]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/ip_output.c
net: preserve IP control block during GSO segmentation
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / ip_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The Internet Protocol (IP) output module.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
12 * Richard Underwood
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
17 *
18 * See ip_input.c for original log
19 *
20 * Fixes:
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
24 * no route is found.
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
41 * datagrams.
42 * Hirokazu Takahashi: sendfile() on UDP works now.
43 */
44
45 #include <asm/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
54
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
64
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/netlink.h>
80 #include <linux/tcp.h>
81
82 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
83 EXPORT_SYMBOL(sysctl_ip_default_ttl);
84
85 static int
86 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
87 unsigned int mtu,
88 int (*output)(struct net *, struct sock *, struct sk_buff *));
89
90 /* Generate a checksum for an outgoing IP datagram. */
91 void ip_send_check(struct iphdr *iph)
92 {
93 iph->check = 0;
94 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
95 }
96 EXPORT_SYMBOL(ip_send_check);
97
98 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
99 {
100 struct iphdr *iph = ip_hdr(skb);
101
102 iph->tot_len = htons(skb->len);
103 ip_send_check(iph);
104 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
105 net, sk, skb, NULL, skb_dst(skb)->dev,
106 dst_output);
107 }
108
109 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
110 {
111 int err;
112
113 err = __ip_local_out(net, sk, skb);
114 if (likely(err == 1))
115 err = dst_output(net, sk, skb);
116
117 return err;
118 }
119 EXPORT_SYMBOL_GPL(ip_local_out);
120
121 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
122 {
123 int ttl = inet->uc_ttl;
124
125 if (ttl < 0)
126 ttl = ip4_dst_hoplimit(dst);
127 return ttl;
128 }
129
130 /*
131 * Add an ip header to a skbuff and send it out.
132 *
133 */
134 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
135 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
136 {
137 struct inet_sock *inet = inet_sk(sk);
138 struct rtable *rt = skb_rtable(skb);
139 struct net *net = sock_net(sk);
140 struct iphdr *iph;
141
142 /* Build the IP header. */
143 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
144 skb_reset_network_header(skb);
145 iph = ip_hdr(skb);
146 iph->version = 4;
147 iph->ihl = 5;
148 iph->tos = inet->tos;
149 iph->ttl = ip_select_ttl(inet, &rt->dst);
150 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
151 iph->saddr = saddr;
152 iph->protocol = sk->sk_protocol;
153 if (ip_dont_fragment(sk, &rt->dst)) {
154 iph->frag_off = htons(IP_DF);
155 iph->id = 0;
156 } else {
157 iph->frag_off = 0;
158 __ip_select_ident(net, iph, 1);
159 }
160
161 if (opt && opt->opt.optlen) {
162 iph->ihl += opt->opt.optlen>>2;
163 ip_options_build(skb, &opt->opt, daddr, rt, 0);
164 }
165
166 skb->priority = sk->sk_priority;
167 skb->mark = sk->sk_mark;
168
169 /* Send it out. */
170 return ip_local_out(net, skb->sk, skb);
171 }
172 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
173
174 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
175 {
176 struct dst_entry *dst = skb_dst(skb);
177 struct rtable *rt = (struct rtable *)dst;
178 struct net_device *dev = dst->dev;
179 unsigned int hh_len = LL_RESERVED_SPACE(dev);
180 struct neighbour *neigh;
181 u32 nexthop;
182
183 if (rt->rt_type == RTN_MULTICAST) {
184 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
185 } else if (rt->rt_type == RTN_BROADCAST)
186 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
187
188 /* Be paranoid, rather than too clever. */
189 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
190 struct sk_buff *skb2;
191
192 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
193 if (!skb2) {
194 kfree_skb(skb);
195 return -ENOMEM;
196 }
197 if (skb->sk)
198 skb_set_owner_w(skb2, skb->sk);
199 consume_skb(skb);
200 skb = skb2;
201 }
202
203 rcu_read_lock_bh();
204 nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
205 neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
206 if (unlikely(!neigh))
207 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
208 if (!IS_ERR(neigh)) {
209 int res = dst_neigh_output(dst, neigh, skb);
210
211 rcu_read_unlock_bh();
212 return res;
213 }
214 rcu_read_unlock_bh();
215
216 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
217 __func__);
218 kfree_skb(skb);
219 return -EINVAL;
220 }
221
222 static int ip_finish_output_gso(struct net *net, struct sock *sk,
223 struct sk_buff *skb, unsigned int mtu)
224 {
225 netdev_features_t features;
226 struct sk_buff *segs;
227 int ret = 0;
228
229 /* common case: locally created skb or seglen is <= mtu */
230 if (((IPCB(skb)->flags & IPSKB_FORWARDED) == 0) ||
231 skb_gso_network_seglen(skb) <= mtu)
232 return ip_finish_output2(net, sk, skb);
233
234 /* Slowpath - GSO segment length is exceeding the dst MTU.
235 *
236 * This can happen in two cases:
237 * 1) TCP GRO packet, DF bit not set
238 * 2) skb arrived via virtio-net, we thus get TSO/GSO skbs directly
239 * from host network stack.
240 */
241 features = netif_skb_features(skb);
242 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
243 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
244 if (IS_ERR_OR_NULL(segs)) {
245 kfree_skb(skb);
246 return -ENOMEM;
247 }
248
249 consume_skb(skb);
250
251 do {
252 struct sk_buff *nskb = segs->next;
253 int err;
254
255 segs->next = NULL;
256 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
257
258 if (err && ret == 0)
259 ret = err;
260 segs = nskb;
261 } while (segs);
262
263 return ret;
264 }
265
266 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
267 {
268 unsigned int mtu;
269
270 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
271 /* Policy lookup after SNAT yielded a new policy */
272 if (skb_dst(skb)->xfrm) {
273 IPCB(skb)->flags |= IPSKB_REROUTED;
274 return dst_output(net, sk, skb);
275 }
276 #endif
277 mtu = ip_skb_dst_mtu(skb);
278 if (skb_is_gso(skb))
279 return ip_finish_output_gso(net, sk, skb, mtu);
280
281 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
282 return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
283
284 return ip_finish_output2(net, sk, skb);
285 }
286
287 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
288 {
289 struct rtable *rt = skb_rtable(skb);
290 struct net_device *dev = rt->dst.dev;
291
292 /*
293 * If the indicated interface is up and running, send the packet.
