]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/ipv4/ip_output.c
udp: consistently apply ufo or fragmentation
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / ip_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The Internet Protocol (IP) output module.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
12 * Richard Underwood
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
17 *
18 * See ip_input.c for original log
19 *
20 * Fixes:
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
24 * no route is found.
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
41 * datagrams.
42 * Hirokazu Takahashi: sendfile() on UDP works now.
43 */
44
45 #include <linux/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
54
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
64
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <net/lwtunnel.h>
77 #include <linux/bpf-cgroup.h>
78 #include <linux/igmp.h>
79 #include <linux/netfilter_ipv4.h>
80 #include <linux/netfilter_bridge.h>
81 #include <linux/netlink.h>
82 #include <linux/tcp.h>
83
84 static int
85 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
86 unsigned int mtu,
87 int (*output)(struct net *, struct sock *, struct sk_buff *));
88
89 /* Generate a checksum for an outgoing IP datagram. */
90 void ip_send_check(struct iphdr *iph)
91 {
92 iph->check = 0;
93 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
94 }
95 EXPORT_SYMBOL(ip_send_check);
96
97 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
98 {
99 struct iphdr *iph = ip_hdr(skb);
100
101 iph->tot_len = htons(skb->len);
102 ip_send_check(iph);
103
104 /* if egress device is enslaved to an L3 master device pass the
105 * skb to its handler for processing
106 */
107 skb = l3mdev_ip_out(sk, skb);
108 if (unlikely(!skb))
109 return 0;
110
111 skb->protocol = htons(ETH_P_IP);
112
113 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
114 net, sk, skb, NULL, skb_dst(skb)->dev,
115 dst_output);
116 }
117
118 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
119 {
120 int err;
121
122 err = __ip_local_out(net, sk, skb);
123 if (likely(err == 1))
124 err = dst_output(net, sk, skb);
125
126 return err;
127 }
128 EXPORT_SYMBOL_GPL(ip_local_out);
129
130 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
131 {
132 int ttl = inet->uc_ttl;
133
134 if (ttl < 0)
135 ttl = ip4_dst_hoplimit(dst);
136 return ttl;
137 }
138
139 /*
140 * Add an ip header to a skbuff and send it out.
141 *
142 */
143 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
144 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
145 {
146 struct inet_sock *inet = inet_sk(sk);
147 struct rtable *rt = skb_rtable(skb);
148 struct net *net = sock_net(sk);
149 struct iphdr *iph;
150
151 /* Build the IP header. */
152 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
153 skb_reset_network_header(skb);
154 iph = ip_hdr(skb);
155 iph->version = 4;
156 iph->ihl = 5;
157 iph->tos = inet->tos;
158 iph->ttl = ip_select_ttl(inet, &rt->dst);
159 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
160 iph->saddr = saddr;
161 iph->protocol = sk->sk_protocol;
162 if (ip_dont_fragment(sk, &rt->dst)) {
163 iph->frag_off = htons(IP_DF);
164 iph->id = 0;
165 } else {
166 iph->frag_off = 0;
167 __ip_select_ident(net, iph, 1);
168 }
169
170 if (opt && opt->opt.optlen) {
171 iph->ihl += opt->opt.optlen>>2;
172 ip_options_build(skb, &opt->opt, daddr, rt, 0);
173 }
174
175 skb->priority = sk->sk_priority;
176 skb->mark = sk->sk_mark;
177
178 /* Send it out. */
179 return ip_local_out(net, skb->sk, skb);
180 }
181 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
182
183 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
184 {
185 struct dst_entry *dst = skb_dst(skb);
186 struct rtable *rt = (struct rtable *)dst;
187 struct net_device *dev = dst->dev;
188 unsigned int hh_len = LL_RESERVED_SPACE(dev);
189 struct neighbour *neigh;
190 u32 nexthop;
191
192 if (rt->rt_type == RTN_MULTICAST) {
193 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
194 } else if (rt->rt_type == RTN_BROADCAST)
195 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
196
197 /* Be paranoid, rather than too clever. */
198 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
199 struct sk_buff *skb2;
200
201 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
202 if (!skb2) {
203 kfree_skb(skb);
204 return -ENOMEM;
205 }
206 if (skb->sk)
207 skb_set_owner_w(skb2, skb->sk);
208 consume_skb(skb);
209 skb = skb2;
210 }
211
212 if (lwtunnel_xmit_redirect(dst->lwtstate)) {
213 int res = lwtunnel_xmit(skb);
214
215 if (res < 0 || res == LWTUNNEL_XMIT_DONE)
216 return res;
217 }
218
219 rcu_read_lock_bh();
220 nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
221 neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
222 if (unlikely(!neigh))
223 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
224 if (!IS_ERR(neigh)) {
225 int res = dst_neigh_output(dst, neigh, skb);
226
227 rcu_read_unlock_bh();
228 return res;
229 }
230 rcu_read_unlock_bh();
231
232 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
233 __func__);
234 kfree_skb(skb);
235 return -EINVAL;
236 }
237
238 static int ip_finish_output_gso(struct net *net, struct sock *sk,
239 struct sk_buff *skb, unsigned int mtu)
240 {
241 netdev_features_t features;
242 struct sk_buff *segs;
243 int ret = 0;
244
245 /* common case: seglen is <= mtu
246 */
247 if (skb_gso_validate_mtu(skb, mtu))
248 return ip_finish_output2(net, sk, skb);
249
250 /* Slowpath - GSO segment length exceeds the egress MTU.
251 *
252 * This can happen in several cases:
253 * - Forwarding of a TCP GRO skb, when DF flag is not set.
254 * - Forwarding of an skb that arrived on a virtualization interface
255 * (virtio-net/vhost/tap) with TSO/GSO size set by other network
256 * stack.
257 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
258 * interface with a smaller MTU.
259 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is
260 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an
261 * insufficent MTU.
