]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/ip_output.c
Merge tag 'mfd-fixes-4.9' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / ip_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The Internet Protocol (IP) output module.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
12 * Richard Underwood
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
17 *
18 * See ip_input.c for original log
19 *
20 * Fixes:
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
24 * no route is found.
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
41 * datagrams.
42 * Hirokazu Takahashi: sendfile() on UDP works now.
43 */
44
45 #include <asm/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
54
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
64
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <net/lwtunnel.h>
77 #include <linux/igmp.h>
78 #include <linux/netfilter_ipv4.h>
79 #include <linux/netfilter_bridge.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
82
83 static int
84 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
85 unsigned int mtu,
86 int (*output)(struct net *, struct sock *, struct sk_buff *));
87
88 /* Generate a checksum for an outgoing IP datagram. */
89 void ip_send_check(struct iphdr *iph)
90 {
91 iph->check = 0;
92 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
93 }
94 EXPORT_SYMBOL(ip_send_check);
95
96 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
97 {
98 struct iphdr *iph = ip_hdr(skb);
99
100 iph->tot_len = htons(skb->len);
101 ip_send_check(iph);
102
103 /* if egress device is enslaved to an L3 master device pass the
104 * skb to its handler for processing
105 */
106 skb = l3mdev_ip_out(sk, skb);
107 if (unlikely(!skb))
108 return 0;
109
110 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
111 net, sk, skb, NULL, skb_dst(skb)->dev,
112 dst_output);
113 }
114
115 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
116 {
117 int err;
118
119 err = __ip_local_out(net, sk, skb);
120 if (likely(err == 1))
121 err = dst_output(net, sk, skb);
122
123 return err;
124 }
125 EXPORT_SYMBOL_GPL(ip_local_out);
126
127 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
128 {
129 int ttl = inet->uc_ttl;
130
131 if (ttl < 0)
132 ttl = ip4_dst_hoplimit(dst);
133 return ttl;
134 }
135
136 /*
137 * Add an ip header to a skbuff and send it out.
138 *
139 */
140 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
141 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
142 {
143 struct inet_sock *inet = inet_sk(sk);
144 struct rtable *rt = skb_rtable(skb);
145 struct net *net = sock_net(sk);
146 struct iphdr *iph;
147
148 /* Build the IP header. */
149 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
150 skb_reset_network_header(skb);
151 iph = ip_hdr(skb);
152 iph->version = 4;
153 iph->ihl = 5;
154 iph->tos = inet->tos;
155 iph->ttl = ip_select_ttl(inet, &rt->dst);
156 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
157 iph->saddr = saddr;
158 iph->protocol = sk->sk_protocol;
159 if (ip_dont_fragment(sk, &rt->dst)) {
160 iph->frag_off = htons(IP_DF);
161 iph->id = 0;
162 } else {
163 iph->frag_off = 0;
164 __ip_select_ident(net, iph, 1);
165 }
166
167 if (opt && opt->opt.optlen) {
168 iph->ihl += opt->opt.optlen>>2;
169 ip_options_build(skb, &opt->opt, daddr, rt, 0);
170 }
171
172 skb->priority = sk->sk_priority;
173 skb->mark = sk->sk_mark;
174
175 /* Send it out. */
176 return ip_local_out(net, skb->sk, skb);
177 }
178 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
179
180 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
181 {
182 struct dst_entry *dst = skb_dst(skb);
183 struct rtable *rt = (struct rtable *)dst;
184 struct net_device *dev = dst->dev;
185 unsigned int hh_len = LL_RESERVED_SPACE(dev);
186 struct neighbour *neigh;
187 u32 nexthop;
188
189 if (rt->rt_type == RTN_MULTICAST) {
190 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
191 } else if (rt->rt_type == RTN_BROADCAST)
192 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
193
194 /* Be paranoid, rather than too clever. */
195 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
196 struct sk_buff *skb2;
197
198 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
199 if (!skb2) {
200 kfree_skb(skb);
201 return -ENOMEM;
202 }
203 if (skb->sk)
204 skb_set_owner_w(skb2, skb->sk);
205 consume_skb(skb);
206 skb = skb2;
207 }
208
209 if (lwtunnel_xmit_redirect(dst->lwtstate)) {
210 int res = lwtunnel_xmit(skb);
211
212 if (res < 0 || res == LWTUNNEL_XMIT_DONE)
213 return res;
214 }
215
216 rcu_read_lock_bh();
217 nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
218 neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
219 if (unlikely(!neigh))
220 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
221 if (!IS_ERR(neigh)) {
222 int res = dst_neigh_output(dst, neigh, skb);
223
224 rcu_read_unlock_bh();
225 return res;
226 }
227 rcu_read_unlock_bh();
228
229 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
230 __func__);
231 kfree_skb(skb);
232 return -EINVAL;
233 }
234
235 static int ip_finish_output_gso(struct net *net, struct sock *sk,
236 struct sk_buff *skb, unsigned int mtu)
237 {
238 netdev_features_t features;
239 struct sk_buff *segs;
240 int ret = 0;
241
242 /* common case: seglen is <= mtu
243 */
244 if (skb_gso_validate_mtu(skb, mtu))
245 return ip_finish_output2(net, sk, skb);
246
247 /* Slowpath - GSO segment length exceeds the egress MTU.
248 *
249 * This can happen in several cases:
250 * - Forwarding of a TCP GRO skb, when DF flag is not set.
251 * - Forwarding of an skb that arrived on a virtualization interface
252 * (virtio-net/vhost/tap) with TSO/GSO size set by other network
253 * stack.
254 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
255 * interface with a smaller MTU.
256 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is
257 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an
258 * insufficent MTU.
