]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/ipv4/fib_trie.c
Merge branch 'acpi-ec' into acpi-pm
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally described in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
49 */
50
51 #define VERSION "0.409"
52
53 #include <linux/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <linux/vmalloc.h>
76 #include <linux/notifier.h>
77 #include <net/net_namespace.h>
78 #include <net/ip.h>
79 #include <net/protocol.h>
80 #include <net/route.h>
81 #include <net/tcp.h>
82 #include <net/sock.h>
83 #include <net/ip_fib.h>
84 #include <trace/events/fib.h>
85 #include "fib_lookup.h"
86
87 static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
88 enum fib_event_type event_type, u32 dst,
89 int dst_len, struct fib_info *fi,
90 u8 tos, u8 type, u32 tb_id)
91 {
92 struct fib_entry_notifier_info info = {
93 .dst = dst,
94 .dst_len = dst_len,
95 .fi = fi,
96 .tos = tos,
97 .type = type,
98 .tb_id = tb_id,
99 };
100 return call_fib_notifier(nb, net, event_type, &info.info);
101 }
102
103 static int call_fib_entry_notifiers(struct net *net,
104 enum fib_event_type event_type, u32 dst,
105 int dst_len, struct fib_info *fi,
106 u8 tos, u8 type, u32 tb_id)
107 {
108 struct fib_entry_notifier_info info = {
109 .dst = dst,
110 .dst_len = dst_len,
111 .fi = fi,
112 .tos = tos,
113 .type = type,
114 .tb_id = tb_id,
115 };
116 return call_fib_notifiers(net, event_type, &info.info);
117 }
118
119 #define MAX_STAT_DEPTH 32
120
121 #define KEYLENGTH (8*sizeof(t_key))
122 #define KEY_MAX ((t_key)~0)
123
124 typedef unsigned int t_key;
125
126 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
127 #define IS_TNODE(n) ((n)->bits)
128 #define IS_LEAF(n) (!(n)->bits)
129
130 struct key_vector {
131 t_key key;
132 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
133 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
134 unsigned char slen;
135 union {
136 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
137 struct hlist_head leaf;
138 /* This array is valid if (pos | bits) > 0 (TNODE) */
139 struct key_vector __rcu *tnode[0];
140 };
141 };
142
143 struct tnode {
144 struct rcu_head rcu;
145 t_key empty_children; /* KEYLENGTH bits needed */
146 t_key full_children; /* KEYLENGTH bits needed */
147 struct key_vector __rcu *parent;
148 struct key_vector kv[1];
149 #define tn_bits kv[0].bits
150 };
151
152 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
153 #define LEAF_SIZE TNODE_SIZE(1)
154
155 #ifdef CONFIG_IP_FIB_TRIE_STATS
156 struct trie_use_stats {
157 unsigned int gets;
158 unsigned int backtrack;
159 unsigned int semantic_match_passed;
160 unsigned int semantic_match_miss;
161 unsigned int null_node_hit;
162 unsigned int resize_node_skipped;
163 };
164 #endif
165
166 struct trie_stat {
167 unsigned int totdepth;
168 unsigned int maxdepth;
169 unsigned int tnodes;
170 unsigned int leaves;
171 unsigned int nullpointers;
172 unsigned int prefixes;
173 unsigned int nodesizes[MAX_STAT_DEPTH];
174 };
175
176 struct trie {
177 struct key_vector kv[1];
178 #ifdef CONFIG_IP_FIB_TRIE_STATS
179 struct trie_use_stats __percpu *stats;
180 #endif
181 };
182
183 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
184 static size_t tnode_free_size;
185
186 /*
187 * synchronize_rcu after call_rcu for that many pages; it should be especially
188 * useful before resizing the root node with PREEMPT_NONE configs; the value was
189 * obtained experimentally, aiming to avoid visible slowdown.
190 */
191 static const int sync_pages = 128;
192
193 static struct kmem_cache *fn_alias_kmem __read_mostly;
194 static struct kmem_cache *trie_leaf_kmem __read_mostly;
195
196 static inline struct tnode *tn_info(struct key_vector *kv)
197 {
198 return container_of(kv, struct tnode, kv[0]);
199 }
200
201 /* caller must hold RTNL */
202 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
203 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
204
205 /* caller must hold RCU read lock or RTNL */
206 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
207 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
208
209 /* wrapper for rcu_assign_pointer */
210 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
211 {
212 if (n)
213 rcu_assign_pointer(tn_info(n)->parent, tp);
214 }
215
216 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
217
218 /* This provides us with the number of children in this node, in the case of a
219 * leaf this will return 0 meaning none of the children are accessible.
220 */
221 static inline unsigned long child_length(const struct key_vector *tn)
222 {
223 return (1ul << tn->bits) & ~(1ul);
224 }
225
226 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
227
228 static inline unsigned long get_index(t_key key, struct key_vector *kv)
229 {
230 unsigned long index = key ^ kv->key;
231
232 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
233 return 0;
234
235 return index >> kv->pos;
236 }
237
238 /* To understand this stuff, an understanding of keys and all their bits is
239 * necessary. Every node in the trie has a key associated with it, but not
240 * all of the bits in that key are significant.
241 *
242 * Consider a node 'n' and its parent 'tp'.
243 *
244 * If n is a leaf, every bit in its key is significant. Its presence is
245 * necessitated by path compression, since during a tree traversal (when
246 * searching for a leaf - unless we are doing an insertion) we will completely
247 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
248 * a potentially successful search, that we have indeed been walking the
249 * correct key path.
250 *
251 * Note that we can never "miss" the correct key in the tree if present by
252 * following the wrong path. Path compression ensures that segments of the key
253 * that are the same for all keys with a given prefix are skipped, but the
254 * skipped part *is* identical for each node in the subtrie below the skipped
255 * bit! trie_insert() in this implementation takes care of that.
256 *
257 * if n is an internal node - a 'tnode' here, the various parts of its key
258 * have many different meanings.
259 *
260 * Example:
261 * _________________________________________________________________
262 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
263 * -----------------------------------------------------------------
264 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
265 *
266 * _________________________________________________________________
267 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
268 * -----------------------------------------------------------------
269 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
270 *
271 * tp->pos = 22
272 * tp->bits = 3
273 * n->pos = 13
274 * n->bits = 4
275 *
276 * First, let's just ignore the bits that come before the parent tp, that is
277 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
278 * point we do not use them for anything.
279 *
280 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
281 * index into the parent's child array. That is, they will be used to find
282 * 'n' among tp's children.
283 *
284 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
285 * for the node n.
286 *
287 * All the bits we have seen so far are significant to the node n. The rest
288 * of the bits are really not needed or indeed known in n->key.
289 *
290 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
291 * n's child array, and will of course be different for each child.
292 *
293 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
294 * at this point.
295 */
296
297 static const int halve_threshold = 25;
298 static const int inflate_threshold = 50;
299 static const int halve_threshold_root = 15;
300 static const int inflate_threshold_root = 30;
301
302 static void __alias_free_mem(struct rcu_head *head)
303 {
304 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
305 kmem_cache_free(fn_alias_kmem, fa);
306 }
307
308 static inline void alias_free_mem_rcu(struct fib_alias *fa)
309 {
310 call_rcu(&fa->rcu, __alias_free_mem);
311 }
312
313 #define TNODE_KMALLOC_MAX \
314 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
315 #define TNODE_VMALLOC_MAX \
316 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
317
318 static void __node_free_rcu(struct rcu_head *head)
319 {
320 struct tnode *n = container_of(head, struct tnode, rcu);
321
322 if (!n->tn_bits)
323 kmem_cache_free(trie_leaf_kmem, n);
324 else
325 kvfree(n);
326 }
327
328 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
329
330 static struct tnode *tnode_alloc(int bits)
331 {
332 size_t size;
333
334 /* verify bits is within bounds */
335 if (bits > TNODE_VMALLOC_MAX)
336 return NULL;
337
338 /* determine size and verify it is non-zero and didn't overflow */
339 size = TNODE_SIZE(1ul << bits);
340
341 if (size <= PAGE_SIZE)
342 return kzalloc(size, GFP_KERNEL);
343 else
344 return vzalloc(size);
345 }
346
347 static inline void empty_child_inc(struct key_vector *n)
348 {
349 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
350 }
351
352 static inline void empty_child_dec(struct key_vector *n)
353 {
354 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
355 }
356
357 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
358 {
359 struct key_vector *l;
360 struct tnode *kv;
361
362 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
363 if (!kv)
364 return NULL;
365
366 /* initialize key vector */
367 l = kv->kv;
368 l->key = key;
369 l->pos = 0;
370 l->bits = 0;
371 l->slen = fa->fa_slen;
372
373 /* link leaf to fib alias */
374 INIT_HLIST_HEAD(&l->leaf);
375 hlist_add_head(&fa->fa_list, &l->leaf);
376
377 return l;
378 }
379
380 static struct key_vector *tnode_new(t_key key, int pos, int bits)
381 {
382 unsigned int shift = pos + bits;
383 struct key_vector *tn;
384 struct tnode *tnode;
385
386 /* verify bits and pos their msb bits clear and values are valid */
387 BUG_ON(!bits || (shift > KEYLENGTH));
388
389 tnode = tnode_alloc(bits);
390 if (!tnode)
391 return NULL;
392
393 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
394 sizeof(struct key_vector *) << bits);
395
396 if (bits == KEYLENGTH)
397 tnode->full_children = 1;
398 else
399 tnode->empty_children = 1ul << bits;
400
401 tn = tnode->kv;
402 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
403 tn->pos = pos;
404 tn->bits = bits;
405 tn->slen = pos;
406
407 return tn;
408 }
409
410 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
411 * and no bits are skipped. See discussion in dyntree paper p. 6
412 */
413 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
414 {
415 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
416 }
417
418 /* Add a child at position i overwriting the old value.
419 * Update the value of full_children and empty_children.
