]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - net/ipv4/ip_output.c
HHF qdisc: fix jiffies-time conversion.
[mirror_ubuntu-hirsute-kernel.git] / net / ipv4 / ip_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The Internet Protocol (IP) output module.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
12 * Richard Underwood
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
17 *
18 * See ip_input.c for original log
19 *
20 * Fixes:
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
24 * no route is found.
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
41 * datagrams.
42 * Hirokazu Takahashi: sendfile() on UDP works now.
43 */
44
45 #include <asm/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
54
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
64
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/mroute.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
82
83 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
84 EXPORT_SYMBOL(sysctl_ip_default_ttl);
85
86 /* Generate a checksum for an outgoing IP datagram. */
87 void ip_send_check(struct iphdr *iph)
88 {
89 iph->check = 0;
90 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
91 }
92 EXPORT_SYMBOL(ip_send_check);
93
94 int __ip_local_out(struct sk_buff *skb)
95 {
96 struct iphdr *iph = ip_hdr(skb);
97
98 iph->tot_len = htons(skb->len);
99 ip_send_check(iph);
100 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, skb, NULL,
101 skb_dst(skb)->dev, dst_output);
102 }
103
104 int ip_local_out(struct sk_buff *skb)
105 {
106 int err;
107
108 err = __ip_local_out(skb);
109 if (likely(err == 1))
110 err = dst_output(skb);
111
112 return err;
113 }
114 EXPORT_SYMBOL_GPL(ip_local_out);
115
116 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
117 {
118 int ttl = inet->uc_ttl;
119
120 if (ttl < 0)
121 ttl = ip4_dst_hoplimit(dst);
122 return ttl;
123 }
124
125 /*
126 * Add an ip header to a skbuff and send it out.
127 *
128 */
129 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
130 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
131 {
132 struct inet_sock *inet = inet_sk(sk);
133 struct rtable *rt = skb_rtable(skb);
134 struct iphdr *iph;
135
136 /* Build the IP header. */
137 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
138 skb_reset_network_header(skb);
139 iph = ip_hdr(skb);
140 iph->version = 4;
141 iph->ihl = 5;
142 iph->tos = inet->tos;
143 if (ip_dont_fragment(sk, &rt->dst))
144 iph->frag_off = htons(IP_DF);
145 else
146 iph->frag_off = 0;
147 iph->ttl = ip_select_ttl(inet, &rt->dst);
148 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
149 iph->saddr = saddr;
150 iph->protocol = sk->sk_protocol;
151 ip_select_ident(skb, &rt->dst, sk);
152
153 if (opt && opt->opt.optlen) {
154 iph->ihl += opt->opt.optlen>>2;
155 ip_options_build(skb, &opt->opt, daddr, rt, 0);
156 }
157
158 skb->priority = sk->sk_priority;
159 skb->mark = sk->sk_mark;
160
161 /* Send it out. */
162 return ip_local_out(skb);
163 }
164 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
165
166 static inline int ip_finish_output2(struct sk_buff *skb)
167 {
168 struct dst_entry *dst = skb_dst(skb);
169 struct rtable *rt = (struct rtable *)dst;
170 struct net_device *dev = dst->dev;
171 unsigned int hh_len = LL_RESERVED_SPACE(dev);
172 struct neighbour *neigh;
173 u32 nexthop;
174
175 if (rt->rt_type == RTN_MULTICAST) {
176 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
177 } else if (rt->rt_type == RTN_BROADCAST)
178 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
179
180 /* Be paranoid, rather than too clever. */
181 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
182 struct sk_buff *skb2;
183
184 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
185 if (skb2 == NULL) {
186 kfree_skb(skb);
187 return -ENOMEM;
188 }
189 if (skb->sk)
190 skb_set_owner_w(skb2, skb->sk);
191 consume_skb(skb);
192 skb = skb2;
193 }
194
195 rcu_read_lock_bh();
196 nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
197 neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
198 if (unlikely(!neigh))
199 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
200 if (!IS_ERR(neigh)) {
201 int res = dst_neigh_output(dst, neigh, skb);
202
203 rcu_read_unlock_bh();
204 return res;
205 }
206 rcu_read_unlock_bh();
207
208 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
209 __func__);
210 kfree_skb(skb);
211 return -EINVAL;
212 }
213
214 static int ip_finish_output(struct sk_buff *skb)
215 {
216 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
217 /* Policy lookup after SNAT yielded a new policy */
218 if (skb_dst(skb)->xfrm != NULL) {
219 IPCB(skb)->flags |= IPSKB_REROUTED;
220 return dst_output(skb);
221 }
222 #endif
223 if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
224 return ip_fragment(skb, ip_finish_output2);
225 else
226 return ip_finish_output2(skb);
227 }
228
229 int ip_mc_output(struct sk_buff *skb)
230 {
231 struct sock *sk = skb->sk;
232 struct rtable *rt = skb_rtable(skb);
233 struct net_device *dev = rt->dst.dev;
234
235 /*
236 * If the indicated interface is up and running, send the packet.
237 */
238 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
239
240 skb->dev = dev;
241 skb->protocol = htons(ETH_P_IP);
242
243 /*
244 * Multicasts are looped back for other local users
245 */
246
247 if (rt->rt_flags&RTCF_MULTICAST) {
248 if (sk_mc_loop(sk)
249 #ifdef CONFIG_IP_MROUTE
250 /* Small optimization: do not loopback not local frames,
251 which returned after forwarding; they will be dropped
252 by ip_mr_input in any case.
253 Note, that local frames are looped back to be delivered
254 to local recipients.