262 */
263 features = netif_skb_features(skb);
264 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
265 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
266 if (IS_ERR_OR_NULL(segs)) {
267 kfree_skb(skb);
268 return -ENOMEM;
269 }
270
271 consume_skb(skb);
272
273 do {
274 struct sk_buff *nskb = segs->next;
275 int err;
276
277 segs->next = NULL;
278 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
279
280 if (err && ret == 0)
281 ret = err;
282 segs = nskb;
283 } while (segs);
284
285 return ret;
286 }
287
288 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
289 {
290 unsigned int mtu;
291 int ret;
292
293 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
294 if (ret) {
295 kfree_skb(skb);
296 return ret;
297 }
298
299 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
300 /* Policy lookup after SNAT yielded a new policy */
301 if (skb_dst(skb)->xfrm) {
302 IPCB(skb)->flags |= IPSKB_REROUTED;
303 return dst_output(net, sk, skb);
304 }
305 #endif
306 mtu = ip_skb_dst_mtu(sk, skb);
307 if (skb_is_gso(skb))
308 return ip_finish_output_gso(net, sk, skb, mtu);
309
310 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
311 return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
312
313 return ip_finish_output2(net, sk, skb);
314 }
315
316 static int ip_mc_finish_output(struct net *net, struct sock *sk,
317 struct sk_buff *skb)
318 {
319 int ret;
320
321 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
322 if (ret) {
323 kfree_skb(skb);
324 return ret;
325 }
326
327 return dev_loopback_xmit(net, sk, skb);
328 }
329
330 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
331 {
332 struct rtable *rt = skb_rtable(skb);
333 struct net_device *dev = rt->dst.dev;
334
335 /*
336 * If the indicated interface is up and running, send the packet.
337 */
338 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
339
340 skb->dev = dev;
341 skb->protocol = htons(ETH_P_IP);
342
343 /*
344 * Multicasts are looped back for other local users
345 */
346
347 if (rt->rt_flags&RTCF_MULTICAST) {
348 if (sk_mc_loop(sk)
349 #ifdef CONFIG_IP_MROUTE
350 /* Small optimization: do not loopback not local frames,
351 which returned after forwarding; they will be dropped
352 by ip_mr_input in any case.
353 Note, that local frames are looped back to be delivered
354 to local recipients.
355
356 This check is duplicated in ip_mr_input at the moment.
357 */
358 &&
359 ((rt->rt_flags & RTCF_LOCAL) ||
360 !(IPCB(skb)->flags & IPSKB_FORWARDED))
361 #endif
362 ) {
363 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
364 if (newskb)
365 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
366 net, sk, newskb, NULL, newskb->dev,
367 ip_mc_finish_output);
368 }
369
370 /* Multicasts with ttl 0 must not go beyond the host */
371
372 if (ip_hdr(skb)->ttl == 0) {
373 kfree_skb(skb);
374 return 0;
375 }
376 }
377
378 if (rt->rt_flags&RTCF_BROADCAST) {
379 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
380 if (newskb)
381 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
382 net, sk, newskb, NULL, newskb->dev,
383 ip_mc_finish_output);
384 }
385
386 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
387 net, sk, skb, NULL, skb->dev,
388 ip_finish_output,
389 !(IPCB(skb)->flags & IPSKB_REROUTED));
390 }
391
392 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
393 {
394 struct net_device *dev = skb_dst(skb)->dev;
395
396 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
397
398 skb->dev = dev;
399 skb->protocol = htons(ETH_P_IP);
400
401 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
402 net, sk, skb, NULL, dev,
403 ip_finish_output,
404 !(IPCB(skb)->flags & IPSKB_REROUTED));
405 }
406
407 /*
408 * copy saddr and daddr, possibly using 64bit load/stores
409 * Equivalent to :
410 * iph->saddr = fl4->saddr;
411 * iph->daddr = fl4->daddr;
412 */
413 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
414 {
415 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
416 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
417 memcpy(&iph->saddr, &fl4->saddr,
418 sizeof(fl4->saddr) + sizeof(fl4->daddr));
419 }
420
421 /* Note: skb->sk can be different from sk, in case of tunnels */
422 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
423 {
424 struct inet_sock *inet = inet_sk(sk);
425 struct net *net = sock_net(sk);
426 struct ip_options_rcu *inet_opt;
427 struct flowi4 *fl4;
428 struct rtable *rt;
429 struct iphdr *iph;
430 int res;
431
432 /* Skip all of this if the packet is already routed,
433 * f.e. by something like SCTP.
434 */
435 rcu_read_lock();
436 inet_opt = rcu_dereference(inet->inet_opt);
437 fl4 = &fl->u.ip4;
438 rt = skb_rtable(skb);
439 if (rt)
440 goto packet_routed;
441
442 /* Make sure we can route this packet. */
443 rt = (struct rtable *)__sk_dst_check(sk, 0);
444 if (!rt) {
445 __be32 daddr;
446
447 /* Use correct destination address if we have options. */
448 daddr = inet->inet_daddr;
449 if (inet_opt && inet_opt->opt.srr)
450 daddr = inet_opt->opt.faddr;
451
452 /* If this fails, retransmit mechanism of transport layer will
453 * keep trying until route appears or the connection times
454 * itself out.
