_WORK(&tn->work, __tnode_vfree);
376 schedule_work(&tn->work);
377 }
378 }
379
380 static inline void tnode_free(struct tnode *tn)
381 {
382 if (IS_LEAF(tn))
383 free_leaf((struct leaf *) tn);
384 else
385 call_rcu(&tn->rcu, __tnode_free_rcu);
386 }
387
388 static struct leaf *leaf_new(void)
389 {
390 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
391 if (l) {
392 l->parent = T_LEAF;
393 INIT_HLIST_HEAD(&l->list);
394 }
395 return l;
396 }
397
398 static struct leaf_info *leaf_info_new(int plen)
399 {
400 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
401 if (li) {
402 li->plen = plen;
403 INIT_LIST_HEAD(&li->falh);
404 }
405 return li;
406 }
407
408 static struct tnode *tnode_new(t_key key, int pos, int bits)
409 {
410 size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
411 struct tnode *tn = tnode_alloc(sz);
412
413 if (tn) {
414 tn->parent = T_TNODE;
415 tn->pos = pos;
416 tn->bits = bits;
417 tn->key = key;
418 tn->full_children = 0;
419 tn->empty_children = 1<<bits;
420 }
421
422 pr_debug("AT %p s=%u %lu\n", tn, (unsigned int) sizeof(struct tnode),
423 (unsigned long) (sizeof(struct node) << bits));
424 return tn;
425 }
426
427 /*
428 * Check whether a tnode 'n' is "full", i.e. it is an internal node
429 * and no bits are skipped. See discussion in dyntree paper p. 6
430 */
431
432 static inline int tnode_full(const struct tnode *tn, const struct node *n)
433 {
434 if (n == NULL || IS_LEAF(n))
435 return 0;
436
437 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
438 }
439
440 static inline void put_child(struct trie *t, struct tnode *tn, int i,
441 struct node *n)
442 {
443 tnode_put_child_reorg(tn, i, n, -1);
444 }
445
446 /*
447 * Add a child at position i overwriting the old value.
448 * Update the value of full_children and empty_children.
449 */
450
451 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
452 int wasfull)
453 {
454 struct node *chi = tn->child[i];
455 int isfull;
456
457 BUG_ON(i >= 1<<tn->bits);
458
459 /* update emptyChildren */
460 if (n == NULL && chi != NULL)
461 tn->empty_children++;
462 else if (n != NULL && chi == NULL)
463 tn->empty_children--;
464
465 /* update fullChildren */
466 if (wasfull == -1)
467 wasfull = tnode_full(tn, chi);
468
469 isfull = tnode_full(tn, n);
470 if (wasfull && !isfull)
471 tn->full_children--;
472 else if (!wasfull && isfull)
473 tn->full_children++;
474
475 if (n)
476 node_set_parent(n, tn);
477
478 rcu_assign_pointer(tn->child[i], n);
479 }
480
481 static struct node *resize(struct trie *t, struct tnode *tn)
482 {
483 int i;
484 int err = 0;
485 struct tnode *old_tn;
486 int inflate_threshold_use;
487 int halve_threshold_use;
488 int max_resize;
489
490 if (!tn)
491 return NULL;
492
493 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
494 tn, inflate_threshold, halve_threshold);
495
496 /* No children */
497 if (tn->empty_children == tnode_child_length(tn)) {
498 tnode_free(tn);
499 return NULL;
500 }
501 /* One child */
502 if (tn->empty_children == tnode_child_length(tn) - 1)
503 for (i = 0; i < tnode_child_length(tn); i++) {
504 struct node *n;
505
506 n = tn->child[i];
507 if (!n)
508 continue;
509
510 /* compress one level */
511 node_set_parent(n, NULL);
512 tnode_free(tn);
513 return n;
514 }
515 /*
516 * Double as long as the resulting node has a number of
517 * nonempty nodes that are above the threshold.
518 */
519
520 /*
521 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
522 * the Helsinki University of Technology and Matti Tikkanen of Nokia
523 * Telecommunications, page 6:
524 * "A node is doubled if the ratio of non-empty children to all
525 * children in the *doubled* node is at least 'high'."
526 *
527 * 'high' in this instance is the variable 'inflate_threshold'. It
528 * is expressed as a percentage, so we multiply it with
529 * tnode_child_length() and instead of multiplying by 2 (since the
530 * child array will be doubled by inflate()) and multiplying
531 * the left-hand side by 100 (to handle the percentage thing) we
532 * multiply the left-hand side by 50.
533 *
534 * The left-hand side may look a bit weird: tnode_child_length(tn)
535 * - tn->empty_children is of course the number of non-null children
536 * in the current node. tn->full_children is the number of "full"
537 * children, that is non-null tnodes with a skip value of 0.
538 * All of those will be doubled in the resulting inflated tnode, so
539 * we just count them one extra time here.
540 *
541 * A clearer way to write this would be:
542 *
543 * to_be_doubled = tn->full_children;
544 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
545 * tn->full_children;
546 *
547 * new_child_length = tnode_child_length(tn) * 2;
548 *
549 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
550 * new_child_length;
551 * if (new_fill_factor >= inflate_threshold)
552 *
553 * ...and so on, tho it would mess up the while () loop.
554 *
555 * anyway,
556 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
557 * inflate_threshold
558 *
559 * avoid a division:
560 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
561 * inflate_threshold * new_child_length
562 *
563 * expand not_to_be_doubled and to_be_doubled, and shorten:
564 * 100 * (tnode_child_length(tn) - tn->empty_children +
565 * tn->full_children) >= inflate_threshold * new_child_length
566 *
567 * expand new_child_length:
568 * 100 * (tnode_child_length(tn) - tn->empty_children +
569 * tn->full_children) >=
570 * inflate_threshold * tnode_child_length(tn) * 2
571 *
572 * shorten again:
573 * 50 * (tn->full_children + tnode_child_length(tn) -
574 * tn->empty_children) >= inflate_threshold *
575 * tnode_child_length(tn)
576 *
577 */
578
579 check_tnode(tn);
580
581 /* Keep root node larger */
582
583 if (!tn->parent)
584 inflate_threshold_use = inflate_threshold_root;
585 else
586 inflate_threshold_use = inflate_threshold;
587
588 err = 0;
589 max_resize = 10;
590 while ((tn->full_children > 0 && max_resize-- &&
591 50 * (tn->full_children + tnode_child_length(tn)
592 - tn->empty_children)
593 >= inflate_threshold_use * tnode_child_length(tn))) {
594
595 old_tn = tn;
596 tn = inflate(t, tn);
597
598 if (IS_ERR(tn)) {
599 tn = old_tn;
600 #ifdef CONFIG_IP_FIB_TRIE_STATS
601 t->stats.resize_node_skipped++;
602 #endif
603 break;
604 }
605 }
606
607 if (max_resize < 0) {
608 if (!tn->parent)
609 pr_warning("Fix inflate_threshold_root."
610 " Now=%d size=%d bits\n",
611 inflate_threshold_root, tn->bits);
612 else
613 pr_warning("Fix inflate_threshold."
614 " Now=%d size=%d bits\n",
615 inflate_threshold, tn->bits);
616 }
617
618 check_tnode(tn);
619
620 /*
621 * Halve as long as the number of empty children in this
622 * node is above threshold.
623 */
624
625
626 /* Keep root node larger */
627
628 if (!tn->parent)
629 halve_threshold_use = halve_threshold_root;
630 else
631 halve_threshold_use = halve_threshold;
632
633 err = 0;
634 max_resize = 10;
635 while (tn->bits > 1 && max_resize-- &&
636 100 * (tnode_child_length(tn) - tn->empty_children) <
637 halve_threshold_use * tnode_child_length(tn)) {
638
639 old_tn = tn;
640 tn = halve(t, tn);
641 if (IS_ERR(tn)) {
642 tn = old_tn;
643 #ifdef CONFIG_IP_FIB_TRIE_STATS
644 t->stats.resize_node_skipped++;
645 #endif
646 break;
647 }
648 }
649
650 if (max_resize < 0) {
651 if (!tn->parent)
652 pr_warning("Fix halve_threshold_root."
653 " Now=%d size=%d bits\n",
654 halve_threshold_root, tn->bits);
655 else
656 pr_warning("Fix halve_threshold."
