]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/fib_trie.c
fib_trie: Convert fib_alias to hlist from list
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally described in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
49 */
50
51 #define VERSION "0.409"
52
53 #include <asm/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <net/net_namespace.h>
76 #include <net/ip.h>
77 #include <net/protocol.h>
78 #include <net/route.h>
79 #include <net/tcp.h>
80 #include <net/sock.h>
81 #include <net/ip_fib.h>
82 #include "fib_lookup.h"
83
84 #define MAX_STAT_DEPTH 32
85
86 #define KEYLENGTH (8*sizeof(t_key))
87 #define KEY_MAX ((t_key)~0)
88
89 typedef unsigned int t_key;
90
91 #define IS_TNODE(n) ((n)->bits)
92 #define IS_LEAF(n) (!(n)->bits)
93
94 #define get_index(_key, _kv) (((_key) ^ (_kv)->key) >> (_kv)->pos)
95
96 struct tnode {
97 t_key key;
98 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
99 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
100 unsigned char slen;
101 struct tnode __rcu *parent;
102 struct rcu_head rcu;
103 union {
104 /* The fields in this struct are valid if bits > 0 (TNODE) */
105 struct {
106 t_key empty_children; /* KEYLENGTH bits needed */
107 t_key full_children; /* KEYLENGTH bits needed */
108 struct tnode __rcu *child[0];
109 };
110 /* This list pointer if valid if bits == 0 (LEAF) */
111 struct hlist_head list;
112 };
113 };
114
115 struct leaf_info {
116 struct hlist_node hlist;
117 int plen;
118 u32 mask_plen; /* ntohl(inet_make_mask(plen)) */
119 struct hlist_head falh;
120 struct rcu_head rcu;
121 };
122
123 #ifdef CONFIG_IP_FIB_TRIE_STATS
124 struct trie_use_stats {
125 unsigned int gets;
126 unsigned int backtrack;
127 unsigned int semantic_match_passed;
128 unsigned int semantic_match_miss;
129 unsigned int null_node_hit;
130 unsigned int resize_node_skipped;
131 };
132 #endif
133
134 struct trie_stat {
135 unsigned int totdepth;
136 unsigned int maxdepth;
137 unsigned int tnodes;
138 unsigned int leaves;
139 unsigned int nullpointers;
140 unsigned int prefixes;
141 unsigned int nodesizes[MAX_STAT_DEPTH];
142 };
143
144 struct trie {
145 struct tnode __rcu *trie;
146 #ifdef CONFIG_IP_FIB_TRIE_STATS
147 struct trie_use_stats __percpu *stats;
148 #endif
149 };
150
151 static void resize(struct trie *t, struct tnode *tn);
152 static size_t tnode_free_size;
153
154 /*
155 * synchronize_rcu after call_rcu for that many pages; it should be especially
156 * useful before resizing the root node with PREEMPT_NONE configs; the value was
157 * obtained experimentally, aiming to avoid visible slowdown.
158 */
159 static const int sync_pages = 128;
160
161 static struct kmem_cache *fn_alias_kmem __read_mostly;
162 static struct kmem_cache *trie_leaf_kmem __read_mostly;
163
164 /* caller must hold RTNL */
165 #define node_parent(n) rtnl_dereference((n)->parent)
166
167 /* caller must hold RCU read lock or RTNL */
168 #define node_parent_rcu(n) rcu_dereference_rtnl((n)->parent)
169
170 /* wrapper for rcu_assign_pointer */
171 static inline void node_set_parent(struct tnode *n, struct tnode *tp)
172 {
173 if (n)
174 rcu_assign_pointer(n->parent, tp);
175 }
176
177 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER((n)->parent, p)
178
179 /* This provides us with the number of children in this node, in the case of a
180 * leaf this will return 0 meaning none of the children are accessible.
181 */
182 static inline unsigned long tnode_child_length(const struct tnode *tn)
183 {
184 return (1ul << tn->bits) & ~(1ul);
185 }
186
187 /* caller must hold RTNL */
188 static inline struct tnode *tnode_get_child(const struct tnode *tn,
189 unsigned long i)
190 {
191 return rtnl_dereference(tn->child[i]);
192 }
193
194 /* caller must hold RCU read lock or RTNL */
195 static inline struct tnode *tnode_get_child_rcu(const struct tnode *tn,
196 unsigned long i)
197 {
198 return rcu_dereference_rtnl(tn->child[i]);
199 }
200
201 /* To understand this stuff, an understanding of keys and all their bits is
202 * necessary. Every node in the trie has a key associated with it, but not
203 * all of the bits in that key are significant.
204 *
205 * Consider a node 'n' and its parent 'tp'.
206 *
207 * If n is a leaf, every bit in its key is significant. Its presence is
208 * necessitated by path compression, since during a tree traversal (when
209 * searching for a leaf - unless we are doing an insertion) we will completely
210 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
211 * a potentially successful search, that we have indeed been walking the
212 * correct key path.
213 *
214 * Note that we can never "miss" the correct key in the tree if present by
215 * following the wrong path. Path compression ensures that segments of the key
216 * that are the same for all keys with a given prefix are skipped, but the
217 * skipped part *is* identical for each node in the subtrie below the skipped
218 * bit! trie_insert() in this implementation takes care of that.
219 *
220 * if n is an internal node - a 'tnode' here, the various parts of its key
221 * have many different meanings.
222 *
223 * Example:
224 * _________________________________________________________________
225 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
226 * -----------------------------------------------------------------
227 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
228 *
229 * _________________________________________________________________
230 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
231 * -----------------------------------------------------------------
232 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
233 *
234 * tp->pos = 22
235 * tp->bits = 3
236 * n->pos = 13
237 * n->bits = 4
238 *
239 * First, let's just ignore the bits that come before the parent tp, that is
240 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
241 * point we do not use them for anything.
242 *
243 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
244 * index into the parent's child array. That is, they will be used to find
245 * 'n' among tp's children.
246 *
247 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
248 * for the node n.
249 *
250 * All the bits we have seen so far are significant to the node n. The rest
251 * of the bits are really not needed or indeed known in n->key.
252 *
253 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
254 * n's child array, and will of course be different for each child.
255 *
256 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
257 * at this point.
258 */
259
260 static const int halve_threshold = 25;
261 static const int inflate_threshold = 50;
262 static const int halve_threshold_root = 15;
263 static const int inflate_threshold_root = 30;
264
265 static void __alias_free_mem(struct rcu_head *head)
266 {
267 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
268 kmem_cache_free(fn_alias_kmem, fa);
269 }
270
271 static inline void alias_free_mem_rcu(struct fib_alias *fa)
272 {
273 call_rcu(&fa->rcu, __alias_free_mem);
274 }
275
276 #define TNODE_KMALLOC_MAX \
277 ilog2((PAGE_SIZE - sizeof(struct tnode)) / sizeof(struct tnode *))
278
279 static void __node_free_rcu(struct rcu_head *head)
280 {
281 struct tnode *n = container_of(head, struct tnode, rcu);
282
283 if (IS_LEAF(n))
284 kmem_cache_free(trie_leaf_kmem, n);
285 else if (n->bits <= TNODE_KMALLOC_MAX)
286 kfree(n);
287 else
288 vfree(n);
289 }
290
291 #define node_free(n) call_rcu(&n->rcu, __node_free_rcu)
292
293 static inline void free_leaf_info(struct leaf_info *leaf)
294 {
295 kfree_rcu(leaf, rcu);
296 }
297
298 static struct tnode *tnode_alloc(size_t size)
299 {
300 if (size <= PAGE_SIZE)
301 return kzalloc(size, GFP_KERNEL);
302 else
303 return vzalloc(size);
304 }
305
306 static inline void empty_child_inc(struct tnode *n)
307 {
308 ++n->empty_children ? : ++n->full_children;
309 }
310
311 static inline void empty_child_dec(struct tnode *n)
312 {
313 n->empty_children-- ? : n->full_children--;
314 }
315
316 static struct tnode *leaf_new(t_key key)
317 {
318 struct tnode *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
319 if (l) {
320 l->parent = NULL;
321 /* set key and pos to reflect full key value
322 * any trailing zeros in the key should be ignored
323 * as the nodes are searched
324 */
325 l->key = key;
326 l->slen = 0;
327 l->pos = 0;
328 /* set bits to 0 indicating we are not a tnode */
329 l->bits = 0;
330
331 INIT_HLIST_HEAD(&l->list);
332 }
333 return l;
334 }
335
336 static struct leaf_info *leaf_info_new(int plen)
337 {
338 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
339 if (li) {
340 li->plen = plen;
341 li->mask_plen = ntohl(inet_make_mask(plen));
342 INIT_HLIST_HEAD(&li->falh);
343 }
344 return li;
345 }
346
347 static struct tnode *tnode_new(t_key key, int pos, int bits)
348 {
349 size_t sz = offsetof(struct tnode, child[1ul << bits]);
350 struct tnode *tn = tnode_alloc(sz);
351 unsigned int shift = pos + bits;
352
353 /* verify bits and pos their msb bits clear and values are valid */
354 BUG_ON(!bits || (shift > KEYLENGTH));
355
356 if (tn) {
357 tn->parent = NULL;
358 tn->slen = pos;
359 tn->pos = pos;
360 tn->bits = bits;
361 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
362 if (bits == KEYLENGTH)
363 tn->full_children = 1;
364 else
365 tn->empty_children = 1ul << bits;
366 }
367
368 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
369 sizeof(struct tnode *) << bits);
370 return tn;
371 }
372
373 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
374 * and no bits are skipped. See discussion in dyntree paper p. 6
375 */
376 static inline int tnode_full(const struct tnode *tn, const struct tnode *n)
377 {
378 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
379 }
380
381 /* Add a child at position i overwriting the old value.
