]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/fib_trie.c
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally described in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
49 */
50
51 #define VERSION "0.409"
52
53 #include <asm/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <linux/vmalloc.h>
76 #include <linux/notifier.h>
77 #include <net/net_namespace.h>
78 #include <net/ip.h>
79 #include <net/protocol.h>
80 #include <net/route.h>
81 #include <net/tcp.h>
82 #include <net/sock.h>
83 #include <net/ip_fib.h>
84 #include <trace/events/fib.h>
85 #include "fib_lookup.h"
86
87 static BLOCKING_NOTIFIER_HEAD(fib_chain);
88
89 int register_fib_notifier(struct notifier_block *nb)
90 {
91 return blocking_notifier_chain_register(&fib_chain, nb);
92 }
93 EXPORT_SYMBOL(register_fib_notifier);
94
95 int unregister_fib_notifier(struct notifier_block *nb)
96 {
97 return blocking_notifier_chain_unregister(&fib_chain, nb);
98 }
99 EXPORT_SYMBOL(unregister_fib_notifier);
100
101 int call_fib_notifiers(struct net *net, enum fib_event_type event_type,
102 struct fib_notifier_info *info)
103 {
104 info->net = net;
105 return blocking_notifier_call_chain(&fib_chain, event_type, info);
106 }
107
108 static int call_fib_entry_notifiers(struct net *net,
109 enum fib_event_type event_type, u32 dst,
110 int dst_len, struct fib_info *fi,
111 u8 tos, u8 type, u32 tb_id, u32 nlflags)
112 {
113 struct fib_entry_notifier_info info = {
114 .dst = dst,
115 .dst_len = dst_len,
116 .fi = fi,
117 .tos = tos,
118 .type = type,
119 .tb_id = tb_id,
120 .nlflags = nlflags,
121 };
122 return call_fib_notifiers(net, event_type, &info.info);
123 }
124
125 #define MAX_STAT_DEPTH 32
126
127 #define KEYLENGTH (8*sizeof(t_key))
128 #define KEY_MAX ((t_key)~0)
129
130 typedef unsigned int t_key;
131
132 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
133 #define IS_TNODE(n) ((n)->bits)
134 #define IS_LEAF(n) (!(n)->bits)
135
136 struct key_vector {
137 t_key key;
138 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
139 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
140 unsigned char slen;
141 union {
142 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
143 struct hlist_head leaf;
144 /* This array is valid if (pos | bits) > 0 (TNODE) */
145 struct key_vector __rcu *tnode[0];
146 };
147 };
148
149 struct tnode {
150 struct rcu_head rcu;
151 t_key empty_children; /* KEYLENGTH bits needed */
152 t_key full_children; /* KEYLENGTH bits needed */
153 struct key_vector __rcu *parent;
154 struct key_vector kv[1];
155 #define tn_bits kv[0].bits
156 };
157
158 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
159 #define LEAF_SIZE TNODE_SIZE(1)
160
161 #ifdef CONFIG_IP_FIB_TRIE_STATS
162 struct trie_use_stats {
163 unsigned int gets;
164 unsigned int backtrack;
165 unsigned int semantic_match_passed;
166 unsigned int semantic_match_miss;
167 unsigned int null_node_hit;
168 unsigned int resize_node_skipped;
169 };
170 #endif
171
172 struct trie_stat {
173 unsigned int totdepth;
174 unsigned int maxdepth;
175 unsigned int tnodes;
176 unsigned int leaves;
177 unsigned int nullpointers;
178 unsigned int prefixes;
179 unsigned int nodesizes[MAX_STAT_DEPTH];
180 };
181
182 struct trie {
183 struct key_vector kv[1];
184 #ifdef CONFIG_IP_FIB_TRIE_STATS
185 struct trie_use_stats __percpu *stats;
186 #endif
187 };
188
189 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
190 static size_t tnode_free_size;
191
192 /*
193 * synchronize_rcu after call_rcu for that many pages; it should be especially
194 * useful before resizing the root node with PREEMPT_NONE configs; the value was
195 * obtained experimentally, aiming to avoid visible slowdown.
196 */
197 static const int sync_pages = 128;
198
199 static struct kmem_cache *fn_alias_kmem __read_mostly;
200 static struct kmem_cache *trie_leaf_kmem __read_mostly;
201
202 static inline struct tnode *tn_info(struct key_vector *kv)
203 {
204 return container_of(kv, struct tnode, kv[0]);
205 }
206
207 /* caller must hold RTNL */
208 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
209 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
210
211 /* caller must hold RCU read lock or RTNL */
212 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
213 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
214
215 /* wrapper for rcu_assign_pointer */
216 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
217 {
218 if (n)
219 rcu_assign_pointer(tn_info(n)->parent, tp);
220 }
221
222 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
223
224 /* This provides us with the number of children in this node, in the case of a
225 * leaf this will return 0 meaning none of the children are accessible.
226 */
227 static inline unsigned long child_length(const struct key_vector *tn)
228 {
229 return (1ul << tn->bits) & ~(1ul);
230 }
231
232 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
233
234 static inline unsigned long get_index(t_key key, struct key_vector *kv)
235 {
236 unsigned long index = key ^ kv->key;
237
238 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
239 return 0;
240
241 return index >> kv->pos;
242 }
243
244 /* To understand this stuff, an understanding of keys and all their bits is
245 * necessary. Every node in the trie has a key associated with it, but not
246 * all of the bits in that key are significant.
247 *
248 * Consider a node 'n' and its parent 'tp'.
249 *
250 * If n is a leaf, every bit in its key is significant. Its presence is
251 * necessitated by path compression, since during a tree traversal (when
252 * searching for a leaf - unless we are doing an insertion) we will completely
253 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
254 * a potentially successful search, that we have indeed been walking the
255 * correct key path.
256 *
257 * Note that we can never "miss" the correct key in the tree if present by
258 * following the wrong path. Path compression ensures that segments of the key
259 * that are the same for all keys with a given prefix are skipped, but the
260 * skipped part *is* identical for each node in the subtrie below the skipped
261 * bit! trie_insert() in this implementation takes care of that.
262 *
263 * if n is an internal node - a 'tnode' here, the various parts of its key
264 * have many different meanings.
265 *
266 * Example:
267 * _________________________________________________________________
268 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
269 * -----------------------------------------------------------------
270 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
271 *
272 * _________________________________________________________________
273 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
274 * -----------------------------------------------------------------
275 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
276 *
277 * tp->pos = 22
278 * tp->bits = 3
279 * n->pos = 13
280 * n->bits = 4
281 *
282 * First, let's just ignore the bits that come before the parent tp, that is
283 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
284 * point we do not use them for anything.
285 *
286 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
287 * index into the parent's child array. That is, they will be used to find
288 * 'n' among tp's children.
289 *
290 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
291 * for the node n.
292 *
293 * All the bits we have seen so far are significant to the node n. The rest
294 * of the bits are really not needed or indeed known in n->key.
295 *
296 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
297 * n's child array, and will of course be different for each child.
298 *
299 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
300 * at this point.
301 */
302
303 static const int halve_threshold = 25;
304 static const int inflate_threshold = 50;
305 static const int halve_threshold_root = 15;
306 static const int inflate_threshold_root = 30;
307
308 static void __alias_free_mem(struct rcu_head *head)
309 {
310 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
311 kmem_cache_free(fn_alias_kmem, fa);
312 }
313
314 static inline void alias_free_mem_rcu(struct fib_alias *fa)
315 {
316 call_rcu(&fa->rcu, __alias_free_mem);
317 }
318
319 #define TNODE_KMALLOC_MAX \
320 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
321 #define TNODE_VMALLOC_MAX \
322 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
323
324 static void __node_free_rcu(struct rcu_head *head)
325 {
326 struct tnode *n = container_of(head, struct tnode, rcu);
327
328 if (!n->tn_bits)
329 kmem_cache_free(trie_leaf_kmem, n);
330 else
331 kvfree(n);
332 }
333
334 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
335
336 static struct tnode *tnode_alloc(int bits)
337 {
338 size_t size;
339
340 /* verify bits is within bounds */
341 if (bits > TNODE_VMALLOC_MAX)
342 return NULL;
343
344 /* determine size and verify it is non-zero and didn't overflow */
345 size = TNODE_SIZE(1ul << bits);
346
347 if (size <= PAGE_SIZE)
348 return kzalloc(size, GFP_KERNEL);
349 else
350 return vzalloc(size);
351 }
352
353 static inline void empty_child_inc(struct key_vector *n)
354 {
355 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
356 }
357
358 static inline void empty_child_dec(struct key_vector *n)
359 {
360 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
361 }
362
363 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
364 {
365 struct key_vector *l;
366 struct tnode *kv;
367
368 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
369 if (!kv)
370 return NULL;
371
372 /* initialize key vector */
373 l = kv->kv;
374 l->key = key;
375 l->pos = 0;
376 l->bits = 0;
377 l->slen = fa->fa_slen;
378
379 /* link leaf to fib alias */
380 INIT_HLIST_HEAD(&l->leaf);
381 hlist_add_head(&fa->fa_list, &l->leaf);
382
383 return l;
384 }
385
386 static struct key_vector *tnode_new(t_key key, int pos, int bits)
387 {
388 unsigned int shift = pos + bits;
389 struct key_vector *tn;
390 struct tnode *tnode;
391
392 /* verify bits and pos their msb bits clear and values are valid */
393 BUG_ON(!bits || (shift > KEYLENGTH));
394
395 tnode = tnode_alloc(bits);
396 if (!tnode)
397 return NULL;
398
399 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
400 sizeof(struct key_vector *) << bits);
401
402 if (bits == KEYLENGTH)
403 tnode->full_children = 1;
404 else
405 tnode->empty_children = 1ul << bits;
406
407 tn = tnode->kv;
408 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
409 tn->pos = pos;
410 tn->bits = bits;
411 tn->slen = pos;
412
413 return tn;
414 }
415
416 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
417 * and no bits are skipped. See discussion in dyntree paper p. 6
418 */
419 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
420 {
421 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
422 }
423
424 /* Add a child at position i overwriting the old value.
