]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/inet_connection_sock.c
spi-imx: Implements handling of the SPI_READY mode flag.
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / inet_connection_sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Support for INET connection oriented protocols.
7 *
8 * Authors: See the TCP sources
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or(at your option) any later version.
14 */
15
16 #include <linux/module.h>
17 #include <linux/jhash.h>
18
19 #include <net/inet_connection_sock.h>
20 #include <net/inet_hashtables.h>
21 #include <net/inet_timewait_sock.h>
22 #include <net/ip.h>
23 #include <net/route.h>
24 #include <net/tcp_states.h>
25 #include <net/xfrm.h>
26 #include <net/tcp.h>
27 #include <net/sock_reuseport.h>
28
29 #ifdef INET_CSK_DEBUG
30 const char inet_csk_timer_bug_msg[] = "inet_csk BUG: unknown timer value\n";
31 EXPORT_SYMBOL(inet_csk_timer_bug_msg);
32 #endif
33
34 #if IS_ENABLED(CONFIG_IPV6)
35 /* match_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses if IPv6
36 * only, and any IPv4 addresses if not IPv6 only
37 * match_wildcard == false: addresses must be exactly the same, i.e.
38 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
39 * and 0.0.0.0 equals to 0.0.0.0 only
40 */
41 static int ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
42 const struct in6_addr *sk2_rcv_saddr6,
43 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
44 bool sk1_ipv6only, bool sk2_ipv6only,
45 bool match_wildcard)
46 {
47 int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
48 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
49
50 /* if both are mapped, treat as IPv4 */
51 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
52 if (!sk2_ipv6only) {
53 if (sk1_rcv_saddr == sk2_rcv_saddr)
54 return 1;
55 if (!sk1_rcv_saddr || !sk2_rcv_saddr)
56 return match_wildcard;
57 }
58 return 0;
59 }
60
61 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
62 return 1;
63
64 if (addr_type2 == IPV6_ADDR_ANY && match_wildcard &&
65 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
66 return 1;
67
68 if (addr_type == IPV6_ADDR_ANY && match_wildcard &&
69 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
70 return 1;
71
72 if (sk2_rcv_saddr6 &&
73 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
74 return 1;
75
76 return 0;
77 }
78 #endif
79
80 /* match_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
81 * match_wildcard == false: addresses must be exactly the same, i.e.
82 * 0.0.0.0 only equals to 0.0.0.0
83 */
84 static int ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
85 bool sk2_ipv6only, bool match_wildcard)
86 {
87 if (!sk2_ipv6only) {
88 if (sk1_rcv_saddr == sk2_rcv_saddr)
89 return 1;
90 if (!sk1_rcv_saddr || !sk2_rcv_saddr)
91 return match_wildcard;
92 }
93 return 0;
94 }
95
96 int inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
97 bool match_wildcard)
98 {
99 #if IS_ENABLED(CONFIG_IPV6)
100 if (sk->sk_family == AF_INET6)
101 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
102 inet6_rcv_saddr(sk2),
103 sk->sk_rcv_saddr,
104 sk2->sk_rcv_saddr,
105 ipv6_only_sock(sk),
106 ipv6_only_sock(sk2),
107 match_wildcard);
108 #endif
109 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
110 ipv6_only_sock(sk2), match_wildcard);
111 }
112 EXPORT_SYMBOL(inet_rcv_saddr_equal);
113
114 void inet_get_local_port_range(struct net *net, int *low, int *high)
115 {
116 unsigned int seq;
117
118 do {
119 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
120
121 *low = net->ipv4.ip_local_ports.range[0];
122 *high = net->ipv4.ip_local_ports.range[1];
123 } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
124 }
125 EXPORT_SYMBOL(inet_get_local_port_range);
126
127 static int inet_csk_bind_conflict(const struct sock *sk,
128 const struct inet_bind_bucket *tb,
129 bool relax, bool reuseport_ok)
130 {
131 struct sock *sk2;
132 bool reuse = sk->sk_reuse;
133 bool reuseport = !!sk->sk_reuseport && reuseport_ok;
134 kuid_t uid = sock_i_uid((struct sock *)sk);
135
136 /*
137 * Unlike other sk lookup places we do not check
138 * for sk_net here, since _all_ the socks listed
139 * in tb->owners list belong to the same net - the
140 * one this bucket belongs to.
