]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/fib_trie.c
fib_trie: Move rcu from key_vector to tnode, add accessors.
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally described in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
49 */
50
51 #define VERSION "0.409"
52
53 #include <asm/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <net/net_namespace.h>
76 #include <net/ip.h>
77 #include <net/protocol.h>
78 #include <net/route.h>
79 #include <net/tcp.h>
80 #include <net/sock.h>
81 #include <net/ip_fib.h>
82 #include <net/switchdev.h>
83 #include "fib_lookup.h"
84
85 #define MAX_STAT_DEPTH 32
86
87 #define KEYLENGTH (8*sizeof(t_key))
88 #define KEY_MAX ((t_key)~0)
89
90 typedef unsigned int t_key;
91
92 #define IS_TNODE(n) ((n)->bits)
93 #define IS_LEAF(n) (!(n)->bits)
94
95 struct key_vector {
96 t_key empty_children; /* KEYLENGTH bits needed */
97 t_key full_children; /* KEYLENGTH bits needed */
98 struct key_vector __rcu *parent;
99
100 t_key key;
101 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
102 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
103 unsigned char slen;
104 union {
105 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
106 struct hlist_head leaf;
107 /* This array is valid if (pos | bits) > 0 (TNODE) */
108 struct key_vector __rcu *tnode[0];
109 };
110 };
111
112 struct tnode {
113 struct rcu_head rcu;
114 struct key_vector kv[1];
115 #define tn_bits kv[0].bits
116 };
117
118 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
119 #define LEAF_SIZE TNODE_SIZE(1)
120
121 #ifdef CONFIG_IP_FIB_TRIE_STATS
122 struct trie_use_stats {
123 unsigned int gets;
124 unsigned int backtrack;
125 unsigned int semantic_match_passed;
126 unsigned int semantic_match_miss;
127 unsigned int null_node_hit;
128 unsigned int resize_node_skipped;
129 };
130 #endif
131
132 struct trie_stat {
133 unsigned int totdepth;
134 unsigned int maxdepth;
135 unsigned int tnodes;
136 unsigned int leaves;
137 unsigned int nullpointers;
138 unsigned int prefixes;
139 unsigned int nodesizes[MAX_STAT_DEPTH];
140 };
141
142 struct trie {
143 struct key_vector __rcu *tnode[1];
144 #ifdef CONFIG_IP_FIB_TRIE_STATS
145 struct trie_use_stats __percpu *stats;
146 #endif
147 };
148
149 static struct key_vector **resize(struct trie *t, struct key_vector *tn);
150 static size_t tnode_free_size;
151
152 /*
153 * synchronize_rcu after call_rcu for that many pages; it should be especially
154 * useful before resizing the root node with PREEMPT_NONE configs; the value was
155 * obtained experimentally, aiming to avoid visible slowdown.
156 */
157 static const int sync_pages = 128;
158
159 static struct kmem_cache *fn_alias_kmem __read_mostly;
160 static struct kmem_cache *trie_leaf_kmem __read_mostly;
161
162 static inline struct tnode *tn_info(struct key_vector *kv)
163 {
164 return container_of(kv, struct tnode, kv[0]);
165 }
166
167 /* caller must hold RTNL */
168 #define node_parent(n) rtnl_dereference((n)->parent)
169 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
170
171 /* caller must hold RCU read lock or RTNL */
172 #define node_parent_rcu(n) rcu_dereference_rtnl((n)->parent)
173 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
174
175 /* wrapper for rcu_assign_pointer */
176 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
177 {
178 if (n)
179 rcu_assign_pointer(n->parent, tp);
180 }
181
182 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER((n)->parent, p)
183
184 /* This provides us with the number of children in this node, in the case of a
185 * leaf this will return 0 meaning none of the children are accessible.
186 */
187 static inline unsigned long child_length(const struct key_vector *tn)
188 {
189 return (1ul << tn->bits) & ~(1ul);
190 }
191
192 static inline unsigned long get_index(t_key key, struct key_vector *kv)
193 {
194 unsigned long index = key ^ kv->key;
195
196 return index >> kv->pos;
197 }
198
199 /* To understand this stuff, an understanding of keys and all their bits is
200 * necessary. Every node in the trie has a key associated with it, but not
201 * all of the bits in that key are significant.
202 *
203 * Consider a node 'n' and its parent 'tp'.
204 *
205 * If n is a leaf, every bit in its key is significant. Its presence is
206 * necessitated by path compression, since during a tree traversal (when
207 * searching for a leaf - unless we are doing an insertion) we will completely
208 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
209 * a potentially successful search, that we have indeed been walking the
210 * correct key path.
211 *
212 * Note that we can never "miss" the correct key in the tree if present by
213 * following the wrong path. Path compression ensures that segments of the key
214 * that are the same for all keys with a given prefix are skipped, but the
215 * skipped part *is* identical for each node in the subtrie below the skipped
216 * bit! trie_insert() in this implementation takes care of that.
217 *
218 * if n is an internal node - a 'tnode' here, the various parts of its key
219 * have many different meanings.
220 *
221 * Example:
222 * _________________________________________________________________
223 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
224 * -----------------------------------------------------------------
225 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
226 *
227 * _________________________________________________________________
228 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
229 * -----------------------------------------------------------------
230 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
231 *
232 * tp->pos = 22
233 * tp->bits = 3
234 * n->pos = 13
235 * n->bits = 4
236 *
237 * First, let's just ignore the bits that come before the parent tp, that is
238 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
239 * point we do not use them for anything.
240 *
241 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
242 * index into the parent's child array. That is, they will be used to find
243 * 'n' among tp's children.
244 *
245 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
246 * for the node n.
247 *
248 * All the bits we have seen so far are significant to the node n. The rest
249 * of the bits are really not needed or indeed known in n->key.
250 *
251 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
252 * n's child array, and will of course be different for each child.
253 *
254 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
255 * at this point.
256 */
257
258 static const int halve_threshold = 25;
259 static const int inflate_threshold = 50;
260 static const int halve_threshold_root = 15;
261 static const int inflate_threshold_root = 30;
262
263 static void __alias_free_mem(struct rcu_head *head)
264 {
265 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
266 kmem_cache_free(fn_alias_kmem, fa);
267 }
268
269 static inline void alias_free_mem_rcu(struct fib_alias *fa)
270 {
271 call_rcu(&fa->rcu, __alias_free_mem);
272 }
273
274 #define TNODE_KMALLOC_MAX \
275 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
276 #define TNODE_VMALLOC_MAX \
277 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
278
279 static void __node_free_rcu(struct rcu_head *head)
280 {
281 struct tnode *n = container_of(head, struct tnode, rcu);
282
283 if (!n->tn_bits)
284 kmem_cache_free(trie_leaf_kmem, n);
285 else if (n->tn_bits <= TNODE_KMALLOC_MAX)
286 kfree(n);
287 else
288 vfree(n);
289 }
290
291 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
292
293 static struct tnode *tnode_alloc(int bits)
294 {
295 size_t size;
296
297 /* verify bits is within bounds */
298 if (bits > TNODE_VMALLOC_MAX)
299 return NULL;
300
301 /* determine size and verify it is non-zero and didn't overflow */
302 size = TNODE_SIZE(1ul << bits);
303
304 if (size <= PAGE_SIZE)
305 return kzalloc(size, GFP_KERNEL);
306 else
307 return vzalloc(size);
308 }
309
310 static inline void empty_child_inc(struct key_vector *n)
311 {
312 ++n->empty_children ? : ++n->full_children;
313 }
314
315 static inline void empty_child_dec(struct key_vector *n)
316 {
317 n->empty_children-- ? : n->full_children--;
318 }
319
320 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
321 {
322 struct tnode *kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
323 struct key_vector *l = kv->kv;
324
325 if (!kv)
326 return NULL;
327
328 /* initialize key vector */
329 l->key = key;
330 l->pos = 0;
331 l->bits = 0;
332 l->slen = fa->fa_slen;
333
334 /* link leaf to fib alias */
335 INIT_HLIST_HEAD(&l->leaf);
336 hlist_add_head(&fa->fa_list, &l->leaf);
337
338 return l;
339 }
340
341 static struct key_vector *tnode_new(t_key key, int pos, int bits)
342 {
343 struct tnode *tnode = tnode_alloc(bits);
344 unsigned int shift = pos + bits;
345 struct key_vector *tn = tnode->kv;
346
347 /* verify bits and pos their msb bits clear and values are valid */
348 BUG_ON(!bits || (shift > KEYLENGTH));
349
350 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
351 sizeof(struct key_vector *) << bits);
352
353 if (!tnode)
354 return NULL;
355
356 if (bits == KEYLENGTH)
357 tn->full_children = 1;
358 else
359 tn->empty_children = 1ul << bits;
360
361 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
362 tn->pos = pos;
363 tn->bits = bits;
364 tn->slen = pos;
365
366 return tn;
367 }
368
369 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
370 * and no bits are skipped. See discussion in dyntree paper p. 6
371 */
372 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
373 {
374 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
375 }
376
377 /* Add a child at position i overwriting the old value.
