]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/ipv4/ip_output.c
ipv4: Make output route lookup return rtable directly.
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / ip_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The Internet Protocol (IP) output module.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
12 * Richard Underwood
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
17 *
18 * See ip_input.c for original log
19 *
20 * Fixes:
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
24 * no route is found.
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
41 * datagrams.
42 * Hirokazu Takahashi: sendfile() on UDP works now.
43 */
44
45 #include <asm/uaccess.h>
46 #include <asm/system.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
55
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
58 #include <linux/in.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
65
66 #include <net/snmp.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/xfrm.h>
71 #include <linux/skbuff.h>
72 #include <net/sock.h>
73 #include <net/arp.h>
74 #include <net/icmp.h>
75 #include <net/checksum.h>
76 #include <net/inetpeer.h>
77 #include <linux/igmp.h>
78 #include <linux/netfilter_ipv4.h>
79 #include <linux/netfilter_bridge.h>
80 #include <linux/mroute.h>
81 #include <linux/netlink.h>
82 #include <linux/tcp.h>
83
84 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
85 EXPORT_SYMBOL(sysctl_ip_default_ttl);
86
87 /* Generate a checksum for an outgoing IP datagram. */
88 __inline__ void ip_send_check(struct iphdr *iph)
89 {
90 iph->check = 0;
91 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
92 }
93 EXPORT_SYMBOL(ip_send_check);
94
95 int __ip_local_out(struct sk_buff *skb)
96 {
97 struct iphdr *iph = ip_hdr(skb);
98
99 iph->tot_len = htons(skb->len);
100 ip_send_check(iph);
101 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, skb, NULL,
102 skb_dst(skb)->dev, dst_output);
103 }
104
105 int ip_local_out(struct sk_buff *skb)
106 {
107 int err;
108
109 err = __ip_local_out(skb);
110 if (likely(err == 1))
111 err = dst_output(skb);
112
113 return err;
114 }
115 EXPORT_SYMBOL_GPL(ip_local_out);
116
117 /* dev_loopback_xmit for use with netfilter. */
118 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
119 {
120 skb_reset_mac_header(newskb);
121 __skb_pull(newskb, skb_network_offset(newskb));
122 newskb->pkt_type = PACKET_LOOPBACK;
123 newskb->ip_summed = CHECKSUM_UNNECESSARY;
124 WARN_ON(!skb_dst(newskb));
125 netif_rx_ni(newskb);
126 return 0;
127 }
128
129 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
130 {
131 int ttl = inet->uc_ttl;
132
133 if (ttl < 0)
134 ttl = ip4_dst_hoplimit(dst);
135 return ttl;
136 }
137
138 /*
139 * Add an ip header to a skbuff and send it out.
140 *
141 */
142 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
143 __be32 saddr, __be32 daddr, struct ip_options *opt)
144 {
145 struct inet_sock *inet = inet_sk(sk);
146 struct rtable *rt = skb_rtable(skb);
147 struct iphdr *iph;
148
149 /* Build the IP header. */
150 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
151 skb_reset_network_header(skb);
152 iph = ip_hdr(skb);
153 iph->version = 4;
154 iph->ihl = 5;
155 iph->tos = inet->tos;
156 if (ip_dont_fragment(sk, &rt->dst))
157 iph->frag_off = htons(IP_DF);
158 else
159 iph->frag_off = 0;
160 iph->ttl = ip_select_ttl(inet, &rt->dst);
161 iph->daddr = rt->rt_dst;
162 iph->saddr = rt->rt_src;
163 iph->protocol = sk->sk_protocol;
164 ip_select_ident(iph, &rt->dst, sk);
165
166 if (opt && opt->optlen) {
167 iph->ihl += opt->optlen>>2;
168 ip_options_build(skb, opt, daddr, rt, 0);
169 }
170
171 skb->priority = sk->sk_priority;
172 skb->mark = sk->sk_mark;
173
174 /* Send it out. */
175 return ip_local_out(skb);
176 }
177 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
178
179 static inline int ip_finish_output2(struct sk_buff *skb)
180 {
181 struct dst_entry *dst = skb_dst(skb);
182 struct rtable *rt = (struct rtable *)dst;
183 struct net_device *dev = dst->dev;
184 unsigned int hh_len = LL_RESERVED_SPACE(dev);
185
186 if (rt->rt_type == RTN_MULTICAST) {
187 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
188 } else if (rt->rt_type == RTN_BROADCAST)
189 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
190
191 /* Be paranoid, rather than too clever. */
192 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
193 struct sk_buff *skb2;
194
195 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
196 if (skb2 == NULL) {
197 kfree_skb(skb);
198 return -ENOMEM;
199 }
200 if (skb->sk)
201 skb_set_owner_w(skb2, skb->sk);
202 kfree_skb(skb);
203 skb = skb2;
204 }
205
206 if (dst->hh)
207 return neigh_hh_output(dst->hh, skb);
208 else if (dst->neighbour)
209 return dst->neighbour->output(skb);
210
211 if (net_ratelimit())
212 printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
213 kfree_skb(skb);
214 return -EINVAL;
215 }
216
217 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
218 {
219 struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
220
221 return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
222 skb_dst(skb)->dev->mtu : dst_mtu(skb_dst(skb));
223 }
224
225 static int ip_finish_output(struct sk_buff *skb)
226 {
227 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
228 /* Policy lookup after SNAT yielded a new policy */
229 if (skb_dst(skb)->xfrm != NULL) {
230 IPCB(skb)->flags |= IPSKB_REROUTED;
231 return dst_output(skb);
232 }
233 #endif
234 if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
235 return ip_fragment(skb, ip_finish_output2);
236 else
237 return ip_finish_output2(skb);
238 }
239
240 int ip_mc_output(struct sk_buff *skb)
241 {
242 struct sock *sk = skb->sk;
243 struct rtable *rt = skb_rtable(skb);
244 struct net_device *dev = rt->dst.dev;
245
246 /*
247 * If the indicated interface is up and running, send the packet.