455 */
456 rt = ip_route_output_ports(net, fl4, sk,
457 daddr, inet->inet_saddr,
458 inet->inet_dport,
459 inet->inet_sport,
460 sk->sk_protocol,
461 RT_CONN_FLAGS(sk),
462 sk->sk_bound_dev_if);
463 if (IS_ERR(rt))
464 goto no_route;
465 sk_setup_caps(sk, &rt->dst);
466 }
467 skb_dst_set_noref(skb, &rt->dst);
468
469 packet_routed:
470 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
471 goto no_route;
472
473 /* OK, we know where to send it, allocate and build IP header. */
474 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
475 skb_reset_network_header(skb);
476 iph = ip_hdr(skb);
477 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
478 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
479 iph->frag_off = htons(IP_DF);
480 else
481 iph->frag_off = 0;
482 iph->ttl = ip_select_ttl(inet, &rt->dst);
483 iph->protocol = sk->sk_protocol;
484 ip_copy_addrs(iph, fl4);
485
486 /* Transport layer set skb->h.foo itself. */
487
488 if (inet_opt && inet_opt->opt.optlen) {
489 iph->ihl += inet_opt->opt.optlen >> 2;
490 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
491 }
492
493 ip_select_ident_segs(net, skb, sk,
494 skb_shinfo(skb)->gso_segs ?: 1);
495
496 /* TODO : should we use skb->sk here instead of sk ? */
497 skb->priority = sk->sk_priority;
498 skb->mark = sk->sk_mark;
499
500 res = ip_local_out(net, sk, skb);
501 rcu_read_unlock();
502 return res;
503
504 no_route:
505 rcu_read_unlock();
506 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
507 kfree_skb(skb);
508 return -EHOSTUNREACH;
509 }
510 EXPORT_SYMBOL(ip_queue_xmit);
511
512 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
513 {
514 to->pkt_type = from->pkt_type;
515 to->priority = from->priority;
516 to->protocol = from->protocol;
517 skb_dst_drop(to);
518 skb_dst_copy(to, from);
519 to->dev = from->dev;
520 to->mark = from->mark;
521
522 /* Copy the flags to each fragment. */
523 IPCB(to)->flags = IPCB(from)->flags;
524
525 #ifdef CONFIG_NET_SCHED
526 to->tc_index = from->tc_index;
527 #endif
528 nf_copy(to, from);
529 #if IS_ENABLED(CONFIG_IP_VS)
530 to->ipvs_property = from->ipvs_property;
531 #endif
532 skb_copy_secmark(to, from);
533 }
534
535 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
536 unsigned int mtu,
537 int (*output)(struct net *, struct sock *, struct sk_buff *))
538 {
539 struct iphdr *iph = ip_hdr(skb);
540
541 if ((iph->frag_off & htons(IP_DF)) == 0)
542 return ip_do_fragment(net, sk, skb, output);
543
544 if (unlikely(!skb->ignore_df ||
545 (IPCB(skb)->frag_max_size &&
546 IPCB(skb)->frag_max_size > mtu))) {
547 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
548 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
549 htonl(mtu));
550 kfree_skb(skb);
551 return -EMSGSIZE;
552 }
553
554 return ip_do_fragment(net, sk, skb, output);
555 }
556
557 /*
558 * This IP datagram is too large to be sent in one piece. Break it up into
559 * smaller pieces (each of size equal to IP header plus
560 * a block of the data of the original IP data part) that will yet fit in a
561 * single device frame, and queue such a frame for sending.
562 */
563
564 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
565 int (*output)(struct net *, struct sock *, struct sk_buff *))
566 {
567 struct iphdr *iph;
568 int ptr;
569 struct sk_buff *skb2;
570 unsigned int mtu, hlen, left, len, ll_rs;
571 int offset;
572 __be16 not_last_frag;
573 struct rtable *rt = skb_rtable(skb);
574 int err = 0;
575
576 /* for offloaded checksums cleanup checksum before fragmentation */
577 if (skb->ip_summed == CHECKSUM_PARTIAL &&
578 (err = skb_checksum_help(skb)))
579 goto fail;
580
581 /*
582 * Point into the IP datagram header.
583 */
584
585 iph = ip_hdr(skb);
586
587 mtu = ip_skb_dst_mtu(sk, skb);
588 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
589 mtu = IPCB(skb)->frag_max_size;
590
591 /*
592 * Setup starting values.
593 */
594
595 hlen = iph->ihl * 4;
596 mtu = mtu - hlen; /* Size of data space */
597 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
598
599 /* When frag_list is given, use it. First, check its validity:
600 * some transformers could create wrong frag_list or break existing
601 * one, it is not prohibited. In this case fall back to copying.
602 *
603 * LATER: this step can be merged to real generation of fragments,
604 * we can switch to copy when see the first bad fragment.
605 */
606 if (skb_has_frag_list(skb)) {
607 struct sk_buff *frag, *frag2;
608 unsigned int first_len = skb_pagelen(skb);
609
610 if (first_len - hlen > mtu ||
611 ((first_len - hlen) & 7) ||
612 ip_is_fragment(iph) ||
613 skb_cloned(skb))
614 goto slow_path;
615
616 skb_walk_frags(skb, frag) {
617 /* Correct geometry. */
618 if (frag->len > mtu ||
619 ((frag->len & 7) && frag->next) ||
620 skb_headroom(frag) < hlen)
621 goto slow_path_clean;
622
623 /* Partially cloned skb? */
624 if (skb_shared(frag))
625 goto slow_path_clean;
626
627 BUG_ON(frag->sk);
628 if (skb->sk) {
629 frag->sk = skb->sk;
630 frag->destructor = sock_wfree;
631 }
632 skb->truesize -= frag->truesize;
633 }
634
635 /* Everything is OK. Generate! */
636
637 err = 0;
638 offset = 0;
639 frag = skb_shinfo(skb)->frag_list;
640 skb_frag_list_init(skb);
641 skb->data_len = first_len - skb_headlen(skb);
642 skb->len = first_len;
643 iph->tot_len = htons(first_len);
644 iph->frag_off = htons(IP_MF);
645 ip_send_check(iph);
646
647 for (;;) {
648 /* Prepare header of the next frame,
649 * before previous one went down. */
650 if (frag) {
651 frag->ip_summed = CHECKSUM_NONE;
652 skb_reset_transport_header(frag);
653 __skb_push(frag, hlen);
654 skb_reset_network_header(frag);
655 memcpy(skb_network_header(frag), iph, hlen);
656 iph = ip_hdr(frag);
657 iph->tot_len = htons(frag->len);
658 ip_copy_metadata(frag, skb);
659 if (offset == 0)
660 ip_options_fragment(frag);
661 offset += skb->len - hlen;
662 iph->frag_off = htons(offset>>3);
663 if (frag->next)
664 iph->frag_off |= htons(IP_MF);
665 /* Ready, complete checksum */
666 ip_send_check(iph);
667 }
668
669 err = output(net, sk, skb);
670
671 if (!err)
672 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
673 if (err || !frag)
674 break;
675
676 skb = frag;
677 frag = skb->next;
678 skb->next = NULL;
679 }
680
681 if (err == 0) {
682 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
683 return 0;
684 }
685
686 while (frag) {
687 skb = frag->next;
688 kfree_skb(frag);
689 frag = skb;
690 }
691 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
692 return err;
693
694 slow_path_clean:
695 skb_walk_frags(skb, frag2) {
696 if (frag2 == frag)
697 break;
698 frag2->sk = NULL;
699 frag2->destructor = NULL;
700 skb->truesize += frag2->truesize;
701 }
702 }
703
704 slow_path:
705 iph = ip_hdr(skb);
706
707 left = skb->len - hlen; /* Space per frame */
708 ptr = hlen; /* Where to start from */
709
710 ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
711
712 /*
713 * Fragment the datagram.