378 * Update the value of full_children and empty_children.
379 */
380 static void put_child(struct key_vector *tn, unsigned long i,
381 struct key_vector *n)
382 {
383 struct key_vector *chi = get_child(tn, i);
384 int isfull, wasfull;
385
386 BUG_ON(i >= child_length(tn));
387
388 /* update emptyChildren, overflow into fullChildren */
389 if (n == NULL && chi != NULL)
390 empty_child_inc(tn);
391 if (n != NULL && chi == NULL)
392 empty_child_dec(tn);
393
394 /* update fullChildren */
395 wasfull = tnode_full(tn, chi);
396 isfull = tnode_full(tn, n);
397
398 if (wasfull && !isfull)
399 tn->full_children--;
400 else if (!wasfull && isfull)
401 tn->full_children++;
402
403 if (n && (tn->slen < n->slen))
404 tn->slen = n->slen;
405
406 rcu_assign_pointer(tn->tnode[i], n);
407 }
408
409 static void update_children(struct key_vector *tn)
410 {
411 unsigned long i;
412
413 /* update all of the child parent pointers */
414 for (i = child_length(tn); i;) {
415 struct key_vector *inode = get_child(tn, --i);
416
417 if (!inode)
418 continue;
419
420 /* Either update the children of a tnode that
421 * already belongs to us or update the child
422 * to point to ourselves.
423 */
424 if (node_parent(inode) == tn)
425 update_children(inode);
426 else
427 node_set_parent(inode, tn);
428 }
429 }
430
431 static inline void put_child_root(struct key_vector *tp, struct trie *t,
432 t_key key, struct key_vector *n)
433 {
434 if (tp)
435 put_child(tp, get_index(key, tp), n);
436 else
437 rcu_assign_pointer(t->tnode[0], n);
438 }
439
440 static inline void tnode_free_init(struct key_vector *tn)
441 {
442 tn_info(tn)->rcu.next = NULL;
443 }
444
445 static inline void tnode_free_append(struct key_vector *tn,
446 struct key_vector *n)
447 {
448 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
449 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
450 }
451
452 static void tnode_free(struct key_vector *tn)
453 {
454 struct callback_head *head = &tn_info(tn)->rcu;
455
456 while (head) {
457 head = head->next;
458 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
459 node_free(tn);
460
461 tn = container_of(head, struct tnode, rcu)->kv;
462 }
463
464 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
465 tnode_free_size = 0;
466 synchronize_rcu();
467 }
468 }
469
470 static struct key_vector __rcu **replace(struct trie *t,
471 struct key_vector *oldtnode,
472 struct key_vector *tn)
473 {
474 struct key_vector *tp = node_parent(oldtnode);
475 struct key_vector **cptr;
476 unsigned long i;
477
478 /* setup the parent pointer out of and back into this node */
479 NODE_INIT_PARENT(tn, tp);
480 put_child_root(tp, t, tn->key, tn);
481
482 /* update all of the child parent pointers */
483 update_children(tn);
484
485 /* all pointers should be clean so we are done */
486 tnode_free(oldtnode);
487
488 /* record the pointer that is pointing to this node */
489 cptr = tp ? tp->tnode : t->tnode;
490
491 /* resize children now that oldtnode is freed */
492 for (i = child_length(tn); i;) {
493 struct key_vector *inode = get_child(tn, --i);
494
495 /* resize child node */
496 if (tnode_full(tn, inode))
497 resize(t, inode);
498 }
499
500 return cptr;
501 }
502
503 static struct key_vector __rcu **inflate(struct trie *t,
504 struct key_vector *oldtnode)
505 {
506 struct key_vector *tn;
507 unsigned long i;
508 t_key m;
509
510 pr_debug("In inflate\n");
511
512 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
513 if (!tn)
514 goto notnode;
515
516 /* prepare oldtnode to be freed */
517 tnode_free_init(oldtnode);
518
519 /* Assemble all of the pointers in our cluster, in this case that
520 * represents all of the pointers out of our allocated nodes that
521 * point to existing tnodes and the links between our allocated
522 * nodes.
523 */
524 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
525 struct key_vector *inode = get_child(oldtnode, --i);
526 struct key_vector *node0, *node1;
527 unsigned long j, k;
528
529 /* An empty child */
530 if (inode == NULL)
531 continue;
532
533 /* A leaf or an internal node with skipped bits */
534 if (!tnode_full(oldtnode, inode)) {
535 put_child(tn, get_index(inode->key, tn), inode);
536 continue;
537 }
538
539 /* drop the node in the old tnode free list */
540 tnode_free_append(oldtnode, inode);
541
542 /* An internal node with two children */
543 if (inode->bits == 1) {
544 put_child(tn, 2 * i + 1, get_child(inode, 1));
545 put_child(tn, 2 * i, get_child(inode, 0));
546 continue;
547 }
548
549 /* We will replace this node 'inode' with two new
550 * ones, 'node0' and 'node1', each with half of the
551 * original children. The two new nodes will have
552 * a position one bit further down the key and this
553 * means that the "significant" part of their keys
554 * (see the discussion near the top of this file)
555 * will differ by one bit, which will be "0" in
556 * node0's key and "1" in node1's key. Since we are
557 * moving the key position by one step, the bit that
558 * we are moving away from - the bit at position
559 * (tn->pos) - is the one that will differ between
560 * node0 and node1. So... we synthesize that bit in the
561 * two new keys.
562 */
563 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
564 if (!node1)
565 goto nomem;
566 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
567
568 tnode_free_append(tn, node1);
569 if (!node0)
570 goto nomem;
571 tnode_free_append(tn, node0);
572
573 /* populate child pointers in new nodes */
574 for (k = child_length(inode), j = k / 2; j;) {
575 put_child(node1, --j, get_child(inode, --k));
576 put_child(node0, j, get_child(inode, j));
577 put_child(node1, --j, get_child(inode, --k));
578 put_child(node0, j, get_child(inode, j));
579 }
580
581 /* link new nodes to parent */
582 NODE_INIT_PARENT(node1, tn);
583 NODE_INIT_PARENT(node0, tn);
584
585 /* link parent to nodes */
586 put_child(tn, 2 * i + 1, node1);
587 put_child(tn, 2 * i, node0);
588 }
589
590 /* setup the parent pointers into and out of this node */
591 return replace(t, oldtnode, tn);
592 nomem:
593 /* all pointers should be clean so we are done */
594 tnode_free(tn);
595 notnode:
596 return NULL;
597 }
598
599 static struct key_vector __rcu **halve(struct trie *t,
600 struct key_vector *oldtnode)
601 {
602 struct key_vector *tn;
603 unsigned long i;
604
605 pr_debug("In halve\n");
606
607 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
608 if (!tn)
609 goto notnode;
610
611 /* prepare oldtnode to be freed */
612 tnode_free_init(oldtnode);
613
614 /* Assemble all of the pointers in our cluster, in this case that
615 * represents all of the pointers out of our allocated nodes that
616 * point to existing tnodes and the links between our allocated
617 * nodes.
618 */
619 for (i = child_length(oldtnode); i;) {
620 struct key_vector *node1 = get_child(oldtnode, --i);
621 struct key_vector *node0 = get_child(oldtnode, --i);
622 struct key_vector *inode;
623
624 /* At least one of the children is empty */
625 if (!node1 || !node0) {
626 put_child(tn, i / 2, node1 ? : node0);
627 continue;
628 }
629
630 /* Two nonempty children */
631 inode = tnode_new(node0->key, oldtnode->pos, 1);
632 if (!inode)
633 goto nomem;
634 tnode_free_append(tn, inode);
635
636 /* initialize pointers out of node */
637 put_child(inode, 1, node1);
638 put_child(inode, 0, node0);
639 NODE_INIT_PARENT(inode, tn);
640
641 /* link parent to node */
642 put_child(tn, i / 2, inode);
643 }
644
645 /* setup the parent pointers into and out of this node */
646 return replace(t, oldtnode, tn);
647 nomem:
648 /* all pointers should be clean so we are done */
649 tnode_free(tn);
650 notnode:
651 return NULL;
652 }
653
654 static void collapse(struct trie *t, struct key_vector *oldtnode)
655 {
656 struct key_vector *n, *tp;
657 unsigned long i;
658
659 /* scan the tnode looking for that one child that might still exist */
660 for (n = NULL, i = child_length(oldtnode); !n && i;)
661 n = get_child(oldtnode, --i);
662
663 /* compress one level */
664 tp = node_parent(oldtnode);
665 put_child_root(tp, t, oldtnode->key, n);
666 node_set_parent(n, tp);
667
668 /* drop dead node */
669 node_free(oldtnode);
670 }
671
672 static unsigned char update_suffix(struct key_vector *tn)
673 {
674 unsigned char slen = tn->pos;
675 unsigned long stride, i;
676
677 /* search though the list of children looking for nodes that might
678 * have a suffix greater than the one we currently have. This is
679 * why we start with a stride of 2 since a stride of 1 would
680 * represent the nodes with suffix length equal to tn->pos
681 */
682 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
683 struct key_vector *n = get_child(tn, i);
684
685 if (!n || (n->slen <= slen))
686 continue;
687
688 /* update stride and slen based on new value */
689 stride <<= (n->slen - slen);
690 slen = n->slen;
691 i &= ~(stride - 1);
692
693 /* if slen covers all but the last bit we can stop here
694 * there will be nothing longer than that since only node
695 * 0 and 1 << (bits - 1) could have that as their suffix
696 * length.