259 */
260 features = netif_skb_features(skb);
261 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
262 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
263 if (IS_ERR_OR_NULL(segs)) {
264 kfree_skb(skb);
265 return -ENOMEM;
266 }
267
268 consume_skb(skb);
269
270 do {
271 struct sk_buff *nskb = segs->next;
272 int err;
273
274 segs->next = NULL;
275 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
276
277 if (err && ret == 0)
278 ret = err;
279 segs = nskb;
280 } while (segs);
281
282 return ret;
283 }
284
285 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
286 {
287 unsigned int mtu;
288
289 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
290 /* Policy lookup after SNAT yielded a new policy */
291 if (skb_dst(skb)->xfrm) {
292 IPCB(skb)->flags |= IPSKB_REROUTED;
293 return dst_output(net, sk, skb);
294 }
295 #endif
296 mtu = ip_skb_dst_mtu(sk, skb);
297 if (skb_is_gso(skb))
298 return ip_finish_output_gso(net, sk, skb, mtu);
299
300 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
301 return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
302
303 return ip_finish_output2(net, sk, skb);
304 }
305
306 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
307 {
308 struct rtable *rt = skb_rtable(skb);
309 struct net_device *dev = rt->dst.dev;
310
311 /*
312 * If the indicated interface is up and running, send the packet.
313 */
314 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
315
316 skb->dev = dev;
317 skb->protocol = htons(ETH_P_IP);
318
319 /*
320 * Multicasts are looped back for other local users
321 */
322
323 if (rt->rt_flags&RTCF_MULTICAST) {
324 if (sk_mc_loop(sk)
325 #ifdef CONFIG_IP_MROUTE
326 /* Small optimization: do not loopback not local frames,
327 which returned after forwarding; they will be dropped
328 by ip_mr_input in any case.
329 Note, that local frames are looped back to be delivered
330 to local recipients.
331
332 This check is duplicated in ip_mr_input at the moment.
333 */
334 &&
335 ((rt->rt_flags & RTCF_LOCAL) ||
336 !(IPCB(skb)->flags & IPSKB_FORWARDED))
337 #endif
338 ) {
339 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
340 if (newskb)
341 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
342 net, sk, newskb, NULL, newskb->dev,
343 dev_loopback_xmit);
344 }
345
346 /* Multicasts with ttl 0 must not go beyond the host */
347
348 if (ip_hdr(skb)->ttl == 0) {
349 kfree_skb(skb);
350 return 0;
351 }
352 }
353
354 if (rt->rt_flags&RTCF_BROADCAST) {
355 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
356 if (newskb)
357 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
358 net, sk, newskb, NULL, newskb->dev,
359 dev_loopback_xmit);
360 }
361
362 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
363 net, sk, skb, NULL, skb->dev,
364 ip_finish_output,
365 !(IPCB(skb)->flags & IPSKB_REROUTED));
366 }
367
368 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
369 {
370 struct net_device *dev = skb_dst(skb)->dev;
371
372 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
373
374 skb->dev = dev;
375 skb->protocol = htons(ETH_P_IP);
376
377 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
378 net, sk, skb, NULL, dev,
379 ip_finish_output,
380 !(IPCB(skb)->flags & IPSKB_REROUTED));
381 }
382
383 /*
384 * copy saddr and daddr, possibly using 64bit load/stores
385 * Equivalent to :
386 * iph->saddr = fl4->saddr;
387 * iph->daddr = fl4->daddr;
388 */
389 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
390 {
391 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
392 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
393 memcpy(&iph->saddr, &fl4->saddr,
394 sizeof(fl4->saddr) + sizeof(fl4->daddr));
395 }
396
397 /* Note: skb->sk can be different from sk, in case of tunnels */
398 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
399 {
400 struct inet_sock *inet = inet_sk(sk);
401 struct net *net = sock_net(sk);
402 struct ip_options_rcu *inet_opt;
403 struct flowi4 *fl4;
404 struct rtable *rt;
405 struct iphdr *iph;
406 int res;
407
408 /* Skip all of this if the packet is already routed,
409 * f.e. by something like SCTP.
410 */
411 rcu_read_lock();
412 inet_opt = rcu_dereference(inet->inet_opt);
413 fl4 = &fl->u.ip4;
414 rt = skb_rtable(skb);
415 if (rt)
416 goto packet_routed;
417
418 /* Make sure we can route this packet. */
419 rt = (struct rtable *)__sk_dst_check(sk, 0);
420 if (!rt) {
421 __be32 daddr;
422
423 /* Use correct destination address if we have options. */
424 daddr = inet->inet_daddr;
425 if (inet_opt && inet_opt->opt.srr)
426 daddr = inet_opt->opt.faddr;
427
428 /* If this fails, retransmit mechanism of transport layer will
429 * keep trying until route appears or the connection times
430 * itself out.