657 " Now=%d size=%d bits\n",
658 halve_threshold, tn->bits);
659 }
660
661 /* Only one child remains */
662 if (tn->empty_children == tnode_child_length(tn) - 1)
663 for (i = 0; i < tnode_child_length(tn); i++) {
664 struct node *n;
665
666 n = tn->child[i];
667 if (!n)
668 continue;
669
670 /* compress one level */
671
672 node_set_parent(n, NULL);
673 tnode_free(tn);
674 return n;
675 }
676
677 return (struct node *) tn;
678 }
679
680 static struct tnode *inflate(struct trie *t, struct tnode *tn)
681 {
682 struct tnode *oldtnode = tn;
683 int olen = tnode_child_length(tn);
684 int i;
685
686 pr_debug("In inflate\n");
687
688 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
689
690 if (!tn)
691 return ERR_PTR(-ENOMEM);
692
693 /*
694 * Preallocate and store tnodes before the actual work so we
695 * don't get into an inconsistent state if memory allocation
696 * fails. In case of failure we return the oldnode and inflate
697 * of tnode is ignored.
698 */
699
700 for (i = 0; i < olen; i++) {
701 struct tnode *inode;
702
703 inode = (struct tnode *) tnode_get_child(oldtnode, i);
704 if (inode &&
705 IS_TNODE(inode) &&
706 inode->pos == oldtnode->pos + oldtnode->bits &&
707 inode->bits > 1) {
708 struct tnode *left, *right;
709 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
710
711 left = tnode_new(inode->key&(~m), inode->pos + 1,
712 inode->bits - 1);
713 if (!left)
714 goto nomem;
715
716 right = tnode_new(inode->key|m, inode->pos + 1,
717 inode->bits - 1);
718
719 if (!right) {
720 tnode_free(left);
721 goto nomem;
722 }
723
724 put_child(t, tn, 2*i, (struct node *) left);
725 put_child(t, tn, 2*i+1, (struct node *) right);
726 }
727 }
728
729 for (i = 0; i < olen; i++) {
730 struct tnode *inode;
731 struct node *node = tnode_get_child(oldtnode, i);
732 struct tnode *left, *right;
733 int size, j;
734
735 /* An empty child */
736 if (node == NULL)
737 continue;
738
739 /* A leaf or an internal node with skipped bits */
740
741 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
742 tn->pos + tn->bits - 1) {
743 if (tkey_extract_bits(node->key,
744 oldtnode->pos + oldtnode->bits,
745 1) == 0)
746 put_child(t, tn, 2*i, node);
747 else
748 put_child(t, tn, 2*i+1, node);
749 continue;
750 }
751
752 /* An internal node with two children */
753 inode = (struct tnode *) node;
754
755 if (inode->bits == 1) {
756 put_child(t, tn, 2*i, inode->child[0]);
757 put_child(t, tn, 2*i+1, inode->child[1]);
758
759 tnode_free(inode);
760 continue;
761 }
762
763 /* An internal node with more than two children */
764
765 /* We will replace this node 'inode' with two new
766 * ones, 'left' and 'right', each with half of the
767 * original children. The two new nodes will have
768 * a position one bit further down the key and this
769 * means that the "significant" part of their keys
770 * (see the discussion near the top of this file)
771 * will differ by one bit, which will be "0" in
772 * left's key and "1" in right's key. Since we are
773 * moving the key position by one step, the bit that
774 * we are moving away from - the bit at position
775 * (inode->pos) - is the one that will differ between
776 * left and right. So... we synthesize that bit in the
777 * two new keys.
778 * The mask 'm' below will be a single "one" bit at
779 * the position (inode->pos)
780 */
781
782 /* Use the old key, but set the new significant
783 * bit to zero.
784 */
785
786 left = (struct tnode *) tnode_get_child(tn, 2*i);
787 put_child(t, tn, 2*i, NULL);
788
789 BUG_ON(!left);
790
791 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
792 put_child(t, tn, 2*i+1, NULL);
793
794 BUG_ON(!right);
795
796 size = tnode_child_length(left);
797 for (j = 0; j < size; j++) {
798 put_child(t, left, j, inode->child[j]);
799 put_child(t, right, j, inode->child[j + size]);
800 }
801 put_child(t, tn, 2*i, resize(t, left));
802 put_child(t, tn, 2*i+1, resize(t, right));
803
804 tnode_free(inode);
805 }
806 tnode_free(oldtnode);
807 return tn;
808 nomem:
809 {
810 int size = tnode_child_length(tn);
811 int j;
812
813 for (j = 0; j < size; j++)
814 if (tn->child[j])
815 tnode_free((struct tnode *)tn->child[j]);
816
817 tnode_free(tn);
818
819 return ERR_PTR(-ENOMEM);
820 }
821 }
822
823 static struct tnode *halve(struct trie *t, struct tnode *tn)
824 {
825 struct tnode *oldtnode = tn;
826 struct node *left, *right;
827 int i;
828 int olen = tnode_child_length(tn);
829
830 pr_debug("In halve\n");
831
832 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
833
834 if (!tn)
835 return ERR_PTR(-ENOMEM);
836
837 /*
838 * Preallocate and store tnodes before the actual work so we
839 * don't get into an inconsistent state if memory allocation
840 * fails. In case of failure we return the oldnode and halve
841 * of tnode is ignored.
842 */
843
844 for (i = 0; i < olen; i += 2) {
845 left = tnode_get_child(oldtnode, i);
846 right = tnode_get_child(oldtnode, i+1);
847
848 /* Two nonempty children */
849 if (left && right) {
850 struct tnode *newn;
851
852 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
853
854 if (!newn)
855 goto nomem;
856
857 put_child(t, tn, i/2, (struct node *)newn);
858 }
859
860 }
861
862 for (i = 0; i < olen; i += 2) {
863 struct tnode *newBinNode;
864
865 left = tnode_get_child(oldtnode, i);
866 right = tnode_get_child(oldtnode, i+1);
867
868 /* At least one of the children is empty */
869 if (left == NULL) {
870 if (right == NULL) /* Both are empty */
871 continue;
872 put_child(t, tn, i/2, right);
873 continue;
874 }
875
876 if (right == NULL) {
877 put_child(t, tn, i/2, left);
878 continue;
879 }
880
881 /* Two nonempty children */
882 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
883 put_child(t, tn, i/2, NULL);
884 put_child(t, newBinNode, 0, left);
885 put_child(t, newBinNode, 1, right);
886 put_child(t, tn, i/2, resize(t, newBinNode));
887 }
888 tnode_free(oldtnode);
889 return tn;
890 nomem:
891 {
892 int size = tnode_child_length(tn);
893 int j;
894
895 for (j = 0; j < size; j++)
896 if (tn->child[j])
897 tnode_free((struct tnode *)tn->child[j]);
898
899 tnode_free(tn);
900
901 return ERR_PTR(-ENOMEM);
902 }
903 }
904
905 /* readside must use rcu_read_lock currently dump routines
906 via get_fa_head and dump */
907
908 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
909 {
910 struct hlist_head *head = &l->list;
911 struct hlist_node *node;
912 struct leaf_info *li;
913
914 hlist_for_each_entry_rcu(li, node, head, hlist)
915 if (li->plen == plen)
916 return li;
917
918 return NULL;
919 }
920
921 static inline struct list_head *get_fa_head(struct leaf *l, int plen)
922 {
923 struct leaf_info *li = find_leaf_info(l, plen);
924
925 if (!li)
926 return NULL;
927
928 return &li->falh;
929 }
930
931 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
932 {
933 struct leaf_info *li = NULL, *last = NULL;
934 struct hlist_node *node;
935
936 if (hlist_empty(head)) {
937 hlist_add_head_rcu(&new->hlist, head);
938 } else {
939 hlist_for_each_entry(li, node, head, hlist) {
940 if (new->plen > li->plen)
941 break;
942
943 last = li;
944 }
945 if (last)
946 hlist_add_after_rcu(&last->hlist, &new->hlist);
947 else
948 hlist_add_before_rcu(&new->hlist, &li->hlist);
949 }
950 }
951
952 /* rcu_read_lock needs to be hold by caller from readside */
953
954 static struct leaf *
955 fib_find_node(struct trie *t, u32 key)
956 {
957 int pos;
958 struct tnode *tn;
959 struct node *n;
960
961 pos = 0;
962 n = rcu_dereference(t->trie);
963
964 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
965 tn = (struct tnode *) n;
966
967 check_tnode(tn);
968
969 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
970 pos = tn->pos + tn->bits;
971 n = tnode_get_child_rcu(tn,
972 tkey_extract_bits(key,
973 tn->pos,
974 tn->bits));
975 } else
976 break;
977 }
978 /* Case we have found a leaf. Compare prefixes */
979
980 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
981 return (struct leaf *)n;
982
983 return NULL;
984 }
985
986 static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
987 {
988 int wasfull;
989 t_key cindex, key = tn->key;
990 struct tnode *tp;
991
992 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
993 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
994 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
995 tn = (struct tnode *) resize(t, (struct tnode *)tn);
996
997 tnode_put_child_reorg((struct tnode *)tp, cindex,
998 (struct node *)tn, wasfull);
999
1000 tp = node_parent((struct node *) tn);
1001 if (!tp)
1002 break;
1003 tn = tp;
1004 }
1005
1006 /* Handle last (top) tnode */
1007 if (IS_TNODE(tn))
1008 tn = (struct tnode *)resize(t, (struct tnode *)tn);
1009
1010 return (struct node *)tn;
1011 }
1012
1013 /* only used from updater-side */
1014
1015 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1016 {
1017 int pos, newpos;
1018 struct tnode *tp = NULL, *tn = NULL;
1019 struct node *n;
1020 struct leaf *l;
1021 int missbit;
1022 struct list_head *fa_head = NULL;
1023 struct leaf_info *li;
1024 t_key cindex;
1025
1026 pos = 0;
1027 n = t->trie;
1028
1029 /* If we point to NULL, stop. Either the tree is empty and we should
1030 * just put a new leaf in if, or we have reached an empty child slot,
1031 * and we should just put our new leaf in that.
