]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/inet_connection_sock.c
Merge branch 'x86/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / inet_connection_sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Support for INET connection oriented protocols.
7 *
8 * Authors: See the TCP sources
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or(at your option) any later version.
14 */
15
16 #include <linux/module.h>
17 #include <linux/jhash.h>
18
19 #include <net/inet_connection_sock.h>
20 #include <net/inet_hashtables.h>
21 #include <net/inet_timewait_sock.h>
22 #include <net/ip.h>
23 #include <net/route.h>
24 #include <net/tcp_states.h>
25 #include <net/xfrm.h>
26 #include <net/tcp.h>
27 #include <net/sock_reuseport.h>
28 #include <net/addrconf.h>
29
30 #ifdef INET_CSK_DEBUG
31 const char inet_csk_timer_bug_msg[] = "inet_csk BUG: unknown timer value\n";
32 EXPORT_SYMBOL(inet_csk_timer_bug_msg);
33 #endif
34
35 #if IS_ENABLED(CONFIG_IPV6)
36 /* match_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses if IPv6
37 * only, and any IPv4 addresses if not IPv6 only
38 * match_wildcard == false: addresses must be exactly the same, i.e.
39 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
40 * and 0.0.0.0 equals to 0.0.0.0 only
41 */
42 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
43 const struct in6_addr *sk2_rcv_saddr6,
44 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
45 bool sk1_ipv6only, bool sk2_ipv6only,
46 bool match_wildcard)
47 {
48 int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
49 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
50
51 /* if both are mapped, treat as IPv4 */
52 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
53 if (!sk2_ipv6only) {
54 if (sk1_rcv_saddr == sk2_rcv_saddr)
55 return true;
56 if (!sk1_rcv_saddr || !sk2_rcv_saddr)
57 return match_wildcard;
58 }
59 return false;
60 }
61
62 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
63 return true;
64
65 if (addr_type2 == IPV6_ADDR_ANY && match_wildcard &&
66 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
67 return true;
68
69 if (addr_type == IPV6_ADDR_ANY && match_wildcard &&
70 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
71 return true;
72
73 if (sk2_rcv_saddr6 &&
74 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
75 return true;
76
77 return false;
78 }
79 #endif
80
81 /* match_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
82 * match_wildcard == false: addresses must be exactly the same, i.e.
83 * 0.0.0.0 only equals to 0.0.0.0
84 */
85 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
86 bool sk2_ipv6only, bool match_wildcard)
87 {
88 if (!sk2_ipv6only) {
89 if (sk1_rcv_saddr == sk2_rcv_saddr)
90 return true;
91 if (!sk1_rcv_saddr || !sk2_rcv_saddr)
92 return match_wildcard;
93 }
94 return false;
95 }
96
97 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
98 bool match_wildcard)
99 {
100 #if IS_ENABLED(CONFIG_IPV6)
101 if (sk->sk_family == AF_INET6)
102 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
103 inet6_rcv_saddr(sk2),
104 sk->sk_rcv_saddr,
105 sk2->sk_rcv_saddr,
106 ipv6_only_sock(sk),
107 ipv6_only_sock(sk2),
108 match_wildcard);
109 #endif
110 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
111 ipv6_only_sock(sk2), match_wildcard);
112 }
113 EXPORT_SYMBOL(inet_rcv_saddr_equal);
114
115 void inet_get_local_port_range(struct net *net, int *low, int *high)
116 {
117 unsigned int seq;
118
119 do {
120 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
121
122 *low = net->ipv4.ip_local_ports.range[0];
123 *high = net->ipv4.ip_local_ports.range[1];
124 } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
125 }
126 EXPORT_SYMBOL(inet_get_local_port_range);
127
128 static int inet_csk_bind_conflict(const struct sock *sk,
129 const struct inet_bind_bucket *tb,
130 bool relax, bool reuseport_ok)
131 {
132 struct sock *sk2;
133 bool reuse = sk->sk_reuse;
134 bool reuseport = !!sk->sk_reuseport && reuseport_ok;
135 kuid_t uid = sock_i_uid((struct sock *)sk);
136
137 /*
138 * Unlike other sk lookup places we do not check
139 * for sk_net here, since _all_ the socks listed
140 * in tb->owners list belong to the same net - the
141 * one this bucket belongs to.