697 */
698 if ((slen + 1) >= (tn->pos + tn->bits))
699 break;
700 }
701
702 tn->slen = slen;
703
704 return slen;
705 }
706
707 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
708 * the Helsinki University of Technology and Matti Tikkanen of Nokia
709 * Telecommunications, page 6:
710 * "A node is doubled if the ratio of non-empty children to all
711 * children in the *doubled* node is at least 'high'."
712 *
713 * 'high' in this instance is the variable 'inflate_threshold'. It
714 * is expressed as a percentage, so we multiply it with
715 * child_length() and instead of multiplying by 2 (since the
716 * child array will be doubled by inflate()) and multiplying
717 * the left-hand side by 100 (to handle the percentage thing) we
718 * multiply the left-hand side by 50.
719 *
720 * The left-hand side may look a bit weird: child_length(tn)
721 * - tn->empty_children is of course the number of non-null children
722 * in the current node. tn->full_children is the number of "full"
723 * children, that is non-null tnodes with a skip value of 0.
724 * All of those will be doubled in the resulting inflated tnode, so
725 * we just count them one extra time here.
726 *
727 * A clearer way to write this would be:
728 *
729 * to_be_doubled = tn->full_children;
730 * not_to_be_doubled = child_length(tn) - tn->empty_children -
731 * tn->full_children;
732 *
733 * new_child_length = child_length(tn) * 2;
734 *
735 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
736 * new_child_length;
737 * if (new_fill_factor >= inflate_threshold)
738 *
739 * ...and so on, tho it would mess up the while () loop.
740 *
741 * anyway,
742 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
743 * inflate_threshold
744 *
745 * avoid a division:
746 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
747 * inflate_threshold * new_child_length
748 *
749 * expand not_to_be_doubled and to_be_doubled, and shorten:
750 * 100 * (child_length(tn) - tn->empty_children +
751 * tn->full_children) >= inflate_threshold * new_child_length
752 *
753 * expand new_child_length:
754 * 100 * (child_length(tn) - tn->empty_children +
755 * tn->full_children) >=
756 * inflate_threshold * child_length(tn) * 2
757 *
758 * shorten again:
759 * 50 * (tn->full_children + child_length(tn) -
760 * tn->empty_children) >= inflate_threshold *
761 * child_length(tn)
762 *
763 */
764 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
765 {
766 unsigned long used = child_length(tn);
767 unsigned long threshold = used;
768
769 /* Keep root node larger */
770 threshold *= tp ? inflate_threshold : inflate_threshold_root;
771 used -= tn->empty_children;
772 used += tn->full_children;
773
774 /* if bits == KEYLENGTH then pos = 0, and will fail below */
775
776 return (used > 1) && tn->pos && ((50 * used) >= threshold);
777 }
778
779 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
780 {
781 unsigned long used = child_length(tn);
782 unsigned long threshold = used;
783
784 /* Keep root node larger */
785 threshold *= tp ? halve_threshold : halve_threshold_root;
786 used -= tn->empty_children;
787
788 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
789
790 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
791 }
792
793 static inline bool should_collapse(struct key_vector *tn)
794 {
795 unsigned long used = child_length(tn);
796
797 used -= tn->empty_children;
798
799 /* account for bits == KEYLENGTH case */
800 if ((tn->bits == KEYLENGTH) && tn->full_children)
801 used -= KEY_MAX;
802
803 /* One child or none, time to drop us from the trie */
804 return used < 2;
805 }
806
807 #define MAX_WORK 10
808 static struct key_vector __rcu **resize(struct trie *t,
809 struct key_vector *tn)
810 {
811 #ifdef CONFIG_IP_FIB_TRIE_STATS
812 struct trie_use_stats __percpu *stats = t->stats;
813 #endif
814 struct key_vector *tp = node_parent(tn);
815 unsigned long cindex = tp ? get_index(tn->key, tp) : 0;
816 struct key_vector __rcu **cptr = tp ? tp->tnode : t->tnode;
817 int max_work = MAX_WORK;
818
819 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
820 tn, inflate_threshold, halve_threshold);
821
822 /* track the tnode via the pointer from the parent instead of
823 * doing it ourselves. This way we can let RCU fully do its
824 * thing without us interfering
825 */
826 BUG_ON(tn != rtnl_dereference(cptr[cindex]));
827
828 /* Double as long as the resulting node has a number of
829 * nonempty nodes that are above the threshold.
830 */
831 while (should_inflate(tp, tn) && max_work) {
832 struct key_vector __rcu **tcptr = inflate(t, tn);
833
834 if (!tcptr) {
835 #ifdef CONFIG_IP_FIB_TRIE_STATS
836 this_cpu_inc(stats->resize_node_skipped);
837 #endif
838 break;
839 }
840
841 max_work--;
842 cptr = tcptr;
843 tn = rtnl_dereference(cptr[cindex]);
844 }
845
846 /* Return if at least one inflate is run */
847 if (max_work != MAX_WORK)
848 return cptr;
849
850 /* Halve as long as the number of empty children in this
851 * node is above threshold.
852 */
853 while (should_halve(tp, tn) && max_work) {
854 struct key_vector __rcu **tcptr = halve(t, tn);
855
856 if (!tcptr) {
857 #ifdef CONFIG_IP_FIB_TRIE_STATS
858 this_cpu_inc(stats->resize_node_skipped);
859 #endif
860 break;
861 }
862
863 max_work--;
864 cptr = tcptr;
865 tn = rtnl_dereference(cptr[cindex]);
866 }
867
868 /* Only one child remains */
869 if (should_collapse(tn)) {
870 collapse(t, tn);
871 return cptr;
872 }
873
874 /* Return if at least one deflate was run */
875 if (max_work != MAX_WORK)
876 return cptr;
877
878 /* push the suffix length to the parent node */
879 if (tn->slen > tn->pos) {
880 unsigned char slen = update_suffix(tn);
881
882 if (tp && (slen > tp->slen))
883 tp->slen = slen;
884 }
885
886 return cptr;
887 }
888
889 static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
890 {
891 while (tp && (tp->slen > tp->pos) && (tp->slen > l->slen)) {
892 if (update_suffix(tp) > l->slen)
893 break;
894 tp = node_parent(tp);
895 }
896 }
897
898 static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
899 {
900 /* if this is a new leaf then tn will be NULL and we can sort
901 * out parent suffix lengths as a part of trie_rebalance
902 */
903 while (tn && (tn->slen < l->slen)) {
904 tn->slen = l->slen;
905 tn = node_parent(tn);
906 }
907 }
908
909 /* rcu_read_lock needs to be hold by caller from readside */
910 static struct key_vector *fib_find_node(struct trie *t,
911 struct key_vector **tp, u32 key)
912 {
913 struct key_vector *pn = NULL, *n = rcu_dereference_rtnl(t->tnode[0]);
914
915 while (n) {
916 unsigned long index = get_index(key, n);
917
918 /* This bit of code is a bit tricky but it combines multiple
919 * checks into a single check. The prefix consists of the
920 * prefix plus zeros for the bits in the cindex. The index
921 * is the difference between the key and this value. From
922 * this we can actually derive several pieces of data.
923 * if (index >= (1ul << bits))
924 * we have a mismatch in skip bits and failed
925 * else
926 * we know the value is cindex
927 *
928 * This check is safe even if bits == KEYLENGTH due to the
929 * fact that we can only allocate a node with 32 bits if a
930 * long is greater than 32 bits.
931 */
932 if (index >= (1ul << n->bits)) {
933 n = NULL;
934 break;
935 }
936
937 /* we have found a leaf. Prefixes have already been compared */
938 if (IS_LEAF(n))
939 break;
940
941 pn = n;
942 n = get_child_rcu(n, index);
943 }
944
945 *tp = pn;
946
947 return n;
948 }
949
950 /* Return the first fib alias matching TOS with
951 * priority less than or equal to PRIO.
