]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/fib_trie.c
ipconfig: Fix newline handling in log message.
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally described in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
49 */
50
51 #define VERSION "0.409"
52
53 #include <asm/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/prefetch.h>
75 #include <linux/export.h>
76 #include <net/net_namespace.h>
77 #include <net/ip.h>
78 #include <net/protocol.h>
79 #include <net/route.h>
80 #include <net/tcp.h>
81 #include <net/sock.h>
82 #include <net/ip_fib.h>
83 #include "fib_lookup.h"
84
85 #define MAX_STAT_DEPTH 32
86
87 #define KEYLENGTH (8*sizeof(t_key))
88
89 typedef unsigned int t_key;
90
91 #define T_TNODE 0
92 #define T_LEAF 1
93 #define NODE_TYPE_MASK 0x1UL
94 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
95
96 #define IS_TNODE(n) (!(n->parent & T_LEAF))
97 #define IS_LEAF(n) (n->parent & T_LEAF)
98
99 struct rt_trie_node {
100 unsigned long parent;
101 t_key key;
102 };
103
104 struct leaf {
105 unsigned long parent;
106 t_key key;
107 struct hlist_head list;
108 struct rcu_head rcu;
109 };
110
111 struct leaf_info {
112 struct hlist_node hlist;
113 int plen;
114 u32 mask_plen; /* ntohl(inet_make_mask(plen)) */
115 struct list_head falh;
116 struct rcu_head rcu;
117 };
118
119 struct tnode {
120 unsigned long parent;
121 t_key key;
122 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
123 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
124 unsigned int full_children; /* KEYLENGTH bits needed */
125 unsigned int empty_children; /* KEYLENGTH bits needed */
126 union {
127 struct rcu_head rcu;
128 struct work_struct work;
129 struct tnode *tnode_free;
130 };
131 struct rt_trie_node __rcu *child[0];
132 };
133
134 #ifdef CONFIG_IP_FIB_TRIE_STATS
135 struct trie_use_stats {
136 unsigned int gets;
137 unsigned int backtrack;
138 unsigned int semantic_match_passed;
139 unsigned int semantic_match_miss;
140 unsigned int null_node_hit;
141 unsigned int resize_node_skipped;
142 };
143 #endif
144
145 struct trie_stat {
146 unsigned int totdepth;
147 unsigned int maxdepth;
148 unsigned int tnodes;
149 unsigned int leaves;
150 unsigned int nullpointers;
151 unsigned int prefixes;
152 unsigned int nodesizes[MAX_STAT_DEPTH];
153 };
154
155 struct trie {
156 struct rt_trie_node __rcu *trie;
157 #ifdef CONFIG_IP_FIB_TRIE_STATS
158 struct trie_use_stats stats;
159 #endif
160 };
161
162 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
163 int wasfull);
164 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn);
165 static struct tnode *inflate(struct trie *t, struct tnode *tn);
166 static struct tnode *halve(struct trie *t, struct tnode *tn);
167 /* tnodes to free after resize(); protected by RTNL */
168 static struct tnode *tnode_free_head;
169 static size_t tnode_free_size;
170
171 /*
172 * synchronize_rcu after call_rcu for that many pages; it should be especially
173 * useful before resizing the root node with PREEMPT_NONE configs; the value was
174 * obtained experimentally, aiming to avoid visible slowdown.
175 */
176 static const int sync_pages = 128;
177
178 static struct kmem_cache *fn_alias_kmem __read_mostly;
179 static struct kmem_cache *trie_leaf_kmem __read_mostly;
180
181 /*
182 * caller must hold RTNL
183 */
184 static inline struct tnode *node_parent(const struct rt_trie_node *node)
185 {
186 unsigned long parent;
187
188 parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held());
189
190 return (struct tnode *)(parent & ~NODE_TYPE_MASK);
191 }
192
193 /*
194 * caller must hold RCU read lock or RTNL
195 */
196 static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node)
197 {
198 unsigned long parent;
199
200 parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() ||
201 lockdep_rtnl_is_held());
202
203 return (struct tnode *)(parent & ~NODE_TYPE_MASK);
204 }
205
206 /* Same as rcu_assign_pointer
207 * but that macro() assumes that value is a pointer.
208 */
209 static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr)
210 {
211 smp_wmb();
212 node->parent = (unsigned long)ptr | NODE_TYPE(node);
213 }
214
215 /*
216 * caller must hold RTNL
217 */
218 static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i)
219 {
220 BUG_ON(i >= 1U << tn->bits);
221
222 return rtnl_dereference(tn->child[i]);
223 }
224
225 /*
226 * caller must hold RCU read lock or RTNL
227 */
228 static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i)
229 {
230 BUG_ON(i >= 1U << tn->bits);
231
232 return rcu_dereference_rtnl(tn->child[i]);
233 }
234
235 static inline int tnode_child_length(const struct tnode *tn)
236 {
237 return 1 << tn->bits;
238 }
239
240 static inline t_key mask_pfx(t_key k, unsigned int l)
241 {
242 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
243 }
244
245 static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits)
246 {
247 if (offset < KEYLENGTH)
248 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
249 else
250 return 0;
251 }
252
253 static inline int tkey_equals(t_key a, t_key b)
254 {
255 return a == b;
256 }
257
258 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
259 {
260 if (bits == 0 || offset >= KEYLENGTH)
261 return 1;
262 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
263 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
264 }
265
266 static inline int tkey_mismatch(t_key a, int offset, t_key b)
267 {
268 t_key diff = a ^ b;
269 int i = offset;
270
271 if (!diff)
272 return 0;
273 while ((diff << i) >> (KEYLENGTH-1) == 0)
274 i++;
275 return i;
276 }
277
278 /*
279 To understand this stuff, an understanding of keys and all their bits is
280 necessary. Every node in the trie has a key associated with it, but not
281 all of the bits in that key are significant.
282
283 Consider a node 'n' and its parent 'tp'.
284
285 If n is a leaf, every bit in its key is significant. Its presence is
286 necessitated by path compression, since during a tree traversal (when
287 searching for a leaf - unless we are doing an insertion) we will completely
288 ignore all skipped bits we encounter. Thus we need to verify, at the end of
289 a potentially successful search, that we have indeed been walking the
290 correct key path.
291
292 Note that we can never "miss" the correct key in the tree if present by
293 following the wrong path. Path compression ensures that segments of the key
294 that are the same for all keys with a given prefix are skipped, but the
295 skipped part *is* identical for each node in the subtrie below the skipped
296 bit! trie_insert() in this implementation takes care of that - note the
297 call to tkey_sub_equals() in trie_insert().
298
299 if n is an internal node - a 'tnode' here, the various parts of its key
300 have many different meanings.
301
302 Example:
303 _________________________________________________________________
304 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
305 -----------------------------------------------------------------
306 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
307
308 _________________________________________________________________
309 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
310 -----------------------------------------------------------------
311 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
312
313 tp->pos = 7
314 tp->bits = 3
315 n->pos = 15
316 n->bits = 4
317
318 First, let's just ignore the bits that come before the parent tp, that is
319 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
320 not use them for anything.
321
322 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
323 index into the parent's child array. That is, they will be used to find
324 'n' among tp's children.
325
326 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
327 for the node n.
328
329 All the bits we have seen so far are significant to the node n. The rest
330 of the bits are really not needed or indeed known in n->key.
331
332 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
333 n's child array, and will of course be different for each child.
334
335
336 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
337 at this point.