420 */
421 static void put_child(struct key_vector *tn, unsigned long i,
422 struct key_vector *n)
423 {
424 struct key_vector *chi = get_child(tn, i);
425 int isfull, wasfull;
426
427 BUG_ON(i >= child_length(tn));
428
429 /* update emptyChildren, overflow into fullChildren */
430 if (!n && chi)
431 empty_child_inc(tn);
432 if (n && !chi)
433 empty_child_dec(tn);
434
435 /* update fullChildren */
436 wasfull = tnode_full(tn, chi);
437 isfull = tnode_full(tn, n);
438
439 if (wasfull && !isfull)
440 tn_info(tn)->full_children--;
441 else if (!wasfull && isfull)
442 tn_info(tn)->full_children++;
443
444 if (n && (tn->slen < n->slen))
445 tn->slen = n->slen;
446
447 rcu_assign_pointer(tn->tnode[i], n);
448 }
449
450 static void update_children(struct key_vector *tn)
451 {
452 unsigned long i;
453
454 /* update all of the child parent pointers */
455 for (i = child_length(tn); i;) {
456 struct key_vector *inode = get_child(tn, --i);
457
458 if (!inode)
459 continue;
460
461 /* Either update the children of a tnode that
462 * already belongs to us or update the child
463 * to point to ourselves.
464 */
465 if (node_parent(inode) == tn)
466 update_children(inode);
467 else
468 node_set_parent(inode, tn);
469 }
470 }
471
472 static inline void put_child_root(struct key_vector *tp, t_key key,
473 struct key_vector *n)
474 {
475 if (IS_TRIE(tp))
476 rcu_assign_pointer(tp->tnode[0], n);
477 else
478 put_child(tp, get_index(key, tp), n);
479 }
480
481 static inline void tnode_free_init(struct key_vector *tn)
482 {
483 tn_info(tn)->rcu.next = NULL;
484 }
485
486 static inline void tnode_free_append(struct key_vector *tn,
487 struct key_vector *n)
488 {
489 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
490 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
491 }
492
493 static void tnode_free(struct key_vector *tn)
494 {
495 struct callback_head *head = &tn_info(tn)->rcu;
496
497 while (head) {
498 head = head->next;
499 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
500 node_free(tn);
501
502 tn = container_of(head, struct tnode, rcu)->kv;
503 }
504
505 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
506 tnode_free_size = 0;
507 synchronize_rcu();
508 }
509 }
510
511 static struct key_vector *replace(struct trie *t,
512 struct key_vector *oldtnode,
513 struct key_vector *tn)
514 {
515 struct key_vector *tp = node_parent(oldtnode);
516 unsigned long i;
517
518 /* setup the parent pointer out of and back into this node */
519 NODE_INIT_PARENT(tn, tp);
520 put_child_root(tp, tn->key, tn);
521
522 /* update all of the child parent pointers */
523 update_children(tn);
524
525 /* all pointers should be clean so we are done */
526 tnode_free(oldtnode);
527
528 /* resize children now that oldtnode is freed */
529 for (i = child_length(tn); i;) {
530 struct key_vector *inode = get_child(tn, --i);
531
532 /* resize child node */
533 if (tnode_full(tn, inode))
534 tn = resize(t, inode);
535 }
536
537 return tp;
538 }
539
540 static struct key_vector *inflate(struct trie *t,
541 struct key_vector *oldtnode)
542 {
543 struct key_vector *tn;
544 unsigned long i;
545 t_key m;
546
547 pr_debug("In inflate\n");
548
549 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
550 if (!tn)
551 goto notnode;
552
553 /* prepare oldtnode to be freed */
554 tnode_free_init(oldtnode);
555
556 /* Assemble all of the pointers in our cluster, in this case that
557 * represents all of the pointers out of our allocated nodes that
558 * point to existing tnodes and the links between our allocated
559 * nodes.
560 */
561 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
562 struct key_vector *inode = get_child(oldtnode, --i);
563 struct key_vector *node0, *node1;
564 unsigned long j, k;
565
566 /* An empty child */
567 if (!inode)
568 continue;
569
570 /* A leaf or an internal node with skipped bits */
571 if (!tnode_full(oldtnode, inode)) {
572 put_child(tn, get_index(inode->key, tn), inode);
573 continue;
574 }
575
576 /* drop the node in the old tnode free list */
577 tnode_free_append(oldtnode, inode);
578
579 /* An internal node with two children */
580 if (inode->bits == 1) {
581 put_child(tn, 2 * i + 1, get_child(inode, 1));
582 put_child(tn, 2 * i, get_child(inode, 0));
583 continue;
584 }
585
586 /* We will replace this node 'inode' with two new
587 * ones, 'node0' and 'node1', each with half of the
588 * original children. The two new nodes will have
589 * a position one bit further down the key and this
590 * means that the "significant" part of their keys
591 * (see the discussion near the top of this file)
592 * will differ by one bit, which will be "0" in
593 * node0's key and "1" in node1's key. Since we are
594 * moving the key position by one step, the bit that
595 * we are moving away from - the bit at position
596 * (tn->pos) - is the one that will differ between
597 * node0 and node1. So... we synthesize that bit in the
598 * two new keys.
599 */
600 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
601 if (!node1)
602 goto nomem;
603 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
604
605 tnode_free_append(tn, node1);
606 if (!node0)
607 goto nomem;
608 tnode_free_append(tn, node0);
609
610 /* populate child pointers in new nodes */
611 for (k = child_length(inode), j = k / 2; j;) {
612 put_child(node1, --j, get_child(inode, --k));
613 put_child(node0, j, get_child(inode, j));
614 put_child(node1, --j, get_child(inode, --k));
615 put_child(node0, j, get_child(inode, j));
616 }
617
618 /* link new nodes to parent */
619 NODE_INIT_PARENT(node1, tn);
620 NODE_INIT_PARENT(node0, tn);
621
622 /* link parent to nodes */
623 put_child(tn, 2 * i + 1, node1);
624 put_child(tn, 2 * i, node0);
625 }
626
627 /* setup the parent pointers into and out of this node */
628 return replace(t, oldtnode, tn);
629 nomem:
630 /* all pointers should be clean so we are done */
631 tnode_free(tn);
632 notnode:
633 return NULL;
634 }
635
636 static struct key_vector *halve(struct trie *t,
637 struct key_vector *oldtnode)
638 {
639 struct key_vector *tn;
640 unsigned long i;
641
642 pr_debug("In halve\n");
643
644 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
645 if (!tn)
646 goto notnode;
647
648 /* prepare oldtnode to be freed */
649 tnode_free_init(oldtnode);
650
651 /* Assemble all of the pointers in our cluster, in this case that
652 * represents all of the pointers out of our allocated nodes that
653 * point to existing tnodes and the links between our allocated
654 * nodes.
655 */
656 for (i = child_length(oldtnode); i;) {
657 struct key_vector *node1 = get_child(oldtnode, --i);
658 struct key_vector *node0 = get_child(oldtnode, --i);
659 struct key_vector *inode;
660
661 /* At least one of the children is empty */
662 if (!node1 || !node0) {
663 put_child(tn, i / 2, node1 ? : node0);
664 continue;
665 }
666
667 /* Two nonempty children */
668 inode = tnode_new(node0->key, oldtnode->pos, 1);
669 if (!inode)
670 goto nomem;
671 tnode_free_append(tn, inode);
672
673 /* initialize pointers out of node */
674 put_child(inode, 1, node1);
675 put_child(inode, 0, node0);
676 NODE_INIT_PARENT(inode, tn);
677
678 /* link parent to node */
679 put_child(tn, i / 2, inode);
680 }
681
682 /* setup the parent pointers into and out of this node */
683 return replace(t, oldtnode, tn);
684 nomem:
685 /* all pointers should be clean so we are done */
686 tnode_free(tn);
687 notnode:
688 return NULL;
689 }
690
691 static struct key_vector *collapse(struct trie *t,
692 struct key_vector *oldtnode)
693 {
694 struct key_vector *n, *tp;
695 unsigned long i;
696
697 /* scan the tnode looking for that one child that might still exist */
698 for (n = NULL, i = child_length(oldtnode); !n && i;)
699 n = get_child(oldtnode, --i);
700
701 /* compress one level */
702 tp = node_parent(oldtnode);
703 put_child_root(tp, oldtnode->key, n);
704 node_set_parent(n, tp);
705
706 /* drop dead node */
707 node_free(oldtnode);
708
709 return tp;
710 }
711
712 static unsigned char update_suffix(struct key_vector *tn)
713 {
714 unsigned char slen = tn->pos;
715 unsigned long stride, i;
716 unsigned char slen_max;
717
718 /* only vector 0 can have a suffix length greater than or equal to
719 * tn->pos + tn->bits, the second highest node will have a suffix
720 * length at most of tn->pos + tn->bits - 1
721 */
722 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
723
724 /* search though the list of children looking for nodes that might
725 * have a suffix greater than the one we currently have. This is
726 * why we start with a stride of 2 since a stride of 1 would
727 * represent the nodes with suffix length equal to tn->pos
728 */
729 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
730 struct key_vector *n = get_child(tn, i);
731
732 if (!n || (n->slen <= slen))
733 continue;
734
735 /* update stride and slen based on new value */
736 stride <<= (n->slen - slen);
737 slen = n->slen;
738 i &= ~(stride - 1);
739
740 /* stop searching if we have hit the maximum possible value */
741 if (slen >= slen_max)
742 break;
743 }
744
745 tn->slen = slen;
746
747 return slen;
748 }
749
750 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
751 * the Helsinki University of Technology and Matti Tikkanen of Nokia
752 * Telecommunications, page 6:
753 * "A node is doubled if the ratio of non-empty children to all
754 * children in the *doubled* node is at least 'high'."
