]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/ipv4/ip_fragment.c
Merge tag 'backlight-for-linus-4.2' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / ip_fragment.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The IP fragmentation functionality.
7 *
8 * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
9 * Alan Cox <alan@lxorguk.ukuu.org.uk>
10 *
11 * Fixes:
12 * Alan Cox : Split from ip.c , see ip_input.c for history.
13 * David S. Miller : Begin massive cleanup...
14 * Andi Kleen : Add sysctls.
15 * xxxx : Overlapfrag bug.
16 * Ultima : ip_expire() kernel panic.
17 * Bill Hawes : Frag accounting and evictor fixes.
18 * John McDonald : 0 length frag bug.
19 * Alexey Kuznetsov: SMP races, threading, cleanup.
20 * Patrick McHardy : LRU queue of frag heads for evictor.
21 */
22
23 #define pr_fmt(fmt) "IPv4: " fmt
24
25 #include <linux/compiler.h>
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/mm.h>
29 #include <linux/jiffies.h>
30 #include <linux/skbuff.h>
31 #include <linux/list.h>
32 #include <linux/ip.h>
33 #include <linux/icmp.h>
34 #include <linux/netdevice.h>
35 #include <linux/jhash.h>
36 #include <linux/random.h>
37 #include <linux/slab.h>
38 #include <net/route.h>
39 #include <net/dst.h>
40 #include <net/sock.h>
41 #include <net/ip.h>
42 #include <net/icmp.h>
43 #include <net/checksum.h>
44 #include <net/inetpeer.h>
45 #include <net/inet_frag.h>
46 #include <linux/tcp.h>
47 #include <linux/udp.h>
48 #include <linux/inet.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <net/inet_ecn.h>
51
52 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
53 * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
54 * as well. Or notify me, at least. --ANK
55 */
56
57 static int sysctl_ipfrag_max_dist __read_mostly = 64;
58 static const char ip_frag_cache_name[] = "ip4-frags";
59
60 struct ipfrag_skb_cb
61 {
62 struct inet_skb_parm h;
63 int offset;
64 };
65
66 #define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb))
67
68 /* Describe an entry in the "incomplete datagrams" queue. */
69 struct ipq {
70 struct inet_frag_queue q;
71
72 u32 user;
73 __be32 saddr;
74 __be32 daddr;
75 __be16 id;
76 u8 protocol;
77 u8 ecn; /* RFC3168 support */
78 u16 max_df_size; /* largest frag with DF set seen */
79 int iif;
80 unsigned int rid;
81 struct inet_peer *peer;
82 };
83
84 static u8 ip4_frag_ecn(u8 tos)
85 {
86 return 1 << (tos & INET_ECN_MASK);
87 }
88
89 static struct inet_frags ip4_frags;
90
91 int ip_frag_mem(struct net *net)
92 {
93 return sum_frag_mem_limit(&net->ipv4.frags);
94 }
95
96 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
97 struct net_device *dev);
98
99 struct ip4_create_arg {
100 struct iphdr *iph;
101 u32 user;
102 };
103
104 static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot)
105 {
106 net_get_random_once(&ip4_frags.rnd, sizeof(ip4_frags.rnd));
107 return jhash_3words((__force u32)id << 16 | prot,
108 (__force u32)saddr, (__force u32)daddr,
109 ip4_frags.rnd);
110 }
111
112 static unsigned int ip4_hashfn(const struct inet_frag_queue *q)
113 {
114 const struct ipq *ipq;
115
116 ipq = container_of(q, struct ipq, q);
117 return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol);
118 }
119
120 static bool ip4_frag_match(const struct inet_frag_queue *q, const void *a)
121 {
122 const struct ipq *qp;
123 const struct ip4_create_arg *arg = a;
124
125 qp = container_of(q, struct ipq, q);
126 return qp->id == arg->iph->id &&
127 qp->saddr == arg->iph->saddr &&
128 qp->daddr == arg->iph->daddr &&
129 qp->protocol == arg->iph->protocol &&
130 qp->user == arg->user;
131 }
132
133 static void ip4_frag_init(struct inet_frag_queue *q, const void *a)
134 {
135 struct ipq *qp = container_of(q, struct ipq, q);
136 struct netns_ipv4 *ipv4 = container_of(q->net, struct netns_ipv4,
137 frags);
138 struct net *net = container_of(ipv4, struct net, ipv4);
139
140 const struct ip4_create_arg *arg = a;
141
142 qp->protocol = arg->iph->protocol;
143 qp->id = arg->iph->id;
144 qp->ecn = ip4_frag_ecn(arg->iph->tos);
145 qp->saddr = arg->iph->saddr;
146 qp->daddr = arg->iph->daddr;
147 qp->user = arg->user;
148 qp->peer = sysctl_ipfrag_max_dist ?