431 */
432 rt = ip_route_output_ports(net, fl4, sk,
433 daddr, inet->inet_saddr,
434 inet->inet_dport,
435 inet->inet_sport,
436 sk->sk_protocol,
437 RT_CONN_FLAGS(sk),
438 sk->sk_bound_dev_if);
439 if (IS_ERR(rt))
440 goto no_route;
441 sk_setup_caps(sk, &rt->dst);
442 }
443 skb_dst_set_noref(skb, &rt->dst);
444
445 packet_routed:
446 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
447 goto no_route;
448
449 /* OK, we know where to send it, allocate and build IP header. */
450 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
451 skb_reset_network_header(skb);
452 iph = ip_hdr(skb);
453 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
454 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
455 iph->frag_off = htons(IP_DF);
456 else
457 iph->frag_off = 0;
458 iph->ttl = ip_select_ttl(inet, &rt->dst);
459 iph->protocol = sk->sk_protocol;
460 ip_copy_addrs(iph, fl4);
461
462 /* Transport layer set skb->h.foo itself. */
463
464 if (inet_opt && inet_opt->opt.optlen) {
465 iph->ihl += inet_opt->opt.optlen >> 2;
466 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
467 }
468
469 ip_select_ident_segs(net, skb, sk,
470 skb_shinfo(skb)->gso_segs ?: 1);
471
472 /* TODO : should we use skb->sk here instead of sk ? */
473 skb->priority = sk->sk_priority;
474 skb->mark = sk->sk_mark;
475
476 res = ip_local_out(net, sk, skb);
477 rcu_read_unlock();
478 return res;
479
480 no_route:
481 rcu_read_unlock();
482 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
483 kfree_skb(skb);
484 return -EHOSTUNREACH;
485 }
486 EXPORT_SYMBOL(ip_queue_xmit);
487
488 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
489 {
490 to->pkt_type = from->pkt_type;
491 to->priority = from->priority;
492 to->protocol = from->protocol;
493 skb_dst_drop(to);
494 skb_dst_copy(to, from);
495 to->dev = from->dev;
496 to->mark = from->mark;
497
498 /* Copy the flags to each fragment. */
499 IPCB(to)->flags = IPCB(from)->flags;
500
501 #ifdef CONFIG_NET_SCHED
502 to->tc_index = from->tc_index;
503 #endif
504 nf_copy(to, from);
505 #if IS_ENABLED(CONFIG_IP_VS)
506 to->ipvs_property = from->ipvs_property;
507 #endif
508 skb_copy_secmark(to, from);
509 }
510
511 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
512 unsigned int mtu,
513 int (*output)(struct net *, struct sock *, struct sk_buff *))
514 {
515 struct iphdr *iph = ip_hdr(skb);
516
517 if ((iph->frag_off & htons(IP_DF)) == 0)
518 return ip_do_fragment(net, sk, skb, output);
519
520 if (unlikely(!skb->ignore_df ||
521 (IPCB(skb)->frag_max_size &&
522 IPCB(skb)->frag_max_size > mtu))) {
523 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
524 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
525 htonl(mtu));
526 kfree_skb(skb);
527 return -EMSGSIZE;
528 }
529
530 return ip_do_fragment(net, sk, skb, output);
531 }
532
533 /*
534 * This IP datagram is too large to be sent in one piece. Break it up into
535 * smaller pieces (each of size equal to IP header plus
536 * a block of the data of the original IP data part) that will yet fit in a
537 * single device frame, and queue such a frame for sending.
538 */
539
540 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
541 int (*output)(struct net *, struct sock *, struct sk_buff *))
542 {
543 struct iphdr *iph;
544 int ptr;
545 struct sk_buff *skb2;
546 unsigned int mtu, hlen, left, len, ll_rs;
547 int offset;
548 __be16 not_last_frag;
549 struct rtable *rt = skb_rtable(skb);
550 int err = 0;
551
552 /* for offloaded checksums cleanup checksum before fragmentation */
553 if (skb->ip_summed == CHECKSUM_PARTIAL &&
554 (err = skb_checksum_help(skb)))
555 goto fail;
556
557 /*
558 * Point into the IP datagram header.
559 */
560
561 iph = ip_hdr(skb);
562
563 mtu = ip_skb_dst_mtu(sk, skb);
564 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
565 mtu = IPCB(skb)->frag_max_size;
566
567 /*
568 * Setup starting values.
569 */
570
571 hlen = iph->ihl * 4;
572 mtu = mtu - hlen; /* Size of data space */
573 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
574
575 /* When frag_list is given, use it. First, check its validity:
576 * some transformers could create wrong frag_list or break existing
577 * one, it is not prohibited. In this case fall back to copying.
578 *
579 * LATER: this step can be merged to real generation of fragments,
580 * we can switch to copy when see the first bad fragment.
581 */
582 if (skb_has_frag_list(skb)) {
583 struct sk_buff *frag, *frag2;
584 int first_len = skb_pagelen(skb);
585
586 if (first_len - hlen > mtu ||
587 ((first_len - hlen) & 7) ||
588 ip_is_fragment(iph) ||
589 skb_cloned(skb))
590 goto slow_path;
591
592 skb_walk_frags(skb, frag) {
593 /* Correct geometry. */
594 if (frag->len > mtu ||
595 ((frag->len & 7) && frag->next) ||
596 skb_headroom(frag) < hlen)
597 goto slow_path_clean;
598
599 /* Partially cloned skb? */
600 if (skb_shared(frag))
601 goto slow_path_clean;
602
603 BUG_ON(frag->sk);
604 if (skb->sk) {
605 frag->sk = skb->sk;
606 frag->destructor = sock_wfree;
607 }
608 skb->truesize -= frag->truesize;
609 }
610
611 /* Everything is OK. Generate! */
612
613 err = 0;
614 offset = 0;
615 frag = skb_shinfo(skb)->frag_list;
616 skb_frag_list_init(skb);
617 skb->data_len = first_len - skb_headlen(skb);
618 skb->len = first_len;
619 iph->tot_len = htons(first_len);
620 iph->frag_off = htons(IP_MF);
621 ip_send_check(iph);
622
623 for (;;) {
624 /* Prepare header of the next frame,
625 * before previous one went down. */
626 if (frag) {
627 frag->ip_summed = CHECKSUM_NONE;
628 skb_reset_transport_header(frag);
629 __skb_push(frag, hlen);
630 skb_reset_network_header(frag);
631 memcpy(skb_network_header(frag), iph, hlen);
632 iph = ip_hdr(frag);
633 iph->tot_len = htons(frag->len);
634 ip_copy_metadata(frag, skb);
635 if (offset == 0)
636 ip_options_fragment(frag);
637 offset += skb->len - hlen;
638 iph->frag_off = htons(offset>>3);
639 if (frag->next)
640 iph->frag_off |= htons(IP_MF);
641 /* Ready, complete checksum */
642 ip_send_check(iph);
643 }
644
645 err = output(net, sk, skb);
646
647 if (!err)
648 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
649 if (err || !frag)
650 break;
651
652 skb = frag;
653 frag = skb->next;
654 skb->next = NULL;
655 }
656
657 if (err == 0) {
658 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
659 return 0;
660 }
661
662 while (frag) {
663 skb = frag->next;
664 kfree_skb(frag);
665 frag = skb;
666 }
667 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
668 return err;
669
670 slow_path_clean:
671 skb_walk_frags(skb, frag2) {
672 if (frag2 == frag)
673 break;
674 frag2->sk = NULL;
675 frag2->destructor = NULL;
676 skb->truesize += frag2->truesize;
677 }
678 }
679
680 slow_path:
681 iph = ip_hdr(skb);
682
683 left = skb->len - hlen; /* Space per frame */
684 ptr = hlen; /* Where to start from */
685
686 ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
687
688 /*
689 * Fragment the datagram.