294 */
295 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
296
297 skb->dev = dev;
298 skb->protocol = htons(ETH_P_IP);
299
300 /*
301 * Multicasts are looped back for other local users
302 */
303
304 if (rt->rt_flags&RTCF_MULTICAST) {
305 if (sk_mc_loop(sk)
306 #ifdef CONFIG_IP_MROUTE
307 /* Small optimization: do not loopback not local frames,
308 which returned after forwarding; they will be dropped
309 by ip_mr_input in any case.
310 Note, that local frames are looped back to be delivered
311 to local recipients.
312
313 This check is duplicated in ip_mr_input at the moment.
314 */
315 &&
316 ((rt->rt_flags & RTCF_LOCAL) ||
317 !(IPCB(skb)->flags & IPSKB_FORWARDED))
318 #endif
319 ) {
320 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
321 if (newskb)
322 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
323 net, sk, newskb, NULL, newskb->dev,
324 dev_loopback_xmit);
325 }
326
327 /* Multicasts with ttl 0 must not go beyond the host */
328
329 if (ip_hdr(skb)->ttl == 0) {
330 kfree_skb(skb);
331 return 0;
332 }
333 }
334
335 if (rt->rt_flags&RTCF_BROADCAST) {
336 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
337 if (newskb)
338 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
339 net, sk, newskb, NULL, newskb->dev,
340 dev_loopback_xmit);
341 }
342
343 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
344 net, sk, skb, NULL, skb->dev,
345 ip_finish_output,
346 !(IPCB(skb)->flags & IPSKB_REROUTED));
347 }
348
349 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
350 {
351 struct net_device *dev = skb_dst(skb)->dev;
352
353 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
354
355 skb->dev = dev;
356 skb->protocol = htons(ETH_P_IP);
357
358 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
359 net, sk, skb, NULL, dev,
360 ip_finish_output,
361 !(IPCB(skb)->flags & IPSKB_REROUTED));
362 }
363
364 /*
365 * copy saddr and daddr, possibly using 64bit load/stores
366 * Equivalent to :
367 * iph->saddr = fl4->saddr;
368 * iph->daddr = fl4->daddr;
369 */
370 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
371 {
372 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
373 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
374 memcpy(&iph->saddr, &fl4->saddr,
375 sizeof(fl4->saddr) + sizeof(fl4->daddr));
376 }
377
378 /* Note: skb->sk can be different from sk, in case of tunnels */
379 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
380 {
381 struct inet_sock *inet = inet_sk(sk);
382 struct net *net = sock_net(sk);
383 struct ip_options_rcu *inet_opt;
384 struct flowi4 *fl4;
385 struct rtable *rt;
386 struct iphdr *iph;
387 int res;
388
389 /* Skip all of this if the packet is already routed,
390 * f.e. by something like SCTP.
391 */
392 rcu_read_lock();
393 inet_opt = rcu_dereference(inet->inet_opt);
394 fl4 = &fl->u.ip4;
395 rt = skb_rtable(skb);
396 if (rt)
397 goto packet_routed;
398
399 /* Make sure we can route this packet. */
400 rt = (struct rtable *)__sk_dst_check(sk, 0);
401 if (!rt) {
402 __be32 daddr;
403
404 /* Use correct destination address if we have options. */
405 daddr = inet->inet_daddr;
406 if (inet_opt && inet_opt->opt.srr)
407 daddr = inet_opt->opt.faddr;
408
409 /* If this fails, retransmit mechanism of transport layer will
410 * keep trying until route appears or the connection times
411 * itself out.
412 */
413 rt = ip_route_output_ports(net, fl4, sk,
414 daddr, inet->inet_saddr,
415 inet->inet_dport,
416 inet->inet_sport,
417 sk->sk_protocol,
418 RT_CONN_FLAGS(sk),
419 sk->sk_bound_dev_if);
420 if (IS_ERR(rt))
421 goto no_route;
422 sk_setup_caps(sk, &rt->dst);
423 }
424 skb_dst_set_noref(skb, &rt->dst);
425
426 packet_routed:
427 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
428 goto no_route;
429
430 /* OK, we know where to send it, allocate and build IP header. */
431 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
432 skb_reset_network_header(skb);
433 iph = ip_hdr(skb);
434 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
435 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
436 iph->frag_off = htons(IP_DF);
437 else
438 iph->frag_off = 0;
439 iph->ttl = ip_select_ttl(inet, &rt->dst);
440 iph->protocol = sk->sk_protocol;
441 ip_copy_addrs(iph, fl4);
442
443 /* Transport layer set skb->h.foo itself. */
444
445 if (inet_opt && inet_opt->opt.optlen) {
446 iph->ihl += inet_opt->opt.optlen >> 2;
447 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
448 }
449
450 ip_select_ident_segs(net, skb, sk,
451 skb_shinfo(skb)->gso_segs ?: 1);
452
453 /* TODO : should we use skb->sk here instead of sk ? */
454 skb->priority = sk->sk_priority;
455 skb->mark = sk->sk_mark;
456
457 res = ip_local_out(net, sk, skb);
458 rcu_read_unlock();
459 return res;
460
461 no_route:
462 rcu_read_unlock();
463 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
464 kfree_skb(skb);
465 return -EHOSTUNREACH;
466 }
467 EXPORT_SYMBOL(ip_queue_xmit);
468
469 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
470 {
471 to->pkt_type = from->pkt_type;
472 to->priority = from->priority;
473 to->protocol = from->protocol;
474 skb_dst_drop(to);
475 skb_dst_copy(to, from);
476 to->dev = from->dev;
477 to->mark = from->mark;
478
479 /* Copy the flags to each fragment. */
480 IPCB(to)->flags = IPCB(from)->flags;
481
482 #ifdef CONFIG_NET_SCHED
483 to->tc_index = from->tc_index;
484 #endif
485 nf_copy(to, from);
486 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
487 to->ipvs_property = from->ipvs_property;
488 #endif
489 skb_copy_secmark(to, from);
490 }
491
492 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
493 unsigned int mtu,
494 int (*output)(struct net *, struct sock *, struct sk_buff *))
495 {
496 struct iphdr *iph = ip_hdr(skb);
497
498 if ((iph->frag_off & htons(IP_DF)) == 0)
499 return ip_do_fragment(net, sk, skb, output);
500
501 if (unlikely(!skb->ignore_df ||
502 (IPCB(skb)->frag_max_size &&
503 IPCB(skb)->frag_max_size > mtu))) {
504 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
505 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
506 htonl(mtu));
507 kfree_skb(skb);
508 return -EMSGSIZE;
509 }
510
511 return ip_do_fragment(net, sk, skb, output);
512 }
513
514 /*
515 * This IP datagram is too large to be sent in one piece. Break it up into
516 * smaller pieces (each of size equal to IP header plus
517 * a block of the data of the original IP data part) that will yet fit in a
518 * single device frame, and queue such a frame for sending.