149 inet_getpeer_v4(net->ipv4.peers, arg->iph->saddr, 1) : NULL;
150 }
151
152 static void ip4_frag_free(struct inet_frag_queue *q)
153 {
154 struct ipq *qp;
155
156 qp = container_of(q, struct ipq, q);
157 if (qp->peer)
158 inet_putpeer(qp->peer);
159 }
160
161
162 /* Destruction primitives. */
163
164 static void ipq_put(struct ipq *ipq)
165 {
166 inet_frag_put(&ipq->q, &ip4_frags);
167 }
168
169 /* Kill ipq entry. It is not destroyed immediately,
170 * because caller (and someone more) holds reference count.
171 */
172 static void ipq_kill(struct ipq *ipq)
173 {
174 inet_frag_kill(&ipq->q, &ip4_frags);
175 }
176
177 static bool frag_expire_skip_icmp(u32 user)
178 {
179 return user == IP_DEFRAG_AF_PACKET ||
180 ip_defrag_user_in_between(user, IP_DEFRAG_CONNTRACK_IN,
181 __IP_DEFRAG_CONNTRACK_IN_END) ||
182 ip_defrag_user_in_between(user, IP_DEFRAG_CONNTRACK_BRIDGE_IN,
183 __IP_DEFRAG_CONNTRACK_BRIDGE_IN);
184 }
185
186 /*
187 * Oops, a fragment queue timed out. Kill it and send an ICMP reply.
188 */
189 static void ip_expire(unsigned long arg)
190 {
191 struct ipq *qp;
192 struct net *net;
193
194 qp = container_of((struct inet_frag_queue *) arg, struct ipq, q);
195 net = container_of(qp->q.net, struct net, ipv4.frags);
196
197 spin_lock(&qp->q.lock);
198
199 if (qp->q.flags & INET_FRAG_COMPLETE)
200 goto out;
201
202 ipq_kill(qp);
203 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
204
205 if (!(qp->q.flags & INET_FRAG_EVICTED)) {
206 struct sk_buff *head = qp->q.fragments;
207 const struct iphdr *iph;
208 int err;
209
210 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMTIMEOUT);
211
212 if (!(qp->q.flags & INET_FRAG_FIRST_IN) || !qp->q.fragments)
213 goto out;
214
215 rcu_read_lock();
216 head->dev = dev_get_by_index_rcu(net, qp->iif);
217 if (!head->dev)
218 goto out_rcu_unlock;
219
220 /* skb has no dst, perform route lookup again */
221 iph = ip_hdr(head);
222 err = ip_route_input_noref(head, iph->daddr, iph->saddr,
223 iph->tos, head->dev);
224 if (err)
225 goto out_rcu_unlock;
226
227 /* Only an end host needs to send an ICMP
228 * "Fragment Reassembly Timeout" message, per RFC792.
229 */
230 if (frag_expire_skip_icmp(qp->user) &&
231 (skb_rtable(head)->rt_type != RTN_LOCAL))
232 goto out_rcu_unlock;
233
234 /* Send an ICMP "Fragment Reassembly Timeout" message. */
235 icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
236 out_rcu_unlock:
237 rcu_read_unlock();
238 }
239 out:
240 spin_unlock(&qp->q.lock);
241 ipq_put(qp);
242 }
243
244 /* Find the correct entry in the "incomplete datagrams" queue for
245 * this IP datagram, and create new one, if nothing is found.