255
256 This check is duplicated in ip_mr_input at the moment.
257 */
258 &&
259 ((rt->rt_flags & RTCF_LOCAL) ||
260 !(IPCB(skb)->flags & IPSKB_FORWARDED))
261 #endif
262 ) {
263 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
264 if (newskb)
265 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
266 newskb, NULL, newskb->dev,
267 dev_loopback_xmit);
268 }
269
270 /* Multicasts with ttl 0 must not go beyond the host */
271
272 if (ip_hdr(skb)->ttl == 0) {
273 kfree_skb(skb);
274 return 0;
275 }
276 }
277
278 if (rt->rt_flags&RTCF_BROADCAST) {
279 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
280 if (newskb)
281 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, newskb,
282 NULL, newskb->dev, dev_loopback_xmit);
283 }
284
285 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL,
286 skb->dev, ip_finish_output,
287 !(IPCB(skb)->flags & IPSKB_REROUTED));
288 }
289
290 int ip_output(struct sk_buff *skb)
291 {
292 struct net_device *dev = skb_dst(skb)->dev;
293
294 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
295
296 skb->dev = dev;
297 skb->protocol = htons(ETH_P_IP);
298
299 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL, dev,
300 ip_finish_output,
301 !(IPCB(skb)->flags & IPSKB_REROUTED));
302 }
303
304 /*
305 * copy saddr and daddr, possibly using 64bit load/stores
306 * Equivalent to :
307 * iph->saddr = fl4->saddr;
308 * iph->daddr = fl4->daddr;
309 */
310 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
311 {
312 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
313 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
314 memcpy(&iph->saddr, &fl4->saddr,
315 sizeof(fl4->saddr) + sizeof(fl4->daddr));
316 }
317
318 int ip_queue_xmit(struct sk_buff *skb, struct flowi *fl)
319 {
320 struct sock *sk = skb->sk;
321 struct inet_sock *inet = inet_sk(sk);
322 struct ip_options_rcu *inet_opt;
323 struct flowi4 *fl4;
324 struct rtable *rt;
325 struct iphdr *iph;
326 int res;
327
328 /* Skip all of this if the packet is already routed,
329 * f.e. by something like SCTP.
330 */
331 rcu_read_lock();
332 inet_opt = rcu_dereference(inet->inet_opt);
333 fl4 = &fl->u.ip4;
334 rt = skb_rtable(skb);
335 if (rt != NULL)
336 goto packet_routed;
337
338 /* Make sure we can route this packet. */
339 rt = (struct rtable *)__sk_dst_check(sk, 0);
340 if (rt == NULL) {
341 __be32 daddr;
342
343 /* Use correct destination address if we have options. */
344 daddr = inet->inet_daddr;
345 if (inet_opt && inet_opt->opt.srr)
346 daddr = inet_opt->opt.faddr;
347
348 /* If this fails, retransmit mechanism of transport layer will
349 * keep trying until route appears or the connection times
350 * itself out.
351 */
352 rt = ip_route_output_ports(sock_net(sk), fl4, sk,
353 daddr, inet->inet_saddr,
354 inet->inet_dport,
355 inet->inet_sport,
356 sk->sk_protocol,
357 RT_CONN_FLAGS(sk),
358 sk->sk_bound_dev_if);
359 if (IS_ERR(rt))
360 goto no_route;
361 sk_setup_caps(sk, &rt->dst);
362 }
363 skb_dst_set_noref(skb, &rt->dst);
364
365 packet_routed:
366 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
367 goto no_route;
368
369 /* OK, we know where to send it, allocate and build IP header. */
370 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
371 skb_reset_network_header(skb);
372 iph = ip_hdr(skb);
373 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
374 if (ip_dont_fragment(sk, &rt->dst) && !skb->local_df)
375 iph->frag_off = htons(IP_DF);
376 else
377 iph->frag_off = 0;
378 iph->ttl = ip_select_ttl(inet, &rt->dst);
379 iph->protocol = sk->sk_protocol;
380 ip_copy_addrs(iph, fl4);
381
382 /* Transport layer set skb->h.foo itself. */
383
384 if (inet_opt && inet_opt->opt.optlen) {
385 iph->ihl += inet_opt->opt.optlen >> 2;
386 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
387 }
388
389 ip_select_ident_more(skb, &rt->dst, sk,
390 (skb_shinfo(skb)->gso_segs ?: 1) - 1);
391
392 skb->priority = sk->sk_priority;
393 skb->mark = sk->sk_mark;
394
395 res = ip_local_out(skb);
396 rcu_read_unlock();
397 return res;
398
399 no_route:
400 rcu_read_unlock();
401 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
402 kfree_skb(skb);
403 return -EHOSTUNREACH;
404 }
405 EXPORT_SYMBOL(ip_queue_xmit);
406
407
408 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
409 {
410 to->pkt_type = from->pkt_type;
411 to->priority = from->priority;
412 to->protocol = from->protocol;
413 skb_dst_drop(to);
414 skb_dst_copy(to, from);
415 to->dev = from->dev;
416 to->mark = from->mark;
417
418 /* Copy the flags to each fragment. */
419 IPCB(to)->flags = IPCB(from)->flags;
420
421 #ifdef CONFIG_NET_SCHED
422 to->tc_index = from->tc_index;
423 #endif
424 nf_copy(to, from);
425 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
426 to->nf_trace = from->nf_trace;
427 #endif
428 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
429 to->ipvs_property = from->ipvs_property;
430 #endif
431 skb_copy_secmark(to, from);
432 }
433
434 /*
435 * This IP datagram is too large to be sent in one piece. Break it up into
436 * smaller pieces (each of size equal to IP header plus
437 * a block of the data of the original IP data part) that will yet fit in a
438 * single device frame, and queue such a frame for sending.