248 */
249 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
250
251 skb->dev = dev;
252 skb->protocol = htons(ETH_P_IP);
253
254 /*
255 * Multicasts are looped back for other local users
256 */
257
258 if (rt->rt_flags&RTCF_MULTICAST) {
259 if (sk_mc_loop(sk)
260 #ifdef CONFIG_IP_MROUTE
261 /* Small optimization: do not loopback not local frames,
262 which returned after forwarding; they will be dropped
263 by ip_mr_input in any case.
264 Note, that local frames are looped back to be delivered
265 to local recipients.
266
267 This check is duplicated in ip_mr_input at the moment.
268 */
269 &&
270 ((rt->rt_flags & RTCF_LOCAL) ||
271 !(IPCB(skb)->flags & IPSKB_FORWARDED))
272 #endif
273 ) {
274 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
275 if (newskb)
276 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
277 newskb, NULL, newskb->dev,
278 ip_dev_loopback_xmit);
279 }
280
281 /* Multicasts with ttl 0 must not go beyond the host */
282
283 if (ip_hdr(skb)->ttl == 0) {
284 kfree_skb(skb);
285 return 0;
286 }
287 }
288
289 if (rt->rt_flags&RTCF_BROADCAST) {
290 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
291 if (newskb)
292 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, newskb,
293 NULL, newskb->dev, ip_dev_loopback_xmit);
294 }
295
296 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL,
297 skb->dev, ip_finish_output,
298 !(IPCB(skb)->flags & IPSKB_REROUTED));
299 }
300
301 int ip_output(struct sk_buff *skb)
302 {
303 struct net_device *dev = skb_dst(skb)->dev;
304
305 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
306
307 skb->dev = dev;
308 skb->protocol = htons(ETH_P_IP);
309
310 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL, dev,
311 ip_finish_output,
312 !(IPCB(skb)->flags & IPSKB_REROUTED));
313 }
314
315 int ip_queue_xmit(struct sk_buff *skb)
316 {
317 struct sock *sk = skb->sk;
318 struct inet_sock *inet = inet_sk(sk);
319 struct ip_options *opt = inet->opt;
320 struct rtable *rt;
321 struct iphdr *iph;
322 int res;
323
324 /* Skip all of this if the packet is already routed,
325 * f.e. by something like SCTP.
326 */
327 rcu_read_lock();
328 rt = skb_rtable(skb);
329 if (rt != NULL)
330 goto packet_routed;
331
332 /* Make sure we can route this packet. */
333 rt = (struct rtable *)__sk_dst_check(sk, 0);
334 if (rt == NULL) {
335 __be32 daddr;
336
337 /* Use correct destination address if we have options. */
338 daddr = inet->inet_daddr;
339 if(opt && opt->srr)
340 daddr = opt->faddr;
341
342 {
343 struct flowi fl = { .oif = sk->sk_bound_dev_if,
344 .mark = sk->sk_mark,
345 .fl4_dst = daddr,
346 .fl4_src = inet->inet_saddr,
347 .fl4_tos = RT_CONN_FLAGS(sk),
348 .proto = sk->sk_protocol,
349 .flags = inet_sk_flowi_flags(sk),
350 .fl_ip_sport = inet->inet_sport,
351 .fl_ip_dport = inet->inet_dport };
352
353 /* If this fails, retransmit mechanism of transport layer will
354 * keep trying until route appears or the connection times
355 * itself out.
356 */
357 security_sk_classify_flow(sk, &fl);
358 rt = ip_route_output_flow(sock_net(sk), &fl, sk);
359 if (IS_ERR(rt))
360 goto no_route;
361 }
362 sk_setup_caps(sk, &rt->dst);
363 }
364 skb_dst_set_noref(skb, &rt->dst);
365
366 packet_routed:
367 if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
368 goto no_route;
369
370 /* OK, we know where to send it, allocate and build IP header. */
371 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
372 skb_reset_network_header(skb);
373 iph = ip_hdr(skb);
374 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
375 if (ip_dont_fragment(sk, &rt->dst) && !skb->local_df)
376 iph->frag_off = htons(IP_DF);
377 else
378 iph->frag_off = 0;
379 iph->ttl = ip_select_ttl(inet, &rt->dst);
380 iph->protocol = sk->sk_protocol;
381 iph->saddr = rt->rt_src;
382 iph->daddr = rt->rt_dst;
383 /* Transport layer set skb->h.foo itself. */
384
385 if (opt && opt->optlen) {
386 iph->ihl += opt->optlen >> 2;
387 ip_options_build(skb, opt, inet->inet_daddr, rt, 0);
388 }
389
390 ip_select_ident_more(iph, &rt->dst, sk,
391 (skb_shinfo(skb)->gso_segs ?: 1) - 1);
392
393 skb->priority = sk->sk_priority;
394 skb->mark = sk->sk_mark;
395
396 res = ip_local_out(skb);
397 rcu_read_unlock();
398 return res;
399
400 no_route:
401 rcu_read_unlock();
402 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
403 kfree_skb(skb);
404 return -EHOSTUNREACH;
405 }
406 EXPORT_SYMBOL(ip_queue_xmit);
407
408
409 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
410 {
411 to->pkt_type = from->pkt_type;
412 to->priority = from->priority;
413 to->protocol = from->protocol;
414 skb_dst_drop(to);
415 skb_dst_copy(to, from);
416 to->dev = from->dev;
417 to->mark = from->mark;
418
419 /* Copy the flags to each fragment. */
420 IPCB(to)->flags = IPCB(from)->flags;
421
422 #ifdef CONFIG_NET_SCHED
423 to->tc_index = from->tc_index;
424 #endif
425 nf_copy(to, from);
426 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
427 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
428 to->nf_trace = from->nf_trace;
429 #endif
430 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
431 to->ipvs_property = from->ipvs_property;
432 #endif
433 skb_copy_secmark(to, from);
434 }
435
436 /*
437 * This IP datagram is too large to be sent in one piece. Break it up into
438 * smaller pieces (each of size equal to IP header plus
439 * a block of the data of the original IP data part) that will yet fit in a
440 * single device frame, and queue such a frame for sending.