425 * Update the value of full_children and empty_children.
426 */
427 static void put_child(struct key_vector *tn, unsigned long i,
428 struct key_vector *n)
429 {
430 struct key_vector *chi = get_child(tn, i);
431 int isfull, wasfull;
432
433 BUG_ON(i >= child_length(tn));
434
435 /* update emptyChildren, overflow into fullChildren */
436 if (!n && chi)
437 empty_child_inc(tn);
438 if (n && !chi)
439 empty_child_dec(tn);
440
441 /* update fullChildren */
442 wasfull = tnode_full(tn, chi);
443 isfull = tnode_full(tn, n);
444
445 if (wasfull && !isfull)
446 tn_info(tn)->full_children--;
447 else if (!wasfull && isfull)
448 tn_info(tn)->full_children++;
449
450 if (n && (tn->slen < n->slen))
451 tn->slen = n->slen;
452
453 rcu_assign_pointer(tn->tnode[i], n);
454 }
455
456 static void update_children(struct key_vector *tn)
457 {
458 unsigned long i;
459
460 /* update all of the child parent pointers */
461 for (i = child_length(tn); i;) {
462 struct key_vector *inode = get_child(tn, --i);
463
464 if (!inode)
465 continue;
466
467 /* Either update the children of a tnode that
468 * already belongs to us or update the child
469 * to point to ourselves.
470 */
471 if (node_parent(inode) == tn)
472 update_children(inode);
473 else
474 node_set_parent(inode, tn);
475 }
476 }
477
478 static inline void put_child_root(struct key_vector *tp, t_key key,
479 struct key_vector *n)
480 {
481 if (IS_TRIE(tp))
482 rcu_assign_pointer(tp->tnode[0], n);
483 else
484 put_child(tp, get_index(key, tp), n);
485 }
486
487 static inline void tnode_free_init(struct key_vector *tn)
488 {
489 tn_info(tn)->rcu.next = NULL;
490 }
491
492 static inline void tnode_free_append(struct key_vector *tn,
493 struct key_vector *n)
494 {
495 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
496 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
497 }
498
499 static void tnode_free(struct key_vector *tn)
500 {
501 struct callback_head *head = &tn_info(tn)->rcu;
502
503 while (head) {
504 head = head->next;
505 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
506 node_free(tn);
507
508 tn = container_of(head, struct tnode, rcu)->kv;
509 }
510
511 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
512 tnode_free_size = 0;
513 synchronize_rcu();
514 }
515 }
516
517 static struct key_vector *replace(struct trie *t,
518 struct key_vector *oldtnode,
519 struct key_vector *tn)
520 {
521 struct key_vector *tp = node_parent(oldtnode);
522 unsigned long i;
523
524 /* setup the parent pointer out of and back into this node */
525 NODE_INIT_PARENT(tn, tp);
526 put_child_root(tp, tn->key, tn);
527
528 /* update all of the child parent pointers */
529 update_children(tn);
530
531 /* all pointers should be clean so we are done */
532 tnode_free(oldtnode);
533
534 /* resize children now that oldtnode is freed */
535 for (i = child_length(tn); i;) {
536 struct key_vector *inode = get_child(tn, --i);
537
538 /* resize child node */
539 if (tnode_full(tn, inode))
540 tn = resize(t, inode);
541 }
542
543 return tp;
544 }
545
546 static struct key_vector *inflate(struct trie *t,
547 struct key_vector *oldtnode)
548 {
549 struct key_vector *tn;
550 unsigned long i;
551 t_key m;
552
553 pr_debug("In inflate\n");
554
555 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
556 if (!tn)
557 goto notnode;
558
559 /* prepare oldtnode to be freed */
560 tnode_free_init(oldtnode);
561
562 /* Assemble all of the pointers in our cluster, in this case that
563 * represents all of the pointers out of our allocated nodes that
564 * point to existing tnodes and the links between our allocated
565 * nodes.
566 */
567 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
568 struct key_vector *inode = get_child(oldtnode, --i);
569 struct key_vector *node0, *node1;
570 unsigned long j, k;
571
572 /* An empty child */
573 if (!inode)
574 continue;
575
576 /* A leaf or an internal node with skipped bits */
577 if (!tnode_full(oldtnode, inode)) {
578 put_child(tn, get_index(inode->key, tn), inode);
579 continue;
580 }
581
582 /* drop the node in the old tnode free list */
583 tnode_free_append(oldtnode, inode);
584
585 /* An internal node with two children */
586 if (inode->bits == 1) {
587 put_child(tn, 2 * i + 1, get_child(inode, 1));
588 put_child(tn, 2 * i, get_child(inode, 0));
589 continue;
590 }
591
592 /* We will replace this node 'inode' with two new
593 * ones, 'node0' and 'node1', each with half of the
594 * original children. The two new nodes will have
595 * a position one bit further down the key and this
596 * means that the "significant" part of their keys
597 * (see the discussion near the top of this file)
598 * will differ by one bit, which will be "0" in
599 * node0's key and "1" in node1's key. Since we are
600 * moving the key position by one step, the bit that
601 * we are moving away from - the bit at position
602 * (tn->pos) - is the one that will differ between
603 * node0 and node1. So... we synthesize that bit in the
604 * two new keys.
605 */
606 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
607 if (!node1)
608 goto nomem;
609 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
610
611 tnode_free_append(tn, node1);
612 if (!node0)
613 goto nomem;
614 tnode_free_append(tn, node0);
615
616 /* populate child pointers in new nodes */
617 for (k = child_length(inode), j = k / 2; j;) {
618 put_child(node1, --j, get_child(inode, --k));
619 put_child(node0, j, get_child(inode, j));
620 put_child(node1, --j, get_child(inode, --k));
621 put_child(node0, j, get_child(inode, j));
622 }
623
624 /* link new nodes to parent */
625 NODE_INIT_PARENT(node1, tn);
626 NODE_INIT_PARENT(node0, tn);
627
628 /* link parent to nodes */
629 put_child(tn, 2 * i + 1, node1);
630 put_child(tn, 2 * i, node0);
631 }
632
633 /* setup the parent pointers into and out of this node */
634 return replace(t, oldtnode, tn);
635 nomem:
636 /* all pointers should be clean so we are done */
637 tnode_free(tn);
638 notnode:
639 return NULL;
640 }
641
642 static struct key_vector *halve(struct trie *t,
643 struct key_vector *oldtnode)
644 {
645 struct key_vector *tn;
646 unsigned long i;
647
648 pr_debug("In halve\n");
649
650 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
651 if (!tn)
652 goto notnode;
653
654 /* prepare oldtnode to be freed */
655 tnode_free_init(oldtnode);
656
657 /* Assemble all of the pointers in our cluster, in this case that
658 * represents all of the pointers out of our allocated nodes that
659 * point to existing tnodes and the links between our allocated
660 * nodes.
661 */
662 for (i = child_length(oldtnode); i;) {
663 struct key_vector *node1 = get_child(oldtnode, --i);
664 struct key_vector *node0 = get_child(oldtnode, --i);
665 struct key_vector *inode;
666
667 /* At least one of the children is empty */
668 if (!node1 || !node0) {
669 put_child(tn, i / 2, node1 ? : node0);
670 continue;
671 }
672
673 /* Two nonempty children */
674 inode = tnode_new(node0->key, oldtnode->pos, 1);
675 if (!inode)
676 goto nomem;
677 tnode_free_append(tn, inode);
678
679 /* initialize pointers out of node */
680 put_child(inode, 1, node1);
681 put_child(inode, 0, node0);
682 NODE_INIT_PARENT(inode, tn);
683
684 /* link parent to node */
685 put_child(tn, i / 2, inode);
686 }
687
688 /* setup the parent pointers into and out of this node */
689 return replace(t, oldtnode, tn);
690 nomem:
691 /* all pointers should be clean so we are done */
692 tnode_free(tn);
693 notnode:
694 return NULL;
695 }
696
697 static struct key_vector *collapse(struct trie *t,
698 struct key_vector *oldtnode)
699 {
700 struct key_vector *n, *tp;
701 unsigned long i;
702
703 /* scan the tnode looking for that one child that might still exist */
704 for (n = NULL, i = child_length(oldtnode); !n && i;)
705 n = get_child(oldtnode, --i);
706
707 /* compress one level */
708 tp = node_parent(oldtnode);
709 put_child_root(tp, oldtnode->key, n);
710 node_set_parent(n, tp);
711
712 /* drop dead node */
713 node_free(oldtnode);
714
715 return tp;
716 }
717
718 static unsigned char update_suffix(struct key_vector *tn)
719 {
720 unsigned char slen = tn->pos;
721 unsigned long stride, i;
722
723 /* search though the list of children looking for nodes that might
724 * have a suffix greater than the one we currently have. This is
725 * why we start with a stride of 2 since a stride of 1 would
726 * represent the nodes with suffix length equal to tn->pos
727 */
728 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
729 struct key_vector *n = get_child(tn, i);
730
731 if (!n || (n->slen <= slen))
732 continue;
733
734 /* update stride and slen based on new value */
735 stride <<= (n->slen - slen);
736 slen = n->slen;
737 i &= ~(stride - 1);
738
739 /* if slen covers all but the last bit we can stop here
740 * there will be nothing longer than that since only node
741 * 0 and 1 << (bits - 1) could have that as their suffix
742 * length.