952 */
953 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
954 u8 tos, u32 prio)
955 {
956 struct fib_alias *fa;
957
958 if (!fah)
959 return NULL;
960
961 hlist_for_each_entry(fa, fah, fa_list) {
962 if (fa->fa_slen < slen)
963 continue;
964 if (fa->fa_slen != slen)
965 break;
966 if (fa->fa_tos > tos)
967 continue;
968 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
969 return fa;
970 }
971
972 return NULL;
973 }
974
975 static void trie_rebalance(struct trie *t, struct key_vector *tn)
976 {
977 struct key_vector __rcu **cptr = t->tnode;
978
979 while (tn) {
980 struct key_vector *tp = node_parent(tn);
981
982 cptr = resize(t, tn);
983 if (!tp)
984 break;
985 tn = container_of(cptr, struct key_vector, tnode[0]);
986 }
987 }
988
989 static int fib_insert_node(struct trie *t, struct key_vector *tp,
990 struct fib_alias *new, t_key key)
991 {
992 struct key_vector *n, *l;
993
994 l = leaf_new(key, new);
995 if (!l)
996 goto noleaf;
997
998 /* retrieve child from parent node */
999 if (tp)
1000 n = get_child(tp, get_index(key, tp));
1001 else
1002 n = rcu_dereference_rtnl(t->tnode[0]);
1003
1004 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1005 *
1006 * Add a new tnode here
1007 * first tnode need some special handling
1008 * leaves us in position for handling as case 3
1009 */
1010 if (n) {
1011 struct key_vector *tn;
1012
1013 tn = tnode_new(key, __fls(key ^ n->key), 1);
1014 if (!tn)
1015 goto notnode;
1016
1017 /* initialize routes out of node */
1018 NODE_INIT_PARENT(tn, tp);
1019 put_child(tn, get_index(key, tn) ^ 1, n);
1020
1021 /* start adding routes into the node */
1022 put_child_root(tp, t, key, tn);
1023 node_set_parent(n, tn);
1024
1025 /* parent now has a NULL spot where the leaf can go */
1026 tp = tn;
1027 }
1028
1029 /* Case 3: n is NULL, and will just insert a new leaf */
1030 NODE_INIT_PARENT(l, tp);
1031 put_child_root(tp, t, key, l);
1032 trie_rebalance(t, tp);
1033
1034 return 0;
1035 notnode:
1036 node_free(l);
1037 noleaf:
1038 return -ENOMEM;
1039 }
1040
1041 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1042 struct key_vector *l, struct fib_alias *new,
1043 struct fib_alias *fa, t_key key)
1044 {
1045 if (!l)
1046 return fib_insert_node(t, tp, new, key);
1047
1048 if (fa) {
1049 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1050 } else {
1051 struct fib_alias *last;
1052
1053 hlist_for_each_entry(last, &l->leaf, fa_list) {
1054 if (new->fa_slen < last->fa_slen)
1055 break;
1056 fa = last;
1057 }
1058
1059 if (fa)
1060 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1061 else
1062 hlist_add_head_rcu(&new->fa_list, &l->leaf);
1063 }
1064
1065 /* if we added to the tail node then we need to update slen */
1066 if (l->slen < new->fa_slen) {
1067 l->slen = new->fa_slen;
1068 leaf_push_suffix(tp, l);
1069 }
1070
1071 return 0;
1072 }
1073
1074 /* Caller must hold RTNL. */
1075 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1076 {
1077 struct trie *t = (struct trie *)tb->tb_data;
1078 struct fib_alias *fa, *new_fa;
1079 struct key_vector *l, *tp;
1080 struct fib_info *fi;
1081 u8 plen = cfg->fc_dst_len;
1082 u8 slen = KEYLENGTH - plen;
1083 u8 tos = cfg->fc_tos;
1084 u32 key;
1085 int err;
1086
1087 if (plen > KEYLENGTH)
1088 return -EINVAL;
1089
1090 key = ntohl(cfg->fc_dst);
1091
1092 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1093
1094 if ((plen < KEYLENGTH) && (key << plen))
1095 return -EINVAL;
1096
1097 fi = fib_create_info(cfg);
1098 if (IS_ERR(fi)) {
1099 err = PTR_ERR(fi);
1100 goto err;
1101 }
1102
1103 l = fib_find_node(t, &tp, key);
1104 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority) : NULL;
1105
1106 /* Now fa, if non-NULL, points to the first fib alias
1107 * with the same keys [prefix,tos,priority], if such key already
1108 * exists or to the node before which we will insert new one.
1109 *
1110 * If fa is NULL, we will need to allocate a new one and
1111 * insert to the tail of the section matching the suffix length
1112 * of the new alias.
1113 */
1114
1115 if (fa && fa->fa_tos == tos &&
1116 fa->fa_info->fib_priority == fi->fib_priority) {
1117 struct fib_alias *fa_first, *fa_match;
1118
1119 err = -EEXIST;
1120 if (cfg->fc_nlflags & NLM_F_EXCL)
1121 goto out;
1122
1123 /* We have 2 goals:
1124 * 1. Find exact match for type, scope, fib_info to avoid
1125 * duplicate routes
1126 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1127 */
1128 fa_match = NULL;
1129 fa_first = fa;
1130 hlist_for_each_entry_from(fa, fa_list) {
1131 if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
1132 break;
1133 if (fa->fa_info->fib_priority != fi->fib_priority)
1134 break;
1135 if (fa->fa_type == cfg->fc_type &&
1136 fa->fa_info == fi) {
1137 fa_match = fa;
1138 break;
1139 }
1140 }
1141
1142 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1143 struct fib_info *fi_drop;
1144 u8 state;
1145
1146 fa = fa_first;
1147 if (fa_match) {
1148 if (fa == fa_match)
1149 err = 0;
1150 goto out;
1151 }
1152 err = -ENOBUFS;
1153 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1154 if (new_fa == NULL)
1155 goto out;
1156
1157 fi_drop = fa->fa_info;
1158 new_fa->fa_tos = fa->fa_tos;
1159 new_fa->fa_info = fi;
1160 new_fa->fa_type = cfg->fc_type;
1161 state = fa->fa_state;
1162 new_fa->fa_state = state & ~FA_S_ACCESSED;
1163 new_fa->fa_slen = fa->fa_slen;
1164
1165 err = netdev_switch_fib_ipv4_add(key, plen, fi,
1166 new_fa->fa_tos,
1167 cfg->fc_type,
1168 tb->tb_id);
1169 if (err) {
1170 netdev_switch_fib_ipv4_abort(fi);
1171 kmem_cache_free(fn_alias_kmem, new_fa);
1172 goto out;
1173 }
1174
1175 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1176
1177 alias_free_mem_rcu(fa);
1178
1179 fib_release_info(fi_drop);
1180 if (state & FA_S_ACCESSED)
1181 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1182 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1183 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1184
1185 goto succeeded;
1186 }
1187 /* Error if we find a perfect match which
1188 * uses the same scope, type, and nexthop
1189 * information.
1190 */
1191 if (fa_match)
1192 goto out;
1193
1194 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1195 fa = fa_first;
1196 }
1197 err = -ENOENT;
1198 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1199 goto out;
1200
1201 err = -ENOBUFS;
1202 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1203 if (new_fa == NULL)
1204 goto out;
1205
1206 new_fa->fa_info = fi;
1207 new_fa->fa_tos = tos;
1208 new_fa->fa_type = cfg->fc_type;
1209 new_fa->fa_state = 0;
1210 new_fa->fa_slen = slen;
1211
1212 /* (Optionally) offload fib entry to switch hardware. */
1213 err = netdev_switch_fib_ipv4_add(key, plen, fi, tos,
1214 cfg->fc_type, tb->tb_id);
1215 if (err) {
1216 netdev_switch_fib_ipv4_abort(fi);
1217 goto out_free_new_fa;
1218 }
1219
1220 /* Insert new entry to the list. */
1221 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1222 if (err)
1223 goto out_sw_fib_del;
1224
1225 if (!plen)
1226 tb->tb_num_default++;
1227
1228 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1229 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1230 &cfg->fc_nlinfo, 0);
1231 succeeded:
1232 return 0;
1233
1234 out_sw_fib_del:
1235 netdev_switch_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
1236 out_free_new_fa:
1237 kmem_cache_free(fn_alias_kmem, new_fa);
1238 out:
1239 fib_release_info(fi);
1240 err:
1241 return err;
1242 }
1243
1244 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1245 {
1246 t_key prefix = n->key;
1247
1248 return (key ^ prefix) & (prefix | -prefix);
1249 }
1250
1251 /* should be called with rcu_read_lock */
1252 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1253 struct fib_result *res, int fib_flags)
1254 {
1255 struct trie *t = (struct trie *)tb->tb_data;
1256 #ifdef CONFIG_IP_FIB_TRIE_STATS
1257 struct trie_use_stats __percpu *stats = t->stats;
1258 #endif
1259 const t_key key = ntohl(flp->daddr);
1260 struct key_vector *n, *pn;
1261 struct fib_alias *fa;
1262 unsigned long index;
1263 t_key cindex;
1264
1265 n = rcu_dereference(t->tnode[0]);
1266 if (!n)
1267 return -EAGAIN;
1268
1269 #ifdef CONFIG_IP_FIB_TRIE_STATS
1270 this_cpu_inc(stats->gets);
1271 #endif
1272
1273 pn = n;
1274 cindex = 0;
1275
1276 /* Step 1: Travel to the longest prefix match in the trie */
1277 for (;;) {
1278 index = get_index(key, n);
1279
1280 /* This bit of code is a bit tricky but it combines multiple
1281 * checks into a single check. The prefix consists of the
1282 * prefix plus zeros for the "bits" in the prefix. The index
1283 * is the difference between the key and this value. From
1284 * this we can actually derive several pieces of data.
