]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/ipv4/fib_trie.c
ARM: Merge for-2637/s3c24xx/rx1950
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
49 */
50
51 #define VERSION "0.409"
52
53 #include <asm/uaccess.h>
54 #include <asm/system.h>
55 #include <linux/bitops.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/mm.h>
59 #include <linux/string.h>
60 #include <linux/socket.h>
61 #include <linux/sockios.h>
62 #include <linux/errno.h>
63 #include <linux/in.h>
64 #include <linux/inet.h>
65 #include <linux/inetdevice.h>
66 #include <linux/netdevice.h>
67 #include <linux/if_arp.h>
68 #include <linux/proc_fs.h>
69 #include <linux/rcupdate.h>
70 #include <linux/skbuff.h>
71 #include <linux/netlink.h>
72 #include <linux/init.h>
73 #include <linux/list.h>
74 #include <linux/slab.h>
75 #include <net/net_namespace.h>
76 #include <net/ip.h>
77 #include <net/protocol.h>
78 #include <net/route.h>
79 #include <net/tcp.h>
80 #include <net/sock.h>
81 #include <net/ip_fib.h>
82 #include "fib_lookup.h"
83
84 #define MAX_STAT_DEPTH 32
85
86 #define KEYLENGTH (8*sizeof(t_key))
87
88 typedef unsigned int t_key;
89
90 #define T_TNODE 0
91 #define T_LEAF 1
92 #define NODE_TYPE_MASK 0x1UL
93 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
94
95 #define IS_TNODE(n) (!(n->parent & T_LEAF))
96 #define IS_LEAF(n) (n->parent & T_LEAF)
97
98 struct node {
99 unsigned long parent;
100 t_key key;
101 };
102
103 struct leaf {
104 unsigned long parent;
105 t_key key;
106 struct hlist_head list;
107 struct rcu_head rcu;
108 };
109
110 struct leaf_info {
111 struct hlist_node hlist;
112 struct rcu_head rcu;
113 int plen;
114 struct list_head falh;
115 };
116
117 struct tnode {
118 unsigned long parent;
119 t_key key;
120 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
121 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
122 unsigned int full_children; /* KEYLENGTH bits needed */
123 unsigned int empty_children; /* KEYLENGTH bits needed */
124 union {
125 struct rcu_head rcu;
126 struct work_struct work;
127 struct tnode *tnode_free;
128 };
129 struct node *child[0];
130 };
131
132 #ifdef CONFIG_IP_FIB_TRIE_STATS
133 struct trie_use_stats {
134 unsigned int gets;
135 unsigned int backtrack;
136 unsigned int semantic_match_passed;
137 unsigned int semantic_match_miss;
138 unsigned int null_node_hit;
139 unsigned int resize_node_skipped;
140 };
141 #endif
142
143 struct trie_stat {
144 unsigned int totdepth;
145 unsigned int maxdepth;
146 unsigned int tnodes;
147 unsigned int leaves;
148 unsigned int nullpointers;
149 unsigned int prefixes;
150 unsigned int nodesizes[MAX_STAT_DEPTH];
151 };
152
153 struct trie {
154 struct node *trie;
155 #ifdef CONFIG_IP_FIB_TRIE_STATS
156 struct trie_use_stats stats;
157 #endif
158 };
159
160 static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
161 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
162 int wasfull);
163 static struct node *resize(struct trie *t, struct tnode *tn);
164 static struct tnode *inflate(struct trie *t, struct tnode *tn);
165 static struct tnode *halve(struct trie *t, struct tnode *tn);
166 /* tnodes to free after resize(); protected by RTNL */
167 static struct tnode *tnode_free_head;
168 static size_t tnode_free_size;
169
170 /*
171 * synchronize_rcu after call_rcu for that many pages; it should be especially
172 * useful before resizing the root node with PREEMPT_NONE configs; the value was
173 * obtained experimentally, aiming to avoid visible slowdown.
174 */
175 static const int sync_pages = 128;
176
177 static struct kmem_cache *fn_alias_kmem __read_mostly;
178 static struct kmem_cache *trie_leaf_kmem __read_mostly;
179
180 static inline struct tnode *node_parent(struct node *node)
181 {
182 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
183 }
184
185 static inline struct tnode *node_parent_rcu(struct node *node)
186 {
187 struct tnode *ret = node_parent(node);
188
189 return rcu_dereference_rtnl(ret);
190 }
191
192 /* Same as rcu_assign_pointer
193 * but that macro() assumes that value is a pointer.
194 */
195 static inline void node_set_parent(struct node *node, struct tnode *ptr)
196 {
197 smp_wmb();
198 node->parent = (unsigned long)ptr | NODE_TYPE(node);
199 }
200
201 static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
202 {
203 BUG_ON(i >= 1U << tn->bits);
204
205 return tn->child[i];
206 }
207
208 static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
209 {
210 struct node *ret = tnode_get_child(tn, i);
211
212 return rcu_dereference_rtnl(ret);
213 }
214
215 static inline int tnode_child_length(const struct tnode *tn)
216 {
217 return 1 << tn->bits;
218 }
219
220 static inline t_key mask_pfx(t_key k, unsigned short l)
221 {
222 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
223 }
224
225 static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
226 {
227 if (offset < KEYLENGTH)
228 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
229 else
230 return 0;
231 }
232
233 static inline int tkey_equals(t_key a, t_key b)
234 {
235 return a == b;
236 }
237
238 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
239 {
240 if (bits == 0 || offset >= KEYLENGTH)
241 return 1;
242 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
243 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
244 }
245
246 static inline int tkey_mismatch(t_key a, int offset, t_key b)
247 {
248 t_key diff = a ^ b;
249 int i = offset;
250
251 if (!diff)
252 return 0;
253 while ((diff << i) >> (KEYLENGTH-1) == 0)
254 i++;
255 return i;
256 }
257
258 /*
259 To understand this stuff, an understanding of keys and all their bits is
260 necessary. Every node in the trie has a key associated with it, but not
261 all of the bits in that key are significant.
262
263 Consider a node 'n' and its parent 'tp'.
264
265 If n is a leaf, every bit in its key is significant. Its presence is
266 necessitated by path compression, since during a tree traversal (when
267 searching for a leaf - unless we are doing an insertion) we will completely
268 ignore all skipped bits we encounter. Thus we need to verify, at the end of
269 a potentially successful search, that we have indeed been walking the
270 correct key path.
271
272 Note that we can never "miss" the correct key in the tree if present by
273 following the wrong path. Path compression ensures that segments of the key
274 that are the same for all keys with a given prefix are skipped, but the
275 skipped part *is* identical for each node in the subtrie below the skipped
276 bit! trie_insert() in this implementation takes care of that - note the
277 call to tkey_sub_equals() in trie_insert().
278
279 if n is an internal node - a 'tnode' here, the various parts of its key
280 have many different meanings.
281
282 Example:
283 _________________________________________________________________
284 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
285 -----------------------------------------------------------------
286 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
287
288 _________________________________________________________________
289 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
290 -----------------------------------------------------------------
291 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
292
293 tp->pos = 7
294 tp->bits = 3
295 n->pos = 15
296 n->bits = 4
297
298 First, let's just ignore the bits that come before the parent tp, that is
299 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
300 not use them for anything.
301
302 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
303 index into the parent's child array. That is, they will be used to find
304 'n' among tp's children.
305
306 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
307 for the node n.
308
309 All the bits we have seen so far are significant to the node n. The rest
310 of the bits are really not needed or indeed known in n->key.
311
312 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
313 n's child array, and will of course be different for each child.
314
315
316 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
317 at this point.