338
339 */
340
341 static inline void check_tnode(const struct tnode *tn)
342 {
343 WARN_ON(tn && tn->pos+tn->bits > 32);
344 }
345
346 static const int halve_threshold = 25;
347 static const int inflate_threshold = 50;
348 static const int halve_threshold_root = 15;
349 static const int inflate_threshold_root = 30;
350
351 static void __alias_free_mem(struct rcu_head *head)
352 {
353 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
354 kmem_cache_free(fn_alias_kmem, fa);
355 }
356
357 static inline void alias_free_mem_rcu(struct fib_alias *fa)
358 {
359 call_rcu(&fa->rcu, __alias_free_mem);
360 }
361
362 static void __leaf_free_rcu(struct rcu_head *head)
363 {
364 struct leaf *l = container_of(head, struct leaf, rcu);
365 kmem_cache_free(trie_leaf_kmem, l);
366 }
367
368 static inline void free_leaf(struct leaf *l)
369 {
370 call_rcu(&l->rcu, __leaf_free_rcu);
371 }
372
373 static inline void free_leaf_info(struct leaf_info *leaf)
374 {
375 kfree_rcu(leaf, rcu);
376 }
377
378 static struct tnode *tnode_alloc(size_t size)
379 {
380 if (size <= PAGE_SIZE)
381 return kzalloc(size, GFP_KERNEL);
382 else
383 return vzalloc(size);
384 }
385
386 static void __tnode_vfree(struct work_struct *arg)
387 {
388 struct tnode *tn = container_of(arg, struct tnode, work);
389 vfree(tn);
390 }
391
392 static void __tnode_free_rcu(struct rcu_head *head)
393 {
394 struct tnode *tn = container_of(head, struct tnode, rcu);
395 size_t size = sizeof(struct tnode) +
396 (sizeof(struct rt_trie_node *) << tn->bits);
397
398 if (size <= PAGE_SIZE)
399 kfree(tn);
400 else {
401 INIT_WORK(&tn->work, __tnode_vfree);
402 schedule_work(&tn->work);
403 }
404 }
405
406 static inline void tnode_free(struct tnode *tn)
407 {
408 if (IS_LEAF(tn))
409 free_leaf((struct leaf *) tn);
410 else
411 call_rcu(&tn->rcu, __tnode_free_rcu);
412 }
413
414 static void tnode_free_safe(struct tnode *tn)
415 {
416 BUG_ON(IS_LEAF(tn));
417 tn->tnode_free = tnode_free_head;
418 tnode_free_head = tn;
419 tnode_free_size += sizeof(struct tnode) +
420 (sizeof(struct rt_trie_node *) << tn->bits);
421 }
422
423 static void tnode_free_flush(void)
424 {
425 struct tnode *tn;
426
427 while ((tn = tnode_free_head)) {
428 tnode_free_head = tn->tnode_free;
429 tn->tnode_free = NULL;
430 tnode_free(tn);
431 }
432
433 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
434 tnode_free_size = 0;
435 synchronize_rcu();
436 }
437 }
438
439 static struct leaf *leaf_new(void)
440 {
441 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
442 if (l) {
443 l->parent = T_LEAF;
444 INIT_HLIST_HEAD(&l->list);
445 }
446 return l;
447 }
448
449 static struct leaf_info *leaf_info_new(int plen)
450 {
451 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
452 if (li) {
453 li->plen = plen;
454 li->mask_plen = ntohl(inet_make_mask(plen));
455 INIT_LIST_HEAD(&li->falh);
456 }
457 return li;
458 }
459
460 static struct tnode *tnode_new(t_key key, int pos, int bits)
461 {
462 size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits);
463 struct tnode *tn = tnode_alloc(sz);
464
465 if (tn) {
466 tn->parent = T_TNODE;
467 tn->pos = pos;
468 tn->bits = bits;
469 tn->key = key;
470 tn->full_children = 0;
471 tn->empty_children = 1<<bits;
472 }
473
474 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
475 sizeof(struct rt_trie_node *) << bits);
476 return tn;
477 }
478
479 /*
480 * Check whether a tnode 'n' is "full", i.e. it is an internal node
481 * and no bits are skipped. See discussion in dyntree paper p. 6
482 */
483
484 static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n)
485 {
486 if (n == NULL || IS_LEAF(n))
487 return 0;
488
489 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
490 }
491
492 static inline void put_child(struct tnode *tn, int i,
493 struct rt_trie_node *n)
494 {
495 tnode_put_child_reorg(tn, i, n, -1);
496 }
497
498 /*
499 * Add a child at position i overwriting the old value.
500 * Update the value of full_children and empty_children.
501 */
502
503 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
504 int wasfull)
505 {
506 struct rt_trie_node *chi = rtnl_dereference(tn->child[i]);
507 int isfull;
508
509 BUG_ON(i >= 1<<tn->bits);
510
511 /* update emptyChildren */
512 if (n == NULL && chi != NULL)
513 tn->empty_children++;
514 else if (n != NULL && chi == NULL)
515 tn->empty_children--;
516
517 /* update fullChildren */
518 if (wasfull == -1)
519 wasfull = tnode_full(tn, chi);
520
521 isfull = tnode_full(tn, n);
522 if (wasfull && !isfull)
523 tn->full_children--;
524 else if (!wasfull && isfull)
525 tn->full_children++;
526
527 if (n)
528 node_set_parent(n, tn);
529
530 rcu_assign_pointer(tn->child[i], n);
531 }
532
533 #define MAX_WORK 10
534 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn)
535 {
536 int i;
537 struct tnode *old_tn;
538 int inflate_threshold_use;
539 int halve_threshold_use;
540 int max_work;
541
542 if (!tn)
543 return NULL;
544
545 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
546 tn, inflate_threshold, halve_threshold);
547
548 /* No children */
549 if (tn->empty_children == tnode_child_length(tn)) {
550 tnode_free_safe(tn);
551 return NULL;
552 }
553 /* One child */
554 if (tn->empty_children == tnode_child_length(tn) - 1)
555 goto one_child;
556 /*
557 * Double as long as the resulting node has a number of
558 * nonempty nodes that are above the threshold.
559 */
560
561 /*
562 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
563 * the Helsinki University of Technology and Matti Tikkanen of Nokia
564 * Telecommunications, page 6:
565 * "A node is doubled if the ratio of non-empty children to all
566 * children in the *doubled* node is at least 'high'."
567 *
568 * 'high' in this instance is the variable 'inflate_threshold'. It
569 * is expressed as a percentage, so we multiply it with
570 * tnode_child_length() and instead of multiplying by 2 (since the
571 * child array will be doubled by inflate()) and multiplying
572 * the left-hand side by 100 (to handle the percentage thing) we
573 * multiply the left-hand side by 50.
574 *
575 * The left-hand side may look a bit weird: tnode_child_length(tn)
576 * - tn->empty_children is of course the number of non-null children
577 * in the current node. tn->full_children is the number of "full"
578 * children, that is non-null tnodes with a skip value of 0.
579 * All of those will be doubled in the resulting inflated tnode, so
580 * we just count them one extra time here.
581 *
582 * A clearer way to write this would be:
583 *
584 * to_be_doubled = tn->full_children;
585 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
586 * tn->full_children;
587 *
588 * new_child_length = tnode_child_length(tn) * 2;
589 *
590 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
591 * new_child_length;
592 * if (new_fill_factor >= inflate_threshold)
593 *
594 * ...and so on, tho it would mess up the while () loop.
595 *
596 * anyway,
597 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
598 * inflate_threshold
599 *
600 * avoid a division:
601 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
602 * inflate_threshold * new_child_length
603 *
604 * expand not_to_be_doubled and to_be_doubled, and shorten:
605 * 100 * (tnode_child_length(tn) - tn->empty_children +
606 * tn->full_children) >= inflate_threshold * new_child_length
607 *
608 * expand new_child_length:
609 * 100 * (tnode_child_length(tn) - tn->empty_children +
610 * tn->full_children) >=
611 * inflate_threshold * tnode_child_length(tn) * 2
612 *
613 * shorten again:
614 * 50 * (tn->full_children + tnode_child_length(tn) -
615 * tn->empty_children) >= inflate_threshold *
616 * tnode_child_length(tn)
617 *
618 */
619
620 check_tnode(tn);
621
622 /* Keep root node larger */
623
624 if (!node_parent((struct rt_trie_node *)tn)) {
625 inflate_threshold_use = inflate_threshold_root;
626 halve_threshold_use = halve_threshold_root;
627 } else {
628 inflate_threshold_use = inflate_threshold;
629 halve_threshold_use = halve_threshold;
630 }
631
632 max_work = MAX_WORK;
633 while ((tn->full_children > 0 && max_work-- &&
634 50 * (tn->full_children + tnode_child_length(tn)
635 - tn->empty_children)
636 >= inflate_threshold_use * tnode_child_length(tn))) {
637
638 old_tn = tn;
639 tn = inflate(t, tn);
640
641 if (IS_ERR(tn)) {
642 tn = old_tn;
643 #ifdef CONFIG_IP_FIB_TRIE_STATS
644 t->stats.resize_node_skipped++;
645 #endif
646 break;
647 }
648 }
649
650 check_tnode(tn);
651
652 /* Return if at least one inflate is run */
653 if (max_work != MAX_WORK)
654 return (struct rt_trie_node *) tn;
655
656 /*
657 * Halve as long as the number of empty children in this
658 * node is above threshold.
659 */
660
661 max_work = MAX_WORK;
662 while (tn->bits > 1 && max_work-- &&
663 100 * (tnode_child_length(tn) - tn->empty_children) <
664 halve_threshold_use * tnode_child_length(tn)) {
665
666 old_tn = tn;
667 tn = halve(t, tn);
668 if (IS_ERR(tn)) {
669 tn = old_tn;
670 #ifdef CONFIG_IP_FIB_TRIE_STATS
671 t->stats.resize_node_skipped++;
672 #endif
673 break;
674 }
675 }
676
677
678 /* Only one child remains */
679 if (tn->empty_children == tnode_child_length(tn) - 1) {
680 one_child:
681 for (i = 0; i < tnode_child_length(tn); i++) {
682 struct rt_trie_node *n;
683
684 n = rtnl_dereference(tn->child[i]);
685 if (!n)
686 continue;
687
688 /* compress one level */
689
690 node_set_parent(n, NULL);
691 tnode_free_safe(tn);
692 return n;
693 }
694 }
695 return (struct rt_trie_node *) tn;
696 }
697
698
699 static void tnode_clean_free(struct tnode *tn)
700 {
701 int i;
702 struct tnode *tofree;
703
704 for (i = 0; i < tnode_child_length(tn); i++) {
705 tofree = (struct tnode *)rtnl_dereference(tn->child[i]);
706 if (tofree)
707 tnode_free(tofree);
708 }
709 tnode_free(tn);
710 }
711
712 static struct tnode *inflate(struct trie *t, struct tnode *tn)
713 {
714 struct tnode *oldtnode = tn;
715 int olen = tnode_child_length(tn);
716 int i;
717
718 pr_debug("In inflate\n");
719
720 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
721
722 if (!tn)
723 return ERR_PTR(-ENOMEM);
724
725 /*
726 * Preallocate and store tnodes before the actual work so we
727 * don't get into an inconsistent state if memory allocation
728 * fails. In case of failure we return the oldnode and inflate
729 * of tnode is ignored.