1285 * if (index >= (1ul << bits))
1286 * we have a mismatch in skip bits and failed
1287 * else
1288 * we know the value is cindex
1289 *
1290 * This check is safe even if bits == KEYLENGTH due to the
1291 * fact that we can only allocate a node with 32 bits if a
1292 * long is greater than 32 bits.
1293 */
1294 if (index >= (1ul << n->bits))
1295 break;
1296
1297 /* we have found a leaf. Prefixes have already been compared */
1298 if (IS_LEAF(n))
1299 goto found;
1300
1301 /* only record pn and cindex if we are going to be chopping
1302 * bits later. Otherwise we are just wasting cycles.
1303 */
1304 if (n->slen > n->pos) {
1305 pn = n;
1306 cindex = index;
1307 }
1308
1309 n = get_child_rcu(n, index);
1310 if (unlikely(!n))
1311 goto backtrace;
1312 }
1313
1314 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1315 for (;;) {
1316 /* record the pointer where our next node pointer is stored */
1317 struct key_vector __rcu **cptr = n->tnode;
1318
1319 /* This test verifies that none of the bits that differ
1320 * between the key and the prefix exist in the region of
1321 * the lsb and higher in the prefix.
1322 */
1323 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1324 goto backtrace;
1325
1326 /* exit out and process leaf */
1327 if (unlikely(IS_LEAF(n)))
1328 break;
1329
1330 /* Don't bother recording parent info. Since we are in
1331 * prefix match mode we will have to come back to wherever
1332 * we started this traversal anyway
1333 */
1334
1335 while ((n = rcu_dereference(*cptr)) == NULL) {
1336 backtrace:
1337 #ifdef CONFIG_IP_FIB_TRIE_STATS
1338 if (!n)
1339 this_cpu_inc(stats->null_node_hit);
1340 #endif
1341 /* If we are at cindex 0 there are no more bits for
1342 * us to strip at this level so we must ascend back
1343 * up one level to see if there are any more bits to
1344 * be stripped there.
1345 */
1346 while (!cindex) {
1347 t_key pkey = pn->key;
1348
1349 pn = node_parent_rcu(pn);
1350 if (unlikely(!pn))
1351 return -EAGAIN;
1352 #ifdef CONFIG_IP_FIB_TRIE_STATS
1353 this_cpu_inc(stats->backtrack);
1354 #endif
1355 /* Get Child's index */
1356 cindex = get_index(pkey, pn);
1357 }
1358
1359 /* strip the least significant bit from the cindex */
1360 cindex &= cindex - 1;
1361
1362 /* grab pointer for next child node */
1363 cptr = &pn->tnode[cindex];
1364 }
1365 }
1366
1367 found:
1368 /* this line carries forward the xor from earlier in the function */
1369 index = key ^ n->key;
1370
1371 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1372 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1373 struct fib_info *fi = fa->fa_info;
1374 int nhsel, err;
1375
1376 if ((index >= (1ul << fa->fa_slen)) &&
1377 ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
1378 continue;
1379 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1380 continue;
1381 if (fi->fib_dead)
1382 continue;
1383 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1384 continue;
1385 fib_alias_accessed(fa);
1386 err = fib_props[fa->fa_type].error;
1387 if (unlikely(err < 0)) {
1388 #ifdef CONFIG_IP_FIB_TRIE_STATS
1389 this_cpu_inc(stats->semantic_match_passed);
1390 #endif
1391 return err;
1392 }
1393 if (fi->fib_flags & RTNH_F_DEAD)
1394 continue;
1395 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1396 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1397
1398 if (nh->nh_flags & RTNH_F_DEAD)
1399 continue;
1400 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1401 continue;
1402
1403 if (!(fib_flags & FIB_LOOKUP_NOREF))
1404 atomic_inc(&fi->fib_clntref);
1405
1406 res->prefixlen = KEYLENGTH - fa->fa_slen;
1407 res->nh_sel = nhsel;
1408 res->type = fa->fa_type;
1409 res->scope = fi->fib_scope;
1410 res->fi = fi;
1411 res->table = tb;
1412 res->fa_head = &n->leaf;
1413 #ifdef CONFIG_IP_FIB_TRIE_STATS
1414 this_cpu_inc(stats->semantic_match_passed);
1415 #endif
1416 return err;
1417 }
1418 }
1419 #ifdef CONFIG_IP_FIB_TRIE_STATS
1420 this_cpu_inc(stats->semantic_match_miss);
1421 #endif
1422 goto backtrace;
1423 }
1424 EXPORT_SYMBOL_GPL(fib_table_lookup);
1425
1426 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1427 struct key_vector *l, struct fib_alias *old)
1428 {
1429 /* record the location of the previous list_info entry */
1430 struct hlist_node **pprev = old->fa_list.pprev;
1431 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1432
1433 /* remove the fib_alias from the list */
1434 hlist_del_rcu(&old->fa_list);
1435
1436 /* if we emptied the list this leaf will be freed and we can sort
1437 * out parent suffix lengths as a part of trie_rebalance
1438 */
1439 if (hlist_empty(&l->leaf)) {
1440 put_child_root(tp, t, l->key, NULL);
1441 node_free(l);
1442 trie_rebalance(t, tp);
1443 return;
1444 }
1445
1446 /* only access fa if it is pointing at the last valid hlist_node */
1447 if (*pprev)
1448 return;
1449
1450 /* update the trie with the latest suffix length */
1451 l->slen = fa->fa_slen;
1452 leaf_pull_suffix(tp, l);
1453 }
1454
1455 /* Caller must hold RTNL. */
1456 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1457 {
1458 struct trie *t = (struct trie *) tb->tb_data;
1459 struct fib_alias *fa, *fa_to_delete;
1460 struct key_vector *l, *tp;
1461 u8 plen = cfg->fc_dst_len;
1462 u8 slen = KEYLENGTH - plen;
1463 u8 tos = cfg->fc_tos;
1464 u32 key;
1465
1466 if (plen > KEYLENGTH)
1467 return -EINVAL;
1468
1469 key = ntohl(cfg->fc_dst);
1470
1471 if ((plen < KEYLENGTH) && (key << plen))
1472 return -EINVAL;
1473
1474 l = fib_find_node(t, &tp, key);
1475 if (!l)
1476 return -ESRCH;
1477
1478 fa = fib_find_alias(&l->leaf, slen, tos, 0);
1479 if (!fa)
1480 return -ESRCH;
1481
1482 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1483
1484 fa_to_delete = NULL;
1485 hlist_for_each_entry_from(fa, fa_list) {
1486 struct fib_info *fi = fa->fa_info;
1487
1488 if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
1489 break;
1490
1491 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1492 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1493 fa->fa_info->fib_scope == cfg->fc_scope) &&
1494 (!cfg->fc_prefsrc ||
1495 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1496 (!cfg->fc_protocol ||
1497 fi->fib_protocol == cfg->fc_protocol) &&
1498 fib_nh_match(cfg, fi) == 0) {
1499 fa_to_delete = fa;
1500 break;
1501 }
1502 }
1503
1504 if (!fa_to_delete)
1505 return -ESRCH;
1506
1507 netdev_switch_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
1508 cfg->fc_type, tb->tb_id);
1509
1510 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1511 &cfg->fc_nlinfo, 0);
1512
1513 if (!plen)
1514 tb->tb_num_default--;
1515
1516 fib_remove_alias(t, tp, l, fa_to_delete);
1517