714 */
715
716 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
717 not_last_frag = iph->frag_off & htons(IP_MF);
718
719 /*
720 * Keep copying data until we run out.
721 */
722
723 while (left > 0) {
724 len = left;
725 /* IF: it doesn't fit, use 'mtu' - the data space left */
726 if (len > mtu)
727 len = mtu;
728 /* IF: we are not sending up to and including the packet end
729 then align the next start on an eight byte boundary */
730 if (len < left) {
731 len &= ~7;
732 }
733
734 /* Allocate buffer */
735 skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
736 if (!skb2) {
737 err = -ENOMEM;
738 goto fail;
739 }
740
741 /*
742 * Set up data on packet
743 */
744
745 ip_copy_metadata(skb2, skb);
746 skb_reserve(skb2, ll_rs);
747 skb_put(skb2, len + hlen);
748 skb_reset_network_header(skb2);
749 skb2->transport_header = skb2->network_header + hlen;
750
751 /*
752 * Charge the memory for the fragment to any owner
753 * it might possess
754 */
755
756 if (skb->sk)
757 skb_set_owner_w(skb2, skb->sk);
758
759 /*
760 * Copy the packet header into the new buffer.
761 */
762
763 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
764
765 /*
766 * Copy a block of the IP datagram.
767 */
768 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
769 BUG();
770 left -= len;
771
772 /*
773 * Fill in the new header fields.
774 */
775 iph = ip_hdr(skb2);
776 iph->frag_off = htons((offset >> 3));
777
778 if (IPCB(skb)->flags & IPSKB_FRAG_PMTU)
779 iph->frag_off |= htons(IP_DF);
780
781 /* ANK: dirty, but effective trick. Upgrade options only if
782 * the segment to be fragmented was THE FIRST (otherwise,
783 * options are already fixed) and make it ONCE
784 * on the initial skb, so that all the following fragments
785 * will inherit fixed options.
786 */
787 if (offset == 0)
788 ip_options_fragment(skb);
789
790 /*
791 * Added AC : If we are fragmenting a fragment that's not the
792 * last fragment then keep MF on each bit
793 */
794 if (left > 0 || not_last_frag)
795 iph->frag_off |= htons(IP_MF);
796 ptr += len;
797 offset += len;
798
799 /*
800 * Put this fragment into the sending queue.
801 */
802 iph->tot_len = htons(len + hlen);
803
804 ip_send_check(iph);
805
806 err = output(net, sk, skb2);
807 if (err)
808 goto fail;
809
810 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
811 }
812 consume_skb(skb);
813 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
814 return err;
815
816 fail:
817 kfree_skb(skb);
818 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
819 return err;
820 }
821 EXPORT_SYMBOL(ip_do_fragment);
822
823 int
824 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
825 {
826 struct msghdr *msg = from;
827
828 if (skb->ip_summed == CHECKSUM_PARTIAL) {
829 if (!copy_from_iter_full(to, len, &msg->msg_iter))
830 return -EFAULT;
831 } else {
832 __wsum csum = 0;
833 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
834 return -EFAULT;
835 skb->csum = csum_block_add(skb->csum, csum, odd);
836 }
837 return 0;
838 }
839 EXPORT_SYMBOL(ip_generic_getfrag);
840
841 static inline __wsum
842 csum_page(struct page *page, int offset, int copy)
843 {
844 char *kaddr;
845 __wsum csum;
846 kaddr = kmap(page);
847 csum = csum_partial(kaddr + offset, copy, 0);
848 kunmap(page);
849 return csum;
850 }
851
852 static inline int ip_ufo_append_data(struct sock *sk,
853 struct sk_buff_head *queue,
854 int getfrag(void *from, char *to, int offset, int len,
855 int odd, struct sk_buff *skb),
856 void *from, int length, int hh_len, int fragheaderlen,
857 int transhdrlen, int maxfraglen, unsigned int flags)
858 {
859 struct sk_buff *skb;
860 int err;
861
862 /* There is support for UDP fragmentation offload by network
863 * device, so create one single skb packet containing complete
864 * udp datagram
865 */
866 skb = skb_peek_tail(queue);
867 if (!skb) {
868 skb = sock_alloc_send_skb(sk,
869 hh_len + fragheaderlen + transhdrlen + 20,
870 (flags & MSG_DONTWAIT), &err);
871
872 if (!skb)
873 return err;
874
875 /* reserve space for Hardware header */
876 skb_reserve(skb, hh_len);
877
878 /* create space for UDP/IP header */
879 skb_put(skb, fragheaderlen + transhdrlen);
880
881 /* initialize network header pointer */
882 skb_reset_network_header(skb);
883
884 /* initialize protocol header pointer */
885 skb->transport_header = skb->network_header + fragheaderlen;
886
887 skb->csum = 0;
888
889 __skb_queue_tail(queue, skb);
890 } else if (skb_is_gso(skb)) {
891 goto append;
892 }
893
894 skb->ip_summed = CHECKSUM_PARTIAL;
895 /* specify the length of each IP datagram fragment */
896 skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
897 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
898
899 append:
900 return skb_append_datato_frags(sk, skb, getfrag, from,
901 (length - transhdrlen));
902 }
903
904 static int __ip_append_data(struct sock *sk,
905 struct flowi4 *fl4,
906 struct sk_buff_head *queue,
907 struct inet_cork *cork,
908 struct page_frag *pfrag,
909 int getfrag(void *from, char *to, int offset,
910 int len, int odd, struct sk_buff *skb),
911 void *from, int length, int transhdrlen,
912 unsigned int flags)
913 {
914 struct inet_sock *inet = inet_sk(sk);
915 struct sk_buff *skb;
916
917 struct ip_options *opt = cork->opt;
918 int hh_len;
919 int exthdrlen;
920 int mtu;
921 int copy;
922 int err;
923 int offset = 0;
924 unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
925 int csummode = CHECKSUM_NONE;
926 struct rtable *rt = (struct rtable *)cork->dst;
927 u32 tskey = 0;
928
929 skb = skb_peek_tail(queue);
930
931 exthdrlen = !skb ? rt->dst.header_len : 0;
932 mtu = cork->fragsize;
933 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
934 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
935 tskey = sk->sk_tskey++;
936
937 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
938
939 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
940 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
941 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
942
943 if (cork->length + length > maxnonfragsize - fragheaderlen) {
944 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
945 mtu - (opt ? opt->optlen : 0));
946 return -EMSGSIZE;
947 }
948
949 /*
950 * transhdrlen > 0 means that this is the first fragment and we wish
951 * it won't be fragmented in the future.