439 */
440
441 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
442 {
443 struct iphdr *iph;
444 int ptr;
445 struct net_device *dev;
446 struct sk_buff *skb2;
447 unsigned int mtu, hlen, left, len, ll_rs;
448 int offset;
449 __be16 not_last_frag;
450 struct rtable *rt = skb_rtable(skb);
451 int err = 0;
452
453 dev = rt->dst.dev;
454
455 /*
456 * Point into the IP datagram header.
457 */
458
459 iph = ip_hdr(skb);
460
461 if (unlikely(((iph->frag_off & htons(IP_DF)) && !skb->local_df) ||
462 (IPCB(skb)->frag_max_size &&
463 IPCB(skb)->frag_max_size > dst_mtu(&rt->dst)))) {
464 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
465 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
466 htonl(ip_skb_dst_mtu(skb)));
467 kfree_skb(skb);
468 return -EMSGSIZE;
469 }
470
471 /*
472 * Setup starting values.
473 */
474
475 hlen = iph->ihl * 4;
476 mtu = dst_mtu(&rt->dst) - hlen; /* Size of data space */
477 #ifdef CONFIG_BRIDGE_NETFILTER
478 if (skb->nf_bridge)
479 mtu -= nf_bridge_mtu_reduction(skb);
480 #endif
481 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
482
483 /* When frag_list is given, use it. First, check its validity:
484 * some transformers could create wrong frag_list or break existing
485 * one, it is not prohibited. In this case fall back to copying.
486 *
487 * LATER: this step can be merged to real generation of fragments,
488 * we can switch to copy when see the first bad fragment.
489 */
490 if (skb_has_frag_list(skb)) {
491 struct sk_buff *frag, *frag2;
492 int first_len = skb_pagelen(skb);
493
494 if (first_len - hlen > mtu ||
495 ((first_len - hlen) & 7) ||
496 ip_is_fragment(iph) ||
497 skb_cloned(skb))
498 goto slow_path;
499
500 skb_walk_frags(skb, frag) {
501 /* Correct geometry. */
502 if (frag->len > mtu ||
503 ((frag->len & 7) && frag->next) ||
504 skb_headroom(frag) < hlen)
505 goto slow_path_clean;
506
507 /* Partially cloned skb? */
508 if (skb_shared(frag))
509 goto slow_path_clean;
510
511 BUG_ON(frag->sk);
512 if (skb->sk) {
513 frag->sk = skb->sk;
514 frag->destructor = sock_wfree;
515 }
516 skb->truesize -= frag->truesize;
517 }
518
519 /* Everything is OK. Generate! */
520
521 err = 0;
522 offset = 0;
523 frag = skb_shinfo(skb)->frag_list;
524 skb_frag_list_init(skb);
525 skb->data_len = first_len - skb_headlen(skb);
526 skb->len = first_len;
527 iph->tot_len = htons(first_len);
528 iph->frag_off = htons(IP_MF);
529 ip_send_check(iph);
530
531 for (;;) {
532 /* Prepare header of the next frame,
533 * before previous one went down. */
534 if (frag) {
535 frag->ip_summed = CHECKSUM_NONE;
536 skb_reset_transport_header(frag);
537 __skb_push(frag, hlen);
538 skb_reset_network_header(frag);
539 memcpy(skb_network_header(frag), iph, hlen);
540 iph = ip_hdr(frag);
541 iph->tot_len = htons(frag->len);
542 ip_copy_metadata(frag, skb);
543 if (offset == 0)
544 ip_options_fragment(frag);
545 offset += skb->len - hlen;
546 iph->frag_off = htons(offset>>3);
547 if (frag->next != NULL)
548 iph->frag_off |= htons(IP_MF);
549 /* Ready, complete checksum */
550 ip_send_check(iph);
551 }
552
553 err = output(skb);
554
555 if (!err)
556 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
557 if (err || !frag)
558 break;
559
560 skb = frag;
561 frag = skb->next;
562 skb->next = NULL;
563 }
564
565 if (err == 0) {
566 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
567 return 0;
568 }
569
570 while (frag) {
571 skb = frag->next;
572 kfree_skb(frag);
573 frag = skb;
574 }
575 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
576 return err;
577
578 slow_path_clean:
579 skb_walk_frags(skb, frag2) {
580 if (frag2 == frag)
581 break;
582 frag2->sk = NULL;
583 frag2->destructor = NULL;
584 skb->truesize += frag2->truesize;
585 }
586 }
587
588 slow_path:
589 /* for offloaded checksums cleanup checksum before fragmentation */
590 if ((skb->ip_summed == CHECKSUM_PARTIAL) && skb_checksum_help(skb))
591 goto fail;
592 iph = ip_hdr(skb);
593
594 left = skb->len - hlen; /* Space per frame */
595 ptr = hlen; /* Where to start from */
596
597 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
598 * we need to make room for the encapsulating header
599 */
600 ll_rs = LL_RESERVED_SPACE_EXTRA(rt->dst.dev, nf_bridge_pad(skb));
601
602 /*
603 * Fragment the datagram.
604 */
605
606 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
607 not_last_frag = iph->frag_off & htons(IP_MF);
608
609 /*
610 * Keep copying data until we run out.
611 */
612
613 while (left > 0) {
614 len = left;
615 /* IF: it doesn't fit, use 'mtu' - the data space left */
616 if (len > mtu)
617 len = mtu;
618 /* IF: we are not sending up to and including the packet end
619 then align the next start on an eight byte boundary */
620 if (len < left) {
621 len &= ~7;
622 }
623 /*
624 * Allocate buffer.
625 */
626
627 if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
628 NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
629 err = -ENOMEM;
630 goto fail;
631 }
632
633 /*
634 * Set up data on packet
635 */
636
637 ip_copy_metadata(skb2, skb);
638 skb_reserve(skb2, ll_rs);
639 skb_put(skb2, len + hlen);
640 skb_reset_network_header(skb2);
641 skb2->transport_header = skb2->network_header + hlen;
642
643 /*
644 * Charge the memory for the fragment to any owner
645 * it might possess
646 */
647
648 if (skb->sk)
649 skb_set_owner_w(skb2, skb->sk);
650
651 /*
652 * Copy the packet header into the new buffer.