382 * Update the value of full_children and empty_children.
383 */
384 static void put_child(struct tnode *tn, unsigned long i, struct tnode *n)
385 {
386 struct tnode *chi = tnode_get_child(tn, i);
387 int isfull, wasfull;
388
389 BUG_ON(i >= tnode_child_length(tn));
390
391 /* update emptyChildren, overflow into fullChildren */
392 if (n == NULL && chi != NULL)
393 empty_child_inc(tn);
394 if (n != NULL && chi == NULL)
395 empty_child_dec(tn);
396
397 /* update fullChildren */
398 wasfull = tnode_full(tn, chi);
399 isfull = tnode_full(tn, n);
400
401 if (wasfull && !isfull)
402 tn->full_children--;
403 else if (!wasfull && isfull)
404 tn->full_children++;
405
406 if (n && (tn->slen < n->slen))
407 tn->slen = n->slen;
408
409 rcu_assign_pointer(tn->child[i], n);
410 }
411
412 static void update_children(struct tnode *tn)
413 {
414 unsigned long i;
415
416 /* update all of the child parent pointers */
417 for (i = tnode_child_length(tn); i;) {
418 struct tnode *inode = tnode_get_child(tn, --i);
419
420 if (!inode)
421 continue;
422
423 /* Either update the children of a tnode that
424 * already belongs to us or update the child
425 * to point to ourselves.
426 */
427 if (node_parent(inode) == tn)
428 update_children(inode);
429 else
430 node_set_parent(inode, tn);
431 }
432 }
433
434 static inline void put_child_root(struct tnode *tp, struct trie *t,
435 t_key key, struct tnode *n)
436 {
437 if (tp)
438 put_child(tp, get_index(key, tp), n);
439 else
440 rcu_assign_pointer(t->trie, n);
441 }
442
443 static inline void tnode_free_init(struct tnode *tn)
444 {
445 tn->rcu.next = NULL;
446 }
447
448 static inline void tnode_free_append(struct tnode *tn, struct tnode *n)
449 {
450 n->rcu.next = tn->rcu.next;
451 tn->rcu.next = &n->rcu;
452 }
453
454 static void tnode_free(struct tnode *tn)
455 {
456 struct callback_head *head = &tn->rcu;
457
458 while (head) {
459 head = head->next;
460 tnode_free_size += offsetof(struct tnode, child[1 << tn->bits]);
461 node_free(tn);
462
463 tn = container_of(head, struct tnode, rcu);
464 }
465
466 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
467 tnode_free_size = 0;
468 synchronize_rcu();
469 }
470 }
471
472 static void replace(struct trie *t, struct tnode *oldtnode, struct tnode *tn)
473 {
474 struct tnode *tp = node_parent(oldtnode);
475 unsigned long i;
476
477 /* setup the parent pointer out of and back into this node */
478 NODE_INIT_PARENT(tn, tp);
479 put_child_root(tp, t, tn->key, tn);
480
481 /* update all of the child parent pointers */
482 update_children(tn);
483
484 /* all pointers should be clean so we are done */
485 tnode_free(oldtnode);
486
487 /* resize children now that oldtnode is freed */
488 for (i = tnode_child_length(tn); i;) {
489 struct tnode *inode = tnode_get_child(tn, --i);
490
491 /* resize child node */
492 if (tnode_full(tn, inode))
493 resize(t, inode);
494 }
495 }
496
497 static int inflate(struct trie *t, struct tnode *oldtnode)
498 {
499 struct tnode *tn;
500 unsigned long i;
501 t_key m;
502
503 pr_debug("In inflate\n");
504
505 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
506 if (!tn)
507 return -ENOMEM;
508
509 /* prepare oldtnode to be freed */
510 tnode_free_init(oldtnode);
511
512 /* Assemble all of the pointers in our cluster, in this case that
513 * represents all of the pointers out of our allocated nodes that
514 * point to existing tnodes and the links between our allocated
515 * nodes.
516 */
517 for (i = tnode_child_length(oldtnode), m = 1u << tn->pos; i;) {
518 struct tnode *inode = tnode_get_child(oldtnode, --i);
519 struct tnode *node0, *node1;
520 unsigned long j, k;
521
522 /* An empty child */
523 if (inode == NULL)
524 continue;
525
526 /* A leaf or an internal node with skipped bits */
527 if (!tnode_full(oldtnode, inode)) {
528 put_child(tn, get_index(inode->key, tn), inode);
529 continue;
530 }
531
532 /* drop the node in the old tnode free list */
533 tnode_free_append(oldtnode, inode);
534
535 /* An internal node with two children */
536 if (inode->bits == 1) {
537 put_child(tn, 2 * i + 1, tnode_get_child(inode, 1));
538 put_child(tn, 2 * i, tnode_get_child(inode, 0));
539 continue;
540 }
541
542 /* We will replace this node 'inode' with two new
543 * ones, 'node0' and 'node1', each with half of the
544 * original children. The two new nodes will have
545 * a position one bit further down the key and this
546 * means that the "significant" part of their keys
547 * (see the discussion near the top of this file)
548 * will differ by one bit, which will be "0" in
549 * node0's key and "1" in node1's key. Since we are
550 * moving the key position by one step, the bit that
551 * we are moving away from - the bit at position
552 * (tn->pos) - is the one that will differ between
553 * node0 and node1. So... we synthesize that bit in the
554 * two new keys.
555 */
556 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
557 if (!node1)
558 goto nomem;
559 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
560
561 tnode_free_append(tn, node1);
562 if (!node0)
563 goto nomem;
564 tnode_free_append(tn, node0);
565
566 /* populate child pointers in new nodes */
567 for (k = tnode_child_length(inode), j = k / 2; j;) {
568 put_child(node1, --j, tnode_get_child(inode, --k));
569 put_child(node0, j, tnode_get_child(inode, j));
570 put_child(node1, --j, tnode_get_child(inode, --k));
571 put_child(node0, j, tnode_get_child(inode, j));
572 }
573
574 /* link new nodes to parent */
575 NODE_INIT_PARENT(node1, tn);
576 NODE_INIT_PARENT(node0, tn);
577
578 /* link parent to nodes */
579 put_child(tn, 2 * i + 1, node1);
580 put_child(tn, 2 * i, node0);
581 }
582
583 /* setup the parent pointers into and out of this node */
584 replace(t, oldtnode, tn);
585
586 return 0;
587 nomem:
588 /* all pointers should be clean so we are done */
589 tnode_free(tn);
590 return -ENOMEM;
591 }
592
593 static int halve(struct trie *t, struct tnode *oldtnode)
594 {
595 struct tnode *tn;
596 unsigned long i;
597
598 pr_debug("In halve\n");
599
600 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
601 if (!tn)
602 return -ENOMEM;
603
604 /* prepare oldtnode to be freed */
605 tnode_free_init(oldtnode);
606
607 /* Assemble all of the pointers in our cluster, in this case that
608 * represents all of the pointers out of our allocated nodes that
609 * point to existing tnodes and the links between our allocated
610 * nodes.
611 */
612 for (i = tnode_child_length(oldtnode); i;) {
613 struct tnode *node1 = tnode_get_child(oldtnode, --i);
614 struct tnode *node0 = tnode_get_child(oldtnode, --i);
615 struct tnode *inode;
616
617 /* At least one of the children is empty */
618 if (!node1 || !node0) {
619 put_child(tn, i / 2, node1 ? : node0);
620 continue;
621 }
622
623 /* Two nonempty children */
624 inode = tnode_new(node0->key, oldtnode->pos, 1);
625 if (!inode) {
626 tnode_free(tn);
627 return -ENOMEM;
628 }
629 tnode_free_append(tn, inode);
630
631 /* initialize pointers out of node */
632 put_child(inode, 1, node1);
633 put_child(inode, 0, node0);
634 NODE_INIT_PARENT(inode, tn);
635
636 /* link parent to node */
637 put_child(tn, i / 2, inode);
638 }
639
640 /* setup the parent pointers into and out of this node */
641 replace(t, oldtnode, tn);
642
643 return 0;
644 }
645
646 static void collapse(struct trie *t, struct tnode *oldtnode)
647 {
648 struct tnode *n, *tp;
649 unsigned long i;
650
651 /* scan the tnode looking for that one child that might still exist */
652 for (n = NULL, i = tnode_child_length(oldtnode); !n && i;)
653 n = tnode_get_child(oldtnode, --i);
654
655 /* compress one level */
656 tp = node_parent(oldtnode);
657 put_child_root(tp, t, oldtnode->key, n);
658 node_set_parent(n, tp);
659
660 /* drop dead node */
661 node_free(oldtnode);
662 }
663
664 static unsigned char update_suffix(struct tnode *tn)
665 {
666 unsigned char slen = tn->pos;
667 unsigned long stride, i;
668
669 /* search though the list of children looking for nodes that might
670 * have a suffix greater than the one we currently have. This is
671 * why we start with a stride of 2 since a stride of 1 would
672 * represent the nodes with suffix length equal to tn->pos
673 */
674 for (i = 0, stride = 0x2ul ; i < tnode_child_length(tn); i += stride) {
675 struct tnode *n = tnode_get_child(tn, i);
676
677 if (!n || (n->slen <= slen))
678 continue;
679
680 /* update stride and slen based on new value */
681 stride <<= (n->slen - slen);
682 slen = n->slen;
683 i &= ~(stride - 1);
684
685 /* if slen covers all but the last bit we can stop here
686 * there will be nothing longer than that since only node
687 * 0 and 1 << (bits - 1) could have that as their suffix
688 * length.