743 */
744 if ((slen + 1) >= (tn->pos + tn->bits))
745 break;
746 }
747
748 tn->slen = slen;
749
750 return slen;
751 }
752
753 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
754 * the Helsinki University of Technology and Matti Tikkanen of Nokia
755 * Telecommunications, page 6:
756 * "A node is doubled if the ratio of non-empty children to all
757 * children in the *doubled* node is at least 'high'."
758 *
759 * 'high' in this instance is the variable 'inflate_threshold'. It
760 * is expressed as a percentage, so we multiply it with
761 * child_length() and instead of multiplying by 2 (since the
762 * child array will be doubled by inflate()) and multiplying
763 * the left-hand side by 100 (to handle the percentage thing) we
764 * multiply the left-hand side by 50.
765 *
766 * The left-hand side may look a bit weird: child_length(tn)
767 * - tn->empty_children is of course the number of non-null children
768 * in the current node. tn->full_children is the number of "full"
769 * children, that is non-null tnodes with a skip value of 0.
770 * All of those will be doubled in the resulting inflated tnode, so
771 * we just count them one extra time here.
772 *
773 * A clearer way to write this would be:
774 *
775 * to_be_doubled = tn->full_children;
776 * not_to_be_doubled = child_length(tn) - tn->empty_children -
777 * tn->full_children;
778 *
779 * new_child_length = child_length(tn) * 2;
780 *
781 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
782 * new_child_length;
783 * if (new_fill_factor >= inflate_threshold)
784 *
785 * ...and so on, tho it would mess up the while () loop.
786 *
787 * anyway,
788 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
789 * inflate_threshold
790 *
791 * avoid a division:
792 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
793 * inflate_threshold * new_child_length
794 *
795 * expand not_to_be_doubled and to_be_doubled, and shorten:
796 * 100 * (child_length(tn) - tn->empty_children +
797 * tn->full_children) >= inflate_threshold * new_child_length
798 *
799 * expand new_child_length:
800 * 100 * (child_length(tn) - tn->empty_children +
801 * tn->full_children) >=
802 * inflate_threshold * child_length(tn) * 2
803 *
804 * shorten again:
805 * 50 * (tn->full_children + child_length(tn) -
806 * tn->empty_children) >= inflate_threshold *
807 * child_length(tn)
808 *
809 */
810 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
811 {
812 unsigned long used = child_length(tn);
813 unsigned long threshold = used;
814
815 /* Keep root node larger */
816 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
817 used -= tn_info(tn)->empty_children;
818 used += tn_info(tn)->full_children;
819
820 /* if bits == KEYLENGTH then pos = 0, and will fail below */
821
822 return (used > 1) && tn->pos && ((50 * used) >= threshold);
823 }
824
825 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
826 {
827 unsigned long used = child_length(tn);
828 unsigned long threshold = used;
829
830 /* Keep root node larger */
831 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
832 used -= tn_info(tn)->empty_children;
833
834 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
835
836 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
837 }
838
839 static inline bool should_collapse(struct key_vector *tn)
840 {
841 unsigned long used = child_length(tn);
842
843 used -= tn_info(tn)->empty_children;
844
845 /* account for bits == KEYLENGTH case */
846 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
847 used -= KEY_MAX;
848
849 /* One child or none, time to drop us from the trie */
850 return used < 2;
851 }
852
853 #define MAX_WORK 10
854 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
855 {
856 #ifdef CONFIG_IP_FIB_TRIE_STATS
857 struct trie_use_stats __percpu *stats = t->stats;
858 #endif
859 struct key_vector *tp = node_parent(tn);
860 unsigned long cindex = get_index(tn->key, tp);
861 int max_work = MAX_WORK;
862
863 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
864 tn, inflate_threshold, halve_threshold);
865
866 /* track the tnode via the pointer from the parent instead of
867 * doing it ourselves. This way we can let RCU fully do its
868 * thing without us interfering
869 */
870 BUG_ON(tn != get_child(tp, cindex));
871
872 /* Double as long as the resulting node has a number of
873 * nonempty nodes that are above the threshold.
874 */
875 while (should_inflate(tp, tn) && max_work) {
876 tp = inflate(t, tn);
877 if (!tp) {
878 #ifdef CONFIG_IP_FIB_TRIE_STATS
879 this_cpu_inc(stats->resize_node_skipped);
880 #endif
881 break;
882 }
883
884 max_work--;
885 tn = get_child(tp, cindex);
886 }
887
888 /* update parent in case inflate failed */
889 tp = node_parent(tn);
890
891 /* Return if at least one inflate is run */
892 if (max_work != MAX_WORK)
893 return tp;
894
895 /* Halve as long as the number of empty children in this
896 * node is above threshold.
897 */
898 while (should_halve(tp, tn) && max_work) {
899 tp = halve(t, tn);
900 if (!tp) {
901 #ifdef CONFIG_IP_FIB_TRIE_STATS
902 this_cpu_inc(stats->resize_node_skipped);
903 #endif
904 break;
905 }
906
907 max_work--;
908 tn = get_child(tp, cindex);
909 }
910
911 /* Only one child remains */
912 if (should_collapse(tn))
913 return collapse(t, tn);
914
915 /* update parent in case halve failed */
916 tp = node_parent(tn);
917
918 /* Return if at least one deflate was run */
919 if (max_work != MAX_WORK)
920 return tp;
921
922 /* push the suffix length to the parent node */
923 if (tn->slen > tn->pos) {
924 unsigned char slen = update_suffix(tn);
925
926 if (slen > tp->slen)
927 tp->slen = slen;
928 }
929
930 return tp;
931 }
932
933 static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
934 {
935 while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
936 if (update_suffix(tp) > l->slen)
937 break;
938 tp = node_parent(tp);
939 }
940 }
941
942 static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
943 {
944 /* if this is a new leaf then tn will be NULL and we can sort
945 * out parent suffix lengths as a part of trie_rebalance
946 */
947 while (tn->slen < l->slen) {
948 tn->slen = l->slen;
949 tn = node_parent(tn);
950 }
951 }
952
953 /* rcu_read_lock needs to be hold by caller from readside */
954 static struct key_vector *fib_find_node(struct trie *t,
955 struct key_vector **tp, u32 key)
956 {
957 struct key_vector *pn, *n = t->kv;
958 unsigned long index = 0;
959
960 do {
961 pn = n;
962 n = get_child_rcu(n, index);
963
964 if (!n)
965 break;
966
967 index = get_cindex(key, n);
968
969 /* This bit of code is a bit tricky but it combines multiple
970 * checks into a single check. The prefix consists of the
971 * prefix plus zeros for the bits in the cindex. The index
972 * is the difference between the key and this value. From
973 * this we can actually derive several pieces of data.
974 * if (index >= (1ul << bits))
975 * we have a mismatch in skip bits and failed
976 * else
977 * we know the value is cindex
978 *
979 * This check is safe even if bits == KEYLENGTH due to the
980 * fact that we can only allocate a node with 32 bits if a
981 * long is greater than 32 bits.
982 */
983 if (index >= (1ul << n->bits)) {
984 n = NULL;
985 break;
986 }
987
988 /* keep searching until we find a perfect match leaf or NULL */
989 } while (IS_TNODE(n));
990
991 *tp = pn;
992
993 return n;
994 }
995
996 /* Return the first fib alias matching TOS with
997 * priority less than or equal to PRIO.