653 */
654
655 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
656
657 /*
658 * Copy a block of the IP datagram.
659 */
660 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
661 BUG();
662 left -= len;
663
664 /*
665 * Fill in the new header fields.
666 */
667 iph = ip_hdr(skb2);
668 iph->frag_off = htons((offset >> 3));
669
670 /* ANK: dirty, but effective trick. Upgrade options only if
671 * the segment to be fragmented was THE FIRST (otherwise,
672 * options are already fixed) and make it ONCE
673 * on the initial skb, so that all the following fragments
674 * will inherit fixed options.
675 */
676 if (offset == 0)
677 ip_options_fragment(skb);
678
679 /*
680 * Added AC : If we are fragmenting a fragment that's not the
681 * last fragment then keep MF on each bit
682 */
683 if (left > 0 || not_last_frag)
684 iph->frag_off |= htons(IP_MF);
685 ptr += len;
686 offset += len;
687
688 /*
689 * Put this fragment into the sending queue.
690 */
691 iph->tot_len = htons(len + hlen);
692
693 ip_send_check(iph);
694
695 err = output(skb2);
696 if (err)
697 goto fail;
698
699 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
700 }
701 consume_skb(skb);
702 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
703 return err;
704
705 fail:
706 kfree_skb(skb);
707 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
708 return err;
709 }
710 EXPORT_SYMBOL(ip_fragment);
711
712 int
713 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
714 {
715 struct iovec *iov = from;
716
717 if (skb->ip_summed == CHECKSUM_PARTIAL) {
718 if (memcpy_fromiovecend(to, iov, offset, len) < 0)
719 return -EFAULT;
720 } else {
721 __wsum csum = 0;
722 if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
723 return -EFAULT;
724 skb->csum = csum_block_add(skb->csum, csum, odd);
725 }
726 return 0;
727 }
728 EXPORT_SYMBOL(ip_generic_getfrag);
729
730 static inline __wsum
731 csum_page(struct page *page, int offset, int copy)
732 {
733 char *kaddr;
734 __wsum csum;
735 kaddr = kmap(page);
736 csum = csum_partial(kaddr + offset, copy, 0);
737 kunmap(page);
738 return csum;
739 }
740
741 static inline int ip_ufo_append_data(struct sock *sk,
742 struct sk_buff_head *queue,
743 int getfrag(void *from, char *to, int offset, int len,
744 int odd, struct sk_buff *skb),
745 void *from, int length, int hh_len, int fragheaderlen,
746 int transhdrlen, int maxfraglen, unsigned int flags)
747 {
748 struct sk_buff *skb;
749 int err;
750
751 /* There is support for UDP fragmentation offload by network
752 * device, so create one single skb packet containing complete
753 * udp datagram
754 */
755 if ((skb = skb_peek_tail(queue)) == NULL) {
756 skb = sock_alloc_send_skb(sk,
757 hh_len + fragheaderlen + transhdrlen + 20,
758 (flags & MSG_DONTWAIT), &err);
759
760 if (skb == NULL)
761 return err;
762
763 /* reserve space for Hardware header */
764 skb_reserve(skb, hh_len);
765
766 /* create space for UDP/IP header */
767 skb_put(skb, fragheaderlen + transhdrlen);
768
769 /* initialize network header pointer */
770 skb_reset_network_header(skb);
771
772 /* initialize protocol header pointer */
773 skb->transport_header = skb->network_header + fragheaderlen;
774
775 skb->csum = 0;
776
777
778 __skb_queue_tail(queue, skb);
779 } else if (skb_is_gso(skb)) {
780 goto append;
781 }
782
783 skb->ip_summed = CHECKSUM_PARTIAL;
784 /* specify the length of each IP datagram fragment */
785 skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
786 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
787
788 append:
789 return skb_append_datato_frags(sk, skb, getfrag, from,
790 (length - transhdrlen));
791 }
792
793 static int __ip_append_data(struct sock *sk,
794 struct flowi4 *fl4,
795 struct sk_buff_head *queue,
796 struct inet_cork *cork,
797 struct page_frag *pfrag,
798 int getfrag(void *from, char *to, int offset,
799 int len, int odd, struct sk_buff *skb),
800 void *from, int length, int transhdrlen,
801 unsigned int flags)
802 {
803 struct inet_sock *inet = inet_sk(sk);
804 struct sk_buff *skb;
805
806 struct ip_options *opt = cork->opt;
807 int hh_len;
808 int exthdrlen;
809 int mtu;
810 int copy;
811 int err;
812 int offset = 0;
813 unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
814 int csummode = CHECKSUM_NONE;
815 struct rtable *rt = (struct rtable *)cork->dst;
816
817 skb = skb_peek_tail(queue);
818
819 exthdrlen = !skb ? rt->dst.header_len : 0;
820 mtu = cork->fragsize;
821
822 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
823
824 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
825 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
826 maxnonfragsize = (inet->pmtudisc >= IP_PMTUDISC_DO) ?
827 mtu : 0xFFFF;
828
829 if (cork->length + length > maxnonfragsize - fragheaderlen) {
830 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
831 mtu - (opt ? opt->optlen : 0));
832 return -EMSGSIZE;
833 }
834
835 /*
836 * transhdrlen > 0 means that this is the first fragment and we wish
837 * it won't be fragmented in the future.