142 */
143
144 sk_for_each_bound(sk2, &tb->owners) {
145 if (sk != sk2 &&
146 (!sk->sk_bound_dev_if ||
147 !sk2->sk_bound_dev_if ||
148 sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) {
149 if ((!reuse || !sk2->sk_reuse ||
150 sk2->sk_state == TCP_LISTEN) &&
151 (!reuseport || !sk2->sk_reuseport ||
152 rcu_access_pointer(sk->sk_reuseport_cb) ||
153 (sk2->sk_state != TCP_TIME_WAIT &&
154 !uid_eq(uid, sock_i_uid(sk2))))) {
155 if (inet_rcv_saddr_equal(sk, sk2, true))
156 break;
157 }
158 if (!relax && reuse && sk2->sk_reuse &&
159 sk2->sk_state != TCP_LISTEN) {
160 if (inet_rcv_saddr_equal(sk, sk2, true))
161 break;
162 }
163 }
164 }
165 return sk2 != NULL;
166 }
167
168 /*
169 * Find an open port number for the socket. Returns with the
170 * inet_bind_hashbucket lock held.
171 */
172 static struct inet_bind_hashbucket *
173 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret)
174 {
175 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
176 int port = 0;
177 struct inet_bind_hashbucket *head;
178 struct net *net = sock_net(sk);
179 int i, low, high, attempt_half;
180 struct inet_bind_bucket *tb;
181 u32 remaining, offset;
182
183 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
184 other_half_scan:
185 inet_get_local_port_range(net, &low, &high);
186 high++; /* [32768, 60999] -> [32768, 61000[ */
187 if (high - low < 4)
188 attempt_half = 0;
189 if (attempt_half) {
190 int half = low + (((high - low) >> 2) << 1);
191
192 if (attempt_half == 1)
193 high = half;
194 else
195 low = half;
196 }
197 remaining = high - low;
198 if (likely(remaining > 1))
199 remaining &= ~1U;
200
201 offset = prandom_u32() % remaining;
202 /* __inet_hash_connect() favors ports having @low parity
203 * We do the opposite to not pollute connect() users.
204 */
205 offset |= 1U;
206
207 other_parity_scan:
208 port = low + offset;
209 for (i = 0; i < remaining; i += 2, port += 2) {
210 if (unlikely(port >= high))
211 port -= remaining;
212 if (inet_is_local_reserved_port(net, port))
213 continue;
214 head = &hinfo->bhash[inet_bhashfn(net, port,
215 hinfo->bhash_size)];
216 spin_lock_bh(&head->lock);
217 inet_bind_bucket_for_each(tb, &head->chain)
218 if (net_eq(ib_net(tb), net) && tb->port == port) {
219 if (!inet_csk_bind_conflict(sk, tb, false, false))
220 goto success;
221 goto next_port;
222 }
223 tb = NULL;
224 goto success;
225 next_port:
226 spin_unlock_bh(&head->lock);
227 cond_resched();
228 }
229
230 offset--;
231 if (!(offset & 1))
232 goto other_parity_scan;
233
234 if (attempt_half == 1) {
235 /* OK we now try the upper half of the range */
236 attempt_half = 2;
237 goto other_half_scan;
238 }
239 return NULL;
240 success:
241 *port_ret = port;
242 *tb_ret = tb;
243 return head;
244 }
245
246 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
247 struct sock *sk)
248 {
249 kuid_t uid = sock_i_uid(sk);
250
251 if (tb->fastreuseport <= 0)
252 return 0;
253 if (!sk->sk_reuseport)
254 return 0;
255 if (rcu_access_pointer(sk->sk_reuseport_cb))
256 return 0;
257 if (!uid_eq(tb->fastuid, uid))
258 return 0;
259 /* We only need to check the rcv_saddr if this tb was once marked
260 * without fastreuseport and then was reset, as we can only know that
261 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
262 * owners list.
263 */
264 if (tb->fastreuseport == FASTREUSEPORT_ANY)
265 return 1;
266 #if IS_ENABLED(CONFIG_IPV6)
267 if (tb->fast_sk_family == AF_INET6)
268 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
269 inet6_rcv_saddr(sk),
270 tb->fast_rcv_saddr,
271 sk->sk_rcv_saddr,
272 tb->fast_ipv6_only,
273 ipv6_only_sock(sk), true);
274 #endif
275 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
276 ipv6_only_sock(sk), true);
277 }
278
279 /* Obtain a reference to a local port for the given sock,
280 * if snum is zero it means select any available local port.