998 */
999 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
1000 u8 tos, u32 prio, u32 tb_id)
1001 {
1002 struct fib_alias *fa;
1003
1004 if (!fah)
1005 return NULL;
1006
1007 hlist_for_each_entry(fa, fah, fa_list) {
1008 if (fa->fa_slen < slen)
1009 continue;
1010 if (fa->fa_slen != slen)
1011 break;
1012 if (fa->tb_id > tb_id)
1013 continue;
1014 if (fa->tb_id != tb_id)
1015 break;
1016 if (fa->fa_tos > tos)
1017 continue;
1018 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1019 return fa;
1020 }
1021
1022 return NULL;
1023 }
1024
1025 static void trie_rebalance(struct trie *t, struct key_vector *tn)
1026 {
1027 while (!IS_TRIE(tn))
1028 tn = resize(t, tn);
1029 }
1030
1031 static int fib_insert_node(struct trie *t, struct key_vector *tp,
1032 struct fib_alias *new, t_key key)
1033 {
1034 struct key_vector *n, *l;
1035
1036 l = leaf_new(key, new);
1037 if (!l)
1038 goto noleaf;
1039
1040 /* retrieve child from parent node */
1041 n = get_child(tp, get_index(key, tp));
1042
1043 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1044 *
1045 * Add a new tnode here
1046 * first tnode need some special handling
1047 * leaves us in position for handling as case 3
1048 */
1049 if (n) {
1050 struct key_vector *tn;
1051
1052 tn = tnode_new(key, __fls(key ^ n->key), 1);
1053 if (!tn)
1054 goto notnode;
1055
1056 /* initialize routes out of node */
1057 NODE_INIT_PARENT(tn, tp);
1058 put_child(tn, get_index(key, tn) ^ 1, n);
1059
1060 /* start adding routes into the node */
1061 put_child_root(tp, key, tn);
1062 node_set_parent(n, tn);
1063
1064 /* parent now has a NULL spot where the leaf can go */
1065 tp = tn;
1066 }
1067
1068 /* Case 3: n is NULL, and will just insert a new leaf */
1069 NODE_INIT_PARENT(l, tp);
1070 put_child_root(tp, key, l);
1071 trie_rebalance(t, tp);
1072
1073 return 0;
1074 notnode:
1075 node_free(l);
1076 noleaf:
1077 return -ENOMEM;
1078 }
1079
1080 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1081 struct key_vector *l, struct fib_alias *new,
1082 struct fib_alias *fa, t_key key)
1083 {
1084 if (!l)
1085 return fib_insert_node(t, tp, new, key);
1086
1087 if (fa) {
1088 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1089 } else {
1090 struct fib_alias *last;
1091
1092 hlist_for_each_entry(last, &l->leaf, fa_list) {
1093 if (new->fa_slen < last->fa_slen)
1094 break;
1095 if ((new->fa_slen == last->fa_slen) &&
1096 (new->tb_id > last->tb_id))
1097 break;
1098 fa = last;
1099 }
1100
1101 if (fa)
1102 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1103 else
1104 hlist_add_head_rcu(&new->fa_list, &l->leaf);
1105 }
1106
1107 /* if we added to the tail node then we need to update slen */
1108 if (l->slen < new->fa_slen) {
1109 l->slen = new->fa_slen;
1110 leaf_push_suffix(tp, l);
1111 }
1112
1113 return 0;
1114 }
1115
1116 /* Caller must hold RTNL. */
1117 int fib_table_insert(struct net *net, struct fib_table *tb,
1118 struct fib_config *cfg)
1119 {
1120 struct trie *t = (struct trie *)tb->tb_data;
1121 struct fib_alias *fa, *new_fa;
1122 struct key_vector *l, *tp;
1123 u16 nlflags = NLM_F_EXCL;
1124 struct fib_info *fi;
1125 u8 plen = cfg->fc_dst_len;
1126 u8 slen = KEYLENGTH - plen;
1127 u8 tos = cfg->fc_tos;
1128 u32 key;
1129 int err;
1130
1131 if (plen > KEYLENGTH)
1132 return -EINVAL;
1133
1134 key = ntohl(cfg->fc_dst);
1135
1136 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1137
1138 if ((plen < KEYLENGTH) && (key << plen))
1139 return -EINVAL;
1140
1141 fi = fib_create_info(cfg);
1142 if (IS_ERR(fi)) {
1143 err = PTR_ERR(fi);
1144 goto err;
1145 }
1146
1147 l = fib_find_node(t, &tp, key);
1148 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1149 tb->tb_id) : NULL;
1150
1151 /* Now fa, if non-NULL, points to the first fib alias
1152 * with the same keys [prefix,tos,priority], if such key already
1153 * exists or to the node before which we will insert new one.
1154 *
1155 * If fa is NULL, we will need to allocate a new one and
1156 * insert to the tail of the section matching the suffix length
1157 * of the new alias.
1158 */
1159
1160 if (fa && fa->fa_tos == tos &&
1161 fa->fa_info->fib_priority == fi->fib_priority) {
1162 struct fib_alias *fa_first, *fa_match;
1163
1164 err = -EEXIST;
1165 if (cfg->fc_nlflags & NLM_F_EXCL)
1166 goto out;
1167
1168 nlflags &= ~NLM_F_EXCL;
1169
1170 /* We have 2 goals:
1171 * 1. Find exact match for type, scope, fib_info to avoid
1172 * duplicate routes
1173 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1174 */
1175 fa_match = NULL;
1176 fa_first = fa;
1177 hlist_for_each_entry_from(fa, fa_list) {
1178 if ((fa->fa_slen != slen) ||
1179 (fa->tb_id != tb->tb_id) ||
1180 (fa->fa_tos != tos))
1181 break;
1182 if (fa->fa_info->fib_priority != fi->fib_priority)
1183 break;
1184 if (fa->fa_type == cfg->fc_type &&
1185 fa->fa_info == fi) {
1186 fa_match = fa;
1187 break;
1188 }
1189 }
1190
1191 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1192 struct fib_info *fi_drop;
1193 u8 state;
1194
1195 nlflags |= NLM_F_REPLACE;
1196 fa = fa_first;
1197 if (fa_match) {
1198 if (fa == fa_match)
1199 err = 0;
1200 goto out;
1201 }
1202 err = -ENOBUFS;
1203 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1204 if (!new_fa)
1205 goto out;
1206
1207 fi_drop = fa->fa_info;
1208 new_fa->fa_tos = fa->fa_tos;
1209 new_fa->fa_info = fi;
1210 new_fa->fa_type = cfg->fc_type;
1211 state = fa->fa_state;
1212 new_fa->fa_state = state & ~FA_S_ACCESSED;
1213 new_fa->fa_slen = fa->fa_slen;
1214 new_fa->tb_id = tb->tb_id;
1215 new_fa->fa_default = -1;
1216
1217 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1218
1219 alias_free_mem_rcu(fa);
1220
1221 fib_release_info(fi_drop);
1222 if (state & FA_S_ACCESSED)
1223 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1224
1225 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_ADD,
1226 key, plen, fi,
1227 new_fa->fa_tos, cfg->fc_type,
1228 tb->tb_id, cfg->fc_nlflags);
1229 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1230 tb->tb_id, &cfg->fc_nlinfo, nlflags);
1231
1232 goto succeeded;
1233 }
1234 /* Error if we find a perfect match which
1235 * uses the same scope, type, and nexthop
1236 * information.
1237 */
1238 if (fa_match)
1239 goto out;
1240
1241 if (cfg->fc_nlflags & NLM_F_APPEND)
1242 nlflags |= NLM_F_APPEND;
1243 else
1244 fa = fa_first;
1245 }
1246 err = -ENOENT;
1247 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1248 goto out;
1249
1250 nlflags |= NLM_F_CREATE;
1251 err = -ENOBUFS;
1252 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1253 if (!new_fa)
1254 goto out;
1255
1256 new_fa->fa_info = fi;
1257 new_fa->fa_tos = tos;
1258 new_fa->fa_type = cfg->fc_type;
1259 new_fa->fa_state = 0;
1260 new_fa->fa_slen = slen;
1261 new_fa->tb_id = tb->tb_id;
1262 new_fa->fa_default = -1;
1263
1264 /* Insert new entry to the list. */
1265 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1266 if (err)
1267 goto out_free_new_fa;
1268
1269 if (!plen)
1270 tb->tb_num_default++;
1271
1272 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1273 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, key, plen, fi, tos,
1274 cfg->fc_type, tb->tb_id, cfg->fc_nlflags);
1275 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1276 &cfg->fc_nlinfo, nlflags);
1277 succeeded:
1278 return 0;
1279
1280 out_free_new_fa:
1281 kmem_cache_free(fn_alias_kmem, new_fa);
1282 out:
1283 fib_release_info(fi);
1284 err:
1285 return err;
1286 }
1287
1288 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1289 {
1290 t_key prefix = n->key;
1291
1292 return (key ^ prefix) & (prefix | -prefix);
1293 }
1294
1295 /* should be called with rcu_read_lock */
1296 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1297 struct fib_result *res, int fib_flags)
1298 {
1299 struct trie *t = (struct trie *) tb->tb_data;
1300 #ifdef CONFIG_IP_FIB_TRIE_STATS
1301 struct trie_use_stats __percpu *stats = t->stats;
1302 #endif
1303 const t_key key = ntohl(flp->daddr);
1304 struct key_vector *n, *pn;
1305 struct fib_alias *fa;
1306 unsigned long index;
1307 t_key cindex;
1308
1309 trace_fib_table_lookup(tb->tb_id, flp);
1310
1311 pn = t->kv;
1312 cindex = 0;
1313
1314 n = get_child_rcu(pn, cindex);
1315 if (!n)
1316 return -EAGAIN;
1317
1318 #ifdef CONFIG_IP_FIB_TRIE_STATS
1319 this_cpu_inc(stats->gets);
1320 #endif
1321
1322 /* Step 1: Travel to the longest prefix match in the trie */
1323 for (;;) {
1324 index = get_cindex(key, n);
1325
1326 /* This bit of code is a bit tricky but it combines multiple
1327 * checks into a single check. The prefix consists of the
1328 * prefix plus zeros for the "bits" in the prefix. The index
1329 * is the difference between the key and this value. From
1330 * this we can actually derive several pieces of data.
1331 * if (index >= (1ul << bits))
1332 * we have a mismatch in skip bits and failed
1333 * else
1334 * we know the value is cindex
1335 *
1336 * This check is safe even if bits == KEYLENGTH due to the
1337 * fact that we can only allocate a node with 32 bits if a
1338 * long is greater than 32 bits.