246 */
247 static struct ipq *ip_find(struct net *net, struct iphdr *iph, u32 user)
248 {
249 struct inet_frag_queue *q;
250 struct ip4_create_arg arg;
251 unsigned int hash;
252
253 arg.iph = iph;
254 arg.user = user;
255
256 hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol);
257
258 q = inet_frag_find(&net->ipv4.frags, &ip4_frags, &arg, hash);
259 if (IS_ERR_OR_NULL(q)) {
260 inet_frag_maybe_warn_overflow(q, pr_fmt());
261 return NULL;
262 }
263 return container_of(q, struct ipq, q);
264 }
265
266 /* Is the fragment too far ahead to be part of ipq? */
267 static int ip_frag_too_far(struct ipq *qp)
268 {
269 struct inet_peer *peer = qp->peer;
270 unsigned int max = sysctl_ipfrag_max_dist;
271 unsigned int start, end;
272
273 int rc;
274
275 if (!peer || !max)
276 return 0;
277
278 start = qp->rid;
279 end = atomic_inc_return(&peer->rid);
280 qp->rid = end;
281
282 rc = qp->q.fragments && (end - start) > max;
283
284 if (rc) {
285 struct net *net;
286
287 net = container_of(qp->q.net, struct net, ipv4.frags);
288 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
289 }
290
291 return rc;
292 }
293
294 static int ip_frag_reinit(struct ipq *qp)
295 {
296 struct sk_buff *fp;
297 unsigned int sum_truesize = 0;
298
299 if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) {
300 atomic_inc(&qp->q.refcnt);
301 return -ETIMEDOUT;
302 }
303
304 fp = qp->q.fragments;
305 do {
306 struct sk_buff *xp = fp->next;
307
308 sum_truesize += fp->truesize;
309 kfree_skb(fp);
310 fp = xp;
311 } while (fp);
312 sub_frag_mem_limit(&qp->q, sum_truesize);
313
314 qp->q.flags = 0;
315 qp->q.len = 0;
316 qp->q.meat = 0;
317 qp->q.fragments = NULL;
318 qp->q.fragments_tail = NULL;
319 qp->iif = 0;
320 qp->ecn = 0;
321
322 return 0;
323 }
324
325 /* Add new segment to existing queue. */
326 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
327 {
328 struct sk_buff *prev, *next;
329 struct net_device *dev;
330 unsigned int fragsize;
331 int flags, offset;
332 int ihl, end;
333 int err = -ENOENT;
334 u8 ecn;
335
336 if (qp->q.flags & INET_FRAG_COMPLETE)
337 goto err;
338
339 if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
340 unlikely(ip_frag_too_far(qp)) &&
341 unlikely(err = ip_frag_reinit(qp))) {
342 ipq_kill(qp);
343 goto err;
344 }
345
346 ecn = ip4_frag_ecn(ip_hdr(skb)->tos);
347 offset = ntohs(ip_hdr(skb)->frag_off);
348 flags = offset & ~IP_OFFSET;
349 offset &= IP_OFFSET;
350 offset <<= 3; /* offset is in 8-byte chunks */
351 ihl = ip_hdrlen(skb);
352
353 /* Determine the position of this fragment. */
354 end = offset + skb->len - ihl;
355 err = -EINVAL;
356
357 /* Is this the final fragment? */
358 if ((flags & IP_MF) == 0) {
359 /* If we already have some bits beyond end
360 * or have different end, the segment is corrupted.
361 */
362 if (end < qp->q.len ||
363 ((qp->q.flags & INET_FRAG_LAST_IN) && end != qp->q.len))
364 goto err;
365 qp->q.flags |= INET_FRAG_LAST_IN;
366 qp->q.len = end;
367 } else {
368 if (end&7) {
369 end &= ~7;
370 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
371 skb->ip_summed = CHECKSUM_NONE;
372 }
373 if (end > qp->q.len) {
374 /* Some bits beyond end -> corruption. */
375 if (qp->q.flags & INET_FRAG_LAST_IN)
376 goto err;
377 qp->q.len = end;
378 }
379 }
380 if (end == offset)
381 goto err;
382
383 err = -ENOMEM;
384 if (!pskb_pull(skb, ihl))
385 goto err;
386
387 err = pskb_trim_rcsum(skb, end - offset);
388 if (err)
389 goto err;
390
391 /* Find out which fragments are in front and at the back of us
392 * in the chain of fragments so far. We must know where to put
393 * this fragment, right?