1032 * If we point to a T_TNODE, check if it matches our key. Note that
1033 * a T_TNODE might be skipping any number of bits - its 'pos' need
1034 * not be the parent's 'pos'+'bits'!
1035 *
1036 * If it does match the current key, get pos/bits from it, extract
1037 * the index from our key, push the T_TNODE and walk the tree.
1038 *
1039 * If it doesn't, we have to replace it with a new T_TNODE.
1040 *
1041 * If we point to a T_LEAF, it might or might not have the same key
1042 * as we do. If it does, just change the value, update the T_LEAF's
1043 * value, and return it.
1044 * If it doesn't, we need to replace it with a T_TNODE.
1045 */
1046
1047 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1048 tn = (struct tnode *) n;
1049
1050 check_tnode(tn);
1051
1052 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1053 tp = tn;
1054 pos = tn->pos + tn->bits;
1055 n = tnode_get_child(tn,
1056 tkey_extract_bits(key,
1057 tn->pos,
1058 tn->bits));
1059
1060 BUG_ON(n && node_parent(n) != tn);
1061 } else
1062 break;
1063 }
1064
1065 /*
1066 * n ----> NULL, LEAF or TNODE
1067 *
1068 * tp is n's (parent) ----> NULL or TNODE
1069 */
1070
1071 BUG_ON(tp && IS_LEAF(tp));
1072
1073 /* Case 1: n is a leaf. Compare prefixes */
1074
1075 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1076 l = (struct leaf *) n;
1077 li = leaf_info_new(plen);
1078
1079 if (!li)
1080 return NULL;
1081
1082 fa_head = &li->falh;
1083 insert_leaf_info(&l->list, li);
1084 goto done;
1085 }
1086 l = leaf_new();
1087
1088 if (!l)
1089 return NULL;
1090
1091 l->key = key;
1092 li = leaf_info_new(plen);
1093
1094 if (!li) {
1095 free_leaf(l);
1096 return NULL;
1097 }
1098
1099 fa_head = &li->falh;
1100 insert_leaf_info(&l->list, li);
1101
1102 if (t->trie && n == NULL) {
1103 /* Case 2: n is NULL, and will just insert a new leaf */
1104
1105 node_set_parent((struct node *)l, tp);
1106
1107 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1108 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1109 } else {
1110 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1111 /*
1112 * Add a new tnode here
1113 * first tnode need some special handling
1114 */
1115
1116 if (tp)
1117 pos = tp->pos+tp->bits;
1118 else
1119 pos = 0;
1120
1121 if (n) {
1122 newpos = tkey_mismatch(key, pos, n->key);
1123 tn = tnode_new(n->key, newpos, 1);
1124 } else {
1125 newpos = 0;
1126 tn = tnode_new(key, newpos, 1); /* First tnode */
1127 }
1128
1129 if (!tn) {
1130 free_leaf_info(li);
1131 free_leaf(l);
1132 return NULL;
1133 }
1134
1135 node_set_parent((struct node *)tn, tp);
1136
1137 missbit = tkey_extract_bits(key, newpos, 1);
1138 put_child(t, tn, missbit, (struct node *)l);
1139 put_child(t, tn, 1-missbit, n);
1140
1141 if (tp) {
1142 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1143 put_child(t, (struct tnode *)tp, cindex,
1144 (struct node *)tn);
1145 } else {
1146 rcu_assign_pointer(t->trie, (struct node *)tn);
1147 tp = tn;
1148 }
1149 }
1150
1151 if (tp && tp->pos + tp->bits > 32)
1152 pr_warning("fib_trie"
1153 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1154 tp, tp->pos, tp->bits, key, plen);
1155
1156 /* Rebalance the trie */
1157
1158 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1159 done:
1160 return fa_head;
1161 }
1162
1163 /*
1164 * Caller must hold RTNL.
1165 */
1166 static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
1167 {
1168 struct trie *t = (struct trie *) tb->tb_data;
1169 struct fib_alias *fa, *new_fa;
1170 struct list_head *fa_head = NULL;
1171 struct fib_info *fi;
1172 int plen = cfg->fc_dst_len;
1173 u8 tos = cfg->fc_tos;
1174 u32 key, mask;
1175 int err;
1176 struct leaf *l;
1177
1178 if (plen > 32)
1179 return -EINVAL;
1180
1181 key = ntohl(cfg->fc_dst);
1182
1183 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1184
1185 mask = ntohl(inet_make_mask(plen));
1186
1187 if (key & ~mask)
1188 return -EINVAL;
1189
1190 key = key & mask;
1191
1192 fi = fib_create_info(cfg);
1193 if (IS_ERR(fi)) {
1194 err = PTR_ERR(fi);
1195 goto err;
1196 }
1197
1198 l = fib_find_node(t, key);
1199 fa = NULL;
1200
1201 if (l) {
1202 fa_head = get_fa_head(l, plen);
1203 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1204 }
1205
1206 /* Now fa, if non-NULL, points to the first fib alias
1207 * with the same keys [prefix,tos,priority], if such key already
1208 * exists or to the node before which we will insert new one.
1209 *
1210 * If fa is NULL, we will need to allocate a new one and
1211 * insert to the head of f.
1212 *
1213 * If f is NULL, no fib node matched the destination key
1214 * and we need to allocate a new one of those as well.
1215 */
1216
1217 if (fa && fa->fa_tos == tos &&
1218 fa->fa_info->fib_priority == fi->fib_priority) {
1219 struct fib_alias *fa_first, *fa_match;
1220
1221 err = -EEXIST;
1222 if (cfg->fc_nlflags & NLM_F_EXCL)
1223 goto out;
1224
1225 /* We have 2 goals:
1226 * 1. Find exact match for type, scope, fib_info to avoid
1227 * duplicate routes
1228 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1229 */
1230 fa_match = NULL;
1231 fa_first = fa;
1232 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1233 list_for_each_entry_continue(fa, fa_head, fa_list) {
1234 if (fa->fa_tos != tos)
1235 break;
1236 if (fa->fa_info->fib_priority != fi->fib_priority)
1237 break;
1238 if (fa->fa_type == cfg->fc_type &&
1239 fa->fa_scope == cfg->fc_scope &&
1240 fa->fa_info == fi) {
1241 fa_match = fa;
1242 break;
1243 }
1244 }
1245
1246 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1247 struct fib_info *fi_drop;
1248 u8 state;
1249
1250 fa = fa_first;
1251 if (fa_match) {
1252 if (fa == fa_match)
1253 err = 0;
1254 goto out;
1255 }
1256 err = -ENOBUFS;
1257 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1258 if (new_fa == NULL)
1259 goto out;
1260
1261 fi_drop = fa->fa_info;
1262 new_fa->fa_tos = fa->fa_tos;
1263 new_fa->fa_info = fi;
1264 new_fa->fa_type = cfg->fc_type;
1265 new_fa->fa_scope = cfg->fc_scope;
1266 state = fa->fa_state;
1267 new_fa->fa_state = state & ~FA_S_ACCESSED;
1268
1269 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1270 alias_free_mem_rcu(fa);
1271
1272 fib_release_info(fi_drop);
1273 if (state & FA_S_ACCESSED)
1274 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1275 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1276 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1277
1278 goto succeeded;
1279 }
1280 /* Error if we find a perfect match which
1281 * uses the same scope, type, and nexthop
1282 * information.