690 */
691
692 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
693 not_last_frag = iph->frag_off & htons(IP_MF);
694
695 /*
696 * Keep copying data until we run out.
697 */
698
699 while (left > 0) {
700 len = left;
701 /* IF: it doesn't fit, use 'mtu' - the data space left */
702 if (len > mtu)
703 len = mtu;
704 /* IF: we are not sending up to and including the packet end
705 then align the next start on an eight byte boundary */
706 if (len < left) {
707 len &= ~7;
708 }
709
710 /* Allocate buffer */
711 skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
712 if (!skb2) {
713 err = -ENOMEM;
714 goto fail;
715 }
716
717 /*
718 * Set up data on packet
719 */
720
721 ip_copy_metadata(skb2, skb);
722 skb_reserve(skb2, ll_rs);
723 skb_put(skb2, len + hlen);
724 skb_reset_network_header(skb2);
725 skb2->transport_header = skb2->network_header + hlen;
726
727 /*
728 * Charge the memory for the fragment to any owner
729 * it might possess
730 */
731
732 if (skb->sk)
733 skb_set_owner_w(skb2, skb->sk);
734
735 /*
736 * Copy the packet header into the new buffer.
737 */
738
739 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
740
741 /*
742 * Copy a block of the IP datagram.
743 */
744 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
745 BUG();
746 left -= len;
747
748 /*
749 * Fill in the new header fields.
750 */
751 iph = ip_hdr(skb2);
752 iph->frag_off = htons((offset >> 3));
753
754 if (IPCB(skb)->flags & IPSKB_FRAG_PMTU)
755 iph->frag_off |= htons(IP_DF);
756
757 /* ANK: dirty, but effective trick. Upgrade options only if
758 * the segment to be fragmented was THE FIRST (otherwise,
759 * options are already fixed) and make it ONCE
760 * on the initial skb, so that all the following fragments
761 * will inherit fixed options.
762 */
763 if (offset == 0)
764 ip_options_fragment(skb);
765
766 /*
767 * Added AC : If we are fragmenting a fragment that's not the
768 * last fragment then keep MF on each bit
769 */
770 if (left > 0 || not_last_frag)
771 iph->frag_off |= htons(IP_MF);
772 ptr += len;
773 offset += len;
774
775 /*
776 * Put this fragment into the sending queue.
777 */
778 iph->tot_len = htons(len + hlen);
779
780 ip_send_check(iph);
781
782 err = output(net, sk, skb2);
783 if (err)
784 goto fail;
785
786 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
787 }
788 consume_skb(skb);
789 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
790 return err;
791
792 fail:
793 kfree_skb(skb);
794 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
795 return err;
796 }
797 EXPORT_SYMBOL(ip_do_fragment);
798
799 int
800 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
801 {
802 struct msghdr *msg = from;
803
804 if (skb->ip_summed == CHECKSUM_PARTIAL) {
805 if (copy_from_iter(to, len, &msg->msg_iter) != len)
806 return -EFAULT;
807 } else {
808 __wsum csum = 0;
809 if (csum_and_copy_from_iter(to, len, &csum, &msg->msg_iter) != len)
810 return -EFAULT;
811 skb->csum = csum_block_add(skb->csum, csum, odd);
812 }
813 return 0;
814 }
815 EXPORT_SYMBOL(ip_generic_getfrag);
816
817 static inline __wsum
818 csum_page(struct page *page, int offset, int copy)
819 {
820 char *kaddr;
821 __wsum csum;
822 kaddr = kmap(page);
823 csum = csum_partial(kaddr + offset, copy, 0);
824 kunmap(page);
825 return csum;
826 }
827
828 static inline int ip_ufo_append_data(struct sock *sk,
829 struct sk_buff_head *queue,
830 int getfrag(void *from, char *to, int offset, int len,
831 int odd, struct sk_buff *skb),
832 void *from, int length, int hh_len, int fragheaderlen,
833 int transhdrlen, int maxfraglen, unsigned int flags)
834 {
835 struct sk_buff *skb;
836 int err;
837
838 /* There is support for UDP fragmentation offload by network
839 * device, so create one single skb packet containing complete
840 * udp datagram
841 */
842 skb = skb_peek_tail(queue);
843 if (!skb) {
844 skb = sock_alloc_send_skb(sk,
845 hh_len + fragheaderlen + transhdrlen + 20,
846 (flags & MSG_DONTWAIT), &err);
847
848 if (!skb)
849 return err;
850
851 /* reserve space for Hardware header */
852 skb_reserve(skb, hh_len);
853
854 /* create space for UDP/IP header */
855 skb_put(skb, fragheaderlen + transhdrlen);
856
857 /* initialize network header pointer */
858 skb_reset_network_header(skb);
859
860 /* initialize protocol header pointer */
861 skb->transport_header = skb->network_header + fragheaderlen;
862
863 skb->csum = 0;
864
865 __skb_queue_tail(queue, skb);
866 } else if (skb_is_gso(skb)) {
867 goto append;
868 }
869
870 skb->ip_summed = CHECKSUM_PARTIAL;
871 /* specify the length of each IP datagram fragment */
872 skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
873 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
874
875 append:
876 return skb_append_datato_frags(sk, skb, getfrag, from,
877 (length - transhdrlen));
878 }
879
880 static int __ip_append_data(struct sock *sk,
881 struct flowi4 *fl4,
882 struct sk_buff_head *queue,
883 struct inet_cork *cork,
884 struct page_frag *pfrag,
885 int getfrag(void *from, char *to, int offset,
886 int len, int odd, struct sk_buff *skb),
887 void *from, int length, int transhdrlen,
888 unsigned int flags)
889 {
890 struct inet_sock *inet = inet_sk(sk);
891 struct sk_buff *skb;
892
893 struct ip_options *opt = cork->opt;
894 int hh_len;
895 int exthdrlen;
896 int mtu;
897 int copy;
898 int err;
899 int offset = 0;
900 unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
901 int csummode = CHECKSUM_NONE;
902 struct rtable *rt = (struct rtable *)cork->dst;
903 u32 tskey = 0;
904
905 skb = skb_peek_tail(queue);
906
907 exthdrlen = !skb ? rt->dst.header_len : 0;
908 mtu = cork->fragsize;
909 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
910 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
911 tskey = sk->sk_tskey++;
912
913 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
914
915 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
916 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
917 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
918
919 if (cork->length + length > maxnonfragsize - fragheaderlen) {
920 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
921 mtu - (opt ? opt->optlen : 0));
922 return -EMSGSIZE;
923 }
924
925 /*
926 * transhdrlen > 0 means that this is the first fragment and we wish
927 * it won't be fragmented in the future.