1518 if (fa_to_delete->fa_state & FA_S_ACCESSED)
1519 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1520
1521 fib_release_info(fa_to_delete->fa_info);
1522 alias_free_mem_rcu(fa_to_delete);
1523 return 0;
1524 }
1525
1526 /* Scan for the next leaf starting at the provided key value */
1527 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1528 {
1529 struct key_vector *pn, *n = *tn;
1530 unsigned long cindex;
1531
1532 /* record parent node for backtracing */
1533 pn = n;
1534 cindex = n ? get_index(key, n) : 0;
1535
1536 /* this loop is meant to try and find the key in the trie */
1537 while (n) {
1538 unsigned long idx = get_index(key, n);
1539
1540 /* guarantee forward progress on the keys */
1541 if (IS_LEAF(n) && (n->key >= key))
1542 goto found;
1543 if (idx >= (1ul << n->bits))
1544 break;
1545
1546 /* record parent and next child index */
1547 pn = n;
1548 cindex = idx;
1549
1550 /* descend into the next child */
1551 n = get_child_rcu(pn, cindex++);
1552 }
1553
1554 /* this loop will search for the next leaf with a greater key */
1555 while (pn) {
1556 /* if we exhausted the parent node we will need to climb */
1557 if (cindex >= (1ul << pn->bits)) {
1558 t_key pkey = pn->key;
1559
1560 pn = node_parent_rcu(pn);
1561 if (!pn)
1562 break;
1563
1564 cindex = get_index(pkey, pn) + 1;
1565 continue;
1566 }
1567
1568 /* grab the next available node */
1569 n = get_child_rcu(pn, cindex++);
1570 if (!n)
1571 continue;
1572
1573 /* no need to compare keys since we bumped the index */
1574 if (IS_LEAF(n))
1575 goto found;
1576
1577 /* Rescan start scanning in new node */
1578 pn = n;
1579 cindex = 0;
1580 }
1581
1582 *tn = pn;
1583 return NULL; /* Root of trie */
1584 found:
1585 /* if we are at the limit for keys just return NULL for the tnode */
1586 *tn = (n->key == KEY_MAX) ? NULL : pn;
1587 return n;
1588 }
1589
1590 /* Caller must hold RTNL */
1591 void fib_table_flush_external(struct fib_table *tb)
1592 {
1593 struct trie *t = (struct trie *)tb->tb_data;
1594 struct fib_alias *fa;
1595 struct key_vector *n, *pn;
1596 unsigned long cindex;
1597
1598 n = rcu_dereference(t->tnode[0]);
1599 if (!n)
1600 return;
1601
1602 pn = NULL;
1603 cindex = 0;
1604
1605 while (IS_TNODE(n)) {
1606 /* record pn and cindex for leaf walking */
1607 pn = n;
1608 cindex = 1ul << n->bits;
1609 backtrace:
1610 /* walk trie in reverse order */
1611 do {
1612 while (!(cindex--)) {
1613 t_key pkey = pn->key;
1614
1615 /* if we got the root we are done */
1616 pn = node_parent(pn);
1617 if (!pn)
1618 return;
1619
1620 cindex = get_index(pkey, pn);
1621 }
1622
1623 /* grab the next available node */
1624 n = get_child(pn, cindex);
1625 } while (!n);
1626 }
1627
1628 hlist_for_each_entry(fa, &n->leaf, fa_list) {
1629 struct fib_info *fi = fa->fa_info;
1630
1631 if (!fi || !(fi->fib_flags & RTNH_F_EXTERNAL))
1632 continue;
1633
1634 netdev_switch_fib_ipv4_del(n->key,
1635 KEYLENGTH - fa->fa_slen,
1636 fi, fa->fa_tos,
1637 fa->fa_type, tb->tb_id);
1638 }
1639
1640 /* if trie is leaf only loop is completed */
1641 if (pn)
1642 goto backtrace;
1643 }
1644
1645 /* Caller must hold RTNL. */
1646 int fib_table_flush(struct fib_table *tb)
1647 {
1648 struct trie *t = (struct trie *)tb->tb_data;
1649 struct key_vector *n, *pn;
1650 struct hlist_node *tmp;
1651 struct fib_alias *fa;
1652 unsigned long cindex;
1653 unsigned char slen;
1654 int found = 0;
1655
1656 n = rcu_dereference(t->tnode[0]);
1657 if (!n)
1658 goto flush_complete;
1659
1660 pn = NULL;
1661 cindex = 0;
1662
1663 while (IS_TNODE(n)) {
1664 /* record pn and cindex for leaf walking */
1665 pn = n;
1666 cindex = 1ul << n->bits;
1667 backtrace:
1668 /* walk trie in reverse order */
1669 do {
1670 while (!(cindex--)) {
1671 struct key_vector __rcu **cptr;
1672 t_key pkey = pn->key;
1673
1674 n = pn;
1675 pn = node_parent(n);
1676
1677 /* resize completed node */
1678 cptr = resize(t, n);
1679
1680 /* if we got the root we are done */
1681 if (!pn)
1682 goto flush_complete;
1683
1684 pn = container_of(cptr, struct key_vector,
1685 tnode[0]);
1686 cindex = get_index(pkey, pn);
1687 }
1688
1689 /* grab the next available node */
1690 n = get_child(pn, cindex);
1691 } while (!n);
1692 }
1693
1694 /* track slen in case any prefixes survive */
1695 slen = 0;
1696
1697 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1698 struct fib_info *fi = fa->fa_info;
1699
1700 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1701 netdev_switch_fib_ipv4_del(n->key,
1702 KEYLENGTH - fa->fa_slen,
1703 fi, fa->fa_tos,
1704 fa->fa_type, tb->tb_id);
1705 hlist_del_rcu(&fa->fa_list);
1706 fib_release_info(fa->fa_info);
1707 alias_free_mem_rcu(fa);
1708 found++;
1709
1710 continue;
1711 }
1712
1713 slen = fa->fa_slen;
1714 }
1715
1716 /* update leaf slen */
1717 n->slen = slen;
1718
1719 if (hlist_empty(&n->leaf)) {
1720 put_child_root(pn, t, n->key, NULL);
1721 node_free(n);
1722 } else {
1723 leaf_pull_suffix(pn, n);
1724 }
1725
1726 /* if trie is leaf only loop is completed */
1727 if (pn)
1728 goto backtrace;
1729 flush_complete:
1730 pr_debug("trie_flush found=%d\n", found);
1731 return found;
1732 }
1733
1734 static void __trie_free_rcu(struct rcu_head *head)
1735 {
1736 struct fib_table *tb = container_of(head, struct fib_table, rcu);
1737 #ifdef CONFIG_IP_FIB_TRIE_STATS
1738 struct trie *t = (struct trie *)tb->tb_data;
1739
1740 free_percpu(t->stats);
1741 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1742 kfree(tb);
1743 }
1744
1745 void fib_free_table(struct fib_table *tb)
1746 {
1747 call_rcu(&tb->rcu, __trie_free_rcu);
1748 }
1749
1750 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
1751 struct sk_buff *skb, struct netlink_callback *cb)
1752 {
1753 __be32 xkey = htonl(l->key);
1754 struct fib_alias *fa;
1755 int i, s_i;
1756
1757 s_i = cb->args[4];
1758 i = 0;
1759
1760 /* rcu_read_lock is hold by caller */
1761 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1762 if (i < s_i) {
1763 i++;
1764 continue;
1765 }
1766
1767 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1768 cb->nlh->nlmsg_seq,
1769 RTM_NEWROUTE,
1770 tb->tb_id,
1771 fa->fa_type,
1772 xkey,
1773 KEYLENGTH - fa->fa_slen,
1774 fa->fa_tos,
1775 fa->fa_info, NLM_F_MULTI) < 0) {
1776 cb->args[4] = i;
1777 return -1;
1778 }
1779 i++;
1780 }
1781
1782 cb->args[4] = i;
1783 return skb->len;
1784 }
1785
1786 /* rcu_read_lock needs to be hold by caller from readside */
1787 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1788 struct netlink_callback *cb)
1789 {
1790 struct trie *t = (struct trie *)tb->tb_data;
1791 struct key_vector *l, *tp;
1792 /* Dump starting at last key.
1793 * Note: 0.0.0.0/0 (ie default) is first key.