689 */
690 if ((slen + 1) >= (tn->pos + tn->bits))
691 break;
692 }
693
694 tn->slen = slen;
695
696 return slen;
697 }
698
699 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
700 * the Helsinki University of Technology and Matti Tikkanen of Nokia
701 * Telecommunications, page 6:
702 * "A node is doubled if the ratio of non-empty children to all
703 * children in the *doubled* node is at least 'high'."
704 *
705 * 'high' in this instance is the variable 'inflate_threshold'. It
706 * is expressed as a percentage, so we multiply it with
707 * tnode_child_length() and instead of multiplying by 2 (since the
708 * child array will be doubled by inflate()) and multiplying
709 * the left-hand side by 100 (to handle the percentage thing) we
710 * multiply the left-hand side by 50.
711 *
712 * The left-hand side may look a bit weird: tnode_child_length(tn)
713 * - tn->empty_children is of course the number of non-null children
714 * in the current node. tn->full_children is the number of "full"
715 * children, that is non-null tnodes with a skip value of 0.
716 * All of those will be doubled in the resulting inflated tnode, so
717 * we just count them one extra time here.
718 *
719 * A clearer way to write this would be:
720 *
721 * to_be_doubled = tn->full_children;
722 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
723 * tn->full_children;
724 *
725 * new_child_length = tnode_child_length(tn) * 2;
726 *
727 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
728 * new_child_length;
729 * if (new_fill_factor >= inflate_threshold)
730 *
731 * ...and so on, tho it would mess up the while () loop.
732 *
733 * anyway,
734 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
735 * inflate_threshold
736 *
737 * avoid a division:
738 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
739 * inflate_threshold * new_child_length
740 *
741 * expand not_to_be_doubled and to_be_doubled, and shorten:
742 * 100 * (tnode_child_length(tn) - tn->empty_children +
743 * tn->full_children) >= inflate_threshold * new_child_length
744 *
745 * expand new_child_length:
746 * 100 * (tnode_child_length(tn) - tn->empty_children +
747 * tn->full_children) >=
748 * inflate_threshold * tnode_child_length(tn) * 2
749 *
750 * shorten again:
751 * 50 * (tn->full_children + tnode_child_length(tn) -
752 * tn->empty_children) >= inflate_threshold *
753 * tnode_child_length(tn)
754 *
755 */
756 static bool should_inflate(const struct tnode *tp, const struct tnode *tn)
757 {
758 unsigned long used = tnode_child_length(tn);
759 unsigned long threshold = used;
760
761 /* Keep root node larger */
762 threshold *= tp ? inflate_threshold : inflate_threshold_root;
763 used -= tn->empty_children;
764 used += tn->full_children;
765
766 /* if bits == KEYLENGTH then pos = 0, and will fail below */
767
768 return (used > 1) && tn->pos && ((50 * used) >= threshold);
769 }
770
771 static bool should_halve(const struct tnode *tp, const struct tnode *tn)
772 {
773 unsigned long used = tnode_child_length(tn);
774 unsigned long threshold = used;
775
776 /* Keep root node larger */
777 threshold *= tp ? halve_threshold : halve_threshold_root;
778 used -= tn->empty_children;
779
780 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
781
782 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
783 }
784
785 static bool should_collapse(const struct tnode *tn)
786 {
787 unsigned long used = tnode_child_length(tn);
788
789 used -= tn->empty_children;
790
791 /* account for bits == KEYLENGTH case */
792 if ((tn->bits == KEYLENGTH) && tn->full_children)
793 used -= KEY_MAX;
794
795 /* One child or none, time to drop us from the trie */
796 return used < 2;
797 }
798
799 #define MAX_WORK 10
800 static void resize(struct trie *t, struct tnode *tn)
801 {
802 struct tnode *tp = node_parent(tn);
803 struct tnode __rcu **cptr;
804 int max_work = MAX_WORK;
805
806 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
807 tn, inflate_threshold, halve_threshold);
808
809 /* track the tnode via the pointer from the parent instead of
810 * doing it ourselves. This way we can let RCU fully do its
811 * thing without us interfering
812 */
813 cptr = tp ? &tp->child[get_index(tn->key, tp)] : &t->trie;
814 BUG_ON(tn != rtnl_dereference(*cptr));
815
816 /* Double as long as the resulting node has a number of
817 * nonempty nodes that are above the threshold.
818 */
819 while (should_inflate(tp, tn) && max_work) {
820 if (inflate(t, tn)) {
821 #ifdef CONFIG_IP_FIB_TRIE_STATS
822 this_cpu_inc(t->stats->resize_node_skipped);
823 #endif
824 break;
825 }
826
827 max_work--;
828 tn = rtnl_dereference(*cptr);
829 }
830
831 /* Return if at least one inflate is run */
832 if (max_work != MAX_WORK)
833 return;
834
835 /* Halve as long as the number of empty children in this
836 * node is above threshold.
837 */
838 while (should_halve(tp, tn) && max_work) {
839 if (halve(t, tn)) {
840 #ifdef CONFIG_IP_FIB_TRIE_STATS
841 this_cpu_inc(t->stats->resize_node_skipped);
842 #endif
843 break;
844 }
845
846 max_work--;
847 tn = rtnl_dereference(*cptr);
848 }
849
850 /* Only one child remains */
851 if (should_collapse(tn)) {
852 collapse(t, tn);
853 return;
854 }
855
856 /* Return if at least one deflate was run */
857 if (max_work != MAX_WORK)
858 return;
859
860 /* push the suffix length to the parent node */
861 if (tn->slen > tn->pos) {
862 unsigned char slen = update_suffix(tn);
863
864 if (tp && (slen > tp->slen))
865 tp->slen = slen;
866 }
867 }
868
869 /* readside must use rcu_read_lock currently dump routines
870 via get_fa_head and dump */
871
872 static struct leaf_info *find_leaf_info(struct tnode *l, int plen)
873 {
874 struct hlist_head *head = &l->list;
875 struct leaf_info *li;
876
877 hlist_for_each_entry_rcu(li, head, hlist)
878 if (li->plen == plen)
879 return li;
880
881 return NULL;
882 }
883
884 static inline struct hlist_head *get_fa_head(struct tnode *l, int plen)
885 {
886 struct leaf_info *li = find_leaf_info(l, plen);
887
888 if (!li)
889 return NULL;
890
891 return &li->falh;
892 }
893
894 static void leaf_pull_suffix(struct tnode *l)
895 {
896 struct tnode *tp = node_parent(l);
897
898 while (tp && (tp->slen > tp->pos) && (tp->slen > l->slen)) {
899 if (update_suffix(tp) > l->slen)
900 break;
901 tp = node_parent(tp);
902 }
903 }
904
905 static void leaf_push_suffix(struct tnode *l)
906 {
907 struct tnode *tn = node_parent(l);
908
909 /* if this is a new leaf then tn will be NULL and we can sort
910 * out parent suffix lengths as a part of trie_rebalance
911 */
912 while (tn && (tn->slen < l->slen)) {
913 tn->slen = l->slen;
914 tn = node_parent(tn);
915 }
916 }
917
918 static void remove_leaf_info(struct tnode *l, struct leaf_info *old)
919 {
920 /* record the location of the previous list_info entry */
921 struct hlist_node **pprev = old->hlist.pprev;
922 struct leaf_info *li = hlist_entry(pprev, typeof(*li), hlist.next);
923
924 /* remove the leaf info from the list */
925 hlist_del_rcu(&old->hlist);
926
927 /* only access li if it is pointing at the last valid hlist_node */
928 if (hlist_empty(&l->list) || (*pprev))
929 return;
930
931 /* update the trie with the latest suffix length */
932 l->slen = KEYLENGTH - li->plen;
933 leaf_pull_suffix(l);
934 }
935
936 static void insert_leaf_info(struct tnode *l, struct leaf_info *new)
937 {
938 struct hlist_head *head = &l->list;
939 struct leaf_info *li = NULL, *last = NULL;
940
941 if (hlist_empty(head)) {
942 hlist_add_head_rcu(&new->hlist, head);
943 } else {
944 hlist_for_each_entry(li, head, hlist) {
945 if (new->plen > li->plen)
946 break;
947
948 last = li;
949 }
950 if (last)
951 hlist_add_behind_rcu(&new->hlist, &last->hlist);
952 else
953 hlist_add_before_rcu(&new->hlist, &li->hlist);
954 }
955
956 /* if we added to the tail node then we need to update slen */
957 if (l->slen < (KEYLENGTH - new->plen)) {
958 l->slen = KEYLENGTH - new->plen;
959 leaf_push_suffix(l);
960 }
961 }
962
963 /* rcu_read_lock needs to be hold by caller from readside */
964 static struct tnode *fib_find_node(struct trie *t, u32 key)
965 {
966 struct tnode *n = rcu_dereference_rtnl(t->trie);
967
968 while (n) {
969 unsigned long index = get_index(key, n);
970
971 /* This bit of code is a bit tricky but it combines multiple
972 * checks into a single check. The prefix consists of the
973 * prefix plus zeros for the bits in the cindex. The index
974 * is the difference between the key and this value. From
975 * this we can actually derive several pieces of data.
