]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/ip_fragment.c
Merge branch 'kvm-updates/2.6.34' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / ip_fragment.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The IP fragmentation functionality.
7 *
8 * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
9 * Alan Cox <alan@lxorguk.ukuu.org.uk>
10 *
11 * Fixes:
12 * Alan Cox : Split from ip.c , see ip_input.c for history.
13 * David S. Miller : Begin massive cleanup...
14 * Andi Kleen : Add sysctls.
15 * xxxx : Overlapfrag bug.
16 * Ultima : ip_expire() kernel panic.
17 * Bill Hawes : Frag accounting and evictor fixes.
18 * John McDonald : 0 length frag bug.
19 * Alexey Kuznetsov: SMP races, threading, cleanup.
20 * Patrick McHardy : LRU queue of frag heads for evictor.
21 */
22
23 #include <linux/compiler.h>
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/jiffies.h>
28 #include <linux/skbuff.h>
29 #include <linux/list.h>
30 #include <linux/ip.h>
31 #include <linux/icmp.h>
32 #include <linux/netdevice.h>
33 #include <linux/jhash.h>
34 #include <linux/random.h>
35 #include <net/route.h>
36 #include <net/dst.h>
37 #include <net/sock.h>
38 #include <net/ip.h>
39 #include <net/icmp.h>
40 #include <net/checksum.h>
41 #include <net/inetpeer.h>
42 #include <net/inet_frag.h>
43 #include <linux/tcp.h>
44 #include <linux/udp.h>
45 #include <linux/inet.h>
46 #include <linux/netfilter_ipv4.h>
47
48 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
49 * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
50 * as well. Or notify me, at least. --ANK
51 */
52
53 static int sysctl_ipfrag_max_dist __read_mostly = 64;
54
55 struct ipfrag_skb_cb
56 {
57 struct inet_skb_parm h;
58 int offset;
59 };
60
61 #define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb))
62
63 /* Describe an entry in the "incomplete datagrams" queue. */
64 struct ipq {
65 struct inet_frag_queue q;
66
67 u32 user;
68 __be32 saddr;
69 __be32 daddr;
70 __be16 id;
71 u8 protocol;
72 int iif;
73 unsigned int rid;
74 struct inet_peer *peer;
75 };
76
77 static struct inet_frags ip4_frags;
78
79 int ip_frag_nqueues(struct net *net)
80 {
81 return net->ipv4.frags.nqueues;
82 }
83
84 int ip_frag_mem(struct net *net)
85 {
86 return atomic_read(&net->ipv4.frags.mem);
87 }
88
89 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
90 struct net_device *dev);
91
92 struct ip4_create_arg {
93 struct iphdr *iph;
94 u32 user;
95 };
96
97 static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot)
98 {
99 return jhash_3words((__force u32)id << 16 | prot,
100 (__force u32)saddr, (__force u32)daddr,
101 ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1);
102 }
103
104 static unsigned int ip4_hashfn(struct inet_frag_queue *q)
105 {
106 struct ipq *ipq;
107
108 ipq = container_of(q, struct ipq, q);
109 return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol);
110 }
111
112 static int ip4_frag_match(struct inet_frag_queue *q, void *a)
113 {
114 struct ipq *qp;
115 struct ip4_create_arg *arg = a;
116
117 qp = container_of(q, struct ipq, q);
118 return (qp->id == arg->iph->id &&
119 qp->saddr == arg->iph->saddr &&
120 qp->daddr == arg->iph->daddr &&
121 qp->protocol == arg->iph->protocol &&
122 qp->user == arg->user);
123 }
124
125 /* Memory Tracking Functions. */
126 static __inline__ void frag_kfree_skb(struct netns_frags *nf,
127 struct sk_buff *skb, int *work)
128 {
129 if (work)
130 *work -= skb->truesize;
131 atomic_sub(skb->truesize, &nf->mem);
132 kfree_skb(skb);
133 }
134
135 static void ip4_frag_init(struct inet_frag_queue *q, void *a)
136 {
137 struct ipq *qp = container_of(q, struct ipq, q);
138 struct ip4_create_arg *arg = a;
139
140 qp->protocol = arg->iph->protocol;
141 qp->id = arg->iph->id;
142 qp->saddr = arg->iph->saddr;
143 qp->daddr = arg->iph->daddr;
144 qp->user = arg->user;
145 qp->peer = sysctl_ipfrag_max_dist ?