755 *
756 * 'high' in this instance is the variable 'inflate_threshold'. It
757 * is expressed as a percentage, so we multiply it with
758 * child_length() and instead of multiplying by 2 (since the
759 * child array will be doubled by inflate()) and multiplying
760 * the left-hand side by 100 (to handle the percentage thing) we
761 * multiply the left-hand side by 50.
762 *
763 * The left-hand side may look a bit weird: child_length(tn)
764 * - tn->empty_children is of course the number of non-null children
765 * in the current node. tn->full_children is the number of "full"
766 * children, that is non-null tnodes with a skip value of 0.
767 * All of those will be doubled in the resulting inflated tnode, so
768 * we just count them one extra time here.
769 *
770 * A clearer way to write this would be:
771 *
772 * to_be_doubled = tn->full_children;
773 * not_to_be_doubled = child_length(tn) - tn->empty_children -
774 * tn->full_children;
775 *
776 * new_child_length = child_length(tn) * 2;
777 *
778 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
779 * new_child_length;
780 * if (new_fill_factor >= inflate_threshold)
781 *
782 * ...and so on, tho it would mess up the while () loop.
783 *
784 * anyway,
785 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
786 * inflate_threshold
787 *
788 * avoid a division:
789 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
790 * inflate_threshold * new_child_length
791 *
792 * expand not_to_be_doubled and to_be_doubled, and shorten:
793 * 100 * (child_length(tn) - tn->empty_children +
794 * tn->full_children) >= inflate_threshold * new_child_length
795 *
796 * expand new_child_length:
797 * 100 * (child_length(tn) - tn->empty_children +
798 * tn->full_children) >=
799 * inflate_threshold * child_length(tn) * 2
800 *
801 * shorten again:
802 * 50 * (tn->full_children + child_length(tn) -
803 * tn->empty_children) >= inflate_threshold *
804 * child_length(tn)
805 *
806 */
807 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
808 {
809 unsigned long used = child_length(tn);
810 unsigned long threshold = used;
811
812 /* Keep root node larger */
813 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
814 used -= tn_info(tn)->empty_children;
815 used += tn_info(tn)->full_children;
816
817 /* if bits == KEYLENGTH then pos = 0, and will fail below */
818
819 return (used > 1) && tn->pos && ((50 * used) >= threshold);
820 }
821
822 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
823 {
824 unsigned long used = child_length(tn);
825 unsigned long threshold = used;
826
827 /* Keep root node larger */
828 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
829 used -= tn_info(tn)->empty_children;
830
831 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
832
833 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
834 }
835
836 static inline bool should_collapse(struct key_vector *tn)
837 {
838 unsigned long used = child_length(tn);
839
840 used -= tn_info(tn)->empty_children;
841
842 /* account for bits == KEYLENGTH case */
843 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
844 used -= KEY_MAX;
845
846 /* One child or none, time to drop us from the trie */
847 return used < 2;
848 }
849
850 #define MAX_WORK 10
851 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
852 {
853 #ifdef CONFIG_IP_FIB_TRIE_STATS
854 struct trie_use_stats __percpu *stats = t->stats;
855 #endif
856 struct key_vector *tp = node_parent(tn);
857 unsigned long cindex = get_index(tn->key, tp);
858 int max_work = MAX_WORK;
859
860 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
861 tn, inflate_threshold, halve_threshold);
862
863 /* track the tnode via the pointer from the parent instead of
864 * doing it ourselves. This way we can let RCU fully do its
865 * thing without us interfering
866 */
867 BUG_ON(tn != get_child(tp, cindex));
868
869 /* Double as long as the resulting node has a number of
870 * nonempty nodes that are above the threshold.
871 */
872 while (should_inflate(tp, tn) && max_work) {
873 tp = inflate(t, tn);
874 if (!tp) {
875 #ifdef CONFIG_IP_FIB_TRIE_STATS
876 this_cpu_inc(stats->resize_node_skipped);
877 #endif
878 break;
879 }
880
881 max_work--;
882 tn = get_child(tp, cindex);
883 }
884
885 /* update parent in case inflate failed */
886 tp = node_parent(tn);
887
888 /* Return if at least one inflate is run */
889 if (max_work != MAX_WORK)
890 return tp;
891
892 /* Halve as long as the number of empty children in this
893 * node is above threshold.
894 */
895 while (should_halve(tp, tn) && max_work) {
896 tp = halve(t, tn);
897 if (!tp) {
898 #ifdef CONFIG_IP_FIB_TRIE_STATS
899 this_cpu_inc(stats->resize_node_skipped);
900 #endif
901 break;
902 }
903
904 max_work--;
905 tn = get_child(tp, cindex);
906 }
907
908 /* Only one child remains */
909 if (should_collapse(tn))
910 return collapse(t, tn);
911
912 /* update parent in case halve failed */
913 return node_parent(tn);
914 }
915
916 static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
917 {
918 unsigned char node_slen = tn->slen;
919
920 while ((node_slen > tn->pos) && (node_slen > slen)) {
921 slen = update_suffix(tn);
922 if (node_slen == slen)
923 break;
924
925 tn = node_parent(tn);
926 node_slen = tn->slen;
927 }
928 }
929
930 static void node_push_suffix(struct key_vector *tn, unsigned char slen)
931 {
932 while (tn->slen < slen) {
933 tn->slen = slen;
934 tn = node_parent(tn);
935 }
936 }
937
938 /* rcu_read_lock needs to be hold by caller from readside */
939 static struct key_vector *fib_find_node(struct trie *t,
940 struct key_vector **tp, u32 key)
941 {
942 struct key_vector *pn, *n = t->kv;
943 unsigned long index = 0;
944
945 do {
946 pn = n;
947 n = get_child_rcu(n, index);
948
949 if (!n)
950 break;
951
952 index = get_cindex(key, n);
953
954 /* This bit of code is a bit tricky but it combines multiple
955 * checks into a single check. The prefix consists of the
956 * prefix plus zeros for the bits in the cindex. The index
957 * is the difference between the key and this value. From
958 * this we can actually derive several pieces of data.
959 * if (index >= (1ul << bits))
960 * we have a mismatch in skip bits and failed
961 * else
962 * we know the value is cindex
963 *
964 * This check is safe even if bits == KEYLENGTH due to the
965 * fact that we can only allocate a node with 32 bits if a
966 * long is greater than 32 bits.
967 */
968 if (index >= (1ul << n->bits)) {
969 n = NULL;
970 break;
971 }
972
973 /* keep searching until we find a perfect match leaf or NULL */
974 } while (IS_TNODE(n));
975
976 *tp = pn;
977
978 return n;
979 }
980
981 /* Return the first fib alias matching TOS with
982 * priority less than or equal to PRIO.
983 */
984 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
985 u8 tos, u32 prio, u32 tb_id)
986 {
987 struct fib_alias *fa;
988
989 if (!fah)
990 return NULL;
991
992 hlist_for_each_entry(fa, fah, fa_list) {
993 if (fa->fa_slen < slen)
994 continue;
995 if (fa->fa_slen != slen)
996 break;
997 if (fa->tb_id > tb_id)
998 continue;
999 if (fa->tb_id != tb_id)
1000 break;
1001 if (fa->fa_tos > tos)
1002 continue;
1003 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1004 return fa;
1005 }
1006
1007 return NULL;
1008 }
1009
1010 static void trie_rebalance(struct trie *t, struct key_vector *tn)
1011 {
1012 while (!IS_TRIE(tn))
1013 tn = resize(t, tn);
1014 }
1015
1016 static int fib_insert_node(struct trie *t, struct key_vector *tp,
1017 struct fib_alias *new, t_key key)
1018 {
1019 struct key_vector *n, *l;
1020
1021 l = leaf_new(key, new);
1022 if (!l)
1023 goto noleaf;
1024
1025 /* retrieve child from parent node */
1026 n = get_child(tp, get_index(key, tp));
1027
1028 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1029 *
1030 * Add a new tnode here
1031 * first tnode need some special handling
1032 * leaves us in position for handling as case 3
1033 */
1034 if (n) {
1035 struct key_vector *tn;
1036
1037 tn = tnode_new(key, __fls(key ^ n->key), 1);
1038 if (!tn)
1039 goto notnode;
1040
1041 /* initialize routes out of node */
1042 NODE_INIT_PARENT(tn, tp);
1043 put_child(tn, get_index(key, tn) ^ 1, n);
1044
1045 /* start adding routes into the node */
1046 put_child_root(tp, key, tn);
1047 node_set_parent(n, tn);
1048
1049 /* parent now has a NULL spot where the leaf can go */
1050 tp = tn;
1051 }
1052
1053 /* Case 3: n is NULL, and will just insert a new leaf */
1054 node_push_suffix(tp, new->fa_slen);
1055 NODE_INIT_PARENT(l, tp);
1056 put_child_root(tp, key, l);
1057 trie_rebalance(t, tp);
1058
1059 return 0;
1060 notnode:
1061 node_free(l);
1062 noleaf:
1063 return -ENOMEM;
1064 }
1065
1066 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1067 struct key_vector *l, struct fib_alias *new,
1068 struct fib_alias *fa, t_key key)
1069 {
1070 if (!l)
1071 return fib_insert_node(t, tp, new, key);
1072
1073 if (fa) {
1074 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1075 } else {
1076 struct fib_alias *last;
1077
1078 hlist_for_each_entry(last, &l->leaf, fa_list) {
1079 if (new->fa_slen < last->fa_slen)
1080 break;
1081 if ((new->fa_slen == last->fa_slen) &&
1082 (new->tb_id > last->tb_id))
1083 break;
1084 fa = last;
1085 }
1086
1087 if (fa)
1088 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1089 else
1090 hlist_add_head_rcu(&new->fa_list, &l->leaf);
1091 }
1092
1093 /* if we added to the tail node then we need to update slen */
1094 if (l->slen < new->fa_slen) {
1095 l->slen = new->fa_slen;
1096 node_push_suffix(tp, new->fa_slen);
1097 }
1098
1099 return 0;
1100 }
1101
1102 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1103 {
1104 if (plen > KEYLENGTH) {
1105 NL_SET_ERR_MSG(extack, "Invalid prefix length");
1106 return false;
1107 }
1108
1109 if ((plen < KEYLENGTH) && (key << plen)) {
1110 NL_SET_ERR_MSG(extack,
1111 "Invalid prefix for given prefix length");
1112 return false;
1113 }
1114
1115 return true;
1116 }
1117
1118 /* Caller must hold RTNL. */
1119 int fib_table_insert(struct net *net, struct fib_table *tb,
1120 struct fib_config *cfg, struct netlink_ext_ack *extack)
1121 {
1122 enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
1123 struct trie *t = (struct trie *)tb->tb_data;
1124 struct fib_alias *fa, *new_fa;
1125 struct key_vector *l, *tp;
1126 u16 nlflags = NLM_F_EXCL;
1127 struct fib_info *fi;
1128 u8 plen = cfg->fc_dst_len;
1129 u8 slen = KEYLENGTH - plen;
1130 u8 tos = cfg->fc_tos;
1131 u32 key;
1132 int err;
1133
1134 key = ntohl(cfg->fc_dst);
1135
1136 if (!fib_valid_key_len(key, plen, extack))
1137 return -EINVAL;
1138
1139 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1140
1141 fi = fib_create_info(cfg, extack);
1142 if (IS_ERR(fi)) {
1143 err = PTR_ERR(fi);
1144 goto err;
1145 }
1146
1147 l = fib_find_node(t, &tp, key);
1148 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1149 tb->tb_id) : NULL;
1150
1151 /* Now fa, if non-NULL, points to the first fib alias
1152 * with the same keys [prefix,tos,priority], if such key already
1153 * exists or to the node before which we will insert new one.