730 */
731
732 for (i = 0; i < olen; i++) {
733 struct tnode *inode;
734
735 inode = (struct tnode *) tnode_get_child(oldtnode, i);
736 if (inode &&
737 IS_TNODE(inode) &&
738 inode->pos == oldtnode->pos + oldtnode->bits &&
739 inode->bits > 1) {
740 struct tnode *left, *right;
741 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
742
743 left = tnode_new(inode->key&(~m), inode->pos + 1,
744 inode->bits - 1);
745 if (!left)
746 goto nomem;
747
748 right = tnode_new(inode->key|m, inode->pos + 1,
749 inode->bits - 1);
750
751 if (!right) {
752 tnode_free(left);
753 goto nomem;
754 }
755
756 put_child(tn, 2*i, (struct rt_trie_node *) left);
757 put_child(tn, 2*i+1, (struct rt_trie_node *) right);
758 }
759 }
760
761 for (i = 0; i < olen; i++) {
762 struct tnode *inode;
763 struct rt_trie_node *node = tnode_get_child(oldtnode, i);
764 struct tnode *left, *right;
765 int size, j;
766
767 /* An empty child */
768 if (node == NULL)
769 continue;
770
771 /* A leaf or an internal node with skipped bits */
772
773 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
774 tn->pos + tn->bits - 1) {
775 if (tkey_extract_bits(node->key,
776 oldtnode->pos + oldtnode->bits,
777 1) == 0)
778 put_child(tn, 2*i, node);
779 else
780 put_child(tn, 2*i+1, node);
781 continue;
782 }
783
784 /* An internal node with two children */
785 inode = (struct tnode *) node;
786
787 if (inode->bits == 1) {
788 put_child(tn, 2*i, rtnl_dereference(inode->child[0]));
789 put_child(tn, 2*i+1, rtnl_dereference(inode->child[1]));
790
791 tnode_free_safe(inode);
792 continue;
793 }
794
795 /* An internal node with more than two children */
796
797 /* We will replace this node 'inode' with two new
798 * ones, 'left' and 'right', each with half of the
799 * original children. The two new nodes will have
800 * a position one bit further down the key and this
801 * means that the "significant" part of their keys
802 * (see the discussion near the top of this file)
803 * will differ by one bit, which will be "0" in
804 * left's key and "1" in right's key. Since we are
805 * moving the key position by one step, the bit that
806 * we are moving away from - the bit at position
807 * (inode->pos) - is the one that will differ between
808 * left and right. So... we synthesize that bit in the
809 * two new keys.
810 * The mask 'm' below will be a single "one" bit at
811 * the position (inode->pos)
812 */
813
814 /* Use the old key, but set the new significant
815 * bit to zero.
816 */
817
818 left = (struct tnode *) tnode_get_child(tn, 2*i);
819 put_child(tn, 2*i, NULL);
820
821 BUG_ON(!left);
822
823 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
824 put_child(tn, 2*i+1, NULL);
825
826 BUG_ON(!right);
827
828 size = tnode_child_length(left);
829 for (j = 0; j < size; j++) {
830 put_child(left, j, rtnl_dereference(inode->child[j]));
831 put_child(right, j, rtnl_dereference(inode->child[j + size]));
832 }
833 put_child(tn, 2*i, resize(t, left));
834 put_child(tn, 2*i+1, resize(t, right));
835
836 tnode_free_safe(inode);
837 }
838 tnode_free_safe(oldtnode);
839 return tn;
840 nomem:
841 tnode_clean_free(tn);
842 return ERR_PTR(-ENOMEM);
843 }
844
845 static struct tnode *halve(struct trie *t, struct tnode *tn)
846 {
847 struct tnode *oldtnode = tn;
848 struct rt_trie_node *left, *right;
849 int i;
850 int olen = tnode_child_length(tn);
851
852 pr_debug("In halve\n");
853
854 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
855
856 if (!tn)
857 return ERR_PTR(-ENOMEM);
858
859 /*
860 * Preallocate and store tnodes before the actual work so we
861 * don't get into an inconsistent state if memory allocation
862 * fails. In case of failure we return the oldnode and halve
863 * of tnode is ignored.
864 */
865
866 for (i = 0; i < olen; i += 2) {
867 left = tnode_get_child(oldtnode, i);
868 right = tnode_get_child(oldtnode, i+1);
869
870 /* Two nonempty children */
871 if (left && right) {
872 struct tnode *newn;
873
874 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
875
876 if (!newn)
877 goto nomem;
878
879 put_child(tn, i/2, (struct rt_trie_node *)newn);
880 }
881
882 }
883
884 for (i = 0; i < olen; i += 2) {
885 struct tnode *newBinNode;
886
887 left = tnode_get_child(oldtnode, i);
888 right = tnode_get_child(oldtnode, i+1);
889
890 /* At least one of the children is empty */
891 if (left == NULL) {
892 if (right == NULL) /* Both are empty */
893 continue;
894 put_child(tn, i/2, right);
895 continue;
896 }
897
898 if (right == NULL) {
899 put_child(tn, i/2, left);
900 continue;
901 }
902
903 /* Two nonempty children */
904 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
905 put_child(tn, i/2, NULL);
906 put_child(newBinNode, 0, left);
907 put_child(newBinNode, 1, right);
908 put_child(tn, i/2, resize(t, newBinNode));
909 }
910 tnode_free_safe(oldtnode);
911 return tn;
912 nomem:
913 tnode_clean_free(tn);
914 return ERR_PTR(-ENOMEM);
915 }
916
917 /* readside must use rcu_read_lock currently dump routines
918 via get_fa_head and dump */
919
920 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
921 {
922 struct hlist_head *head = &l->list;
923 struct leaf_info *li;
924
925 hlist_for_each_entry_rcu(li, head, hlist)
926 if (li->plen == plen)
927 return li;
928
929 return NULL;
930 }
931
932 static inline struct list_head *get_fa_head(struct leaf *l, int plen)
933 {
934 struct leaf_info *li = find_leaf_info(l, plen);
935
936 if (!li)
937 return NULL;
938
939 return &li->falh;
940 }
941
942 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
943 {
944 struct leaf_info *li = NULL, *last = NULL;
945
946 if (hlist_empty(head)) {
947 hlist_add_head_rcu(&new->hlist, head);
948 } else {
949 hlist_for_each_entry(li, head, hlist) {
950 if (new->plen > li->plen)
951 break;
952
953 last = li;
954 }
955 if (last)
956 hlist_add_after_rcu(&last->hlist, &new->hlist);
957 else
958 hlist_add_before_rcu(&new->hlist, &li->hlist);
959 }
960 }
961
962 /* rcu_read_lock needs to be hold by caller from readside */
963
964 static struct leaf *
965 fib_find_node(struct trie *t, u32 key)
966 {
967 int pos;
968 struct tnode *tn;
969 struct rt_trie_node *n;
970
971 pos = 0;
972 n = rcu_dereference_rtnl(t->trie);
973
974 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
975 tn = (struct tnode *) n;
976
977 check_tnode(tn);
978
979 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
980 pos = tn->pos + tn->bits;
981 n = tnode_get_child_rcu(tn,
982 tkey_extract_bits(key,
983 tn->pos,
984 tn->bits));
985 } else
986 break;
987 }
988 /* Case we have found a leaf. Compare prefixes */
989
990 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
991 return (struct leaf *)n;
992
993 return NULL;
994 }
995
996 static void trie_rebalance(struct trie *t, struct tnode *tn)
997 {
998 int wasfull;
999 t_key cindex, key;
1000 struct tnode *tp;
1001
1002 key = tn->key;
1003
1004 while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) {
1005 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1006 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
1007 tn = (struct tnode *)resize(t, tn);
1008
1009 tnode_put_child_reorg(tp, cindex,
1010 (struct rt_trie_node *)tn, wasfull);
1011
1012 tp = node_parent((struct rt_trie_node *) tn);
1013 if (!tp)
1014 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1015
1016 tnode_free_flush();
1017 if (!tp)
1018 break;
1019 tn = tp;
1020 }
1021
1022 /* Handle last (top) tnode */
1023 if (IS_TNODE(tn))
1024 tn = (struct tnode *)resize(t, tn);
1025
1026 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1027 tnode_free_flush();
1028 }
1029
1030 /* only used from updater-side */
1031
1032 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1033 {
1034 int pos, newpos;
1035 struct tnode *tp = NULL, *tn = NULL;
1036 struct rt_trie_node *n;
1037 struct leaf *l;
1038 int missbit;
1039 struct list_head *fa_head = NULL;
1040 struct leaf_info *li;
1041 t_key cindex;
1042
1043 pos = 0;
1044 n = rtnl_dereference(t->trie);
1045
1046 /* If we point to NULL, stop. Either the tree is empty and we should
1047 * just put a new leaf in if, or we have reached an empty child slot,
1048 * and we should just put our new leaf in that.