976 * if (index & (~0ul << bits))
977 * we have a mismatch in skip bits and failed
978 * else
979 * we know the value is cindex
980 */
981 if (index & (~0ul << n->bits))
982 return NULL;
983
984 /* we have found a leaf. Prefixes have already been compared */
985 if (IS_LEAF(n))
986 break;
987
988 n = tnode_get_child_rcu(n, index);
989 }
990
991 return n;
992 }
993
994 /* Return the first fib alias matching TOS with
995 * priority less than or equal to PRIO.
996 */
997 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 tos,
998 u32 prio)
999 {
1000 struct fib_alias *fa;
1001
1002 if (!fah)
1003 return NULL;
1004
1005 hlist_for_each_entry(fa, fah, fa_list) {
1006 if (fa->fa_tos > tos)
1007 continue;
1008 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1009 return fa;
1010 }
1011
1012 return NULL;
1013 }
1014
1015 static void trie_rebalance(struct trie *t, struct tnode *tn)
1016 {
1017 struct tnode *tp;
1018
1019 while ((tp = node_parent(tn)) != NULL) {
1020 resize(t, tn);
1021 tn = tp;
1022 }
1023
1024 /* Handle last (top) tnode */
1025 if (IS_TNODE(tn))
1026 resize(t, tn);
1027 }
1028
1029 /* only used from updater-side */
1030
1031 static struct hlist_head *fib_insert_node(struct trie *t, u32 key, int plen)
1032 {
1033 struct hlist_head *fa_head = NULL;
1034 struct tnode *l, *n, *tp = NULL;
1035 struct leaf_info *li;
1036
1037 li = leaf_info_new(plen);
1038 if (!li)
1039 return NULL;
1040 fa_head = &li->falh;
1041
1042 n = rtnl_dereference(t->trie);
1043
1044 /* If we point to NULL, stop. Either the tree is empty and we should
1045 * just put a new leaf in if, or we have reached an empty child slot,
1046 * and we should just put our new leaf in that.
1047 *
1048 * If we hit a node with a key that does't match then we should stop
1049 * and create a new tnode to replace that node and insert ourselves
1050 * and the other node into the new tnode.
1051 */
1052 while (n) {
1053 unsigned long index = get_index(key, n);
1054
1055 /* This bit of code is a bit tricky but it combines multiple
1056 * checks into a single check. The prefix consists of the
1057 * prefix plus zeros for the "bits" in the prefix. The index
1058 * is the difference between the key and this value. From
1059 * this we can actually derive several pieces of data.
1060 * if !(index >> bits)
1061 * we know the value is child index
1062 * else
1063 * we have a mismatch in skip bits and failed
1064 */
1065 if (index >> n->bits)
1066 break;
1067
1068 /* we have found a leaf. Prefixes have already been compared */
1069 if (IS_LEAF(n)) {
1070 /* Case 1: n is a leaf, and prefixes match*/
1071 insert_leaf_info(n, li);
1072 return fa_head;
1073 }
1074
1075 tp = n;
1076 n = tnode_get_child_rcu(n, index);
1077 }
1078
1079 l = leaf_new(key);
1080 if (!l) {
1081 free_leaf_info(li);
1082 return NULL;
1083 }
1084
1085 insert_leaf_info(l, li);
1086
1087 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1088 *
1089 * Add a new tnode here
1090 * first tnode need some special handling
1091 * leaves us in position for handling as case 3
1092 */
1093 if (n) {
1094 struct tnode *tn;
1095
1096 tn = tnode_new(key, __fls(key ^ n->key), 1);
1097 if (!tn) {
1098 free_leaf_info(li);
1099 node_free(l);
1100 return NULL;
1101 }
1102
1103 /* initialize routes out of node */
1104 NODE_INIT_PARENT(tn, tp);
1105 put_child(tn, get_index(key, tn) ^ 1, n);
1106
1107 /* start adding routes into the node */
1108 put_child_root(tp, t, key, tn);
1109 node_set_parent(n, tn);
1110
1111 /* parent now has a NULL spot where the leaf can go */
1112 tp = tn;
1113 }
1114
1115 /* Case 3: n is NULL, and will just insert a new leaf */
1116 if (tp) {
1117 NODE_INIT_PARENT(l, tp);
1118 put_child(tp, get_index(key, tp), l);
1119 trie_rebalance(t, tp);
1120 } else {
1121 rcu_assign_pointer(t->trie, l);
1122 }
1123
1124 return fa_head;
1125 }
1126
1127 /*
1128 * Caller must hold RTNL.
1129 */
1130 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1131 {
1132 struct trie *t = (struct trie *) tb->tb_data;
1133 struct fib_alias *fa, *new_fa;
1134 struct hlist_head *fa_head = NULL;
1135 struct fib_info *fi;
1136 int plen = cfg->fc_dst_len;
1137 u8 tos = cfg->fc_tos;
1138 u32 key, mask;
1139 int err;
1140 struct tnode *l;
1141
1142 if (plen > 32)
1143 return -EINVAL;
1144
1145 key = ntohl(cfg->fc_dst);
1146
1147 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1148
1149 mask = ntohl(inet_make_mask(plen));
1150
1151 if (key & ~mask)
1152 return -EINVAL;
1153
1154 key = key & mask;
1155
1156 fi = fib_create_info(cfg);
1157 if (IS_ERR(fi)) {
1158 err = PTR_ERR(fi);
1159 goto err;
1160 }
1161
1162 l = fib_find_node(t, key);
1163 fa = NULL;
1164
1165 if (l) {
1166 fa_head = get_fa_head(l, plen);
1167 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1168 }
1169
1170 /* Now fa, if non-NULL, points to the first fib alias
1171 * with the same keys [prefix,tos,priority], if such key already
1172 * exists or to the node before which we will insert new one.
1173 *
1174 * If fa is NULL, we will need to allocate a new one and
1175 * insert to the tail of the section matching the suffix length
1176 * of the new alias.
1177 */
1178
1179 if (fa && fa->fa_tos == tos &&
1180 fa->fa_info->fib_priority == fi->fib_priority) {
1181 struct fib_alias *fa_first, *fa_match;
1182
1183 err = -EEXIST;
1184 if (cfg->fc_nlflags & NLM_F_EXCL)
1185 goto out;
1186
1187 /* We have 2 goals:
1188 * 1. Find exact match for type, scope, fib_info to avoid
1189 * duplicate routes
1190 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1191 */
1192 fa_match = NULL;
1193 fa_first = fa;
1194 hlist_for_each_entry_from(fa, fa_list) {
1195 if (fa->fa_tos != tos)
1196 break;
1197 if (fa->fa_info->fib_priority != fi->fib_priority)
1198 break;
1199 if (fa->fa_type == cfg->fc_type &&
1200 fa->fa_info == fi) {
1201 fa_match = fa;
1202 break;
1203 }
1204 }
1205
1206 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1207 struct fib_info *fi_drop;
1208 u8 state;
1209
1210 fa = fa_first;
1211 if (fa_match) {
1212 if (fa == fa_match)
1213 err = 0;
1214 goto out;
1215 }
1216 err = -ENOBUFS;
1217 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1218 if (new_fa == NULL)
1219 goto out;
1220
1221 fi_drop = fa->fa_info;
1222 new_fa->fa_tos = fa->fa_tos;
1223 new_fa->fa_info = fi;
1224 new_fa->fa_type = cfg->fc_type;
1225 state = fa->fa_state;
1226 new_fa->fa_state = state & ~FA_S_ACCESSED;
1227
1228 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1229 alias_free_mem_rcu(fa);
1230
1231 fib_release_info(fi_drop);
1232 if (state & FA_S_ACCESSED)
1233 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1234 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1235 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1236
1237 goto succeeded;
1238 }
1239 /* Error if we find a perfect match which
1240 * uses the same scope, type, and nexthop
1241 * information.
1242 */
1243 if (fa_match)
1244 goto out;
1245
1246 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1247 fa = fa_first;
1248 }
1249 err = -ENOENT;
1250 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1251 goto out;
1252
1253 err = -ENOBUFS;
1254 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1255 if (new_fa == NULL)
1256 goto out;
1257
1258 new_fa->fa_info = fi;
1259 new_fa->fa_tos = tos;
1260 new_fa->fa_type = cfg->fc_type;
1261 new_fa->fa_state = 0;
1262 /*
1263 * Insert new entry to the list.