519 */
520
521 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
522 int (*output)(struct net *, struct sock *, struct sk_buff *))
523 {
524 struct iphdr *iph;
525 int ptr;
526 struct net_device *dev;
527 struct sk_buff *skb2;
528 unsigned int mtu, hlen, left, len, ll_rs;
529 int offset;
530 __be16 not_last_frag;
531 struct rtable *rt = skb_rtable(skb);
532 int err = 0;
533
534 dev = rt->dst.dev;
535
536 /* for offloaded checksums cleanup checksum before fragmentation */
537 if (skb->ip_summed == CHECKSUM_PARTIAL &&
538 (err = skb_checksum_help(skb)))
539 goto fail;
540
541 /*
542 * Point into the IP datagram header.
543 */
544
545 iph = ip_hdr(skb);
546
547 mtu = ip_skb_dst_mtu(skb);
548 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
549 mtu = IPCB(skb)->frag_max_size;
550
551 /*
552 * Setup starting values.
553 */
554
555 hlen = iph->ihl * 4;
556 mtu = mtu - hlen; /* Size of data space */
557 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
558
559 /* When frag_list is given, use it. First, check its validity:
560 * some transformers could create wrong frag_list or break existing
561 * one, it is not prohibited. In this case fall back to copying.
562 *
563 * LATER: this step can be merged to real generation of fragments,
564 * we can switch to copy when see the first bad fragment.
565 */
566 if (skb_has_frag_list(skb)) {
567 struct sk_buff *frag, *frag2;
568 int first_len = skb_pagelen(skb);
569
570 if (first_len - hlen > mtu ||
571 ((first_len - hlen) & 7) ||
572 ip_is_fragment(iph) ||
573 skb_cloned(skb))
574 goto slow_path;
575
576 skb_walk_frags(skb, frag) {
577 /* Correct geometry. */
578 if (frag->len > mtu ||
579 ((frag->len & 7) && frag->next) ||
580 skb_headroom(frag) < hlen)
581 goto slow_path_clean;
582
583 /* Partially cloned skb? */
584 if (skb_shared(frag))
585 goto slow_path_clean;
586
587 BUG_ON(frag->sk);
588 if (skb->sk) {
589 frag->sk = skb->sk;
590 frag->destructor = sock_wfree;
591 }
592 skb->truesize -= frag->truesize;
593 }
594
595 /* Everything is OK. Generate! */
596
597 err = 0;
598 offset = 0;
599 frag = skb_shinfo(skb)->frag_list;
600 skb_frag_list_init(skb);
601 skb->data_len = first_len - skb_headlen(skb);
602 skb->len = first_len;
603 iph->tot_len = htons(first_len);
604 iph->frag_off = htons(IP_MF);
605 ip_send_check(iph);
606
607 for (;;) {
608 /* Prepare header of the next frame,
609 * before previous one went down. */
610 if (frag) {
611 frag->ip_summed = CHECKSUM_NONE;
612 skb_reset_transport_header(frag);
613 __skb_push(frag, hlen);
614 skb_reset_network_header(frag);
615 memcpy(skb_network_header(frag), iph, hlen);
616 iph = ip_hdr(frag);
617 iph->tot_len = htons(frag->len);
618 ip_copy_metadata(frag, skb);
619 if (offset == 0)
620 ip_options_fragment(frag);
621 offset += skb->len - hlen;
622 iph->frag_off = htons(offset>>3);
623 if (frag->next)
624 iph->frag_off |= htons(IP_MF);
625 /* Ready, complete checksum */
626 ip_send_check(iph);
627 }
628
629 err = output(net, sk, skb);
630
631 if (!err)
632 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
633 if (err || !frag)
634 break;
635
636 skb = frag;
637 frag = skb->next;
638 skb->next = NULL;
639 }
640
641 if (err == 0) {
642 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
643 return 0;
644 }
645
646 while (frag) {
647 skb = frag->next;
648 kfree_skb(frag);
649 frag = skb;
650 }
651 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
652 return err;
653
654 slow_path_clean:
655 skb_walk_frags(skb, frag2) {
656 if (frag2 == frag)
657 break;
658 frag2->sk = NULL;
659 frag2->destructor = NULL;
660 skb->truesize += frag2->truesize;
661 }
662 }
663
664 slow_path:
665 iph = ip_hdr(skb);
666
667 left = skb->len - hlen; /* Space per frame */
668 ptr = hlen; /* Where to start from */
669
670 ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
671
672 /*
673 * Fragment the datagram.