441 */
442
443 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
444 {
445 struct iphdr *iph;
446 int ptr;
447 struct net_device *dev;
448 struct sk_buff *skb2;
449 unsigned int mtu, hlen, left, len, ll_rs;
450 int offset;
451 __be16 not_last_frag;
452 struct rtable *rt = skb_rtable(skb);
453 int err = 0;
454
455 dev = rt->dst.dev;
456
457 /*
458 * Point into the IP datagram header.
459 */
460
461 iph = ip_hdr(skb);
462
463 if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
464 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
465 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
466 htonl(ip_skb_dst_mtu(skb)));
467 kfree_skb(skb);
468 return -EMSGSIZE;
469 }
470
471 /*
472 * Setup starting values.
473 */
474
475 hlen = iph->ihl * 4;
476 mtu = dst_mtu(&rt->dst) - hlen; /* Size of data space */
477 #ifdef CONFIG_BRIDGE_NETFILTER
478 if (skb->nf_bridge)
479 mtu -= nf_bridge_mtu_reduction(skb);
480 #endif
481 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
482
483 /* When frag_list is given, use it. First, check its validity:
484 * some transformers could create wrong frag_list or break existing
485 * one, it is not prohibited. In this case fall back to copying.
486 *
487 * LATER: this step can be merged to real generation of fragments,
488 * we can switch to copy when see the first bad fragment.
489 */
490 if (skb_has_frag_list(skb)) {
491 struct sk_buff *frag, *frag2;
492 int first_len = skb_pagelen(skb);
493
494 if (first_len - hlen > mtu ||
495 ((first_len - hlen) & 7) ||
496 (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
497 skb_cloned(skb))
498 goto slow_path;
499
500 skb_walk_frags(skb, frag) {
501 /* Correct geometry. */
502 if (frag->len > mtu ||
503 ((frag->len & 7) && frag->next) ||
504 skb_headroom(frag) < hlen)
505 goto slow_path_clean;
506
507 /* Partially cloned skb? */
508 if (skb_shared(frag))
509 goto slow_path_clean;
510
511 BUG_ON(frag->sk);
512 if (skb->sk) {
513 frag->sk = skb->sk;
514 frag->destructor = sock_wfree;
515 }
516 skb->truesize -= frag->truesize;
517 }
518
519 /* Everything is OK. Generate! */
520
521 err = 0;
522 offset = 0;
523 frag = skb_shinfo(skb)->frag_list;
524 skb_frag_list_init(skb);
525 skb->data_len = first_len - skb_headlen(skb);
526 skb->len = first_len;
527 iph->tot_len = htons(first_len);
528 iph->frag_off = htons(IP_MF);
529 ip_send_check(iph);
530
531 for (;;) {
532 /* Prepare header of the next frame,
533 * before previous one went down. */
534 if (frag) {
535 frag->ip_summed = CHECKSUM_NONE;
536 skb_reset_transport_header(frag);
537 __skb_push(frag, hlen);
538 skb_reset_network_header(frag);
539 memcpy(skb_network_header(frag), iph, hlen);
540 iph = ip_hdr(frag);
541 iph->tot_len = htons(frag->len);
542 ip_copy_metadata(frag, skb);
543 if (offset == 0)
544 ip_options_fragment(frag);
545 offset += skb->len - hlen;
546 iph->frag_off = htons(offset>>3);
547 if (frag->next != NULL)
548 iph->frag_off |= htons(IP_MF);
549 /* Ready, complete checksum */
550 ip_send_check(iph);
551 }
552
553 err = output(skb);
554
555 if (!err)
556 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
557 if (err || !frag)
558 break;
559
560 skb = frag;
561 frag = skb->next;
562 skb->next = NULL;
563 }
564
565 if (err == 0) {
566 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
567 return 0;
568 }
569
570 while (frag) {
571 skb = frag->next;
572 kfree_skb(frag);
573 frag = skb;
574 }
575 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
576 return err;
577
578 slow_path_clean:
579 skb_walk_frags(skb, frag2) {
580 if (frag2 == frag)
581 break;
582 frag2->sk = NULL;
583 frag2->destructor = NULL;
584 skb->truesize += frag2->truesize;
585 }
586 }
587
588 slow_path:
589 left = skb->len - hlen; /* Space per frame */
590 ptr = hlen; /* Where to start from */
591
592 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
593 * we need to make room for the encapsulating header
594 */
595 ll_rs = LL_RESERVED_SPACE_EXTRA(rt->dst.dev, nf_bridge_pad(skb));
596
597 /*
598 * Fragment the datagram.
599 */
600
601 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
602 not_last_frag = iph->frag_off & htons(IP_MF);
603
604 /*
605 * Keep copying data until we run out.
606 */
607
608 while (left > 0) {
609 len = left;
610 /* IF: it doesn't fit, use 'mtu' - the data space left */
611 if (len > mtu)
612 len = mtu;
613 /* IF: we are not sending upto and including the packet end
614 then align the next start on an eight byte boundary */
615 if (len < left) {
616 len &= ~7;
617 }
618 /*
619 * Allocate buffer.