952 */
953 if (transhdrlen &&
954 length + fragheaderlen <= mtu &&
955 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
956 !(flags & MSG_MORE) &&
957 !exthdrlen)
958 csummode = CHECKSUM_PARTIAL;
959
960 cork->length += length;
961 if ((skb && skb_is_gso(skb)) ||
962 (((length + (skb ? skb->len : fragheaderlen)) > mtu) &&
963 (skb_queue_len(queue) <= 1) &&
964 (sk->sk_protocol == IPPROTO_UDP) &&
965 (rt->dst.dev->features & NETIF_F_UFO) && !dst_xfrm(&rt->dst) &&
966 (sk->sk_type == SOCK_DGRAM) && !sk->sk_no_check_tx)) {
967 err = ip_ufo_append_data(sk, queue, getfrag, from, length,
968 hh_len, fragheaderlen, transhdrlen,
969 maxfraglen, flags);
970 if (err)
971 goto error;
972 return 0;
973 }
974
975 /* So, what's going on in the loop below?
976 *
977 * We use calculated fragment length to generate chained skb,
978 * each of segments is IP fragment ready for sending to network after
979 * adding appropriate IP header.
980 */
981
982 if (!skb)
983 goto alloc_new_skb;
984
985 while (length > 0) {
986 /* Check if the remaining data fits into current packet. */
987 copy = mtu - skb->len;
988 if (copy < length)
989 copy = maxfraglen - skb->len;
990 if (copy <= 0) {
991 char *data;
992 unsigned int datalen;
993 unsigned int fraglen;
994 unsigned int fraggap;
995 unsigned int alloclen;
996 struct sk_buff *skb_prev;
997 alloc_new_skb:
998 skb_prev = skb;
999 if (skb_prev)
1000 fraggap = skb_prev->len - maxfraglen;
1001 else
1002 fraggap = 0;
1003
1004 /*
1005 * If remaining data exceeds the mtu,
1006 * we know we need more fragment(s).
1007 */
1008 datalen = length + fraggap;
1009 if (datalen > mtu - fragheaderlen)
1010 datalen = maxfraglen - fragheaderlen;
1011 fraglen = datalen + fragheaderlen;
1012
1013 if ((flags & MSG_MORE) &&
1014 !(rt->dst.dev->features&NETIF_F_SG))
1015 alloclen = mtu;
1016 else
1017 alloclen = fraglen;
1018
1019 alloclen += exthdrlen;
1020
1021 /* The last fragment gets additional space at tail.
1022 * Note, with MSG_MORE we overallocate on fragments,
1023 * because we have no idea what fragment will be
1024 * the last.
1025 */
1026 if (datalen == length + fraggap)
1027 alloclen += rt->dst.trailer_len;
1028
1029 if (transhdrlen) {
1030 skb = sock_alloc_send_skb(sk,
1031 alloclen + hh_len + 15,
1032 (flags & MSG_DONTWAIT), &err);
1033 } else {
1034 skb = NULL;
1035 if (atomic_read(&sk->sk_wmem_alloc) <=
1036 2 * sk->sk_sndbuf)
1037 skb = sock_wmalloc(sk,
1038 alloclen + hh_len + 15, 1,
1039 sk->sk_allocation);
1040 if (unlikely(!skb))
1041 err = -ENOBUFS;
1042 }
1043 if (!skb)
1044 goto error;
1045
1046 /*
1047 * Fill in the control structures
1048 */
1049 skb->ip_summed = csummode;
1050 skb->csum = 0;
1051 skb_reserve(skb, hh_len);
1052
1053 /* only the initial fragment is time stamped */
1054 skb_shinfo(skb)->tx_flags = cork->tx_flags;
1055 cork->tx_flags = 0;
1056 skb_shinfo(skb)->tskey = tskey;
1057 tskey = 0;
1058
1059 /*
1060 * Find where to start putting bytes.
1061 */
1062 data = skb_put(skb, fraglen + exthdrlen);
1063 skb_set_network_header(skb, exthdrlen);
1064 skb->transport_header = (skb->network_header +
1065 fragheaderlen);
1066 data += fragheaderlen + exthdrlen;
1067
1068 if (fraggap) {
1069 skb->csum = skb_copy_and_csum_bits(
1070 skb_prev, maxfraglen,
1071 data + transhdrlen, fraggap, 0);
1072 skb_prev->csum = csum_sub(skb_prev->csum,
1073 skb->csum);
1074 data += fraggap;
1075 pskb_trim_unique(skb_prev, maxfraglen);
1076 }
1077
1078 copy = datalen - transhdrlen - fraggap;
1079 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1080 err = -EFAULT;
1081 kfree_skb(skb);
1082 goto error;
1083 }
1084
1085 offset += copy;
1086 length -= datalen - fraggap;
1087 transhdrlen = 0;
1088 exthdrlen = 0;
1089 csummode = CHECKSUM_NONE;
1090
1091 /*
1092 * Put the packet on the pending queue.