318
319 */
320
321 static inline void check_tnode(const struct tnode *tn)
322 {
323 WARN_ON(tn && tn->pos+tn->bits > 32);
324 }
325
326 static const int halve_threshold = 25;
327 static const int inflate_threshold = 50;
328 static const int halve_threshold_root = 15;
329 static const int inflate_threshold_root = 30;
330
331 static void __alias_free_mem(struct rcu_head *head)
332 {
333 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
334 kmem_cache_free(fn_alias_kmem, fa);
335 }
336
337 static inline void alias_free_mem_rcu(struct fib_alias *fa)
338 {
339 call_rcu(&fa->rcu, __alias_free_mem);
340 }
341
342 static void __leaf_free_rcu(struct rcu_head *head)
343 {
344 struct leaf *l = container_of(head, struct leaf, rcu);
345 kmem_cache_free(trie_leaf_kmem, l);
346 }
347
348 static inline void free_leaf(struct leaf *l)
349 {
350 call_rcu_bh(&l->rcu, __leaf_free_rcu);
351 }
352
353 static void __leaf_info_free_rcu(struct rcu_head *head)
354 {
355 kfree(container_of(head, struct leaf_info, rcu));
356 }
357
358 static inline void free_leaf_info(struct leaf_info *leaf)
359 {
360 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
361 }
362
363 static struct tnode *tnode_alloc(size_t size)
364 {
365 if (size <= PAGE_SIZE)
366 return kzalloc(size, GFP_KERNEL);
367 else
368 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
369 }
370
371 static void __tnode_vfree(struct work_struct *arg)
372 {
373 struct tnode *tn = container_of(arg, struct tnode, work);
374 vfree(tn);
375 }
376
377 static void __tnode_free_rcu(struct rcu_head *head)
378 {
379 struct tnode *tn = container_of(head, struct tnode, rcu);
380 size_t size = sizeof(struct tnode) +
381 (sizeof(struct node *) << tn->bits);
382
383 if (size <= PAGE_SIZE)
384 kfree(tn);
385 else {
386 INIT_WORK(&tn->work, __tnode_vfree);
387 schedule_work(&tn->work);
388 }
389 }
390
391 static inline void tnode_free(struct tnode *tn)
392 {
393 if (IS_LEAF(tn))
394 free_leaf((struct leaf *) tn);
395 else
396 call_rcu(&tn->rcu, __tnode_free_rcu);
397 }
398
399 static void tnode_free_safe(struct tnode *tn)
400 {
401 BUG_ON(IS_LEAF(tn));
402 tn->tnode_free = tnode_free_head;
403 tnode_free_head = tn;
404 tnode_free_size += sizeof(struct tnode) +
405 (sizeof(struct node *) << tn->bits);
406 }
407
408 static void tnode_free_flush(void)
409 {
410 struct tnode *tn;
411
412 while ((tn = tnode_free_head)) {
413 tnode_free_head = tn->tnode_free;
414 tn->tnode_free = NULL;
415 tnode_free(tn);
416 }
417
418 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
419 tnode_free_size = 0;
420 synchronize_rcu();
421 }
422 }
423
424 static struct leaf *leaf_new(void)
425 {
426 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
427 if (l) {
428 l->parent = T_LEAF;
429 INIT_HLIST_HEAD(&l->list);
430 }
431 return l;
432 }
433
434 static struct leaf_info *leaf_info_new(int plen)
435 {
436 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
437 if (li) {
438 li->plen = plen;
439 INIT_LIST_HEAD(&li->falh);
440 }
441 return li;
442 }
443
444 static struct tnode *tnode_new(t_key key, int pos, int bits)
445 {
446 size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
447 struct tnode *tn = tnode_alloc(sz);
448
449 if (tn) {
450 tn->parent = T_TNODE;
451 tn->pos = pos;
452 tn->bits = bits;
453 tn->key = key;
454 tn->full_children = 0;
455 tn->empty_children = 1<<bits;
456 }
457
458 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
459 sizeof(struct node) << bits);
460 return tn;
461 }
462
463 /*
464 * Check whether a tnode 'n' is "full", i.e. it is an internal node
465 * and no bits are skipped. See discussion in dyntree paper p. 6
466 */
467
468 static inline int tnode_full(const struct tnode *tn, const struct node *n)
469 {
470 if (n == NULL || IS_LEAF(n))
471 return 0;
472
473 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
474 }
475
476 static inline void put_child(struct trie *t, struct tnode *tn, int i,
477 struct node *n)
478 {
479 tnode_put_child_reorg(tn, i, n, -1);
480 }
481
482 /*
483 * Add a child at position i overwriting the old value.
484 * Update the value of full_children and empty_children.
485 */
486
487 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
488 int wasfull)
489 {
490 struct node *chi = tn->child[i];
491 int isfull;
492
493 BUG_ON(i >= 1<<tn->bits);
494
495 /* update emptyChildren */
496 if (n == NULL && chi != NULL)
497 tn->empty_children++;
498 else if (n != NULL && chi == NULL)
499 tn->empty_children--;
500
501 /* update fullChildren */
502 if (wasfull == -1)
503 wasfull = tnode_full(tn, chi);
504
505 isfull = tnode_full(tn, n);
506 if (wasfull && !isfull)
507 tn->full_children--;
508 else if (!wasfull && isfull)
509 tn->full_children++;
510
511 if (n)
512 node_set_parent(n, tn);
513
514 rcu_assign_pointer(tn->child[i], n);
515 }
516
517 #define MAX_WORK 10
518 static struct node *resize(struct trie *t, struct tnode *tn)
519 {
520 int i;
521 struct tnode *old_tn;
522 int inflate_threshold_use;
523 int halve_threshold_use;
524 int max_work;
525
526 if (!tn)
527 return NULL;
528
529 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
530 tn, inflate_threshold, halve_threshold);
531
532 /* No children */
533 if (tn->empty_children == tnode_child_length(tn)) {
534 tnode_free_safe(tn);
535 return NULL;
536 }
537 /* One child */
538 if (tn->empty_children == tnode_child_length(tn) - 1)
539 goto one_child;
540 /*
541 * Double as long as the resulting node has a number of
542 * nonempty nodes that are above the threshold.
543 */
544
545 /*
546 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
547 * the Helsinki University of Technology and Matti Tikkanen of Nokia
548 * Telecommunications, page 6:
549 * "A node is doubled if the ratio of non-empty children to all
550 * children in the *doubled* node is at least 'high'."
551 *
552 * 'high' in this instance is the variable 'inflate_threshold'. It
553 * is expressed as a percentage, so we multiply it with
554 * tnode_child_length() and instead of multiplying by 2 (since the
555 * child array will be doubled by inflate()) and multiplying
556 * the left-hand side by 100 (to handle the percentage thing) we
557 * multiply the left-hand side by 50.
558 *
559 * The left-hand side may look a bit weird: tnode_child_length(tn)
560 * - tn->empty_children is of course the number of non-null children
561 * in the current node. tn->full_children is the number of "full"
562 * children, that is non-null tnodes with a skip value of 0.
563 * All of those will be doubled in the resulting inflated tnode, so
564 * we just count them one extra time here.
565 *
566 * A clearer way to write this would be:
567 *
568 * to_be_doubled = tn->full_children;
569 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
570 * tn->full_children;
571 *
572 * new_child_length = tnode_child_length(tn) * 2;
573 *
574 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
575 * new_child_length;
576 * if (new_fill_factor >= inflate_threshold)
577 *
578 * ...and so on, tho it would mess up the while () loop.
579 *
580 * anyway,
581 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
582 * inflate_threshold
583 *
584 * avoid a division:
585 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
586 * inflate_threshold * new_child_length
587 *
588 * expand not_to_be_doubled and to_be_doubled, and shorten:
589 * 100 * (tnode_child_length(tn) - tn->empty_children +
590 * tn->full_children) >= inflate_threshold * new_child_length
591 *
592 * expand new_child_length:
593 * 100 * (tnode_child_length(tn) - tn->empty_children +
594 * tn->full_children) >=
595 * inflate_threshold * tnode_child_length(tn) * 2
596 *
597 * shorten again:
598 * 50 * (tn->full_children + tnode_child_length(tn) -
599 * tn->empty_children) >= inflate_threshold *
600 * tnode_child_length(tn)
601 *
602 */
603
604 check_tnode(tn);
605
606 /* Keep root node larger */
607
608 if (!node_parent((struct node *)tn)) {
609 inflate_threshold_use = inflate_threshold_root;
610 halve_threshold_use = halve_threshold_root;
611 } else {
612 inflate_threshold_use = inflate_threshold;
613 halve_threshold_use = halve_threshold;
614 }
615
616 max_work = MAX_WORK;
617 while ((tn->full_children > 0 && max_work-- &&
618 50 * (tn->full_children + tnode_child_length(tn)
619 - tn->empty_children)
620 >= inflate_threshold_use * tnode_child_length(tn))) {
621
622 old_tn = tn;
623 tn = inflate(t, tn);
624
625 if (IS_ERR(tn)) {
626 tn = old_tn;
627 #ifdef CONFIG_IP_FIB_TRIE_STATS
628 t->stats.resize_node_skipped++;
629 #endif
630 break;
631 }
632 }
633
634 check_tnode(tn);
635
636 /* Return if at least one inflate is run */
637 if (max_work != MAX_WORK)
638 return (struct node *) tn;
639
640 /*
641 * Halve as long as the number of empty children in this
642 * node is above threshold.
643 */
644
645 max_work = MAX_WORK;
646 while (tn->bits > 1 && max_work-- &&
647 100 * (tnode_child_length(tn) - tn->empty_children) <
648 halve_threshold_use * tnode_child_length(tn)) {
649
650 old_tn = tn;
651 tn = halve(t, tn);
652 if (IS_ERR(tn)) {
653 tn = old_tn;
654 #ifdef CONFIG_IP_FIB_TRIE_STATS
655 t->stats.resize_node_skipped++;
656 #endif
657 break;
658 }
659 }
660
661
662 /* Only one child remains */
663 if (tn->empty_children == tnode_child_length(tn) - 1) {
664 one_child:
665 for (i = 0; i < tnode_child_length(tn); i++) {
666 struct node *n;
667
668 n = tn->child[i];
669 if (!n)
670 continue;
671
672 /* compress one level */
673
674 node_set_parent(n, NULL);
675 tnode_free_safe(tn);
676 return n;
677 }
678 }
679 return (struct node *) tn;
680 }
681
682 static struct tnode *inflate(struct trie *t, struct tnode *tn)
683 {
684 struct tnode *oldtnode = tn;
685 int olen = tnode_child_length(tn);
686 int i;
687
688 pr_debug("In inflate\n");
689
690 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
691
692 if (!tn)
693 return ERR_PTR(-ENOMEM);
694
695 /*
696 * Preallocate and store tnodes before the actual work so we
697 * don't get into an inconsistent state if memory allocation
698 * fails. In case of failure we return the oldnode and inflate
699 * of tnode is ignored.