1049 * If we point to a T_TNODE, check if it matches our key. Note that
1050 * a T_TNODE might be skipping any number of bits - its 'pos' need
1051 * not be the parent's 'pos'+'bits'!
1052 *
1053 * If it does match the current key, get pos/bits from it, extract
1054 * the index from our key, push the T_TNODE and walk the tree.
1055 *
1056 * If it doesn't, we have to replace it with a new T_TNODE.
1057 *
1058 * If we point to a T_LEAF, it might or might not have the same key
1059 * as we do. If it does, just change the value, update the T_LEAF's
1060 * value, and return it.
1061 * If it doesn't, we need to replace it with a T_TNODE.
1062 */
1063
1064 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1065 tn = (struct tnode *) n;
1066
1067 check_tnode(tn);
1068
1069 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1070 tp = tn;
1071 pos = tn->pos + tn->bits;
1072 n = tnode_get_child(tn,
1073 tkey_extract_bits(key,
1074 tn->pos,
1075 tn->bits));
1076
1077 BUG_ON(n && node_parent(n) != tn);
1078 } else
1079 break;
1080 }
1081
1082 /*
1083 * n ----> NULL, LEAF or TNODE
1084 *
1085 * tp is n's (parent) ----> NULL or TNODE
1086 */
1087
1088 BUG_ON(tp && IS_LEAF(tp));
1089
1090 /* Case 1: n is a leaf. Compare prefixes */
1091
1092 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1093 l = (struct leaf *) n;
1094 li = leaf_info_new(plen);
1095
1096 if (!li)
1097 return NULL;
1098
1099 fa_head = &li->falh;
1100 insert_leaf_info(&l->list, li);
1101 goto done;
1102 }
1103 l = leaf_new();
1104
1105 if (!l)
1106 return NULL;
1107
1108 l->key = key;
1109 li = leaf_info_new(plen);
1110
1111 if (!li) {
1112 free_leaf(l);
1113 return NULL;
1114 }
1115
1116 fa_head = &li->falh;
1117 insert_leaf_info(&l->list, li);
1118
1119 if (t->trie && n == NULL) {
1120 /* Case 2: n is NULL, and will just insert a new leaf */
1121
1122 node_set_parent((struct rt_trie_node *)l, tp);
1123
1124 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1125 put_child(tp, cindex, (struct rt_trie_node *)l);
1126 } else {
1127 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1128 /*
1129 * Add a new tnode here
1130 * first tnode need some special handling
1131 */
1132
1133 if (tp)
1134 pos = tp->pos+tp->bits;
1135 else
1136 pos = 0;
1137
1138 if (n) {
1139 newpos = tkey_mismatch(key, pos, n->key);
1140 tn = tnode_new(n->key, newpos, 1);
1141 } else {
1142 newpos = 0;
1143 tn = tnode_new(key, newpos, 1); /* First tnode */
1144 }
1145
1146 if (!tn) {
1147 free_leaf_info(li);
1148 free_leaf(l);
1149 return NULL;
1150 }
1151
1152 node_set_parent((struct rt_trie_node *)tn, tp);
1153
1154 missbit = tkey_extract_bits(key, newpos, 1);
1155 put_child(tn, missbit, (struct rt_trie_node *)l);
1156 put_child(tn, 1-missbit, n);
1157
1158 if (tp) {
1159 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1160 put_child(tp, cindex, (struct rt_trie_node *)tn);
1161 } else {
1162 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1163 tp = tn;
1164 }
1165 }
1166
1167 if (tp && tp->pos + tp->bits > 32)
1168 pr_warn("fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1169 tp, tp->pos, tp->bits, key, plen);
1170
1171 /* Rebalance the trie */
1172
1173 trie_rebalance(t, tp);
1174 done:
1175 return fa_head;
1176 }
1177
1178 /*
1179 * Caller must hold RTNL.
1180 */
1181 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1182 {
1183 struct trie *t = (struct trie *) tb->tb_data;
1184 struct fib_alias *fa, *new_fa;
1185 struct list_head *fa_head = NULL;
1186 struct fib_info *fi;
1187 int plen = cfg->fc_dst_len;
1188 u8 tos = cfg->fc_tos;
1189 u32 key, mask;
1190 int err;
1191 struct leaf *l;
1192
1193 if (plen > 32)
1194 return -EINVAL;
1195
1196 key = ntohl(cfg->fc_dst);
1197
1198 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1199
1200 mask = ntohl(inet_make_mask(plen));
1201
1202 if (key & ~mask)
1203 return -EINVAL;
1204
1205 key = key & mask;
1206
1207 fi = fib_create_info(cfg);
1208 if (IS_ERR(fi)) {
1209 err = PTR_ERR(fi);
1210 goto err;
1211 }
1212
1213 l = fib_find_node(t, key);
1214 fa = NULL;
1215
1216 if (l) {
1217 fa_head = get_fa_head(l, plen);
1218 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1219 }
1220
1221 /* Now fa, if non-NULL, points to the first fib alias
1222 * with the same keys [prefix,tos,priority], if such key already
1223 * exists or to the node before which we will insert new one.
1224 *
1225 * If fa is NULL, we will need to allocate a new one and
1226 * insert to the head of f.
1227 *
1228 * If f is NULL, no fib node matched the destination key
1229 * and we need to allocate a new one of those as well.
1230 */
1231
1232 if (fa && fa->fa_tos == tos &&
1233 fa->fa_info->fib_priority == fi->fib_priority) {
1234 struct fib_alias *fa_first, *fa_match;
1235
1236 err = -EEXIST;
1237 if (cfg->fc_nlflags & NLM_F_EXCL)
1238 goto out;
1239
1240 /* We have 2 goals:
1241 * 1. Find exact match for type, scope, fib_info to avoid
1242 * duplicate routes
1243 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1244 */
1245 fa_match = NULL;
1246 fa_first = fa;
1247 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1248 list_for_each_entry_continue(fa, fa_head, fa_list) {
1249 if (fa->fa_tos != tos)
1250 break;
1251 if (fa->fa_info->fib_priority != fi->fib_priority)
1252 break;
1253 if (fa->fa_type == cfg->fc_type &&
1254 fa->fa_info == fi) {
1255 fa_match = fa;
1256 break;
1257 }
1258 }
1259
1260 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1261 struct fib_info *fi_drop;
1262 u8 state;
1263
1264 fa = fa_first;
1265 if (fa_match) {
1266 if (fa == fa_match)
1267 err = 0;
1268 goto out;
1269 }
1270 err = -ENOBUFS;
1271 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1272 if (new_fa == NULL)
1273 goto out;
1274
1275 fi_drop = fa->fa_info;
1276 new_fa->fa_tos = fa->fa_tos;
1277 new_fa->fa_info = fi;
1278 new_fa->fa_type = cfg->fc_type;
1279 state = fa->fa_state;
1280 new_fa->fa_state = state & ~FA_S_ACCESSED;
1281
1282 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1283 alias_free_mem_rcu(fa);
1284
1285 fib_release_info(fi_drop);
1286 if (state & FA_S_ACCESSED)
1287 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1288 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1289 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1290
1291 goto succeeded;
1292 }
1293 /* Error if we find a perfect match which
1294 * uses the same scope, type, and nexthop
1295 * information.
1296 */
1297 if (fa_match)
1298 goto out;
1299
1300 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1301 fa = fa_first;
1302 }
1303 err = -ENOENT;
1304 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1305 goto out;
1306
1307 err = -ENOBUFS;
1308 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1309 if (new_fa == NULL)
1310 goto out;
1311
1312 new_fa->fa_info = fi;
1313 new_fa->fa_tos = tos;
1314 new_fa->fa_type = cfg->fc_type;
1315 new_fa->fa_state = 0;
1316 /*
1317 * Insert new entry to the list.