1339 */
1340 if (index >= (1ul << n->bits))
1341 break;
1342
1343 /* we have found a leaf. Prefixes have already been compared */
1344 if (IS_LEAF(n))
1345 goto found;
1346
1347 /* only record pn and cindex if we are going to be chopping
1348 * bits later. Otherwise we are just wasting cycles.
1349 */
1350 if (n->slen > n->pos) {
1351 pn = n;
1352 cindex = index;
1353 }
1354
1355 n = get_child_rcu(n, index);
1356 if (unlikely(!n))
1357 goto backtrace;
1358 }
1359
1360 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1361 for (;;) {
1362 /* record the pointer where our next node pointer is stored */
1363 struct key_vector __rcu **cptr = n->tnode;
1364
1365 /* This test verifies that none of the bits that differ
1366 * between the key and the prefix exist in the region of
1367 * the lsb and higher in the prefix.
1368 */
1369 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1370 goto backtrace;
1371
1372 /* exit out and process leaf */
1373 if (unlikely(IS_LEAF(n)))
1374 break;
1375
1376 /* Don't bother recording parent info. Since we are in
1377 * prefix match mode we will have to come back to wherever
1378 * we started this traversal anyway
1379 */
1380
1381 while ((n = rcu_dereference(*cptr)) == NULL) {
1382 backtrace:
1383 #ifdef CONFIG_IP_FIB_TRIE_STATS
1384 if (!n)
1385 this_cpu_inc(stats->null_node_hit);
1386 #endif
1387 /* If we are at cindex 0 there are no more bits for
1388 * us to strip at this level so we must ascend back
1389 * up one level to see if there are any more bits to
1390 * be stripped there.
1391 */
1392 while (!cindex) {
1393 t_key pkey = pn->key;
1394
1395 /* If we don't have a parent then there is
1396 * nothing for us to do as we do not have any
1397 * further nodes to parse.
1398 */
1399 if (IS_TRIE(pn))
1400 return -EAGAIN;
1401 #ifdef CONFIG_IP_FIB_TRIE_STATS
1402 this_cpu_inc(stats->backtrack);
1403 #endif
1404 /* Get Child's index */
1405 pn = node_parent_rcu(pn);
1406 cindex = get_index(pkey, pn);
1407 }
1408
1409 /* strip the least significant bit from the cindex */
1410 cindex &= cindex - 1;
1411
1412 /* grab pointer for next child node */
1413 cptr = &pn->tnode[cindex];
1414 }
1415 }
1416
1417 found:
1418 /* this line carries forward the xor from earlier in the function */
1419 index = key ^ n->key;
1420
1421 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1422 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1423 struct fib_info *fi = fa->fa_info;
1424 int nhsel, err;
1425
1426 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1427 if (index >= (1ul << fa->fa_slen))
1428 continue;
1429 }
1430 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1431 continue;
1432 if (fi->fib_dead)
1433 continue;
1434 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1435 continue;
1436 fib_alias_accessed(fa);
1437 err = fib_props[fa->fa_type].error;
1438 if (unlikely(err < 0)) {
1439 #ifdef CONFIG_IP_FIB_TRIE_STATS
1440 this_cpu_inc(stats->semantic_match_passed);
1441 #endif
1442 return err;
1443 }
1444 if (fi->fib_flags & RTNH_F_DEAD)
1445 continue;
1446 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1447 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1448 struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
1449
1450 if (nh->nh_flags & RTNH_F_DEAD)
1451 continue;
1452 if (in_dev &&
1453 IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1454 nh->nh_flags & RTNH_F_LINKDOWN &&
1455 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1456 continue;
1457 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1458 if (flp->flowi4_oif &&
1459 flp->flowi4_oif != nh->nh_oif)
1460 continue;
1461 }
1462
1463 if (!(fib_flags & FIB_LOOKUP_NOREF))
1464 atomic_inc(&fi->fib_clntref);
1465
1466 res->prefixlen = KEYLENGTH - fa->fa_slen;
1467 res->nh_sel = nhsel;
1468 res->type = fa->fa_type;
1469 res->scope = fi->fib_scope;
1470 res->fi = fi;
1471 res->table = tb;
1472 res->fa_head = &n->leaf;
1473 #ifdef CONFIG_IP_FIB_TRIE_STATS
1474 this_cpu_inc(stats->semantic_match_passed);
1475 #endif
1476 trace_fib_table_lookup_nh(nh);
1477
1478 return err;
1479 }
1480 }
1481 #ifdef CONFIG_IP_FIB_TRIE_STATS
1482 this_cpu_inc(stats->semantic_match_miss);
1483 #endif
1484 goto backtrace;
1485 }
1486 EXPORT_SYMBOL_GPL(fib_table_lookup);
1487
1488 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1489 struct key_vector *l, struct fib_alias *old)
1490 {
1491 /* record the location of the previous list_info entry */
1492 struct hlist_node **pprev = old->fa_list.pprev;
1493 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1494
1495 /* remove the fib_alias from the list */
1496 hlist_del_rcu(&old->fa_list);
1497
1498 /* if we emptied the list this leaf will be freed and we can sort
1499 * out parent suffix lengths as a part of trie_rebalance
1500 */
1501 if (hlist_empty(&l->leaf)) {
1502 put_child_root(tp, l->key, NULL);
1503 node_free(l);
1504 trie_rebalance(t, tp);
1505 return;
1506 }
1507
1508 /* only access fa if it is pointing at the last valid hlist_node */
1509 if (*pprev)
1510 return;
1511
1512 /* update the trie with the latest suffix length */
1513 l->slen = fa->fa_slen;
1514 leaf_pull_suffix(tp, l);
1515 }
1516
1517 /* Caller must hold RTNL. */
1518 int fib_table_delete(struct net *net, struct fib_table *tb,
1519 struct fib_config *cfg)
1520 {
1521 struct trie *t = (struct trie *) tb->tb_data;
1522 struct fib_alias *fa, *fa_to_delete;
1523 struct key_vector *l, *tp;
1524 u8 plen = cfg->fc_dst_len;
1525 u8 slen = KEYLENGTH - plen;
1526 u8 tos = cfg->fc_tos;
1527 u32 key;
1528
1529 if (plen > KEYLENGTH)
1530 return -EINVAL;
1531
1532 key = ntohl(cfg->fc_dst);
1533
1534 if ((plen < KEYLENGTH) && (key << plen))
1535 return -EINVAL;
1536
1537 l = fib_find_node(t, &tp, key);
1538 if (!l)
1539 return -ESRCH;
1540
1541 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1542 if (!fa)
1543 return -ESRCH;
1544
1545 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1546
1547 fa_to_delete = NULL;
1548 hlist_for_each_entry_from(fa, fa_list) {
1549 struct fib_info *fi = fa->fa_info;
1550
1551 if ((fa->fa_slen != slen) ||
1552 (fa->tb_id != tb->tb_id) ||
1553 (fa->fa_tos != tos))
1554 break;
1555
1556 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1557 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1558 fa->fa_info->fib_scope == cfg->fc_scope) &&
1559 (!cfg->fc_prefsrc ||
1560 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1561 (!cfg->fc_protocol ||
1562 fi->fib_protocol == cfg->fc_protocol) &&
1563 fib_nh_match(cfg, fi) == 0) {
1564 fa_to_delete = fa;
1565 break;
1566 }
1567 }
1568
1569 if (!fa_to_delete)
1570 return -ESRCH;
1571
1572 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1573 fa_to_delete->fa_info, tos, cfg->fc_type,
1574 tb->tb_id, 0);
1575 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1576 &cfg->fc_nlinfo, 0);
1577
1578 if (!plen)
1579 tb->tb_num_default--;
1580
1581 fib_remove_alias(t, tp, l, fa_to_delete);
1582
1583 if (fa_to_delete->fa_state & FA_S_ACCESSED)
1584 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1585
1586 fib_release_info(fa_to_delete->fa_info);
1587 alias_free_mem_rcu(fa_to_delete);
1588 return 0;
1589 }
1590
1591 /* Scan for the next leaf starting at the provided key value */
1592 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1593 {