141 */
142
143 sk_for_each_bound(sk2, &tb->owners) {
144 if (sk != sk2 &&
145 (!sk->sk_bound_dev_if ||
146 !sk2->sk_bound_dev_if ||
147 sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) {
148 if ((!reuse || !sk2->sk_reuse ||
149 sk2->sk_state == TCP_LISTEN) &&
150 (!reuseport || !sk2->sk_reuseport ||
151 rcu_access_pointer(sk->sk_reuseport_cb) ||
152 (sk2->sk_state != TCP_TIME_WAIT &&
153 !uid_eq(uid, sock_i_uid(sk2))))) {
154 if (inet_rcv_saddr_equal(sk, sk2, true))
155 break;
156 }
157 if (!relax && reuse && sk2->sk_reuse &&
158 sk2->sk_state != TCP_LISTEN) {
159 if (inet_rcv_saddr_equal(sk, sk2, true))
160 break;
161 }
162 }
163 }
164 return sk2 != NULL;
165 }
166
167 /*
168 * Find an open port number for the socket. Returns with the
169 * inet_bind_hashbucket lock held.
170 */
171 static struct inet_bind_hashbucket *
172 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret)
173 {
174 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
175 int port = 0;
176 struct inet_bind_hashbucket *head;
177 struct net *net = sock_net(sk);
178 int i, low, high, attempt_half;
179 struct inet_bind_bucket *tb;
180 u32 remaining, offset;
181
182 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
183 other_half_scan:
184 inet_get_local_port_range(net, &low, &high);
185 high++; /* [32768, 60999] -> [32768, 61000[ */
186 if (high - low < 4)
187 attempt_half = 0;
188 if (attempt_half) {
189 int half = low + (((high - low) >> 2) << 1);
190
191 if (attempt_half == 1)
192 high = half;
193 else
194 low = half;
195 }
196 remaining = high - low;
197 if (likely(remaining > 1))
198 remaining &= ~1U;
199
200 offset = prandom_u32() % remaining;
201 /* __inet_hash_connect() favors ports having @low parity
202 * We do the opposite to not pollute connect() users.
203 */
204 offset |= 1U;
205
206 other_parity_scan:
207 port = low + offset;
208 for (i = 0; i < remaining; i += 2, port += 2) {
209 if (unlikely(port >= high))
210 port -= remaining;
211 if (inet_is_local_reserved_port(net, port))
212 continue;
213 head = &hinfo->bhash[inet_bhashfn(net, port,
214 hinfo->bhash_size)];
215 spin_lock_bh(&head->lock);
216 inet_bind_bucket_for_each(tb, &head->chain)
217 if (net_eq(ib_net(tb), net) && tb->port == port) {
218 if (!inet_csk_bind_conflict(sk, tb, false, false))
219 goto success;
220 goto next_port;
221 }
222 tb = NULL;
223 goto success;
224 next_port:
225 spin_unlock_bh(&head->lock);
226 cond_resched();
227 }
228
229 offset--;
230 if (!(offset & 1))
231 goto other_parity_scan;
232
233 if (attempt_half == 1) {
234 /* OK we now try the upper half of the range */
235 attempt_half = 2;
236 goto other_half_scan;
237 }
238 return NULL;
239 success:
240 *port_ret = port;
241 *tb_ret = tb;
242 return head;
243 }
244
245 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
246 struct sock *sk)
247 {
248 kuid_t uid = sock_i_uid(sk);
249
250 if (tb->fastreuseport <= 0)
251 return 0;
252 if (!sk->sk_reuseport)
253 return 0;
254 if (rcu_access_pointer(sk->sk_reuseport_cb))
255 return 0;
256 if (!uid_eq(tb->fastuid, uid))
257 return 0;
258 /* We only need to check the rcv_saddr if this tb was once marked
259 * without fastreuseport and then was reset, as we can only know that
260 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
261 * owners list.
262 */
263 if (tb->fastreuseport == FASTREUSEPORT_ANY)
264 return 1;
265 #if IS_ENABLED(CONFIG_IPV6)
266 if (tb->fast_sk_family == AF_INET6)
267 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
268 &sk->sk_v6_rcv_saddr,
269 tb->fast_rcv_saddr,
270 sk->sk_rcv_saddr,
271 tb->fast_ipv6_only,
272 ipv6_only_sock(sk), true);
273 #endif
274 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
275 ipv6_only_sock(sk), true);
276 }
277
278 /* Obtain a reference to a local port for the given sock,
279 * if snum is zero it means select any available local port.