1318 */
1319
1320 if (!fa_head) {
1321 fa_head = fib_insert_node(t, key, plen);
1322 if (unlikely(!fa_head)) {
1323 err = -ENOMEM;
1324 goto out_free_new_fa;
1325 }
1326 }
1327
1328 if (!plen)
1329 tb->tb_num_default++;
1330
1331 list_add_tail_rcu(&new_fa->fa_list,
1332 (fa ? &fa->fa_list : fa_head));
1333
1334 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1335 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1336 &cfg->fc_nlinfo, 0);
1337 succeeded:
1338 return 0;
1339
1340 out_free_new_fa:
1341 kmem_cache_free(fn_alias_kmem, new_fa);
1342 out:
1343 fib_release_info(fi);
1344 err:
1345 return err;
1346 }
1347
1348 /* should be called with rcu_read_lock */
1349 static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l,
1350 t_key key, const struct flowi4 *flp,
1351 struct fib_result *res, int fib_flags)
1352 {
1353 struct leaf_info *li;
1354 struct hlist_head *hhead = &l->list;
1355
1356 hlist_for_each_entry_rcu(li, hhead, hlist) {
1357 struct fib_alias *fa;
1358
1359 if (l->key != (key & li->mask_plen))
1360 continue;
1361
1362 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1363 struct fib_info *fi = fa->fa_info;
1364 int nhsel, err;
1365
1366 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1367 continue;
1368 if (fi->fib_dead)
1369 continue;
1370 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1371 continue;
1372 fib_alias_accessed(fa);
1373 err = fib_props[fa->fa_type].error;
1374 if (err) {
1375 #ifdef CONFIG_IP_FIB_TRIE_STATS
1376 t->stats.semantic_match_passed++;
1377 #endif
1378 return err;
1379 }
1380 if (fi->fib_flags & RTNH_F_DEAD)
1381 continue;
1382 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1383 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1384
1385 if (nh->nh_flags & RTNH_F_DEAD)
1386 continue;
1387 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1388 continue;
1389
1390 #ifdef CONFIG_IP_FIB_TRIE_STATS
1391 t->stats.semantic_match_passed++;
1392 #endif
1393 res->prefixlen = li->plen;
1394 res->nh_sel = nhsel;
1395 res->type = fa->fa_type;
1396 res->scope = fa->fa_info->fib_scope;
1397 res->fi = fi;
1398 res->table = tb;
1399 res->fa_head = &li->falh;
1400 if (!(fib_flags & FIB_LOOKUP_NOREF))
1401 atomic_inc(&fi->fib_clntref);
1402 return 0;
1403 }
1404 }
1405
1406 #ifdef CONFIG_IP_FIB_TRIE_STATS
1407 t->stats.semantic_match_miss++;
1408 #endif
1409 }
1410
1411 return 1;
1412 }
1413
1414 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1415 struct fib_result *res, int fib_flags)
1416 {
1417 struct trie *t = (struct trie *) tb->tb_data;
1418 int ret;
1419 struct rt_trie_node *n;
1420 struct tnode *pn;
1421 unsigned int pos, bits;
1422 t_key key = ntohl(flp->daddr);
1423 unsigned int chopped_off;
1424 t_key cindex = 0;
1425 unsigned int current_prefix_length = KEYLENGTH;
1426 struct tnode *cn;
1427 t_key pref_mismatch;
1428
1429 rcu_read_lock();
1430
1431 n = rcu_dereference(t->trie);
1432 if (!n)
1433 goto failed;
1434
1435 #ifdef CONFIG_IP_FIB_TRIE_STATS
1436 t->stats.gets++;
1437 #endif
1438
1439 /* Just a leaf? */
1440 if (IS_LEAF(n)) {
1441 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1442 goto found;
1443 }
1444
1445 pn = (struct tnode *) n;
1446 chopped_off = 0;
1447
1448 while (pn) {
1449 pos = pn->pos;
1450 bits = pn->bits;
1451
1452 if (!chopped_off)
1453 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1454 pos, bits);
1455
1456 n = tnode_get_child_rcu(pn, cindex);
1457
1458 if (n == NULL) {
1459 #ifdef CONFIG_IP_FIB_TRIE_STATS
1460 t->stats.null_node_hit++;
1461 #endif
1462 goto backtrace;
1463 }
1464
1465 if (IS_LEAF(n)) {
1466 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1467 if (ret > 0)
1468 goto backtrace;
1469 goto found;
1470 }
1471
1472 cn = (struct tnode *)n;
1473
1474 /*
1475 * It's a tnode, and we can do some extra checks here if we
1476 * like, to avoid descending into a dead-end branch.
1477 * This tnode is in the parent's child array at index
1478 * key[p_pos..p_pos+p_bits] but potentially with some bits
1479 * chopped off, so in reality the index may be just a
1480 * subprefix, padded with zero at the end.
1481 * We can also take a look at any skipped bits in this
1482 * tnode - everything up to p_pos is supposed to be ok,
1483 * and the non-chopped bits of the index (se previous
1484 * paragraph) are also guaranteed ok, but the rest is
1485 * considered unknown.
1486 *
1487 * The skipped bits are key[pos+bits..cn->pos].
1488 */
1489
1490 /* If current_prefix_length < pos+bits, we are already doing
1491 * actual prefix matching, which means everything from
1492 * pos+(bits-chopped_off) onward must be zero along some
1493 * branch of this subtree - otherwise there is *no* valid
1494 * prefix present. Here we can only check the skipped
1495 * bits. Remember, since we have already indexed into the
1496 * parent's child array, we know that the bits we chopped of
1497 * *are* zero.
1498 */
1499
1500 /* NOTA BENE: Checking only skipped bits
1501 for the new node here */
1502
1503 if (current_prefix_length < pos+bits) {
1504 if (tkey_extract_bits(cn->key, current_prefix_length,
1505 cn->pos - current_prefix_length)
1506 || !(cn->child[0]))
1507 goto backtrace;
1508 }
1509
1510 /*
1511 * If chopped_off=0, the index is fully validated and we
1512 * only need to look at the skipped bits for this, the new,
1513 * tnode. What we actually want to do is to find out if
1514 * these skipped bits match our key perfectly, or if we will
1515 * have to count on finding a matching prefix further down,
1516 * because if we do, we would like to have some way of
1517 * verifying the existence of such a prefix at this point.
1518 */
1519
1520 /* The only thing we can do at this point is to verify that
1521 * any such matching prefix can indeed be a prefix to our
1522 * key, and if the bits in the node we are inspecting that
1523 * do not match our key are not ZERO, this cannot be true.
1524 * Thus, find out where there is a mismatch (before cn->pos)
1525 * and verify that all the mismatching bits are zero in the
1526 * new tnode's key.
1527 */
1528
1529 /*
1530 * Note: We aren't very concerned about the piece of
1531 * the key that precede pn->pos+pn->bits, since these
1532 * have already been checked. The bits after cn->pos
1533 * aren't checked since these are by definition
1534 * "unknown" at this point. Thus, what we want to see
1535 * is if we are about to enter the "prefix matching"
1536 * state, and in that case verify that the skipped
1537 * bits that will prevail throughout this subtree are
1538 * zero, as they have to be if we are to find a
1539 * matching prefix.
1540 */
1541
1542 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
1543
1544 /*
1545 * In short: If skipped bits in this node do not match
1546 * the search key, enter the "prefix matching"
1547 * state.directly.
1548 */
1549 if (pref_mismatch) {
1550 /* fls(x) = __fls(x) + 1 */
1551 int mp = KEYLENGTH - __fls(pref_mismatch) - 1;
1552
1553 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
1554 goto backtrace;
1555
1556 if (current_prefix_length >= cn->pos)
1557 current_prefix_length = mp;
1558 }
1559
1560 pn = (struct tnode *)n; /* Descend */
1561 chopped_off = 0;
1562 continue;
1563
1564 backtrace:
1565 chopped_off++;
1566
1567 /* As zero don't change the child key (cindex) */
1568 while ((chopped_off <= pn->bits)
1569 && !(cindex & (1<<(chopped_off-1))))
1570 chopped_off++;
1571
1572 /* Decrease current_... with bits chopped off */
1573 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1574 current_prefix_length = pn->pos + pn->bits
1575 - chopped_off;
1576
1577 /*
1578 * Either we do the actual chop off according or if we have
1579 * chopped off all bits in this tnode walk up to our parent.
1580 */
1581
1582 if (chopped_off <= pn->bits) {
1583 cindex &= ~(1 << (chopped_off-1));
1584 } else {
1585 struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn);
1586 if (!parent)
1587 goto failed;
1588
1589 /* Get Child's index */
1590 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1591 pn = parent;
1592 chopped_off = 0;
1593
1594 #ifdef CONFIG_IP_FIB_TRIE_STATS
1595 t->stats.backtrack++;
1596 #endif
1597 goto backtrace;
1598 }
1599 }
1600 failed:
1601 ret = 1;
1602 found:
1603 rcu_read_unlock();
1604 return ret;
1605 }
1606 EXPORT_SYMBOL_GPL(fib_table_lookup);
1607
1608 /*
1609 * Remove the leaf and return parent.
1610 */
1611 static void trie_leaf_remove(struct trie *t, struct leaf *l)
1612 {
1613 struct tnode *tp = node_parent((struct rt_trie_node *) l);
1614
1615 pr_debug("entering trie_leaf_remove(%p)\n", l);
1616
1617 if (tp) {
1618 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1619 put_child(tp, cindex, NULL);
1620 trie_rebalance(t, tp);
1621 } else
1622 RCU_INIT_POINTER(t->trie, NULL);
1623
1624 free_leaf(l);
1625 }
1626
1627 /*
1628 * Caller must hold RTNL.