1264 */
1265
1266 if (!fa_head) {
1267 fa_head = fib_insert_node(t, key, plen);
1268 if (unlikely(!fa_head)) {
1269 err = -ENOMEM;
1270 goto out_free_new_fa;
1271 }
1272 }
1273
1274 if (!plen)
1275 tb->tb_num_default++;
1276
1277 if (fa) {
1278 hlist_add_before_rcu(&new_fa->fa_list, &fa->fa_list);
1279 } else {
1280 struct fib_alias *last;
1281
1282 hlist_for_each_entry(last, fa_head, fa_list)
1283 fa = last;
1284
1285 if (fa)
1286 hlist_add_behind_rcu(&new_fa->fa_list, &fa->fa_list);
1287 else
1288 hlist_add_head_rcu(&new_fa->fa_list, fa_head);
1289 }
1290
1291 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1292 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1293 &cfg->fc_nlinfo, 0);
1294 succeeded:
1295 return 0;
1296
1297 out_free_new_fa:
1298 kmem_cache_free(fn_alias_kmem, new_fa);
1299 out:
1300 fib_release_info(fi);
1301 err:
1302 return err;
1303 }
1304
1305 static inline t_key prefix_mismatch(t_key key, struct tnode *n)
1306 {
1307 t_key prefix = n->key;
1308
1309 return (key ^ prefix) & (prefix | -prefix);
1310 }
1311
1312 /* should be called with rcu_read_lock */
1313 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1314 struct fib_result *res, int fib_flags)
1315 {
1316 struct trie *t = (struct trie *)tb->tb_data;
1317 #ifdef CONFIG_IP_FIB_TRIE_STATS
1318 struct trie_use_stats __percpu *stats = t->stats;
1319 #endif
1320 const t_key key = ntohl(flp->daddr);
1321 struct tnode *n, *pn;
1322 struct leaf_info *li;
1323 t_key cindex;
1324
1325 n = rcu_dereference(t->trie);
1326 if (!n)
1327 return -EAGAIN;
1328
1329 #ifdef CONFIG_IP_FIB_TRIE_STATS
1330 this_cpu_inc(stats->gets);
1331 #endif
1332
1333 pn = n;
1334 cindex = 0;
1335
1336 /* Step 1: Travel to the longest prefix match in the trie */
1337 for (;;) {
1338 unsigned long index = get_index(key, n);
1339
1340 /* This bit of code is a bit tricky but it combines multiple
1341 * checks into a single check. The prefix consists of the
1342 * prefix plus zeros for the "bits" in the prefix. The index
1343 * is the difference between the key and this value. From
1344 * this we can actually derive several pieces of data.
1345 * if (index & (~0ul << bits))
1346 * we have a mismatch in skip bits and failed
1347 * else
1348 * we know the value is cindex
1349 */
1350 if (index & (~0ul << n->bits))
1351 break;
1352
1353 /* we have found a leaf. Prefixes have already been compared */
1354 if (IS_LEAF(n))
1355 goto found;
1356
1357 /* only record pn and cindex if we are going to be chopping
1358 * bits later. Otherwise we are just wasting cycles.
1359 */
1360 if (n->slen > n->pos) {
1361 pn = n;
1362 cindex = index;
1363 }
1364
1365 n = tnode_get_child_rcu(n, index);
1366 if (unlikely(!n))
1367 goto backtrace;
1368 }
1369
1370 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1371 for (;;) {
1372 /* record the pointer where our next node pointer is stored */
1373 struct tnode __rcu **cptr = n->child;
1374
1375 /* This test verifies that none of the bits that differ
1376 * between the key and the prefix exist in the region of
1377 * the lsb and higher in the prefix.
1378 */
1379 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1380 goto backtrace;
1381
1382 /* exit out and process leaf */
1383 if (unlikely(IS_LEAF(n)))
1384 break;
1385
1386 /* Don't bother recording parent info. Since we are in
1387 * prefix match mode we will have to come back to wherever
1388 * we started this traversal anyway
1389 */
1390
1391 while ((n = rcu_dereference(*cptr)) == NULL) {
1392 backtrace:
1393 #ifdef CONFIG_IP_FIB_TRIE_STATS
1394 if (!n)
1395 this_cpu_inc(stats->null_node_hit);
1396 #endif
1397 /* If we are at cindex 0 there are no more bits for
1398 * us to strip at this level so we must ascend back
1399 * up one level to see if there are any more bits to
1400 * be stripped there.
1401 */
1402 while (!cindex) {
1403 t_key pkey = pn->key;
1404
1405 pn = node_parent_rcu(pn);
1406 if (unlikely(!pn))
1407 return -EAGAIN;
1408 #ifdef CONFIG_IP_FIB_TRIE_STATS
1409 this_cpu_inc(stats->backtrack);
1410 #endif
1411 /* Get Child's index */
1412 cindex = get_index(pkey, pn);
1413 }
1414
1415 /* strip the least significant bit from the cindex */
1416 cindex &= cindex - 1;
1417
1418 /* grab pointer for next child node */
1419 cptr = &pn->child[cindex];
1420 }
1421 }
1422
1423 found:
1424 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1425 hlist_for_each_entry_rcu(li, &n->list, hlist) {
1426 struct fib_alias *fa;
1427
1428 if ((key ^ n->key) & li->mask_plen)
1429 continue;
1430
1431 hlist_for_each_entry_rcu(fa, &li->falh, fa_list) {
1432 struct fib_info *fi = fa->fa_info;
1433 int nhsel, err;
1434
1435 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1436 continue;
1437 if (fi->fib_dead)
1438 continue;
1439 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1440 continue;
1441 fib_alias_accessed(fa);
1442 err = fib_props[fa->fa_type].error;
1443 if (unlikely(err < 0)) {
1444 #ifdef CONFIG_IP_FIB_TRIE_STATS
1445 this_cpu_inc(stats->semantic_match_passed);
1446 #endif
1447 return err;
1448 }
1449 if (fi->fib_flags & RTNH_F_DEAD)
1450 continue;
1451 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1452 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1453
1454 if (nh->nh_flags & RTNH_F_DEAD)
1455 continue;
1456 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1457 continue;
1458
1459 if (!(fib_flags & FIB_LOOKUP_NOREF))
1460 atomic_inc(&fi->fib_clntref);
1461
1462 res->prefixlen = li->plen;
1463 res->nh_sel = nhsel;
1464 res->type = fa->fa_type;
1465 res->scope = fi->fib_scope;
1466 res->fi = fi;
1467 res->table = tb;
1468 res->fa_head = &li->falh;
1469 #ifdef CONFIG_IP_FIB_TRIE_STATS
1470 this_cpu_inc(stats->semantic_match_passed);
1471 #endif
1472 return err;
1473 }
1474 }
1475
1476 #ifdef CONFIG_IP_FIB_TRIE_STATS
1477 this_cpu_inc(stats->semantic_match_miss);
1478 #endif
1479 }
1480 goto backtrace;
1481 }
1482 EXPORT_SYMBOL_GPL(fib_table_lookup);
1483
1484 /*
1485 * Remove the leaf and return parent.
1486 */
1487 static void trie_leaf_remove(struct trie *t, struct tnode *l)
1488 {
1489 struct tnode *tp = node_parent(l);
1490
1491 pr_debug("entering trie_leaf_remove(%p)\n", l);
1492
1493 if (tp) {
1494 put_child(tp, get_index(l->key, tp), NULL);
1495 trie_rebalance(t, tp);
1496 } else {
1497 RCU_INIT_POINTER(t->trie, NULL);
1498 }
1499
1500 node_free(l);
1501 }
1502
1503 /*
1504 * Caller must hold RTNL.