394 */
395 prev = qp->q.fragments_tail;
396 if (!prev || FRAG_CB(prev)->offset < offset) {
397 next = NULL;
398 goto found;
399 }
400 prev = NULL;
401 for (next = qp->q.fragments; next != NULL; next = next->next) {
402 if (FRAG_CB(next)->offset >= offset)
403 break; /* bingo! */
404 prev = next;
405 }
406
407 found:
408 /* We found where to put this one. Check for overlap with
409 * preceding fragment, and, if needed, align things so that
410 * any overlaps are eliminated.
411 */
412 if (prev) {
413 int i = (FRAG_CB(prev)->offset + prev->len) - offset;
414
415 if (i > 0) {
416 offset += i;
417 err = -EINVAL;
418 if (end <= offset)
419 goto err;
420 err = -ENOMEM;
421 if (!pskb_pull(skb, i))
422 goto err;
423 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
424 skb->ip_summed = CHECKSUM_NONE;
425 }
426 }
427
428 err = -ENOMEM;
429
430 while (next && FRAG_CB(next)->offset < end) {
431 int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */
432
433 if (i < next->len) {
434 /* Eat head of the next overlapped fragment
435 * and leave the loop. The next ones cannot overlap.
436 */
437 if (!pskb_pull(next, i))
438 goto err;
439 FRAG_CB(next)->offset += i;
440 qp->q.meat -= i;
441 if (next->ip_summed != CHECKSUM_UNNECESSARY)
442 next->ip_summed = CHECKSUM_NONE;
443 break;
444 } else {
445 struct sk_buff *free_it = next;
446
447 /* Old fragment is completely overridden with
448 * new one drop it.
449 */
450 next = next->next;
451
452 if (prev)
453 prev->next = next;
454 else
455 qp->q.fragments = next;
456
457 qp->q.meat -= free_it->len;
458 sub_frag_mem_limit(&qp->q, free_it->truesize);
459 kfree_skb(free_it);
460 }
461 }
462
463 FRAG_CB(skb)->offset = offset;
464
465 /* Insert this fragment in the chain of fragments. */
466 skb->next = next;
467 if (!next)
468 qp->q.fragments_tail = skb;
469 if (prev)
470 prev->next = skb;
471 else
472 qp->q.fragments = skb;
473
474 dev = skb->dev;
475 if (dev) {
476 qp->iif = dev->ifindex;
477 skb->dev = NULL;
478 }
479 qp->q.stamp = skb->tstamp;
480 qp->q.meat += skb->len;
481 qp->ecn |= ecn;
482 add_frag_mem_limit(&qp->q, skb->truesize);
483 if (offset == 0)
484 qp->q.flags |= INET_FRAG_FIRST_IN;
485
486 fragsize = skb->len + ihl;
487
488 if (fragsize > qp->q.max_size)
489 qp->q.max_size = fragsize;
490
491 if (ip_hdr(skb)->frag_off & htons(IP_DF) &&
492 fragsize > qp->max_df_size)
493 qp->max_df_size = fragsize;
494
495 if (qp->q.flags == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
496 qp->q.meat == qp->q.len) {
497 unsigned long orefdst = skb->_skb_refdst;
498
499 skb->_skb_refdst = 0UL;
500 err = ip_frag_reasm(qp, prev, dev);
501 skb->_skb_refdst = orefdst;
502 return err;
503 }
504
505 skb_dst_drop(skb);
506 return -EINPROGRESS;
507
508 err:
509 kfree_skb(skb);
510 return err;
511 }
512
513
514 /* Build a new IP datagram from all its fragments. */
515
516 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
517 struct net_device *dev)
518 {
519 struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
520 struct iphdr *iph;
521 struct sk_buff *fp, *head = qp->q.fragments;
522 int len;
523 int ihlen;
524 int err;
525 int sum_truesize;
526 u8 ecn;
527