281 * We try to allocate an odd port (and leave even ports for connect())
282 */
283 int inet_csk_get_port(struct sock *sk, unsigned short snum)
284 {
285 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
286 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
287 int ret = 1, port = snum;
288 struct inet_bind_hashbucket *head;
289 struct net *net = sock_net(sk);
290 struct inet_bind_bucket *tb = NULL;
291 kuid_t uid = sock_i_uid(sk);
292
293 if (!port) {
294 head = inet_csk_find_open_port(sk, &tb, &port);
295 if (!head)
296 return ret;
297 if (!tb)
298 goto tb_not_found;
299 goto success;
300 }
301 head = &hinfo->bhash[inet_bhashfn(net, port,
302 hinfo->bhash_size)];
303 spin_lock_bh(&head->lock);
304 inet_bind_bucket_for_each(tb, &head->chain)
305 if (net_eq(ib_net(tb), net) && tb->port == port)
306 goto tb_found;
307 tb_not_found:
308 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep,
309 net, head, port);
310 if (!tb)
311 goto fail_unlock;
312 tb_found:
313 if (!hlist_empty(&tb->owners)) {
314 if (sk->sk_reuse == SK_FORCE_REUSE)
315 goto success;
316
317 if ((tb->fastreuse > 0 && reuse) ||
318 sk_reuseport_match(tb, sk))
319 goto success;
320 if (inet_csk_bind_conflict(sk, tb, true, true))
321 goto fail_unlock;
322 }
323 success:
324 if (hlist_empty(&tb->owners)) {
325 tb->fastreuse = reuse;
326 if (sk->sk_reuseport) {
327 tb->fastreuseport = FASTREUSEPORT_ANY;
328 tb->fastuid = uid;
329 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
330 tb->fast_ipv6_only = ipv6_only_sock(sk);
331 tb->fast_sk_family = sk->sk_family;
332 #if IS_ENABLED(CONFIG_IPV6)
333 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
334 #endif
335 } else {
336 tb->fastreuseport = 0;
337 }
338 } else {
339 if (!reuse)
340 tb->fastreuse = 0;
341 if (sk->sk_reuseport) {
342 /* We didn't match or we don't have fastreuseport set on
343 * the tb, but we have sk_reuseport set on this socket
344 * and we know that there are no bind conflicts with
345 * this socket in this tb, so reset our tb's reuseport
346 * settings so that any subsequent sockets that match
347 * our current socket will be put on the fast path.
348 *
349 * If we reset we need to set FASTREUSEPORT_STRICT so we
350 * do extra checking for all subsequent sk_reuseport
351 * socks.
352 */
353 if (!sk_reuseport_match(tb, sk)) {
354 tb->fastreuseport = FASTREUSEPORT_STRICT;
355 tb->fastuid = uid;
356 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
357 tb->fast_ipv6_only = ipv6_only_sock(sk);
358 tb->fast_sk_family = sk->sk_family;
359 #if IS_ENABLED(CONFIG_IPV6)
360 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
361 #endif
362 }
363 } else {
364 tb->fastreuseport = 0;
365 }
366 }
367 if (!inet_csk(sk)->icsk_bind_hash)
368 inet_bind_hash(sk, tb, port);
369 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
370 ret = 0;
371
372 fail_unlock:
373 spin_unlock_bh(&head->lock);
374 return ret;
375 }
376 EXPORT_SYMBOL_GPL(inet_csk_get_port);
377
378 /*
379 * Wait for an incoming connection, avoid race conditions. This must be called
380 * with the socket locked.
381 */
382 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
383 {
384 struct inet_connection_sock *icsk = inet_csk(sk);
385 DEFINE_WAIT(wait);
386 int err;
387
388 /*
389 * True wake-one mechanism for incoming connections: only
390 * one process gets woken up, not the 'whole herd'.
391 * Since we do not 'race & poll' for established sockets
392 * anymore, the common case will execute the loop only once.
393 *
394 * Subtle issue: "add_wait_queue_exclusive()" will be added
395 * after any current non-exclusive waiters, and we know that
396 * it will always _stay_ after any new non-exclusive waiters
397 * because all non-exclusive waiters are added at the
398 * beginning of the wait-queue. As such, it's ok to "drop"
399 * our exclusiveness temporarily when we get woken up without
400 * having to remove and re-insert us on the wait queue.