1283 */
1284 if (fa_match)
1285 goto out;
1286
1287 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1288 fa = fa_first;
1289 }
1290 err = -ENOENT;
1291 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1292 goto out;
1293
1294 err = -ENOBUFS;
1295 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1296 if (new_fa == NULL)
1297 goto out;
1298
1299 new_fa->fa_info = fi;
1300 new_fa->fa_tos = tos;
1301 new_fa->fa_type = cfg->fc_type;
1302 new_fa->fa_scope = cfg->fc_scope;
1303 new_fa->fa_state = 0;
1304 /*
1305 * Insert new entry to the list.
1306 */
1307
1308 if (!fa_head) {
1309 fa_head = fib_insert_node(t, key, plen);
1310 if (unlikely(!fa_head)) {
1311 err = -ENOMEM;
1312 goto out_free_new_fa;
1313 }
1314 }
1315
1316 list_add_tail_rcu(&new_fa->fa_list,
1317 (fa ? &fa->fa_list : fa_head));
1318
1319 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1320 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1321 &cfg->fc_nlinfo, 0);
1322 succeeded:
1323 return 0;
1324
1325 out_free_new_fa:
1326 kmem_cache_free(fn_alias_kmem, new_fa);
1327 out:
1328 fib_release_info(fi);
1329 err:
1330 return err;
1331 }
1332
1333 /* should be called with rcu_read_lock */
1334 static int check_leaf(struct trie *t, struct leaf *l,
1335 t_key key, const struct flowi *flp,
1336 struct fib_result *res)
1337 {
1338 struct leaf_info *li;
1339 struct hlist_head *hhead = &l->list;
1340 struct hlist_node *node;
1341
1342 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1343 int err;
1344 int plen = li->plen;
1345 __be32 mask = inet_make_mask(plen);
1346
1347 if (l->key != (key & ntohl(mask)))
1348 continue;
1349
1350 err = fib_semantic_match(&li->falh, flp, res,
1351 htonl(l->key), mask, plen);
1352
1353 #ifdef CONFIG_IP_FIB_TRIE_STATS
1354 if (err <= 0)
1355 t->stats.semantic_match_passed++;
1356 else
1357 t->stats.semantic_match_miss++;
1358 #endif
1359 if (err <= 0)
1360 return err;
1361 }
1362
1363 return 1;
1364 }
1365
1366 static int fn_trie_lookup(struct fib_table *tb, const struct flowi *flp,
1367 struct fib_result *res)
1368 {
1369 struct trie *t = (struct trie *) tb->tb_data;
1370 int ret;
1371 struct node *n;
1372 struct tnode *pn;
1373 int pos, bits;
1374 t_key key = ntohl(flp->fl4_dst);
1375 int chopped_off;
1376 t_key cindex = 0;
1377 int current_prefix_length = KEYLENGTH;
1378 struct tnode *cn;
1379 t_key node_prefix, key_prefix, pref_mismatch;
1380 int mp;
1381
1382 rcu_read_lock();
1383
1384 n = rcu_dereference(t->trie);
1385 if (!n)
1386 goto failed;
1387
1388 #ifdef CONFIG_IP_FIB_TRIE_STATS
1389 t->stats.gets++;
1390 #endif
1391
1392 /* Just a leaf? */
1393 if (IS_LEAF(n)) {
1394 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
1395 goto found;
1396 }
1397
1398 pn = (struct tnode *) n;
1399 chopped_off = 0;
1400
1401 while (pn) {
1402 pos = pn->pos;
1403 bits = pn->bits;
1404
1405 if (!chopped_off)
1406 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1407 pos, bits);
1408
1409 n = tnode_get_child(pn, cindex);
1410
1411 if (n == NULL) {
1412 #ifdef CONFIG_IP_FIB_TRIE_STATS
1413 t->stats.null_node_hit++;
1414 #endif
1415 goto backtrace;
1416 }
1417
1418 if (IS_LEAF(n)) {
1419 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
1420 if (ret > 0)
1421 goto backtrace;
1422 goto found;
1423 }
1424
1425 cn = (struct tnode *)n;
1426
1427 /*
1428 * It's a tnode, and we can do some extra checks here if we
1429 * like, to avoid descending into a dead-end branch.
1430 * This tnode is in the parent's child array at index
1431 * key[p_pos..p_pos+p_bits] but potentially with some bits
1432 * chopped off, so in reality the index may be just a
1433 * subprefix, padded with zero at the end.
1434 * We can also take a look at any skipped bits in this
1435 * tnode - everything up to p_pos is supposed to be ok,
1436 * and the non-chopped bits of the index (se previous
1437 * paragraph) are also guaranteed ok, but the rest is
1438 * considered unknown.
1439 *
1440 * The skipped bits are key[pos+bits..cn->pos].
1441 */
1442
1443 /* If current_prefix_length < pos+bits, we are already doing
1444 * actual prefix matching, which means everything from
1445 * pos+(bits-chopped_off) onward must be zero along some
1446 * branch of this subtree - otherwise there is *no* valid
1447 * prefix present. Here we can only check the skipped
1448 * bits. Remember, since we have already indexed into the
1449 * parent's child array, we know that the bits we chopped of
1450 * *are* zero.
1451 */
1452
1453 /* NOTA BENE: Checking only skipped bits
1454 for the new node here */
1455
1456 if (current_prefix_length < pos+bits) {
1457 if (tkey_extract_bits(cn->key, current_prefix_length,
1458 cn->pos - current_prefix_length)
1459 || !(cn->child[0]))
1460 goto backtrace;
1461 }
1462
1463 /*
1464 * If chopped_off=0, the index is fully validated and we
1465 * only need to look at the skipped bits for this, the new,
1466 * tnode. What we actually want to do is to find out if
1467 * these skipped bits match our key perfectly, or if we will
1468 * have to count on finding a matching prefix further down,
1469 * because if we do, we would like to have some way of
1470 * verifying the existence of such a prefix at this point.
1471 */
1472
1473 /* The only thing we can do at this point is to verify that
1474 * any such matching prefix can indeed be a prefix to our
1475 * key, and if the bits in the node we are inspecting that
1476 * do not match our key are not ZERO, this cannot be true.
1477 * Thus, find out where there is a mismatch (before cn->pos)
1478 * and verify that all the mismatching bits are zero in the
1479 * new tnode's key.
1480 */
1481
1482 /*
1483 * Note: We aren't very concerned about the piece of
1484 * the key that precede pn->pos+pn->bits, since these
1485 * have already been checked. The bits after cn->pos
1486 * aren't checked since these are by definition
1487 * "unknown" at this point. Thus, what we want to see
1488 * is if we are about to enter the "prefix matching"
1489 * state, and in that case verify that the skipped
1490 * bits that will prevail throughout this subtree are
1491 * zero, as they have to be if we are to find a
1492 * matching prefix.
1493 */
1494
1495 node_prefix = mask_pfx(cn->key, cn->pos);
1496 key_prefix = mask_pfx(key, cn->pos);
1497 pref_mismatch = key_prefix^node_prefix;
1498 mp = 0;
1499
1500 /*
1501 * In short: If skipped bits in this node do not match
1502 * the search key, enter the "prefix matching"
1503 * state.directly.