1794 */
1795 int count = cb->args[2];
1796 t_key key = cb->args[3];
1797
1798 tp = rcu_dereference_rtnl(t->tnode[0]);
1799
1800 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1801 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1802 cb->args[3] = key;
1803 cb->args[2] = count;
1804 return -1;
1805 }
1806
1807 ++count;
1808 key = l->key + 1;
1809
1810 memset(&cb->args[4], 0,
1811 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1812
1813 /* stop loop if key wrapped back to 0 */
1814 if (key < l->key)
1815 break;
1816 }
1817
1818 cb->args[3] = key;
1819 cb->args[2] = count;
1820
1821 return skb->len;
1822 }
1823
1824 void __init fib_trie_init(void)
1825 {
1826 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1827 sizeof(struct fib_alias),
1828 0, SLAB_PANIC, NULL);
1829
1830 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1831 LEAF_SIZE,
1832 0, SLAB_PANIC, NULL);
1833 }
1834
1835
1836 struct fib_table *fib_trie_table(u32 id)
1837 {
1838 struct fib_table *tb;
1839 struct trie *t;
1840
1841 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1842 GFP_KERNEL);
1843 if (tb == NULL)
1844 return NULL;
1845
1846 tb->tb_id = id;
1847 tb->tb_default = -1;
1848 tb->tb_num_default = 0;
1849
1850 t = (struct trie *) tb->tb_data;
1851 RCU_INIT_POINTER(t->tnode[0], NULL);
1852 #ifdef CONFIG_IP_FIB_TRIE_STATS
1853 t->stats = alloc_percpu(struct trie_use_stats);
1854 if (!t->stats) {
1855 kfree(tb);
1856 tb = NULL;
1857 }
1858 #endif
1859
1860 return tb;
1861 }
1862
1863 #ifdef CONFIG_PROC_FS
1864 /* Depth first Trie walk iterator */
1865 struct fib_trie_iter {
1866 struct seq_net_private p;
1867 struct fib_table *tb;
1868 struct key_vector *tnode;
1869 unsigned int index;
1870 unsigned int depth;
1871 };
1872
1873 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
1874 {
1875 unsigned long cindex = iter->index;
1876 struct key_vector *tn = iter->tnode;
1877 struct key_vector *p;
1878
1879 /* A single entry routing table */
1880 if (!tn)
1881 return NULL;
1882
1883 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
1884 iter->tnode, iter->index, iter->depth);
1885 rescan:
1886 while (cindex < child_length(tn)) {
1887 struct key_vector *n = get_child_rcu(tn, cindex);
1888
1889 if (n) {
1890 if (IS_LEAF(n)) {
1891 iter->tnode = tn;
1892 iter->index = cindex + 1;
1893 } else {
1894 /* push down one level */
1895 iter->tnode = n;
1896 iter->index = 0;
1897 ++iter->depth;
1898 }
1899 return n;
1900 }
1901
1902 ++cindex;
1903 }
1904
1905 /* Current node exhausted, pop back up */
1906 p = node_parent_rcu(tn);
1907 if (p) {
1908 cindex = get_index(tn->key, p) + 1;
1909 tn = p;
1910 --iter->depth;
1911 goto rescan;
1912 }
1913
1914 /* got root? */
1915 return NULL;
1916 }
1917
1918 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
1919 struct trie *t)
1920 {
1921 struct key_vector *n;
1922
1923 if (!t)
1924 return NULL;
1925
1926 n = rcu_dereference(t->tnode[0]);
1927 if (!n)
1928 return NULL;
1929
1930 if (IS_TNODE(n)) {
1931 iter->tnode = n;
1932 iter->index = 0;
1933 iter->depth = 1;
1934 } else {
1935 iter->tnode = NULL;
1936 iter->index = 0;
1937 iter->depth = 0;
1938 }
1939
1940 return n;
1941 }
1942
1943 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
1944 {
1945 struct key_vector *n;
1946 struct fib_trie_iter iter;
1947
1948 memset(s, 0, sizeof(*s));
1949
1950 rcu_read_lock();
1951 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
1952 if (IS_LEAF(n)) {
1953 struct fib_alias *fa;
1954
1955 s->leaves++;
1956 s->totdepth += iter.depth;
1957 if (iter.depth > s->maxdepth)
1958 s->maxdepth = iter.depth;
1959
1960 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
1961 ++s->prefixes;
1962 } else {
1963 s->tnodes++;
1964 if (n->bits < MAX_STAT_DEPTH)
1965 s->nodesizes[n->bits]++;
1966 s->nullpointers += n->empty_children;
1967 }
1968 }
1969 rcu_read_unlock();
1970 }
1971
1972 /*
1973 * This outputs /proc/net/fib_triestats
1974 */
1975 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
1976 {
1977 unsigned int i, max, pointers, bytes, avdepth;
1978
1979 if (stat->leaves)
1980 avdepth = stat->totdepth*100 / stat->leaves;
1981 else
1982 avdepth = 0;
1983
1984 seq_printf(seq, "\tAver depth: %u.%02d\n",
1985 avdepth / 100, avdepth % 100);
1986 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
1987
1988 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
1989 bytes = LEAF_SIZE * stat->leaves;
1990
1991 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
1992 bytes += sizeof(struct fib_alias) * stat->prefixes;
1993
1994 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
1995 bytes += TNODE_SIZE(0) * stat->tnodes;
1996
1997 max = MAX_STAT_DEPTH;
1998 while (max > 0 && stat->nodesizes[max-1] == 0)
1999 max--;
2000
2001 pointers = 0;
2002 for (i = 1; i < max; i++)
2003 if (stat->nodesizes[i] != 0) {
2004 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2005 pointers += (1<<i) * stat->nodesizes[i];
2006 }
2007 seq_putc(seq, '\n');
2008 seq_printf(seq, "\tPointers: %u\n", pointers);
2009
2010 bytes += sizeof(struct key_vector *) * pointers;
2011 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2012 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2013 }
2014
2015 #ifdef CONFIG_IP_FIB_TRIE_STATS
2016 static void trie_show_usage(struct seq_file *seq,
2017 const struct trie_use_stats __percpu *stats)
2018 {
2019 struct trie_use_stats s = { 0 };
2020 int cpu;
2021
2022 /* loop through all of the CPUs and gather up the stats */
2023 for_each_possible_cpu(cpu) {
2024 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2025
2026 s.gets += pcpu->gets;
2027 s.backtrack += pcpu->backtrack;
2028 s.semantic_match_passed += pcpu->semantic_match_passed;
2029 s.semantic_match_miss += pcpu->semantic_match_miss;
2030 s.null_node_hit += pcpu->null_node_hit;
2031 s.resize_node_skipped += pcpu->resize_node_skipped;
2032 }
2033
2034 seq_printf(seq, "\nCounters:\n---------\n");
2035 seq_printf(seq, "gets = %u\n", s.gets);
2036 seq_printf(seq, "backtracks = %u\n", s.backtrack);
2037 seq_printf(seq, "semantic match passed = %u\n",
2038 s.semantic_match_passed);
2039 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2040 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2041 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2042 }
2043 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2044
2045 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2046 {
2047 if (tb->tb_id == RT_TABLE_LOCAL)
2048 seq_puts(seq, "Local:\n");
2049 else if (tb->tb_id == RT_TABLE_MAIN)
2050 seq_puts(seq, "Main:\n");
2051 else
2052 seq_printf(seq, "Id %d:\n", tb->tb_id);
2053 }
2054
2055
2056 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2057 {
2058 struct net *net = (struct net *)seq->private;
2059 unsigned int h;
2060
2061 seq_printf(seq,
2062 "Basic info: size of leaf:"
2063 " %Zd bytes, size of tnode: %Zd bytes.\n",
2064 LEAF_SIZE, TNODE_SIZE(0));
2065
2066 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2067 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2068 struct fib_table *tb;
2069
2070 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2071 struct trie *t = (struct trie *) tb->tb_data;
2072 struct trie_stat stat;
2073
2074 if (!t)
2075 continue;
2076
2077 fib_table_print(seq, tb);
2078
2079 trie_collect_stats(t, &stat);
2080 trie_show_stats(seq, &stat);
2081 #ifdef CONFIG_IP_FIB_TRIE_STATS
2082 trie_show_usage(seq, t->stats);
2083 #endif
2084 }
2085 }
2086
2087 return 0;
2088 }
2089
2090 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2091 {
2092 return single_open_net(inode, file, fib_triestat_seq_show);
2093 }
2094
2095 static const struct file_operations fib_triestat_fops = {
2096 .owner = THIS_MODULE,
2097 .open = fib_triestat_seq_open,
2098 .read = seq_read,
2099 .llseek = seq_lseek,
2100 .release = single_release_net,
2101 };
2102
2103 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2104 {
2105 struct fib_trie_iter *iter = seq->private;
2106 struct net *net = seq_file_net(seq);
2107 loff_t idx = 0;
2108 unsigned int h;
2109
2110 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2111 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2112 struct fib_table *tb;
2113
2114 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2115 struct key_vector *n;
2116
2117 for (n = fib_trie_get_first(iter,
2118 (struct trie *) tb->tb_data);
2119 n; n = fib_trie_get_next(iter))
2120 if (pos == idx++) {
2121 iter->tb = tb;
2122 return n;
2123 }
2124 }
2125 }
2126
2127 return NULL;
2128 }
2129
2130 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2131 __acquires(RCU)
2132 {
2133 rcu_read_lock();
2134 return fib_trie_get_idx(seq, *pos);
2135 }
2136
2137 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2138 {
2139 struct fib_trie_iter *iter = seq->private;
2140 struct net *net = seq_file_net(seq);
2141 struct fib_table *tb = iter->tb;
2142 struct hlist_node *tb_node;
2143 unsigned int h;
2144 struct key_vector *n;
2145
2146 ++*pos;
2147 /* next node in same table */
2148 n = fib_trie_get_next(iter);
2149 if (n)
2150 return n;
2151
2152 /* walk rest of this hash chain */