700 */
701
702 for (i = 0; i < olen; i++) {
703 struct tnode *inode;
704
705 inode = (struct tnode *) tnode_get_child(oldtnode, i);
706 if (inode &&
707 IS_TNODE(inode) &&
708 inode->pos == oldtnode->pos + oldtnode->bits &&
709 inode->bits > 1) {
710 struct tnode *left, *right;
711 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
712
713 left = tnode_new(inode->key&(~m), inode->pos + 1,
714 inode->bits - 1);
715 if (!left)
716 goto nomem;
717
718 right = tnode_new(inode->key|m, inode->pos + 1,
719 inode->bits - 1);
720
721 if (!right) {
722 tnode_free(left);
723 goto nomem;
724 }
725
726 put_child(t, tn, 2*i, (struct node *) left);
727 put_child(t, tn, 2*i+1, (struct node *) right);
728 }
729 }
730
731 for (i = 0; i < olen; i++) {
732 struct tnode *inode;
733 struct node *node = tnode_get_child(oldtnode, i);
734 struct tnode *left, *right;
735 int size, j;
736
737 /* An empty child */
738 if (node == NULL)
739 continue;
740
741 /* A leaf or an internal node with skipped bits */
742
743 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
744 tn->pos + tn->bits - 1) {
745 if (tkey_extract_bits(node->key,
746 oldtnode->pos + oldtnode->bits,
747 1) == 0)
748 put_child(t, tn, 2*i, node);
749 else
750 put_child(t, tn, 2*i+1, node);
751 continue;
752 }
753
754 /* An internal node with two children */
755 inode = (struct tnode *) node;
756
757 if (inode->bits == 1) {
758 put_child(t, tn, 2*i, inode->child[0]);
759 put_child(t, tn, 2*i+1, inode->child[1]);
760
761 tnode_free_safe(inode);
762 continue;
763 }
764
765 /* An internal node with more than two children */
766
767 /* We will replace this node 'inode' with two new
768 * ones, 'left' and 'right', each with half of the
769 * original children. The two new nodes will have
770 * a position one bit further down the key and this
771 * means that the "significant" part of their keys
772 * (see the discussion near the top of this file)
773 * will differ by one bit, which will be "0" in
774 * left's key and "1" in right's key. Since we are
775 * moving the key position by one step, the bit that
776 * we are moving away from - the bit at position
777 * (inode->pos) - is the one that will differ between
778 * left and right. So... we synthesize that bit in the
779 * two new keys.
780 * The mask 'm' below will be a single "one" bit at
781 * the position (inode->pos)
782 */
783
784 /* Use the old key, but set the new significant
785 * bit to zero.
786 */
787
788 left = (struct tnode *) tnode_get_child(tn, 2*i);
789 put_child(t, tn, 2*i, NULL);
790
791 BUG_ON(!left);
792
793 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
794 put_child(t, tn, 2*i+1, NULL);
795
796 BUG_ON(!right);
797
798 size = tnode_child_length(left);
799 for (j = 0; j < size; j++) {
800 put_child(t, left, j, inode->child[j]);
801 put_child(t, right, j, inode->child[j + size]);
802 }
803 put_child(t, tn, 2*i, resize(t, left));
804 put_child(t, tn, 2*i+1, resize(t, right));
805
806 tnode_free_safe(inode);
807 }
808 tnode_free_safe(oldtnode);
809 return tn;
810 nomem:
811 {
812 int size = tnode_child_length(tn);
813 int j;
814
815 for (j = 0; j < size; j++)
816 if (tn->child[j])
817 tnode_free((struct tnode *)tn->child[j]);
818
819 tnode_free(tn);
820
821 return ERR_PTR(-ENOMEM);
822 }
823 }
824
825 static struct tnode *halve(struct trie *t, struct tnode *tn)
826 {
827 struct tnode *oldtnode = tn;
828 struct node *left, *right;
829 int i;
830 int olen = tnode_child_length(tn);
831
832 pr_debug("In halve\n");
833
834 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
835
836 if (!tn)
837 return ERR_PTR(-ENOMEM);
838
839 /*
840 * Preallocate and store tnodes before the actual work so we
841 * don't get into an inconsistent state if memory allocation
842 * fails. In case of failure we return the oldnode and halve
843 * of tnode is ignored.
844 */
845
846 for (i = 0; i < olen; i += 2) {
847 left = tnode_get_child(oldtnode, i);
848 right = tnode_get_child(oldtnode, i+1);
849
850 /* Two nonempty children */
851 if (left && right) {
852 struct tnode *newn;
853
854 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
855
856 if (!newn)
857 goto nomem;
858
859 put_child(t, tn, i/2, (struct node *)newn);
860 }
861
862 }
863
864 for (i = 0; i < olen; i += 2) {
865 struct tnode *newBinNode;
866
867 left = tnode_get_child(oldtnode, i);
868 right = tnode_get_child(oldtnode, i+1);
869
870 /* At least one of the children is empty */
871 if (left == NULL) {
872 if (right == NULL) /* Both are empty */
873 continue;
874 put_child(t, tn, i/2, right);
875 continue;
876 }
877
878 if (right == NULL) {
879 put_child(t, tn, i/2, left);
880 continue;
881 }
882
883 /* Two nonempty children */
884 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
885 put_child(t, tn, i/2, NULL);
886 put_child(t, newBinNode, 0, left);
887 put_child(t, newBinNode, 1, right);
888 put_child(t, tn, i/2, resize(t, newBinNode));
889 }
890 tnode_free_safe(oldtnode);
891 return tn;
892 nomem:
893 {
894 int size = tnode_child_length(tn);
895 int j;
896
897 for (j = 0; j < size; j++)
898 if (tn->child[j])
899 tnode_free((struct tnode *)tn->child[j]);
900
901 tnode_free(tn);
902
903 return ERR_PTR(-ENOMEM);
904 }
905 }
906
907 /* readside must use rcu_read_lock currently dump routines
908 via get_fa_head and dump */
909
910 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
911 {
912 struct hlist_head *head = &l->list;
913 struct hlist_node *node;
914 struct leaf_info *li;
915
916 hlist_for_each_entry_rcu(li, node, head, hlist)
917 if (li->plen == plen)
918 return li;
919
920 return NULL;
921 }
922
923 static inline struct list_head *get_fa_head(struct leaf *l, int plen)
924 {
925 struct leaf_info *li = find_leaf_info(l, plen);
926
927 if (!li)
928 return NULL;
929
930 return &li->falh;
931 }
932
933 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
934 {
935 struct leaf_info *li = NULL, *last = NULL;
936 struct hlist_node *node;
937
938 if (hlist_empty(head)) {
939 hlist_add_head_rcu(&new->hlist, head);
940 } else {
941 hlist_for_each_entry(li, node, head, hlist) {
942 if (new->plen > li->plen)
943 break;
944
945 last = li;
946 }
947 if (last)
948 hlist_add_after_rcu(&last->hlist, &new->hlist);
949 else
950 hlist_add_before_rcu(&new->hlist, &li->hlist);
951 }
952 }
953
954 /* rcu_read_lock needs to be hold by caller from readside */
955
956 static struct leaf *
957 fib_find_node(struct trie *t, u32 key)
958 {
959 int pos;
960 struct tnode *tn;
961 struct node *n;
962
963 pos = 0;
964 n = rcu_dereference_rtnl(t->trie);
965
966 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
967 tn = (struct tnode *) n;
968
969 check_tnode(tn);
970
971 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
972 pos = tn->pos + tn->bits;
973 n = tnode_get_child_rcu(tn,
974 tkey_extract_bits(key,
975 tn->pos,
976 tn->bits));
977 } else
978 break;
979 }
980 /* Case we have found a leaf. Compare prefixes */
981
982 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
983 return (struct leaf *)n;
984
985 return NULL;
986 }
987
988 static void trie_rebalance(struct trie *t, struct tnode *tn)
989 {
990 int wasfull;
991 t_key cindex, key;
992 struct tnode *tp;
993
994 key = tn->key;
995
996 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
997 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
998 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
999 tn = (struct tnode *) resize(t, (struct tnode *)tn);
1000
1001 tnode_put_child_reorg((struct tnode *)tp, cindex,
1002 (struct node *)tn, wasfull);
1003
1004 tp = node_parent((struct node *) tn);
1005 if (!tp)
1006 rcu_assign_pointer(t->trie, (struct node *)tn);
1007
1008 tnode_free_flush();
1009 if (!tp)
1010 break;
1011 tn = tp;
1012 }
1013
1014 /* Handle last (top) tnode */
1015 if (IS_TNODE(tn))
1016 tn = (struct tnode *)resize(t, (struct tnode *)tn);
1017
1018 rcu_assign_pointer(t->trie, (struct node *)tn);
1019 tnode_free_flush();
1020 }
1021
1022 /* only used from updater-side */
1023
1024 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1025 {
1026 int pos, newpos;
1027 struct tnode *tp = NULL, *tn = NULL;
1028 struct node *n;
1029 struct leaf *l;
1030 int missbit;
1031 struct list_head *fa_head = NULL;
1032 struct leaf_info *li;
1033 t_key cindex;
1034
1035 pos = 0;
1036 n = t->trie;
1037
1038 /* If we point to NULL, stop. Either the tree is empty and we should
1039 * just put a new leaf in if, or we have reached an empty child slot,
1040 * and we should just put our new leaf in that.