1504 */
1505 if (pref_mismatch) {
1506 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1507 mp++;
1508 pref_mismatch = pref_mismatch << 1;
1509 }
1510 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1511
1512 if (key_prefix != 0)
1513 goto backtrace;
1514
1515 if (current_prefix_length >= cn->pos)
1516 current_prefix_length = mp;
1517 }
1518
1519 pn = (struct tnode *)n; /* Descend */
1520 chopped_off = 0;
1521 continue;
1522
1523 backtrace:
1524 chopped_off++;
1525
1526 /* As zero don't change the child key (cindex) */
1527 while ((chopped_off <= pn->bits)
1528 && !(cindex & (1<<(chopped_off-1))))
1529 chopped_off++;
1530
1531 /* Decrease current_... with bits chopped off */
1532 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1533 current_prefix_length = pn->pos + pn->bits
1534 - chopped_off;
1535
1536 /*
1537 * Either we do the actual chop off according or if we have
1538 * chopped off all bits in this tnode walk up to our parent.
1539 */
1540
1541 if (chopped_off <= pn->bits) {
1542 cindex &= ~(1 << (chopped_off-1));
1543 } else {
1544 struct tnode *parent = node_parent((struct node *) pn);
1545 if (!parent)
1546 goto failed;
1547
1548 /* Get Child's index */
1549 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1550 pn = parent;
1551 chopped_off = 0;
1552
1553 #ifdef CONFIG_IP_FIB_TRIE_STATS
1554 t->stats.backtrack++;
1555 #endif
1556 goto backtrace;
1557 }
1558 }
1559 failed:
1560 ret = 1;
1561 found:
1562 rcu_read_unlock();
1563 return ret;
1564 }
1565
1566 /*
1567 * Remove the leaf and return parent.
1568 */
1569 static void trie_leaf_remove(struct trie *t, struct leaf *l)
1570 {
1571 struct tnode *tp = node_parent((struct node *) l);
1572
1573 pr_debug("entering trie_leaf_remove(%p)\n", l);
1574
1575 if (tp) {
1576 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1577 put_child(t, (struct tnode *)tp, cindex, NULL);
1578 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1579 } else
1580 rcu_assign_pointer(t->trie, NULL);
1581
1582 free_leaf(l);
1583 }
1584
1585 /*
1586 * Caller must hold RTNL.
1587 */
1588 static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
1589 {
1590 struct trie *t = (struct trie *) tb->tb_data;
1591 u32 key, mask;
1592 int plen = cfg->fc_dst_len;
1593 u8 tos = cfg->fc_tos;
1594 struct fib_alias *fa, *fa_to_delete;
1595 struct list_head *fa_head;
1596 struct leaf *l;
1597 struct leaf_info *li;
1598
1599 if (plen > 32)
1600 return -EINVAL;
1601
1602 key = ntohl(cfg->fc_dst);
1603 mask = ntohl(inet_make_mask(plen));
1604
1605 if (key & ~mask)
1606 return -EINVAL;
1607
1608 key = key & mask;
1609 l = fib_find_node(t, key);
1610
1611 if (!l)
1612 return -ESRCH;
1613
1614 fa_head = get_fa_head(l, plen);
1615 fa = fib_find_alias(fa_head, tos, 0);
1616
1617 if (!fa)
1618 return -ESRCH;
1619
1620 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1621
1622 fa_to_delete = NULL;
1623 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1624 list_for_each_entry_continue(fa, fa_head, fa_list) {
1625 struct fib_info *fi = fa->fa_info;
1626
1627 if (fa->fa_tos != tos)
1628 break;
1629
1630 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1631 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1632 fa->fa_scope == cfg->fc_scope) &&
1633 (!cfg->fc_protocol ||
1634 fi->fib_protocol == cfg->fc_protocol) &&
1635 fib_nh_match(cfg, fi) == 0) {
1636 fa_to_delete = fa;
1637 break;
1638 }
1639 }
1640
1641 if (!fa_to_delete)
1642 return -ESRCH;
1643
1644 fa = fa_to_delete;
1645 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1646 &cfg->fc_nlinfo, 0);
1647
1648 l = fib_find_node(t, key);
1649 li = find_leaf_info(l, plen);
1650
1651 list_del_rcu(&fa->fa_list);
1652
1653 if (list_empty(fa_head)) {
1654 hlist_del_rcu(&li->hlist);
1655 free_leaf_info(li);
1656 }
1657
1658 if (hlist_empty(&l->list))
1659 trie_leaf_remove(t, l);
1660
1661 if (fa->fa_state & FA_S_ACCESSED)
1662 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1663
1664 fib_release_info(fa->fa_info);
1665 alias_free_mem_rcu(fa);
1666 return 0;
1667 }
1668
1669 static int trie_flush_list(struct list_head *head)
1670 {
1671 struct fib_alias *fa, *fa_node;
1672 int found = 0;
1673
1674 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1675 struct fib_info *fi = fa->fa_info;
1676
1677 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1678 list_del_rcu(&fa->fa_list);
1679 fib_release_info(fa->fa_info);
1680 alias_free_mem_rcu(fa);
1681 found++;
1682 }
1683 }
1684 return found;
1685 }
1686
1687 static int trie_flush_leaf(struct leaf *l)
1688 {
1689 int found = 0;
1690 struct hlist_head *lih = &l->list;
1691 struct hlist_node *node, *tmp;
1692 struct leaf_info *li = NULL;
1693
1694 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1695 found += trie_flush_list(&li->falh);
1696
1697 if (list_empty(&li->falh)) {
1698 hlist_del_rcu(&li->hlist);
1699 free_leaf_info(li);
1700 }
1701 }
1702 return found;
1703 }
1704
1705 /*
1706 * Scan for the next right leaf starting at node p->child[idx]
1707 * Since we have back pointer, no recursion necessary.
1708 */
1709 static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c)
1710 {
1711 do {
1712 t_key idx;
1713
1714 if (c)
1715 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1716 else
1717 idx = 0;
1718
1719 while (idx < 1u << p->bits) {
1720 c = tnode_get_child_rcu(p, idx++);
1721 if (!c)
1722 continue;
1723
1724 if (IS_LEAF(c)) {
1725 prefetch(p->child[idx]);
1726 return (struct leaf *) c;
1727 }
1728
1729 /* Rescan start scanning in new node */
1730 p = (struct tnode *) c;
1731 idx = 0;
1732 }
1733
1734 /* Node empty, walk back up to parent */
1735 c = (struct node *) p;
1736 } while ( (p = node_parent_rcu(c)) != NULL);
1737
1738 return NULL; /* Root of trie */
1739 }
1740
1741 static struct leaf *trie_firstleaf(struct trie *t)
1742 {
1743 struct tnode *n = (struct tnode *) rcu_dereference(t->trie);
1744
1745 if (!n)
1746 return NULL;
1747
1748 if (IS_LEAF(n)) /* trie is just a leaf */
1749 return (struct leaf *) n;
1750
1751 return leaf_walk_rcu(n, NULL);
1752 }
1753
1754 static struct leaf *trie_nextleaf(struct leaf *l)
1755 {
1756 struct node *c = (struct node *) l;
1757 struct tnode *p = node_parent(c);
1758
1759 if (!p)
1760 return NULL; /* trie with just one leaf */
1761
1762 return leaf_walk_rcu(p, c);
1763 }
1764
1765 static struct leaf *trie_leafindex(struct trie *t, int index)
1766 {
1767 struct leaf *l = trie_firstleaf(t);
1768
1769 while (l && index-- > 0)
1770 l = trie_nextleaf(l);
1771
1772 return l;
1773 }
1774
1775
1776 /*
1777 * Caller must hold RTNL.