1629 */
1630 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1631 {
1632 struct trie *t = (struct trie *) tb->tb_data;
1633 u32 key, mask;
1634 int plen = cfg->fc_dst_len;
1635 u8 tos = cfg->fc_tos;
1636 struct fib_alias *fa, *fa_to_delete;
1637 struct list_head *fa_head;
1638 struct leaf *l;
1639 struct leaf_info *li;
1640
1641 if (plen > 32)
1642 return -EINVAL;
1643
1644 key = ntohl(cfg->fc_dst);
1645 mask = ntohl(inet_make_mask(plen));
1646
1647 if (key & ~mask)
1648 return -EINVAL;
1649
1650 key = key & mask;
1651 l = fib_find_node(t, key);
1652
1653 if (!l)
1654 return -ESRCH;
1655
1656 li = find_leaf_info(l, plen);
1657
1658 if (!li)
1659 return -ESRCH;
1660
1661 fa_head = &li->falh;
1662 fa = fib_find_alias(fa_head, tos, 0);
1663
1664 if (!fa)
1665 return -ESRCH;
1666
1667 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1668
1669 fa_to_delete = NULL;
1670 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1671 list_for_each_entry_continue(fa, fa_head, fa_list) {
1672 struct fib_info *fi = fa->fa_info;
1673
1674 if (fa->fa_tos != tos)
1675 break;
1676
1677 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1678 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1679 fa->fa_info->fib_scope == cfg->fc_scope) &&
1680 (!cfg->fc_prefsrc ||
1681 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1682 (!cfg->fc_protocol ||
1683 fi->fib_protocol == cfg->fc_protocol) &&
1684 fib_nh_match(cfg, fi) == 0) {
1685 fa_to_delete = fa;
1686 break;
1687 }
1688 }
1689
1690 if (!fa_to_delete)
1691 return -ESRCH;
1692
1693 fa = fa_to_delete;
1694 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1695 &cfg->fc_nlinfo, 0);
1696
1697 list_del_rcu(&fa->fa_list);
1698
1699 if (!plen)
1700 tb->tb_num_default--;
1701
1702 if (list_empty(fa_head)) {
1703 hlist_del_rcu(&li->hlist);
1704 free_leaf_info(li);
1705 }
1706
1707 if (hlist_empty(&l->list))
1708 trie_leaf_remove(t, l);
1709
1710 if (fa->fa_state & FA_S_ACCESSED)
1711 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1712
1713 fib_release_info(fa->fa_info);
1714 alias_free_mem_rcu(fa);
1715 return 0;
1716 }
1717
1718 static int trie_flush_list(struct list_head *head)
1719 {
1720 struct fib_alias *fa, *fa_node;
1721 int found = 0;
1722
1723 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1724 struct fib_info *fi = fa->fa_info;
1725
1726 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1727 list_del_rcu(&fa->fa_list);
1728 fib_release_info(fa->fa_info);
1729 alias_free_mem_rcu(fa);
1730 found++;
1731 }
1732 }
1733 return found;
1734 }
1735
1736 static int trie_flush_leaf(struct leaf *l)
1737 {
1738 int found = 0;
1739 struct hlist_head *lih = &l->list;
1740 struct hlist_node *tmp;
1741 struct leaf_info *li = NULL;
1742
1743 hlist_for_each_entry_safe(li, tmp, lih, hlist) {
1744 found += trie_flush_list(&li->falh);
1745
1746 if (list_empty(&li->falh)) {
1747 hlist_del_rcu(&li->hlist);
1748 free_leaf_info(li);
1749 }
1750 }
1751 return found;
1752 }
1753
1754 /*
1755 * Scan for the next right leaf starting at node p->child[idx]
1756 * Since we have back pointer, no recursion necessary.
1757 */
1758 static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c)
1759 {
1760 do {
1761 t_key idx;
1762
1763 if (c)
1764 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1765 else
1766 idx = 0;
1767
1768 while (idx < 1u << p->bits) {
1769 c = tnode_get_child_rcu(p, idx++);
1770 if (!c)
1771 continue;
1772
1773 if (IS_LEAF(c)) {
1774 prefetch(rcu_dereference_rtnl(p->child[idx]));
1775 return (struct leaf *) c;
1776 }
1777
1778 /* Rescan start scanning in new node */
1779 p = (struct tnode *) c;
1780 idx = 0;
1781 }
1782
1783 /* Node empty, walk back up to parent */
1784 c = (struct rt_trie_node *) p;
1785 } while ((p = node_parent_rcu(c)) != NULL);
1786
1787 return NULL; /* Root of trie */
1788 }
1789
1790 static struct leaf *trie_firstleaf(struct trie *t)
1791 {
1792 struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
1793
1794 if (!n)
1795 return NULL;
1796
1797 if (IS_LEAF(n)) /* trie is just a leaf */
1798 return (struct leaf *) n;
1799
1800 return leaf_walk_rcu(n, NULL);
1801 }
1802
1803 static struct leaf *trie_nextleaf(struct leaf *l)
1804 {
1805 struct rt_trie_node *c = (struct rt_trie_node *) l;
1806 struct tnode *p = node_parent_rcu(c);
1807
1808 if (!p)
1809 return NULL; /* trie with just one leaf */
1810
1811 return leaf_walk_rcu(p, c);
1812 }
1813
1814 static struct leaf *trie_leafindex(struct trie *t, int index)
1815 {
1816 struct leaf *l = trie_firstleaf(t);
1817
1818 while (l && index-- > 0)
1819 l = trie_nextleaf(l);
1820
1821 return l;
1822 }
1823
1824
1825 /*
1826 * Caller must hold RTNL.
1827 */
1828 int fib_table_flush(struct fib_table *tb)
1829 {
1830 struct trie *t = (struct trie *) tb->tb_data;
1831 struct leaf *l, *ll = NULL;
1832 int found = 0;
1833
1834 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1835 found += trie_flush_leaf(l);
1836
1837 if (ll && hlist_empty(&ll->list))
1838 trie_leaf_remove(t, ll);
1839 ll = l;
1840 }
1841
1842 if (ll && hlist_empty(&ll->list))
1843 trie_leaf_remove(t, ll);
1844
1845 pr_debug("trie_flush found=%d\n", found);
1846 return found;
1847 }
1848
1849 void fib_free_table(struct fib_table *tb)
1850 {
1851 kfree(tb);
1852 }
1853
1854 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1855 struct fib_table *tb,
1856 struct sk_buff *skb, struct netlink_callback *cb)
1857 {
1858 int i, s_i;
1859 struct fib_alias *fa;
1860 __be32 xkey = htonl(key);
1861
1862 s_i = cb->args[5];
1863 i = 0;
1864
1865 /* rcu_read_lock is hold by caller */
1866
1867 list_for_each_entry_rcu(fa, fah, fa_list) {
1868 if (i < s_i) {
1869 i++;
1870 continue;
1871 }
1872
1873 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1874 cb->nlh->nlmsg_seq,
1875 RTM_NEWROUTE,
1876 tb->tb_id,
1877 fa->fa_type,
1878 xkey,
1879 plen,
1880 fa->fa_tos,
1881 fa->fa_info, NLM_F_MULTI) < 0) {
1882 cb->args[5] = i;
1883 return -1;
1884 }
1885 i++;
1886 }
1887 cb->args[5] = i;
1888 return skb->len;
1889 }
1890
1891 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1892 struct sk_buff *skb, struct netlink_callback *cb)
1893 {
1894 struct leaf_info *li;
1895 int i, s_i;
1896
1897 s_i = cb->args[4];
1898 i = 0;
1899
1900 /* rcu_read_lock is hold by caller */
1901 hlist_for_each_entry_rcu(li, &l->list, hlist) {
1902 if (i < s_i) {
1903 i++;
1904 continue;
1905 }
1906
1907 if (i > s_i)
1908 cb->args[5] = 0;
1909
1910 if (list_empty(&li->falh))
1911 continue;
1912
1913 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1914 cb->args[4] = i;
1915 return -1;
1916 }
1917 i++;
1918 }
1919
1920 cb->args[4] = i;
1921 return skb->len;
1922 }
1923
1924 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1925 struct netlink_callback *cb)
1926 {
1927 struct leaf *l;
1928 struct trie *t = (struct trie *) tb->tb_data;
1929 t_key key = cb->args[2];
1930 int count = cb->args[3];
1931
1932 rcu_read_lock();
1933 /* Dump starting at last key.
1934 * Note: 0.0.0.0/0 (ie default) is first key.