280 * We try to allocate an odd port (and leave even ports for connect())
281 */
282 int inet_csk_get_port(struct sock *sk, unsigned short snum)
283 {
284 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
285 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
286 int ret = 1, port = snum;
287 struct inet_bind_hashbucket *head;
288 struct net *net = sock_net(sk);
289 struct inet_bind_bucket *tb = NULL;
290 kuid_t uid = sock_i_uid(sk);
291
292 if (!port) {
293 head = inet_csk_find_open_port(sk, &tb, &port);
294 if (!head)
295 return ret;
296 if (!tb)
297 goto tb_not_found;
298 goto success;
299 }
300 head = &hinfo->bhash[inet_bhashfn(net, port,
301 hinfo->bhash_size)];
302 spin_lock_bh(&head->lock);
303 inet_bind_bucket_for_each(tb, &head->chain)
304 if (net_eq(ib_net(tb), net) && tb->port == port)
305 goto tb_found;
306 tb_not_found:
307 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep,
308 net, head, port);
309 if (!tb)
310 goto fail_unlock;
311 tb_found:
312 if (!hlist_empty(&tb->owners)) {
313 if (sk->sk_reuse == SK_FORCE_REUSE)
314 goto success;
315
316 if ((tb->fastreuse > 0 && reuse) ||
317 sk_reuseport_match(tb, sk))
318 goto success;
319 if (inet_csk_bind_conflict(sk, tb, true, true))
320 goto fail_unlock;
321 }
322 success:
323 if (!hlist_empty(&tb->owners)) {
324 tb->fastreuse = reuse;
325 if (sk->sk_reuseport) {
326 tb->fastreuseport = FASTREUSEPORT_ANY;
327 tb->fastuid = uid;
328 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
329 tb->fast_ipv6_only = ipv6_only_sock(sk);
330 #if IS_ENABLED(CONFIG_IPV6)
331 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
332 #endif
333 } else {
334 tb->fastreuseport = 0;
335 }
336 } else {
337 if (!reuse)
338 tb->fastreuse = 0;
339 if (sk->sk_reuseport) {
340 /* We didn't match or we don't have fastreuseport set on
341 * the tb, but we have sk_reuseport set on this socket
342 * and we know that there are no bind conflicts with
343 * this socket in this tb, so reset our tb's reuseport
344 * settings so that any subsequent sockets that match
345 * our current socket will be put on the fast path.
346 *
347 * If we reset we need to set FASTREUSEPORT_STRICT so we
348 * do extra checking for all subsequent sk_reuseport
349 * socks.
350 */
351 if (!sk_reuseport_match(tb, sk)) {
352 tb->fastreuseport = FASTREUSEPORT_STRICT;
353 tb->fastuid = uid;
354 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
355 tb->fast_ipv6_only = ipv6_only_sock(sk);
356 #if IS_ENABLED(CONFIG_IPV6)
357 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
358 #endif
359 }
360 } else {
361 tb->fastreuseport = 0;
362 }
363 }
364 if (!inet_csk(sk)->icsk_bind_hash)
365 inet_bind_hash(sk, tb, port);
366 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
367 ret = 0;
368
369 fail_unlock:
370 spin_unlock_bh(&head->lock);
371 return ret;
372 }
373 EXPORT_SYMBOL_GPL(inet_csk_get_port);
374
375 /*
376 * Wait for an incoming connection, avoid race conditions. This must be called
377 * with the socket locked.
378 */
379 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
380 {
381 struct inet_connection_sock *icsk = inet_csk(sk);
382 DEFINE_WAIT(wait);
383 int err;
384
385 /*
386 * True wake-one mechanism for incoming connections: only
387 * one process gets woken up, not the 'whole herd'.
388 * Since we do not 'race & poll' for established sockets
389 * anymore, the common case will execute the loop only once.
390 *
391 * Subtle issue: "add_wait_queue_exclusive()" will be added
392 * after any current non-exclusive waiters, and we know that
393 * it will always _stay_ after any new non-exclusive waiters
394 * because all non-exclusive waiters are added at the
395 * beginning of the wait-queue. As such, it's ok to "drop"
396 * our exclusiveness temporarily when we get woken up without
397 * having to remove and re-insert us on the wait queue.