1505 */
1506 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1507 {
1508 struct trie *t = (struct trie *) tb->tb_data;
1509 u32 key, mask;
1510 int plen = cfg->fc_dst_len;
1511 u8 tos = cfg->fc_tos;
1512 struct fib_alias *fa, *fa_to_delete;
1513 struct hlist_head *fa_head;
1514 struct tnode *l;
1515 struct leaf_info *li;
1516
1517 if (plen > 32)
1518 return -EINVAL;
1519
1520 key = ntohl(cfg->fc_dst);
1521 mask = ntohl(inet_make_mask(plen));
1522
1523 if (key & ~mask)
1524 return -EINVAL;
1525
1526 key = key & mask;
1527 l = fib_find_node(t, key);
1528
1529 if (!l)
1530 return -ESRCH;
1531
1532 li = find_leaf_info(l, plen);
1533
1534 if (!li)
1535 return -ESRCH;
1536
1537 fa_head = &li->falh;
1538 fa = fib_find_alias(fa_head, tos, 0);
1539
1540 if (!fa)
1541 return -ESRCH;
1542
1543 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1544
1545 fa_to_delete = NULL;
1546 hlist_for_each_entry_from(fa, fa_list) {
1547 struct fib_info *fi = fa->fa_info;
1548
1549 if (fa->fa_tos != tos)
1550 break;
1551
1552 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1553 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1554 fa->fa_info->fib_scope == cfg->fc_scope) &&
1555 (!cfg->fc_prefsrc ||
1556 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1557 (!cfg->fc_protocol ||
1558 fi->fib_protocol == cfg->fc_protocol) &&
1559 fib_nh_match(cfg, fi) == 0) {
1560 fa_to_delete = fa;
1561 break;
1562 }
1563 }
1564
1565 if (!fa_to_delete)
1566 return -ESRCH;
1567
1568 fa = fa_to_delete;
1569 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1570 &cfg->fc_nlinfo, 0);
1571
1572 hlist_del_rcu(&fa->fa_list);
1573
1574 if (!plen)
1575 tb->tb_num_default--;
1576
1577 if (hlist_empty(fa_head)) {
1578 remove_leaf_info(l, li);
1579 free_leaf_info(li);
1580 }
1581
1582 if (hlist_empty(&l->list))
1583 trie_leaf_remove(t, l);
1584
1585 if (fa->fa_state & FA_S_ACCESSED)
1586 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1587
1588 fib_release_info(fa->fa_info);
1589 alias_free_mem_rcu(fa);
1590 return 0;
1591 }
1592
1593 static int trie_flush_list(struct hlist_head *head)
1594 {
1595 struct hlist_node *tmp;
1596 struct fib_alias *fa;
1597 int found = 0;
1598
1599 hlist_for_each_entry_safe(fa, tmp, head, fa_list) {
1600 struct fib_info *fi = fa->fa_info;
1601
1602 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1603 hlist_del_rcu(&fa->fa_list);
1604 fib_release_info(fa->fa_info);
1605 alias_free_mem_rcu(fa);
1606 found++;
1607 }
1608 }
1609 return found;
1610 }
1611
1612 static int trie_flush_leaf(struct tnode *l)
1613 {
1614 int found = 0;
1615 struct hlist_node *tmp;
1616 struct leaf_info *li;
1617 unsigned char plen = KEYLENGTH;
1618
1619 hlist_for_each_entry_safe(li, tmp, &l->list, hlist) {
1620 found += trie_flush_list(&li->falh);
1621
1622 if (hlist_empty(&li->falh)) {
1623 hlist_del_rcu(&li->hlist);
1624 free_leaf_info(li);
1625 continue;
1626 }
1627
1628 plen = li->plen;
1629 }
1630
1631 l->slen = KEYLENGTH - plen;
1632
1633 return found;
1634 }
1635
1636 /*
1637 * Scan for the next right leaf starting at node p->child[idx]
1638 * Since we have back pointer, no recursion necessary.
1639 */
1640 static struct tnode *leaf_walk_rcu(struct tnode *p, struct tnode *c)
1641 {
1642 do {
1643 unsigned long idx = c ? idx = get_index(c->key, p) + 1 : 0;
1644
1645 while (idx < tnode_child_length(p)) {
1646 c = tnode_get_child_rcu(p, idx++);
1647 if (!c)
1648 continue;
1649
1650 if (IS_LEAF(c))
1651 return c;
1652
1653 /* Rescan start scanning in new node */
1654 p = c;
1655 idx = 0;
1656 }
1657
1658 /* Node empty, walk back up to parent */
1659 c = p;
1660 } while ((p = node_parent_rcu(c)) != NULL);
1661
1662 return NULL; /* Root of trie */
1663 }
1664
1665 static struct tnode *trie_firstleaf(struct trie *t)
1666 {
1667 struct tnode *n = rcu_dereference_rtnl(t->trie);
1668
1669 if (!n)
1670 return NULL;
1671
1672 if (IS_LEAF(n)) /* trie is just a leaf */
1673 return n;
1674
1675 return leaf_walk_rcu(n, NULL);
1676 }
1677
1678 static struct tnode *trie_nextleaf(struct tnode *l)
1679 {
1680 struct tnode *p = node_parent_rcu(l);
1681
1682 if (!p)
1683 return NULL; /* trie with just one leaf */
1684
1685 return leaf_walk_rcu(p, l);
1686 }
1687
1688 static struct tnode *trie_leafindex(struct trie *t, int index)
1689 {
1690 struct tnode *l = trie_firstleaf(t);
1691
1692 while (l && index-- > 0)
1693 l = trie_nextleaf(l);
1694
1695 return l;
1696 }
1697
1698
1699 /*
1700 * Caller must hold RTNL.
1701 */
1702 int fib_table_flush(struct fib_table *tb)
1703 {
1704 struct trie *t = (struct trie *) tb->tb_data;
1705 struct tnode *l, *ll = NULL;
1706 int found = 0;
1707
1708 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1709 found += trie_flush_leaf(l);
1710
1711 if (ll) {
1712 if (hlist_empty(&ll->list))
1713 trie_leaf_remove(t, ll);
1714 else
1715 leaf_pull_suffix(ll);
1716 }
1717
1718 ll = l;
1719 }
1720
1721 if (ll) {
1722 if (hlist_empty(&ll->list))
1723 trie_leaf_remove(t, ll);
1724 else
1725 leaf_pull_suffix(ll);
1726 }
1727
1728 pr_debug("trie_flush found=%d\n", found);
1729 return found;
1730 }
1731
1732 void fib_free_table(struct fib_table *tb)
1733 {
1734 #ifdef CONFIG_IP_FIB_TRIE_STATS
1735 struct trie *t = (struct trie *)tb->tb_data;
1736
1737 free_percpu(t->stats);
1738 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1739 kfree(tb);
1740 }
1741
1742 static int fn_trie_dump_fa(t_key key, int plen, struct hlist_head *fah,
1743 struct fib_table *tb,
1744 struct sk_buff *skb, struct netlink_callback *cb)
1745 {
1746 int i, s_i;
1747 struct fib_alias *fa;
1748 __be32 xkey = htonl(key);
1749
1750 s_i = cb->args[5];
1751 i = 0;
1752
1753 /* rcu_read_lock is hold by caller */
1754
1755 hlist_for_each_entry_rcu(fa, fah, fa_list) {
1756 if (i < s_i) {
1757 i++;
1758 continue;
1759 }
1760
1761 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1762 cb->nlh->nlmsg_seq,
1763 RTM_NEWROUTE,
1764 tb->tb_id,
1765 fa->fa_type,
1766 xkey,
1767 plen,
1768 fa->fa_tos,
1769 fa->fa_info, NLM_F_MULTI) < 0) {
1770 cb->args[5] = i;
1771 return -1;
1772 }
1773 i++;
1774 }
1775 cb->args[5] = i;
1776 return skb->len;
1777 }
1778
1779 static int fn_trie_dump_leaf(struct tnode *l, struct fib_table *tb,
1780 struct sk_buff *skb, struct netlink_callback *cb)
1781 {
1782 struct leaf_info *li;
1783 int i, s_i;
1784
1785 s_i = cb->args[4];
1786 i = 0;
1787
1788 /* rcu_read_lock is hold by caller */
1789 hlist_for_each_entry_rcu(li, &l->list, hlist) {
1790 if (i < s_i) {
1791 i++;
1792 continue;
1793 }
1794
1795 if (i > s_i)
1796 cb->args[5] = 0;
1797
1798 if (hlist_empty(&li->falh))
1799 continue;
1800
1801 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1802 cb->args[4] = i;
1803 return -1;
1804 }
1805 i++;
1806 }
1807
1808 cb->args[4] = i;
1809 return skb->len;
1810 }
1811
1812 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1813 struct netlink_callback *cb)
1814 {
1815 struct tnode *l;
1816 struct trie *t = (struct trie *) tb->tb_data;
1817 t_key key = cb->args[2];
1818 int count = cb->args[3];
1819
1820 rcu_read_lock();
1821 /* Dump starting at last key.
1822 * Note: 0.0.0.0/0 (ie default) is first key.