1154 *
1155 * If fa is NULL, we will need to allocate a new one and
1156 * insert to the tail of the section matching the suffix length
1157 * of the new alias.
1158 */
1159
1160 if (fa && fa->fa_tos == tos &&
1161 fa->fa_info->fib_priority == fi->fib_priority) {
1162 struct fib_alias *fa_first, *fa_match;
1163
1164 err = -EEXIST;
1165 if (cfg->fc_nlflags & NLM_F_EXCL)
1166 goto out;
1167
1168 nlflags &= ~NLM_F_EXCL;
1169
1170 /* We have 2 goals:
1171 * 1. Find exact match for type, scope, fib_info to avoid
1172 * duplicate routes
1173 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1174 */
1175 fa_match = NULL;
1176 fa_first = fa;
1177 hlist_for_each_entry_from(fa, fa_list) {
1178 if ((fa->fa_slen != slen) ||
1179 (fa->tb_id != tb->tb_id) ||
1180 (fa->fa_tos != tos))
1181 break;
1182 if (fa->fa_info->fib_priority != fi->fib_priority)
1183 break;
1184 if (fa->fa_type == cfg->fc_type &&
1185 fa->fa_info == fi) {
1186 fa_match = fa;
1187 break;
1188 }
1189 }
1190
1191 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1192 struct fib_info *fi_drop;
1193 u8 state;
1194
1195 nlflags |= NLM_F_REPLACE;
1196 fa = fa_first;
1197 if (fa_match) {
1198 if (fa == fa_match)
1199 err = 0;
1200 goto out;
1201 }
1202 err = -ENOBUFS;
1203 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1204 if (!new_fa)
1205 goto out;
1206
1207 fi_drop = fa->fa_info;
1208 new_fa->fa_tos = fa->fa_tos;
1209 new_fa->fa_info = fi;
1210 new_fa->fa_type = cfg->fc_type;
1211 state = fa->fa_state;
1212 new_fa->fa_state = state & ~FA_S_ACCESSED;
1213 new_fa->fa_slen = fa->fa_slen;
1214 new_fa->tb_id = tb->tb_id;
1215 new_fa->fa_default = -1;
1216
1217 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
1218 key, plen, fi,
1219 new_fa->fa_tos, cfg->fc_type,
1220 tb->tb_id);
1221 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1222 tb->tb_id, &cfg->fc_nlinfo, nlflags);
1223
1224 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1225
1226 alias_free_mem_rcu(fa);
1227
1228 fib_release_info(fi_drop);
1229 if (state & FA_S_ACCESSED)
1230 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1231
1232 goto succeeded;
1233 }
1234 /* Error if we find a perfect match which
1235 * uses the same scope, type, and nexthop
1236 * information.
1237 */
1238 if (fa_match)
1239 goto out;
1240
1241 if (cfg->fc_nlflags & NLM_F_APPEND) {
1242 event = FIB_EVENT_ENTRY_APPEND;
1243 nlflags |= NLM_F_APPEND;
1244 } else {
1245 fa = fa_first;
1246 }
1247 }
1248 err = -ENOENT;
1249 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1250 goto out;
1251
1252 nlflags |= NLM_F_CREATE;
1253 err = -ENOBUFS;
1254 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1255 if (!new_fa)
1256 goto out;
1257
1258 new_fa->fa_info = fi;
1259 new_fa->fa_tos = tos;
1260 new_fa->fa_type = cfg->fc_type;
1261 new_fa->fa_state = 0;
1262 new_fa->fa_slen = slen;
1263 new_fa->tb_id = tb->tb_id;
1264 new_fa->fa_default = -1;
1265
1266 /* Insert new entry to the list. */
1267 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1268 if (err)
1269 goto out_free_new_fa;
1270
1271 if (!plen)
1272 tb->tb_num_default++;
1273
1274 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1275 call_fib_entry_notifiers(net, event, key, plen, fi, tos, cfg->fc_type,
1276 tb->tb_id);
1277 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1278 &cfg->fc_nlinfo, nlflags);
1279 succeeded:
1280 return 0;
1281
1282 out_free_new_fa:
1283 kmem_cache_free(fn_alias_kmem, new_fa);
1284 out:
1285 fib_release_info(fi);
1286 err:
1287 return err;
1288 }
1289
1290 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1291 {
1292 t_key prefix = n->key;
1293
1294 return (key ^ prefix) & (prefix | -prefix);
1295 }
1296
1297 /* should be called with rcu_read_lock */
1298 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1299 struct fib_result *res, int fib_flags)
1300 {
1301 struct trie *t = (struct trie *) tb->tb_data;
1302 #ifdef CONFIG_IP_FIB_TRIE_STATS
1303 struct trie_use_stats __percpu *stats = t->stats;
1304 #endif
1305 const t_key key = ntohl(flp->daddr);
1306 struct key_vector *n, *pn;
1307 struct fib_alias *fa;
1308 unsigned long index;
1309 t_key cindex;
1310
1311 trace_fib_table_lookup(tb->tb_id, flp);
1312
1313 pn = t->kv;
1314 cindex = 0;
1315
1316 n = get_child_rcu(pn, cindex);
1317 if (!n)
1318 return -EAGAIN;
1319
1320 #ifdef CONFIG_IP_FIB_TRIE_STATS
1321 this_cpu_inc(stats->gets);
1322 #endif
1323
1324 /* Step 1: Travel to the longest prefix match in the trie */
1325 for (;;) {
1326 index = get_cindex(key, n);
1327
1328 /* This bit of code is a bit tricky but it combines multiple
1329 * checks into a single check. The prefix consists of the
1330 * prefix plus zeros for the "bits" in the prefix. The index
1331 * is the difference between the key and this value. From
1332 * this we can actually derive several pieces of data.
1333 * if (index >= (1ul << bits))
1334 * we have a mismatch in skip bits and failed
1335 * else
1336 * we know the value is cindex
1337 *
1338 * This check is safe even if bits == KEYLENGTH due to the
1339 * fact that we can only allocate a node with 32 bits if a
1340 * long is greater than 32 bits.
1341 */
1342 if (index >= (1ul << n->bits))
1343 break;
1344
1345 /* we have found a leaf. Prefixes have already been compared */
1346 if (IS_LEAF(n))
1347 goto found;
1348
1349 /* only record pn and cindex if we are going to be chopping
1350 * bits later. Otherwise we are just wasting cycles.
1351 */
1352 if (n->slen > n->pos) {
1353 pn = n;
1354 cindex = index;
1355 }
1356
1357 n = get_child_rcu(n, index);
1358 if (unlikely(!n))
1359 goto backtrace;
1360 }
1361
1362 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1363 for (;;) {
1364 /* record the pointer where our next node pointer is stored */
1365 struct key_vector __rcu **cptr = n->tnode;
1366
1367 /* This test verifies that none of the bits that differ
1368 * between the key and the prefix exist in the region of
1369 * the lsb and higher in the prefix.
1370 */
1371 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1372 goto backtrace;
1373
1374 /* exit out and process leaf */
1375 if (unlikely(IS_LEAF(n)))
1376 break;
1377
1378 /* Don't bother recording parent info. Since we are in
1379 * prefix match mode we will have to come back to wherever
1380 * we started this traversal anyway
1381 */
1382
1383 while ((n = rcu_dereference(*cptr)) == NULL) {
1384 backtrace:
1385 #ifdef CONFIG_IP_FIB_TRIE_STATS
1386 if (!n)
1387 this_cpu_inc(stats->null_node_hit);
1388 #endif
1389 /* If we are at cindex 0 there are no more bits for
1390 * us to strip at this level so we must ascend back
1391 * up one level to see if there are any more bits to
1392 * be stripped there.
1393 */
1394 while (!cindex) {
1395 t_key pkey = pn->key;
1396
1397 /* If we don't have a parent then there is
1398 * nothing for us to do as we do not have any
1399 * further nodes to parse.