620 */
621
622 if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
623 NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
624 err = -ENOMEM;
625 goto fail;
626 }
627
628 /*
629 * Set up data on packet
630 */
631
632 ip_copy_metadata(skb2, skb);
633 skb_reserve(skb2, ll_rs);
634 skb_put(skb2, len + hlen);
635 skb_reset_network_header(skb2);
636 skb2->transport_header = skb2->network_header + hlen;
637
638 /*
639 * Charge the memory for the fragment to any owner
640 * it might possess
641 */
642
643 if (skb->sk)
644 skb_set_owner_w(skb2, skb->sk);
645
646 /*
647 * Copy the packet header into the new buffer.
648 */
649
650 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
651
652 /*
653 * Copy a block of the IP datagram.
654 */
655 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
656 BUG();
657 left -= len;
658
659 /*
660 * Fill in the new header fields.
661 */
662 iph = ip_hdr(skb2);
663 iph->frag_off = htons((offset >> 3));
664
665 /* ANK: dirty, but effective trick. Upgrade options only if
666 * the segment to be fragmented was THE FIRST (otherwise,
667 * options are already fixed) and make it ONCE
668 * on the initial skb, so that all the following fragments
669 * will inherit fixed options.
670 */
671 if (offset == 0)
672 ip_options_fragment(skb);
673
674 /*
675 * Added AC : If we are fragmenting a fragment that's not the
676 * last fragment then keep MF on each bit
677 */
678 if (left > 0 || not_last_frag)
679 iph->frag_off |= htons(IP_MF);
680 ptr += len;
681 offset += len;
682
683 /*
684 * Put this fragment into the sending queue.
685 */
686 iph->tot_len = htons(len + hlen);
687
688 ip_send_check(iph);
689
690 err = output(skb2);
691 if (err)
692 goto fail;
693
694 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
695 }
696 kfree_skb(skb);
697 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
698 return err;
699
700 fail:
701 kfree_skb(skb);
702 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
703 return err;
704 }
705 EXPORT_SYMBOL(ip_fragment);
706
707 int
708 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
709 {
710 struct iovec *iov = from;
711
712 if (skb->ip_summed == CHECKSUM_PARTIAL) {
713 if (memcpy_fromiovecend(to, iov, offset, len) < 0)
714 return -EFAULT;
715 } else {
716 __wsum csum = 0;
717 if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
718 return -EFAULT;
719 skb->csum = csum_block_add(skb->csum, csum, odd);
720 }
721 return 0;
722 }
723 EXPORT_SYMBOL(ip_generic_getfrag);
724
725 static inline __wsum
726 csum_page(struct page *page, int offset, int copy)
727 {
728 char *kaddr;
729 __wsum csum;
730 kaddr = kmap(page);
731 csum = csum_partial(kaddr + offset, copy, 0);
732 kunmap(page);
733 return csum;
734 }
735
736 static inline int ip_ufo_append_data(struct sock *sk,
737 struct sk_buff_head *queue,
738 int getfrag(void *from, char *to, int offset, int len,
739 int odd, struct sk_buff *skb),
740 void *from, int length, int hh_len, int fragheaderlen,
741 int transhdrlen, int mtu, unsigned int flags)
742 {
743 struct sk_buff *skb;
744 int err;
745
746 /* There is support for UDP fragmentation offload by network
747 * device, so create one single skb packet containing complete
748 * udp datagram
749 */
750 if ((skb = skb_peek_tail(queue)) == NULL) {
751 skb = sock_alloc_send_skb(sk,
752 hh_len + fragheaderlen + transhdrlen + 20,
753 (flags & MSG_DONTWAIT), &err);
754
755 if (skb == NULL)
756 return err;
757
758 /* reserve space for Hardware header */
759 skb_reserve(skb, hh_len);
760
761 /* create space for UDP/IP header */
762 skb_put(skb, fragheaderlen + transhdrlen);
763
764 /* initialize network header pointer */
765 skb_reset_network_header(skb);
766
767 /* initialize protocol header pointer */
768 skb->transport_header = skb->network_header + fragheaderlen;
769
770 skb->ip_summed = CHECKSUM_PARTIAL;
771 skb->csum = 0;
772
773 /* specify the length of each IP datagram fragment */
774 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
775 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
776 __skb_queue_tail(queue, skb);
777 }
778
779 return skb_append_datato_frags(sk, skb, getfrag, from,
780 (length - transhdrlen));
781 }
782
783 static int __ip_append_data(struct sock *sk, struct sk_buff_head *queue,
784 struct inet_cork *cork,
785 int getfrag(void *from, char *to, int offset,
786 int len, int odd, struct sk_buff *skb),
787 void *from, int length, int transhdrlen,
788 unsigned int flags)
789 {
790 struct inet_sock *inet = inet_sk(sk);
791 struct sk_buff *skb;
792
793 struct ip_options *opt = cork->opt;
794 int hh_len;
795 int exthdrlen;
796 int mtu;
797 int copy;
798 int err;
799 int offset = 0;
800 unsigned int maxfraglen, fragheaderlen;
801 int csummode = CHECKSUM_NONE;
802 struct rtable *rt = (struct rtable *)cork->dst;
803
804 exthdrlen = transhdrlen ? rt->dst.header_len : 0;
805 length += exthdrlen;
806 transhdrlen += exthdrlen;
807 mtu = cork->fragsize;
808
809 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
810
811 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
812 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
813
814 if (cork->length + length > 0xFFFF - fragheaderlen) {
815 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->inet_dport,
816 mtu-exthdrlen);
817 return -EMSGSIZE;
818 }
819
820 /*
821 * transhdrlen > 0 means that this is the first fragment and we wish
822 * it won't be fragmented in the future.