1041 * If we point to a T_TNODE, check if it matches our key. Note that
1042 * a T_TNODE might be skipping any number of bits - its 'pos' need
1043 * not be the parent's 'pos'+'bits'!
1044 *
1045 * If it does match the current key, get pos/bits from it, extract
1046 * the index from our key, push the T_TNODE and walk the tree.
1047 *
1048 * If it doesn't, we have to replace it with a new T_TNODE.
1049 *
1050 * If we point to a T_LEAF, it might or might not have the same key
1051 * as we do. If it does, just change the value, update the T_LEAF's
1052 * value, and return it.
1053 * If it doesn't, we need to replace it with a T_TNODE.
1054 */
1055
1056 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1057 tn = (struct tnode *) n;
1058
1059 check_tnode(tn);
1060
1061 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1062 tp = tn;
1063 pos = tn->pos + tn->bits;
1064 n = tnode_get_child(tn,
1065 tkey_extract_bits(key,
1066 tn->pos,
1067 tn->bits));
1068
1069 BUG_ON(n && node_parent(n) != tn);
1070 } else
1071 break;
1072 }
1073
1074 /*
1075 * n ----> NULL, LEAF or TNODE
1076 *
1077 * tp is n's (parent) ----> NULL or TNODE
1078 */
1079
1080 BUG_ON(tp && IS_LEAF(tp));
1081
1082 /* Case 1: n is a leaf. Compare prefixes */
1083
1084 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1085 l = (struct leaf *) n;
1086 li = leaf_info_new(plen);
1087
1088 if (!li)
1089 return NULL;
1090
1091 fa_head = &li->falh;
1092 insert_leaf_info(&l->list, li);
1093 goto done;
1094 }
1095 l = leaf_new();
1096
1097 if (!l)
1098 return NULL;
1099
1100 l->key = key;
1101 li = leaf_info_new(plen);
1102
1103 if (!li) {
1104 free_leaf(l);
1105 return NULL;
1106 }
1107
1108 fa_head = &li->falh;
1109 insert_leaf_info(&l->list, li);
1110
1111 if (t->trie && n == NULL) {
1112 /* Case 2: n is NULL, and will just insert a new leaf */
1113
1114 node_set_parent((struct node *)l, tp);
1115
1116 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1117 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1118 } else {
1119 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1120 /*
1121 * Add a new tnode here
1122 * first tnode need some special handling
1123 */
1124
1125 if (tp)
1126 pos = tp->pos+tp->bits;
1127 else
1128 pos = 0;
1129
1130 if (n) {
1131 newpos = tkey_mismatch(key, pos, n->key);
1132 tn = tnode_new(n->key, newpos, 1);
1133 } else {
1134 newpos = 0;
1135 tn = tnode_new(key, newpos, 1); /* First tnode */
1136 }
1137
1138 if (!tn) {
1139 free_leaf_info(li);
1140 free_leaf(l);
1141 return NULL;
1142 }
1143
1144 node_set_parent((struct node *)tn, tp);
1145
1146 missbit = tkey_extract_bits(key, newpos, 1);
1147 put_child(t, tn, missbit, (struct node *)l);
1148 put_child(t, tn, 1-missbit, n);
1149
1150 if (tp) {
1151 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1152 put_child(t, (struct tnode *)tp, cindex,
1153 (struct node *)tn);
1154 } else {
1155 rcu_assign_pointer(t->trie, (struct node *)tn);
1156 tp = tn;
1157 }
1158 }
1159
1160 if (tp && tp->pos + tp->bits > 32)
1161 pr_warning("fib_trie"
1162 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1163 tp, tp->pos, tp->bits, key, plen);
1164
1165 /* Rebalance the trie */
1166
1167 trie_rebalance(t, tp);
1168 done:
1169 return fa_head;
1170 }
1171
1172 /*
1173 * Caller must hold RTNL.
1174 */
1175 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1176 {
1177 struct trie *t = (struct trie *) tb->tb_data;
1178 struct fib_alias *fa, *new_fa;
1179 struct list_head *fa_head = NULL;
1180 struct fib_info *fi;
1181 int plen = cfg->fc_dst_len;
1182 u8 tos = cfg->fc_tos;
1183 u32 key, mask;
1184 int err;
1185 struct leaf *l;
1186
1187 if (plen > 32)
1188 return -EINVAL;
1189
1190 key = ntohl(cfg->fc_dst);
1191
1192 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1193
1194 mask = ntohl(inet_make_mask(plen));
1195
1196 if (key & ~mask)
1197 return -EINVAL;
1198
1199 key = key & mask;
1200
1201 fi = fib_create_info(cfg);
1202 if (IS_ERR(fi)) {
1203 err = PTR_ERR(fi);
1204 goto err;
1205 }
1206
1207 l = fib_find_node(t, key);
1208 fa = NULL;
1209
1210 if (l) {
1211 fa_head = get_fa_head(l, plen);
1212 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1213 }
1214
1215 /* Now fa, if non-NULL, points to the first fib alias
1216 * with the same keys [prefix,tos,priority], if such key already
1217 * exists or to the node before which we will insert new one.
1218 *
1219 * If fa is NULL, we will need to allocate a new one and
1220 * insert to the head of f.
1221 *
1222 * If f is NULL, no fib node matched the destination key
1223 * and we need to allocate a new one of those as well.
1224 */
1225
1226 if (fa && fa->fa_tos == tos &&
1227 fa->fa_info->fib_priority == fi->fib_priority) {
1228 struct fib_alias *fa_first, *fa_match;
1229
1230 err = -EEXIST;
1231 if (cfg->fc_nlflags & NLM_F_EXCL)
1232 goto out;
1233
1234 /* We have 2 goals:
1235 * 1. Find exact match for type, scope, fib_info to avoid
1236 * duplicate routes
1237 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1238 */
1239 fa_match = NULL;
1240 fa_first = fa;
1241 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1242 list_for_each_entry_continue(fa, fa_head, fa_list) {
1243 if (fa->fa_tos != tos)
1244 break;
1245 if (fa->fa_info->fib_priority != fi->fib_priority)
1246 break;
1247 if (fa->fa_type == cfg->fc_type &&
1248 fa->fa_scope == cfg->fc_scope &&
1249 fa->fa_info == fi) {
1250 fa_match = fa;
1251 break;
1252 }
1253 }
1254
1255 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1256 struct fib_info *fi_drop;
1257 u8 state;
1258
1259 fa = fa_first;
1260 if (fa_match) {
1261 if (fa == fa_match)
1262 err = 0;
1263 goto out;
1264 }
1265 err = -ENOBUFS;
1266 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1267 if (new_fa == NULL)
1268 goto out;
1269
1270 fi_drop = fa->fa_info;
1271 new_fa->fa_tos = fa->fa_tos;
1272 new_fa->fa_info = fi;
1273 new_fa->fa_type = cfg->fc_type;
1274 new_fa->fa_scope = cfg->fc_scope;
1275 state = fa->fa_state;
1276 new_fa->fa_state = state & ~FA_S_ACCESSED;
1277
1278 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1279 alias_free_mem_rcu(fa);
1280
1281 fib_release_info(fi_drop);
1282 if (state & FA_S_ACCESSED)
1283 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1284 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1285 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1286
1287 goto succeeded;
1288 }
1289 /* Error if we find a perfect match which
1290 * uses the same scope, type, and nexthop
1291 * information.
1292 */
1293 if (fa_match)
1294 goto out;
1295
1296 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1297 fa = fa_first;
1298 }
1299 err = -ENOENT;
1300 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1301 goto out;
1302
1303 err = -ENOBUFS;
1304 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1305 if (new_fa == NULL)
1306 goto out;
1307
1308 new_fa->fa_info = fi;
1309 new_fa->fa_tos = tos;
1310 new_fa->fa_type = cfg->fc_type;
1311 new_fa->fa_scope = cfg->fc_scope;
1312 new_fa->fa_state = 0;
1313 /*
1314 * Insert new entry to the list.