838 */
839 if (transhdrlen &&
840 length + fragheaderlen <= mtu &&
841 rt->dst.dev->features & NETIF_F_V4_CSUM &&
842 !exthdrlen)
843 csummode = CHECKSUM_PARTIAL;
844
845 cork->length += length;
846 if (((length > mtu) || (skb && skb_is_gso(skb))) &&
847 (sk->sk_protocol == IPPROTO_UDP) &&
848 (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len) {
849 err = ip_ufo_append_data(sk, queue, getfrag, from, length,
850 hh_len, fragheaderlen, transhdrlen,
851 maxfraglen, flags);
852 if (err)
853 goto error;
854 return 0;
855 }
856
857 /* So, what's going on in the loop below?
858 *
859 * We use calculated fragment length to generate chained skb,
860 * each of segments is IP fragment ready for sending to network after
861 * adding appropriate IP header.
862 */
863
864 if (!skb)
865 goto alloc_new_skb;
866
867 while (length > 0) {
868 /* Check if the remaining data fits into current packet. */
869 copy = mtu - skb->len;
870 if (copy < length)
871 copy = maxfraglen - skb->len;
872 if (copy <= 0) {
873 char *data;
874 unsigned int datalen;
875 unsigned int fraglen;
876 unsigned int fraggap;
877 unsigned int alloclen;
878 struct sk_buff *skb_prev;
879 alloc_new_skb:
880 skb_prev = skb;
881 if (skb_prev)
882 fraggap = skb_prev->len - maxfraglen;
883 else
884 fraggap = 0;
885
886 /*
887 * If remaining data exceeds the mtu,
888 * we know we need more fragment(s).
889 */
890 datalen = length + fraggap;
891 if (datalen > mtu - fragheaderlen)
892 datalen = maxfraglen - fragheaderlen;
893 fraglen = datalen + fragheaderlen;
894
895 if ((flags & MSG_MORE) &&
896 !(rt->dst.dev->features&NETIF_F_SG))
897 alloclen = mtu;
898 else
899 alloclen = fraglen;
900
901 alloclen += exthdrlen;
902
903 /* The last fragment gets additional space at tail.
904 * Note, with MSG_MORE we overallocate on fragments,
905 * because we have no idea what fragment will be
906 * the last.
907 */
908 if (datalen == length + fraggap)
909 alloclen += rt->dst.trailer_len;
910
911 if (transhdrlen) {
912 skb = sock_alloc_send_skb(sk,
913 alloclen + hh_len + 15,
914 (flags & MSG_DONTWAIT), &err);
915 } else {
916 skb = NULL;
917 if (atomic_read(&sk->sk_wmem_alloc) <=
918 2 * sk->sk_sndbuf)
919 skb = sock_wmalloc(sk,
920 alloclen + hh_len + 15, 1,
921 sk->sk_allocation);
922 if (unlikely(skb == NULL))
923 err = -ENOBUFS;
924 else
925 /* only the initial fragment is
926 time stamped */
927 cork->tx_flags = 0;
928 }
929 if (skb == NULL)
930 goto error;
931
932 /*
933 * Fill in the control structures
934 */
935 skb->ip_summed = csummode;
936 skb->csum = 0;
937 skb_reserve(skb, hh_len);
938 skb_shinfo(skb)->tx_flags = cork->tx_flags;
939
940 /*
941 * Find where to start putting bytes.
942 */
943 data = skb_put(skb, fraglen + exthdrlen);
944 skb_set_network_header(skb, exthdrlen);
945 skb->transport_header = (skb->network_header +
946 fragheaderlen);
947 data += fragheaderlen + exthdrlen;
948
949 if (fraggap) {
950 skb->csum = skb_copy_and_csum_bits(
951 skb_prev, maxfraglen,
952 data + transhdrlen, fraggap, 0);
953 skb_prev->csum = csum_sub(skb_prev->csum,
954 skb->csum);
955 data += fraggap;
956 pskb_trim_unique(skb_prev, maxfraglen);
957 }
958
959 copy = datalen - transhdrlen - fraggap;
960 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
961 err = -EFAULT;
962 kfree_skb(skb);
963 goto error;
964 }
965
966 offset += copy;
967 length -= datalen - fraggap;
968 transhdrlen = 0;
969 exthdrlen = 0;
970 csummode = CHECKSUM_NONE;
971
972 /*
973 * Put the packet on the pending queue.
974 */
975 __skb_queue_tail(queue, skb);
976 continue;
977 }
978
979 if (copy > length)
980 copy = length;
981
982 if (!(rt->dst.dev->features&NETIF_F_SG)) {
983 unsigned int off;
984
985 off = skb->len;
986 if (getfrag(from, skb_put(skb, copy),
987 offset, copy, off, skb) < 0) {
988 __skb_trim(skb, off);
989 err = -EFAULT;
990 goto error;
991 }
992 } else {
993 int i = skb_shinfo(skb)->nr_frags;
994
995 err = -ENOMEM;
996 if (!sk_page_frag_refill(sk, pfrag))
997 goto error;
998
999 if (!skb_can_coalesce(skb, i, pfrag->page,
1000 pfrag->offset)) {
1001 err = -EMSGSIZE;
1002 if (i == MAX_SKB_FRAGS)
1003 goto error;
1004
1005 __skb_fill_page_desc(skb, i, pfrag->page,
1006 pfrag->offset, 0);
1007 skb_shinfo(skb)->nr_frags = ++i;
1008 get_page(pfrag->page);
1009 }
1010 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1011 if (getfrag(from,
1012 page_address(pfrag->page) + pfrag->offset,
1013 offset, copy, skb->len, skb) < 0)
1014 goto error_efault;
1015
1016 pfrag->offset += copy;
1017 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1018 skb->len += copy;
1019 skb->data_len += copy;
1020 skb->truesize += copy;
1021 atomic_add(copy, &sk->sk_wmem_alloc);
1022 }
1023 offset += copy;
1024 length -= copy;
1025 }
1026
1027 return 0;
1028
1029 error_efault:
1030 err = -EFAULT;
1031 error:
1032 cork->length -= length;
1033 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1034 return err;
1035 }
1036
1037 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1038 struct ipcm_cookie *ipc, struct rtable **rtp)
1039 {
1040 struct ip_options_rcu *opt;
1041 struct rtable *rt;
1042
1043 /*
1044 * setup for corking.