1594 struct key_vector *pn, *n = *tn;
1595 unsigned long cindex;
1596
1597 /* this loop is meant to try and find the key in the trie */
1598 do {
1599 /* record parent and next child index */
1600 pn = n;
1601 cindex = (key > pn->key) ? get_index(key, pn) : 0;
1602
1603 if (cindex >> pn->bits)
1604 break;
1605
1606 /* descend into the next child */
1607 n = get_child_rcu(pn, cindex++);
1608 if (!n)
1609 break;
1610
1611 /* guarantee forward progress on the keys */
1612 if (IS_LEAF(n) && (n->key >= key))
1613 goto found;
1614 } while (IS_TNODE(n));
1615
1616 /* this loop will search for the next leaf with a greater key */
1617 while (!IS_TRIE(pn)) {
1618 /* if we exhausted the parent node we will need to climb */
1619 if (cindex >= (1ul << pn->bits)) {
1620 t_key pkey = pn->key;
1621
1622 pn = node_parent_rcu(pn);
1623 cindex = get_index(pkey, pn) + 1;
1624 continue;
1625 }
1626
1627 /* grab the next available node */
1628 n = get_child_rcu(pn, cindex++);
1629 if (!n)
1630 continue;
1631
1632 /* no need to compare keys since we bumped the index */
1633 if (IS_LEAF(n))
1634 goto found;
1635
1636 /* Rescan start scanning in new node */
1637 pn = n;
1638 cindex = 0;
1639 }
1640
1641 *tn = pn;
1642 return NULL; /* Root of trie */
1643 found:
1644 /* if we are at the limit for keys just return NULL for the tnode */
1645 *tn = pn;
1646 return n;
1647 }
1648
1649 static void fib_trie_free(struct fib_table *tb)
1650 {
1651 struct trie *t = (struct trie *)tb->tb_data;
1652 struct key_vector *pn = t->kv;
1653 unsigned long cindex = 1;
1654 struct hlist_node *tmp;
1655 struct fib_alias *fa;
1656
1657 /* walk trie in reverse order and free everything */
1658 for (;;) {
1659 struct key_vector *n;
1660
1661 if (!(cindex--)) {
1662 t_key pkey = pn->key;
1663
1664 if (IS_TRIE(pn))
1665 break;
1666
1667 n = pn;
1668 pn = node_parent(pn);
1669
1670 /* drop emptied tnode */
1671 put_child_root(pn, n->key, NULL);
1672 node_free(n);
1673
1674 cindex = get_index(pkey, pn);
1675
1676 continue;
1677 }
1678
1679 /* grab the next available node */
1680 n = get_child(pn, cindex);
1681 if (!n)
1682 continue;
1683
1684 if (IS_TNODE(n)) {
1685 /* record pn and cindex for leaf walking */
1686 pn = n;
1687 cindex = 1ul << n->bits;
1688
1689 continue;
1690 }
1691
1692 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1693 hlist_del_rcu(&fa->fa_list);
1694 alias_free_mem_rcu(fa);
1695 }
1696
1697 put_child_root(pn, n->key, NULL);
1698 node_free(n);
1699 }
1700
1701 #ifdef CONFIG_IP_FIB_TRIE_STATS
1702 free_percpu(t->stats);
1703 #endif
1704 kfree(tb);
1705 }
1706
1707 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1708 {
1709 struct trie *ot = (struct trie *)oldtb->tb_data;
1710 struct key_vector *l, *tp = ot->kv;
1711 struct fib_table *local_tb;
1712 struct fib_alias *fa;
1713 struct trie *lt;
1714 t_key key = 0;
1715
1716 if (oldtb->tb_data == oldtb->__data)
1717 return oldtb;
1718
1719 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1720 if (!local_tb)
1721 return NULL;
1722
1723 lt = (struct trie *)local_tb->tb_data;
1724
1725 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1726 struct key_vector *local_l = NULL, *local_tp;
1727
1728 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1729 struct fib_alias *new_fa;
1730
1731 if (local_tb->tb_id != fa->tb_id)
1732 continue;
1733
1734 /* clone fa for new local table */
1735 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1736 if (!new_fa)
1737 goto out;
1738
1739 memcpy(new_fa, fa, sizeof(*fa));
1740
1741 /* insert clone into table */
1742 if (!local_l)
1743 local_l = fib_find_node(lt, &local_tp, l->key);
1744
1745 if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1746 NULL, l->key))
1747 goto out;
1748 }
1749
1750 /* stop loop if key wrapped back to 0 */
1751 key = l->key + 1;
1752 if (key < l->key)
1753 break;
1754 }
1755
1756 return local_tb;
1757 out:
1758 fib_trie_free(local_tb);
1759
1760 return NULL;
1761 }
1762
1763 /* Caller must hold RTNL. */
1764 int fib_table_flush(struct net *net, struct fib_table *tb)
1765 {
1766 struct trie *t = (struct trie *)tb->tb_data;
1767 struct key_vector *pn = t->kv;
1768 unsigned long cindex = 1;
1769 struct hlist_node *tmp;
1770 struct fib_alias *fa;
1771 int found = 0;
1772
1773 /* walk trie in reverse order */
1774 for (;;) {
1775 unsigned char slen = 0;
1776 struct key_vector *n;
1777
1778 if (!(cindex--)) {
1779 t_key pkey = pn->key;
1780
1781 /* cannot resize the trie vector */
1782 if (IS_TRIE(pn))
1783 break;
1784
1785 /* resize completed node */
1786 pn = resize(t, pn);
1787 cindex = get_index(pkey, pn);
1788
1789 continue;
1790 }
1791
1792 /* grab the next available node */
1793 n = get_child(pn, cindex);
1794 if (!n)
1795 continue;
1796
1797 if (IS_TNODE(n)) {
1798 /* record pn and cindex for leaf walking */
1799 pn = n;
1800 cindex = 1ul << n->bits;
1801
1802 continue;
1803 }
1804
1805 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1806 struct fib_info *fi = fa->fa_info;
1807
1808 if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
1809 slen = fa->fa_slen;
1810 continue;
1811 }
1812
1813 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1814 n->key,
1815 KEYLENGTH - fa->fa_slen,
1816 fi, fa->fa_tos, fa->fa_type,
1817 tb->tb_id, 0);
1818 hlist_del_rcu(&fa->fa_list);
1819 fib_release_info(fa->fa_info);
1820 alias_free_mem_rcu(fa);
1821 found++;
1822 }
1823
1824 /* update leaf slen */
1825 n->slen = slen;
1826
1827 if (hlist_empty(&n->leaf)) {
1828 put_child_root(pn, n->key, NULL);
1829 node_free(n);
1830 }
1831 }
1832
1833 pr_debug("trie_flush found=%d\n", found);
1834 return found;
1835 }
1836
1837 static void __trie_free_rcu(struct rcu_head *head)
1838 {
1839 struct fib_table *tb = container_of(head, struct fib_table, rcu);
1840 #ifdef CONFIG_IP_FIB_TRIE_STATS
1841 struct trie *t = (struct trie *)tb->tb_data;
1842
1843 if (tb->tb_data == tb->__data)
1844 free_percpu(t->stats);
1845 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1846 kfree(tb);
1847 }
1848
1849 void fib_free_table(struct fib_table *tb)
1850 {
1851 call_rcu(&tb->rcu, __trie_free_rcu);
1852 }
1853
1854 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
1855 struct sk_buff *skb, struct netlink_callback *cb)
1856 {
1857 __be32 xkey = htonl(l->key);
1858 struct fib_alias *fa;
1859 int i, s_i;
1860
1861 s_i = cb->args[4];
1862 i = 0;
1863
1864 /* rcu_read_lock is hold by caller */
1865 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1866 if (i < s_i) {
1867 i++;
1868 continue;
1869 }
1870
1871 if (tb->tb_id != fa->tb_id) {
1872 i++;
1873 continue;
1874 }
1875
1876 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1877 cb->nlh->nlmsg_seq,
1878 RTM_NEWROUTE,
1879 tb->tb_id,
1880 fa->fa_type,
1881 xkey,
1882 KEYLENGTH - fa->fa_slen,
1883 fa->fa_tos,
1884 fa->fa_info, NLM_F_MULTI) < 0) {
1885 cb->args[4] = i;
1886 return -1;
1887 }
1888 i++;
1889 }
1890
1891 cb->args[4] = i;
1892 return skb->len;
1893 }
1894
1895 /* rcu_read_lock needs to be hold by caller from readside */
1896 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1897 struct netlink_callback *cb)
1898 {
1899 struct trie *t = (struct trie *)tb->tb_data;
1900 struct key_vector *l, *tp = t->kv;
1901 /* Dump starting at last key.
1902 * Note: 0.0.0.0/0 (ie default) is first key.