823 */
824 if (transhdrlen &&
825 length + fragheaderlen <= mtu &&
826 rt->dst.dev->features & NETIF_F_V4_CSUM &&
827 !exthdrlen)
828 csummode = CHECKSUM_PARTIAL;
829
830 skb = skb_peek_tail(queue);
831
832 cork->length += length;
833 if (((length > mtu) || (skb && skb_is_gso(skb))) &&
834 (sk->sk_protocol == IPPROTO_UDP) &&
835 (rt->dst.dev->features & NETIF_F_UFO)) {
836 err = ip_ufo_append_data(sk, queue, getfrag, from, length,
837 hh_len, fragheaderlen, transhdrlen,
838 mtu, flags);
839 if (err)
840 goto error;
841 return 0;
842 }
843
844 /* So, what's going on in the loop below?
845 *
846 * We use calculated fragment length to generate chained skb,
847 * each of segments is IP fragment ready for sending to network after
848 * adding appropriate IP header.
849 */
850
851 if (!skb)
852 goto alloc_new_skb;
853
854 while (length > 0) {
855 /* Check if the remaining data fits into current packet. */
856 copy = mtu - skb->len;
857 if (copy < length)
858 copy = maxfraglen - skb->len;
859 if (copy <= 0) {
860 char *data;
861 unsigned int datalen;
862 unsigned int fraglen;
863 unsigned int fraggap;
864 unsigned int alloclen;
865 struct sk_buff *skb_prev;
866 alloc_new_skb:
867 skb_prev = skb;
868 if (skb_prev)
869 fraggap = skb_prev->len - maxfraglen;
870 else
871 fraggap = 0;
872
873 /*
874 * If remaining data exceeds the mtu,
875 * we know we need more fragment(s).
876 */
877 datalen = length + fraggap;
878 if (datalen > mtu - fragheaderlen)
879 datalen = maxfraglen - fragheaderlen;
880 fraglen = datalen + fragheaderlen;
881
882 if ((flags & MSG_MORE) &&
883 !(rt->dst.dev->features&NETIF_F_SG))
884 alloclen = mtu;
885 else
886 alloclen = fraglen;
887
888 /* The last fragment gets additional space at tail.
889 * Note, with MSG_MORE we overallocate on fragments,
890 * because we have no idea what fragment will be
891 * the last.
892 */
893 if (datalen == length + fraggap) {
894 alloclen += rt->dst.trailer_len;
895 /* make sure mtu is not reached */
896 if (datalen > mtu - fragheaderlen - rt->dst.trailer_len)
897 datalen -= ALIGN(rt->dst.trailer_len, 8);
898 }
899 if (transhdrlen) {
900 skb = sock_alloc_send_skb(sk,
901 alloclen + hh_len + 15,
902 (flags & MSG_DONTWAIT), &err);
903 } else {
904 skb = NULL;
905 if (atomic_read(&sk->sk_wmem_alloc) <=
906 2 * sk->sk_sndbuf)
907 skb = sock_wmalloc(sk,
908 alloclen + hh_len + 15, 1,
909 sk->sk_allocation);
910 if (unlikely(skb == NULL))
911 err = -ENOBUFS;
912 else
913 /* only the initial fragment is
914 time stamped */
915 cork->tx_flags = 0;
916 }
917 if (skb == NULL)
918 goto error;
919
920 /*
921 * Fill in the control structures
922 */
923 skb->ip_summed = csummode;
924 skb->csum = 0;
925 skb_reserve(skb, hh_len);
926 skb_shinfo(skb)->tx_flags = cork->tx_flags;
927
928 /*
929 * Find where to start putting bytes.
930 */
931 data = skb_put(skb, fraglen);
932 skb_set_network_header(skb, exthdrlen);
933 skb->transport_header = (skb->network_header +
934 fragheaderlen);
935 data += fragheaderlen;
936
937 if (fraggap) {
938 skb->csum = skb_copy_and_csum_bits(
939 skb_prev, maxfraglen,
940 data + transhdrlen, fraggap, 0);
941 skb_prev->csum = csum_sub(skb_prev->csum,
942 skb->csum);
943 data += fraggap;
944 pskb_trim_unique(skb_prev, maxfraglen);
945 }
946
947 copy = datalen - transhdrlen - fraggap;
948 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
949 err = -EFAULT;
950 kfree_skb(skb);
951 goto error;
952 }
953
954 offset += copy;
955 length -= datalen - fraggap;
956 transhdrlen = 0;
957 exthdrlen = 0;
958 csummode = CHECKSUM_NONE;
959
960 /*
961 * Put the packet on the pending queue.
962 */
963 __skb_queue_tail(queue, skb);
964 continue;
965 }
966
967 if (copy > length)
968 copy = length;
969
970 if (!(rt->dst.dev->features&NETIF_F_SG)) {
971 unsigned int off;
972
973 off = skb->len;
974 if (getfrag(from, skb_put(skb, copy),
975 offset, copy, off, skb) < 0) {
976 __skb_trim(skb, off);
977 err = -EFAULT;
978 goto error;
979 }
980 } else {
981 int i = skb_shinfo(skb)->nr_frags;
982 skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
983 struct page *page = cork->page;
984 int off = cork->off;
985 unsigned int left;
986
987 if (page && (left = PAGE_SIZE - off) > 0) {
988 if (copy >= left)
989 copy = left;
990 if (page != frag->page) {
991 if (i == MAX_SKB_FRAGS) {
992 err = -EMSGSIZE;
993 goto error;
994 }
995 get_page(page);
996 skb_fill_page_desc(skb, i, page, off, 0);
997 frag = &skb_shinfo(skb)->frags[i];
998 }
999 } else if (i < MAX_SKB_FRAGS) {
1000 if (copy > PAGE_SIZE)
1001 copy = PAGE_SIZE;
1002 page = alloc_pages(sk->sk_allocation, 0);
1003 if (page == NULL) {
1004 err = -ENOMEM;
1005 goto error;
1006 }
1007 cork->page = page;
1008 cork->off = 0;
1009
1010 skb_fill_page_desc(skb, i, page, 0, 0);
1011 frag = &skb_shinfo(skb)->frags[i];
1012 } else {
1013 err = -EMSGSIZE;
1014 goto error;
1015 }
1016 if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1017 err = -EFAULT;
1018 goto error;
1019 }
1020 cork->off += copy;
1021 frag->size += copy;
1022 skb->len += copy;
1023 skb->data_len += copy;
1024 skb->truesize += copy;
1025 atomic_add(copy, &sk->sk_wmem_alloc);
1026 }
1027 offset += copy;
1028 length -= copy;
1029 }
1030
1031 return 0;
1032
1033 error:
1034 cork->length -= length;
1035 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1036 return err;
1037 }
1038
1039 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1040 struct ipcm_cookie *ipc, struct rtable **rtp)
1041 {
1042 struct inet_sock *inet = inet_sk(sk);
1043 struct ip_options *opt;
1044 struct rtable *rt;
1045
1046 /*
1047 * setup for corking.