1778 */
1779 static int fn_trie_flush(struct fib_table *tb)
1780 {
1781 struct trie *t = (struct trie *) tb->tb_data;
1782 struct leaf *l, *ll = NULL;
1783 int found = 0;
1784
1785 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1786 found += trie_flush_leaf(l);
1787
1788 if (ll && hlist_empty(&ll->list))
1789 trie_leaf_remove(t, ll);
1790 ll = l;
1791 }
1792
1793 if (ll && hlist_empty(&ll->list))
1794 trie_leaf_remove(t, ll);
1795
1796 pr_debug("trie_flush found=%d\n", found);
1797 return found;
1798 }
1799
1800 static void fn_trie_select_default(struct fib_table *tb,
1801 const struct flowi *flp,
1802 struct fib_result *res)
1803 {
1804 struct trie *t = (struct trie *) tb->tb_data;
1805 int order, last_idx;
1806 struct fib_info *fi = NULL;
1807 struct fib_info *last_resort;
1808 struct fib_alias *fa = NULL;
1809 struct list_head *fa_head;
1810 struct leaf *l;
1811
1812 last_idx = -1;
1813 last_resort = NULL;
1814 order = -1;
1815
1816 rcu_read_lock();
1817
1818 l = fib_find_node(t, 0);
1819 if (!l)
1820 goto out;
1821
1822 fa_head = get_fa_head(l, 0);
1823 if (!fa_head)
1824 goto out;
1825
1826 if (list_empty(fa_head))
1827 goto out;
1828
1829 list_for_each_entry_rcu(fa, fa_head, fa_list) {
1830 struct fib_info *next_fi = fa->fa_info;
1831
1832 if (fa->fa_scope != res->scope ||
1833 fa->fa_type != RTN_UNICAST)
1834 continue;
1835
1836 if (next_fi->fib_priority > res->fi->fib_priority)
1837 break;
1838 if (!next_fi->fib_nh[0].nh_gw ||
1839 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1840 continue;
1841 fa->fa_state |= FA_S_ACCESSED;
1842
1843 if (fi == NULL) {
1844 if (next_fi != res->fi)
1845 break;
1846 } else if (!fib_detect_death(fi, order, &last_resort,
1847 &last_idx, tb->tb_default)) {
1848 fib_result_assign(res, fi);
1849 tb->tb_default = order;
1850 goto out;
1851 }
1852 fi = next_fi;
1853 order++;
1854 }
1855 if (order <= 0 || fi == NULL) {
1856 tb->tb_default = -1;
1857 goto out;
1858 }
1859
1860 if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1861 tb->tb_default)) {
1862 fib_result_assign(res, fi);
1863 tb->tb_default = order;
1864 goto out;
1865 }
1866 if (last_idx >= 0)
1867 fib_result_assign(res, last_resort);
1868 tb->tb_default = last_idx;
1869 out:
1870 rcu_read_unlock();
1871 }
1872
1873 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1874 struct fib_table *tb,
1875 struct sk_buff *skb, struct netlink_callback *cb)
1876 {
1877 int i, s_i;
1878 struct fib_alias *fa;
1879 __be32 xkey = htonl(key);
1880
1881 s_i = cb->args[5];
1882 i = 0;
1883
1884 /* rcu_read_lock is hold by caller */
1885
1886 list_for_each_entry_rcu(fa, fah, fa_list) {
1887 if (i < s_i) {
1888 i++;
1889 continue;
1890 }
1891
1892 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1893 cb->nlh->nlmsg_seq,
1894 RTM_NEWROUTE,
1895 tb->tb_id,
1896 fa->fa_type,
1897 fa->fa_scope,
1898 xkey,
1899 plen,
1900 fa->fa_tos,
1901 fa->fa_info, NLM_F_MULTI) < 0) {
1902 cb->args[5] = i;
1903 return -1;
1904 }
1905 i++;
1906 }
1907 cb->args[5] = i;
1908 return skb->len;
1909 }
1910
1911 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1912 struct sk_buff *skb, struct netlink_callback *cb)
1913 {
1914 struct leaf_info *li;
1915 struct hlist_node *node;
1916 int i, s_i;
1917
1918 s_i = cb->args[4];
1919 i = 0;
1920
1921 /* rcu_read_lock is hold by caller */
1922 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1923 if (i < s_i) {
1924 i++;
1925 continue;
1926 }
1927
1928 if (i > s_i)
1929 cb->args[5] = 0;
1930
1931 if (list_empty(&li->falh))
1932 continue;
1933
1934 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1935 cb->args[4] = i;
1936 return -1;
1937 }
1938 i++;
1939 }
1940
1941 cb->args[4] = i;
1942 return skb->len;
1943 }
1944
1945 static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb,
1946 struct netlink_callback *cb)
1947 {
1948 struct leaf *l;
1949 struct trie *t = (struct trie *) tb->tb_data;
1950 t_key key = cb->args[2];
1951 int count = cb->args[3];
1952
1953 rcu_read_lock();
1954 /* Dump starting at last key.
1955 * Note: 0.0.0.0/0 (ie default) is first key.
1956 */
1957 if (count == 0)
1958 l = trie_firstleaf(t);
1959 else {
1960 /* Normally, continue from last key, but if that is missing
1961 * fallback to using slow rescan
1962 */
1963 l = fib_find_node(t, key);
1964 if (!l)
1965 l = trie_leafindex(t, count);
1966 }
1967
1968 while (l) {
1969 cb->args[2] = l->key;
1970 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1971 cb->args[3] = count;
1972 rcu_read_unlock();
1973 return -1;
1974 }
1975
1976 ++count;
1977 l = trie_nextleaf(l);
1978 memset(&cb->args[4], 0,
1979 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1980 }
1981 cb->args[3] = count;
1982 rcu_read_unlock();
1983
1984 return skb->len;
1985 }
1986
1987 void __init fib_hash_init(void)
1988 {
1989 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1990 sizeof(struct fib_alias),
1991 0, SLAB_PANIC, NULL);
1992
1993 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1994 max(sizeof(struct leaf),
1995 sizeof(struct leaf_info)),
1996 0, SLAB_PANIC, NULL);
1997 }
1998
1999
2000 /* Fix more generic FIB names for init later */
2001 struct fib_table *fib_hash_table(u32 id)
2002 {
2003 struct fib_table *tb;
2004 struct trie *t;
2005
2006 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
2007 GFP_KERNEL);
2008 if (tb == NULL)
2009 return NULL;
2010
2011 tb->tb_id = id;
2012 tb->tb_default = -1;
2013 tb->tb_lookup = fn_trie_lookup;
2014 tb->tb_insert = fn_trie_insert;
2015 tb->tb_delete = fn_trie_delete;
2016 tb->tb_flush = fn_trie_flush;
2017 tb->tb_select_default = fn_trie_select_default;
2018 tb->tb_dump = fn_trie_dump;
2019
2020 t = (struct trie *) tb->tb_data;
2021 memset(t, 0, sizeof(*t));
2022
2023 if (id == RT_TABLE_LOCAL)
2024 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
2025
2026 return tb;
2027 }
2028
2029 #ifdef CONFIG_PROC_FS
2030 /* Depth first Trie walk iterator */
2031 struct fib_trie_iter {
2032 struct seq_net_private p;
2033 struct fib_table *tb;
2034 struct tnode *tnode;
2035 unsigned index;
2036 unsigned depth;
2037 };
2038
2039 static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
2040 {
2041 struct tnode *tn = iter->tnode;
2042 unsigned cindex = iter->index;
2043 struct tnode *p;
2044
2045 /* A single entry routing table */
2046 if (!tn)
2047 return NULL;
2048
2049 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2050 iter->tnode, iter->index, iter->depth);
2051 rescan:
2052 while (cindex < (1<<tn->bits)) {
2053 struct node *n = tnode_get_child_rcu(tn, cindex);
2054
2055 if (n) {
2056 if (IS_LEAF(n)) {
2057 iter->tnode = tn;
2058 iter->index = cindex + 1;
2059 } else {
2060 /* push down one level */
2061 iter->tnode = (struct tnode *) n;
2062 iter->index = 0;
2063 ++iter->depth;
2064 }
2065 return n;
2066 }
2067
2068 ++cindex;
2069 }
2070
2071 /* Current node exhausted, pop back up */
2072 p = node_parent_rcu((struct node *)tn);
2073 if (p) {
2074 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2075 tn = p;
2076 --iter->depth;
2077 goto rescan;
2078 }
2079
2080 /* got root? */
2081 return NULL;
2082 }
2083
2084 static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2085 struct trie *t)
2086 {
2087 struct node *n;
2088
2089 if (!t)
2090 return NULL;
2091
2092 n = rcu_dereference(t->trie);
2093 if (!n)
2094 return NULL;
2095
2096 if (IS_TNODE(n)) {
2097 iter->tnode = (struct tnode *) n;
2098 iter->index = 0;
2099 iter->depth = 1;
2100 } else {
2101 iter->tnode = NULL;
2102 iter->index = 0;
2103 iter->depth = 0;
2104 }
2105
2106 return n;
2107 }