1093 */
1094 __skb_queue_tail(queue, skb);
1095 continue;
1096 }
1097
1098 if (copy > length)
1099 copy = length;
1100
1101 if (!(rt->dst.dev->features&NETIF_F_SG)) {
1102 unsigned int off;
1103
1104 off = skb->len;
1105 if (getfrag(from, skb_put(skb, copy),
1106 offset, copy, off, skb) < 0) {
1107 __skb_trim(skb, off);
1108 err = -EFAULT;
1109 goto error;
1110 }
1111 } else {
1112 int i = skb_shinfo(skb)->nr_frags;
1113
1114 err = -ENOMEM;
1115 if (!sk_page_frag_refill(sk, pfrag))
1116 goto error;
1117
1118 if (!skb_can_coalesce(skb, i, pfrag->page,
1119 pfrag->offset)) {
1120 err = -EMSGSIZE;
1121 if (i == MAX_SKB_FRAGS)
1122 goto error;
1123
1124 __skb_fill_page_desc(skb, i, pfrag->page,
1125 pfrag->offset, 0);
1126 skb_shinfo(skb)->nr_frags = ++i;
1127 get_page(pfrag->page);
1128 }
1129 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1130 if (getfrag(from,
1131 page_address(pfrag->page) + pfrag->offset,
1132 offset, copy, skb->len, skb) < 0)
1133 goto error_efault;
1134
1135 pfrag->offset += copy;
1136 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1137 skb->len += copy;
1138 skb->data_len += copy;
1139 skb->truesize += copy;
1140 atomic_add(copy, &sk->sk_wmem_alloc);
1141 }
1142 offset += copy;
1143 length -= copy;
1144 }
1145
1146 return 0;
1147
1148 error_efault:
1149 err = -EFAULT;
1150 error:
1151 cork->length -= length;
1152 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1153 return err;
1154 }
1155
1156 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1157 struct ipcm_cookie *ipc, struct rtable **rtp)
1158 {
1159 struct ip_options_rcu *opt;
1160 struct rtable *rt;
1161
1162 /*
1163 * setup for corking.
1164 */
1165 opt = ipc->opt;
1166 if (opt) {
1167 if (!cork->opt) {
1168 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1169 sk->sk_allocation);
1170 if (unlikely(!cork->opt))
1171 return -ENOBUFS;
1172 }
1173 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1174 cork->flags |= IPCORK_OPT;
1175 cork->addr = ipc->addr;
1176 }
1177 rt = *rtp;
1178 if (unlikely(!rt))
1179 return -EFAULT;
1180 /*
1181 * We steal reference to this route, caller should not release it
1182 */
1183 *rtp = NULL;
1184 cork->fragsize = ip_sk_use_pmtu(sk) ?
1185 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1186 cork->dst = &rt->dst;
1187 cork->length = 0;
1188 cork->ttl = ipc->ttl;
1189 cork->tos = ipc->tos;
1190 cork->priority = ipc->priority;
1191 cork->tx_flags = ipc->tx_flags;
1192
1193 return 0;
1194 }
1195
1196 /*
1197 * ip_append_data() and ip_append_page() can make one large IP datagram
1198 * from many pieces of data. Each pieces will be holded on the socket
1199 * until ip_push_pending_frames() is called. Each piece can be a page
1200 * or non-page data.
1201 *
1202 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1203 * this interface potentially.
1204 *
1205 * LATER: length must be adjusted by pad at tail, when it is required.
1206 */
1207 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1208 int getfrag(void *from, char *to, int offset, int len,
1209 int odd, struct sk_buff *skb),
1210 void *from, int length, int transhdrlen,
1211 struct ipcm_cookie *ipc, struct rtable **rtp,
1212 unsigned int flags)
1213 {
1214 struct inet_sock *inet = inet_sk(sk);
1215 int err;
1216
1217 if (flags&MSG_PROBE)
1218 return 0;
1219
1220 if (skb_queue_empty(&sk->sk_write_queue)) {
1221 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1222 if (err)
1223 return err;
1224 } else {
1225 transhdrlen = 0;
1226 }
1227
1228 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1229 sk_page_frag(sk), getfrag,
1230 from, length, transhdrlen, flags);
1231 }
1232
1233 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1234 int offset, size_t size, int flags)
1235 {
1236 struct inet_sock *inet = inet_sk(sk);
1237 struct sk_buff *skb;
1238 struct rtable *rt;
1239 struct ip_options *opt = NULL;
1240 struct inet_cork *cork;
1241 int hh_len;
1242 int mtu;
1243 int len;
1244 int err;
1245 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1246
1247 if (inet->hdrincl)
1248 return -EPERM;
1249
1250 if (flags&MSG_PROBE)
1251 return 0;
1252
1253 if (skb_queue_empty(&sk->sk_write_queue))
1254 return -EINVAL;
1255
1256 cork = &inet->cork.base;
1257 rt = (struct rtable *)cork->dst;
1258 if (cork->flags & IPCORK_OPT)
1259 opt = cork->opt;
1260
1261 if (!(rt->dst.dev->features&NETIF_F_SG))
1262 return -EOPNOTSUPP;
1263
1264 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1265 mtu = cork->fragsize;
1266
1267 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1268 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1269 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1270
1271 if (cork->length + size > maxnonfragsize - fragheaderlen) {
1272 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1273 mtu - (opt ? opt->optlen : 0));
1274 return -EMSGSIZE;
1275 }
1276
1277 skb = skb_peek_tail(&sk->sk_write_queue);
1278 if (!skb)
1279 return -EINVAL;
1280
1281 if ((size + skb->len > mtu) &&
1282 (skb_queue_len(&sk->sk_write_queue) == 1) &&
1283 (sk->sk_protocol == IPPROTO_UDP) &&
1284 (rt->dst.dev->features & NETIF_F_UFO)) {
1285 if (skb->ip_summed != CHECKSUM_PARTIAL)
1286 return -EOPNOTSUPP;
1287
1288 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1289 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1290 }
1291 cork->length += size;
1292
1293 while (size > 0) {
1294 if (skb_is_gso(skb)) {
1295 len = size;
1296 } else {
1297
1298 /* Check if the remaining data fits into current packet. */
1299 len = mtu - skb->len;
1300 if (len < size)
1301 len = maxfraglen - skb->len;
1302 }
1303 if (len <= 0) {
1304 struct sk_buff *skb_prev;
1305 int alloclen;
1306
1307 skb_prev = skb;
1308 fraggap = skb_prev->len - maxfraglen;
1309
1310 alloclen = fragheaderlen + hh_len + fraggap + 15;
1311 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1312 if (unlikely(!skb)) {
1313 err = -ENOBUFS;
1314 goto error;
1315 }
1316
1317 /*
1318 * Fill in the control structures
1319 */
1320 skb->ip_summed = CHECKSUM_NONE;
1321 skb->csum = 0;
1322 skb_reserve(skb, hh_len);
1323
1324 /*
1325 * Find where to start putting bytes.