401 */
402 for (;;) {
403 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
404 TASK_INTERRUPTIBLE);
405 release_sock(sk);
406 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
407 timeo = schedule_timeout(timeo);
408 sched_annotate_sleep();
409 lock_sock(sk);
410 err = 0;
411 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
412 break;
413 err = -EINVAL;
414 if (sk->sk_state != TCP_LISTEN)
415 break;
416 err = sock_intr_errno(timeo);
417 if (signal_pending(current))
418 break;
419 err = -EAGAIN;
420 if (!timeo)
421 break;
422 }
423 finish_wait(sk_sleep(sk), &wait);
424 return err;
425 }
426
427 /*
428 * This will accept the next outstanding connection.
429 */
430 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
431 {
432 struct inet_connection_sock *icsk = inet_csk(sk);
433 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
434 struct request_sock *req;
435 struct sock *newsk;
436 int error;
437
438 lock_sock(sk);
439
440 /* We need to make sure that this socket is listening,
441 * and that it has something pending.
442 */
443 error = -EINVAL;
444 if (sk->sk_state != TCP_LISTEN)
445 goto out_err;
446
447 /* Find already established connection */
448 if (reqsk_queue_empty(queue)) {
449 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
450
451 /* If this is a non blocking socket don't sleep */
452 error = -EAGAIN;
453 if (!timeo)
454 goto out_err;
455
456 error = inet_csk_wait_for_connect(sk, timeo);
457 if (error)
458 goto out_err;
459 }
460 req = reqsk_queue_remove(queue, sk);
461 newsk = req->sk;
462
463 if (sk->sk_protocol == IPPROTO_TCP &&
464 tcp_rsk(req)->tfo_listener) {
465 spin_lock_bh(&queue->fastopenq.lock);
466 if (tcp_rsk(req)->tfo_listener) {
467 /* We are still waiting for the final ACK from 3WHS
468 * so can't free req now. Instead, we set req->sk to
469 * NULL to signify that the child socket is taken
470 * so reqsk_fastopen_remove() will free the req
471 * when 3WHS finishes (or is aborted).
472 */
473 req->sk = NULL;
474 req = NULL;
475 }
476 spin_unlock_bh(&queue->fastopenq.lock);
477 }
478 mem_cgroup_sk_alloc(newsk);
479 out:
480 release_sock(sk);
481 if (req)
482 reqsk_put(req);
483 return newsk;
484 out_err:
485 newsk = NULL;
486 req = NULL;
487 *err = error;
488 goto out;
489 }
490 EXPORT_SYMBOL(inet_csk_accept);
491
492 /*
493 * Using different timers for retransmit, delayed acks and probes
494 * We may wish use just one timer maintaining a list of expire jiffies
495 * to optimize.
496 */
497 void inet_csk_init_xmit_timers(struct sock *sk,
498 void (*retransmit_handler)(struct timer_list *t),
499 void (*delack_handler)(struct timer_list *t),
500 void (*keepalive_handler)(struct timer_list *t))
501 {
502 struct inet_connection_sock *icsk = inet_csk(sk);
503
504 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
505 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
506 timer_setup(&sk->sk_timer, keepalive_handler, 0);
507 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
508 }
509 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
510
511 void inet_csk_clear_xmit_timers(struct sock *sk)
512 {
513 struct inet_connection_sock *icsk = inet_csk(sk);
514
515 icsk->icsk_pending = icsk->icsk_ack.pending = icsk->icsk_ack.blocked = 0;
516
517 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
518 sk_stop_timer(sk, &icsk->icsk_delack_timer);
519 sk_stop_timer(sk, &sk->sk_timer);
520 }
521 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
522
523 void inet_csk_delete_keepalive_timer(struct sock *sk)
524 {
525 sk_stop_timer(sk, &sk->sk_timer);
526 }
527 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
528
529 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
530 {
531 sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
532 }
533 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
534
535 struct dst_entry *inet_csk_route_req(const struct sock *sk,
536 struct flowi4 *fl4,
537 const struct request_sock *req)
538 {
539 const struct inet_request_sock *ireq = inet_rsk(req);
540 struct net *net = read_pnet(&ireq->ireq_net);
541 struct ip_options_rcu *opt;
542 struct rtable *rt;
543
544 opt = ireq_opt_deref(ireq);
545
546 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
547 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
548 sk->sk_protocol, inet_sk_flowi_flags(sk),
549 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
550 ireq->ir_loc_addr, ireq->ir_rmt_port,
551 htons(ireq->ir_num), sk->sk_uid);