2108
2109 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2110 {
2111 struct node *n;
2112 struct fib_trie_iter iter;
2113
2114 memset(s, 0, sizeof(*s));
2115
2116 rcu_read_lock();
2117 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2118 if (IS_LEAF(n)) {
2119 struct leaf *l = (struct leaf *)n;
2120 struct leaf_info *li;
2121 struct hlist_node *tmp;
2122
2123 s->leaves++;
2124 s->totdepth += iter.depth;
2125 if (iter.depth > s->maxdepth)
2126 s->maxdepth = iter.depth;
2127
2128 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2129 ++s->prefixes;
2130 } else {
2131 const struct tnode *tn = (const struct tnode *) n;
2132 int i;
2133
2134 s->tnodes++;
2135 if (tn->bits < MAX_STAT_DEPTH)
2136 s->nodesizes[tn->bits]++;
2137
2138 for (i = 0; i < (1<<tn->bits); i++)
2139 if (!tn->child[i])
2140 s->nullpointers++;
2141 }
2142 }
2143 rcu_read_unlock();
2144 }
2145
2146 /*
2147 * This outputs /proc/net/fib_triestats
2148 */
2149 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2150 {
2151 unsigned i, max, pointers, bytes, avdepth;
2152
2153 if (stat->leaves)
2154 avdepth = stat->totdepth*100 / stat->leaves;
2155 else
2156 avdepth = 0;
2157
2158 seq_printf(seq, "\tAver depth: %u.%02d\n",
2159 avdepth / 100, avdepth % 100);
2160 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2161
2162 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2163 bytes = sizeof(struct leaf) * stat->leaves;
2164
2165 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2166 bytes += sizeof(struct leaf_info) * stat->prefixes;
2167
2168 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2169 bytes += sizeof(struct tnode) * stat->tnodes;
2170
2171 max = MAX_STAT_DEPTH;
2172 while (max > 0 && stat->nodesizes[max-1] == 0)
2173 max--;
2174
2175 pointers = 0;
2176 for (i = 1; i <= max; i++)
2177 if (stat->nodesizes[i] != 0) {
2178 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2179 pointers += (1<<i) * stat->nodesizes[i];
2180 }
2181 seq_putc(seq, '\n');
2182 seq_printf(seq, "\tPointers: %u\n", pointers);
2183
2184 bytes += sizeof(struct node *) * pointers;
2185 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2186 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2187 }
2188
2189 #ifdef CONFIG_IP_FIB_TRIE_STATS
2190 static void trie_show_usage(struct seq_file *seq,
2191 const struct trie_use_stats *stats)
2192 {
2193 seq_printf(seq, "\nCounters:\n---------\n");
2194 seq_printf(seq, "gets = %u\n", stats->gets);
2195 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2196 seq_printf(seq, "semantic match passed = %u\n",
2197 stats->semantic_match_passed);
2198 seq_printf(seq, "semantic match miss = %u\n",
2199 stats->semantic_match_miss);
2200 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2201 seq_printf(seq, "skipped node resize = %u\n\n",
2202 stats->resize_node_skipped);
2203 }
2204 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2205
2206 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2207 {
2208 if (tb->tb_id == RT_TABLE_LOCAL)
2209 seq_puts(seq, "Local:\n");
2210 else if (tb->tb_id == RT_TABLE_MAIN)
2211 seq_puts(seq, "Main:\n");
2212 else
2213 seq_printf(seq, "Id %d:\n", tb->tb_id);
2214 }
2215
2216
2217 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2218 {
2219 struct net *net = (struct net *)seq->private;
2220 unsigned int h;
2221
2222 seq_printf(seq,
2223 "Basic info: size of leaf:"
2224 " %Zd bytes, size of tnode: %Zd bytes.\n",
2225 sizeof(struct leaf), sizeof(struct tnode));
2226
2227 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2228 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2229 struct hlist_node *node;
2230 struct fib_table *tb;
2231
2232 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2233 struct trie *t = (struct trie *) tb->tb_data;
2234 struct trie_stat stat;
2235
2236 if (!t)
2237 continue;
2238
2239 fib_table_print(seq, tb);
2240
2241 trie_collect_stats(t, &stat);
2242 trie_show_stats(seq, &stat);
2243 #ifdef CONFIG_IP_FIB_TRIE_STATS
2244 trie_show_usage(seq, &t->stats);
2245 #endif
2246 }
2247 }
2248
2249 return 0;
2250 }
2251
2252 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2253 {
2254 int err;
2255 struct net *net;
2256
2257 net = get_proc_net(inode);
2258 if (net == NULL)
2259 return -ENXIO;
2260 err = single_open(file, fib_triestat_seq_show, net);
2261 if (err < 0) {
2262 put_net(net);
2263 return err;
2264 }
2265 return 0;
2266 }
2267
2268 static int fib_triestat_seq_release(struct inode *ino, struct file *f)
2269 {
2270 struct seq_file *seq = f->private_data;
2271 put_net(seq->private);
2272 return single_release(ino, f);
2273 }
2274
2275 static const struct file_operations fib_triestat_fops = {
2276 .owner = THIS_MODULE,
2277 .open = fib_triestat_seq_open,
2278 .read = seq_read,
2279 .llseek = seq_lseek,
2280 .release = fib_triestat_seq_release,
2281 };
2282
2283 static struct node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2284 {
2285 struct fib_trie_iter *iter = seq->private;
2286 struct net *net = seq_file_net(seq);
2287 loff_t idx = 0;
2288 unsigned int h;
2289
2290 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2291 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2292 struct hlist_node *node;
2293 struct fib_table *tb;
2294
2295 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2296 struct node *n;
2297
2298 for (n = fib_trie_get_first(iter,
2299 (struct trie *) tb->tb_data);
2300 n; n = fib_trie_get_next(iter))
2301 if (pos == idx++) {
2302 iter->tb = tb;
2303 return n;
2304 }
2305 }
2306 }
2307
2308 return NULL;
2309 }
2310
2311 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2312 __acquires(RCU)
2313 {
2314 rcu_read_lock();
2315 return fib_trie_get_idx(seq, *pos);
2316 }
2317
2318 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2319 {
2320 struct fib_trie_iter *iter = seq->private;
2321 struct net *net = seq_file_net(seq);
2322 struct fib_table *tb = iter->tb;
2323 struct hlist_node *tb_node;
2324 unsigned int h;
2325 struct node *n;
2326
2327 ++*pos;
2328 /* next node in same table */
2329 n = fib_trie_get_next(iter);
2330 if (n)
2331 return n;
2332
2333 /* walk rest of this hash chain */
2334 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2335 while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
2336 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2337 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2338 if (n)
2339 goto found;
2340 }
2341
2342 /* new hash chain */
2343 while (++h < FIB_TABLE_HASHSZ) {
2344 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2345 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2346 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2347 if (n)
2348 goto found;
2349 }
2350 }
2351 return NULL;
2352
2353 found:
2354 iter->tb = tb;
2355 return n;
2356 }
2357
2358 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2359 __releases(RCU)
2360 {
2361 rcu_read_unlock();
2362 }
2363
2364 static void seq_indent(struct seq_file *seq, int n)
2365 {
2366 while (n-- > 0) seq_puts(seq, " ");
2367 }
2368
2369 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2370 {
2371 switch (s) {
2372 case RT_SCOPE_UNIVERSE: return "universe";
2373 case RT_SCOPE_SITE: return "site";
2374 case RT_SCOPE_LINK: return "link";
2375 case RT_SCOPE_HOST: return "host";
2376 case RT_SCOPE_NOWHERE: return "nowhere";
2377 default:
2378 snprintf(buf, len, "scope=%d", s);
2379 return buf;
2380 }
2381 }
2382
2383 static const char *rtn_type_names[__RTN_MAX] = {
2384 [RTN_UNSPEC] = "UNSPEC",
2385 [RTN_UNICAST] = "UNICAST",
2386 [RTN_LOCAL] = "LOCAL",