528 ipq_kill(qp);
529
530 ecn = ip_frag_ecn_table[qp->ecn];
531 if (unlikely(ecn == 0xff)) {
532 err = -EINVAL;
533 goto out_fail;
534 }
535 /* Make the one we just received the head. */
536 if (prev) {
537 head = prev->next;
538 fp = skb_clone(head, GFP_ATOMIC);
539 if (!fp)
540 goto out_nomem;
541
542 fp->next = head->next;
543 if (!fp->next)
544 qp->q.fragments_tail = fp;
545 prev->next = fp;
546
547 skb_morph(head, qp->q.fragments);
548 head->next = qp->q.fragments->next;
549
550 consume_skb(qp->q.fragments);
551 qp->q.fragments = head;
552 }
553
554 WARN_ON(!head);
555 WARN_ON(FRAG_CB(head)->offset != 0);
556
557 /* Allocate a new buffer for the datagram. */
558 ihlen = ip_hdrlen(head);
559 len = ihlen + qp->q.len;
560
561 err = -E2BIG;
562 if (len > 65535)
563 goto out_oversize;
564
565 /* Head of list must not be cloned. */
566 if (skb_unclone(head, GFP_ATOMIC))
567 goto out_nomem;
568
569 /* If the first fragment is fragmented itself, we split
570 * it to two chunks: the first with data and paged part
571 * and the second, holding only fragments. */
572 if (skb_has_frag_list(head)) {
573 struct sk_buff *clone;
574 int i, plen = 0;
575
576 clone = alloc_skb(0, GFP_ATOMIC);
577 if (!clone)
578 goto out_nomem;
579 clone->next = head->next;
580 head->next = clone;
581 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
582 skb_frag_list_init(head);
583 for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
584 plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
585 clone->len = clone->data_len = head->data_len - plen;
586 head->data_len -= clone->len;
587 head->len -= clone->len;
588 clone->csum = 0;
589 clone->ip_summed = head->ip_summed;
590 add_frag_mem_limit(&qp->q, clone->truesize);
591 }
592
593 skb_push(head, head->data - skb_network_header(head));
594
595 sum_truesize = head->truesize;
596 for (fp = head->next; fp;) {
597 bool headstolen;
598 int delta;
599 struct sk_buff *next = fp->next;
600
601 sum_truesize += fp->truesize;
602 if (head->ip_summed != fp->ip_summed)
603 head->ip_summed = CHECKSUM_NONE;
604 else if (head->ip_summed == CHECKSUM_COMPLETE)
605 head->csum = csum_add(head->csum, fp->csum);
606
607 if (skb_try_coalesce(head, fp, &headstolen, &delta)) {
608 kfree_skb_partial(fp, headstolen);
609 } else {
610 if (!skb_shinfo(head)->frag_list)
611 skb_shinfo(head)->frag_list = fp;
612 head->data_len += fp->len;
613 head->len += fp->len;
614 head->truesize += fp->truesize;
615 }
616 fp = next;
617 }
618 sub_frag_mem_limit(&qp->q, sum_truesize);
619
620 head->next = NULL;
621 head->dev = dev;
622 head->tstamp = qp->q.stamp;
623 IPCB(head)->frag_max_size = max(qp->max_df_size, qp->q.max_size);
624
625 iph = ip_hdr(head);
626 iph->tot_len = htons(len);
627 iph->tos |= ecn;
628
629 /* When we set IP_DF on a refragmented skb we must also force a
630 * call to ip_fragment to avoid forwarding a DF-skb of size s while
631 * original sender only sent fragments of size f (where f < s).
632 *
633 * We only set DF/IPSKB_FRAG_PMTU if such DF fragment was the largest
634 * frag seen to avoid sending tiny DF-fragments in case skb was built
635 * from one very small df-fragment and one large non-df frag.