398 */
399 for (;;) {
400 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
401 TASK_INTERRUPTIBLE);
402 release_sock(sk);
403 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
404 timeo = schedule_timeout(timeo);
405 sched_annotate_sleep();
406 lock_sock(sk);
407 err = 0;
408 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
409 break;
410 err = -EINVAL;
411 if (sk->sk_state != TCP_LISTEN)
412 break;
413 err = sock_intr_errno(timeo);
414 if (signal_pending(current))
415 break;
416 err = -EAGAIN;
417 if (!timeo)
418 break;
419 }
420 finish_wait(sk_sleep(sk), &wait);
421 return err;
422 }
423
424 /*
425 * This will accept the next outstanding connection.
426 */
427 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err)
428 {
429 struct inet_connection_sock *icsk = inet_csk(sk);
430 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
431 struct request_sock *req;
432 struct sock *newsk;
433 int error;
434
435 lock_sock(sk);
436
437 /* We need to make sure that this socket is listening,
438 * and that it has something pending.
439 */
440 error = -EINVAL;
441 if (sk->sk_state != TCP_LISTEN)
442 goto out_err;
443
444 /* Find already established connection */
445 if (reqsk_queue_empty(queue)) {
446 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
447
448 /* If this is a non blocking socket don't sleep */
449 error = -EAGAIN;
450 if (!timeo)
451 goto out_err;
452
453 error = inet_csk_wait_for_connect(sk, timeo);
454 if (error)
455 goto out_err;
456 }
457 req = reqsk_queue_remove(queue, sk);
458 newsk = req->sk;
459
460 if (sk->sk_protocol == IPPROTO_TCP &&
461 tcp_rsk(req)->tfo_listener) {
462 spin_lock_bh(&queue->fastopenq.lock);
463 if (tcp_rsk(req)->tfo_listener) {
464 /* We are still waiting for the final ACK from 3WHS
465 * so can't free req now. Instead, we set req->sk to
466 * NULL to signify that the child socket is taken
467 * so reqsk_fastopen_remove() will free the req
468 * when 3WHS finishes (or is aborted).
469 */
470 req->sk = NULL;
471 req = NULL;
472 }
473 spin_unlock_bh(&queue->fastopenq.lock);
474 }
475 out:
476 release_sock(sk);
477 if (req)
478 reqsk_put(req);
479 return newsk;
480 out_err:
481 newsk = NULL;
482 req = NULL;
483 *err = error;
484 goto out;
485 }
486 EXPORT_SYMBOL(inet_csk_accept);
487
488 /*
489 * Using different timers for retransmit, delayed acks and probes
490 * We may wish use just one timer maintaining a list of expire jiffies
491 * to optimize.
492 */
493 void inet_csk_init_xmit_timers(struct sock *sk,
494 void (*retransmit_handler)(unsigned long),
495 void (*delack_handler)(unsigned long),
496 void (*keepalive_handler)(unsigned long))
497 {
498 struct inet_connection_sock *icsk = inet_csk(sk);
499
500 setup_timer(&icsk->icsk_retransmit_timer, retransmit_handler,
501 (unsigned long)sk);
502 setup_timer(&icsk->icsk_delack_timer, delack_handler,
503 (unsigned long)sk);
504 setup_timer(&sk->sk_timer, keepalive_handler, (unsigned long)sk);
505 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
506 }
507 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
508
509 void inet_csk_clear_xmit_timers(struct sock *sk)
510 {
511 struct inet_connection_sock *icsk = inet_csk(sk);
512
513 icsk->icsk_pending = icsk->icsk_ack.pending = icsk->icsk_ack.blocked = 0;
514
515 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
516 sk_stop_timer(sk, &icsk->icsk_delack_timer);
517 sk_stop_timer(sk, &sk->sk_timer);
518 }
519 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
520
521 void inet_csk_delete_keepalive_timer(struct sock *sk)
522 {
523 sk_stop_timer(sk, &sk->sk_timer);
524 }
525 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
526
527 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
528 {
529 sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
530 }
531 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
532
533 struct dst_entry *inet_csk_route_req(const struct sock *sk,
534 struct flowi4 *fl4,
535 const struct request_sock *req)
536 {
537 const struct inet_request_sock *ireq = inet_rsk(req);
538 struct net *net = read_pnet(&ireq->ireq_net);
539 struct ip_options_rcu *opt = ireq->opt;
540 struct rtable *rt;
541
542 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
543 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
544 sk->sk_protocol, inet_sk_flowi_flags(sk),
545 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
546 ireq->ir_loc_addr, ireq->ir_rmt_port,
547 htons(ireq->ir_num), sk->sk_uid);
548 security_req_classify_flow(req, flowi4_to_flowi(fl4));