1315 */
1316
1317 if (!fa_head) {
1318 fa_head = fib_insert_node(t, key, plen);
1319 if (unlikely(!fa_head)) {
1320 err = -ENOMEM;
1321 goto out_free_new_fa;
1322 }
1323 }
1324
1325 list_add_tail_rcu(&new_fa->fa_list,
1326 (fa ? &fa->fa_list : fa_head));
1327
1328 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1329 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1330 &cfg->fc_nlinfo, 0);
1331 succeeded:
1332 return 0;
1333
1334 out_free_new_fa:
1335 kmem_cache_free(fn_alias_kmem, new_fa);
1336 out:
1337 fib_release_info(fi);
1338 err:
1339 return err;
1340 }
1341
1342 /* should be called with rcu_read_lock */
1343 static int check_leaf(struct trie *t, struct leaf *l,
1344 t_key key, const struct flowi *flp,
1345 struct fib_result *res, int fib_flags)
1346 {
1347 struct leaf_info *li;
1348 struct hlist_head *hhead = &l->list;
1349 struct hlist_node *node;
1350
1351 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1352 int err;
1353 int plen = li->plen;
1354 __be32 mask = inet_make_mask(plen);
1355
1356 if (l->key != (key & ntohl(mask)))
1357 continue;
1358
1359 err = fib_semantic_match(&li->falh, flp, res, plen, fib_flags);
1360
1361 #ifdef CONFIG_IP_FIB_TRIE_STATS
1362 if (err <= 0)
1363 t->stats.semantic_match_passed++;
1364 else
1365 t->stats.semantic_match_miss++;
1366 #endif
1367 if (err <= 0)
1368 return err;
1369 }
1370
1371 return 1;
1372 }
1373
1374 int fib_table_lookup(struct fib_table *tb, const struct flowi *flp,
1375 struct fib_result *res, int fib_flags)
1376 {
1377 struct trie *t = (struct trie *) tb->tb_data;
1378 int ret;
1379 struct node *n;
1380 struct tnode *pn;
1381 int pos, bits;
1382 t_key key = ntohl(flp->fl4_dst);
1383 int chopped_off;
1384 t_key cindex = 0;
1385 int current_prefix_length = KEYLENGTH;
1386 struct tnode *cn;
1387 t_key pref_mismatch;
1388
1389 rcu_read_lock();
1390
1391 n = rcu_dereference(t->trie);
1392 if (!n)
1393 goto failed;
1394
1395 #ifdef CONFIG_IP_FIB_TRIE_STATS
1396 t->stats.gets++;
1397 #endif
1398
1399 /* Just a leaf? */
1400 if (IS_LEAF(n)) {
1401 ret = check_leaf(t, (struct leaf *)n, key, flp, res, fib_flags);
1402 goto found;
1403 }
1404
1405 pn = (struct tnode *) n;
1406 chopped_off = 0;
1407
1408 while (pn) {
1409 pos = pn->pos;
1410 bits = pn->bits;
1411
1412 if (!chopped_off)
1413 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1414 pos, bits);
1415
1416 n = tnode_get_child_rcu(pn, cindex);
1417
1418 if (n == NULL) {
1419 #ifdef CONFIG_IP_FIB_TRIE_STATS
1420 t->stats.null_node_hit++;
1421 #endif
1422 goto backtrace;
1423 }
1424
1425 if (IS_LEAF(n)) {
1426 ret = check_leaf(t, (struct leaf *)n, key, flp, res, fib_flags);
1427 if (ret > 0)
1428 goto backtrace;
1429 goto found;
1430 }
1431
1432 cn = (struct tnode *)n;
1433
1434 /*
1435 * It's a tnode, and we can do some extra checks here if we
1436 * like, to avoid descending into a dead-end branch.
1437 * This tnode is in the parent's child array at index
1438 * key[p_pos..p_pos+p_bits] but potentially with some bits
1439 * chopped off, so in reality the index may be just a
1440 * subprefix, padded with zero at the end.
1441 * We can also take a look at any skipped bits in this
1442 * tnode - everything up to p_pos is supposed to be ok,
1443 * and the non-chopped bits of the index (se previous
1444 * paragraph) are also guaranteed ok, but the rest is
1445 * considered unknown.
1446 *
1447 * The skipped bits are key[pos+bits..cn->pos].
1448 */
1449
1450 /* If current_prefix_length < pos+bits, we are already doing
1451 * actual prefix matching, which means everything from
1452 * pos+(bits-chopped_off) onward must be zero along some
1453 * branch of this subtree - otherwise there is *no* valid
1454 * prefix present. Here we can only check the skipped
1455 * bits. Remember, since we have already indexed into the
1456 * parent's child array, we know that the bits we chopped of
1457 * *are* zero.
1458 */
1459
1460 /* NOTA BENE: Checking only skipped bits
1461 for the new node here */
1462
1463 if (current_prefix_length < pos+bits) {
1464 if (tkey_extract_bits(cn->key, current_prefix_length,
1465 cn->pos - current_prefix_length)
1466 || !(cn->child[0]))
1467 goto backtrace;
1468 }
1469
1470 /*
1471 * If chopped_off=0, the index is fully validated and we
1472 * only need to look at the skipped bits for this, the new,
1473 * tnode. What we actually want to do is to find out if
1474 * these skipped bits match our key perfectly, or if we will
1475 * have to count on finding a matching prefix further down,
1476 * because if we do, we would like to have some way of
1477 * verifying the existence of such a prefix at this point.
1478 */
1479
1480 /* The only thing we can do at this point is to verify that
1481 * any such matching prefix can indeed be a prefix to our
1482 * key, and if the bits in the node we are inspecting that
1483 * do not match our key are not ZERO, this cannot be true.
1484 * Thus, find out where there is a mismatch (before cn->pos)
1485 * and verify that all the mismatching bits are zero in the
1486 * new tnode's key.
1487 */
1488
1489 /*
1490 * Note: We aren't very concerned about the piece of
1491 * the key that precede pn->pos+pn->bits, since these
1492 * have already been checked. The bits after cn->pos
1493 * aren't checked since these are by definition
1494 * "unknown" at this point. Thus, what we want to see
1495 * is if we are about to enter the "prefix matching"
1496 * state, and in that case verify that the skipped
1497 * bits that will prevail throughout this subtree are
1498 * zero, as they have to be if we are to find a
1499 * matching prefix.
1500 */
1501
1502 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
1503
1504 /*
1505 * In short: If skipped bits in this node do not match
1506 * the search key, enter the "prefix matching"
1507 * state.directly.
1508 */
1509 if (pref_mismatch) {
1510 int mp = KEYLENGTH - fls(pref_mismatch);
1511
1512 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
1513 goto backtrace;
1514
1515 if (current_prefix_length >= cn->pos)
1516 current_prefix_length = mp;
1517 }
1518
1519 pn = (struct tnode *)n; /* Descend */
1520 chopped_off = 0;
1521 continue;
1522
1523 backtrace:
1524 chopped_off++;
1525
1526 /* As zero don't change the child key (cindex) */
1527 while ((chopped_off <= pn->bits)
1528 && !(cindex & (1<<(chopped_off-1))))
1529 chopped_off++;
1530
1531 /* Decrease current_... with bits chopped off */
1532 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1533 current_prefix_length = pn->pos + pn->bits
1534 - chopped_off;
1535
1536 /*
1537 * Either we do the actual chop off according or if we have
1538 * chopped off all bits in this tnode walk up to our parent.
1539 */
1540
1541 if (chopped_off <= pn->bits) {
1542 cindex &= ~(1 << (chopped_off-1));
1543 } else {
1544 struct tnode *parent = node_parent_rcu((struct node *) pn);
1545 if (!parent)
1546 goto failed;
1547
1548 /* Get Child's index */
1549 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1550 pn = parent;
1551 chopped_off = 0;
1552
1553 #ifdef CONFIG_IP_FIB_TRIE_STATS
1554 t->stats.backtrack++;
1555 #endif
1556 goto backtrace;
1557 }
1558 }
1559 failed:
1560 ret = 1;
1561 found:
1562 rcu_read_unlock();
1563 return ret;
1564 }
1565
1566 /*
1567 * Remove the leaf and return parent.
1568 */
1569 static void trie_leaf_remove(struct trie *t, struct leaf *l)
1570 {
1571 struct tnode *tp = node_parent((struct node *) l);
1572
1573 pr_debug("entering trie_leaf_remove(%p)\n", l);
1574
1575 if (tp) {
1576 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1577 put_child(t, (struct tnode *)tp, cindex, NULL);
1578 trie_rebalance(t, tp);
1579 } else
1580 rcu_assign_pointer(t->trie, NULL);
1581
1582 free_leaf(l);
1583 }
1584
1585 /*
1586 * Caller must hold RTNL.
1587 */
1588 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1589 {
1590 struct trie *t = (struct trie *) tb->tb_data;
1591 u32 key, mask;
1592 int plen = cfg->fc_dst_len;
1593 u8 tos = cfg->fc_tos;
1594 struct fib_alias *fa, *fa_to_delete;
1595 struct list_head *fa_head;
1596 struct leaf *l;
1597 struct leaf_info *li;
1598
1599 if (plen > 32)
1600 return -EINVAL;
1601
1602 key = ntohl(cfg->fc_dst);
1603 mask = ntohl(inet_make_mask(plen));
1604
1605 if (key & ~mask)
1606 return -EINVAL;
1607
1608 key = key & mask;
1609 l = fib_find_node(t, key);
1610
1611 if (!l)
1612 return -ESRCH;
1613
1614 fa_head = get_fa_head(l, plen);
1615 fa = fib_find_alias(fa_head, tos, 0);
1616
1617 if (!fa)
1618 return -ESRCH;
1619
1620 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1621
1622 fa_to_delete = NULL;
1623 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1624 list_for_each_entry_continue(fa, fa_head, fa_list) {
1625 struct fib_info *fi = fa->fa_info;
1626
1627 if (fa->fa_tos != tos)
1628 break;
1629
1630 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1631 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1632 fa->fa_scope == cfg->fc_scope) &&
1633 (!cfg->fc_protocol ||
1634 fi->fib_protocol == cfg->fc_protocol) &&
1635 fib_nh_match(cfg, fi) == 0) {
1636 fa_to_delete = fa;
1637 break;
1638 }
1639 }
1640
1641 if (!fa_to_delete)
1642 return -ESRCH;
1643
1644 fa = fa_to_delete;
1645 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1646 &cfg->fc_nlinfo, 0);
1647
1648 l = fib_find_node(t, key);
1649 li = find_leaf_info(l, plen);
1650
1651 list_del_rcu(&fa->fa_list);
1652
1653 if (list_empty(fa_head)) {
1654 hlist_del_rcu(&li->hlist);
1655 free_leaf_info(li);
1656 }
1657
1658 if (hlist_empty(&l->list))
1659 trie_leaf_remove(t, l);
1660
1661 if (fa->fa_state & FA_S_ACCESSED)
1662 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1663
1664 fib_release_info(fa->fa_info);
1665 alias_free_mem_rcu(fa);
1666 return 0;
1667 }
1668
1669 static int trie_flush_list(struct list_head *head)
1670 {
1671 struct fib_alias *fa, *fa_node;
1672 int found = 0;
1673
1674 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1675 struct fib_info *fi = fa->fa_info;
1676
1677 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1678 list_del_rcu(&fa->fa_list);
1679 fib_release_info(fa->fa_info);
1680 alias_free_mem_rcu(fa);
1681 found++;
1682 }
1683 }
1684 return found;
1685 }
1686
1687 static int trie_flush_leaf(struct leaf *l)
1688 {
1689 int found = 0;
1690 struct hlist_head *lih = &l->list;
1691 struct hlist_node *node, *tmp;
1692 struct leaf_info *li = NULL;
1693
1694 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1695 found += trie_flush_list(&li->falh);
1696
1697 if (list_empty(&li->falh)) {
1698 hlist_del_rcu(&li->hlist);
1699 free_leaf_info(li);
1700 }
1701 }
1702 return found;
1703 }
1704
1705 /*
1706 * Scan for the next right leaf starting at node p->child[idx]
1707 * Since we have back pointer, no recursion necessary.