674 */
675
676 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
677 not_last_frag = iph->frag_off & htons(IP_MF);
678
679 /*
680 * Keep copying data until we run out.
681 */
682
683 while (left > 0) {
684 len = left;
685 /* IF: it doesn't fit, use 'mtu' - the data space left */
686 if (len > mtu)
687 len = mtu;
688 /* IF: we are not sending up to and including the packet end
689 then align the next start on an eight byte boundary */
690 if (len < left) {
691 len &= ~7;
692 }
693
694 /* Allocate buffer */
695 skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
696 if (!skb2) {
697 err = -ENOMEM;
698 goto fail;
699 }
700
701 /*
702 * Set up data on packet
703 */
704
705 ip_copy_metadata(skb2, skb);
706 skb_reserve(skb2, ll_rs);
707 skb_put(skb2, len + hlen);
708 skb_reset_network_header(skb2);
709 skb2->transport_header = skb2->network_header + hlen;
710
711 /*
712 * Charge the memory for the fragment to any owner
713 * it might possess
714 */
715
716 if (skb->sk)
717 skb_set_owner_w(skb2, skb->sk);
718
719 /*
720 * Copy the packet header into the new buffer.
721 */
722
723 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
724
725 /*
726 * Copy a block of the IP datagram.
727 */
728 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
729 BUG();
730 left -= len;
731
732 /*
733 * Fill in the new header fields.
734 */
735 iph = ip_hdr(skb2);
736 iph->frag_off = htons((offset >> 3));
737
738 if (IPCB(skb)->flags & IPSKB_FRAG_PMTU)
739 iph->frag_off |= htons(IP_DF);
740
741 /* ANK: dirty, but effective trick. Upgrade options only if
742 * the segment to be fragmented was THE FIRST (otherwise,
743 * options are already fixed) and make it ONCE
744 * on the initial skb, so that all the following fragments
745 * will inherit fixed options.
746 */
747 if (offset == 0)
748 ip_options_fragment(skb);
749
750 /*
751 * Added AC : If we are fragmenting a fragment that's not the
752 * last fragment then keep MF on each bit
753 */
754 if (left > 0 || not_last_frag)
755 iph->frag_off |= htons(IP_MF);
756 ptr += len;
757 offset += len;
758
759 /*
760 * Put this fragment into the sending queue.
761 */
762 iph->tot_len = htons(len + hlen);
763
764 ip_send_check(iph);
765
766 err = output(net, sk, skb2);
767 if (err)
768 goto fail;
769
770 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
771 }
772 consume_skb(skb);
773 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
774 return err;
775
776 fail:
777 kfree_skb(skb);
778 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
779 return err;
780 }
781 EXPORT_SYMBOL(ip_do_fragment);
782
783 int
784 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
785 {
786 struct msghdr *msg = from;
787
788 if (skb->ip_summed == CHECKSUM_PARTIAL) {
789 if (copy_from_iter(to, len, &msg->msg_iter) != len)
790 return -EFAULT;
791 } else {
792 __wsum csum = 0;
793 if (csum_and_copy_from_iter(to, len, &csum, &msg->msg_iter) != len)
794 return -EFAULT;
795 skb->csum = csum_block_add(skb->csum, csum, odd);
796 }
797 return 0;
798 }
799 EXPORT_SYMBOL(ip_generic_getfrag);
800
801 static inline __wsum
802 csum_page(struct page *page, int offset, int copy)
803 {
804 char *kaddr;
805 __wsum csum;
806 kaddr = kmap(page);
807 csum = csum_partial(kaddr + offset, copy, 0);
808 kunmap(page);
809 return csum;
810 }
811
812 static inline int ip_ufo_append_data(struct sock *sk,
813 struct sk_buff_head *queue,
814 int getfrag(void *from, char *to, int offset, int len,
815 int odd, struct sk_buff *skb),
816 void *from, int length, int hh_len, int fragheaderlen,
817 int transhdrlen, int maxfraglen, unsigned int flags)
818 {
819 struct sk_buff *skb;
820 int err;
821
822 /* There is support for UDP fragmentation offload by network
823 * device, so create one single skb packet containing complete
824 * udp datagram
825 */
826 skb = skb_peek_tail(queue);
827 if (!skb) {
828 skb = sock_alloc_send_skb(sk,
829 hh_len + fragheaderlen + transhdrlen + 20,
830 (flags & MSG_DONTWAIT), &err);
831
832 if (!skb)
833 return err;
834
835 /* reserve space for Hardware header */
836 skb_reserve(skb, hh_len);
837
838 /* create space for UDP/IP header */
839 skb_put(skb, fragheaderlen + transhdrlen);
840
841 /* initialize network header pointer */
842 skb_reset_network_header(skb);
843
844 /* initialize protocol header pointer */
845 skb->transport_header = skb->network_header + fragheaderlen;
846
847 skb->csum = 0;
848
849 __skb_queue_tail(queue, skb);
850 } else if (skb_is_gso(skb)) {
851 goto append;
852 }
853
854 skb->ip_summed = CHECKSUM_PARTIAL;
855 /* specify the length of each IP datagram fragment */
856 skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
857 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
858
859 append:
860 return skb_append_datato_frags(sk, skb, getfrag, from,
861 (length - transhdrlen));
862 }
863
864 static int __ip_append_data(struct sock *sk,
865 struct flowi4 *fl4,
866 struct sk_buff_head *queue,
867 struct inet_cork *cork,
868 struct page_frag *pfrag,
869 int getfrag(void *from, char *to, int offset,
870 int len, int odd, struct sk_buff *skb),
871 void *from, int length, int transhdrlen,
872 unsigned int flags)
873 {
874 struct inet_sock *inet = inet_sk(sk);
875 struct sk_buff *skb;
876
877 struct ip_options *opt = cork->opt;
878 int hh_len;
879 int exthdrlen;
880 int mtu;
881 int copy;
882 int err;
883 int offset = 0;
884 unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
885 int csummode = CHECKSUM_NONE;
886 struct rtable *rt = (struct rtable *)cork->dst;
887 u32 tskey = 0;
888
889 skb = skb_peek_tail(queue);
890
891 exthdrlen = !skb ? rt->dst.header_len : 0;
892 mtu = cork->fragsize;
893 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
894 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
895 tskey = sk->sk_tskey++;
896
897 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
898
899 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
900 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
901 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
902
903 if (cork->length + length > maxnonfragsize - fragheaderlen) {
904 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
905 mtu - (opt ? opt->optlen : 0));
906 return -EMSGSIZE;
907 }
908
909 /*
910 * transhdrlen > 0 means that this is the first fragment and we wish
911 * it won't be fragmented in the future.