549 rt = ip_route_output_flow(net, fl4, sk);
550 if (IS_ERR(rt))
551 goto no_route;
552 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
553 goto route_err;
554 return &rt->dst;
555
556 route_err:
557 ip_rt_put(rt);
558 no_route:
559 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
560 return NULL;
561 }
562 EXPORT_SYMBOL_GPL(inet_csk_route_req);
563
564 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
565 struct sock *newsk,
566 const struct request_sock *req)
567 {
568 const struct inet_request_sock *ireq = inet_rsk(req);
569 struct net *net = read_pnet(&ireq->ireq_net);
570 struct inet_sock *newinet = inet_sk(newsk);
571 struct ip_options_rcu *opt;
572 struct flowi4 *fl4;
573 struct rtable *rt;
574
575 fl4 = &newinet->cork.fl.u.ip4;
576
577 rcu_read_lock();
578 opt = rcu_dereference(newinet->inet_opt);
579 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
580 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
581 sk->sk_protocol, inet_sk_flowi_flags(sk),
582 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
583 ireq->ir_loc_addr, ireq->ir_rmt_port,
584 htons(ireq->ir_num), sk->sk_uid);
585 security_req_classify_flow(req, flowi4_to_flowi(fl4));
586 rt = ip_route_output_flow(net, fl4, sk);
587 if (IS_ERR(rt))
588 goto no_route;
589 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
590 goto route_err;
591 rcu_read_unlock();
592 return &rt->dst;
593
594 route_err:
595 ip_rt_put(rt);
596 no_route:
597 rcu_read_unlock();
598 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
599 return NULL;
600 }
601 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
602
603 #if IS_ENABLED(CONFIG_IPV6)
604 #define AF_INET_FAMILY(fam) ((fam) == AF_INET)
605 #else
606 #define AF_INET_FAMILY(fam) true
607 #endif
608
609 /* Decide when to expire the request and when to resend SYN-ACK */
610 static inline void syn_ack_recalc(struct request_sock *req, const int thresh,
611 const int max_retries,
612 const u8 rskq_defer_accept,
613 int *expire, int *resend)
614 {
615 if (!rskq_defer_accept) {
616 *expire = req->num_timeout >= thresh;
617 *resend = 1;
618 return;
619 }
620 *expire = req->num_timeout >= thresh &&
621 (!inet_rsk(req)->acked || req->num_timeout >= max_retries);
622 /*
623 * Do not resend while waiting for data after ACK,
624 * start to resend on end of deferring period to give
625 * last chance for data or ACK to create established socket.
626 */
627 *resend = !inet_rsk(req)->acked ||
628 req->num_timeout >= rskq_defer_accept - 1;
629 }
630
631 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
632 {
633 int err = req->rsk_ops->rtx_syn_ack(parent, req);
634
635 if (!err)
636 req->num_retrans++;
637 return err;
638 }
639 EXPORT_SYMBOL(inet_rtx_syn_ack);
640
641 /* return true if req was found in the ehash table */
642 static bool reqsk_queue_unlink(struct request_sock_queue *queue,
643 struct request_sock *req)
644 {
645 struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
646 bool found = false;
647
648 if (sk_hashed(req_to_sk(req))) {
649 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
650
651 spin_lock(lock);
652 found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
653 spin_unlock(lock);
654 }
655 if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
656 reqsk_put(req);
657 return found;
658 }
659
660 void inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
661 {
662 if (reqsk_queue_unlink(&inet_csk(sk)->icsk_accept_queue, req)) {
663 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
664 reqsk_put(req);
665 }
666 }
667 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
668
669 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
670 {
671 inet_csk_reqsk_queue_drop(sk, req);
672 reqsk_put(req);
673 }
674 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
675
676 static void reqsk_timer_handler(unsigned long data)
677 {
678 struct request_sock *req = (struct request_sock *)data;
679 struct sock *sk_listener = req->rsk_listener;
680 struct net *net = sock_net(sk_listener);
681 struct inet_connection_sock *icsk = inet_csk(sk_listener);
682 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
683 int qlen, expire = 0, resend = 0;
684 int max_retries, thresh;
685 u8 defer_accept;
686
687 if (sk_state_load(sk_listener) != TCP_LISTEN)
688 goto drop;
689
690 max_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries;
691 thresh = max_retries;
692 /* Normally all the openreqs are young and become mature
693 * (i.e. converted to established socket) for first timeout.