1326 */
1327 skb_put(skb, fragheaderlen + fraggap);
1328 skb_reset_network_header(skb);
1329 skb->transport_header = (skb->network_header +
1330 fragheaderlen);
1331 if (fraggap) {
1332 skb->csum = skb_copy_and_csum_bits(skb_prev,
1333 maxfraglen,
1334 skb_transport_header(skb),
1335 fraggap, 0);
1336 skb_prev->csum = csum_sub(skb_prev->csum,
1337 skb->csum);
1338 pskb_trim_unique(skb_prev, maxfraglen);
1339 }
1340
1341 /*
1342 * Put the packet on the pending queue.
1343 */
1344 __skb_queue_tail(&sk->sk_write_queue, skb);
1345 continue;
1346 }
1347
1348 if (len > size)
1349 len = size;
1350
1351 if (skb_append_pagefrags(skb, page, offset, len)) {
1352 err = -EMSGSIZE;
1353 goto error;
1354 }
1355
1356 if (skb->ip_summed == CHECKSUM_NONE) {
1357 __wsum csum;
1358 csum = csum_page(page, offset, len);
1359 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1360 }
1361
1362 skb->len += len;
1363 skb->data_len += len;
1364 skb->truesize += len;
1365 atomic_add(len, &sk->sk_wmem_alloc);
1366 offset += len;
1367 size -= len;
1368 }
1369 return 0;
1370
1371 error:
1372 cork->length -= size;
1373 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1374 return err;
1375 }
1376
1377 static void ip_cork_release(struct inet_cork *cork)
1378 {
1379 cork->flags &= ~IPCORK_OPT;
1380 kfree(cork->opt);
1381 cork->opt = NULL;
1382 dst_release(cork->dst);
1383 cork->dst = NULL;
1384 }
1385
1386 /*
1387 * Combined all pending IP fragments on the socket as one IP datagram
1388 * and push them out.
1389 */
1390 struct sk_buff *__ip_make_skb(struct sock *sk,
1391 struct flowi4 *fl4,
1392 struct sk_buff_head *queue,
1393 struct inet_cork *cork)
1394 {
1395 struct sk_buff *skb, *tmp_skb;
1396 struct sk_buff **tail_skb;
1397 struct inet_sock *inet = inet_sk(sk);
1398 struct net *net = sock_net(sk);
1399 struct ip_options *opt = NULL;
1400 struct rtable *rt = (struct rtable *)cork->dst;
1401 struct iphdr *iph;
1402 __be16 df = 0;
1403 __u8 ttl;
1404
1405 skb = __skb_dequeue(queue);
1406 if (!skb)
1407 goto out;
1408 tail_skb = &(skb_shinfo(skb)->frag_list);
1409
1410 /* move skb->data to ip header from ext header */
1411 if (skb->data < skb_network_header(skb))
1412 __skb_pull(skb, skb_network_offset(skb));
1413 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1414 __skb_pull(tmp_skb, skb_network_header_len(skb));
1415 *tail_skb = tmp_skb;
1416 tail_skb = &(tmp_skb->next);
1417 skb->len += tmp_skb->len;
1418 skb->data_len += tmp_skb->len;
1419 skb->truesize += tmp_skb->truesize;
1420 tmp_skb->destructor = NULL;
1421 tmp_skb->sk = NULL;
1422 }
1423
1424 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1425 * to fragment the frame generated here. No matter, what transforms
1426 * how transforms change size of the packet, it will come out.
1427 */
1428 skb->ignore_df = ip_sk_ignore_df(sk);
1429
1430 /* DF bit is set when we want to see DF on outgoing frames.
1431 * If ignore_df is set too, we still allow to fragment this frame
1432 * locally. */
1433 if (inet->pmtudisc == IP_PMTUDISC_DO ||
1434 inet->pmtudisc == IP_PMTUDISC_PROBE ||
1435 (skb->len <= dst_mtu(&rt->dst) &&
1436 ip_dont_fragment(sk, &rt->dst)))
1437 df = htons(IP_DF);
1438
1439 if (cork->flags & IPCORK_OPT)
1440 opt = cork->opt;
1441
1442 if (cork->ttl != 0)
1443 ttl = cork->ttl;
1444 else if (rt->rt_type == RTN_MULTICAST)
1445 ttl = inet->mc_ttl;
1446 else
1447 ttl = ip_select_ttl(inet, &rt->dst);
1448
1449 iph = ip_hdr(skb);
1450 iph->version = 4;
1451 iph->ihl = 5;
1452 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1453 iph->frag_off = df;
1454 iph->ttl = ttl;
1455 iph->protocol = sk->sk_protocol;
1456 ip_copy_addrs(iph, fl4);
1457 ip_select_ident(net, skb, sk);
1458
1459 if (opt) {
1460 iph->ihl += opt->optlen>>2;
1461 ip_options_build(skb, opt, cork->addr, rt, 0);
1462 }
1463
1464 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1465 skb->mark = sk->sk_mark;
1466 /*
1467 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1468 * on dst refcount
1469 */
1470 cork->dst = NULL;
1471 skb_dst_set(skb, &rt->dst);
1472
1473 if (iph->protocol == IPPROTO_ICMP)
1474 icmp_out_count(net, ((struct icmphdr *)
1475 skb_transport_header(skb))->type);
1476
1477 ip_cork_release(cork);
1478 out:
1479 return skb;
1480 }
1481
1482 int ip_send_skb(struct net *net, struct sk_buff *skb)
1483 {
1484 int err;
1485
1486 err = ip_local_out(net, skb->sk, skb);
1487 if (err) {
1488 if (err > 0)
1489 err = net_xmit_errno(err);
1490 if (err)
1491 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1492 }
1493
1494 return err;
1495 }
1496
1497 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1498 {
1499 struct sk_buff *skb;
1500
1501 skb = ip_finish_skb(sk, fl4);
1502 if (!skb)
1503 return 0;
1504
1505 /* Netfilter gets whole the not fragmented skb. */
1506 return ip_send_skb(sock_net(sk), skb);
1507 }
1508
1509 /*
1510 * Throw away all pending data on the socket.