636 */
637 if (qp->max_df_size == qp->q.max_size) {
638 IPCB(head)->flags |= IPSKB_FRAG_PMTU;
639 iph->frag_off = htons(IP_DF);
640 } else {
641 iph->frag_off = 0;
642 }
643
644 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMOKS);
645 qp->q.fragments = NULL;
646 qp->q.fragments_tail = NULL;
647 return 0;
648
649 out_nomem:
650 net_dbg_ratelimited("queue_glue: no memory for gluing queue %p\n", qp);
651 err = -ENOMEM;
652 goto out_fail;
653 out_oversize:
654 net_info_ratelimited("Oversized IP packet from %pI4\n", &qp->saddr);
655 out_fail:
656 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
657 return err;
658 }
659
660 /* Process an incoming IP datagram fragment. */
661 int ip_defrag(struct sk_buff *skb, u32 user)
662 {
663 struct ipq *qp;
664 struct net *net;
665
666 net = skb->dev ? dev_net(skb->dev) : dev_net(skb_dst(skb)->dev);
667 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMREQDS);
668
669 /* Lookup (or create) queue header */
670 qp = ip_find(net, ip_hdr(skb), user);
671 if (qp) {
672 int ret;
673
674 spin_lock(&qp->q.lock);
675
676 ret = ip_frag_queue(qp, skb);
677
678 spin_unlock(&qp->q.lock);
679 ipq_put(qp);
680 return ret;
681 }
682
683 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
684 kfree_skb(skb);
685 return -ENOMEM;
686 }
687 EXPORT_SYMBOL(ip_defrag);
688
689 struct sk_buff *ip_check_defrag(struct sk_buff *skb, u32 user)
690 {
691 struct iphdr iph;
692 int netoff;
693 u32 len;
694
695 if (skb->protocol != htons(ETH_P_IP))
696 return skb;
697
698 netoff = skb_network_offset(skb);
699
700 if (skb_copy_bits(skb, netoff, &iph, sizeof(iph)) < 0)
701 return skb;
702
703 if (iph.ihl < 5 || iph.version != 4)
704 return skb;
705
706 len = ntohs(iph.tot_len);
707 if (skb->len < netoff + len || len < (iph.ihl * 4))
708 return skb;
709
710 if (ip_is_fragment(&iph)) {
711 skb = skb_share_check(skb, GFP_ATOMIC);
712 if (skb) {
713 if (!pskb_may_pull(skb, netoff + iph.ihl * 4))
714 return skb;
715 if (pskb_trim_rcsum(skb, netoff + len))
716 return skb;
717 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
718 if (ip_defrag(skb, user))
719 return NULL;
720 skb_clear_hash(skb);
721 }
722 }
723 return skb;
724 }
725 EXPORT_SYMBOL(ip_check_defrag);
726
727 #ifdef CONFIG_SYSCTL
728 static int zero;
729
730 static struct ctl_table ip4_frags_ns_ctl_table[] = {
731 {
732 .procname = "ipfrag_high_thresh",
733 .data = &init_net.ipv4.frags.high_thresh,
734 .maxlen = sizeof(int),
735 .mode = 0644,
736 .proc_handler = proc_dointvec_minmax,
737 .extra1 = &init_net.ipv4.frags.low_thresh
738 },
739 {
740 .procname = "ipfrag_low_thresh",
741 .data = &init_net.ipv4.frags.low_thresh,
742 .maxlen = sizeof(int),
743 .mode = 0644,
744 .proc_handler = proc_dointvec_minmax,
745 .extra1 = &zero,
746 .extra2 = &init_net.ipv4.frags.high_thresh
747 },
748 {
749 .procname = "ipfrag_time",
750 .data = &init_net.ipv4.frags.timeout,
751 .maxlen = sizeof(int),
752 .mode = 0644,
753 .proc_handler = proc_dointvec_jiffies,
754 },
755 { }
756 };
757
758 /* secret interval has been deprecated */
759 static int ip4_frags_secret_interval_unused;
760 static struct ctl_table ip4_frags_ctl_table[] = {
761 {
762 .procname = "ipfrag_secret_interval",
763 .data = &ip4_frags_secret_interval_unused,
764 .maxlen = sizeof(int),
765 .mode = 0644,
766 .proc_handler = proc_dointvec_jiffies,
767 },
768 {
769 .procname = "ipfrag_max_dist",
770 .data = &sysctl_ipfrag_max_dist,
771 .maxlen = sizeof(int),
772 .mode = 0644,
773 .proc_handler = proc_dointvec_minmax,
774 .extra1 = &zero
775 },