146 inet_getpeer(arg->iph->saddr, 1) : NULL;
147 }
148
149 static __inline__ void ip4_frag_free(struct inet_frag_queue *q)
150 {
151 struct ipq *qp;
152
153 qp = container_of(q, struct ipq, q);
154 if (qp->peer)
155 inet_putpeer(qp->peer);
156 }
157
158
159 /* Destruction primitives. */
160
161 static __inline__ void ipq_put(struct ipq *ipq)
162 {
163 inet_frag_put(&ipq->q, &ip4_frags);
164 }
165
166 /* Kill ipq entry. It is not destroyed immediately,
167 * because caller (and someone more) holds reference count.
168 */
169 static void ipq_kill(struct ipq *ipq)
170 {
171 inet_frag_kill(&ipq->q, &ip4_frags);
172 }
173
174 /* Memory limiting on fragments. Evictor trashes the oldest
175 * fragment queue until we are back under the threshold.
176 */
177 static void ip_evictor(struct net *net)
178 {
179 int evicted;
180
181 evicted = inet_frag_evictor(&net->ipv4.frags, &ip4_frags);
182 if (evicted)
183 IP_ADD_STATS_BH(net, IPSTATS_MIB_REASMFAILS, evicted);
184 }
185
186 /*
187 * Oops, a fragment queue timed out. Kill it and send an ICMP reply.
188 */
189 static void ip_expire(unsigned long arg)
190 {
191 struct ipq *qp;
192 struct net *net;
193
194 qp = container_of((struct inet_frag_queue *) arg, struct ipq, q);
195 net = container_of(qp->q.net, struct net, ipv4.frags);
196
197 spin_lock(&qp->q.lock);
198
199 if (qp->q.last_in & INET_FRAG_COMPLETE)
200 goto out;
201
202 ipq_kill(qp);
203
204 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMTIMEOUT);
205 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
206
207 if ((qp->q.last_in & INET_FRAG_FIRST_IN) && qp->q.fragments != NULL) {
208 struct sk_buff *head = qp->q.fragments;
209
210 rcu_read_lock();
211 head->dev = dev_get_by_index_rcu(net, qp->iif);
212 if (!head->dev)
213 goto out_rcu_unlock;
214
215 /*
216 * Only search router table for the head fragment,
217 * when defraging timeout at PRE_ROUTING HOOK.
218 */
219 if (qp->user == IP_DEFRAG_CONNTRACK_IN && !skb_dst(head)) {
220 const struct iphdr *iph = ip_hdr(head);
221 int err = ip_route_input(head, iph->daddr, iph->saddr,
222 iph->tos, head->dev);
223 if (unlikely(err))
224 goto out_rcu_unlock;
225
226 /*
227 * Only an end host needs to send an ICMP
228 * "Fragment Reassembly Timeout" message, per RFC792.
229 */
230 if (skb_rtable(head)->rt_type != RTN_LOCAL)
231 goto out_rcu_unlock;
232
233 }
234
235 /* Send an ICMP "Fragment Reassembly Timeout" message. */
236 icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
237 out_rcu_unlock:
238 rcu_read_unlock();
239 }
240 out:
241 spin_unlock(&qp->q.lock);
242 ipq_put(qp);
243 }
244
245 /* Find the correct entry in the "incomplete datagrams" queue for
246 * this IP datagram, and create new one, if nothing is found.