1045 */
1046 opt = ipc->opt;
1047 if (opt) {
1048 if (cork->opt == NULL) {
1049 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1050 sk->sk_allocation);
1051 if (unlikely(cork->opt == NULL))
1052 return -ENOBUFS;
1053 }
1054 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1055 cork->flags |= IPCORK_OPT;
1056 cork->addr = ipc->addr;
1057 }
1058 rt = *rtp;
1059 if (unlikely(!rt))
1060 return -EFAULT;
1061 /*
1062 * We steal reference to this route, caller should not release it
1063 */
1064 *rtp = NULL;
1065 cork->fragsize = ip_sk_use_pmtu(sk) ?
1066 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1067 cork->dst = &rt->dst;
1068 cork->length = 0;
1069 cork->ttl = ipc->ttl;
1070 cork->tos = ipc->tos;
1071 cork->priority = ipc->priority;
1072 cork->tx_flags = ipc->tx_flags;
1073
1074 return 0;
1075 }
1076
1077 /*
1078 * ip_append_data() and ip_append_page() can make one large IP datagram
1079 * from many pieces of data. Each pieces will be holded on the socket
1080 * until ip_push_pending_frames() is called. Each piece can be a page
1081 * or non-page data.
1082 *
1083 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1084 * this interface potentially.
1085 *
1086 * LATER: length must be adjusted by pad at tail, when it is required.
1087 */
1088 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1089 int getfrag(void *from, char *to, int offset, int len,
1090 int odd, struct sk_buff *skb),
1091 void *from, int length, int transhdrlen,
1092 struct ipcm_cookie *ipc, struct rtable **rtp,
1093 unsigned int flags)
1094 {
1095 struct inet_sock *inet = inet_sk(sk);
1096 int err;
1097
1098 if (flags&MSG_PROBE)
1099 return 0;
1100
1101 if (skb_queue_empty(&sk->sk_write_queue)) {
1102 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1103 if (err)
1104 return err;
1105 } else {
1106 transhdrlen = 0;
1107 }
1108
1109 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1110 sk_page_frag(sk), getfrag,
1111 from, length, transhdrlen, flags);
1112 }
1113
1114 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1115 int offset, size_t size, int flags)
1116 {
1117 struct inet_sock *inet = inet_sk(sk);
1118 struct sk_buff *skb;
1119 struct rtable *rt;
1120 struct ip_options *opt = NULL;
1121 struct inet_cork *cork;
1122 int hh_len;
1123 int mtu;
1124 int len;
1125 int err;
1126 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1127
1128 if (inet->hdrincl)
1129 return -EPERM;
1130
1131 if (flags&MSG_PROBE)
1132 return 0;
1133
1134 if (skb_queue_empty(&sk->sk_write_queue))
1135 return -EINVAL;
1136
1137 cork = &inet->cork.base;
1138 rt = (struct rtable *)cork->dst;
1139 if (cork->flags & IPCORK_OPT)
1140 opt = cork->opt;
1141
1142 if (!(rt->dst.dev->features&NETIF_F_SG))
1143 return -EOPNOTSUPP;
1144
1145 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1146 mtu = cork->fragsize;
1147
1148 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1149 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1150 maxnonfragsize = (inet->pmtudisc >= IP_PMTUDISC_DO) ?
1151 mtu : 0xFFFF;
1152
1153 if (cork->length + size > maxnonfragsize - fragheaderlen) {
1154 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1155 mtu - (opt ? opt->optlen : 0));
1156 return -EMSGSIZE;
1157 }
1158
1159 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1160 return -EINVAL;
1161
1162 cork->length += size;
1163 if ((size + skb->len > mtu) &&
1164 (sk->sk_protocol == IPPROTO_UDP) &&
1165 (rt->dst.dev->features & NETIF_F_UFO)) {
1166 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1167 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1168 }
1169
1170
1171 while (size > 0) {
1172 int i;
1173
1174 if (skb_is_gso(skb))
1175 len = size;
1176 else {
1177
1178 /* Check if the remaining data fits into current packet. */
1179 len = mtu - skb->len;
1180 if (len < size)
1181 len = maxfraglen - skb->len;
1182 }
1183 if (len <= 0) {
1184 struct sk_buff *skb_prev;
1185 int alloclen;
1186
1187 skb_prev = skb;
1188 fraggap = skb_prev->len - maxfraglen;
1189
1190 alloclen = fragheaderlen + hh_len + fraggap + 15;
1191 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1192 if (unlikely(!skb)) {
1193 err = -ENOBUFS;
1194 goto error;
1195 }
1196
1197 /*
1198 * Fill in the control structures
1199 */
1200 skb->ip_summed = CHECKSUM_NONE;
1201 skb->csum = 0;
1202 skb_reserve(skb, hh_len);
1203
1204 /*
1205 * Find where to start putting bytes.
1206 */
1207 skb_put(skb, fragheaderlen + fraggap);
1208 skb_reset_network_header(skb);
1209 skb->transport_header = (skb->network_header +
1210 fragheaderlen);
1211 if (fraggap) {
1212 skb->csum = skb_copy_and_csum_bits(skb_prev,
1213 maxfraglen,
1214 skb_transport_header(skb),
1215 fraggap, 0);
1216 skb_prev->csum = csum_sub(skb_prev->csum,
1217 skb->csum);
1218 pskb_trim_unique(skb_prev, maxfraglen);
1219 }
1220
1221 /*
1222 * Put the packet on the pending queue.