1708 */
1709 static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c)
1710 {
1711 do {
1712 t_key idx;
1713
1714 if (c)
1715 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1716 else
1717 idx = 0;
1718
1719 while (idx < 1u << p->bits) {
1720 c = tnode_get_child_rcu(p, idx++);
1721 if (!c)
1722 continue;
1723
1724 if (IS_LEAF(c)) {
1725 prefetch(p->child[idx]);
1726 return (struct leaf *) c;
1727 }
1728
1729 /* Rescan start scanning in new node */
1730 p = (struct tnode *) c;
1731 idx = 0;
1732 }
1733
1734 /* Node empty, walk back up to parent */
1735 c = (struct node *) p;
1736 } while ((p = node_parent_rcu(c)) != NULL);
1737
1738 return NULL; /* Root of trie */
1739 }
1740
1741 static struct leaf *trie_firstleaf(struct trie *t)
1742 {
1743 struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
1744
1745 if (!n)
1746 return NULL;
1747
1748 if (IS_LEAF(n)) /* trie is just a leaf */
1749 return (struct leaf *) n;
1750
1751 return leaf_walk_rcu(n, NULL);
1752 }
1753
1754 static struct leaf *trie_nextleaf(struct leaf *l)
1755 {
1756 struct node *c = (struct node *) l;
1757 struct tnode *p = node_parent_rcu(c);
1758
1759 if (!p)
1760 return NULL; /* trie with just one leaf */
1761
1762 return leaf_walk_rcu(p, c);
1763 }
1764
1765 static struct leaf *trie_leafindex(struct trie *t, int index)
1766 {
1767 struct leaf *l = trie_firstleaf(t);
1768
1769 while (l && index-- > 0)
1770 l = trie_nextleaf(l);
1771
1772 return l;
1773 }
1774
1775
1776 /*
1777 * Caller must hold RTNL.
1778 */
1779 int fib_table_flush(struct fib_table *tb)
1780 {
1781 struct trie *t = (struct trie *) tb->tb_data;
1782 struct leaf *l, *ll = NULL;
1783 int found = 0;
1784
1785 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1786 found += trie_flush_leaf(l);
1787
1788 if (ll && hlist_empty(&ll->list))
1789 trie_leaf_remove(t, ll);
1790 ll = l;
1791 }
1792
1793 if (ll && hlist_empty(&ll->list))
1794 trie_leaf_remove(t, ll);
1795
1796 pr_debug("trie_flush found=%d\n", found);
1797 return found;
1798 }
1799
1800 void fib_table_select_default(struct fib_table *tb,
1801 const struct flowi *flp,
1802 struct fib_result *res)
1803 {
1804 struct trie *t = (struct trie *) tb->tb_data;
1805 int order, last_idx;
1806 struct fib_info *fi = NULL;
1807 struct fib_info *last_resort;
1808 struct fib_alias *fa = NULL;
1809 struct list_head *fa_head;
1810 struct leaf *l;
1811
1812 last_idx = -1;
1813 last_resort = NULL;
1814 order = -1;
1815
1816 rcu_read_lock();
1817
1818 l = fib_find_node(t, 0);
1819 if (!l)
1820 goto out;
1821
1822 fa_head = get_fa_head(l, 0);
1823 if (!fa_head)
1824 goto out;
1825
1826 if (list_empty(fa_head))
1827 goto out;
1828
1829 list_for_each_entry_rcu(fa, fa_head, fa_list) {
1830 struct fib_info *next_fi = fa->fa_info;
1831
1832 if (fa->fa_scope != res->scope ||
1833 fa->fa_type != RTN_UNICAST)
1834 continue;
1835
1836 if (next_fi->fib_priority > res->fi->fib_priority)
1837 break;
1838 if (!next_fi->fib_nh[0].nh_gw ||
1839 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1840 continue;
1841
1842 fib_alias_accessed(fa);
1843
1844 if (fi == NULL) {
1845 if (next_fi != res->fi)
1846 break;
1847 } else if (!fib_detect_death(fi, order, &last_resort,
1848 &last_idx, tb->tb_default)) {
1849 fib_result_assign(res, fi);
1850 tb->tb_default = order;
1851 goto out;
1852 }
1853 fi = next_fi;
1854 order++;
1855 }
1856 if (order <= 0 || fi == NULL) {
1857 tb->tb_default = -1;
1858 goto out;
1859 }
1860
1861 if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1862 tb->tb_default)) {
1863 fib_result_assign(res, fi);
1864 tb->tb_default = order;
1865 goto out;
1866 }
1867 if (last_idx >= 0)
1868 fib_result_assign(res, last_resort);
1869 tb->tb_default = last_idx;
1870 out:
1871 rcu_read_unlock();
1872 }
1873
1874 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1875 struct fib_table *tb,
1876 struct sk_buff *skb, struct netlink_callback *cb)
1877 {
1878 int i, s_i;
1879 struct fib_alias *fa;
1880 __be32 xkey = htonl(key);
1881
1882 s_i = cb->args[5];
1883 i = 0;
1884
1885 /* rcu_read_lock is hold by caller */
1886
1887 list_for_each_entry_rcu(fa, fah, fa_list) {
1888 if (i < s_i) {
1889 i++;
1890 continue;
1891 }
1892
1893 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1894 cb->nlh->nlmsg_seq,
1895 RTM_NEWROUTE,
1896 tb->tb_id,
1897 fa->fa_type,
1898 fa->fa_scope,
1899 xkey,
1900 plen,
1901 fa->fa_tos,
1902 fa->fa_info, NLM_F_MULTI) < 0) {
1903 cb->args[5] = i;
1904 return -1;
1905 }
1906 i++;
1907 }
1908 cb->args[5] = i;
1909 return skb->len;
1910 }
1911
1912 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1913 struct sk_buff *skb, struct netlink_callback *cb)
1914 {
1915 struct leaf_info *li;
1916 struct hlist_node *node;
1917 int i, s_i;
1918
1919 s_i = cb->args[4];
1920 i = 0;
1921
1922 /* rcu_read_lock is hold by caller */
1923 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1924 if (i < s_i) {
1925 i++;
1926 continue;
1927 }
1928
1929 if (i > s_i)
1930 cb->args[5] = 0;
1931
1932 if (list_empty(&li->falh))
1933 continue;
1934
1935 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1936 cb->args[4] = i;
1937 return -1;
1938 }
1939 i++;
1940 }
1941
1942 cb->args[4] = i;
1943 return skb->len;
1944 }
1945
1946 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1947 struct netlink_callback *cb)
1948 {
1949 struct leaf *l;
1950 struct trie *t = (struct trie *) tb->tb_data;
1951 t_key key = cb->args[2];
1952 int count = cb->args[3];
1953
1954 rcu_read_lock();
1955 /* Dump starting at last key.
1956 * Note: 0.0.0.0/0 (ie default) is first key.