1511 */
1512 static void __ip_flush_pending_frames(struct sock *sk,
1513 struct sk_buff_head *queue,
1514 struct inet_cork *cork)
1515 {
1516 struct sk_buff *skb;
1517
1518 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1519 kfree_skb(skb);
1520
1521 ip_cork_release(cork);
1522 }
1523
1524 void ip_flush_pending_frames(struct sock *sk)
1525 {
1526 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1527 }
1528
1529 struct sk_buff *ip_make_skb(struct sock *sk,
1530 struct flowi4 *fl4,
1531 int getfrag(void *from, char *to, int offset,
1532 int len, int odd, struct sk_buff *skb),
1533 void *from, int length, int transhdrlen,
1534 struct ipcm_cookie *ipc, struct rtable **rtp,
1535 unsigned int flags)
1536 {
1537 struct inet_cork cork;
1538 struct sk_buff_head queue;
1539 int err;
1540
1541 if (flags & MSG_PROBE)
1542 return NULL;
1543
1544 __skb_queue_head_init(&queue);
1545
1546 cork.flags = 0;
1547 cork.addr = 0;
1548 cork.opt = NULL;
1549 err = ip_setup_cork(sk, &cork, ipc, rtp);
1550 if (err)
1551 return ERR_PTR(err);
1552
1553 err = __ip_append_data(sk, fl4, &queue, &cork,
1554 &current->task_frag, getfrag,
1555 from, length, transhdrlen, flags);
1556 if (err) {
1557 __ip_flush_pending_frames(sk, &queue, &cork);
1558 return ERR_PTR(err);
1559 }
1560
1561 return __ip_make_skb(sk, fl4, &queue, &cork);
1562 }
1563
1564 /*
1565 * Fetch data from kernel space and fill in checksum if needed.
1566 */
1567 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1568 int len, int odd, struct sk_buff *skb)
1569 {
1570 __wsum csum;
1571
1572 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1573 skb->csum = csum_block_add(skb->csum, csum, odd);
1574 return 0;
1575 }
1576
1577 /*
1578 * Generic function to send a packet as reply to another packet.
1579 * Used to send some TCP resets/acks so far.
1580 */
1581 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1582 const struct ip_options *sopt,
1583 __be32 daddr, __be32 saddr,
1584 const struct ip_reply_arg *arg,
1585 unsigned int len)
1586 {
1587 struct ip_options_data replyopts;
1588 struct ipcm_cookie ipc;
1589 struct flowi4 fl4;
1590 struct rtable *rt = skb_rtable(skb);
1591 struct net *net = sock_net(sk);
1592 struct sk_buff *nskb;
1593 int err;
1594 int oif;
1595
1596 if (__ip_options_echo(&replyopts.opt.opt, skb, sopt))
1597 return;
1598
1599 ipc.addr = daddr;
1600 ipc.opt = NULL;
1601 ipc.tx_flags = 0;
1602 ipc.ttl = 0;
1603 ipc.tos = -1;
1604
1605 if (replyopts.opt.opt.optlen) {
1606 ipc.opt = &replyopts.opt;
1607
1608 if (replyopts.opt.opt.srr)
1609 daddr = replyopts.opt.opt.faddr;
1610 }
1611
1612 oif = arg->bound_dev_if;
1613 if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1614 oif = skb->skb_iif;
1615
1616 flowi4_init_output(&fl4, oif,
1617 IP4_REPLY_MARK(net, skb->mark),
1618 RT_TOS(arg->tos),
1619 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1620 ip_reply_arg_flowi_flags(arg),
1621 daddr, saddr,
1622 tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1623 arg->uid);
1624 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1625 rt = ip_route_output_key(net, &fl4);
1626 if (IS_ERR(rt))
1627 return;
1628
1629 inet_sk(sk)->tos = arg->tos;
1630
1631 sk->sk_priority = skb->priority;
1632 sk->sk_protocol = ip_hdr(skb)->protocol;
1633 sk->sk_bound_dev_if = arg->bound_dev_if;
1634 sk->sk_sndbuf = sysctl_wmem_default;
1635 sk->sk_mark = fl4.flowi4_mark;
1636 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1637 len, 0, &ipc, &rt, MSG_DONTWAIT);
1638 if (unlikely(err)) {
1639 ip_flush_pending_frames(sk);
1640 goto out;
1641 }
1642
1643 nskb = skb_peek(&sk->sk_write_queue);
1644 if (nskb) {
1645 if (arg->csumoffset >= 0)
1646 *((__sum16 *)skb_transport_header(nskb) +
1647 arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1648 arg->csum));
1649 nskb->ip_summed = CHECKSUM_NONE;
1650 ip_push_pending_frames(sk, &fl4);
1651 }
1652 out:
1653 ip_rt_put(rt);
1654 }
1655
1656 void __init ip_init(void)
1657 {
1658 ip_rt_init();
1659 inet_initpeers();
1660
1661 #if defined(CONFIG_IP_MULTICAST)
1662 igmp_mc_init();
1663 #endif
1664 }