1223 */
1224 __skb_queue_tail(&sk->sk_write_queue, skb);
1225 continue;
1226 }
1227
1228 i = skb_shinfo(skb)->nr_frags;
1229 if (len > size)
1230 len = size;
1231 if (skb_can_coalesce(skb, i, page, offset)) {
1232 skb_frag_size_add(&skb_shinfo(skb)->frags[i-1], len);
1233 } else if (i < MAX_SKB_FRAGS) {
1234 get_page(page);
1235 skb_fill_page_desc(skb, i, page, offset, len);
1236 } else {
1237 err = -EMSGSIZE;
1238 goto error;
1239 }
1240
1241 if (skb->ip_summed == CHECKSUM_NONE) {
1242 __wsum csum;
1243 csum = csum_page(page, offset, len);
1244 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1245 }
1246
1247 skb->len += len;
1248 skb->data_len += len;
1249 skb->truesize += len;
1250 atomic_add(len, &sk->sk_wmem_alloc);
1251 offset += len;
1252 size -= len;
1253 }
1254 return 0;
1255
1256 error:
1257 cork->length -= size;
1258 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1259 return err;
1260 }
1261
1262 static void ip_cork_release(struct inet_cork *cork)
1263 {
1264 cork->flags &= ~IPCORK_OPT;
1265 kfree(cork->opt);
1266 cork->opt = NULL;
1267 dst_release(cork->dst);
1268 cork->dst = NULL;
1269 }
1270
1271 /*
1272 * Combined all pending IP fragments on the socket as one IP datagram
1273 * and push them out.
1274 */
1275 struct sk_buff *__ip_make_skb(struct sock *sk,
1276 struct flowi4 *fl4,
1277 struct sk_buff_head *queue,
1278 struct inet_cork *cork)
1279 {
1280 struct sk_buff *skb, *tmp_skb;
1281 struct sk_buff **tail_skb;
1282 struct inet_sock *inet = inet_sk(sk);
1283 struct net *net = sock_net(sk);
1284 struct ip_options *opt = NULL;
1285 struct rtable *rt = (struct rtable *)cork->dst;
1286 struct iphdr *iph;
1287 __be16 df = 0;
1288 __u8 ttl;
1289
1290 if ((skb = __skb_dequeue(queue)) == NULL)
1291 goto out;
1292 tail_skb = &(skb_shinfo(skb)->frag_list);
1293
1294 /* move skb->data to ip header from ext header */
1295 if (skb->data < skb_network_header(skb))
1296 __skb_pull(skb, skb_network_offset(skb));
1297 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1298 __skb_pull(tmp_skb, skb_network_header_len(skb));
1299 *tail_skb = tmp_skb;
1300 tail_skb = &(tmp_skb->next);
1301 skb->len += tmp_skb->len;
1302 skb->data_len += tmp_skb->len;
1303 skb->truesize += tmp_skb->truesize;
1304 tmp_skb->destructor = NULL;
1305 tmp_skb->sk = NULL;
1306 }
1307
1308 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1309 * to fragment the frame generated here. No matter, what transforms
1310 * how transforms change size of the packet, it will come out.
1311 */
1312 if (inet->pmtudisc < IP_PMTUDISC_DO)
1313 skb->local_df = 1;
1314
1315 /* DF bit is set when we want to see DF on outgoing frames.
1316 * If local_df is set too, we still allow to fragment this frame
1317 * locally. */
1318 if (inet->pmtudisc == IP_PMTUDISC_DO ||
1319 inet->pmtudisc == IP_PMTUDISC_PROBE ||
1320 (skb->len <= dst_mtu(&rt->dst) &&
1321 ip_dont_fragment(sk, &rt->dst)))
1322 df = htons(IP_DF);
1323
1324 if (cork->flags & IPCORK_OPT)
1325 opt = cork->opt;
1326
1327 if (cork->ttl != 0)
1328 ttl = cork->ttl;
1329 else if (rt->rt_type == RTN_MULTICAST)
1330 ttl = inet->mc_ttl;
1331 else
1332 ttl = ip_select_ttl(inet, &rt->dst);
1333
1334 iph = ip_hdr(skb);
1335 iph->version = 4;
1336 iph->ihl = 5;
1337 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1338 iph->frag_off = df;
1339 iph->ttl = ttl;
1340 iph->protocol = sk->sk_protocol;
1341 ip_copy_addrs(iph, fl4);
1342 ip_select_ident(skb, &rt->dst, sk);
1343
1344 if (opt) {
1345 iph->ihl += opt->optlen>>2;
1346 ip_options_build(skb, opt, cork->addr, rt, 0);
1347 }
1348
1349 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1350 skb->mark = sk->sk_mark;
1351 /*
1352 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1353 * on dst refcount
1354 */
1355 cork->dst = NULL;
1356 skb_dst_set(skb, &rt->dst);
1357
1358 if (iph->protocol == IPPROTO_ICMP)
1359 icmp_out_count(net, ((struct icmphdr *)
1360 skb_transport_header(skb))->type);
1361
1362 ip_cork_release(cork);
1363 out:
1364 return skb;
1365 }
1366
1367 int ip_send_skb(struct net *net, struct sk_buff *skb)
1368 {
1369 int err;
1370
1371 err = ip_local_out(skb);
1372 if (err) {
1373 if (err > 0)
1374 err = net_xmit_errno(err);
1375 if (err)
1376 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1377 }
1378
1379 return err;
1380 }
1381
1382 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1383 {
1384 struct sk_buff *skb;
1385
1386 skb = ip_finish_skb(sk, fl4);
1387 if (!skb)
1388 return 0;
1389
1390 /* Netfilter gets whole the not fragmented skb. */
1391 return ip_send_skb(sock_net(sk), skb);
1392 }
1393
1394 /*
1395 * Throw away all pending data on the socket.