694 * If synack was not acknowledged for 1 second, it means
695 * one of the following things: synack was lost, ack was lost,
696 * rtt is high or nobody planned to ack (i.e. synflood).
697 * When server is a bit loaded, queue is populated with old
698 * open requests, reducing effective size of queue.
699 * When server is well loaded, queue size reduces to zero
700 * after several minutes of work. It is not synflood,
701 * it is normal operation. The solution is pruning
702 * too old entries overriding normal timeout, when
703 * situation becomes dangerous.
704 *
705 * Essentially, we reserve half of room for young
706 * embrions; and abort old ones without pity, if old
707 * ones are about to clog our table.
708 */
709 qlen = reqsk_queue_len(queue);
710 if ((qlen << 1) > max(8U, sk_listener->sk_max_ack_backlog)) {
711 int young = reqsk_queue_len_young(queue) << 1;
712
713 while (thresh > 2) {
714 if (qlen < young)
715 break;
716 thresh--;
717 young <<= 1;
718 }
719 }
720 defer_accept = READ_ONCE(queue->rskq_defer_accept);
721 if (defer_accept)
722 max_retries = defer_accept;
723 syn_ack_recalc(req, thresh, max_retries, defer_accept,
724 &expire, &resend);
725 req->rsk_ops->syn_ack_timeout(req);
726 if (!expire &&
727 (!resend ||
728 !inet_rtx_syn_ack(sk_listener, req) ||
729 inet_rsk(req)->acked)) {
730 unsigned long timeo;
731
732 if (req->num_timeout++ == 0)
733 atomic_dec(&queue->young);
734 timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX);
735 mod_timer(&req->rsk_timer, jiffies + timeo);
736 return;
737 }
738 drop:
739 inet_csk_reqsk_queue_drop_and_put(sk_listener, req);
740 }
741
742 static void reqsk_queue_hash_req(struct request_sock *req,
743 unsigned long timeout)
744 {
745 req->num_retrans = 0;
746 req->num_timeout = 0;
747 req->sk = NULL;
748
749 setup_pinned_timer(&req->rsk_timer, reqsk_timer_handler,
750 (unsigned long)req);
751 mod_timer(&req->rsk_timer, jiffies + timeout);
752
753 inet_ehash_insert(req_to_sk(req), NULL);
754 /* before letting lookups find us, make sure all req fields
755 * are committed to memory and refcnt initialized.
756 */
757 smp_wmb();
758 atomic_set(&req->rsk_refcnt, 2 + 1);
759 }
760
761 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
762 unsigned long timeout)
763 {
764 reqsk_queue_hash_req(req, timeout);
765 inet_csk_reqsk_queue_added(sk);
766 }
767 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
768
769 /**
770 * inet_csk_clone_lock - clone an inet socket, and lock its clone
771 * @sk: the socket to clone
772 * @req: request_sock
773 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
774 *
775 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
776 */
777 struct sock *inet_csk_clone_lock(const struct sock *sk,
778 const struct request_sock *req,
779 const gfp_t priority)
780 {
781 struct sock *newsk = sk_clone_lock(sk, priority);
782
783 if (newsk) {
784 struct inet_connection_sock *newicsk = inet_csk(newsk);
785
786 newsk->sk_state = TCP_SYN_RECV;
787 newicsk->icsk_bind_hash = NULL;
788
789 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
790 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
791 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
792 newsk->sk_write_space = sk_stream_write_space;
793
794 /* listeners have SOCK_RCU_FREE, not the children */
795 sock_reset_flag(newsk, SOCK_RCU_FREE);
796
797 newsk->sk_mark = inet_rsk(req)->ir_mark;
798 atomic64_set(&newsk->sk_cookie,
799 atomic64_read(&inet_rsk(req)->ir_cookie));
800
801 newicsk->icsk_retransmits = 0;
802 newicsk->icsk_backoff = 0;
803 newicsk->icsk_probes_out = 0;
804
805 /* Deinitialize accept_queue to trap illegal accesses. */
806 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
807
808 security_inet_csk_clone(newsk, req);
809 }
810 return newsk;
811 }
812 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
813
814 /*
815 * At this point, there should be no process reference to this
816 * socket, and thus no user references at all. Therefore we
817 * can assume the socket waitqueue is inactive and nobody will
818 * try to jump onto it.