1957 */
1958 if (count == 0)
1959 l = trie_firstleaf(t);
1960 else {
1961 /* Normally, continue from last key, but if that is missing
1962 * fallback to using slow rescan
1963 */
1964 l = fib_find_node(t, key);
1965 if (!l)
1966 l = trie_leafindex(t, count);
1967 }
1968
1969 while (l) {
1970 cb->args[2] = l->key;
1971 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1972 cb->args[3] = count;
1973 rcu_read_unlock();
1974 return -1;
1975 }
1976
1977 ++count;
1978 l = trie_nextleaf(l);
1979 memset(&cb->args[4], 0,
1980 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1981 }
1982 cb->args[3] = count;
1983 rcu_read_unlock();
1984
1985 return skb->len;
1986 }
1987
1988 void __init fib_hash_init(void)
1989 {
1990 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1991 sizeof(struct fib_alias),
1992 0, SLAB_PANIC, NULL);
1993
1994 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1995 max(sizeof(struct leaf),
1996 sizeof(struct leaf_info)),
1997 0, SLAB_PANIC, NULL);
1998 }
1999
2000
2001 /* Fix more generic FIB names for init later */
2002 struct fib_table *fib_hash_table(u32 id)
2003 {
2004 struct fib_table *tb;
2005 struct trie *t;
2006
2007 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
2008 GFP_KERNEL);
2009 if (tb == NULL)
2010 return NULL;
2011
2012 tb->tb_id = id;
2013 tb->tb_default = -1;
2014
2015 t = (struct trie *) tb->tb_data;
2016 memset(t, 0, sizeof(*t));
2017
2018 if (id == RT_TABLE_LOCAL)
2019 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
2020
2021 return tb;
2022 }
2023
2024 #ifdef CONFIG_PROC_FS
2025 /* Depth first Trie walk iterator */
2026 struct fib_trie_iter {
2027 struct seq_net_private p;
2028 struct fib_table *tb;
2029 struct tnode *tnode;
2030 unsigned int index;
2031 unsigned int depth;
2032 };
2033
2034 static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
2035 {
2036 struct tnode *tn = iter->tnode;
2037 unsigned int cindex = iter->index;
2038 struct tnode *p;
2039
2040 /* A single entry routing table */
2041 if (!tn)
2042 return NULL;
2043
2044 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2045 iter->tnode, iter->index, iter->depth);
2046 rescan:
2047 while (cindex < (1<<tn->bits)) {
2048 struct node *n = tnode_get_child_rcu(tn, cindex);
2049
2050 if (n) {
2051 if (IS_LEAF(n)) {
2052 iter->tnode = tn;
2053 iter->index = cindex + 1;
2054 } else {
2055 /* push down one level */
2056 iter->tnode = (struct tnode *) n;
2057 iter->index = 0;
2058 ++iter->depth;
2059 }
2060 return n;
2061 }
2062
2063 ++cindex;
2064 }
2065
2066 /* Current node exhausted, pop back up */
2067 p = node_parent_rcu((struct node *)tn);
2068 if (p) {
2069 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2070 tn = p;
2071 --iter->depth;
2072 goto rescan;
2073 }
2074
2075 /* got root? */
2076 return NULL;
2077 }
2078
2079 static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2080 struct trie *t)
2081 {
2082 struct node *n;
2083
2084 if (!t)
2085 return NULL;
2086
2087 n = rcu_dereference(t->trie);
2088 if (!n)
2089 return NULL;
2090
2091 if (IS_TNODE(n)) {
2092 iter->tnode = (struct tnode *) n;
2093 iter->index = 0;
2094 iter->depth = 1;
2095 } else {
2096 iter->tnode = NULL;
2097 iter->index = 0;
2098 iter->depth = 0;
2099 }
2100
2101 return n;
2102 }
2103
2104 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2105 {
2106 struct node *n;
2107 struct fib_trie_iter iter;
2108
2109 memset(s, 0, sizeof(*s));
2110
2111 rcu_read_lock();
2112 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2113 if (IS_LEAF(n)) {
2114 struct leaf *l = (struct leaf *)n;
2115 struct leaf_info *li;
2116 struct hlist_node *tmp;
2117
2118 s->leaves++;
2119 s->totdepth += iter.depth;
2120 if (iter.depth > s->maxdepth)
2121 s->maxdepth = iter.depth;
2122
2123 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2124 ++s->prefixes;
2125 } else {
2126 const struct tnode *tn = (const struct tnode *) n;
2127 int i;
2128
2129 s->tnodes++;
2130 if (tn->bits < MAX_STAT_DEPTH)
2131 s->nodesizes[tn->bits]++;
2132
2133 for (i = 0; i < (1<<tn->bits); i++)
2134 if (!tn->child[i])
2135 s->nullpointers++;
2136 }
2137 }
2138 rcu_read_unlock();
2139 }
2140
2141 /*
2142 * This outputs /proc/net/fib_triestats
2143 */
2144 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2145 {
2146 unsigned int i, max, pointers, bytes, avdepth;
2147
2148 if (stat->leaves)
2149 avdepth = stat->totdepth*100 / stat->leaves;
2150 else
2151 avdepth = 0;
2152
2153 seq_printf(seq, "\tAver depth: %u.%02d\n",
2154 avdepth / 100, avdepth % 100);
2155 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2156
2157 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2158 bytes = sizeof(struct leaf) * stat->leaves;
2159
2160 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2161 bytes += sizeof(struct leaf_info) * stat->prefixes;
2162
2163 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2164 bytes += sizeof(struct tnode) * stat->tnodes;
2165
2166 max = MAX_STAT_DEPTH;
2167 while (max > 0 && stat->nodesizes[max-1] == 0)
2168 max--;
2169
2170 pointers = 0;
2171 for (i = 1; i <= max; i++)
2172 if (stat->nodesizes[i] != 0) {
2173 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2174 pointers += (1<<i) * stat->nodesizes[i];
2175 }
2176 seq_putc(seq, '\n');
2177 seq_printf(seq, "\tPointers: %u\n", pointers);
2178
2179 bytes += sizeof(struct node *) * pointers;
2180 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2181 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2182 }
2183
2184 #ifdef CONFIG_IP_FIB_TRIE_STATS
2185 static void trie_show_usage(struct seq_file *seq,
2186 const struct trie_use_stats *stats)
2187 {
2188 seq_printf(seq, "\nCounters:\n---------\n");
2189 seq_printf(seq, "gets = %u\n", stats->gets);
2190 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2191 seq_printf(seq, "semantic match passed = %u\n",
2192 stats->semantic_match_passed);
2193 seq_printf(seq, "semantic match miss = %u\n",
2194 stats->semantic_match_miss);
2195 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2196 seq_printf(seq, "skipped node resize = %u\n\n",
2197 stats->resize_node_skipped);
2198 }
2199 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2200
2201 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2202 {
2203 if (tb->tb_id == RT_TABLE_LOCAL)
2204 seq_puts(seq, "Local:\n");
2205 else if (tb->tb_id == RT_TABLE_MAIN)
2206 seq_puts(seq, "Main:\n");
2207 else
2208 seq_printf(seq, "Id %d:\n", tb->tb_id);
2209 }
2210
2211
2212 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2213 {
2214 struct net *net = (struct net *)seq->private;
2215 unsigned int h;
2216
2217 seq_printf(seq,
2218 "Basic info: size of leaf:"
2219 " %Zd bytes, size of tnode: %Zd bytes.\n",
2220 sizeof(struct leaf), sizeof(struct tnode));
2221
2222 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2223 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2224 struct hlist_node *node;
2225 struct fib_table *tb;
2226
2227 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2228 struct trie *t = (struct trie *) tb->tb_data;
2229 struct trie_stat stat;
2230
2231 if (!t)
2232 continue;
2233
2234 fib_table_print(seq, tb);
2235
2236 trie_collect_stats(t, &stat);
2237 trie_show_stats(seq, &stat);
2238 #ifdef CONFIG_IP_FIB_TRIE_STATS
2239 trie_show_usage(seq, &t->stats);
2240 #endif
2241 }
2242 }
2243
2244 return 0;
2245 }
2246
2247 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2248 {
2249 return single_open_net(inode, file, fib_triestat_seq_show);
2250 }
2251
2252 static const struct file_operations fib_triestat_fops = {
2253 .owner = THIS_MODULE,
2254 .open = fib_triestat_seq_open,
2255 .read = seq_read,
2256 .llseek = seq_lseek,
2257 .release = single_release_net,
2258 };
2259
2260 static struct node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2261 {
2262 struct fib_trie_iter *iter = seq->private;
2263 struct net *net = seq_file_net(seq);
2264 loff_t idx = 0;
2265 unsigned int h;
2266
2267 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2268 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2269 struct hlist_node *node;
2270 struct fib_table *tb;
2271
2272 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2273 struct node *n;
2274
2275 for (n = fib_trie_get_first(iter,
2276 (struct trie *) tb->tb_data);
2277 n; n = fib_trie_get_next(iter))
2278 if (pos == idx++) {
2279 iter->tb = tb;
2280 return n;
2281 }
2282 }
2283 }
2284
2285 return NULL;
2286 }
2287
2288 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2289 __acquires(RCU)
2290 {
2291 rcu_read_lock();
2292 return fib_trie_get_idx(seq, *pos);
2293 }
2294
2295 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2296 {
2297 struct fib_trie_iter *iter = seq->private;
2298 struct net *net = seq_file_net(seq);
2299 struct fib_table *tb = iter->tb;
2300 struct hlist_node *tb_node;
2301 unsigned int h;
2302 struct node *n;
2303
2304 ++*pos;
2305 /* next node in same table */
2306 n = fib_trie_get_next(iter);
2307 if (n)