928 */
929 if (transhdrlen &&
930 length + fragheaderlen <= mtu &&
931 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
932 !(flags & MSG_MORE) &&
933 !exthdrlen)
934 csummode = CHECKSUM_PARTIAL;
935
936 cork->length += length;
937 if (((length > mtu) || (skb && skb_is_gso(skb))) &&
938 (sk->sk_protocol == IPPROTO_UDP) &&
939 (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len &&
940 (sk->sk_type == SOCK_DGRAM) && !sk->sk_no_check_tx) {
941 err = ip_ufo_append_data(sk, queue, getfrag, from, length,
942 hh_len, fragheaderlen, transhdrlen,
943 maxfraglen, flags);
944 if (err)
945 goto error;
946 return 0;
947 }
948
949 /* So, what's going on in the loop below?
950 *
951 * We use calculated fragment length to generate chained skb,
952 * each of segments is IP fragment ready for sending to network after
953 * adding appropriate IP header.
954 */
955
956 if (!skb)
957 goto alloc_new_skb;
958
959 while (length > 0) {
960 /* Check if the remaining data fits into current packet. */
961 copy = mtu - skb->len;
962 if (copy < length)
963 copy = maxfraglen - skb->len;
964 if (copy <= 0) {
965 char *data;
966 unsigned int datalen;
967 unsigned int fraglen;
968 unsigned int fraggap;
969 unsigned int alloclen;
970 struct sk_buff *skb_prev;
971 alloc_new_skb:
972 skb_prev = skb;
973 if (skb_prev)
974 fraggap = skb_prev->len - maxfraglen;
975 else
976 fraggap = 0;
977
978 /*
979 * If remaining data exceeds the mtu,
980 * we know we need more fragment(s).
981 */
982 datalen = length + fraggap;
983 if (datalen > mtu - fragheaderlen)
984 datalen = maxfraglen - fragheaderlen;
985 fraglen = datalen + fragheaderlen;
986
987 if ((flags & MSG_MORE) &&
988 !(rt->dst.dev->features&NETIF_F_SG))
989 alloclen = mtu;
990 else
991 alloclen = fraglen;
992
993 alloclen += exthdrlen;
994
995 /* The last fragment gets additional space at tail.
996 * Note, with MSG_MORE we overallocate on fragments,
997 * because we have no idea what fragment will be
998 * the last.
999 */
1000 if (datalen == length + fraggap)
1001 alloclen += rt->dst.trailer_len;
1002
1003 if (transhdrlen) {
1004 skb = sock_alloc_send_skb(sk,
1005 alloclen + hh_len + 15,
1006 (flags & MSG_DONTWAIT), &err);
1007 } else {
1008 skb = NULL;
1009 if (atomic_read(&sk->sk_wmem_alloc) <=
1010 2 * sk->sk_sndbuf)
1011 skb = sock_wmalloc(sk,
1012 alloclen + hh_len + 15, 1,
1013 sk->sk_allocation);
1014 if (unlikely(!skb))
1015 err = -ENOBUFS;
1016 }
1017 if (!skb)
1018 goto error;
1019
1020 /*
1021 * Fill in the control structures
1022 */
1023 skb->ip_summed = csummode;
1024 skb->csum = 0;
1025 skb_reserve(skb, hh_len);
1026
1027 /* only the initial fragment is time stamped */
1028 skb_shinfo(skb)->tx_flags = cork->tx_flags;
1029 cork->tx_flags = 0;
1030 skb_shinfo(skb)->tskey = tskey;
1031 tskey = 0;
1032
1033 /*
1034 * Find where to start putting bytes.
1035 */
1036 data = skb_put(skb, fraglen + exthdrlen);
1037 skb_set_network_header(skb, exthdrlen);
1038 skb->transport_header = (skb->network_header +
1039 fragheaderlen);
1040 data += fragheaderlen + exthdrlen;
1041
1042 if (fraggap) {
1043 skb->csum = skb_copy_and_csum_bits(
1044 skb_prev, maxfraglen,
1045 data + transhdrlen, fraggap, 0);
1046 skb_prev->csum = csum_sub(skb_prev->csum,
1047 skb->csum);
1048 data += fraggap;
1049 pskb_trim_unique(skb_prev, maxfraglen);
1050 }
1051
1052 copy = datalen - transhdrlen - fraggap;
1053 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1054 err = -EFAULT;
1055 kfree_skb(skb);
1056 goto error;
1057 }
1058
1059 offset += copy;
1060 length -= datalen - fraggap;
1061 transhdrlen = 0;
1062 exthdrlen = 0;
1063 csummode = CHECKSUM_NONE;
1064
1065 /*
1066 * Put the packet on the pending queue.