1903 */
1904 int count = cb->args[2];
1905 t_key key = cb->args[3];
1906
1907 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1908 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1909 cb->args[3] = key;
1910 cb->args[2] = count;
1911 return -1;
1912 }
1913
1914 ++count;
1915 key = l->key + 1;
1916
1917 memset(&cb->args[4], 0,
1918 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1919
1920 /* stop loop if key wrapped back to 0 */
1921 if (key < l->key)
1922 break;
1923 }
1924
1925 cb->args[3] = key;
1926 cb->args[2] = count;
1927
1928 return skb->len;
1929 }
1930
1931 void __init fib_trie_init(void)
1932 {
1933 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1934 sizeof(struct fib_alias),
1935 0, SLAB_PANIC, NULL);
1936
1937 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1938 LEAF_SIZE,
1939 0, SLAB_PANIC, NULL);
1940 }
1941
1942 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
1943 {
1944 struct fib_table *tb;
1945 struct trie *t;
1946 size_t sz = sizeof(*tb);
1947
1948 if (!alias)
1949 sz += sizeof(struct trie);
1950
1951 tb = kzalloc(sz, GFP_KERNEL);
1952 if (!tb)
1953 return NULL;
1954
1955 tb->tb_id = id;
1956 tb->tb_num_default = 0;
1957 tb->tb_data = (alias ? alias->__data : tb->__data);
1958
1959 if (alias)
1960 return tb;
1961
1962 t = (struct trie *) tb->tb_data;
1963 t->kv[0].pos = KEYLENGTH;
1964 t->kv[0].slen = KEYLENGTH;
1965 #ifdef CONFIG_IP_FIB_TRIE_STATS
1966 t->stats = alloc_percpu(struct trie_use_stats);
1967 if (!t->stats) {
1968 kfree(tb);
1969 tb = NULL;
1970 }
1971 #endif
1972
1973 return tb;
1974 }
1975
1976 #ifdef CONFIG_PROC_FS
1977 /* Depth first Trie walk iterator */
1978 struct fib_trie_iter {
1979 struct seq_net_private p;
1980 struct fib_table *tb;
1981 struct key_vector *tnode;
1982 unsigned int index;
1983 unsigned int depth;
1984 };
1985
1986 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
1987 {
1988 unsigned long cindex = iter->index;
1989 struct key_vector *pn = iter->tnode;
1990 t_key pkey;
1991
1992 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
1993 iter->tnode, iter->index, iter->depth);
1994
1995 while (!IS_TRIE(pn)) {
1996 while (cindex < child_length(pn)) {
1997 struct key_vector *n = get_child_rcu(pn, cindex++);
1998
1999 if (!n)
2000 continue;
2001
2002 if (IS_LEAF(n)) {
2003 iter->tnode = pn;
2004 iter->index = cindex;
2005 } else {
2006 /* push down one level */
2007 iter->tnode = n;
2008 iter->index = 0;
2009 ++iter->depth;
2010 }
2011
2012 return n;
2013 }
2014
2015 /* Current node exhausted, pop back up */
2016 pkey = pn->key;
2017 pn = node_parent_rcu(pn);
2018 cindex = get_index(pkey, pn) + 1;
2019 --iter->depth;
2020 }
2021
2022 /* record root node so further searches know we are done */
2023 iter->tnode = pn;
2024 iter->index = 0;
2025
2026 return NULL;
2027 }
2028
2029 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2030 struct trie *t)
2031 {
2032 struct key_vector *n, *pn;
2033
2034 if (!t)
2035 return NULL;
2036
2037 pn = t->kv;
2038 n = rcu_dereference(pn->tnode[0]);
2039 if (!n)
2040 return NULL;
2041
2042 if (IS_TNODE(n)) {
2043 iter->tnode = n;
2044 iter->index = 0;
2045 iter->depth = 1;
2046 } else {
2047 iter->tnode = pn;
2048 iter->index = 0;
2049 iter->depth = 0;
2050 }
2051
2052 return n;
2053 }
2054
2055 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2056 {
2057 struct key_vector *n;
2058 struct fib_trie_iter iter;
2059
2060 memset(s, 0, sizeof(*s));
2061
2062 rcu_read_lock();
2063 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2064 if (IS_LEAF(n)) {
2065 struct fib_alias *fa;
2066
2067 s->leaves++;
2068 s->totdepth += iter.depth;
2069 if (iter.depth > s->maxdepth)
2070 s->maxdepth = iter.depth;
2071
2072 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2073 ++s->prefixes;
2074 } else {
2075 s->tnodes++;
2076 if (n->bits < MAX_STAT_DEPTH)
2077 s->nodesizes[n->bits]++;
2078 s->nullpointers += tn_info(n)->empty_children;
2079 }
2080 }
2081 rcu_read_unlock();
2082 }
2083
2084 /*
2085 * This outputs /proc/net/fib_triestats
2086 */
2087 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2088 {
2089 unsigned int i, max, pointers, bytes, avdepth;
2090
2091 if (stat->leaves)
2092 avdepth = stat->totdepth*100 / stat->leaves;
2093 else
2094 avdepth = 0;
2095
2096 seq_printf(seq, "\tAver depth: %u.%02d\n",
2097 avdepth / 100, avdepth % 100);
2098 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2099
2100 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2101 bytes = LEAF_SIZE * stat->leaves;
2102
2103 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2104 bytes += sizeof(struct fib_alias) * stat->prefixes;
2105
2106 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2107 bytes += TNODE_SIZE(0) * stat->tnodes;
2108
2109 max = MAX_STAT_DEPTH;
2110 while (max > 0 && stat->nodesizes[max-1] == 0)
2111 max--;
2112
2113 pointers = 0;
2114 for (i = 1; i < max; i++)
2115 if (stat->nodesizes[i] != 0) {
2116 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2117 pointers += (1<<i) * stat->nodesizes[i];
2118 }
2119 seq_putc(seq, '\n');
2120 seq_printf(seq, "\tPointers: %u\n", pointers);
2121
2122 bytes += sizeof(struct key_vector *) * pointers;
2123 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2124 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2125 }
2126
2127 #ifdef CONFIG_IP_FIB_TRIE_STATS
2128 static void trie_show_usage(struct seq_file *seq,
2129 const struct trie_use_stats __percpu *stats)
2130 {
2131 struct trie_use_stats s = { 0 };
2132 int cpu;
2133
2134 /* loop through all of the CPUs and gather up the stats */
2135 for_each_possible_cpu(cpu) {
2136 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2137
2138 s.gets += pcpu->gets;
2139 s.backtrack += pcpu->backtrack;
2140 s.semantic_match_passed += pcpu->semantic_match_passed;
2141 s.semantic_match_miss += pcpu->semantic_match_miss;
2142 s.null_node_hit += pcpu->null_node_hit;
2143 s.resize_node_skipped += pcpu->resize_node_skipped;
2144 }
2145
2146 seq_printf(seq, "\nCounters:\n---------\n");
2147 seq_printf(seq, "gets = %u\n", s.gets);
2148 seq_printf(seq, "backtracks = %u\n", s.backtrack);
2149 seq_printf(seq, "semantic match passed = %u\n",
2150 s.semantic_match_passed);
2151 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2152 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2153 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2154 }
2155 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2156
2157 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2158 {
2159 if (tb->tb_id == RT_TABLE_LOCAL)
2160 seq_puts(seq, "Local:\n");
2161 else if (tb->tb_id == RT_TABLE_MAIN)
2162 seq_puts(seq, "Main:\n");
2163 else
2164 seq_printf(seq, "Id %d:\n", tb->tb_id);
2165 }
2166
2167
2168 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2169 {
2170 struct net *net = (struct net *)seq->private;
2171 unsigned int h;
2172
2173 seq_printf(seq,
2174 "Basic info: size of leaf:"
2175 " %Zd bytes, size of tnode: %Zd bytes.\n",
2176 LEAF_SIZE, TNODE_SIZE(0));
2177
2178 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2179 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2180 struct fib_table *tb;
2181
2182 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2183 struct trie *t = (struct trie *) tb->tb_data;
2184 struct trie_stat stat;
2185
2186 if (!t)
2187 continue;
2188
2189 fib_table_print(seq, tb);
2190
2191 trie_collect_stats(t, &stat);
2192 trie_show_stats(seq, &stat);
2193 #ifdef CONFIG_IP_FIB_TRIE_STATS
2194 trie_show_usage(seq, t->stats);
2195 #endif
2196 }
2197 }
2198
2199 return 0;
2200 }
2201
2202 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2203 {
2204 return single_open_net(inode, file, fib_triestat_seq_show);
2205 }
2206
2207 static const struct file_operations fib_triestat_fops = {
2208 .owner = THIS_MODULE,
2209 .open = fib_triestat_seq_open,
2210 .read = seq_read,
2211 .llseek = seq_lseek,
2212 .release = single_release_net,
2213 };
2214
2215 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2216 {
2217 struct fib_trie_iter *iter = seq->private;
2218 struct net *net = seq_file_net(seq);
2219 loff_t idx = 0;
2220 unsigned int h;
2221
2222 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2223 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2224 struct fib_table *tb;
2225
2226 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2227 struct key_vector *n;
2228
2229 for (n = fib_trie_get_first(iter,
2230 (struct trie *) tb->tb_data);
2231 n; n = fib_trie_get_next(iter))
2232 if (pos == idx++) {
2233 iter->tb = tb;
2234 return n;
2235 }
2236 }
2237 }
2238
2239 return NULL;
2240 }
2241
2242 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2243 __acquires(RCU)
2244 {
2245 rcu_read_lock();
2246 return fib_trie_get_idx(seq, *pos);
2247 }
2248
2249 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2250 {
2251 struct fib_trie_iter *iter = seq->private;
2252 struct net *net = seq_file_net(seq);
2253 struct fib_table *tb = iter->tb;
2254 struct hlist_node *tb_node;
2255 unsigned int h;
2256 struct key_vector *n;
2257
2258 ++*pos;
2259 /* next node in same table */
2260 n = fib_trie_get_next(iter);
2261 if (n)
2262 return n;
2263
2264 /* walk rest of this hash chain */