247 */
248 static inline struct ipq *ip_find(struct net *net, struct iphdr *iph, u32 user)
249 {
250 struct inet_frag_queue *q;
251 struct ip4_create_arg arg;
252 unsigned int hash;
253
254 arg.iph = iph;
255 arg.user = user;
256
257 read_lock(&ip4_frags.lock);
258 hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol);
259
260 q = inet_frag_find(&net->ipv4.frags, &ip4_frags, &arg, hash);
261 if (q == NULL)
262 goto out_nomem;
263
264 return container_of(q, struct ipq, q);
265
266 out_nomem:
267 LIMIT_NETDEBUG(KERN_ERR "ip_frag_create: no memory left !\n");
268 return NULL;
269 }
270
271 /* Is the fragment too far ahead to be part of ipq? */
272 static inline int ip_frag_too_far(struct ipq *qp)
273 {
274 struct inet_peer *peer = qp->peer;
275 unsigned int max = sysctl_ipfrag_max_dist;
276 unsigned int start, end;
277
278 int rc;
279
280 if (!peer || !max)
281 return 0;
282
283 start = qp->rid;
284 end = atomic_inc_return(&peer->rid);
285 qp->rid = end;
286
287 rc = qp->q.fragments && (end - start) > max;
288
289 if (rc) {
290 struct net *net;
291
292 net = container_of(qp->q.net, struct net, ipv4.frags);
293 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
294 }
295
296 return rc;
297 }
298
299 static int ip_frag_reinit(struct ipq *qp)
300 {
301 struct sk_buff *fp;
302
303 if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) {
304 atomic_inc(&qp->q.refcnt);
305 return -ETIMEDOUT;
306 }
307
308 fp = qp->q.fragments;
309 do {
310 struct sk_buff *xp = fp->next;
311 frag_kfree_skb(qp->q.net, fp, NULL);
312 fp = xp;
313 } while (fp);
314
315 qp->q.last_in = 0;
316 qp->q.len = 0;
317 qp->q.meat = 0;
318 qp->q.fragments = NULL;
319 qp->iif = 0;
320
321 return 0;
322 }
323
324 /* Add new segment to existing queue. */
325 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
326 {
327 struct sk_buff *prev, *next;
328 struct net_device *dev;
329 int flags, offset;
330 int ihl, end;
331 int err = -ENOENT;
332
333 if (qp->q.last_in & INET_FRAG_COMPLETE)
334 goto err;
335
336 if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
337 unlikely(ip_frag_too_far(qp)) &&
338 unlikely(err = ip_frag_reinit(qp))) {
339 ipq_kill(qp);
340 goto err;
341 }
342
343 offset = ntohs(ip_hdr(skb)->frag_off);
344 flags = offset & ~IP_OFFSET;
345 offset &= IP_OFFSET;
346 offset <<= 3; /* offset is in 8-byte chunks */
347 ihl = ip_hdrlen(skb);
348
349 /* Determine the position of this fragment. */
350 end = offset + skb->len - ihl;
351 err = -EINVAL;
352
353 /* Is this the final fragment? */
354 if ((flags & IP_MF) == 0) {
355 /* If we already have some bits beyond end
356 * or have different end, the segment is corrrupted.
357 */
358 if (end < qp->q.len ||
359 ((qp->q.last_in & INET_FRAG_LAST_IN) && end != qp->q.len))
360 goto err;
361 qp->q.last_in |= INET_FRAG_LAST_IN;
362 qp->q.len = end;
363 } else {
364 if (end&7) {
365 end &= ~7;
366 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
367 skb->ip_summed = CHECKSUM_NONE;
368 }
369 if (end > qp->q.len) {
370 /* Some bits beyond end -> corruption. */
371 if (qp->q.last_in & INET_FRAG_LAST_IN)
372 goto err;
373 qp->q.len = end;
374 }
375 }
376 if (end == offset)
377 goto err;
378
379 err = -ENOMEM;
380 if (pskb_pull(skb, ihl) == NULL)
381 goto err;
382
383 err = pskb_trim_rcsum(skb, end - offset);
384 if (err)
385 goto err;
386
387 /* Find out which fragments are in front and at the back of us
388 * in the chain of fragments so far. We must know where to put
389 * this fragment, right?
390 */
391 prev = NULL;
392 for (next = qp->q.fragments; next != NULL; next = next->next) {
393 if (FRAG_CB(next)->offset >= offset)
394 break; /* bingo! */
395 prev = next;
396 }
397
398 /* We found where to put this one. Check for overlap with
399 * preceding fragment, and, if needed, align things so that
400 * any overlaps are eliminated.