912 */
913 if (transhdrlen &&
914 length + fragheaderlen <= mtu &&
915 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
916 !(flags & MSG_MORE) &&
917 !exthdrlen)
918 csummode = CHECKSUM_PARTIAL;
919
920 cork->length += length;
921 if (((length > mtu) || (skb && skb_is_gso(skb))) &&
922 (sk->sk_protocol == IPPROTO_UDP) &&
923 (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len &&
924 (sk->sk_type == SOCK_DGRAM) && !sk->sk_no_check_tx) {
925 err = ip_ufo_append_data(sk, queue, getfrag, from, length,
926 hh_len, fragheaderlen, transhdrlen,
927 maxfraglen, flags);
928 if (err)
929 goto error;
930 return 0;
931 }
932
933 /* So, what's going on in the loop below?
934 *
935 * We use calculated fragment length to generate chained skb,
936 * each of segments is IP fragment ready for sending to network after
937 * adding appropriate IP header.
938 */
939
940 if (!skb)
941 goto alloc_new_skb;
942
943 while (length > 0) {
944 /* Check if the remaining data fits into current packet. */
945 copy = mtu - skb->len;
946 if (copy < length)
947 copy = maxfraglen - skb->len;
948 if (copy <= 0) {
949 char *data;
950 unsigned int datalen;
951 unsigned int fraglen;
952 unsigned int fraggap;
953 unsigned int alloclen;
954 struct sk_buff *skb_prev;
955 alloc_new_skb:
956 skb_prev = skb;
957 if (skb_prev)
958 fraggap = skb_prev->len - maxfraglen;
959 else
960 fraggap = 0;
961
962 /*
963 * If remaining data exceeds the mtu,
964 * we know we need more fragment(s).
965 */
966 datalen = length + fraggap;
967 if (datalen > mtu - fragheaderlen)
968 datalen = maxfraglen - fragheaderlen;
969 fraglen = datalen + fragheaderlen;
970
971 if ((flags & MSG_MORE) &&
972 !(rt->dst.dev->features&NETIF_F_SG))
973 alloclen = mtu;
974 else
975 alloclen = fraglen;
976
977 alloclen += exthdrlen;
978
979 /* The last fragment gets additional space at tail.
980 * Note, with MSG_MORE we overallocate on fragments,
981 * because we have no idea what fragment will be
982 * the last.
983 */
984 if (datalen == length + fraggap)
985 alloclen += rt->dst.trailer_len;
986
987 if (transhdrlen) {
988 skb = sock_alloc_send_skb(sk,
989 alloclen + hh_len + 15,
990 (flags & MSG_DONTWAIT), &err);
991 } else {
992 skb = NULL;
993 if (atomic_read(&sk->sk_wmem_alloc) <=
994 2 * sk->sk_sndbuf)
995 skb = sock_wmalloc(sk,
996 alloclen + hh_len + 15, 1,
997 sk->sk_allocation);
998 if (unlikely(!skb))
999 err = -ENOBUFS;
1000 }
1001 if (!skb)
1002 goto error;
1003
1004 /*
1005 * Fill in the control structures
1006 */
1007 skb->ip_summed = csummode;
1008 skb->csum = 0;
1009 skb_reserve(skb, hh_len);
1010
1011 /* only the initial fragment is time stamped */
1012 skb_shinfo(skb)->tx_flags = cork->tx_flags;
1013 cork->tx_flags = 0;
1014 skb_shinfo(skb)->tskey = tskey;
1015 tskey = 0;
1016
1017 /*
1018 * Find where to start putting bytes.
1019 */
1020 data = skb_put(skb, fraglen + exthdrlen);
1021 skb_set_network_header(skb, exthdrlen);
1022 skb->transport_header = (skb->network_header +
1023 fragheaderlen);
1024 data += fragheaderlen + exthdrlen;
1025
1026 if (fraggap) {
1027 skb->csum = skb_copy_and_csum_bits(
1028 skb_prev, maxfraglen,
1029 data + transhdrlen, fraggap, 0);
1030 skb_prev->csum = csum_sub(skb_prev->csum,
1031 skb->csum);
1032 data += fraggap;
1033 pskb_trim_unique(skb_prev, maxfraglen);
1034 }
1035
1036 copy = datalen - transhdrlen - fraggap;
1037 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1038 err = -EFAULT;
1039 kfree_skb(skb);
1040 goto error;
1041 }
1042
1043 offset += copy;
1044 length -= datalen - fraggap;
1045 transhdrlen = 0;
1046 exthdrlen = 0;
1047 csummode = CHECKSUM_NONE;
1048
1049 /*
1050 * Put the packet on the pending queue.