1048 */
1049 opt = ipc->opt;
1050 if (opt) {
1051 if (cork->opt == NULL) {
1052 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1053 sk->sk_allocation);
1054 if (unlikely(cork->opt == NULL))
1055 return -ENOBUFS;
1056 }
1057 memcpy(cork->opt, opt, sizeof(struct ip_options) + opt->optlen);
1058 cork->flags |= IPCORK_OPT;
1059 cork->addr = ipc->addr;
1060 }
1061 rt = *rtp;
1062 if (unlikely(!rt))
1063 return -EFAULT;
1064 /*
1065 * We steal reference to this route, caller should not release it
1066 */
1067 *rtp = NULL;
1068 cork->fragsize = inet->pmtudisc == IP_PMTUDISC_PROBE ?
1069 rt->dst.dev->mtu : dst_mtu(rt->dst.path);
1070 cork->dst = &rt->dst;
1071 cork->length = 0;
1072 cork->tx_flags = ipc->tx_flags;
1073 cork->page = NULL;
1074 cork->off = 0;
1075
1076 return 0;
1077 }
1078
1079 /*
1080 * ip_append_data() and ip_append_page() can make one large IP datagram
1081 * from many pieces of data. Each pieces will be holded on the socket
1082 * until ip_push_pending_frames() is called. Each piece can be a page
1083 * or non-page data.
1084 *
1085 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1086 * this interface potentially.
1087 *
1088 * LATER: length must be adjusted by pad at tail, when it is required.
1089 */
1090 int ip_append_data(struct sock *sk,
1091 int getfrag(void *from, char *to, int offset, int len,
1092 int odd, struct sk_buff *skb),
1093 void *from, int length, int transhdrlen,
1094 struct ipcm_cookie *ipc, struct rtable **rtp,
1095 unsigned int flags)
1096 {
1097 struct inet_sock *inet = inet_sk(sk);
1098 int err;
1099
1100 if (flags&MSG_PROBE)
1101 return 0;
1102
1103 if (skb_queue_empty(&sk->sk_write_queue)) {
1104 err = ip_setup_cork(sk, &inet->cork, ipc, rtp);
1105 if (err)
1106 return err;
1107 } else {
1108 transhdrlen = 0;
1109 }
1110
1111 return __ip_append_data(sk, &sk->sk_write_queue, &inet->cork, getfrag,
1112 from, length, transhdrlen, flags);
1113 }
1114
1115 ssize_t ip_append_page(struct sock *sk, struct page *page,
1116 int offset, size_t size, int flags)
1117 {
1118 struct inet_sock *inet = inet_sk(sk);
1119 struct sk_buff *skb;
1120 struct rtable *rt;
1121 struct ip_options *opt = NULL;
1122 int hh_len;
1123 int mtu;
1124 int len;
1125 int err;
1126 unsigned int maxfraglen, fragheaderlen, fraggap;
1127
1128 if (inet->hdrincl)
1129 return -EPERM;
1130
1131 if (flags&MSG_PROBE)
1132 return 0;
1133
1134 if (skb_queue_empty(&sk->sk_write_queue))
1135 return -EINVAL;
1136
1137 rt = (struct rtable *)inet->cork.dst;
1138 if (inet->cork.flags & IPCORK_OPT)
1139 opt = inet->cork.opt;
1140
1141 if (!(rt->dst.dev->features&NETIF_F_SG))
1142 return -EOPNOTSUPP;
1143
1144 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1145 mtu = inet->cork.fragsize;
1146
1147 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1148 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1149
1150 if (inet->cork.length + size > 0xFFFF - fragheaderlen) {
1151 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->inet_dport, mtu);
1152 return -EMSGSIZE;
1153 }
1154
1155 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1156 return -EINVAL;
1157
1158 inet->cork.length += size;
1159 if ((size + skb->len > mtu) &&
1160 (sk->sk_protocol == IPPROTO_UDP) &&
1161 (rt->dst.dev->features & NETIF_F_UFO)) {
1162 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1163 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1164 }
1165
1166
1167 while (size > 0) {
1168 int i;
1169
1170 if (skb_is_gso(skb))
1171 len = size;
1172 else {
1173
1174 /* Check if the remaining data fits into current packet. */
1175 len = mtu - skb->len;
1176 if (len < size)
1177 len = maxfraglen - skb->len;
1178 }
1179 if (len <= 0) {
1180 struct sk_buff *skb_prev;
1181 int alloclen;
1182
1183 skb_prev = skb;
1184 fraggap = skb_prev->len - maxfraglen;
1185
1186 alloclen = fragheaderlen + hh_len + fraggap + 15;
1187 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1188 if (unlikely(!skb)) {
1189 err = -ENOBUFS;
1190 goto error;
1191 }
1192
1193 /*
1194 * Fill in the control structures
1195 */
1196 skb->ip_summed = CHECKSUM_NONE;
1197 skb->csum = 0;
1198 skb_reserve(skb, hh_len);
1199
1200 /*
1201 * Find where to start putting bytes.