1935 */
1936 if (count == 0)
1937 l = trie_firstleaf(t);
1938 else {
1939 /* Normally, continue from last key, but if that is missing
1940 * fallback to using slow rescan
1941 */
1942 l = fib_find_node(t, key);
1943 if (!l)
1944 l = trie_leafindex(t, count);
1945 }
1946
1947 while (l) {
1948 cb->args[2] = l->key;
1949 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1950 cb->args[3] = count;
1951 rcu_read_unlock();
1952 return -1;
1953 }
1954
1955 ++count;
1956 l = trie_nextleaf(l);
1957 memset(&cb->args[4], 0,
1958 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1959 }
1960 cb->args[3] = count;
1961 rcu_read_unlock();
1962
1963 return skb->len;
1964 }
1965
1966 void __init fib_trie_init(void)
1967 {
1968 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1969 sizeof(struct fib_alias),
1970 0, SLAB_PANIC, NULL);
1971
1972 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1973 max(sizeof(struct leaf),
1974 sizeof(struct leaf_info)),
1975 0, SLAB_PANIC, NULL);
1976 }
1977
1978
1979 struct fib_table *fib_trie_table(u32 id)
1980 {
1981 struct fib_table *tb;
1982 struct trie *t;
1983
1984 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1985 GFP_KERNEL);
1986 if (tb == NULL)
1987 return NULL;
1988
1989 tb->tb_id = id;
1990 tb->tb_default = -1;
1991 tb->tb_num_default = 0;
1992
1993 t = (struct trie *) tb->tb_data;
1994 memset(t, 0, sizeof(*t));
1995
1996 return tb;
1997 }
1998
1999 #ifdef CONFIG_PROC_FS
2000 /* Depth first Trie walk iterator */
2001 struct fib_trie_iter {
2002 struct seq_net_private p;
2003 struct fib_table *tb;
2004 struct tnode *tnode;
2005 unsigned int index;
2006 unsigned int depth;
2007 };
2008
2009 static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter)
2010 {
2011 struct tnode *tn = iter->tnode;
2012 unsigned int cindex = iter->index;
2013 struct tnode *p;
2014
2015 /* A single entry routing table */
2016 if (!tn)
2017 return NULL;
2018
2019 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2020 iter->tnode, iter->index, iter->depth);
2021 rescan:
2022 while (cindex < (1<<tn->bits)) {
2023 struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex);
2024
2025 if (n) {
2026 if (IS_LEAF(n)) {
2027 iter->tnode = tn;
2028 iter->index = cindex + 1;
2029 } else {
2030 /* push down one level */
2031 iter->tnode = (struct tnode *) n;
2032 iter->index = 0;
2033 ++iter->depth;
2034 }
2035 return n;
2036 }
2037
2038 ++cindex;
2039 }
2040
2041 /* Current node exhausted, pop back up */
2042 p = node_parent_rcu((struct rt_trie_node *)tn);
2043 if (p) {
2044 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2045 tn = p;
2046 --iter->depth;
2047 goto rescan;
2048 }
2049
2050 /* got root? */
2051 return NULL;
2052 }
2053
2054 static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter,
2055 struct trie *t)
2056 {
2057 struct rt_trie_node *n;
2058
2059 if (!t)
2060 return NULL;
2061
2062 n = rcu_dereference(t->trie);
2063 if (!n)
2064 return NULL;
2065
2066 if (IS_TNODE(n)) {
2067 iter->tnode = (struct tnode *) n;
2068 iter->index = 0;
2069 iter->depth = 1;
2070 } else {
2071 iter->tnode = NULL;
2072 iter->index = 0;
2073 iter->depth = 0;
2074 }
2075
2076 return n;
2077 }
2078
2079 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2080 {
2081 struct rt_trie_node *n;
2082 struct fib_trie_iter iter;
2083
2084 memset(s, 0, sizeof(*s));
2085
2086 rcu_read_lock();
2087 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2088 if (IS_LEAF(n)) {
2089 struct leaf *l = (struct leaf *)n;
2090 struct leaf_info *li;
2091
2092 s->leaves++;
2093 s->totdepth += iter.depth;
2094 if (iter.depth > s->maxdepth)
2095 s->maxdepth = iter.depth;
2096
2097 hlist_for_each_entry_rcu(li, &l->list, hlist)
2098 ++s->prefixes;
2099 } else {
2100 const struct tnode *tn = (const struct tnode *) n;
2101 int i;
2102
2103 s->tnodes++;
2104 if (tn->bits < MAX_STAT_DEPTH)
2105 s->nodesizes[tn->bits]++;
2106
2107 for (i = 0; i < (1<<tn->bits); i++)
2108 if (!tn->child[i])
2109 s->nullpointers++;
2110 }
2111 }
2112 rcu_read_unlock();
2113 }
2114
2115 /*
2116 * This outputs /proc/net/fib_triestats
2117 */
2118 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2119 {
2120 unsigned int i, max, pointers, bytes, avdepth;
2121
2122 if (stat->leaves)
2123 avdepth = stat->totdepth*100 / stat->leaves;
2124 else
2125 avdepth = 0;
2126
2127 seq_printf(seq, "\tAver depth: %u.%02d\n",
2128 avdepth / 100, avdepth % 100);
2129 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2130
2131 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2132 bytes = sizeof(struct leaf) * stat->leaves;
2133
2134 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2135 bytes += sizeof(struct leaf_info) * stat->prefixes;
2136
2137 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2138 bytes += sizeof(struct tnode) * stat->tnodes;
2139
2140 max = MAX_STAT_DEPTH;
2141 while (max > 0 && stat->nodesizes[max-1] == 0)
2142 max--;
2143
2144 pointers = 0;
2145 for (i = 1; i <= max; i++)
2146 if (stat->nodesizes[i] != 0) {
2147 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2148 pointers += (1<<i) * stat->nodesizes[i];
2149 }
2150 seq_putc(seq, '\n');
2151 seq_printf(seq, "\tPointers: %u\n", pointers);
2152
2153 bytes += sizeof(struct rt_trie_node *) * pointers;
2154 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2155 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2156 }
2157
2158 #ifdef CONFIG_IP_FIB_TRIE_STATS
2159 static void trie_show_usage(struct seq_file *seq,
2160 const struct trie_use_stats *stats)
2161 {
2162 seq_printf(seq, "\nCounters:\n---------\n");
2163 seq_printf(seq, "gets = %u\n", stats->gets);
2164 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2165 seq_printf(seq, "semantic match passed = %u\n",
2166 stats->semantic_match_passed);
2167 seq_printf(seq, "semantic match miss = %u\n",
2168 stats->semantic_match_miss);
2169 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2170 seq_printf(seq, "skipped node resize = %u\n\n",
2171 stats->resize_node_skipped);
2172 }
2173 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2174
2175 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2176 {
2177 if (tb->tb_id == RT_TABLE_LOCAL)
2178 seq_puts(seq, "Local:\n");
2179 else if (tb->tb_id == RT_TABLE_MAIN)
2180 seq_puts(seq, "Main:\n");
2181 else
2182 seq_printf(seq, "Id %d:\n", tb->tb_id);
2183 }
2184
2185
2186 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2187 {
2188 struct net *net = (struct net *)seq->private;
2189 unsigned int h;
2190
2191 seq_printf(seq,
2192 "Basic info: size of leaf:"
2193 " %Zd bytes, size of tnode: %Zd bytes.\n",
2194 sizeof(struct leaf), sizeof(struct tnode));
2195
2196 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2197 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2198 struct fib_table *tb;
2199
2200 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2201 struct trie *t = (struct trie *) tb->tb_data;
2202 struct trie_stat stat;
2203
2204 if (!t)
2205 continue;
2206
2207 fib_table_print(seq, tb);
2208
2209 trie_collect_stats(t, &stat);
2210 trie_show_stats(seq, &stat);
2211 #ifdef CONFIG_IP_FIB_TRIE_STATS
2212 trie_show_usage(seq, &t->stats);
2213 #endif
2214 }
2215 }
2216
2217 return 0;
2218 }
2219
2220 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2221 {
2222 return single_open_net(inode, file, fib_triestat_seq_show);
2223 }
2224
2225 static const struct file_operations fib_triestat_fops = {
2226 .owner = THIS_MODULE,
2227 .open = fib_triestat_seq_open,
2228 .read = seq_read,
2229 .llseek = seq_lseek,
2230 .release = single_release_net,
2231 };
2232
2233 static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2234 {
2235 struct fib_trie_iter *iter = seq->private;
2236 struct net *net = seq_file_net(seq);
2237 loff_t idx = 0;
2238 unsigned int h;
2239
2240 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2241 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2242 struct fib_table *tb;
2243
2244 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2245 struct rt_trie_node *n;
2246
2247 for (n = fib_trie_get_first(iter,
2248 (struct trie *) tb->tb_data);
2249 n; n = fib_trie_get_next(iter))
2250 if (pos == idx++) {
2251 iter->tb = tb;
2252 return n;
2253 }
2254 }
2255 }
2256
2257 return NULL;
2258 }
2259
2260 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2261 __acquires(RCU)
2262 {
2263 rcu_read_lock();
2264 return fib_trie_get_idx(seq, *pos);
2265 }
2266
2267 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2268 {
2269 struct fib_trie_iter *iter = seq->private;
2270 struct net *net = seq_file_net(seq);
2271 struct fib_table *tb = iter->tb;
2272 struct hlist_node *tb_node;
2273 unsigned int h;
2274 struct rt_trie_node *n;
2275
2276 ++*pos;
2277 /* next node in same table */
2278 n = fib_trie_get_next(iter);
2279 if (n)
2280 return n;
2281
2282 /* walk rest of this hash chain */