819 */
820 void inet_csk_destroy_sock(struct sock *sk)
821 {
822 WARN_ON(sk->sk_state != TCP_CLOSE);
823 WARN_ON(!sock_flag(sk, SOCK_DEAD));
824
825 /* It cannot be in hash table! */
826 WARN_ON(!sk_unhashed(sk));
827
828 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
829 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
830
831 sk->sk_prot->destroy(sk);
832
833 sk_stream_kill_queues(sk);
834
835 xfrm_sk_free_policy(sk);
836
837 sk_refcnt_debug_release(sk);
838
839 percpu_counter_dec(sk->sk_prot->orphan_count);
840
841 sock_put(sk);
842 }
843 EXPORT_SYMBOL(inet_csk_destroy_sock);
844
845 /* This function allows to force a closure of a socket after the call to
846 * tcp/dccp_create_openreq_child().
847 */
848 void inet_csk_prepare_forced_close(struct sock *sk)
849 __releases(&sk->sk_lock.slock)
850 {
851 /* sk_clone_lock locked the socket and set refcnt to 2 */
852 bh_unlock_sock(sk);
853 sock_put(sk);
854
855 /* The below has to be done to allow calling inet_csk_destroy_sock */
856 sock_set_flag(sk, SOCK_DEAD);
857 percpu_counter_inc(sk->sk_prot->orphan_count);
858 inet_sk(sk)->inet_num = 0;
859 }
860 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
861
862 int inet_csk_listen_start(struct sock *sk, int backlog)
863 {
864 struct inet_connection_sock *icsk = inet_csk(sk);
865 struct inet_sock *inet = inet_sk(sk);
866 int err = -EADDRINUSE;
867
868 reqsk_queue_alloc(&icsk->icsk_accept_queue);
869
870 sk->sk_max_ack_backlog = backlog;
871 sk->sk_ack_backlog = 0;
872 inet_csk_delack_init(sk);
873
874 /* There is race window here: we announce ourselves listening,
875 * but this transition is still not validated by get_port().
876 * It is OK, because this socket enters to hash table only
877 * after validation is complete.
878 */
879 sk_state_store(sk, TCP_LISTEN);
880 if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
881 inet->inet_sport = htons(inet->inet_num);
882
883 sk_dst_reset(sk);
884 err = sk->sk_prot->hash(sk);
885
886 if (likely(!err))
887 return 0;
888 }
889
890 sk->sk_state = TCP_CLOSE;
891 return err;
892 }
893 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
894
895 static void inet_child_forget(struct sock *sk, struct request_sock *req,
896 struct sock *child)
897 {
898 sk->sk_prot->disconnect(child, O_NONBLOCK);
899
900 sock_orphan(child);
901
902 percpu_counter_inc(sk->sk_prot->orphan_count);
903
904 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
905 BUG_ON(tcp_sk(child)->fastopen_rsk != req);
906 BUG_ON(sk != req->rsk_listener);
907
908 /* Paranoid, to prevent race condition if
909 * an inbound pkt destined for child is
910 * blocked by sock lock in tcp_v4_rcv().
911 * Also to satisfy an assertion in
912 * tcp_v4_destroy_sock().
913 */
914 tcp_sk(child)->fastopen_rsk = NULL;
915 }
916 inet_csk_destroy_sock(child);
917 reqsk_put(req);
918 }
919
920 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
921 struct request_sock *req,
922 struct sock *child)
923 {
924 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
925
926 spin_lock(&queue->rskq_lock);
927 if (unlikely(sk->sk_state != TCP_LISTEN)) {
928 inet_child_forget(sk, req, child);
929 child = NULL;
930 } else {
931 req->sk = child;
932 req->dl_next = NULL;
933 if (queue->rskq_accept_head == NULL)
934 queue->rskq_accept_head = req;
935 else
936 queue->rskq_accept_tail->dl_next = req;
937 queue->rskq_accept_tail = req;
938 sk_acceptq_added(sk);
939 }
940 spin_unlock(&queue->rskq_lock);
941 return child;
942 }
943 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
944
945 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
946 struct request_sock *req, bool own_req)
947 {
948 if (own_req) {
949 inet_csk_reqsk_queue_drop(sk, req);
950 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
951 if (inet_csk_reqsk_queue_add(sk, req, child))
952 return child;
953 }
954 /* Too bad, another child took ownership of the request, undo. */
955 bh_unlock_sock(child);
956 sock_put(child);
957 return NULL;
958 }
959 EXPORT_SYMBOL(inet_csk_complete_hashdance);
960
961 /*
962 * This routine closes sockets which have been at least partially
963 * opened, but not yet accepted.