552 security_req_classify_flow(req, flowi4_to_flowi(fl4));
553 rt = ip_route_output_flow(net, fl4, sk);
554 if (IS_ERR(rt))
555 goto no_route;
556 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
557 goto route_err;
558 return &rt->dst;
559
560 route_err:
561 ip_rt_put(rt);
562 no_route:
563 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
564 return NULL;
565 }
566 EXPORT_SYMBOL_GPL(inet_csk_route_req);
567
568 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
569 struct sock *newsk,
570 const struct request_sock *req)
571 {
572 const struct inet_request_sock *ireq = inet_rsk(req);
573 struct net *net = read_pnet(&ireq->ireq_net);
574 struct inet_sock *newinet = inet_sk(newsk);
575 struct ip_options_rcu *opt;
576 struct flowi4 *fl4;
577 struct rtable *rt;
578
579 opt = rcu_dereference(ireq->ireq_opt);
580 fl4 = &newinet->cork.fl.u.ip4;
581
582 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
583 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
584 sk->sk_protocol, inet_sk_flowi_flags(sk),
585 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
586 ireq->ir_loc_addr, ireq->ir_rmt_port,
587 htons(ireq->ir_num), sk->sk_uid);
588 security_req_classify_flow(req, flowi4_to_flowi(fl4));
589 rt = ip_route_output_flow(net, fl4, sk);
590 if (IS_ERR(rt))
591 goto no_route;
592 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
593 goto route_err;
594 return &rt->dst;
595
596 route_err:
597 ip_rt_put(rt);
598 no_route:
599 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
600 return NULL;
601 }
602 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
603
604 #if IS_ENABLED(CONFIG_IPV6)
605 #define AF_INET_FAMILY(fam) ((fam) == AF_INET)
606 #else
607 #define AF_INET_FAMILY(fam) true
608 #endif
609
610 /* Decide when to expire the request and when to resend SYN-ACK */
611 static inline void syn_ack_recalc(struct request_sock *req, const int thresh,
612 const int max_retries,
613 const u8 rskq_defer_accept,
614 int *expire, int *resend)
615 {
616 if (!rskq_defer_accept) {
617 *expire = req->num_timeout >= thresh;
618 *resend = 1;
619 return;
620 }
621 *expire = req->num_timeout >= thresh &&
622 (!inet_rsk(req)->acked || req->num_timeout >= max_retries);
623 /*
624 * Do not resend while waiting for data after ACK,
625 * start to resend on end of deferring period to give
626 * last chance for data or ACK to create established socket.
627 */
628 *resend = !inet_rsk(req)->acked ||
629 req->num_timeout >= rskq_defer_accept - 1;
630 }
631
632 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
633 {
634 int err = req->rsk_ops->rtx_syn_ack(parent, req);
635
636 if (!err)
637 req->num_retrans++;
638 return err;
639 }
640 EXPORT_SYMBOL(inet_rtx_syn_ack);
641
642 /* return true if req was found in the ehash table */
643 static bool reqsk_queue_unlink(struct request_sock_queue *queue,
644 struct request_sock *req)
645 {
646 struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
647 bool found = false;
648
649 if (sk_hashed(req_to_sk(req))) {
650 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
651
652 spin_lock(lock);
653 found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
654 spin_unlock(lock);
655 }
656 if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
657 reqsk_put(req);
658 return found;
659 }
660
661 void inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
662 {
663 if (reqsk_queue_unlink(&inet_csk(sk)->icsk_accept_queue, req)) {
664 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
665 reqsk_put(req);
666 }
667 }
668 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
669
670 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
671 {
672 inet_csk_reqsk_queue_drop(sk, req);
673 reqsk_put(req);
674 }
675 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
676
677 static void reqsk_timer_handler(struct timer_list *t)
678 {
679 struct request_sock *req = from_timer(req, t, rsk_timer);
680 struct sock *sk_listener = req->rsk_listener;
681 struct net *net = sock_net(sk_listener);
682 struct inet_connection_sock *icsk = inet_csk(sk_listener);
683 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
684 int qlen, expire = 0, resend = 0;
685 int max_retries, thresh;
686 u8 defer_accept;
687
688 if (sk_state_load(sk_listener) != TCP_LISTEN)
689 goto drop;
690
691 max_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries;
692 thresh = max_retries;
693 /* Normally all the openreqs are young and become mature
694 * (i.e. converted to established socket) for first timeout.