1400 */
1401 if (IS_TRIE(pn))
1402 return -EAGAIN;
1403 #ifdef CONFIG_IP_FIB_TRIE_STATS
1404 this_cpu_inc(stats->backtrack);
1405 #endif
1406 /* Get Child's index */
1407 pn = node_parent_rcu(pn);
1408 cindex = get_index(pkey, pn);
1409 }
1410
1411 /* strip the least significant bit from the cindex */
1412 cindex &= cindex - 1;
1413
1414 /* grab pointer for next child node */
1415 cptr = &pn->tnode[cindex];
1416 }
1417 }
1418
1419 found:
1420 /* this line carries forward the xor from earlier in the function */
1421 index = key ^ n->key;
1422
1423 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1424 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1425 struct fib_info *fi = fa->fa_info;
1426 int nhsel, err;
1427
1428 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1429 if (index >= (1ul << fa->fa_slen))
1430 continue;
1431 }
1432 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1433 continue;
1434 if (fi->fib_dead)
1435 continue;
1436 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1437 continue;
1438 fib_alias_accessed(fa);
1439 err = fib_props[fa->fa_type].error;
1440 if (unlikely(err < 0)) {
1441 #ifdef CONFIG_IP_FIB_TRIE_STATS
1442 this_cpu_inc(stats->semantic_match_passed);
1443 #endif
1444 return err;
1445 }
1446 if (fi->fib_flags & RTNH_F_DEAD)
1447 continue;
1448 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1449 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1450 struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
1451
1452 if (nh->nh_flags & RTNH_F_DEAD)
1453 continue;
1454 if (in_dev &&
1455 IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1456 nh->nh_flags & RTNH_F_LINKDOWN &&
1457 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1458 continue;
1459 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1460 if (flp->flowi4_oif &&
1461 flp->flowi4_oif != nh->nh_oif)
1462 continue;
1463 }
1464
1465 if (!(fib_flags & FIB_LOOKUP_NOREF))
1466 refcount_inc(&fi->fib_clntref);
1467
1468 res->prefix = htonl(n->key);
1469 res->prefixlen = KEYLENGTH - fa->fa_slen;
1470 res->nh_sel = nhsel;
1471 res->type = fa->fa_type;
1472 res->scope = fi->fib_scope;
1473 res->fi = fi;
1474 res->table = tb;
1475 res->fa_head = &n->leaf;
1476 #ifdef CONFIG_IP_FIB_TRIE_STATS
1477 this_cpu_inc(stats->semantic_match_passed);
1478 #endif
1479 trace_fib_table_lookup_nh(nh);
1480
1481 return err;
1482 }
1483 }
1484 #ifdef CONFIG_IP_FIB_TRIE_STATS
1485 this_cpu_inc(stats->semantic_match_miss);
1486 #endif
1487 goto backtrace;
1488 }
1489 EXPORT_SYMBOL_GPL(fib_table_lookup);
1490
1491 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1492 struct key_vector *l, struct fib_alias *old)
1493 {
1494 /* record the location of the previous list_info entry */
1495 struct hlist_node **pprev = old->fa_list.pprev;
1496 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1497
1498 /* remove the fib_alias from the list */
1499 hlist_del_rcu(&old->fa_list);
1500
1501 /* if we emptied the list this leaf will be freed and we can sort
1502 * out parent suffix lengths as a part of trie_rebalance
1503 */
1504 if (hlist_empty(&l->leaf)) {
1505 if (tp->slen == l->slen)
1506 node_pull_suffix(tp, tp->pos);
1507 put_child_root(tp, l->key, NULL);
1508 node_free(l);
1509 trie_rebalance(t, tp);
1510 return;
1511 }
1512
1513 /* only access fa if it is pointing at the last valid hlist_node */
1514 if (*pprev)
1515 return;
1516
1517 /* update the trie with the latest suffix length */
1518 l->slen = fa->fa_slen;
1519 node_pull_suffix(tp, fa->fa_slen);
1520 }
1521
1522 /* Caller must hold RTNL. */
1523 int fib_table_delete(struct net *net, struct fib_table *tb,
1524 struct fib_config *cfg, struct netlink_ext_ack *extack)
1525 {
1526 struct trie *t = (struct trie *) tb->tb_data;
1527 struct fib_alias *fa, *fa_to_delete;
1528 struct key_vector *l, *tp;
1529 u8 plen = cfg->fc_dst_len;
1530 u8 slen = KEYLENGTH - plen;
1531 u8 tos = cfg->fc_tos;
1532 u32 key;
1533
1534 key = ntohl(cfg->fc_dst);
1535
1536 if (!fib_valid_key_len(key, plen, extack))
1537 return -EINVAL;
1538
1539 l = fib_find_node(t, &tp, key);
1540 if (!l)
1541 return -ESRCH;
1542
1543 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1544 if (!fa)
1545 return -ESRCH;
1546
1547 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1548
1549 fa_to_delete = NULL;
1550 hlist_for_each_entry_from(fa, fa_list) {
1551 struct fib_info *fi = fa->fa_info;
1552
1553 if ((fa->fa_slen != slen) ||
1554 (fa->tb_id != tb->tb_id) ||
1555 (fa->fa_tos != tos))
1556 break;
1557
1558 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1559 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1560 fa->fa_info->fib_scope == cfg->fc_scope) &&
1561 (!cfg->fc_prefsrc ||
1562 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1563 (!cfg->fc_protocol ||
1564 fi->fib_protocol == cfg->fc_protocol) &&
1565 fib_nh_match(cfg, fi, extack) == 0) {
1566 fa_to_delete = fa;
1567 break;
1568 }
1569 }
1570
1571 if (!fa_to_delete)
1572 return -ESRCH;
1573
1574 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1575 fa_to_delete->fa_info, tos,
1576 fa_to_delete->fa_type, tb->tb_id);
1577 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1578 &cfg->fc_nlinfo, 0);
1579
1580 if (!plen)
1581 tb->tb_num_default--;
1582
1583 fib_remove_alias(t, tp, l, fa_to_delete);
1584
1585 if (fa_to_delete->fa_state & FA_S_ACCESSED)
1586 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1587
1588 fib_release_info(fa_to_delete->fa_info);
1589 alias_free_mem_rcu(fa_to_delete);
1590 return 0;
1591 }
1592
1593 /* Scan for the next leaf starting at the provided key value */
1594 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1595 {
1596 struct key_vector *pn, *n = *tn;
1597 unsigned long cindex;
1598
1599 /* this loop is meant to try and find the key in the trie */
1600 do {
1601 /* record parent and next child index */
1602 pn = n;
1603 cindex = (key > pn->key) ? get_index(key, pn) : 0;
1604
1605 if (cindex >> pn->bits)
1606 break;
1607
1608 /* descend into the next child */
1609 n = get_child_rcu(pn, cindex++);
1610 if (!n)
1611 break;
1612
1613 /* guarantee forward progress on the keys */
1614 if (IS_LEAF(n) && (n->key >= key))
1615 goto found;
1616 } while (IS_TNODE(n));
1617
1618 /* this loop will search for the next leaf with a greater key */
1619 while (!IS_TRIE(pn)) {
1620 /* if we exhausted the parent node we will need to climb */
1621 if (cindex >= (1ul << pn->bits)) {
1622 t_key pkey = pn->key;
1623
1624 pn = node_parent_rcu(pn);
1625 cindex = get_index(pkey, pn) + 1;
1626 continue;
1627 }
1628
1629 /* grab the next available node */
1630 n = get_child_rcu(pn, cindex++);
1631 if (!n)
1632 continue;
1633
1634 /* no need to compare keys since we bumped the index */
1635 if (IS_LEAF(n))
1636 goto found;
1637
1638 /* Rescan start scanning in new node */
1639 pn = n;
1640 cindex = 0;
1641 }
1642
1643 *tn = pn;
1644 return NULL; /* Root of trie */
1645 found:
1646 /* if we are at the limit for keys just return NULL for the tnode */
1647 *tn = pn;
1648 return n;
1649 }
1650
1651 static void fib_trie_free(struct fib_table *tb)
1652 {
1653 struct trie *t = (struct trie *)tb->tb_data;
1654 struct key_vector *pn = t->kv;
1655 unsigned long cindex = 1;
1656 struct hlist_node *tmp;
1657 struct fib_alias *fa;
1658
1659 /* walk trie in reverse order and free everything */
1660 for (;;) {
1661 struct key_vector *n;
1662
1663 if (!(cindex--)) {
1664 t_key pkey = pn->key;
1665
1666 if (IS_TRIE(pn))
1667 break;
1668
1669 n = pn;
1670 pn = node_parent(pn);
1671
1672 /* drop emptied tnode */
1673 put_child_root(pn, n->key, NULL);
1674 node_free(n);
1675
1676 cindex = get_index(pkey, pn);
1677
1678 continue;
1679 }
1680
1681 /* grab the next available node */
1682 n = get_child(pn, cindex);
1683 if (!n)
1684 continue;
1685
1686 if (IS_TNODE(n)) {
1687 /* record pn and cindex for leaf walking */
1688 pn = n;
1689 cindex = 1ul << n->bits;
1690
1691 continue;
1692 }
1693
1694 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1695 hlist_del_rcu(&fa->fa_list);
1696 alias_free_mem_rcu(fa);