1051 */
1052 __skb_queue_tail(queue, skb);
1053 continue;
1054 }
1055
1056 if (copy > length)
1057 copy = length;
1058
1059 if (!(rt->dst.dev->features&NETIF_F_SG)) {
1060 unsigned int off;
1061
1062 off = skb->len;
1063 if (getfrag(from, skb_put(skb, copy),
1064 offset, copy, off, skb) < 0) {
1065 __skb_trim(skb, off);
1066 err = -EFAULT;
1067 goto error;
1068 }
1069 } else {
1070 int i = skb_shinfo(skb)->nr_frags;
1071
1072 err = -ENOMEM;
1073 if (!sk_page_frag_refill(sk, pfrag))
1074 goto error;
1075
1076 if (!skb_can_coalesce(skb, i, pfrag->page,
1077 pfrag->offset)) {
1078 err = -EMSGSIZE;
1079 if (i == MAX_SKB_FRAGS)
1080 goto error;
1081
1082 __skb_fill_page_desc(skb, i, pfrag->page,
1083 pfrag->offset, 0);
1084 skb_shinfo(skb)->nr_frags = ++i;
1085 get_page(pfrag->page);
1086 }
1087 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1088 if (getfrag(from,
1089 page_address(pfrag->page) + pfrag->offset,
1090 offset, copy, skb->len, skb) < 0)
1091 goto error_efault;
1092
1093 pfrag->offset += copy;
1094 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1095 skb->len += copy;
1096 skb->data_len += copy;
1097 skb->truesize += copy;
1098 atomic_add(copy, &sk->sk_wmem_alloc);
1099 }
1100 offset += copy;
1101 length -= copy;
1102 }
1103
1104 return 0;
1105
1106 error_efault:
1107 err = -EFAULT;
1108 error:
1109 cork->length -= length;
1110 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1111 return err;
1112 }
1113
1114 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1115 struct ipcm_cookie *ipc, struct rtable **rtp)
1116 {
1117 struct ip_options_rcu *opt;
1118 struct rtable *rt;
1119
1120 /*
1121 * setup for corking.
1122 */
1123 opt = ipc->opt;
1124 if (opt) {
1125 if (!cork->opt) {
1126 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1127 sk->sk_allocation);
1128 if (unlikely(!cork->opt))
1129 return -ENOBUFS;
1130 }
1131 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1132 cork->flags |= IPCORK_OPT;
1133 cork->addr = ipc->addr;
1134 }
1135 rt = *rtp;
1136 if (unlikely(!rt))
1137 return -EFAULT;
1138 /*
1139 * We steal reference to this route, caller should not release it
1140 */
1141 *rtp = NULL;
1142 cork->fragsize = ip_sk_use_pmtu(sk) ?
1143 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1144 cork->dst = &rt->dst;
1145 cork->length = 0;
1146 cork->ttl = ipc->ttl;
1147 cork->tos = ipc->tos;
1148 cork->priority = ipc->priority;
1149 cork->tx_flags = ipc->tx_flags;
1150
1151 return 0;
1152 }
1153
1154 /*
1155 * ip_append_data() and ip_append_page() can make one large IP datagram
1156 * from many pieces of data. Each pieces will be holded on the socket
1157 * until ip_push_pending_frames() is called. Each piece can be a page
1158 * or non-page data.
1159 *
1160 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1161 * this interface potentially.
1162 *
1163 * LATER: length must be adjusted by pad at tail, when it is required.
1164 */
1165 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1166 int getfrag(void *from, char *to, int offset, int len,
1167 int odd, struct sk_buff *skb),
1168 void *from, int length, int transhdrlen,
1169 struct ipcm_cookie *ipc, struct rtable **rtp,
1170 unsigned int flags)
1171 {
1172 struct inet_sock *inet = inet_sk(sk);
1173 int err;
1174
1175 if (flags&MSG_PROBE)
1176 return 0;
1177
1178 if (skb_queue_empty(&sk->sk_write_queue)) {
1179 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1180 if (err)
1181 return err;
1182 } else {
1183 transhdrlen = 0;
1184 }
1185
1186 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1187 sk_page_frag(sk), getfrag,
1188 from, length, transhdrlen, flags);
1189 }
1190
1191 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1192 int offset, size_t size, int flags)
1193 {
1194 struct inet_sock *inet = inet_sk(sk);
1195 struct sk_buff *skb;
1196 struct rtable *rt;
1197 struct ip_options *opt = NULL;
1198 struct inet_cork *cork;
1199 int hh_len;
1200 int mtu;
1201 int len;
1202 int err;
1203 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1204
1205 if (inet->hdrincl)
1206 return -EPERM;
1207
1208 if (flags&MSG_PROBE)
1209 return 0;
1210
1211 if (skb_queue_empty(&sk->sk_write_queue))
1212 return -EINVAL;
1213
1214 cork = &inet->cork.base;
1215 rt = (struct rtable *)cork->dst;
1216 if (cork->flags & IPCORK_OPT)
1217 opt = cork->opt;
1218
1219 if (!(rt->dst.dev->features&NETIF_F_SG))
1220 return -EOPNOTSUPP;
1221
1222 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1223 mtu = cork->fragsize;
1224
1225 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1226 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1227 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1228
1229 if (cork->length + size > maxnonfragsize - fragheaderlen) {
1230 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1231 mtu - (opt ? opt->optlen : 0));
1232 return -EMSGSIZE;
1233 }
1234
1235 skb = skb_peek_tail(&sk->sk_write_queue);
1236 if (!skb)
1237 return -EINVAL;
1238
1239 cork->length += size;
1240 if ((size + skb->len > mtu) &&
1241 (sk->sk_protocol == IPPROTO_UDP) &&
1242 (rt->dst.dev->features & NETIF_F_UFO)) {
1243 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1244 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1245 }
1246
1247 while (size > 0) {
1248 if (skb_is_gso(skb)) {
1249 len = size;
1250 } else {
1251
1252 /* Check if the remaining data fits into current packet. */
1253 len = mtu - skb->len;
1254 if (len < size)
1255 len = maxfraglen - skb->len;
1256 }
1257 if (len <= 0) {
1258 struct sk_buff *skb_prev;
1259 int alloclen;
1260
1261 skb_prev = skb;
1262 fraggap = skb_prev->len - maxfraglen;
1263
1264 alloclen = fragheaderlen + hh_len + fraggap + 15;
1265 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1266 if (unlikely(!skb)) {
1267 err = -ENOBUFS;
1268 goto error;
1269 }
1270
1271 /*
1272 * Fill in the control structures
1273 */
1274 skb->ip_summed = CHECKSUM_NONE;
1275 skb->csum = 0;
1276 skb_reserve(skb, hh_len);
1277
1278 /*
1279 * Find where to start putting bytes.