1823 */
1824 if (count == 0)
1825 l = trie_firstleaf(t);
1826 else {
1827 /* Normally, continue from last key, but if that is missing
1828 * fallback to using slow rescan
1829 */
1830 l = fib_find_node(t, key);
1831 if (!l)
1832 l = trie_leafindex(t, count);
1833 }
1834
1835 while (l) {
1836 cb->args[2] = l->key;
1837 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1838 cb->args[3] = count;
1839 rcu_read_unlock();
1840 return -1;
1841 }
1842
1843 ++count;
1844 l = trie_nextleaf(l);
1845 memset(&cb->args[4], 0,
1846 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1847 }
1848 cb->args[3] = count;
1849 rcu_read_unlock();
1850
1851 return skb->len;
1852 }
1853
1854 void __init fib_trie_init(void)
1855 {
1856 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1857 sizeof(struct fib_alias),
1858 0, SLAB_PANIC, NULL);
1859
1860 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1861 max(sizeof(struct tnode),
1862 sizeof(struct leaf_info)),
1863 0, SLAB_PANIC, NULL);
1864 }
1865
1866
1867 struct fib_table *fib_trie_table(u32 id)
1868 {
1869 struct fib_table *tb;
1870 struct trie *t;
1871
1872 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1873 GFP_KERNEL);
1874 if (tb == NULL)
1875 return NULL;
1876
1877 tb->tb_id = id;
1878 tb->tb_default = -1;
1879 tb->tb_num_default = 0;
1880
1881 t = (struct trie *) tb->tb_data;
1882 RCU_INIT_POINTER(t->trie, NULL);
1883 #ifdef CONFIG_IP_FIB_TRIE_STATS
1884 t->stats = alloc_percpu(struct trie_use_stats);
1885 if (!t->stats) {
1886 kfree(tb);
1887 tb = NULL;
1888 }
1889 #endif
1890
1891 return tb;
1892 }
1893
1894 #ifdef CONFIG_PROC_FS
1895 /* Depth first Trie walk iterator */
1896 struct fib_trie_iter {
1897 struct seq_net_private p;
1898 struct fib_table *tb;
1899 struct tnode *tnode;
1900 unsigned int index;
1901 unsigned int depth;
1902 };
1903
1904 static struct tnode *fib_trie_get_next(struct fib_trie_iter *iter)
1905 {
1906 unsigned long cindex = iter->index;
1907 struct tnode *tn = iter->tnode;
1908 struct tnode *p;
1909
1910 /* A single entry routing table */
1911 if (!tn)
1912 return NULL;
1913
1914 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
1915 iter->tnode, iter->index, iter->depth);
1916 rescan:
1917 while (cindex < tnode_child_length(tn)) {
1918 struct tnode *n = tnode_get_child_rcu(tn, cindex);
1919
1920 if (n) {
1921 if (IS_LEAF(n)) {
1922 iter->tnode = tn;
1923 iter->index = cindex + 1;
1924 } else {
1925 /* push down one level */
1926 iter->tnode = n;
1927 iter->index = 0;
1928 ++iter->depth;
1929 }
1930 return n;
1931 }
1932
1933 ++cindex;
1934 }
1935
1936 /* Current node exhausted, pop back up */
1937 p = node_parent_rcu(tn);
1938 if (p) {
1939 cindex = get_index(tn->key, p) + 1;
1940 tn = p;
1941 --iter->depth;
1942 goto rescan;
1943 }
1944
1945 /* got root? */
1946 return NULL;
1947 }
1948
1949 static struct tnode *fib_trie_get_first(struct fib_trie_iter *iter,
1950 struct trie *t)
1951 {
1952 struct tnode *n;
1953
1954 if (!t)
1955 return NULL;
1956
1957 n = rcu_dereference(t->trie);
1958 if (!n)
1959 return NULL;
1960
1961 if (IS_TNODE(n)) {
1962 iter->tnode = n;
1963 iter->index = 0;
1964 iter->depth = 1;
1965 } else {
1966 iter->tnode = NULL;
1967 iter->index = 0;
1968 iter->depth = 0;
1969 }
1970
1971 return n;
1972 }
1973
1974 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
1975 {
1976 struct tnode *n;
1977 struct fib_trie_iter iter;
1978
1979 memset(s, 0, sizeof(*s));
1980
1981 rcu_read_lock();
1982 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
1983 if (IS_LEAF(n)) {
1984 struct leaf_info *li;
1985
1986 s->leaves++;
1987 s->totdepth += iter.depth;
1988 if (iter.depth > s->maxdepth)
1989 s->maxdepth = iter.depth;
1990
1991 hlist_for_each_entry_rcu(li, &n->list, hlist)
1992 ++s->prefixes;
1993 } else {
1994 s->tnodes++;
1995 if (n->bits < MAX_STAT_DEPTH)
1996 s->nodesizes[n->bits]++;
1997 s->nullpointers += n->empty_children;
1998 }
1999 }
2000 rcu_read_unlock();
2001 }
2002
2003 /*
2004 * This outputs /proc/net/fib_triestats
2005 */
2006 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2007 {
2008 unsigned int i, max, pointers, bytes, avdepth;
2009
2010 if (stat->leaves)
2011 avdepth = stat->totdepth*100 / stat->leaves;
2012 else
2013 avdepth = 0;
2014
2015 seq_printf(seq, "\tAver depth: %u.%02d\n",
2016 avdepth / 100, avdepth % 100);
2017 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2018
2019 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2020 bytes = sizeof(struct tnode) * stat->leaves;
2021
2022 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2023 bytes += sizeof(struct leaf_info) * stat->prefixes;
2024
2025 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2026 bytes += sizeof(struct tnode) * stat->tnodes;
2027
2028 max = MAX_STAT_DEPTH;
2029 while (max > 0 && stat->nodesizes[max-1] == 0)
2030 max--;
2031
2032 pointers = 0;
2033 for (i = 1; i < max; i++)
2034 if (stat->nodesizes[i] != 0) {
2035 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2036 pointers += (1<<i) * stat->nodesizes[i];
2037 }
2038 seq_putc(seq, '\n');
2039 seq_printf(seq, "\tPointers: %u\n", pointers);
2040
2041 bytes += sizeof(struct tnode *) * pointers;
2042 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2043 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2044 }
2045
2046 #ifdef CONFIG_IP_FIB_TRIE_STATS
2047 static void trie_show_usage(struct seq_file *seq,
2048 const struct trie_use_stats __percpu *stats)
2049 {
2050 struct trie_use_stats s = { 0 };
2051 int cpu;
2052
2053 /* loop through all of the CPUs and gather up the stats */
2054 for_each_possible_cpu(cpu) {
2055 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2056
2057 s.gets += pcpu->gets;
2058 s.backtrack += pcpu->backtrack;
2059 s.semantic_match_passed += pcpu->semantic_match_passed;
2060 s.semantic_match_miss += pcpu->semantic_match_miss;
2061 s.null_node_hit += pcpu->null_node_hit;
2062 s.resize_node_skipped += pcpu->resize_node_skipped;
2063 }
2064
2065 seq_printf(seq, "\nCounters:\n---------\n");
2066 seq_printf(seq, "gets = %u\n", s.gets);
2067 seq_printf(seq, "backtracks = %u\n", s.backtrack);
2068 seq_printf(seq, "semantic match passed = %u\n",
2069 s.semantic_match_passed);
2070 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2071 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2072 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2073 }
2074 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2075
2076 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2077 {
2078 if (tb->tb_id == RT_TABLE_LOCAL)
2079 seq_puts(seq, "Local:\n");
2080 else if (tb->tb_id == RT_TABLE_MAIN)
2081 seq_puts(seq, "Main:\n");
2082 else
2083 seq_printf(seq, "Id %d:\n", tb->tb_id);
2084 }
2085
2086
2087 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2088 {
2089 struct net *net = (struct net *)seq->private;
2090 unsigned int h;
2091
2092 seq_printf(seq,
2093 "Basic info: size of leaf:"
2094 " %Zd bytes, size of tnode: %Zd bytes.\n",
2095 sizeof(struct tnode), sizeof(struct tnode));
2096
2097 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2098 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2099 struct fib_table *tb;
2100
2101 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2102 struct trie *t = (struct trie *) tb->tb_data;
2103 struct trie_stat stat;
2104
2105 if (!t)
2106 continue;
2107
2108 fib_table_print(seq, tb);
2109
2110 trie_collect_stats(t, &stat);
2111 trie_show_stats(seq, &stat);
2112 #ifdef CONFIG_IP_FIB_TRIE_STATS
2113 trie_show_usage(seq, t->stats);
2114 #endif
2115 }
2116 }
2117
2118 return 0;
2119 }
2120
2121 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2122 {
2123 return single_open_net(inode, file, fib_triestat_seq_show);
2124 }
2125
2126 static const struct file_operations fib_triestat_fops = {
2127 .owner = THIS_MODULE,
2128 .open = fib_triestat_seq_open,
2129 .read = seq_read,
2130 .llseek = seq_lseek,
2131 .release = single_release_net,
2132 };
2133
2134 static struct tnode *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2135 {
2136 struct fib_trie_iter *iter = seq->private;
2137 struct net *net = seq_file_net(seq);
2138 loff_t idx = 0;
2139 unsigned int h;
2140
2141 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2142 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2143 struct fib_table *tb;
2144
2145 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2146 struct tnode *n;
2147
2148 for (n = fib_trie_get_first(iter,
2149 (struct trie *) tb->tb_data);
2150 n; n = fib_trie_get_next(iter))
2151 if (pos == idx++) {
2152 iter->tb = tb;
2153 return n;
2154 }
2155 }
2156 }
2157
2158 return NULL;
2159 }
2160
2161 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2162 __acquires(RCU)
2163 {
2164 rcu_read_lock();
2165 return fib_trie_get_idx(seq, *pos);
2166 }
2167
2168 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2169 {
2170 struct fib_trie_iter *iter = seq->private;
2171 struct net *net = seq_file_net(seq);
2172 struct fib_table *tb = iter->tb;
2173 struct hlist_node *tb_node;