1202 */
1203 skb_put(skb, fragheaderlen + fraggap);
1204 skb_reset_network_header(skb);
1205 skb->transport_header = (skb->network_header +
1206 fragheaderlen);
1207 if (fraggap) {
1208 skb->csum = skb_copy_and_csum_bits(skb_prev,
1209 maxfraglen,
1210 skb_transport_header(skb),
1211 fraggap, 0);
1212 skb_prev->csum = csum_sub(skb_prev->csum,
1213 skb->csum);
1214 pskb_trim_unique(skb_prev, maxfraglen);
1215 }
1216
1217 /*
1218 * Put the packet on the pending queue.
1219 */
1220 __skb_queue_tail(&sk->sk_write_queue, skb);
1221 continue;
1222 }
1223
1224 i = skb_shinfo(skb)->nr_frags;
1225 if (len > size)
1226 len = size;
1227 if (skb_can_coalesce(skb, i, page, offset)) {
1228 skb_shinfo(skb)->frags[i-1].size += len;
1229 } else if (i < MAX_SKB_FRAGS) {
1230 get_page(page);
1231 skb_fill_page_desc(skb, i, page, offset, len);
1232 } else {
1233 err = -EMSGSIZE;
1234 goto error;
1235 }
1236
1237 if (skb->ip_summed == CHECKSUM_NONE) {
1238 __wsum csum;
1239 csum = csum_page(page, offset, len);
1240 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1241 }
1242
1243 skb->len += len;
1244 skb->data_len += len;
1245 skb->truesize += len;
1246 atomic_add(len, &sk->sk_wmem_alloc);
1247 offset += len;
1248 size -= len;
1249 }
1250 return 0;
1251
1252 error:
1253 inet->cork.length -= size;
1254 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1255 return err;
1256 }
1257
1258 static void ip_cork_release(struct inet_cork *cork)
1259 {
1260 cork->flags &= ~IPCORK_OPT;
1261 kfree(cork->opt);
1262 cork->opt = NULL;
1263 dst_release(cork->dst);
1264 cork->dst = NULL;
1265 }
1266
1267 /*
1268 * Combined all pending IP fragments on the socket as one IP datagram
1269 * and push them out.
1270 */
1271 struct sk_buff *__ip_make_skb(struct sock *sk,
1272 struct sk_buff_head *queue,
1273 struct inet_cork *cork)
1274 {
1275 struct sk_buff *skb, *tmp_skb;
1276 struct sk_buff **tail_skb;
1277 struct inet_sock *inet = inet_sk(sk);
1278 struct net *net = sock_net(sk);
1279 struct ip_options *opt = NULL;
1280 struct rtable *rt = (struct rtable *)cork->dst;
1281 struct iphdr *iph;
1282 __be16 df = 0;
1283 __u8 ttl;
1284
1285 if ((skb = __skb_dequeue(queue)) == NULL)
1286 goto out;
1287 tail_skb = &(skb_shinfo(skb)->frag_list);
1288
1289 /* move skb->data to ip header from ext header */
1290 if (skb->data < skb_network_header(skb))
1291 __skb_pull(skb, skb_network_offset(skb));
1292 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1293 __skb_pull(tmp_skb, skb_network_header_len(skb));
1294 *tail_skb = tmp_skb;
1295 tail_skb = &(tmp_skb->next);
1296 skb->len += tmp_skb->len;
1297 skb->data_len += tmp_skb->len;
1298 skb->truesize += tmp_skb->truesize;
1299 tmp_skb->destructor = NULL;
1300 tmp_skb->sk = NULL;
1301 }
1302
1303 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1304 * to fragment the frame generated here. No matter, what transforms
1305 * how transforms change size of the packet, it will come out.
1306 */
1307 if (inet->pmtudisc < IP_PMTUDISC_DO)
1308 skb->local_df = 1;
1309
1310 /* DF bit is set when we want to see DF on outgoing frames.
1311 * If local_df is set too, we still allow to fragment this frame
1312 * locally. */
1313 if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1314 (skb->len <= dst_mtu(&rt->dst) &&
1315 ip_dont_fragment(sk, &rt->dst)))
1316 df = htons(IP_DF);
1317
1318 if (cork->flags & IPCORK_OPT)
1319 opt = cork->opt;
1320
1321 if (rt->rt_type == RTN_MULTICAST)
1322 ttl = inet->mc_ttl;
1323 else
1324 ttl = ip_select_ttl(inet, &rt->dst);
1325
1326 iph = (struct iphdr *)skb->data;
1327 iph->version = 4;
1328 iph->ihl = 5;
1329 if (opt) {
1330 iph->ihl += opt->optlen>>2;
1331 ip_options_build(skb, opt, cork->addr, rt, 0);
1332 }
1333 iph->tos = inet->tos;
1334 iph->frag_off = df;
1335 ip_select_ident(iph, &rt->dst, sk);
1336 iph->ttl = ttl;
1337 iph->protocol = sk->sk_protocol;
1338 iph->saddr = rt->rt_src;
1339 iph->daddr = rt->rt_dst;
1340
1341 skb->priority = sk->sk_priority;
1342 skb->mark = sk->sk_mark;
1343 /*
1344 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1345 * on dst refcount
1346 */
1347 cork->dst = NULL;
1348 skb_dst_set(skb, &rt->dst);
1349
1350 if (iph->protocol == IPPROTO_ICMP)
1351 icmp_out_count(net, ((struct icmphdr *)
1352 skb_transport_header(skb))->type);
1353
1354 ip_cork_release(cork);
1355 out:
1356 return skb;
1357 }
1358
1359 int ip_send_skb(struct sk_buff *skb)
1360 {
1361 struct net *net = sock_net(skb->sk);
1362 int err;
1363
1364 err = ip_local_out(skb);
1365 if (err) {
1366 if (err > 0)
1367 err = net_xmit_errno(err);
1368 if (err)
1369 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1370 }
1371
1372 return err;
1373 }
1374
1375 int ip_push_pending_frames(struct sock *sk)
1376 {
1377 struct sk_buff *skb;
1378
1379 skb = ip_finish_skb(sk);
1380 if (!skb)
1381 return 0;
1382
1383 /* Netfilter gets whole the not fragmented skb. */
1384 return ip_send_skb(skb);
1385 }
1386
1387 /*
1388 * Throw away all pending data on the socket.