695 * If synack was not acknowledged for 1 second, it means
696 * one of the following things: synack was lost, ack was lost,
697 * rtt is high or nobody planned to ack (i.e. synflood).
698 * When server is a bit loaded, queue is populated with old
699 * open requests, reducing effective size of queue.
700 * When server is well loaded, queue size reduces to zero
701 * after several minutes of work. It is not synflood,
702 * it is normal operation. The solution is pruning
703 * too old entries overriding normal timeout, when
704 * situation becomes dangerous.
705 *
706 * Essentially, we reserve half of room for young
707 * embrions; and abort old ones without pity, if old
708 * ones are about to clog our table.
709 */
710 qlen = reqsk_queue_len(queue);
711 if ((qlen << 1) > max(8U, sk_listener->sk_max_ack_backlog)) {
712 int young = reqsk_queue_len_young(queue) << 1;
713
714 while (thresh > 2) {
715 if (qlen < young)
716 break;
717 thresh--;
718 young <<= 1;
719 }
720 }
721 defer_accept = READ_ONCE(queue->rskq_defer_accept);
722 if (defer_accept)
723 max_retries = defer_accept;
724 syn_ack_recalc(req, thresh, max_retries, defer_accept,
725 &expire, &resend);
726 req->rsk_ops->syn_ack_timeout(req);
727 if (!expire &&
728 (!resend ||
729 !inet_rtx_syn_ack(sk_listener, req) ||
730 inet_rsk(req)->acked)) {
731 unsigned long timeo;
732
733 if (req->num_timeout++ == 0)
734 atomic_dec(&queue->young);
735 timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX);
736 mod_timer(&req->rsk_timer, jiffies + timeo);
737 return;
738 }
739 drop:
740 inet_csk_reqsk_queue_drop_and_put(sk_listener, req);
741 }
742
743 static void reqsk_queue_hash_req(struct request_sock *req,
744 unsigned long timeout)
745 {
746 req->num_retrans = 0;
747 req->num_timeout = 0;
748 req->sk = NULL;
749
750 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
751 mod_timer(&req->rsk_timer, jiffies + timeout);
752
753 inet_ehash_insert(req_to_sk(req), NULL);
754 /* before letting lookups find us, make sure all req fields
755 * are committed to memory and refcnt initialized.
756 */
757 smp_wmb();
758 refcount_set(&req->rsk_refcnt, 2 + 1);
759 }
760
761 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
762 unsigned long timeout)
763 {
764 reqsk_queue_hash_req(req, timeout);
765 inet_csk_reqsk_queue_added(sk);
766 }
767 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
768
769 /**
770 * inet_csk_clone_lock - clone an inet socket, and lock its clone
771 * @sk: the socket to clone
772 * @req: request_sock
773 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
774 *
775 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
776 */
777 struct sock *inet_csk_clone_lock(const struct sock *sk,
778 const struct request_sock *req,
779 const gfp_t priority)
780 {
781 struct sock *newsk = sk_clone_lock(sk, priority);
782
783 if (newsk) {
784 struct inet_connection_sock *newicsk = inet_csk(newsk);
785
786 newsk->sk_state = TCP_SYN_RECV;
787 newicsk->icsk_bind_hash = NULL;
788
789 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
790 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
791 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
792
793 /* listeners have SOCK_RCU_FREE, not the children */
794 sock_reset_flag(newsk, SOCK_RCU_FREE);
795
796 inet_sk(newsk)->mc_list = NULL;
797
798 newsk->sk_mark = inet_rsk(req)->ir_mark;
799 atomic64_set(&newsk->sk_cookie,
800 atomic64_read(&inet_rsk(req)->ir_cookie));
801
802 newicsk->icsk_retransmits = 0;
803 newicsk->icsk_backoff = 0;
804 newicsk->icsk_probes_out = 0;
805
806 /* Deinitialize accept_queue to trap illegal accesses. */
807 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
808
809 security_inet_csk_clone(newsk, req);
810 }
811 return newsk;
812 }
813 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
814
815 /*
816 * At this point, there should be no process reference to this
817 * socket, and thus no user references at all. Therefore we
818 * can assume the socket waitqueue is inactive and nobody will
819 * try to jump onto it.