1067 */
1068 __skb_queue_tail(queue, skb);
1069 continue;
1070 }
1071
1072 if (copy > length)
1073 copy = length;
1074
1075 if (!(rt->dst.dev->features&NETIF_F_SG)) {
1076 unsigned int off;
1077
1078 off = skb->len;
1079 if (getfrag(from, skb_put(skb, copy),
1080 offset, copy, off, skb) < 0) {
1081 __skb_trim(skb, off);
1082 err = -EFAULT;
1083 goto error;
1084 }
1085 } else {
1086 int i = skb_shinfo(skb)->nr_frags;
1087
1088 err = -ENOMEM;
1089 if (!sk_page_frag_refill(sk, pfrag))
1090 goto error;
1091
1092 if (!skb_can_coalesce(skb, i, pfrag->page,
1093 pfrag->offset)) {
1094 err = -EMSGSIZE;
1095 if (i == MAX_SKB_FRAGS)
1096 goto error;
1097
1098 __skb_fill_page_desc(skb, i, pfrag->page,
1099 pfrag->offset, 0);
1100 skb_shinfo(skb)->nr_frags = ++i;
1101 get_page(pfrag->page);
1102 }
1103 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1104 if (getfrag(from,
1105 page_address(pfrag->page) + pfrag->offset,
1106 offset, copy, skb->len, skb) < 0)
1107 goto error_efault;
1108
1109 pfrag->offset += copy;
1110 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1111 skb->len += copy;
1112 skb->data_len += copy;
1113 skb->truesize += copy;
1114 atomic_add(copy, &sk->sk_wmem_alloc);
1115 }
1116 offset += copy;
1117 length -= copy;
1118 }
1119
1120 return 0;
1121
1122 error_efault:
1123 err = -EFAULT;
1124 error:
1125 cork->length -= length;
1126 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1127 return err;
1128 }
1129
1130 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1131 struct ipcm_cookie *ipc, struct rtable **rtp)
1132 {
1133 struct ip_options_rcu *opt;
1134 struct rtable *rt;
1135
1136 /*
1137 * setup for corking.
1138 */
1139 opt = ipc->opt;
1140 if (opt) {
1141 if (!cork->opt) {
1142 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1143 sk->sk_allocation);
1144 if (unlikely(!cork->opt))
1145 return -ENOBUFS;
1146 }
1147 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1148 cork->flags |= IPCORK_OPT;
1149 cork->addr = ipc->addr;
1150 }
1151 rt = *rtp;
1152 if (unlikely(!rt))
1153 return -EFAULT;
1154 /*
1155 * We steal reference to this route, caller should not release it
1156 */
1157 *rtp = NULL;
1158 cork->fragsize = ip_sk_use_pmtu(sk) ?
1159 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1160 cork->dst = &rt->dst;
1161 cork->length = 0;
1162 cork->ttl = ipc->ttl;
1163 cork->tos = ipc->tos;
1164 cork->priority = ipc->priority;
1165 cork->tx_flags = ipc->tx_flags;
1166
1167 return 0;
1168 }
1169
1170 /*
1171 * ip_append_data() and ip_append_page() can make one large IP datagram
1172 * from many pieces of data. Each pieces will be holded on the socket
1173 * until ip_push_pending_frames() is called. Each piece can be a page
1174 * or non-page data.
1175 *
1176 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1177 * this interface potentially.
1178 *
1179 * LATER: length must be adjusted by pad at tail, when it is required.
1180 */
1181 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1182 int getfrag(void *from, char *to, int offset, int len,
1183 int odd, struct sk_buff *skb),
1184 void *from, int length, int transhdrlen,
1185 struct ipcm_cookie *ipc, struct rtable **rtp,
1186 unsigned int flags)
1187 {
1188 struct inet_sock *inet = inet_sk(sk);
1189 int err;
1190
1191 if (flags&MSG_PROBE)
1192 return 0;
1193
1194 if (skb_queue_empty(&sk->sk_write_queue)) {
1195 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1196 if (err)
1197 return err;
1198 } else {
1199 transhdrlen = 0;
1200 }
1201
1202 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1203 sk_page_frag(sk), getfrag,
1204 from, length, transhdrlen, flags);
1205 }
1206
1207 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1208 int offset, size_t size, int flags)
1209 {
1210 struct inet_sock *inet = inet_sk(sk);
1211 struct sk_buff *skb;
1212 struct rtable *rt;
1213 struct ip_options *opt = NULL;
1214 struct inet_cork *cork;
1215 int hh_len;
1216 int mtu;
1217 int len;
1218 int err;
1219 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1220
1221 if (inet->hdrincl)
1222 return -EPERM;
1223
1224 if (flags&MSG_PROBE)
1225 return 0;
1226
1227 if (skb_queue_empty(&sk->sk_write_queue))
1228 return -EINVAL;
1229
1230 cork = &inet->cork.base;
1231 rt = (struct rtable *)cork->dst;
1232 if (cork->flags & IPCORK_OPT)
1233 opt = cork->opt;
1234
1235 if (!(rt->dst.dev->features&NETIF_F_SG))
1236 return -EOPNOTSUPP;
1237
1238 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1239 mtu = cork->fragsize;
1240
1241 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1242 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1243 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1244
1245 if (cork->length + size > maxnonfragsize - fragheaderlen) {
1246 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1247 mtu - (opt ? opt->optlen : 0));
1248 return -EMSGSIZE;
1249 }
1250
1251 skb = skb_peek_tail(&sk->sk_write_queue);
1252 if (!skb)
1253 return -EINVAL;
1254
1255 if ((size + skb->len > mtu) &&
1256 (sk->sk_protocol == IPPROTO_UDP) &&
1257 (rt->dst.dev->features & NETIF_F_UFO)) {
1258 if (skb->ip_summed != CHECKSUM_PARTIAL)
1259 return -EOPNOTSUPP;
1260
1261 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1262 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1263 }
1264 cork->length += size;
1265
1266 while (size > 0) {
1267 if (skb_is_gso(skb)) {
1268 len = size;
1269 } else {
1270
1271 /* Check if the remaining data fits into current packet. */
1272 len = mtu - skb->len;
1273 if (len < size)
1274 len = maxfraglen - skb->len;
1275 }
1276 if (len <= 0) {
1277 struct sk_buff *skb_prev;
1278 int alloclen;
1279
1280 skb_prev = skb;
1281 fraggap = skb_prev->len - maxfraglen;
1282
1283 alloclen = fragheaderlen + hh_len + fraggap + 15;
1284 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1285 if (unlikely(!skb)) {
1286 err = -ENOBUFS;
1287 goto error;
1288 }
1289
1290 /*
1291 * Fill in the control structures
1292 */
1293 skb->ip_summed = CHECKSUM_NONE;
1294 skb->csum = 0;
1295 skb_reserve(skb, hh_len);
1296
1297 /*
1298 * Find where to start putting bytes.