2265 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2266 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2267 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2268 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2269 if (n)
2270 goto found;
2271 }
2272
2273 /* new hash chain */
2274 while (++h < FIB_TABLE_HASHSZ) {
2275 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2276 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2277 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2278 if (n)
2279 goto found;
2280 }
2281 }
2282 return NULL;
2283
2284 found:
2285 iter->tb = tb;
2286 return n;
2287 }
2288
2289 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2290 __releases(RCU)
2291 {
2292 rcu_read_unlock();
2293 }
2294
2295 static void seq_indent(struct seq_file *seq, int n)
2296 {
2297 while (n-- > 0)
2298 seq_puts(seq, " ");
2299 }
2300
2301 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2302 {
2303 switch (s) {
2304 case RT_SCOPE_UNIVERSE: return "universe";
2305 case RT_SCOPE_SITE: return "site";
2306 case RT_SCOPE_LINK: return "link";
2307 case RT_SCOPE_HOST: return "host";
2308 case RT_SCOPE_NOWHERE: return "nowhere";
2309 default:
2310 snprintf(buf, len, "scope=%d", s);
2311 return buf;
2312 }
2313 }
2314
2315 static const char *const rtn_type_names[__RTN_MAX] = {
2316 [RTN_UNSPEC] = "UNSPEC",
2317 [RTN_UNICAST] = "UNICAST",
2318 [RTN_LOCAL] = "LOCAL",
2319 [RTN_BROADCAST] = "BROADCAST",
2320 [RTN_ANYCAST] = "ANYCAST",
2321 [RTN_MULTICAST] = "MULTICAST",
2322 [RTN_BLACKHOLE] = "BLACKHOLE",
2323 [RTN_UNREACHABLE] = "UNREACHABLE",
2324 [RTN_PROHIBIT] = "PROHIBIT",
2325 [RTN_THROW] = "THROW",
2326 [RTN_NAT] = "NAT",
2327 [RTN_XRESOLVE] = "XRESOLVE",
2328 };
2329
2330 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2331 {
2332 if (t < __RTN_MAX && rtn_type_names[t])
2333 return rtn_type_names[t];
2334 snprintf(buf, len, "type %u", t);
2335 return buf;
2336 }
2337
2338 /* Pretty print the trie */
2339 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2340 {
2341 const struct fib_trie_iter *iter = seq->private;
2342 struct key_vector *n = v;
2343
2344 if (IS_TRIE(node_parent_rcu(n)))
2345 fib_table_print(seq, iter->tb);
2346
2347 if (IS_TNODE(n)) {
2348 __be32 prf = htonl(n->key);
2349
2350 seq_indent(seq, iter->depth-1);
2351 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2352 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2353 tn_info(n)->full_children,
2354 tn_info(n)->empty_children);
2355 } else {
2356 __be32 val = htonl(n->key);
2357 struct fib_alias *fa;
2358
2359 seq_indent(seq, iter->depth);
2360 seq_printf(seq, " |-- %pI4\n", &val);
2361
2362 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2363 char buf1[32], buf2[32];
2364
2365 seq_indent(seq, iter->depth + 1);
2366 seq_printf(seq, " /%zu %s %s",
2367 KEYLENGTH - fa->fa_slen,
2368 rtn_scope(buf1, sizeof(buf1),
2369 fa->fa_info->fib_scope),
2370 rtn_type(buf2, sizeof(buf2),
2371 fa->fa_type));
2372 if (fa->fa_tos)
2373 seq_printf(seq, " tos=%d", fa->fa_tos);
2374 seq_putc(seq, '\n');
2375 }
2376 }
2377
2378 return 0;
2379 }
2380
2381 static const struct seq_operations fib_trie_seq_ops = {
2382 .start = fib_trie_seq_start,
2383 .next = fib_trie_seq_next,
2384 .stop = fib_trie_seq_stop,
2385 .show = fib_trie_seq_show,
2386 };
2387
2388 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2389 {
2390 return seq_open_net(inode, file, &fib_trie_seq_ops,
2391 sizeof(struct fib_trie_iter));
2392 }
2393
2394 static const struct file_operations fib_trie_fops = {
2395 .owner = THIS_MODULE,
2396 .open = fib_trie_seq_open,
2397 .read = seq_read,
2398 .llseek = seq_lseek,
2399 .release = seq_release_net,
2400 };
2401
2402 struct fib_route_iter {
2403 struct seq_net_private p;
2404 struct fib_table *main_tb;
2405 struct key_vector *tnode;
2406 loff_t pos;
2407 t_key key;
2408 };
2409
2410 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2411 loff_t pos)
2412 {
2413 struct key_vector *l, **tp = &iter->tnode;
2414 t_key key;
2415
2416 /* use cache location of next-to-find key */
2417 if (iter->pos > 0 && pos >= iter->pos) {
2418 pos -= iter->pos;
2419 key = iter->key;
2420 } else {
2421 iter->pos = 0;
2422 key = 0;
2423 }
2424
2425 while ((l = leaf_walk_rcu(tp, key)) != NULL) {
2426 key = l->key + 1;
2427 iter->pos++;
2428
2429 if (--pos <= 0)
2430 break;
2431
2432 l = NULL;
2433
2434 /* handle unlikely case of a key wrap */
2435 if (!key)
2436 break;
2437 }
2438
2439 if (l)
2440 iter->key = key; /* remember it */
2441 else
2442 iter->pos = 0; /* forget it */
2443
2444 return l;
2445 }
2446
2447 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2448 __acquires(RCU)
2449 {
2450 struct fib_route_iter *iter = seq->private;
2451 struct fib_table *tb;
2452 struct trie *t;
2453
2454 rcu_read_lock();
2455
2456 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2457 if (!tb)
2458 return NULL;
2459
2460 iter->main_tb = tb;
2461 t = (struct trie *)tb->tb_data;
2462 iter->tnode = t->kv;
2463
2464 if (*pos != 0)
2465 return fib_route_get_idx(iter, *pos);
2466
2467 iter->pos = 0;
2468 iter->key = 0;
2469
2470 return SEQ_START_TOKEN;
2471 }
2472
2473 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2474 {
2475 struct fib_route_iter *iter = seq->private;
2476 struct key_vector *l = NULL;
2477 t_key key = iter->key;
2478
2479 ++*pos;
2480
2481 /* only allow key of 0 for start of sequence */
2482 if ((v == SEQ_START_TOKEN) || key)
2483 l = leaf_walk_rcu(&iter->tnode, key);
2484
2485 if (l) {
2486 iter->key = l->key + 1;
2487 iter->pos++;
2488 } else {
2489 iter->pos = 0;
2490 }
2491
2492 return l;
2493 }
2494
2495 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2496 __releases(RCU)
2497 {
2498 rcu_read_unlock();
2499 }
2500
2501 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2502 {
2503 unsigned int flags = 0;
2504
2505 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2506 flags = RTF_REJECT;
2507 if (fi && fi->fib_nh->nh_gw)
2508 flags |= RTF_GATEWAY;
2509 if (mask == htonl(0xFFFFFFFF))
2510 flags |= RTF_HOST;
2511 flags |= RTF_UP;
2512 return flags;
2513 }
2514
2515 /*
2516 * This outputs /proc/net/route.
2517 * The format of the file is not supposed to be changed
2518 * and needs to be same as fib_hash output to avoid breaking
2519 * legacy utilities
2520 */
2521 static int fib_route_seq_show(struct seq_file *seq, void *v)
2522 {
2523 struct fib_route_iter *iter = seq->private;
2524 struct fib_table *tb = iter->main_tb;
2525 struct fib_alias *fa;
2526 struct key_vector *l = v;
2527 __be32 prefix;
2528
2529 if (v == SEQ_START_TOKEN) {
2530 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2531 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2532 "\tWindow\tIRTT");
2533 return 0;
2534 }
2535
2536 prefix = htonl(l->key);
2537
2538 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2539 const struct fib_info *fi = fa->fa_info;
2540 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2541 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2542
2543 if ((fa->fa_type == RTN_BROADCAST) ||
2544 (fa->fa_type == RTN_MULTICAST))
2545 continue;
2546
2547 if (fa->tb_id != tb->tb_id)
2548 continue;
2549
2550 seq_setwidth(seq, 127);
2551
2552 if (fi)
2553 seq_printf(seq,
2554 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2555 "%d\t%08X\t%d\t%u\t%u",
2556 fi->fib_dev ? fi->fib_dev->name : "*",
2557 prefix,
2558 fi->fib_nh->nh_gw, flags, 0, 0,
2559 fi->fib_priority,
2560 mask,
2561 (fi->fib_advmss ?
2562 fi->fib_advmss + 40 : 0),
2563 fi->fib_window,
2564 fi->fib_rtt >> 3);
2565 else
2566 seq_printf(seq,
2567 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2568 "%d\t%08X\t%d\t%u\t%u",
2569 prefix, 0, flags, 0, 0, 0,
2570 mask, 0, 0, 0);
2571
2572 seq_pad(seq, '\n');
2573 }
2574
2575 return 0;
2576 }
2577
2578 static const struct seq_operations fib_route_seq_ops = {
2579 .start = fib_route_seq_start,
2580 .next = fib_route_seq_next,
2581 .stop = fib_route_seq_stop,
2582 .show = fib_route_seq_show,
2583 };
2584
2585 static int fib_route_seq_open(struct inode *inode, struct file *file)
2586 {
2587 return seq_open_net(inode, file, &fib_route_seq_ops,
2588 sizeof(struct fib_route_iter));
2589 }
2590
2591 static const struct file_operations fib_route_fops = {
2592 .owner = THIS_MODULE,
2593 .open = fib_route_seq_open,
2594 .read = seq_read,
2595 .llseek = seq_lseek,
2596 .release = seq_release_net,
2597 };
2598
2599 int __net_init fib_proc_init(struct net *net)
2600 {
2601 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2602 goto out1;
2603
2604 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2605 &fib_triestat_fops))
2606 goto out2;
2607
2608 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2609 goto out3;
2610
2611 return 0;
2612
2613 out3:
2614 remove_proc_entry("fib_triestat", net->proc_net);
2615 out2:
2616 remove_proc_entry("fib_trie", net->proc_net);
2617 out1:
2618 return -ENOMEM;
2619 }
2620
2621 void __net_exit fib_proc_exit(struct net *net)
2622 {
2623 remove_proc_entry("fib_trie", net->proc_net);
2624 remove_proc_entry("fib_triestat", net->proc_net);
2625 remove_proc_entry("route", net->proc_net);
2626 }
2627
2628 #endif /* CONFIG_PROC_FS */