2174 unsigned int h;
2175 struct tnode *n;
2176
2177 ++*pos;
2178 /* next node in same table */
2179 n = fib_trie_get_next(iter);
2180 if (n)
2181 return n;
2182
2183 /* walk rest of this hash chain */
2184 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2185 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2186 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2187 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2188 if (n)
2189 goto found;
2190 }
2191
2192 /* new hash chain */
2193 while (++h < FIB_TABLE_HASHSZ) {
2194 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2195 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2196 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2197 if (n)
2198 goto found;
2199 }
2200 }
2201 return NULL;
2202
2203 found:
2204 iter->tb = tb;
2205 return n;
2206 }
2207
2208 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2209 __releases(RCU)
2210 {
2211 rcu_read_unlock();
2212 }
2213
2214 static void seq_indent(struct seq_file *seq, int n)
2215 {
2216 while (n-- > 0)
2217 seq_puts(seq, " ");
2218 }
2219
2220 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2221 {
2222 switch (s) {
2223 case RT_SCOPE_UNIVERSE: return "universe";
2224 case RT_SCOPE_SITE: return "site";
2225 case RT_SCOPE_LINK: return "link";
2226 case RT_SCOPE_HOST: return "host";
2227 case RT_SCOPE_NOWHERE: return "nowhere";
2228 default:
2229 snprintf(buf, len, "scope=%d", s);
2230 return buf;
2231 }
2232 }
2233
2234 static const char *const rtn_type_names[__RTN_MAX] = {
2235 [RTN_UNSPEC] = "UNSPEC",
2236 [RTN_UNICAST] = "UNICAST",
2237 [RTN_LOCAL] = "LOCAL",
2238 [RTN_BROADCAST] = "BROADCAST",
2239 [RTN_ANYCAST] = "ANYCAST",
2240 [RTN_MULTICAST] = "MULTICAST",
2241 [RTN_BLACKHOLE] = "BLACKHOLE",
2242 [RTN_UNREACHABLE] = "UNREACHABLE",
2243 [RTN_PROHIBIT] = "PROHIBIT",
2244 [RTN_THROW] = "THROW",
2245 [RTN_NAT] = "NAT",
2246 [RTN_XRESOLVE] = "XRESOLVE",
2247 };
2248
2249 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2250 {
2251 if (t < __RTN_MAX && rtn_type_names[t])
2252 return rtn_type_names[t];
2253 snprintf(buf, len, "type %u", t);
2254 return buf;
2255 }
2256
2257 /* Pretty print the trie */
2258 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2259 {
2260 const struct fib_trie_iter *iter = seq->private;
2261 struct tnode *n = v;
2262
2263 if (!node_parent_rcu(n))
2264 fib_table_print(seq, iter->tb);
2265
2266 if (IS_TNODE(n)) {
2267 __be32 prf = htonl(n->key);
2268
2269 seq_indent(seq, iter->depth-1);
2270 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2271 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2272 n->full_children, n->empty_children);
2273 } else {
2274 struct leaf_info *li;
2275 __be32 val = htonl(n->key);
2276
2277 seq_indent(seq, iter->depth);
2278 seq_printf(seq, " |-- %pI4\n", &val);
2279
2280 hlist_for_each_entry_rcu(li, &n->list, hlist) {
2281 struct fib_alias *fa;
2282
2283 hlist_for_each_entry_rcu(fa, &li->falh, fa_list) {
2284 char buf1[32], buf2[32];
2285
2286 seq_indent(seq, iter->depth+1);
2287 seq_printf(seq, " /%d %s %s", li->plen,
2288 rtn_scope(buf1, sizeof(buf1),
2289 fa->fa_info->fib_scope),
2290 rtn_type(buf2, sizeof(buf2),
2291 fa->fa_type));
2292 if (fa->fa_tos)
2293 seq_printf(seq, " tos=%d", fa->fa_tos);
2294 seq_putc(seq, '\n');
2295 }
2296 }
2297 }
2298
2299 return 0;
2300 }
2301
2302 static const struct seq_operations fib_trie_seq_ops = {
2303 .start = fib_trie_seq_start,
2304 .next = fib_trie_seq_next,
2305 .stop = fib_trie_seq_stop,
2306 .show = fib_trie_seq_show,
2307 };
2308
2309 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2310 {
2311 return seq_open_net(inode, file, &fib_trie_seq_ops,
2312 sizeof(struct fib_trie_iter));
2313 }
2314
2315 static const struct file_operations fib_trie_fops = {
2316 .owner = THIS_MODULE,
2317 .open = fib_trie_seq_open,
2318 .read = seq_read,
2319 .llseek = seq_lseek,
2320 .release = seq_release_net,
2321 };
2322
2323 struct fib_route_iter {
2324 struct seq_net_private p;
2325 struct trie *main_trie;
2326 loff_t pos;
2327 t_key key;
2328 };
2329
2330 static struct tnode *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2331 {
2332 struct tnode *l = NULL;
2333 struct trie *t = iter->main_trie;
2334
2335 /* use cache location of last found key */
2336 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2337 pos -= iter->pos;
2338 else {
2339 iter->pos = 0;
2340 l = trie_firstleaf(t);
2341 }
2342
2343 while (l && pos-- > 0) {
2344 iter->pos++;
2345 l = trie_nextleaf(l);
2346 }
2347
2348 if (l)
2349 iter->key = pos; /* remember it */
2350 else
2351 iter->pos = 0; /* forget it */
2352
2353 return l;
2354 }
2355
2356 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2357 __acquires(RCU)
2358 {
2359 struct fib_route_iter *iter = seq->private;
2360 struct fib_table *tb;
2361
2362 rcu_read_lock();
2363 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2364 if (!tb)
2365 return NULL;
2366
2367 iter->main_trie = (struct trie *) tb->tb_data;
2368 if (*pos == 0)
2369 return SEQ_START_TOKEN;
2370 else
2371 return fib_route_get_idx(iter, *pos - 1);
2372 }
2373
2374 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2375 {
2376 struct fib_route_iter *iter = seq->private;
2377 struct tnode *l = v;
2378
2379 ++*pos;
2380 if (v == SEQ_START_TOKEN) {
2381 iter->pos = 0;
2382 l = trie_firstleaf(iter->main_trie);
2383 } else {
2384 iter->pos++;
2385 l = trie_nextleaf(l);
2386 }
2387
2388 if (l)
2389 iter->key = l->key;
2390 else
2391 iter->pos = 0;
2392 return l;
2393 }
2394
2395 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2396 __releases(RCU)
2397 {
2398 rcu_read_unlock();
2399 }
2400
2401 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2402 {
2403 unsigned int flags = 0;
2404
2405 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2406 flags = RTF_REJECT;
2407 if (fi && fi->fib_nh->nh_gw)
2408 flags |= RTF_GATEWAY;
2409 if (mask == htonl(0xFFFFFFFF))
2410 flags |= RTF_HOST;
2411 flags |= RTF_UP;
2412 return flags;
2413 }
2414
2415 /*
2416 * This outputs /proc/net/route.
2417 * The format of the file is not supposed to be changed
2418 * and needs to be same as fib_hash output to avoid breaking
2419 * legacy utilities
2420 */
2421 static int fib_route_seq_show(struct seq_file *seq, void *v)
2422 {
2423 struct tnode *l = v;
2424 struct leaf_info *li;
2425
2426 if (v == SEQ_START_TOKEN) {
2427 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2428 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2429 "\tWindow\tIRTT");
2430 return 0;
2431 }
2432
2433 hlist_for_each_entry_rcu(li, &l->list, hlist) {
2434 struct fib_alias *fa;
2435 __be32 mask, prefix;
2436
2437 mask = inet_make_mask(li->plen);
2438 prefix = htonl(l->key);
2439
2440 hlist_for_each_entry_rcu(fa, &li->falh, fa_list) {
2441 const struct fib_info *fi = fa->fa_info;
2442 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2443
2444 if (fa->fa_type == RTN_BROADCAST
2445 || fa->fa_type == RTN_MULTICAST)
2446 continue;
2447
2448 seq_setwidth(seq, 127);
2449
2450 if (fi)
2451 seq_printf(seq,
2452 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2453 "%d\t%08X\t%d\t%u\t%u",
2454 fi->fib_dev ? fi->fib_dev->name : "*",
2455 prefix,
2456 fi->fib_nh->nh_gw, flags, 0, 0,
2457 fi->fib_priority,
2458 mask,
2459 (fi->fib_advmss ?
2460 fi->fib_advmss + 40 : 0),
2461 fi->fib_window,
2462 fi->fib_rtt >> 3);
2463 else
2464 seq_printf(seq,
2465 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2466 "%d\t%08X\t%d\t%u\t%u",
2467 prefix, 0, flags, 0, 0, 0,
2468 mask, 0, 0, 0);
2469
2470 seq_pad(seq, '\n');
2471 }
2472 }
2473
2474 return 0;
2475 }
2476
2477 static const struct seq_operations fib_route_seq_ops = {
2478 .start = fib_route_seq_start,
2479 .next = fib_route_seq_next,
2480 .stop = fib_route_seq_stop,
2481 .show = fib_route_seq_show,
2482 };
2483
2484 static int fib_route_seq_open(struct inode *inode, struct file *file)
2485 {
2486 return seq_open_net(inode, file, &fib_route_seq_ops,
2487 sizeof(struct fib_route_iter));
2488 }
2489
2490 static const struct file_operations fib_route_fops = {
2491 .owner = THIS_MODULE,
2492 .open = fib_route_seq_open,
2493 .read = seq_read,
2494 .llseek = seq_lseek,
2495 .release = seq_release_net,
2496 };
2497
2498 int __net_init fib_proc_init(struct net *net)
2499 {
2500 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2501 goto out1;
2502
2503 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2504 &fib_triestat_fops))
2505 goto out2;
2506
2507 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2508 goto out3;
2509
2510 return 0;
2511
2512 out3:
2513 remove_proc_entry("fib_triestat", net->proc_net);
2514 out2:
2515 remove_proc_entry("fib_trie", net->proc_net);
2516 out1:
2517 return -ENOMEM;
2518 }
2519
2520 void __net_exit fib_proc_exit(struct net *net)
2521 {
2522 remove_proc_entry("fib_trie", net->proc_net);
2523 remove_proc_entry("fib_triestat", net->proc_net);
2524 remove_proc_entry("route", net->proc_net);
2525 }
2526
2527 #endif /* CONFIG_PROC_FS */