1299 */
1300 skb_put(skb, fragheaderlen + fraggap);
1301 skb_reset_network_header(skb);
1302 skb->transport_header = (skb->network_header +
1303 fragheaderlen);
1304 if (fraggap) {
1305 skb->csum = skb_copy_and_csum_bits(skb_prev,
1306 maxfraglen,
1307 skb_transport_header(skb),
1308 fraggap, 0);
1309 skb_prev->csum = csum_sub(skb_prev->csum,
1310 skb->csum);
1311 pskb_trim_unique(skb_prev, maxfraglen);
1312 }
1313
1314 /*
1315 * Put the packet on the pending queue.
1316 */
1317 __skb_queue_tail(&sk->sk_write_queue, skb);
1318 continue;
1319 }
1320
1321 if (len > size)
1322 len = size;
1323
1324 if (skb_append_pagefrags(skb, page, offset, len)) {
1325 err = -EMSGSIZE;
1326 goto error;
1327 }
1328
1329 if (skb->ip_summed == CHECKSUM_NONE) {
1330 __wsum csum;
1331 csum = csum_page(page, offset, len);
1332 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1333 }
1334
1335 skb->len += len;
1336 skb->data_len += len;
1337 skb->truesize += len;
1338 atomic_add(len, &sk->sk_wmem_alloc);
1339 offset += len;
1340 size -= len;
1341 }
1342 return 0;
1343
1344 error:
1345 cork->length -= size;
1346 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1347 return err;
1348 }
1349
1350 static void ip_cork_release(struct inet_cork *cork)
1351 {
1352 cork->flags &= ~IPCORK_OPT;
1353 kfree(cork->opt);
1354 cork->opt = NULL;
1355 dst_release(cork->dst);
1356 cork->dst = NULL;
1357 }
1358
1359 /*
1360 * Combined all pending IP fragments on the socket as one IP datagram
1361 * and push them out.
1362 */
1363 struct sk_buff *__ip_make_skb(struct sock *sk,
1364 struct flowi4 *fl4,
1365 struct sk_buff_head *queue,
1366 struct inet_cork *cork)
1367 {
1368 struct sk_buff *skb, *tmp_skb;
1369 struct sk_buff **tail_skb;
1370 struct inet_sock *inet = inet_sk(sk);
1371 struct net *net = sock_net(sk);
1372 struct ip_options *opt = NULL;
1373 struct rtable *rt = (struct rtable *)cork->dst;
1374 struct iphdr *iph;
1375 __be16 df = 0;
1376 __u8 ttl;
1377
1378 skb = __skb_dequeue(queue);
1379 if (!skb)
1380 goto out;
1381 tail_skb = &(skb_shinfo(skb)->frag_list);
1382
1383 /* move skb->data to ip header from ext header */
1384 if (skb->data < skb_network_header(skb))
1385 __skb_pull(skb, skb_network_offset(skb));
1386 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1387 __skb_pull(tmp_skb, skb_network_header_len(skb));
1388 *tail_skb = tmp_skb;
1389 tail_skb = &(tmp_skb->next);
1390 skb->len += tmp_skb->len;
1391 skb->data_len += tmp_skb->len;
1392 skb->truesize += tmp_skb->truesize;
1393 tmp_skb->destructor = NULL;
1394 tmp_skb->sk = NULL;
1395 }
1396
1397 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1398 * to fragment the frame generated here. No matter, what transforms
1399 * how transforms change size of the packet, it will come out.
1400 */
1401 skb->ignore_df = ip_sk_ignore_df(sk);
1402
1403 /* DF bit is set when we want to see DF on outgoing frames.
1404 * If ignore_df is set too, we still allow to fragment this frame
1405 * locally. */
1406 if (inet->pmtudisc == IP_PMTUDISC_DO ||
1407 inet->pmtudisc == IP_PMTUDISC_PROBE ||
1408 (skb->len <= dst_mtu(&rt->dst) &&
1409 ip_dont_fragment(sk, &rt->dst)))
1410 df = htons(IP_DF);
1411
1412 if (cork->flags & IPCORK_OPT)
1413 opt = cork->opt;
1414
1415 if (cork->ttl != 0)
1416 ttl = cork->ttl;
1417 else if (rt->rt_type == RTN_MULTICAST)
1418 ttl = inet->mc_ttl;
1419 else
1420 ttl = ip_select_ttl(inet, &rt->dst);
1421
1422 iph = ip_hdr(skb);
1423 iph->version = 4;
1424 iph->ihl = 5;
1425 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1426 iph->frag_off = df;
1427 iph->ttl = ttl;
1428 iph->protocol = sk->sk_protocol;
1429 ip_copy_addrs(iph, fl4);
1430 ip_select_ident(net, skb, sk);
1431
1432 if (opt) {
1433 iph->ihl += opt->optlen>>2;
1434 ip_options_build(skb, opt, cork->addr, rt, 0);
1435 }
1436
1437 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1438 skb->mark = sk->sk_mark;
1439 /*
1440 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1441 * on dst refcount
1442 */
1443 cork->dst = NULL;
1444 skb_dst_set(skb, &rt->dst);
1445
1446 if (iph->protocol == IPPROTO_ICMP)
1447 icmp_out_count(net, ((struct icmphdr *)
1448 skb_transport_header(skb))->type);
1449
1450 ip_cork_release(cork);
1451 out:
1452 return skb;
1453 }
1454
1455 int ip_send_skb(struct net *net, struct sk_buff *skb)
1456 {
1457 int err;
1458
1459 err = ip_local_out(net, skb->sk, skb);
1460 if (err) {
1461 if (err > 0)
1462 err = net_xmit_errno(err);
1463 if (err)
1464 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1465 }
1466
1467 return err;
1468 }
1469
1470 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1471 {
1472 struct sk_buff *skb;
1473
1474 skb = ip_finish_skb(sk, fl4);
1475 if (!skb)
1476 return 0;
1477
1478 /* Netfilter gets whole the not fragmented skb. */
1479 return ip_send_skb(sock_net(sk), skb);
1480 }
1481
1482 /*
1483 * Throw away all pending data on the socket.