2283 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2284 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2285 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2286 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2287 if (n)
2288 goto found;
2289 }
2290
2291 /* new hash chain */
2292 while (++h < FIB_TABLE_HASHSZ) {
2293 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2294 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2295 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2296 if (n)
2297 goto found;
2298 }
2299 }
2300 return NULL;
2301
2302 found:
2303 iter->tb = tb;
2304 return n;
2305 }
2306
2307 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2308 __releases(RCU)
2309 {
2310 rcu_read_unlock();
2311 }
2312
2313 static void seq_indent(struct seq_file *seq, int n)
2314 {
2315 while (n-- > 0)
2316 seq_puts(seq, " ");
2317 }
2318
2319 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2320 {
2321 switch (s) {
2322 case RT_SCOPE_UNIVERSE: return "universe";
2323 case RT_SCOPE_SITE: return "site";
2324 case RT_SCOPE_LINK: return "link";
2325 case RT_SCOPE_HOST: return "host";
2326 case RT_SCOPE_NOWHERE: return "nowhere";
2327 default:
2328 snprintf(buf, len, "scope=%d", s);
2329 return buf;
2330 }
2331 }
2332
2333 static const char *const rtn_type_names[__RTN_MAX] = {
2334 [RTN_UNSPEC] = "UNSPEC",
2335 [RTN_UNICAST] = "UNICAST",
2336 [RTN_LOCAL] = "LOCAL",
2337 [RTN_BROADCAST] = "BROADCAST",
2338 [RTN_ANYCAST] = "ANYCAST",
2339 [RTN_MULTICAST] = "MULTICAST",
2340 [RTN_BLACKHOLE] = "BLACKHOLE",
2341 [RTN_UNREACHABLE] = "UNREACHABLE",
2342 [RTN_PROHIBIT] = "PROHIBIT",
2343 [RTN_THROW] = "THROW",
2344 [RTN_NAT] = "NAT",
2345 [RTN_XRESOLVE] = "XRESOLVE",
2346 };
2347
2348 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2349 {
2350 if (t < __RTN_MAX && rtn_type_names[t])
2351 return rtn_type_names[t];
2352 snprintf(buf, len, "type %u", t);
2353 return buf;
2354 }
2355
2356 /* Pretty print the trie */
2357 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2358 {
2359 const struct fib_trie_iter *iter = seq->private;
2360 struct rt_trie_node *n = v;
2361
2362 if (!node_parent_rcu(n))
2363 fib_table_print(seq, iter->tb);
2364
2365 if (IS_TNODE(n)) {
2366 struct tnode *tn = (struct tnode *) n;
2367 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2368
2369 seq_indent(seq, iter->depth-1);
2370 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2371 &prf, tn->pos, tn->bits, tn->full_children,
2372 tn->empty_children);
2373
2374 } else {
2375 struct leaf *l = (struct leaf *) n;
2376 struct leaf_info *li;
2377 __be32 val = htonl(l->key);
2378
2379 seq_indent(seq, iter->depth);
2380 seq_printf(seq, " |-- %pI4\n", &val);
2381
2382 hlist_for_each_entry_rcu(li, &l->list, hlist) {
2383 struct fib_alias *fa;
2384
2385 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2386 char buf1[32], buf2[32];
2387
2388 seq_indent(seq, iter->depth+1);
2389 seq_printf(seq, " /%d %s %s", li->plen,
2390 rtn_scope(buf1, sizeof(buf1),
2391 fa->fa_info->fib_scope),
2392 rtn_type(buf2, sizeof(buf2),
2393 fa->fa_type));
2394 if (fa->fa_tos)
2395 seq_printf(seq, " tos=%d", fa->fa_tos);
2396 seq_putc(seq, '\n');
2397 }
2398 }
2399 }
2400
2401 return 0;
2402 }
2403
2404 static const struct seq_operations fib_trie_seq_ops = {
2405 .start = fib_trie_seq_start,
2406 .next = fib_trie_seq_next,
2407 .stop = fib_trie_seq_stop,
2408 .show = fib_trie_seq_show,
2409 };
2410
2411 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2412 {
2413 return seq_open_net(inode, file, &fib_trie_seq_ops,
2414 sizeof(struct fib_trie_iter));
2415 }
2416
2417 static const struct file_operations fib_trie_fops = {
2418 .owner = THIS_MODULE,
2419 .open = fib_trie_seq_open,
2420 .read = seq_read,
2421 .llseek = seq_lseek,
2422 .release = seq_release_net,
2423 };
2424
2425 struct fib_route_iter {
2426 struct seq_net_private p;
2427 struct trie *main_trie;
2428 loff_t pos;
2429 t_key key;
2430 };
2431
2432 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2433 {
2434 struct leaf *l = NULL;
2435 struct trie *t = iter->main_trie;
2436
2437 /* use cache location of last found key */
2438 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2439 pos -= iter->pos;
2440 else {
2441 iter->pos = 0;
2442 l = trie_firstleaf(t);
2443 }
2444
2445 while (l && pos-- > 0) {
2446 iter->pos++;
2447 l = trie_nextleaf(l);
2448 }
2449
2450 if (l)
2451 iter->key = pos; /* remember it */
2452 else
2453 iter->pos = 0; /* forget it */
2454
2455 return l;
2456 }
2457
2458 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2459 __acquires(RCU)
2460 {
2461 struct fib_route_iter *iter = seq->private;
2462 struct fib_table *tb;
2463
2464 rcu_read_lock();
2465 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2466 if (!tb)
2467 return NULL;
2468
2469 iter->main_trie = (struct trie *) tb->tb_data;
2470 if (*pos == 0)
2471 return SEQ_START_TOKEN;
2472 else
2473 return fib_route_get_idx(iter, *pos - 1);
2474 }
2475
2476 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2477 {
2478 struct fib_route_iter *iter = seq->private;
2479 struct leaf *l = v;
2480
2481 ++*pos;
2482 if (v == SEQ_START_TOKEN) {
2483 iter->pos = 0;
2484 l = trie_firstleaf(iter->main_trie);
2485 } else {
2486 iter->pos++;
2487 l = trie_nextleaf(l);
2488 }
2489
2490 if (l)
2491 iter->key = l->key;
2492 else
2493 iter->pos = 0;
2494 return l;
2495 }
2496
2497 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2498 __releases(RCU)
2499 {
2500 rcu_read_unlock();
2501 }
2502
2503 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2504 {
2505 unsigned int flags = 0;
2506
2507 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2508 flags = RTF_REJECT;
2509 if (fi && fi->fib_nh->nh_gw)
2510 flags |= RTF_GATEWAY;
2511 if (mask == htonl(0xFFFFFFFF))
2512 flags |= RTF_HOST;
2513 flags |= RTF_UP;
2514 return flags;
2515 }
2516
2517 /*
2518 * This outputs /proc/net/route.
2519 * The format of the file is not supposed to be changed
2520 * and needs to be same as fib_hash output to avoid breaking
2521 * legacy utilities
2522 */
2523 static int fib_route_seq_show(struct seq_file *seq, void *v)
2524 {
2525 struct leaf *l = v;
2526 struct leaf_info *li;
2527
2528 if (v == SEQ_START_TOKEN) {
2529 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2530 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2531 "\tWindow\tIRTT");
2532 return 0;
2533 }
2534
2535 hlist_for_each_entry_rcu(li, &l->list, hlist) {
2536 struct fib_alias *fa;
2537 __be32 mask, prefix;
2538
2539 mask = inet_make_mask(li->plen);
2540 prefix = htonl(l->key);
2541
2542 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2543 const struct fib_info *fi = fa->fa_info;
2544 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2545 int len;
2546
2547 if (fa->fa_type == RTN_BROADCAST
2548 || fa->fa_type == RTN_MULTICAST)
2549 continue;
2550
2551 if (fi)
2552 seq_printf(seq,
2553 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2554 "%d\t%08X\t%d\t%u\t%u%n",
2555 fi->fib_dev ? fi->fib_dev->name : "*",
2556 prefix,
2557 fi->fib_nh->nh_gw, flags, 0, 0,
2558 fi->fib_priority,
2559 mask,
2560 (fi->fib_advmss ?
2561 fi->fib_advmss + 40 : 0),
2562 fi->fib_window,
2563 fi->fib_rtt >> 3, &len);
2564 else
2565 seq_printf(seq,
2566 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2567 "%d\t%08X\t%d\t%u\t%u%n",
2568 prefix, 0, flags, 0, 0, 0,
2569 mask, 0, 0, 0, &len);
2570
2571 seq_printf(seq, "%*s\n", 127 - len, "");
2572 }
2573 }
2574
2575 return 0;
2576 }
2577
2578 static const struct seq_operations fib_route_seq_ops = {
2579 .start = fib_route_seq_start,
2580 .next = fib_route_seq_next,
2581 .stop = fib_route_seq_stop,
2582 .show = fib_route_seq_show,
2583 };
2584
2585 static int fib_route_seq_open(struct inode *inode, struct file *file)
2586 {
2587 return seq_open_net(inode, file, &fib_route_seq_ops,
2588 sizeof(struct fib_route_iter));
2589 }
2590
2591 static const struct file_operations fib_route_fops = {
2592 .owner = THIS_MODULE,
2593 .open = fib_route_seq_open,
2594 .read = seq_read,
2595 .llseek = seq_lseek,
2596 .release = seq_release_net,
2597 };
2598
2599 int __net_init fib_proc_init(struct net *net)
2600 {
2601 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2602 goto out1;
2603
2604 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2605 &fib_triestat_fops))
2606 goto out2;
2607
2608 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2609 goto out3;
2610
2611 return 0;
2612
2613 out3:
2614 remove_proc_entry("fib_triestat", net->proc_net);
2615 out2:
2616 remove_proc_entry("fib_trie", net->proc_net);
2617 out1:
2618 return -ENOMEM;
2619 }
2620
2621 void __net_exit fib_proc_exit(struct net *net)
2622 {
2623 remove_proc_entry("fib_trie", net->proc_net);
2624 remove_proc_entry("fib_triestat", net->proc_net);
2625 remove_proc_entry("route", net->proc_net);
2626 }
2627
2628 #endif /* CONFIG_PROC_FS */