2153 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2154 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2155 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2156 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2157 if (n)
2158 goto found;
2159 }
2160
2161 /* new hash chain */
2162 while (++h < FIB_TABLE_HASHSZ) {
2163 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2164 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2165 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2166 if (n)
2167 goto found;
2168 }
2169 }
2170 return NULL;
2171
2172 found:
2173 iter->tb = tb;
2174 return n;
2175 }
2176
2177 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2178 __releases(RCU)
2179 {
2180 rcu_read_unlock();
2181 }
2182
2183 static void seq_indent(struct seq_file *seq, int n)
2184 {
2185 while (n-- > 0)
2186 seq_puts(seq, " ");
2187 }
2188
2189 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2190 {
2191 switch (s) {
2192 case RT_SCOPE_UNIVERSE: return "universe";
2193 case RT_SCOPE_SITE: return "site";
2194 case RT_SCOPE_LINK: return "link";
2195 case RT_SCOPE_HOST: return "host";
2196 case RT_SCOPE_NOWHERE: return "nowhere";
2197 default:
2198 snprintf(buf, len, "scope=%d", s);
2199 return buf;
2200 }
2201 }
2202
2203 static const char *const rtn_type_names[__RTN_MAX] = {
2204 [RTN_UNSPEC] = "UNSPEC",
2205 [RTN_UNICAST] = "UNICAST",
2206 [RTN_LOCAL] = "LOCAL",
2207 [RTN_BROADCAST] = "BROADCAST",
2208 [RTN_ANYCAST] = "ANYCAST",
2209 [RTN_MULTICAST] = "MULTICAST",
2210 [RTN_BLACKHOLE] = "BLACKHOLE",
2211 [RTN_UNREACHABLE] = "UNREACHABLE",
2212 [RTN_PROHIBIT] = "PROHIBIT",
2213 [RTN_THROW] = "THROW",
2214 [RTN_NAT] = "NAT",
2215 [RTN_XRESOLVE] = "XRESOLVE",
2216 };
2217
2218 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2219 {
2220 if (t < __RTN_MAX && rtn_type_names[t])
2221 return rtn_type_names[t];
2222 snprintf(buf, len, "type %u", t);
2223 return buf;
2224 }
2225
2226 /* Pretty print the trie */
2227 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2228 {
2229 const struct fib_trie_iter *iter = seq->private;
2230 struct key_vector *n = v;
2231
2232 if (!node_parent_rcu(n))
2233 fib_table_print(seq, iter->tb);
2234
2235 if (IS_TNODE(n)) {
2236 __be32 prf = htonl(n->key);
2237
2238 seq_indent(seq, iter->depth-1);
2239 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2240 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2241 n->full_children, n->empty_children);
2242 } else {
2243 __be32 val = htonl(n->key);
2244 struct fib_alias *fa;
2245
2246 seq_indent(seq, iter->depth);
2247 seq_printf(seq, " |-- %pI4\n", &val);
2248
2249 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2250 char buf1[32], buf2[32];
2251
2252 seq_indent(seq, iter->depth + 1);
2253 seq_printf(seq, " /%zu %s %s",
2254 KEYLENGTH - fa->fa_slen,
2255 rtn_scope(buf1, sizeof(buf1),
2256 fa->fa_info->fib_scope),
2257 rtn_type(buf2, sizeof(buf2),
2258 fa->fa_type));
2259 if (fa->fa_tos)
2260 seq_printf(seq, " tos=%d", fa->fa_tos);
2261 seq_putc(seq, '\n');
2262 }
2263 }
2264
2265 return 0;
2266 }
2267
2268 static const struct seq_operations fib_trie_seq_ops = {
2269 .start = fib_trie_seq_start,
2270 .next = fib_trie_seq_next,
2271 .stop = fib_trie_seq_stop,
2272 .show = fib_trie_seq_show,
2273 };
2274
2275 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2276 {
2277 return seq_open_net(inode, file, &fib_trie_seq_ops,
2278 sizeof(struct fib_trie_iter));
2279 }
2280
2281 static const struct file_operations fib_trie_fops = {
2282 .owner = THIS_MODULE,
2283 .open = fib_trie_seq_open,
2284 .read = seq_read,
2285 .llseek = seq_lseek,
2286 .release = seq_release_net,
2287 };
2288
2289 struct fib_route_iter {
2290 struct seq_net_private p;
2291 struct fib_table *main_tb;
2292 struct key_vector *tnode;
2293 loff_t pos;
2294 t_key key;
2295 };
2296
2297 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2298 loff_t pos)
2299 {
2300 struct fib_table *tb = iter->main_tb;
2301 struct key_vector *l, **tp = &iter->tnode;
2302 struct trie *t;
2303 t_key key;
2304
2305 /* use cache location of next-to-find key */
2306 if (iter->pos > 0 && pos >= iter->pos) {
2307 pos -= iter->pos;
2308 key = iter->key;
2309 } else {
2310 t = (struct trie *)tb->tb_data;
2311 iter->tnode = rcu_dereference_rtnl(t->tnode[0]);
2312 iter->pos = 0;
2313 key = 0;
2314 }
2315
2316 while ((l = leaf_walk_rcu(tp, key)) != NULL) {
2317 key = l->key + 1;
2318 iter->pos++;
2319
2320 if (pos-- <= 0)
2321 break;
2322
2323 l = NULL;
2324
2325 /* handle unlikely case of a key wrap */
2326 if (!key)
2327 break;
2328 }
2329
2330 if (l)
2331 iter->key = key; /* remember it */
2332 else
2333 iter->pos = 0; /* forget it */
2334
2335 return l;
2336 }
2337
2338 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2339 __acquires(RCU)
2340 {
2341 struct fib_route_iter *iter = seq->private;
2342 struct fib_table *tb;
2343 struct trie *t;
2344
2345 rcu_read_lock();
2346
2347 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2348 if (!tb)
2349 return NULL;
2350
2351 iter->main_tb = tb;
2352
2353 if (*pos != 0)
2354 return fib_route_get_idx(iter, *pos);
2355
2356 t = (struct trie *)tb->tb_data;
2357 iter->tnode = rcu_dereference_rtnl(t->tnode[0]);
2358 iter->pos = 0;
2359 iter->key = 0;
2360
2361 return SEQ_START_TOKEN;
2362 }
2363
2364 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2365 {
2366 struct fib_route_iter *iter = seq->private;
2367 struct key_vector *l = NULL;
2368 t_key key = iter->key;
2369
2370 ++*pos;
2371
2372 /* only allow key of 0 for start of sequence */
2373 if ((v == SEQ_START_TOKEN) || key)
2374 l = leaf_walk_rcu(&iter->tnode, key);
2375
2376 if (l) {
2377 iter->key = l->key + 1;
2378 iter->pos++;
2379 } else {
2380 iter->pos = 0;
2381 }
2382
2383 return l;
2384 }
2385
2386 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2387 __releases(RCU)
2388 {
2389 rcu_read_unlock();
2390 }
2391
2392 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2393 {
2394 unsigned int flags = 0;
2395
2396 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2397 flags = RTF_REJECT;
2398 if (fi && fi->fib_nh->nh_gw)
2399 flags |= RTF_GATEWAY;
2400 if (mask == htonl(0xFFFFFFFF))
2401 flags |= RTF_HOST;
2402 flags |= RTF_UP;
2403 return flags;
2404 }
2405
2406 /*
2407 * This outputs /proc/net/route.
2408 * The format of the file is not supposed to be changed
2409 * and needs to be same as fib_hash output to avoid breaking
2410 * legacy utilities
2411 */
2412 static int fib_route_seq_show(struct seq_file *seq, void *v)
2413 {
2414 struct fib_alias *fa;
2415 struct key_vector *l = v;
2416 __be32 prefix;
2417
2418 if (v == SEQ_START_TOKEN) {
2419 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2420 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2421 "\tWindow\tIRTT");
2422 return 0;
2423 }
2424
2425 prefix = htonl(l->key);
2426
2427 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2428 const struct fib_info *fi = fa->fa_info;
2429 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2430 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2431
2432 if ((fa->fa_type == RTN_BROADCAST) ||
2433 (fa->fa_type == RTN_MULTICAST))
2434 continue;
2435
2436 seq_setwidth(seq, 127);
2437
2438 if (fi)
2439 seq_printf(seq,
2440 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2441 "%d\t%08X\t%d\t%u\t%u",
2442 fi->fib_dev ? fi->fib_dev->name : "*",
2443 prefix,
2444 fi->fib_nh->nh_gw, flags, 0, 0,
2445 fi->fib_priority,
2446 mask,
2447 (fi->fib_advmss ?
2448 fi->fib_advmss + 40 : 0),
2449 fi->fib_window,
2450 fi->fib_rtt >> 3);
2451 else
2452 seq_printf(seq,
2453 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2454 "%d\t%08X\t%d\t%u\t%u",
2455 prefix, 0, flags, 0, 0, 0,
2456 mask, 0, 0, 0);
2457
2458 seq_pad(seq, '\n');
2459 }
2460
2461 return 0;
2462 }
2463
2464 static const struct seq_operations fib_route_seq_ops = {
2465 .start = fib_route_seq_start,
2466 .next = fib_route_seq_next,
2467 .stop = fib_route_seq_stop,
2468 .show = fib_route_seq_show,
2469 };
2470
2471 static int fib_route_seq_open(struct inode *inode, struct file *file)
2472 {
2473 return seq_open_net(inode, file, &fib_route_seq_ops,
2474 sizeof(struct fib_route_iter));
2475 }
2476
2477 static const struct file_operations fib_route_fops = {
2478 .owner = THIS_MODULE,
2479 .open = fib_route_seq_open,
2480 .read = seq_read,
2481 .llseek = seq_lseek,
2482 .release = seq_release_net,
2483 };
2484
2485 int __net_init fib_proc_init(struct net *net)
2486 {
2487 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2488 goto out1;
2489
2490 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2491 &fib_triestat_fops))
2492 goto out2;
2493
2494 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2495 goto out3;
2496
2497 return 0;
2498
2499 out3:
2500 remove_proc_entry("fib_triestat", net->proc_net);
2501 out2:
2502 remove_proc_entry("fib_trie", net->proc_net);
2503 out1:
2504 return -ENOMEM;
2505 }
2506
2507 void __net_exit fib_proc_exit(struct net *net)
2508 {
2509 remove_proc_entry("fib_trie", net->proc_net);
2510 remove_proc_entry("fib_triestat", net->proc_net);
2511 remove_proc_entry("route", net->proc_net);
2512 }
2513
2514 #endif /* CONFIG_PROC_FS */