1389 */
1390 static void __ip_flush_pending_frames(struct sock *sk,
1391 struct sk_buff_head *queue,
1392 struct inet_cork *cork)
1393 {
1394 struct sk_buff *skb;
1395
1396 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1397 kfree_skb(skb);
1398
1399 ip_cork_release(cork);
1400 }
1401
1402 void ip_flush_pending_frames(struct sock *sk)
1403 {
1404 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork);
1405 }
1406
1407 struct sk_buff *ip_make_skb(struct sock *sk,
1408 int getfrag(void *from, char *to, int offset,
1409 int len, int odd, struct sk_buff *skb),
1410 void *from, int length, int transhdrlen,
1411 struct ipcm_cookie *ipc, struct rtable **rtp,
1412 unsigned int flags)
1413 {
1414 struct inet_cork cork = {};
1415 struct sk_buff_head queue;
1416 int err;
1417
1418 if (flags & MSG_PROBE)
1419 return NULL;
1420
1421 __skb_queue_head_init(&queue);
1422
1423 err = ip_setup_cork(sk, &cork, ipc, rtp);
1424 if (err)
1425 return ERR_PTR(err);
1426
1427 err = __ip_append_data(sk, &queue, &cork, getfrag,
1428 from, length, transhdrlen, flags);
1429 if (err) {
1430 __ip_flush_pending_frames(sk, &queue, &cork);
1431 return ERR_PTR(err);
1432 }
1433
1434 return __ip_make_skb(sk, &queue, &cork);
1435 }
1436
1437 /*
1438 * Fetch data from kernel space and fill in checksum if needed.
1439 */
1440 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1441 int len, int odd, struct sk_buff *skb)
1442 {
1443 __wsum csum;
1444
1445 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1446 skb->csum = csum_block_add(skb->csum, csum, odd);
1447 return 0;
1448 }
1449
1450 /*
1451 * Generic function to send a packet as reply to another packet.
1452 * Used to send TCP resets so far. ICMP should use this function too.
1453 *
1454 * Should run single threaded per socket because it uses the sock
1455 * structure to pass arguments.
1456 */
1457 void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *arg,
1458 unsigned int len)
1459 {
1460 struct inet_sock *inet = inet_sk(sk);
1461 struct {
1462 struct ip_options opt;
1463 char data[40];
1464 } replyopts;
1465 struct ipcm_cookie ipc;
1466 __be32 daddr;
1467 struct rtable *rt = skb_rtable(skb);
1468
1469 if (ip_options_echo(&replyopts.opt, skb))
1470 return;
1471
1472 daddr = ipc.addr = rt->rt_src;
1473 ipc.opt = NULL;
1474 ipc.tx_flags = 0;
1475
1476 if (replyopts.opt.optlen) {
1477 ipc.opt = &replyopts.opt;
1478
1479 if (ipc.opt->srr)
1480 daddr = replyopts.opt.faddr;
1481 }
1482
1483 {
1484 struct flowi fl = { .oif = arg->bound_dev_if,
1485 .fl4_dst = daddr,
1486 .fl4_src = rt->rt_spec_dst,
1487 .fl4_tos = RT_TOS(ip_hdr(skb)->tos),
1488 .fl_ip_sport = tcp_hdr(skb)->dest,
1489 .fl_ip_dport = tcp_hdr(skb)->source,
1490 .proto = sk->sk_protocol,
1491 .flags = ip_reply_arg_flowi_flags(arg) };
1492 security_skb_classify_flow(skb, &fl);
1493 rt = ip_route_output_key(sock_net(sk), &fl);
1494 if (IS_ERR(rt))
1495 return;
1496 }
1497
1498 /* And let IP do all the hard work.
1499
1500 This chunk is not reenterable, hence spinlock.
1501 Note that it uses the fact, that this function is called
1502 with locally disabled BH and that sk cannot be already spinlocked.
1503 */
1504 bh_lock_sock(sk);
1505 inet->tos = ip_hdr(skb)->tos;
1506 sk->sk_priority = skb->priority;
1507 sk->sk_protocol = ip_hdr(skb)->protocol;
1508 sk->sk_bound_dev_if = arg->bound_dev_if;
1509 ip_append_data(sk, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1510 &ipc, &rt, MSG_DONTWAIT);
1511 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1512 if (arg->csumoffset >= 0)
1513 *((__sum16 *)skb_transport_header(skb) +
1514 arg->csumoffset) = csum_fold(csum_add(skb->csum,
1515 arg->csum));
1516 skb->ip_summed = CHECKSUM_NONE;
1517 ip_push_pending_frames(sk);
1518 }
1519
1520 bh_unlock_sock(sk);
1521
1522 ip_rt_put(rt);
1523 }
1524
1525 void __init ip_init(void)
1526 {
1527 ip_rt_init();
1528 inet_initpeers();
1529
1530 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1531 igmp_mc_proc_init();
1532 #endif
1533 }