776 { }
777 };
778
779 static int __net_init ip4_frags_ns_ctl_register(struct net *net)
780 {
781 struct ctl_table *table;
782 struct ctl_table_header *hdr;
783
784 table = ip4_frags_ns_ctl_table;
785 if (!net_eq(net, &init_net)) {
786 table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL);
787 if (!table)
788 goto err_alloc;
789
790 table[0].data = &net->ipv4.frags.high_thresh;
791 table[0].extra1 = &net->ipv4.frags.low_thresh;
792 table[0].extra2 = &init_net.ipv4.frags.high_thresh;
793 table[1].data = &net->ipv4.frags.low_thresh;
794 table[1].extra2 = &net->ipv4.frags.high_thresh;
795 table[2].data = &net->ipv4.frags.timeout;
796
797 /* Don't export sysctls to unprivileged users */
798 if (net->user_ns != &init_user_ns)
799 table[0].procname = NULL;
800 }
801
802 hdr = register_net_sysctl(net, "net/ipv4", table);
803 if (!hdr)
804 goto err_reg;
805
806 net->ipv4.frags_hdr = hdr;
807 return 0;
808
809 err_reg:
810 if (!net_eq(net, &init_net))
811 kfree(table);
812 err_alloc:
813 return -ENOMEM;
814 }
815
816 static void __net_exit ip4_frags_ns_ctl_unregister(struct net *net)
817 {
818 struct ctl_table *table;
819
820 table = net->ipv4.frags_hdr->ctl_table_arg;
821 unregister_net_sysctl_table(net->ipv4.frags_hdr);
822 kfree(table);
823 }
824
825 static void __init ip4_frags_ctl_register(void)
826 {
827 register_net_sysctl(&init_net, "net/ipv4", ip4_frags_ctl_table);
828 }
829 #else
830 static int ip4_frags_ns_ctl_register(struct net *net)
831 {
832 return 0;
833 }
834
835 static void ip4_frags_ns_ctl_unregister(struct net *net)
836 {
837 }
838
839 static void __init ip4_frags_ctl_register(void)
840 {
841 }
842 #endif
843
844 static int __net_init ipv4_frags_init_net(struct net *net)
845 {
846 /* Fragment cache limits.
847 *
848 * The fragment memory accounting code, (tries to) account for
849 * the real memory usage, by measuring both the size of frag
850 * queue struct (inet_frag_queue (ipv4:ipq/ipv6:frag_queue))
851 * and the SKB's truesize.
852 *
853 * A 64K fragment consumes 129736 bytes (44*2944)+200
854 * (1500 truesize == 2944, sizeof(struct ipq) == 200)
855 *
856 * We will commit 4MB at one time. Should we cross that limit
857 * we will prune down to 3MB, making room for approx 8 big 64K
858 * fragments 8x128k.
859 */
860 net->ipv4.frags.high_thresh = 4 * 1024 * 1024;
861 net->ipv4.frags.low_thresh = 3 * 1024 * 1024;
862 /*
863 * Important NOTE! Fragment queue must be destroyed before MSL expires.
864 * RFC791 is wrong proposing to prolongate timer each fragment arrival
865 * by TTL.
866 */
867 net->ipv4.frags.timeout = IP_FRAG_TIME;
868
869 inet_frags_init_net(&net->ipv4.frags);
870
871 return ip4_frags_ns_ctl_register(net);
872 }
873
874 static void __net_exit ipv4_frags_exit_net(struct net *net)
875 {
876 ip4_frags_ns_ctl_unregister(net);
877 inet_frags_exit_net(&net->ipv4.frags, &ip4_frags);
878 }
879
880 static struct pernet_operations ip4_frags_ops = {
881 .init = ipv4_frags_init_net,
882 .exit = ipv4_frags_exit_net,
883 };
884
885 void __init ipfrag_init(void)
886 {
887 ip4_frags_ctl_register();
888 register_pernet_subsys(&ip4_frags_ops);
889 ip4_frags.hashfn = ip4_hashfn;
890 ip4_frags.constructor = ip4_frag_init;
891 ip4_frags.destructor = ip4_frag_free;
892 ip4_frags.skb_free = NULL;
893 ip4_frags.qsize = sizeof(struct ipq);
894 ip4_frags.match = ip4_frag_match;
895 ip4_frags.frag_expire = ip_expire;
896 ip4_frags.frags_cache_name = ip_frag_cache_name;
897 if (inet_frags_init(&ip4_frags))
898 panic("IP: failed to allocate ip4_frags cache\n");
899 }