820 */
821 void inet_csk_destroy_sock(struct sock *sk)
822 {
823 WARN_ON(sk->sk_state != TCP_CLOSE);
824 WARN_ON(!sock_flag(sk, SOCK_DEAD));
825
826 /* It cannot be in hash table! */
827 WARN_ON(!sk_unhashed(sk));
828
829 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
830 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
831
832 sk->sk_prot->destroy(sk);
833
834 sk_stream_kill_queues(sk);
835
836 xfrm_sk_free_policy(sk);
837
838 sk_refcnt_debug_release(sk);
839
840 percpu_counter_dec(sk->sk_prot->orphan_count);
841
842 sock_put(sk);
843 }
844 EXPORT_SYMBOL(inet_csk_destroy_sock);
845
846 /* This function allows to force a closure of a socket after the call to
847 * tcp/dccp_create_openreq_child().
848 */
849 void inet_csk_prepare_forced_close(struct sock *sk)
850 __releases(&sk->sk_lock.slock)
851 {
852 /* sk_clone_lock locked the socket and set refcnt to 2 */
853 bh_unlock_sock(sk);
854 sock_put(sk);
855
856 /* The below has to be done to allow calling inet_csk_destroy_sock */
857 sock_set_flag(sk, SOCK_DEAD);
858 percpu_counter_inc(sk->sk_prot->orphan_count);
859 inet_sk(sk)->inet_num = 0;
860 }
861 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
862
863 int inet_csk_listen_start(struct sock *sk, int backlog)
864 {
865 struct inet_connection_sock *icsk = inet_csk(sk);
866 struct inet_sock *inet = inet_sk(sk);
867 int err = -EADDRINUSE;
868
869 reqsk_queue_alloc(&icsk->icsk_accept_queue);
870
871 sk->sk_max_ack_backlog = backlog;
872 sk->sk_ack_backlog = 0;
873 inet_csk_delack_init(sk);
874
875 /* There is race window here: we announce ourselves listening,
876 * but this transition is still not validated by get_port().
877 * It is OK, because this socket enters to hash table only
878 * after validation is complete.
879 */
880 sk_state_store(sk, TCP_LISTEN);
881 if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
882 inet->inet_sport = htons(inet->inet_num);
883
884 sk_dst_reset(sk);
885 err = sk->sk_prot->hash(sk);
886
887 if (likely(!err))
888 return 0;
889 }
890
891 sk->sk_state = TCP_CLOSE;
892 return err;
893 }
894 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
895
896 static void inet_child_forget(struct sock *sk, struct request_sock *req,
897 struct sock *child)
898 {
899 sk->sk_prot->disconnect(child, O_NONBLOCK);
900
901 sock_orphan(child);
902
903 percpu_counter_inc(sk->sk_prot->orphan_count);
904
905 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
906 BUG_ON(tcp_sk(child)->fastopen_rsk != req);
907 BUG_ON(sk != req->rsk_listener);
908
909 /* Paranoid, to prevent race condition if
910 * an inbound pkt destined for child is
911 * blocked by sock lock in tcp_v4_rcv().
912 * Also to satisfy an assertion in
913 * tcp_v4_destroy_sock().
914 */
915 tcp_sk(child)->fastopen_rsk = NULL;
916 }
917 inet_csk_destroy_sock(child);
918 }
919
920 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
921 struct request_sock *req,
922 struct sock *child)
923 {
924 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
925
926 spin_lock(&queue->rskq_lock);
927 if (unlikely(sk->sk_state != TCP_LISTEN)) {
928 inet_child_forget(sk, req, child);
929 child = NULL;
930 } else {
931 req->sk = child;
932 req->dl_next = NULL;
933 if (queue->rskq_accept_head == NULL)
934 queue->rskq_accept_head = req;
935 else
936 queue->rskq_accept_tail->dl_next = req;
937 queue->rskq_accept_tail = req;
938 sk_acceptq_added(sk);
939 }
940 spin_unlock(&queue->rskq_lock);
941 return child;
942 }
943 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
944
945 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
946 struct request_sock *req, bool own_req)
947 {
948 if (own_req) {
949 inet_csk_reqsk_queue_drop(sk, req);
950 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
951 if (inet_csk_reqsk_queue_add(sk, req, child))
952 return child;
953 }
954 /* Too bad, another child took ownership of the request, undo. */
955 bh_unlock_sock(child);
956 sock_put(child);
957 return NULL;
958 }
959 EXPORT_SYMBOL(inet_csk_complete_hashdance);
960
961 /*
962 * This routine closes sockets which have been at least partially
963 * opened, but not yet accepted.