2308 return n;
2309
2310 /* walk rest of this hash chain */
2311 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2312 while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
2313 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2314 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2315 if (n)
2316 goto found;
2317 }
2318
2319 /* new hash chain */
2320 while (++h < FIB_TABLE_HASHSZ) {
2321 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2322 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2323 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2324 if (n)
2325 goto found;
2326 }
2327 }
2328 return NULL;
2329
2330 found:
2331 iter->tb = tb;
2332 return n;
2333 }
2334
2335 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2336 __releases(RCU)
2337 {
2338 rcu_read_unlock();
2339 }
2340
2341 static void seq_indent(struct seq_file *seq, int n)
2342 {
2343 while (n-- > 0)
2344 seq_puts(seq, " ");
2345 }
2346
2347 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2348 {
2349 switch (s) {
2350 case RT_SCOPE_UNIVERSE: return "universe";
2351 case RT_SCOPE_SITE: return "site";
2352 case RT_SCOPE_LINK: return "link";
2353 case RT_SCOPE_HOST: return "host";
2354 case RT_SCOPE_NOWHERE: return "nowhere";
2355 default:
2356 snprintf(buf, len, "scope=%d", s);
2357 return buf;
2358 }
2359 }
2360
2361 static const char *const rtn_type_names[__RTN_MAX] = {
2362 [RTN_UNSPEC] = "UNSPEC",
2363 [RTN_UNICAST] = "UNICAST",
2364 [RTN_LOCAL] = "LOCAL",
2365 [RTN_BROADCAST] = "BROADCAST",
2366 [RTN_ANYCAST] = "ANYCAST",
2367 [RTN_MULTICAST] = "MULTICAST",
2368 [RTN_BLACKHOLE] = "BLACKHOLE",
2369 [RTN_UNREACHABLE] = "UNREACHABLE",
2370 [RTN_PROHIBIT] = "PROHIBIT",
2371 [RTN_THROW] = "THROW",
2372 [RTN_NAT] = "NAT",
2373 [RTN_XRESOLVE] = "XRESOLVE",
2374 };
2375
2376 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2377 {
2378 if (t < __RTN_MAX && rtn_type_names[t])
2379 return rtn_type_names[t];
2380 snprintf(buf, len, "type %u", t);
2381 return buf;
2382 }
2383
2384 /* Pretty print the trie */
2385 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2386 {
2387 const struct fib_trie_iter *iter = seq->private;
2388 struct node *n = v;
2389
2390 if (!node_parent_rcu(n))
2391 fib_table_print(seq, iter->tb);
2392
2393 if (IS_TNODE(n)) {
2394 struct tnode *tn = (struct tnode *) n;
2395 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2396
2397 seq_indent(seq, iter->depth-1);
2398 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2399 &prf, tn->pos, tn->bits, tn->full_children,
2400 tn->empty_children);
2401
2402 } else {
2403 struct leaf *l = (struct leaf *) n;
2404 struct leaf_info *li;
2405 struct hlist_node *node;
2406 __be32 val = htonl(l->key);
2407
2408 seq_indent(seq, iter->depth);
2409 seq_printf(seq, " |-- %pI4\n", &val);
2410
2411 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2412 struct fib_alias *fa;
2413
2414 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2415 char buf1[32], buf2[32];
2416
2417 seq_indent(seq, iter->depth+1);
2418 seq_printf(seq, " /%d %s %s", li->plen,
2419 rtn_scope(buf1, sizeof(buf1),
2420 fa->fa_scope),
2421 rtn_type(buf2, sizeof(buf2),
2422 fa->fa_type));
2423 if (fa->fa_tos)
2424 seq_printf(seq, " tos=%d", fa->fa_tos);
2425 seq_putc(seq, '\n');
2426 }
2427 }
2428 }
2429
2430 return 0;
2431 }
2432
2433 static const struct seq_operations fib_trie_seq_ops = {
2434 .start = fib_trie_seq_start,
2435 .next = fib_trie_seq_next,
2436 .stop = fib_trie_seq_stop,
2437 .show = fib_trie_seq_show,
2438 };
2439
2440 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2441 {
2442 return seq_open_net(inode, file, &fib_trie_seq_ops,
2443 sizeof(struct fib_trie_iter));
2444 }
2445
2446 static const struct file_operations fib_trie_fops = {
2447 .owner = THIS_MODULE,
2448 .open = fib_trie_seq_open,
2449 .read = seq_read,
2450 .llseek = seq_lseek,
2451 .release = seq_release_net,
2452 };
2453
2454 struct fib_route_iter {
2455 struct seq_net_private p;
2456 struct trie *main_trie;
2457 loff_t pos;
2458 t_key key;
2459 };
2460
2461 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2462 {
2463 struct leaf *l = NULL;
2464 struct trie *t = iter->main_trie;
2465
2466 /* use cache location of last found key */
2467 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2468 pos -= iter->pos;
2469 else {
2470 iter->pos = 0;
2471 l = trie_firstleaf(t);
2472 }
2473
2474 while (l && pos-- > 0) {
2475 iter->pos++;
2476 l = trie_nextleaf(l);
2477 }
2478
2479 if (l)
2480 iter->key = pos; /* remember it */
2481 else
2482 iter->pos = 0; /* forget it */
2483
2484 return l;
2485 }
2486
2487 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2488 __acquires(RCU)
2489 {
2490 struct fib_route_iter *iter = seq->private;
2491 struct fib_table *tb;
2492
2493 rcu_read_lock();
2494 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2495 if (!tb)
2496 return NULL;
2497
2498 iter->main_trie = (struct trie *) tb->tb_data;
2499 if (*pos == 0)
2500 return SEQ_START_TOKEN;
2501 else
2502 return fib_route_get_idx(iter, *pos - 1);
2503 }
2504
2505 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2506 {
2507 struct fib_route_iter *iter = seq->private;
2508 struct leaf *l = v;
2509
2510 ++*pos;
2511 if (v == SEQ_START_TOKEN) {
2512 iter->pos = 0;
2513 l = trie_firstleaf(iter->main_trie);
2514 } else {
2515 iter->pos++;
2516 l = trie_nextleaf(l);
2517 }
2518
2519 if (l)
2520 iter->key = l->key;
2521 else
2522 iter->pos = 0;
2523 return l;
2524 }
2525
2526 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2527 __releases(RCU)
2528 {
2529 rcu_read_unlock();
2530 }
2531
2532 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2533 {
2534 unsigned int flags = 0;
2535
2536 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2537 flags = RTF_REJECT;
2538 if (fi && fi->fib_nh->nh_gw)
2539 flags |= RTF_GATEWAY;
2540 if (mask == htonl(0xFFFFFFFF))
2541 flags |= RTF_HOST;
2542 flags |= RTF_UP;
2543 return flags;
2544 }
2545
2546 /*
2547 * This outputs /proc/net/route.
2548 * The format of the file is not supposed to be changed
2549 * and needs to be same as fib_hash output to avoid breaking
2550 * legacy utilities
2551 */
2552 static int fib_route_seq_show(struct seq_file *seq, void *v)
2553 {
2554 struct leaf *l = v;
2555 struct leaf_info *li;
2556 struct hlist_node *node;
2557
2558 if (v == SEQ_START_TOKEN) {
2559 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2560 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2561 "\tWindow\tIRTT");
2562 return 0;
2563 }
2564
2565 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2566 struct fib_alias *fa;
2567 __be32 mask, prefix;
2568
2569 mask = inet_make_mask(li->plen);
2570 prefix = htonl(l->key);
2571
2572 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2573 const struct fib_info *fi = fa->fa_info;
2574 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2575 int len;
2576
2577 if (fa->fa_type == RTN_BROADCAST
2578 || fa->fa_type == RTN_MULTICAST)
2579 continue;
2580
2581 if (fi)
2582 seq_printf(seq,
2583 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2584 "%d\t%08X\t%d\t%u\t%u%n",
2585 fi->fib_dev ? fi->fib_dev->name : "*",
2586 prefix,
2587 fi->fib_nh->nh_gw, flags, 0, 0,
2588 fi->fib_priority,
2589 mask,
2590 (fi->fib_advmss ?
2591 fi->fib_advmss + 40 : 0),
2592 fi->fib_window,
2593 fi->fib_rtt >> 3, &len);
2594 else
2595 seq_printf(seq,
2596 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2597 "%d\t%08X\t%d\t%u\t%u%n",
2598 prefix, 0, flags, 0, 0, 0,
2599 mask, 0, 0, 0, &len);
2600
2601 seq_printf(seq, "%*s\n", 127 - len, "");
2602 }
2603 }
2604
2605 return 0;
2606 }
2607
2608 static const struct seq_operations fib_route_seq_ops = {
2609 .start = fib_route_seq_start,
2610 .next = fib_route_seq_next,
2611 .stop = fib_route_seq_stop,
2612 .show = fib_route_seq_show,
2613 };
2614
2615 static int fib_route_seq_open(struct inode *inode, struct file *file)
2616 {
2617 return seq_open_net(inode, file, &fib_route_seq_ops,
2618 sizeof(struct fib_route_iter));
2619 }
2620
2621 static const struct file_operations fib_route_fops = {
2622 .owner = THIS_MODULE,
2623 .open = fib_route_seq_open,
2624 .read = seq_read,
2625 .llseek = seq_lseek,
2626 .release = seq_release_net,
2627 };
2628
2629 int __net_init fib_proc_init(struct net *net)
2630 {
2631 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2632 goto out1;
2633
2634 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2635 &fib_triestat_fops))
2636 goto out2;
2637
2638 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2639 goto out3;
2640
2641 return 0;
2642
2643 out3:
2644 proc_net_remove(net, "fib_triestat");
2645 out2:
2646 proc_net_remove(net, "fib_trie");
2647 out1:
2648 return -ENOMEM;
2649 }
2650
2651 void __net_exit fib_proc_exit(struct net *net)
2652 {
2653 proc_net_remove(net, "fib_trie");
2654 proc_net_remove(net, "fib_triestat");
2655 proc_net_remove(net, "route");
2656 }
2657
2658 #endif /* CONFIG_PROC_FS */