1697 }
1698
1699 put_child_root(pn, n->key, NULL);
1700 node_free(n);
1701 }
1702
1703 #ifdef CONFIG_IP_FIB_TRIE_STATS
1704 free_percpu(t->stats);
1705 #endif
1706 kfree(tb);
1707 }
1708
1709 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1710 {
1711 struct trie *ot = (struct trie *)oldtb->tb_data;
1712 struct key_vector *l, *tp = ot->kv;
1713 struct fib_table *local_tb;
1714 struct fib_alias *fa;
1715 struct trie *lt;
1716 t_key key = 0;
1717
1718 if (oldtb->tb_data == oldtb->__data)
1719 return oldtb;
1720
1721 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1722 if (!local_tb)
1723 return NULL;
1724
1725 lt = (struct trie *)local_tb->tb_data;
1726
1727 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1728 struct key_vector *local_l = NULL, *local_tp;
1729
1730 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1731 struct fib_alias *new_fa;
1732
1733 if (local_tb->tb_id != fa->tb_id)
1734 continue;
1735
1736 /* clone fa for new local table */
1737 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1738 if (!new_fa)
1739 goto out;
1740
1741 memcpy(new_fa, fa, sizeof(*fa));
1742
1743 /* insert clone into table */
1744 if (!local_l)
1745 local_l = fib_find_node(lt, &local_tp, l->key);
1746
1747 if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1748 NULL, l->key)) {
1749 kmem_cache_free(fn_alias_kmem, new_fa);
1750 goto out;
1751 }
1752 }
1753
1754 /* stop loop if key wrapped back to 0 */
1755 key = l->key + 1;
1756 if (key < l->key)
1757 break;
1758 }
1759
1760 return local_tb;
1761 out:
1762 fib_trie_free(local_tb);
1763
1764 return NULL;
1765 }
1766
1767 /* Caller must hold RTNL */
1768 void fib_table_flush_external(struct fib_table *tb)
1769 {
1770 struct trie *t = (struct trie *)tb->tb_data;
1771 struct key_vector *pn = t->kv;
1772 unsigned long cindex = 1;
1773 struct hlist_node *tmp;
1774 struct fib_alias *fa;
1775
1776 /* walk trie in reverse order */
1777 for (;;) {
1778 unsigned char slen = 0;
1779 struct key_vector *n;
1780
1781 if (!(cindex--)) {
1782 t_key pkey = pn->key;
1783
1784 /* cannot resize the trie vector */
1785 if (IS_TRIE(pn))
1786 break;
1787
1788 /* update the suffix to address pulled leaves */
1789 if (pn->slen > pn->pos)
1790 update_suffix(pn);
1791
1792 /* resize completed node */
1793 pn = resize(t, pn);
1794 cindex = get_index(pkey, pn);
1795
1796 continue;
1797 }
1798
1799 /* grab the next available node */
1800 n = get_child(pn, cindex);
1801 if (!n)
1802 continue;
1803
1804 if (IS_TNODE(n)) {
1805 /* record pn and cindex for leaf walking */
1806 pn = n;
1807 cindex = 1ul << n->bits;
1808
1809 continue;
1810 }
1811
1812 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1813 /* if alias was cloned to local then we just
1814 * need to remove the local copy from main
1815 */
1816 if (tb->tb_id != fa->tb_id) {
1817 hlist_del_rcu(&fa->fa_list);
1818 alias_free_mem_rcu(fa);
1819 continue;
1820 }
1821
1822 /* record local slen */
1823 slen = fa->fa_slen;
1824 }
1825
1826 /* update leaf slen */
1827 n->slen = slen;
1828
1829 if (hlist_empty(&n->leaf)) {
1830 put_child_root(pn, n->key, NULL);
1831 node_free(n);
1832 }
1833 }
1834 }
1835
1836 /* Caller must hold RTNL. */
1837 int fib_table_flush(struct net *net, struct fib_table *tb)
1838 {
1839 struct trie *t = (struct trie *)tb->tb_data;
1840 struct key_vector *pn = t->kv;
1841 unsigned long cindex = 1;
1842 struct hlist_node *tmp;
1843 struct fib_alias *fa;
1844 int found = 0;
1845
1846 /* walk trie in reverse order */
1847 for (;;) {
1848 unsigned char slen = 0;
1849 struct key_vector *n;
1850
1851 if (!(cindex--)) {
1852 t_key pkey = pn->key;
1853
1854 /* cannot resize the trie vector */
1855 if (IS_TRIE(pn))
1856 break;
1857
1858 /* update the suffix to address pulled leaves */
1859 if (pn->slen > pn->pos)
1860 update_suffix(pn);
1861
1862 /* resize completed node */
1863 pn = resize(t, pn);
1864 cindex = get_index(pkey, pn);
1865
1866 continue;
1867 }
1868
1869 /* grab the next available node */
1870 n = get_child(pn, cindex);
1871 if (!n)
1872 continue;
1873
1874 if (IS_TNODE(n)) {
1875 /* record pn and cindex for leaf walking */
1876 pn = n;
1877 cindex = 1ul << n->bits;
1878
1879 continue;
1880 }
1881
1882 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1883 struct fib_info *fi = fa->fa_info;
1884
1885 if (!fi || !(fi->fib_flags & RTNH_F_DEAD) ||
1886 tb->tb_id != fa->tb_id) {
1887 slen = fa->fa_slen;
1888 continue;
1889 }
1890
1891 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1892 n->key,
1893 KEYLENGTH - fa->fa_slen,
1894 fi, fa->fa_tos, fa->fa_type,
1895 tb->tb_id);
1896 hlist_del_rcu(&fa->fa_list);
1897 fib_release_info(fa->fa_info);
1898 alias_free_mem_rcu(fa);
1899 found++;
1900 }
1901
1902 /* update leaf slen */
1903 n->slen = slen;
1904
1905 if (hlist_empty(&n->leaf)) {
1906 put_child_root(pn, n->key, NULL);
1907 node_free(n);
1908 }
1909 }
1910
1911 pr_debug("trie_flush found=%d\n", found);
1912 return found;
1913 }
1914
1915 static void fib_leaf_notify(struct net *net, struct key_vector *l,
1916 struct fib_table *tb, struct notifier_block *nb)
1917 {
1918 struct fib_alias *fa;
1919
1920 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1921 struct fib_info *fi = fa->fa_info;
1922
1923 if (!fi)
1924 continue;
1925
1926 /* local and main table can share the same trie,
1927 * so don't notify twice for the same entry.
1928 */
1929 if (tb->tb_id != fa->tb_id)
1930 continue;
1931
1932 call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key,
1933 KEYLENGTH - fa->fa_slen, fi, fa->fa_tos,
1934 fa->fa_type, fa->tb_id);
1935 }
1936 }
1937
1938 static void fib_table_notify(struct net *net, struct fib_table *tb,
1939 struct notifier_block *nb)
1940 {
1941 struct trie *t = (struct trie *)tb->tb_data;
1942 struct key_vector *l, *tp = t->kv;
1943 t_key key = 0;
1944
1945 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1946 fib_leaf_notify(net, l, tb, nb);
1947
1948 key = l->key + 1;
1949 /* stop in case of wrap around */
1950 if (key < l->key)
1951 break;
1952 }
1953 }
1954
1955 void fib_notify(struct net *net, struct notifier_block *nb)
1956 {
1957 unsigned int h;
1958
1959 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1960 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
1961 struct fib_table *tb;
1962
1963 hlist_for_each_entry_rcu(tb, head, tb_hlist)
1964 fib_table_notify(net, tb, nb);
1965 }
1966 }
1967
1968 static void __trie_free_rcu(struct rcu_head *head)
1969 {
1970 struct fib_table *tb = container_of(head, struct fib_table, rcu);
1971 #ifdef CONFIG_IP_FIB_TRIE_STATS
1972 struct trie *t = (struct trie *)tb->tb_data;
1973
1974 if (tb->tb_data == tb->__data)
1975 free_percpu(t->stats);
1976 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1977 kfree(tb);
1978 }
1979
1980 void fib_free_table(struct fib_table *tb)
1981 {
1982 call_rcu(&tb->rcu, __trie_free_rcu);
1983 }
1984
1985 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
1986 struct sk_buff *skb, struct netlink_callback *cb)
1987 {
1988 __be32 xkey = htonl(l->key);
1989 struct fib_alias *fa;
1990 int i, s_i;
1991
1992 s_i = cb->args[4];
1993 i = 0;
1994
1995 /* rcu_read_lock is hold by caller */
1996 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1997 int err;
1998
1999 if (i < s_i) {
2000 i++;
2001 continue;
2002 }
2003
2004 if (tb->tb_id != fa->tb_id) {
2005 i++;
2006 continue;
2007 }
2008
2009 err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
2010 cb->nlh->nlmsg_seq, RTM_NEWROUTE,
2011 tb->tb_id, fa->fa_type,
2012 xkey, KEYLENGTH - fa->fa_slen,
2013 fa->fa_tos, fa->fa_info, NLM_F_MULTI);
2014 if (err < 0) {
2015 cb->args[4] = i;
2016 return err;
2017 }
2018 i++;
2019 }
2020
2021 cb->args[4] = i;
2022 return skb->len;
2023 }
2024
2025 /* rcu_read_lock needs to be hold by caller from readside */
2026 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2027 struct netlink_callback *cb)
2028 {
2029 struct trie *t = (struct trie *)tb->tb_data;
2030 struct key_vector *l, *tp = t->kv;
2031 /* Dump starting at last key.
2032 * Note: 0.0.0.0/0 (ie default) is first key.