964 */
965 void inet_csk_listen_stop(struct sock *sk)
966 {
967 struct inet_connection_sock *icsk = inet_csk(sk);
968 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
969 struct request_sock *next, *req;
970
971 /* Following specs, it would be better either to send FIN
972 * (and enter FIN-WAIT-1, it is normal close)
973 * or to send active reset (abort).
974 * Certainly, it is pretty dangerous while synflood, but it is
975 * bad justification for our negligence 8)
976 * To be honest, we are not able to make either
977 * of the variants now. --ANK
978 */
979 while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
980 struct sock *child = req->sk;
981
982 local_bh_disable();
983 bh_lock_sock(child);
984 WARN_ON(sock_owned_by_user(child));
985 sock_hold(child);
986
987 inet_child_forget(sk, req, child);
988 reqsk_put(req);
989 bh_unlock_sock(child);
990 local_bh_enable();
991 sock_put(child);
992
993 cond_resched();
994 }
995 if (queue->fastopenq.rskq_rst_head) {
996 /* Free all the reqs queued in rskq_rst_head. */
997 spin_lock_bh(&queue->fastopenq.lock);
998 req = queue->fastopenq.rskq_rst_head;
999 queue->fastopenq.rskq_rst_head = NULL;
1000 spin_unlock_bh(&queue->fastopenq.lock);
1001 while (req != NULL) {
1002 next = req->dl_next;
1003 reqsk_put(req);
1004 req = next;
1005 }
1006 }
1007 WARN_ON_ONCE(sk->sk_ack_backlog);
1008 }
1009 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1010
1011 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1012 {
1013 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1014 const struct inet_sock *inet = inet_sk(sk);
1015
1016 sin->sin_family = AF_INET;
1017 sin->sin_addr.s_addr = inet->inet_daddr;
1018 sin->sin_port = inet->inet_dport;
1019 }
1020 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1021
1022 #ifdef CONFIG_COMPAT
1023 int inet_csk_compat_getsockopt(struct sock *sk, int level, int optname,
1024 char __user *optval, int __user *optlen)
1025 {
1026 const struct inet_connection_sock *icsk = inet_csk(sk);
1027
1028 if (icsk->icsk_af_ops->compat_getsockopt)
1029 return icsk->icsk_af_ops->compat_getsockopt(sk, level, optname,
1030 optval, optlen);
1031 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
1032 optval, optlen);
1033 }
1034 EXPORT_SYMBOL_GPL(inet_csk_compat_getsockopt);
1035
1036 int inet_csk_compat_setsockopt(struct sock *sk, int level, int optname,
1037 char __user *optval, unsigned int optlen)
1038 {
1039 const struct inet_connection_sock *icsk = inet_csk(sk);
1040
1041 if (icsk->icsk_af_ops->compat_setsockopt)
1042 return icsk->icsk_af_ops->compat_setsockopt(sk, level, optname,
1043 optval, optlen);
1044 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
1045 optval, optlen);
1046 }
1047 EXPORT_SYMBOL_GPL(inet_csk_compat_setsockopt);
1048 #endif
1049
1050 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1051 {
1052 const struct inet_sock *inet = inet_sk(sk);
1053 const struct ip_options_rcu *inet_opt;
1054 __be32 daddr = inet->inet_daddr;
1055 struct flowi4 *fl4;
1056 struct rtable *rt;
1057
1058 rcu_read_lock();
1059 inet_opt = rcu_dereference(inet->inet_opt);
1060 if (inet_opt && inet_opt->opt.srr)
1061 daddr = inet_opt->opt.faddr;
1062 fl4 = &fl->u.ip4;
1063 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1064 inet->inet_saddr, inet->inet_dport,
1065 inet->inet_sport, sk->sk_protocol,
1066 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1067 if (IS_ERR(rt))
1068 rt = NULL;
1069 if (rt)
1070 sk_setup_caps(sk, &rt->dst);
1071 rcu_read_unlock();
1072
1073 return &rt->dst;
1074 }
1075
1076 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1077 {
1078 struct dst_entry *dst = __sk_dst_check(sk, 0);
1079 struct inet_sock *inet = inet_sk(sk);
1080
1081 if (!dst) {
1082 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1083 if (!dst)
1084 goto out;
1085 }
1086 dst->ops->update_pmtu(dst, sk, NULL, mtu);
1087
1088 dst = __sk_dst_check(sk, 0);
1089 if (!dst)
1090 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1091 out:
1092 return dst;
1093 }
1094 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);