401 */
402 if (prev) {
403 int i = (FRAG_CB(prev)->offset + prev->len) - offset;
404
405 if (i > 0) {
406 offset += i;
407 err = -EINVAL;
408 if (end <= offset)
409 goto err;
410 err = -ENOMEM;
411 if (!pskb_pull(skb, i))
412 goto err;
413 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
414 skb->ip_summed = CHECKSUM_NONE;
415 }
416 }
417
418 err = -ENOMEM;
419
420 while (next && FRAG_CB(next)->offset < end) {
421 int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */
422
423 if (i < next->len) {
424 /* Eat head of the next overlapped fragment
425 * and leave the loop. The next ones cannot overlap.
426 */
427 if (!pskb_pull(next, i))
428 goto err;
429 FRAG_CB(next)->offset += i;
430 qp->q.meat -= i;
431 if (next->ip_summed != CHECKSUM_UNNECESSARY)
432 next->ip_summed = CHECKSUM_NONE;
433 break;
434 } else {
435 struct sk_buff *free_it = next;
436
437 /* Old fragment is completely overridden with
438 * new one drop it.
439 */
440 next = next->next;
441
442 if (prev)
443 prev->next = next;
444 else
445 qp->q.fragments = next;
446
447 qp->q.meat -= free_it->len;
448 frag_kfree_skb(qp->q.net, free_it, NULL);
449 }
450 }
451
452 FRAG_CB(skb)->offset = offset;
453
454 /* Insert this fragment in the chain of fragments. */
455 skb->next = next;
456 if (prev)
457 prev->next = skb;
458 else
459 qp->q.fragments = skb;
460
461 dev = skb->dev;
462 if (dev) {
463 qp->iif = dev->ifindex;
464 skb->dev = NULL;
465 }
466 qp->q.stamp = skb->tstamp;
467 qp->q.meat += skb->len;
468 atomic_add(skb->truesize, &qp->q.net->mem);
469 if (offset == 0)
470 qp->q.last_in |= INET_FRAG_FIRST_IN;
471
472 if (qp->q.last_in == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
473 qp->q.meat == qp->q.len)
474 return ip_frag_reasm(qp, prev, dev);
475
476 write_lock(&ip4_frags.lock);
477 list_move_tail(&qp->q.lru_list, &qp->q.net->lru_list);
478 write_unlock(&ip4_frags.lock);
479 return -EINPROGRESS;
480
481 err:
482 kfree_skb(skb);
483 return err;
484 }
485
486
487 /* Build a new IP datagram from all its fragments. */
488
489 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
490 struct net_device *dev)
491 {
492 struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
493 struct iphdr *iph;
494 struct sk_buff *fp, *head = qp->q.fragments;
495 int len;
496 int ihlen;
497 int err;
498
499 ipq_kill(qp);
500
501 /* Make the one we just received the head. */
502 if (prev) {
503 head = prev->next;
504 fp = skb_clone(head, GFP_ATOMIC);
505 if (!fp)
506 goto out_nomem;
507
508 fp->next = head->next;
509 prev->next = fp;
510
511 skb_morph(head, qp->q.fragments);
512 head->next = qp->q.fragments->next;
513
514 kfree_skb(qp->q.fragments);
515 qp->q.fragments = head;
516 }
517
518 WARN_ON(head == NULL);
519 WARN_ON(FRAG_CB(head)->offset != 0);
520
521 /* Allocate a new buffer for the datagram. */
522 ihlen = ip_hdrlen(head);
523 len = ihlen + qp->q.len;
524
525 err = -E2BIG;
526 if (len > 65535)
527 goto out_oversize;
528
529 /* Head of list must not be cloned. */
530 if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC))
531 goto out_nomem;
532
533 /* If the first fragment is fragmented itself, we split
534 * it to two chunks: the first with data and paged part
535 * and the second, holding only fragments. */
536 if (skb_has_frags(head)) {
537 struct sk_buff *clone;