2387 [RTN_BROADCAST] = "BROADCAST",
2388 [RTN_ANYCAST] = "ANYCAST",
2389 [RTN_MULTICAST] = "MULTICAST",
2390 [RTN_BLACKHOLE] = "BLACKHOLE",
2391 [RTN_UNREACHABLE] = "UNREACHABLE",
2392 [RTN_PROHIBIT] = "PROHIBIT",
2393 [RTN_THROW] = "THROW",
2394 [RTN_NAT] = "NAT",
2395 [RTN_XRESOLVE] = "XRESOLVE",
2396 };
2397
2398 static inline const char *rtn_type(char *buf, size_t len, unsigned t)
2399 {
2400 if (t < __RTN_MAX && rtn_type_names[t])
2401 return rtn_type_names[t];
2402 snprintf(buf, len, "type %u", t);
2403 return buf;
2404 }
2405
2406 /* Pretty print the trie */
2407 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2408 {
2409 const struct fib_trie_iter *iter = seq->private;
2410 struct node *n = v;
2411
2412 if (!node_parent_rcu(n))
2413 fib_table_print(seq, iter->tb);
2414
2415 if (IS_TNODE(n)) {
2416 struct tnode *tn = (struct tnode *) n;
2417 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2418
2419 seq_indent(seq, iter->depth-1);
2420 seq_printf(seq, " +-- " NIPQUAD_FMT "/%d %d %d %d\n",
2421 NIPQUAD(prf), tn->pos, tn->bits, tn->full_children,
2422 tn->empty_children);
2423
2424 } else {
2425 struct leaf *l = (struct leaf *) n;
2426 struct leaf_info *li;
2427 struct hlist_node *node;
2428 __be32 val = htonl(l->key);
2429
2430 seq_indent(seq, iter->depth);
2431 seq_printf(seq, " |-- " NIPQUAD_FMT "\n", NIPQUAD(val));
2432
2433 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2434 struct fib_alias *fa;
2435
2436 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2437 char buf1[32], buf2[32];
2438
2439 seq_indent(seq, iter->depth+1);
2440 seq_printf(seq, " /%d %s %s", li->plen,
2441 rtn_scope(buf1, sizeof(buf1),
2442 fa->fa_scope),
2443 rtn_type(buf2, sizeof(buf2),
2444 fa->fa_type));
2445 if (fa->fa_tos)
2446 seq_printf(seq, " tos=%d", fa->fa_tos);
2447 seq_putc(seq, '\n');
2448 }
2449 }
2450 }
2451
2452 return 0;
2453 }
2454
2455 static const struct seq_operations fib_trie_seq_ops = {
2456 .start = fib_trie_seq_start,
2457 .next = fib_trie_seq_next,
2458 .stop = fib_trie_seq_stop,
2459 .show = fib_trie_seq_show,
2460 };
2461
2462 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2463 {
2464 return seq_open_net(inode, file, &fib_trie_seq_ops,
2465 sizeof(struct fib_trie_iter));
2466 }
2467
2468 static const struct file_operations fib_trie_fops = {
2469 .owner = THIS_MODULE,
2470 .open = fib_trie_seq_open,
2471 .read = seq_read,
2472 .llseek = seq_lseek,
2473 .release = seq_release_net,
2474 };
2475
2476 struct fib_route_iter {
2477 struct seq_net_private p;
2478 struct trie *main_trie;
2479 loff_t pos;
2480 t_key key;
2481 };
2482
2483 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2484 {
2485 struct leaf *l = NULL;
2486 struct trie *t = iter->main_trie;
2487
2488 /* use cache location of last found key */
2489 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2490 pos -= iter->pos;
2491 else {
2492 iter->pos = 0;
2493 l = trie_firstleaf(t);
2494 }
2495
2496 while (l && pos-- > 0) {
2497 iter->pos++;
2498 l = trie_nextleaf(l);
2499 }
2500
2501 if (l)
2502 iter->key = pos; /* remember it */
2503 else
2504 iter->pos = 0; /* forget it */
2505
2506 return l;
2507 }
2508
2509 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2510 __acquires(RCU)
2511 {
2512 struct fib_route_iter *iter = seq->private;
2513 struct fib_table *tb;
2514
2515 rcu_read_lock();
2516 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2517 if (!tb)
2518 return NULL;
2519
2520 iter->main_trie = (struct trie *) tb->tb_data;
2521 if (*pos == 0)
2522 return SEQ_START_TOKEN;
2523 else
2524 return fib_route_get_idx(iter, *pos - 1);
2525 }
2526
2527 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2528 {
2529 struct fib_route_iter *iter = seq->private;
2530 struct leaf *l = v;
2531
2532 ++*pos;
2533 if (v == SEQ_START_TOKEN) {
2534 iter->pos = 0;
2535 l = trie_firstleaf(iter->main_trie);
2536 } else {
2537 iter->pos++;
2538 l = trie_nextleaf(l);
2539 }
2540
2541 if (l)
2542 iter->key = l->key;
2543 else
2544 iter->pos = 0;
2545 return l;
2546 }
2547
2548 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2549 __releases(RCU)
2550 {
2551 rcu_read_unlock();
2552 }
2553
2554 static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2555 {
2556 static unsigned type2flags[RTN_MAX + 1] = {
2557 [7] = RTF_REJECT, [8] = RTF_REJECT,
2558 };
2559 unsigned flags = type2flags[type];
2560
2561 if (fi && fi->fib_nh->nh_gw)
2562 flags |= RTF_GATEWAY;
2563 if (mask == htonl(0xFFFFFFFF))
2564 flags |= RTF_HOST;
2565 flags |= RTF_UP;
2566 return flags;
2567 }
2568
2569 /*
2570 * This outputs /proc/net/route.
2571 * The format of the file is not supposed to be changed
2572 * and needs to be same as fib_hash output to avoid breaking
2573 * legacy utilities
2574 */
2575 static int fib_route_seq_show(struct seq_file *seq, void *v)
2576 {
2577 struct leaf *l = v;
2578 struct leaf_info *li;
2579 struct hlist_node *node;
2580
2581 if (v == SEQ_START_TOKEN) {
2582 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2583 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2584 "\tWindow\tIRTT");
2585 return 0;
2586 }
2587
2588 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2589 struct fib_alias *fa;
2590 __be32 mask, prefix;
2591
2592 mask = inet_make_mask(li->plen);
2593 prefix = htonl(l->key);
2594
2595 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2596 const struct fib_info *fi = fa->fa_info;
2597 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
2598 int len;
2599
2600 if (fa->fa_type == RTN_BROADCAST
2601 || fa->fa_type == RTN_MULTICAST)
2602 continue;
2603
2604 if (fi)
2605 seq_printf(seq,
2606 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2607 "%d\t%08X\t%d\t%u\t%u%n",
2608 fi->fib_dev ? fi->fib_dev->name : "*",
2609 prefix,
2610 fi->fib_nh->nh_gw, flags, 0, 0,
2611 fi->fib_priority,
2612 mask,
2613 (fi->fib_advmss ?
2614 fi->fib_advmss + 40 : 0),
2615 fi->fib_window,
2616 fi->fib_rtt >> 3, &len);
2617 else
2618 seq_printf(seq,
2619 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2620 "%d\t%08X\t%d\t%u\t%u%n",
2621 prefix, 0, flags, 0, 0, 0,
2622 mask, 0, 0, 0, &len);
2623
2624 seq_printf(seq, "%*s\n", 127 - len, "");
2625 }
2626 }
2627
2628 return 0;
2629 }
2630
2631 static const struct seq_operations fib_route_seq_ops = {
2632 .start = fib_route_seq_start,
2633 .next = fib_route_seq_next,
2634 .stop = fib_route_seq_stop,
2635 .show = fib_route_seq_show,
2636 };
2637
2638 static int fib_route_seq_open(struct inode *inode, struct file *file)
2639 {
2640 return seq_open_net(inode, file, &fib_route_seq_ops,
2641 sizeof(struct fib_route_iter));
2642 }
2643
2644 static const struct file_operations fib_route_fops = {
2645 .owner = THIS_MODULE,
2646 .open = fib_route_seq_open,
2647 .read = seq_read,
2648 .llseek = seq_lseek,
2649 .release = seq_release_net,
2650 };
2651
2652 int __net_init fib_proc_init(struct net *net)
2653 {
2654 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2655 goto out1;
2656
2657 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2658 &fib_triestat_fops))
2659 goto out2;
2660
2661 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2662 goto out3;
2663
2664 return 0;
2665
2666 out3:
2667 proc_net_remove(net, "fib_triestat");
2668 out2:
2669 proc_net_remove(net, "fib_trie");
2670 out1:
2671 return -ENOMEM;
2672 }
2673
2674 void __net_exit fib_proc_exit(struct net *net)
2675 {
2676 proc_net_remove(net, "fib_trie");
2677 proc_net_remove(net, "fib_triestat");
2678 proc_net_remove(net, "route");
2679 }
2680
2681 #endif /* CONFIG_PROC_FS */