2033 */
2034 int count = cb->args[2];
2035 t_key key = cb->args[3];
2036
2037 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2038 int err;
2039
2040 err = fn_trie_dump_leaf(l, tb, skb, cb);
2041 if (err < 0) {
2042 cb->args[3] = key;
2043 cb->args[2] = count;
2044 return err;
2045 }
2046
2047 ++count;
2048 key = l->key + 1;
2049
2050 memset(&cb->args[4], 0,
2051 sizeof(cb->args) - 4*sizeof(cb->args[0]));
2052
2053 /* stop loop if key wrapped back to 0 */
2054 if (key < l->key)
2055 break;
2056 }
2057
2058 cb->args[3] = key;
2059 cb->args[2] = count;
2060
2061 return skb->len;
2062 }
2063
2064 void __init fib_trie_init(void)
2065 {
2066 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2067 sizeof(struct fib_alias),
2068 0, SLAB_PANIC, NULL);
2069
2070 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2071 LEAF_SIZE,
2072 0, SLAB_PANIC, NULL);
2073 }
2074
2075 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2076 {
2077 struct fib_table *tb;
2078 struct trie *t;
2079 size_t sz = sizeof(*tb);
2080
2081 if (!alias)
2082 sz += sizeof(struct trie);
2083
2084 tb = kzalloc(sz, GFP_KERNEL);
2085 if (!tb)
2086 return NULL;
2087
2088 tb->tb_id = id;
2089 tb->tb_num_default = 0;
2090 tb->tb_data = (alias ? alias->__data : tb->__data);
2091
2092 if (alias)
2093 return tb;
2094
2095 t = (struct trie *) tb->tb_data;
2096 t->kv[0].pos = KEYLENGTH;
2097 t->kv[0].slen = KEYLENGTH;
2098 #ifdef CONFIG_IP_FIB_TRIE_STATS
2099 t->stats = alloc_percpu(struct trie_use_stats);
2100 if (!t->stats) {
2101 kfree(tb);
2102 tb = NULL;
2103 }
2104 #endif
2105
2106 return tb;
2107 }
2108
2109 #ifdef CONFIG_PROC_FS
2110 /* Depth first Trie walk iterator */
2111 struct fib_trie_iter {
2112 struct seq_net_private p;
2113 struct fib_table *tb;
2114 struct key_vector *tnode;
2115 unsigned int index;
2116 unsigned int depth;
2117 };
2118
2119 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2120 {
2121 unsigned long cindex = iter->index;
2122 struct key_vector *pn = iter->tnode;
2123 t_key pkey;
2124
2125 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2126 iter->tnode, iter->index, iter->depth);
2127
2128 while (!IS_TRIE(pn)) {
2129 while (cindex < child_length(pn)) {
2130 struct key_vector *n = get_child_rcu(pn, cindex++);
2131
2132 if (!n)
2133 continue;
2134
2135 if (IS_LEAF(n)) {
2136 iter->tnode = pn;
2137 iter->index = cindex;
2138 } else {
2139 /* push down one level */
2140 iter->tnode = n;
2141 iter->index = 0;
2142 ++iter->depth;
2143 }
2144
2145 return n;
2146 }
2147
2148 /* Current node exhausted, pop back up */
2149 pkey = pn->key;
2150 pn = node_parent_rcu(pn);
2151 cindex = get_index(pkey, pn) + 1;
2152 --iter->depth;
2153 }
2154
2155 /* record root node so further searches know we are done */
2156 iter->tnode = pn;
2157 iter->index = 0;
2158
2159 return NULL;
2160 }
2161
2162 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2163 struct trie *t)
2164 {
2165 struct key_vector *n, *pn;
2166
2167 if (!t)
2168 return NULL;
2169
2170 pn = t->kv;
2171 n = rcu_dereference(pn->tnode[0]);
2172 if (!n)
2173 return NULL;
2174
2175 if (IS_TNODE(n)) {
2176 iter->tnode = n;
2177 iter->index = 0;
2178 iter->depth = 1;
2179 } else {
2180 iter->tnode = pn;
2181 iter->index = 0;
2182 iter->depth = 0;
2183 }
2184
2185 return n;
2186 }
2187
2188 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2189 {
2190 struct key_vector *n;
2191 struct fib_trie_iter iter;
2192
2193 memset(s, 0, sizeof(*s));
2194
2195 rcu_read_lock();
2196 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2197 if (IS_LEAF(n)) {
2198 struct fib_alias *fa;
2199
2200 s->leaves++;
2201 s->totdepth += iter.depth;
2202 if (iter.depth > s->maxdepth)
2203 s->maxdepth = iter.depth;
2204
2205 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2206 ++s->prefixes;
2207 } else {
2208 s->tnodes++;
2209 if (n->bits < MAX_STAT_DEPTH)
2210 s->nodesizes[n->bits]++;
2211 s->nullpointers += tn_info(n)->empty_children;
2212 }
2213 }
2214 rcu_read_unlock();
2215 }
2216
2217 /*
2218 * This outputs /proc/net/fib_triestats
2219 */
2220 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2221 {
2222 unsigned int i, max, pointers, bytes, avdepth;
2223
2224 if (stat->leaves)
2225 avdepth = stat->totdepth*100 / stat->leaves;
2226 else
2227 avdepth = 0;
2228
2229 seq_printf(seq, "\tAver depth: %u.%02d\n",
2230 avdepth / 100, avdepth % 100);
2231 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2232
2233 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2234 bytes = LEAF_SIZE * stat->leaves;
2235
2236 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2237 bytes += sizeof(struct fib_alias) * stat->prefixes;
2238
2239 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2240 bytes += TNODE_SIZE(0) * stat->tnodes;
2241
2242 max = MAX_STAT_DEPTH;
2243 while (max > 0 && stat->nodesizes[max-1] == 0)
2244 max--;
2245
2246 pointers = 0;
2247 for (i = 1; i < max; i++)
2248 if (stat->nodesizes[i] != 0) {
2249 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2250 pointers += (1<<i) * stat->nodesizes[i];
2251 }
2252 seq_putc(seq, '\n');
2253 seq_printf(seq, "\tPointers: %u\n", pointers);
2254
2255 bytes += sizeof(struct key_vector *) * pointers;
2256 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2257 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2258 }
2259
2260 #ifdef CONFIG_IP_FIB_TRIE_STATS
2261 static void trie_show_usage(struct seq_file *seq,
2262 const struct trie_use_stats __percpu *stats)
2263 {
2264 struct trie_use_stats s = { 0 };
2265 int cpu;
2266
2267 /* loop through all of the CPUs and gather up the stats */
2268 for_each_possible_cpu(cpu) {
2269 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2270
2271 s.gets += pcpu->gets;
2272 s.backtrack += pcpu->backtrack;
2273 s.semantic_match_passed += pcpu->semantic_match_passed;
2274 s.semantic_match_miss += pcpu->semantic_match_miss;
2275 s.null_node_hit += pcpu->null_node_hit;
2276 s.resize_node_skipped += pcpu->resize_node_skipped;
2277 }
2278
2279 seq_printf(seq, "\nCounters:\n---------\n");
2280 seq_printf(seq, "gets = %u\n", s.gets);
2281 seq_printf(seq, "backtracks = %u\n", s.backtrack);
2282 seq_printf(seq, "semantic match passed = %u\n",
2283 s.semantic_match_passed);
2284 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2285 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2286 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2287 }
2288 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2289
2290 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2291 {
2292 if (tb->tb_id == RT_TABLE_LOCAL)
2293 seq_puts(seq, "Local:\n");
2294 else if (tb->tb_id == RT_TABLE_MAIN)
2295 seq_puts(seq, "Main:\n");
2296 else
2297 seq_printf(seq, "Id %d:\n", tb->tb_id);
2298 }
2299
2300
2301 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2302 {
2303 struct net *net = (struct net *)seq->private;
2304 unsigned int h;
2305
2306 seq_printf(seq,
2307 "Basic info: size of leaf:"
2308 " %zd bytes, size of tnode: %zd bytes.\n",
2309 LEAF_SIZE, TNODE_SIZE(0));
2310
2311 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2312 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2313 struct fib_table *tb;
2314
2315 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2316 struct trie *t = (struct trie *) tb->tb_data;
2317 struct trie_stat stat;
2318
2319 if (!t)
2320 continue;
2321
2322 fib_table_print(seq, tb);
2323
2324 trie_collect_stats(t, &stat);
2325 trie_show_stats(seq, &stat);
2326 #ifdef CONFIG_IP_FIB_TRIE_STATS
2327 trie_show_usage(seq, t->stats);
2328 #endif
2329 }
2330 }
2331
2332 return 0;
2333 }
2334
2335 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2336 {
2337 return single_open_net(inode, file, fib_triestat_seq_show);
2338 }
2339
2340 static const struct file_operations fib_triestat_fops = {
2341 .owner = THIS_MODULE,
2342 .open = fib_triestat_seq_open,
2343 .read = seq_read,
2344 .llseek = seq_lseek,
2345 .release = single_release_net,
2346 };
2347
2348 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2349 {
2350 struct fib_trie_iter *iter = seq->private;
2351 struct net *net = seq_file_net(seq);
2352 loff_t idx = 0;
2353 unsigned int h;
2354
2355 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2356 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2357 struct fib_table *tb;
2358
2359 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2360 struct key_vector *n;
2361
2362 for (n = fib_trie_get_first(iter,
2363 (struct trie *) tb->tb_data);
2364 n; n = fib_trie_get_next(iter))
2365 if (pos == idx++) {
2366 iter->tb = tb;
2367 return n;
2368 }
2369 }
2370 }
2371
2372 return NULL;
2373 }
2374
2375 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2376 __acquires(RCU)
2377 {
2378 rcu_read_lock();
2379 return fib_trie_get_idx(seq, *pos);
2380 }
2381
2382 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2383 {
2384 struct fib_trie_iter *iter = seq->private;
2385 struct net *net = seq_file_net(seq);
2386 struct fib_table *tb = iter->tb;
2387 struct hlist_node *tb_node;
2388 unsigned int h;
2389 struct key_vector *n;
2390
2391 ++*pos;
2392 /* next node in same table */
2393 n = fib_trie_get_next(iter);
2394 if (n)
2395 return n;
2396