538 int i, plen = 0;
539
540 if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
541 goto out_nomem;
542 clone->next = head->next;
543 head->next = clone;
544 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
545 skb_frag_list_init(head);
546 for (i=0; i<skb_shinfo(head)->nr_frags; i++)
547 plen += skb_shinfo(head)->frags[i].size;
548 clone->len = clone->data_len = head->data_len - plen;
549 head->data_len -= clone->len;
550 head->len -= clone->len;
551 clone->csum = 0;
552 clone->ip_summed = head->ip_summed;
553 atomic_add(clone->truesize, &qp->q.net->mem);
554 }
555
556 skb_shinfo(head)->frag_list = head->next;
557 skb_push(head, head->data - skb_network_header(head));
558 atomic_sub(head->truesize, &qp->q.net->mem);
559
560 for (fp=head->next; fp; fp = fp->next) {
561 head->data_len += fp->len;
562 head->len += fp->len;
563 if (head->ip_summed != fp->ip_summed)
564 head->ip_summed = CHECKSUM_NONE;
565 else if (head->ip_summed == CHECKSUM_COMPLETE)
566 head->csum = csum_add(head->csum, fp->csum);
567 head->truesize += fp->truesize;
568 atomic_sub(fp->truesize, &qp->q.net->mem);
569 }
570
571 head->next = NULL;
572 head->dev = dev;
573 head->tstamp = qp->q.stamp;
574
575 iph = ip_hdr(head);
576 iph->frag_off = 0;
577 iph->tot_len = htons(len);
578 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMOKS);
579 qp->q.fragments = NULL;
580 return 0;
581
582 out_nomem:
583 LIMIT_NETDEBUG(KERN_ERR "IP: queue_glue: no memory for gluing "
584 "queue %p\n", qp);
585 err = -ENOMEM;
586 goto out_fail;
587 out_oversize:
588 if (net_ratelimit())
589 printk(KERN_INFO "Oversized IP packet from %pI4.\n",
590 &qp->saddr);
591 out_fail:
592 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
593 return err;
594 }
595
596 /* Process an incoming IP datagram fragment. */
597 int ip_defrag(struct sk_buff *skb, u32 user)
598 {
599 struct ipq *qp;
600 struct net *net;
601
602 net = skb->dev ? dev_net(skb->dev) : dev_net(skb_dst(skb)->dev);
603 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMREQDS);
604
605 /* Start by cleaning up the memory. */
606 if (atomic_read(&net->ipv4.frags.mem) > net->ipv4.frags.high_thresh)
607 ip_evictor(net);
608
609 /* Lookup (or create) queue header */
610 if ((qp = ip_find(net, ip_hdr(skb), user)) != NULL) {
611 int ret;
612
613 spin_lock(&qp->q.lock);
614
615 ret = ip_frag_queue(qp, skb);
616
617 spin_unlock(&qp->q.lock);
618 ipq_put(qp);
619 return ret;
620 }
621
622 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
623 kfree_skb(skb);
624 return -ENOMEM;
625 }
626
627 #ifdef CONFIG_SYSCTL
628 static int zero;
629
630 static struct ctl_table ip4_frags_ns_ctl_table[] = {
631 {
632 .procname = "ipfrag_high_thresh",
633 .data = &init_net.ipv4.frags.high_thresh,
634 .maxlen = sizeof(int),
635 .mode = 0644,
636 .proc_handler = proc_dointvec
637 },
638 {
639 .procname = "ipfrag_low_thresh",
640 .data = &init_net.ipv4.frags.low_thresh,
641 .maxlen = sizeof(int),
642 .mode = 0644,
643 .proc_handler = proc_dointvec
644 },
645 {
646 .procname = "ipfrag_time",
647 .data = &init_net.ipv4.frags.timeout,
648 .maxlen = sizeof(int),
649 .mode = 0644,
650 .proc_handler = proc_dointvec_jiffies,
651 },
652 { }
653 };
654
655 static struct ctl_table ip4_frags_ctl_table[] = {
656 {
657 .procname = "ipfrag_secret_interval",