1280 */
1281 skb_put(skb, fragheaderlen + fraggap);
1282 skb_reset_network_header(skb);
1283 skb->transport_header = (skb->network_header +
1284 fragheaderlen);
1285 if (fraggap) {
1286 skb->csum = skb_copy_and_csum_bits(skb_prev,
1287 maxfraglen,
1288 skb_transport_header(skb),
1289 fraggap, 0);
1290 skb_prev->csum = csum_sub(skb_prev->csum,
1291 skb->csum);
1292 pskb_trim_unique(skb_prev, maxfraglen);
1293 }
1294
1295 /*
1296 * Put the packet on the pending queue.
1297 */
1298 __skb_queue_tail(&sk->sk_write_queue, skb);
1299 continue;
1300 }
1301
1302 if (len > size)
1303 len = size;
1304
1305 if (skb_append_pagefrags(skb, page, offset, len)) {
1306 err = -EMSGSIZE;
1307 goto error;
1308 }
1309
1310 if (skb->ip_summed == CHECKSUM_NONE) {
1311 __wsum csum;
1312 csum = csum_page(page, offset, len);
1313 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1314 }
1315
1316 skb->len += len;
1317 skb->data_len += len;
1318 skb->truesize += len;
1319 atomic_add(len, &sk->sk_wmem_alloc);
1320 offset += len;
1321 size -= len;
1322 }
1323 return 0;
1324
1325 error:
1326 cork->length -= size;
1327 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1328 return err;
1329 }
1330
1331 static void ip_cork_release(struct inet_cork *cork)
1332 {
1333 cork->flags &= ~IPCORK_OPT;
1334 kfree(cork->opt);
1335 cork->opt = NULL;
1336 dst_release(cork->dst);
1337 cork->dst = NULL;
1338 }
1339
1340 /*
1341 * Combined all pending IP fragments on the socket as one IP datagram
1342 * and push them out.
1343 */
1344 struct sk_buff *__ip_make_skb(struct sock *sk,
1345 struct flowi4 *fl4,
1346 struct sk_buff_head *queue,
1347 struct inet_cork *cork)
1348 {
1349 struct sk_buff *skb, *tmp_skb;
1350 struct sk_buff **tail_skb;
1351 struct inet_sock *inet = inet_sk(sk);
1352 struct net *net = sock_net(sk);
1353 struct ip_options *opt = NULL;
1354 struct rtable *rt = (struct rtable *)cork->dst;
1355 struct iphdr *iph;
1356 __be16 df = 0;
1357 __u8 ttl;
1358
1359 skb = __skb_dequeue(queue);
1360 if (!skb)
1361 goto out;
1362 tail_skb = &(skb_shinfo(skb)->frag_list);
1363
1364 /* move skb->data to ip header from ext header */
1365 if (skb->data < skb_network_header(skb))
1366 __skb_pull(skb, skb_network_offset(skb));
1367 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1368 __skb_pull(tmp_skb, skb_network_header_len(skb));
1369 *tail_skb = tmp_skb;
1370 tail_skb = &(tmp_skb->next);
1371 skb->len += tmp_skb->len;
1372 skb->data_len += tmp_skb->len;
1373 skb->truesize += tmp_skb->truesize;
1374 tmp_skb->destructor = NULL;
1375 tmp_skb->sk = NULL;
1376 }
1377
1378 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1379 * to fragment the frame generated here. No matter, what transforms
1380 * how transforms change size of the packet, it will come out.
1381 */
1382 skb->ignore_df = ip_sk_ignore_df(sk);
1383
1384 /* DF bit is set when we want to see DF on outgoing frames.
1385 * If ignore_df is set too, we still allow to fragment this frame
1386 * locally. */
1387 if (inet->pmtudisc == IP_PMTUDISC_DO ||
1388 inet->pmtudisc == IP_PMTUDISC_PROBE ||
1389 (skb->len <= dst_mtu(&rt->dst) &&
1390 ip_dont_fragment(sk, &rt->dst)))
1391 df = htons(IP_DF);
1392
1393 if (cork->flags & IPCORK_OPT)
1394 opt = cork->opt;
1395
1396 if (cork->ttl != 0)
1397 ttl = cork->ttl;
1398 else if (rt->rt_type == RTN_MULTICAST)
1399 ttl = inet->mc_ttl;
1400 else
1401 ttl = ip_select_ttl(inet, &rt->dst);
1402
1403 iph = ip_hdr(skb);
1404 iph->version = 4;
1405 iph->ihl = 5;
1406 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1407 iph->frag_off = df;
1408 iph->ttl = ttl;
1409 iph->protocol = sk->sk_protocol;
1410 ip_copy_addrs(iph, fl4);
1411 ip_select_ident(net, skb, sk);
1412
1413 if (opt) {
1414 iph->ihl += opt->optlen>>2;
1415 ip_options_build(skb, opt, cork->addr, rt, 0);
1416 }
1417
1418 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1419 skb->mark = sk->sk_mark;
1420 /*
1421 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1422 * on dst refcount
1423 */
1424 cork->dst = NULL;
1425 skb_dst_set(skb, &rt->dst);
1426
1427 if (iph->protocol == IPPROTO_ICMP)
1428 icmp_out_count(net, ((struct icmphdr *)
1429 skb_transport_header(skb))->type);
1430
1431 ip_cork_release(cork);
1432 out:
1433 return skb;
1434 }
1435
1436 int ip_send_skb(struct net *net, struct sk_buff *skb)
1437 {
1438 int err;
1439
1440 err = ip_local_out(net, skb->sk, skb);
1441 if (err) {
1442 if (err > 0)
1443 err = net_xmit_errno(err);
1444 if (err)
1445 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1446 }
1447
1448 return err;
1449 }
1450
1451 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1452 {
1453 struct sk_buff *skb;
1454
1455 skb = ip_finish_skb(sk, fl4);
1456 if (!skb)
1457 return 0;
1458
1459 /* Netfilter gets whole the not fragmented skb. */
1460 return ip_send_skb(sock_net(sk), skb);
1461 }
1462
1463 /*
1464 * Throw away all pending data on the socket.