964 */
965 void inet_csk_listen_stop(struct sock *sk)
966 {
967 struct inet_connection_sock *icsk = inet_csk(sk);
968 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
969 struct request_sock *next, *req;
970
971 /* Following specs, it would be better either to send FIN
972 * (and enter FIN-WAIT-1, it is normal close)
973 * or to send active reset (abort).
974 * Certainly, it is pretty dangerous while synflood, but it is
975 * bad justification for our negligence 8)
976 * To be honest, we are not able to make either
977 * of the variants now. --ANK
978 */
979 while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
980 struct sock *child = req->sk;
981
982 local_bh_disable();
983 bh_lock_sock(child);
984 WARN_ON(sock_owned_by_user(child));
985 sock_hold(child);
986
987 inet_child_forget(sk, req, child);
988 bh_unlock_sock(child);
989 local_bh_enable();
990 sock_put(child);
991
992 cond_resched();
993 }
994 if (queue->fastopenq.rskq_rst_head) {
995 /* Free all the reqs queued in rskq_rst_head. */
996 spin_lock_bh(&queue->fastopenq.lock);
997 req = queue->fastopenq.rskq_rst_head;
998 queue->fastopenq.rskq_rst_head = NULL;
999 spin_unlock_bh(&queue->fastopenq.lock);
1000 while (req != NULL) {
1001 next = req->dl_next;
1002 reqsk_put(req);
1003 req = next;
1004 }
1005 }
1006 WARN_ON_ONCE(sk->sk_ack_backlog);
1007 }
1008 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1009
1010 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1011 {
1012 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1013 const struct inet_sock *inet = inet_sk(sk);
1014
1015 sin->sin_family = AF_INET;
1016 sin->sin_addr.s_addr = inet->inet_daddr;
1017 sin->sin_port = inet->inet_dport;
1018 }
1019 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1020
1021 #ifdef CONFIG_COMPAT
1022 int inet_csk_compat_getsockopt(struct sock *sk, int level, int optname,
1023 char __user *optval, int __user *optlen)
1024 {
1025 const struct inet_connection_sock *icsk = inet_csk(sk);
1026
1027 if (icsk->icsk_af_ops->compat_getsockopt)
1028 return icsk->icsk_af_ops->compat_getsockopt(sk, level, optname,
1029 optval, optlen);
1030 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
1031 optval, optlen);
1032 }
1033 EXPORT_SYMBOL_GPL(inet_csk_compat_getsockopt);
1034
1035 int inet_csk_compat_setsockopt(struct sock *sk, int level, int optname,
1036 char __user *optval, unsigned int optlen)
1037 {
1038 const struct inet_connection_sock *icsk = inet_csk(sk);
1039
1040 if (icsk->icsk_af_ops->compat_setsockopt)
1041 return icsk->icsk_af_ops->compat_setsockopt(sk, level, optname,
1042 optval, optlen);
1043 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
1044 optval, optlen);
1045 }
1046 EXPORT_SYMBOL_GPL(inet_csk_compat_setsockopt);
1047 #endif
1048
1049 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1050 {
1051 const struct inet_sock *inet = inet_sk(sk);
1052 const struct ip_options_rcu *inet_opt;
1053 __be32 daddr = inet->inet_daddr;
1054 struct flowi4 *fl4;
1055 struct rtable *rt;
1056
1057 rcu_read_lock();
1058 inet_opt = rcu_dereference(inet->inet_opt);
1059 if (inet_opt && inet_opt->opt.srr)
1060 daddr = inet_opt->opt.faddr;
1061 fl4 = &fl->u.ip4;
1062 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1063 inet->inet_saddr, inet->inet_dport,
1064 inet->inet_sport, sk->sk_protocol,
1065 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1066 if (IS_ERR(rt))
1067 rt = NULL;
1068 if (rt)
1069 sk_setup_caps(sk, &rt->dst);
1070 rcu_read_unlock();
1071
1072 return &rt->dst;
1073 }
1074
1075 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1076 {
1077 struct dst_entry *dst = __sk_dst_check(sk, 0);
1078 struct inet_sock *inet = inet_sk(sk);
1079
1080 if (!dst) {
1081 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1082 if (!dst)
1083 goto out;
1084 }
1085 dst->ops->update_pmtu(dst, sk, NULL, mtu);
1086
1087 dst = __sk_dst_check(sk, 0);
1088 if (!dst)
1089 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1090 out:
1091 return dst;
1092 }
1093 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);