2397 /* walk rest of this hash chain */
2398 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2399 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2400 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2401 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2402 if (n)
2403 goto found;
2404 }
2405
2406 /* new hash chain */
2407 while (++h < FIB_TABLE_HASHSZ) {
2408 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2409 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2410 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2411 if (n)
2412 goto found;
2413 }
2414 }
2415 return NULL;
2416
2417 found:
2418 iter->tb = tb;
2419 return n;
2420 }
2421
2422 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2423 __releases(RCU)
2424 {
2425 rcu_read_unlock();
2426 }
2427
2428 static void seq_indent(struct seq_file *seq, int n)
2429 {
2430 while (n-- > 0)
2431 seq_puts(seq, " ");
2432 }
2433
2434 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2435 {
2436 switch (s) {
2437 case RT_SCOPE_UNIVERSE: return "universe";
2438 case RT_SCOPE_SITE: return "site";
2439 case RT_SCOPE_LINK: return "link";
2440 case RT_SCOPE_HOST: return "host";
2441 case RT_SCOPE_NOWHERE: return "nowhere";
2442 default:
2443 snprintf(buf, len, "scope=%d", s);
2444 return buf;
2445 }
2446 }
2447
2448 static const char *const rtn_type_names[__RTN_MAX] = {
2449 [RTN_UNSPEC] = "UNSPEC",
2450 [RTN_UNICAST] = "UNICAST",
2451 [RTN_LOCAL] = "LOCAL",
2452 [RTN_BROADCAST] = "BROADCAST",
2453 [RTN_ANYCAST] = "ANYCAST",
2454 [RTN_MULTICAST] = "MULTICAST",
2455 [RTN_BLACKHOLE] = "BLACKHOLE",
2456 [RTN_UNREACHABLE] = "UNREACHABLE",
2457 [RTN_PROHIBIT] = "PROHIBIT",
2458 [RTN_THROW] = "THROW",
2459 [RTN_NAT] = "NAT",
2460 [RTN_XRESOLVE] = "XRESOLVE",
2461 };
2462
2463 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2464 {
2465 if (t < __RTN_MAX && rtn_type_names[t])
2466 return rtn_type_names[t];
2467 snprintf(buf, len, "type %u", t);
2468 return buf;
2469 }
2470
2471 /* Pretty print the trie */
2472 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2473 {
2474 const struct fib_trie_iter *iter = seq->private;
2475 struct key_vector *n = v;
2476
2477 if (IS_TRIE(node_parent_rcu(n)))
2478 fib_table_print(seq, iter->tb);
2479
2480 if (IS_TNODE(n)) {
2481 __be32 prf = htonl(n->key);
2482
2483 seq_indent(seq, iter->depth-1);
2484 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2485 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2486 tn_info(n)->full_children,
2487 tn_info(n)->empty_children);
2488 } else {
2489 __be32 val = htonl(n->key);
2490 struct fib_alias *fa;
2491
2492 seq_indent(seq, iter->depth);
2493 seq_printf(seq, " |-- %pI4\n", &val);
2494
2495 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2496 char buf1[32], buf2[32];
2497
2498 seq_indent(seq, iter->depth + 1);
2499 seq_printf(seq, " /%zu %s %s",
2500 KEYLENGTH - fa->fa_slen,
2501 rtn_scope(buf1, sizeof(buf1),
2502 fa->fa_info->fib_scope),
2503 rtn_type(buf2, sizeof(buf2),
2504 fa->fa_type));
2505 if (fa->fa_tos)
2506 seq_printf(seq, " tos=%d", fa->fa_tos);
2507 seq_putc(seq, '\n');
2508 }
2509 }
2510
2511 return 0;
2512 }
2513
2514 static const struct seq_operations fib_trie_seq_ops = {
2515 .start = fib_trie_seq_start,
2516 .next = fib_trie_seq_next,
2517 .stop = fib_trie_seq_stop,
2518 .show = fib_trie_seq_show,
2519 };
2520
2521 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2522 {
2523 return seq_open_net(inode, file, &fib_trie_seq_ops,
2524 sizeof(struct fib_trie_iter));
2525 }
2526
2527 static const struct file_operations fib_trie_fops = {
2528 .owner = THIS_MODULE,
2529 .open = fib_trie_seq_open,
2530 .read = seq_read,
2531 .llseek = seq_lseek,
2532 .release = seq_release_net,
2533 };
2534
2535 struct fib_route_iter {
2536 struct seq_net_private p;
2537 struct fib_table *main_tb;
2538 struct key_vector *tnode;
2539 loff_t pos;
2540 t_key key;
2541 };
2542
2543 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2544 loff_t pos)
2545 {
2546 struct key_vector *l, **tp = &iter->tnode;
2547 t_key key;
2548
2549 /* use cached location of previously found key */
2550 if (iter->pos > 0 && pos >= iter->pos) {
2551 key = iter->key;
2552 } else {
2553 iter->pos = 1;
2554 key = 0;
2555 }
2556
2557 pos -= iter->pos;
2558
2559 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2560 key = l->key + 1;
2561 iter->pos++;
2562 l = NULL;
2563
2564 /* handle unlikely case of a key wrap */
2565 if (!key)
2566 break;
2567 }
2568
2569 if (l)
2570 iter->key = l->key; /* remember it */
2571 else
2572 iter->pos = 0; /* forget it */
2573
2574 return l;
2575 }
2576
2577 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2578 __acquires(RCU)
2579 {
2580 struct fib_route_iter *iter = seq->private;
2581 struct fib_table *tb;
2582 struct trie *t;
2583
2584 rcu_read_lock();
2585
2586 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2587 if (!tb)
2588 return NULL;
2589
2590 iter->main_tb = tb;
2591 t = (struct trie *)tb->tb_data;
2592 iter->tnode = t->kv;
2593
2594 if (*pos != 0)
2595 return fib_route_get_idx(iter, *pos);
2596
2597 iter->pos = 0;
2598 iter->key = KEY_MAX;
2599
2600 return SEQ_START_TOKEN;
2601 }
2602
2603 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2604 {
2605 struct fib_route_iter *iter = seq->private;
2606 struct key_vector *l = NULL;
2607 t_key key = iter->key + 1;
2608
2609 ++*pos;
2610
2611 /* only allow key of 0 for start of sequence */
2612 if ((v == SEQ_START_TOKEN) || key)
2613 l = leaf_walk_rcu(&iter->tnode, key);
2614
2615 if (l) {
2616 iter->key = l->key;
2617 iter->pos++;
2618 } else {
2619 iter->pos = 0;
2620 }
2621
2622 return l;
2623 }
2624
2625 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2626 __releases(RCU)
2627 {
2628 rcu_read_unlock();
2629 }
2630
2631 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2632 {
2633 unsigned int flags = 0;
2634
2635 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2636 flags = RTF_REJECT;
2637 if (fi && fi->fib_nh->nh_gw)
2638 flags |= RTF_GATEWAY;
2639 if (mask == htonl(0xFFFFFFFF))
2640 flags |= RTF_HOST;
2641 flags |= RTF_UP;
2642 return flags;
2643 }
2644
2645 /*
2646 * This outputs /proc/net/route.
2647 * The format of the file is not supposed to be changed
2648 * and needs to be same as fib_hash output to avoid breaking
2649 * legacy utilities
2650 */
2651 static int fib_route_seq_show(struct seq_file *seq, void *v)
2652 {
2653 struct fib_route_iter *iter = seq->private;
2654 struct fib_table *tb = iter->main_tb;
2655 struct fib_alias *fa;
2656 struct key_vector *l = v;
2657 __be32 prefix;
2658
2659 if (v == SEQ_START_TOKEN) {
2660 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2661 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2662 "\tWindow\tIRTT");
2663 return 0;
2664 }
2665
2666 prefix = htonl(l->key);
2667
2668 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2669 const struct fib_info *fi = fa->fa_info;
2670 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2671 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2672
2673 if ((fa->fa_type == RTN_BROADCAST) ||
2674 (fa->fa_type == RTN_MULTICAST))
2675 continue;
2676
2677 if (fa->tb_id != tb->tb_id)
2678 continue;
2679
2680 seq_setwidth(seq, 127);
2681
2682 if (fi)
2683 seq_printf(seq,
2684 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2685 "%d\t%08X\t%d\t%u\t%u",
2686 fi->fib_dev ? fi->fib_dev->name : "*",
2687 prefix,
2688 fi->fib_nh->nh_gw, flags, 0, 0,
2689 fi->fib_priority,
2690 mask,
2691 (fi->fib_advmss ?
2692 fi->fib_advmss + 40 : 0),
2693 fi->fib_window,
2694 fi->fib_rtt >> 3);
2695 else
2696 seq_printf(seq,
2697 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2698 "%d\t%08X\t%d\t%u\t%u",
2699 prefix, 0, flags, 0, 0, 0,
2700 mask, 0, 0, 0);
2701
2702 seq_pad(seq, '\n');
2703 }
2704
2705 return 0;
2706 }
2707
2708 static const struct seq_operations fib_route_seq_ops = {
2709 .start = fib_route_seq_start,
2710 .next = fib_route_seq_next,
2711 .stop = fib_route_seq_stop,
2712 .show = fib_route_seq_show,
2713 };
2714
2715 static int fib_route_seq_open(struct inode *inode, struct file *file)
2716 {
2717 return seq_open_net(inode, file, &fib_route_seq_ops,
2718 sizeof(struct fib_route_iter));
2719 }
2720
2721 static const struct file_operations fib_route_fops = {
2722 .owner = THIS_MODULE,
2723 .open = fib_route_seq_open,
2724 .read = seq_read,
2725 .llseek = seq_lseek,
2726 .release = seq_release_net,
2727 };
2728
2729 int __net_init fib_proc_init(struct net *net)
2730 {
2731 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2732 goto out1;
2733
2734 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2735 &fib_triestat_fops))
2736 goto out2;
2737
2738 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2739 goto out3;
2740
2741 return 0;
2742
2743 out3:
2744 remove_proc_entry("fib_triestat", net->proc_net);
2745 out2:
2746 remove_proc_entry("fib_trie", net->proc_net);
2747 out1:
2748 return -ENOMEM;
2749 }
2750
2751 void __net_exit fib_proc_exit(struct net *net)
2752 {
2753 remove_proc_entry("fib_trie", net->proc_net);
2754 remove_proc_entry("fib_triestat", net->proc_net);
2755 remove_proc_entry("route", net->proc_net);
2756 }
2757
2758 #endif /* CONFIG_PROC_FS */