658 .data = &ip4_frags.secret_interval,
659 .maxlen = sizeof(int),
660 .mode = 0644,
661 .proc_handler = proc_dointvec_jiffies,
662 },
663 {
664 .procname = "ipfrag_max_dist",
665 .data = &sysctl_ipfrag_max_dist,
666 .maxlen = sizeof(int),
667 .mode = 0644,
668 .proc_handler = proc_dointvec_minmax,
669 .extra1 = &zero
670 },
671 { }
672 };
673
674 static int __net_init ip4_frags_ns_ctl_register(struct net *net)
675 {
676 struct ctl_table *table;
677 struct ctl_table_header *hdr;
678
679 table = ip4_frags_ns_ctl_table;
680 if (!net_eq(net, &init_net)) {
681 table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL);
682 if (table == NULL)
683 goto err_alloc;
684
685 table[0].data = &net->ipv4.frags.high_thresh;
686 table[1].data = &net->ipv4.frags.low_thresh;
687 table[2].data = &net->ipv4.frags.timeout;
688 }
689
690 hdr = register_net_sysctl_table(net, net_ipv4_ctl_path, table);
691 if (hdr == NULL)
692 goto err_reg;
693
694 net->ipv4.frags_hdr = hdr;
695 return 0;
696
697 err_reg:
698 if (!net_eq(net, &init_net))
699 kfree(table);
700 err_alloc:
701 return -ENOMEM;
702 }
703
704 static void __net_exit ip4_frags_ns_ctl_unregister(struct net *net)
705 {
706 struct ctl_table *table;
707
708 table = net->ipv4.frags_hdr->ctl_table_arg;
709 unregister_net_sysctl_table(net->ipv4.frags_hdr);
710 kfree(table);
711 }
712
713 static void ip4_frags_ctl_register(void)
714 {
715 register_net_sysctl_rotable(net_ipv4_ctl_path, ip4_frags_ctl_table);
716 }
717 #else
718 static inline int ip4_frags_ns_ctl_register(struct net *net)
719 {
720 return 0;
721 }
722
723 static inline void ip4_frags_ns_ctl_unregister(struct net *net)
724 {
725 }
726
727 static inline void ip4_frags_ctl_register(void)
728 {
729 }
730 #endif
731
732 static int __net_init ipv4_frags_init_net(struct net *net)
733 {
734 /*
735 * Fragment cache limits. We will commit 256K at one time. Should we
736 * cross that limit we will prune down to 192K. This should cope with
737 * even the most extreme cases without allowing an attacker to
738 * measurably harm machine performance.
739 */
740 net->ipv4.frags.high_thresh = 256 * 1024;
741 net->ipv4.frags.low_thresh = 192 * 1024;
742 /*
743 * Important NOTE! Fragment queue must be destroyed before MSL expires.
744 * RFC791 is wrong proposing to prolongate timer each fragment arrival
745 * by TTL.
746 */
747 net->ipv4.frags.timeout = IP_FRAG_TIME;
748
749 inet_frags_init_net(&net->ipv4.frags);
750
751 return ip4_frags_ns_ctl_register(net);
752 }
753
754 static void __net_exit ipv4_frags_exit_net(struct net *net)
755 {
756 ip4_frags_ns_ctl_unregister(net);
757 inet_frags_exit_net(&net->ipv4.frags, &ip4_frags);
758 }
759
760 static struct pernet_operations ip4_frags_ops = {
761 .init = ipv4_frags_init_net,
762 .exit = ipv4_frags_exit_net,
763 };
764
765 void __init ipfrag_init(void)
766 {
767 ip4_frags_ctl_register();
768 register_pernet_subsys(&ip4_frags_ops);
769 ip4_frags.hashfn = ip4_hashfn;
770 ip4_frags.constructor = ip4_frag_init;
771 ip4_frags.destructor = ip4_frag_free;
772 ip4_frags.skb_free = NULL;
773 ip4_frags.qsize = sizeof(struct ipq);
774 ip4_frags.match = ip4_frag_match;
775 ip4_frags.frag_expire = ip_expire;
776 ip4_frags.secret_interval = 10 * 60 * HZ;
777 inet_frags_init(&ip4_frags);
778 }
779
780 EXPORT_SYMBOL(ip_defrag);