1484 */
1485 static void __ip_flush_pending_frames(struct sock *sk,
1486 struct sk_buff_head *queue,
1487 struct inet_cork *cork)
1488 {
1489 struct sk_buff *skb;
1490
1491 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1492 kfree_skb(skb);
1493
1494 ip_cork_release(cork);
1495 }
1496
1497 void ip_flush_pending_frames(struct sock *sk)
1498 {
1499 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1500 }
1501
1502 struct sk_buff *ip_make_skb(struct sock *sk,
1503 struct flowi4 *fl4,
1504 int getfrag(void *from, char *to, int offset,
1505 int len, int odd, struct sk_buff *skb),
1506 void *from, int length, int transhdrlen,
1507 struct ipcm_cookie *ipc, struct rtable **rtp,
1508 unsigned int flags)
1509 {
1510 struct inet_cork cork;
1511 struct sk_buff_head queue;
1512 int err;
1513
1514 if (flags & MSG_PROBE)
1515 return NULL;
1516
1517 __skb_queue_head_init(&queue);
1518
1519 cork.flags = 0;
1520 cork.addr = 0;
1521 cork.opt = NULL;
1522 err = ip_setup_cork(sk, &cork, ipc, rtp);
1523 if (err)
1524 return ERR_PTR(err);
1525
1526 err = __ip_append_data(sk, fl4, &queue, &cork,
1527 &current->task_frag, getfrag,
1528 from, length, transhdrlen, flags);
1529 if (err) {
1530 __ip_flush_pending_frames(sk, &queue, &cork);
1531 return ERR_PTR(err);
1532 }
1533
1534 return __ip_make_skb(sk, fl4, &queue, &cork);
1535 }
1536
1537 /*
1538 * Fetch data from kernel space and fill in checksum if needed.
1539 */
1540 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1541 int len, int odd, struct sk_buff *skb)
1542 {
1543 __wsum csum;
1544
1545 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1546 skb->csum = csum_block_add(skb->csum, csum, odd);
1547 return 0;
1548 }
1549
1550 /*
1551 * Generic function to send a packet as reply to another packet.
1552 * Used to send some TCP resets/acks so far.
1553 */
1554 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1555 const struct ip_options *sopt,
1556 __be32 daddr, __be32 saddr,
1557 const struct ip_reply_arg *arg,
1558 unsigned int len)
1559 {
1560 struct ip_options_data replyopts;
1561 struct ipcm_cookie ipc;
1562 struct flowi4 fl4;
1563 struct rtable *rt = skb_rtable(skb);
1564 struct net *net = sock_net(sk);
1565 struct sk_buff *nskb;
1566 int err;
1567 int oif;
1568
1569 if (__ip_options_echo(&replyopts.opt.opt, skb, sopt))
1570 return;
1571
1572 ipc.addr = daddr;
1573 ipc.opt = NULL;
1574 ipc.tx_flags = 0;
1575 ipc.ttl = 0;
1576 ipc.tos = -1;
1577
1578 if (replyopts.opt.opt.optlen) {
1579 ipc.opt = &replyopts.opt;
1580
1581 if (replyopts.opt.opt.srr)
1582 daddr = replyopts.opt.opt.faddr;
1583 }
1584
1585 oif = arg->bound_dev_if;
1586 if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1587 oif = skb->skb_iif;
1588
1589 flowi4_init_output(&fl4, oif,
1590 IP4_REPLY_MARK(net, skb->mark),
1591 RT_TOS(arg->tos),
1592 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1593 ip_reply_arg_flowi_flags(arg),
1594 daddr, saddr,
1595 tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1596 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1597 rt = ip_route_output_key(net, &fl4);
1598 if (IS_ERR(rt))
1599 return;
1600
1601 inet_sk(sk)->tos = arg->tos;
1602
1603 sk->sk_priority = skb->priority;
1604 sk->sk_protocol = ip_hdr(skb)->protocol;
1605 sk->sk_bound_dev_if = arg->bound_dev_if;
1606 sk->sk_sndbuf = sysctl_wmem_default;
1607 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1608 len, 0, &ipc, &rt, MSG_DONTWAIT);
1609 if (unlikely(err)) {
1610 ip_flush_pending_frames(sk);
1611 goto out;
1612 }
1613
1614 nskb = skb_peek(&sk->sk_write_queue);
1615 if (nskb) {
1616 if (arg->csumoffset >= 0)
1617 *((__sum16 *)skb_transport_header(nskb) +
1618 arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1619 arg->csum));
1620 nskb->ip_summed = CHECKSUM_NONE;
1621 ip_push_pending_frames(sk, &fl4);
1622 }
1623 out:
1624 ip_rt_put(rt);
1625 }
1626
1627 void __init ip_init(void)
1628 {
1629 ip_rt_init();
1630 inet_initpeers();
1631
1632 #if defined(CONFIG_IP_MULTICAST)
1633 igmp_mc_init();
1634 #endif
1635 }