1465 */
1466 static void __ip_flush_pending_frames(struct sock *sk,
1467 struct sk_buff_head *queue,
1468 struct inet_cork *cork)
1469 {
1470 struct sk_buff *skb;
1471
1472 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1473 kfree_skb(skb);
1474
1475 ip_cork_release(cork);
1476 }
1477
1478 void ip_flush_pending_frames(struct sock *sk)
1479 {
1480 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1481 }
1482
1483 struct sk_buff *ip_make_skb(struct sock *sk,
1484 struct flowi4 *fl4,
1485 int getfrag(void *from, char *to, int offset,
1486 int len, int odd, struct sk_buff *skb),
1487 void *from, int length, int transhdrlen,
1488 struct ipcm_cookie *ipc, struct rtable **rtp,
1489 unsigned int flags)
1490 {
1491 struct inet_cork cork;
1492 struct sk_buff_head queue;
1493 int err;
1494
1495 if (flags & MSG_PROBE)
1496 return NULL;
1497
1498 __skb_queue_head_init(&queue);
1499
1500 cork.flags = 0;
1501 cork.addr = 0;
1502 cork.opt = NULL;
1503 err = ip_setup_cork(sk, &cork, ipc, rtp);
1504 if (err)
1505 return ERR_PTR(err);
1506
1507 err = __ip_append_data(sk, fl4, &queue, &cork,
1508 &current->task_frag, getfrag,
1509 from, length, transhdrlen, flags);
1510 if (err) {
1511 __ip_flush_pending_frames(sk, &queue, &cork);
1512 return ERR_PTR(err);
1513 }
1514
1515 return __ip_make_skb(sk, fl4, &queue, &cork);
1516 }
1517
1518 /*
1519 * Fetch data from kernel space and fill in checksum if needed.
1520 */
1521 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1522 int len, int odd, struct sk_buff *skb)
1523 {
1524 __wsum csum;
1525
1526 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1527 skb->csum = csum_block_add(skb->csum, csum, odd);
1528 return 0;
1529 }
1530
1531 /*
1532 * Generic function to send a packet as reply to another packet.
1533 * Used to send some TCP resets/acks so far.
1534 */
1535 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1536 const struct ip_options *sopt,
1537 __be32 daddr, __be32 saddr,
1538 const struct ip_reply_arg *arg,
1539 unsigned int len)
1540 {
1541 struct ip_options_data replyopts;
1542 struct ipcm_cookie ipc;
1543 struct flowi4 fl4;
1544 struct rtable *rt = skb_rtable(skb);
1545 struct net *net = sock_net(sk);
1546 struct sk_buff *nskb;
1547 int err;
1548 int oif;
1549
1550 if (__ip_options_echo(&replyopts.opt.opt, skb, sopt))
1551 return;
1552
1553 ipc.addr = daddr;
1554 ipc.opt = NULL;
1555 ipc.tx_flags = 0;
1556 ipc.ttl = 0;
1557 ipc.tos = -1;
1558
1559 if (replyopts.opt.opt.optlen) {
1560 ipc.opt = &replyopts.opt;
1561
1562 if (replyopts.opt.opt.srr)
1563 daddr = replyopts.opt.opt.faddr;
1564 }
1565
1566 oif = arg->bound_dev_if;
1567 if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1568 oif = skb->skb_iif;
1569
1570 flowi4_init_output(&fl4, oif,
1571 IP4_REPLY_MARK(net, skb->mark),
1572 RT_TOS(arg->tos),
1573 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1574 ip_reply_arg_flowi_flags(arg),
1575 daddr, saddr,
1576 tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1577 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1578 rt = ip_route_output_key(net, &fl4);
1579 if (IS_ERR(rt))
1580 return;
1581
1582 inet_sk(sk)->tos = arg->tos;
1583
1584 sk->sk_priority = skb->priority;
1585 sk->sk_protocol = ip_hdr(skb)->protocol;
1586 sk->sk_bound_dev_if = arg->bound_dev_if;
1587 sk->sk_sndbuf = sysctl_wmem_default;
1588 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1589 len, 0, &ipc, &rt, MSG_DONTWAIT);
1590 if (unlikely(err)) {
1591 ip_flush_pending_frames(sk);
1592 goto out;
1593 }
1594
1595 nskb = skb_peek(&sk->sk_write_queue);
1596 if (nskb) {
1597 if (arg->csumoffset >= 0)
1598 *((__sum16 *)skb_transport_header(nskb) +
1599 arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1600 arg->csum));
1601 nskb->ip_summed = CHECKSUM_NONE;
1602 ip_push_pending_frames(sk, &fl4);
1603 }
1604 out:
1605 ip_rt_put(rt);
1606 }
1607
1608 void __init ip_init(void)
1609 {
1610 ip_rt_init();
1611 inet_initpeers();
1612
1613 #if defined(CONFIG_IP_MULTICAST)
1614 igmp_mc_init();
1615 #endif
1616 }