1396 */
1397 static void __ip_flush_pending_frames(struct sock *sk,
1398 struct sk_buff_head *queue,
1399 struct inet_cork *cork)
1400 {
1401 struct sk_buff *skb;
1402
1403 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1404 kfree_skb(skb);
1405
1406 ip_cork_release(cork);
1407 }
1408
1409 void ip_flush_pending_frames(struct sock *sk)
1410 {
1411 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1412 }
1413
1414 struct sk_buff *ip_make_skb(struct sock *sk,
1415 struct flowi4 *fl4,
1416 int getfrag(void *from, char *to, int offset,
1417 int len, int odd, struct sk_buff *skb),
1418 void *from, int length, int transhdrlen,
1419 struct ipcm_cookie *ipc, struct rtable **rtp,
1420 unsigned int flags)
1421 {
1422 struct inet_cork cork;
1423 struct sk_buff_head queue;
1424 int err;
1425
1426 if (flags & MSG_PROBE)
1427 return NULL;
1428
1429 __skb_queue_head_init(&queue);
1430
1431 cork.flags = 0;
1432 cork.addr = 0;
1433 cork.opt = NULL;
1434 err = ip_setup_cork(sk, &cork, ipc, rtp);
1435 if (err)
1436 return ERR_PTR(err);
1437
1438 err = __ip_append_data(sk, fl4, &queue, &cork,
1439 &current->task_frag, getfrag,
1440 from, length, transhdrlen, flags);
1441 if (err) {
1442 __ip_flush_pending_frames(sk, &queue, &cork);
1443 return ERR_PTR(err);
1444 }
1445
1446 return __ip_make_skb(sk, fl4, &queue, &cork);
1447 }
1448
1449 /*
1450 * Fetch data from kernel space and fill in checksum if needed.
1451 */
1452 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1453 int len, int odd, struct sk_buff *skb)
1454 {
1455 __wsum csum;
1456
1457 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1458 skb->csum = csum_block_add(skb->csum, csum, odd);
1459 return 0;
1460 }
1461
1462 /*
1463 * Generic function to send a packet as reply to another packet.
1464 * Used to send some TCP resets/acks so far.
1465 *
1466 * Use a fake percpu inet socket to avoid false sharing and contention.
1467 */
1468 static DEFINE_PER_CPU(struct inet_sock, unicast_sock) = {
1469 .sk = {
1470 .__sk_common = {
1471 .skc_refcnt = ATOMIC_INIT(1),
1472 },
1473 .sk_wmem_alloc = ATOMIC_INIT(1),
1474 .sk_allocation = GFP_ATOMIC,
1475 .sk_flags = (1UL << SOCK_USE_WRITE_QUEUE),
1476 },
1477 .pmtudisc = IP_PMTUDISC_WANT,
1478 .uc_ttl = -1,
1479 };
1480
1481 void ip_send_unicast_reply(struct net *net, struct sk_buff *skb, __be32 daddr,
1482 __be32 saddr, const struct ip_reply_arg *arg,
1483 unsigned int len)
1484 {
1485 struct ip_options_data replyopts;
1486 struct ipcm_cookie ipc;
1487 struct flowi4 fl4;
1488 struct rtable *rt = skb_rtable(skb);
1489 struct sk_buff *nskb;
1490 struct sock *sk;
1491 struct inet_sock *inet;
1492
1493 if (ip_options_echo(&replyopts.opt.opt, skb))
1494 return;
1495
1496 ipc.addr = daddr;
1497 ipc.opt = NULL;
1498 ipc.tx_flags = 0;
1499 ipc.ttl = 0;
1500 ipc.tos = -1;
1501
1502 if (replyopts.opt.opt.optlen) {
1503 ipc.opt = &replyopts.opt;
1504
1505 if (replyopts.opt.opt.srr)
1506 daddr = replyopts.opt.opt.faddr;
1507 }
1508
1509 flowi4_init_output(&fl4, arg->bound_dev_if, 0,
1510 RT_TOS(arg->tos),
1511 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1512 ip_reply_arg_flowi_flags(arg),
1513 daddr, saddr,
1514 tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1515 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1516 rt = ip_route_output_key(net, &fl4);
1517 if (IS_ERR(rt))
1518 return;
1519
1520 inet = &get_cpu_var(unicast_sock);
1521
1522 inet->tos = arg->tos;
1523 sk = &inet->sk;
1524 sk->sk_priority = skb->priority;
1525 sk->sk_protocol = ip_hdr(skb)->protocol;
1526 sk->sk_bound_dev_if = arg->bound_dev_if;
1527 sock_net_set(sk, net);
1528 __skb_queue_head_init(&sk->sk_write_queue);
1529 sk->sk_sndbuf = sysctl_wmem_default;
1530 ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1531 &ipc, &rt, MSG_DONTWAIT);
1532 nskb = skb_peek(&sk->sk_write_queue);
1533 if (nskb) {
1534 if (arg->csumoffset >= 0)
1535 *((__sum16 *)skb_transport_header(nskb) +
1536 arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1537 arg->csum));
1538 nskb->ip_summed = CHECKSUM_NONE;
1539 skb_orphan(nskb);
1540 skb_set_queue_mapping(nskb, skb_get_queue_mapping(skb));
1541 ip_push_pending_frames(sk, &fl4);
1542 }
1543
1544 put_cpu_var(unicast_sock);
1545
1546 ip_rt_put(rt);
1547 }
1548
1549 void __init ip_init(void)
1550 {
1551 ip_rt_init();
1552 inet_initpeers();
1553
1554 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1555 igmp_mc_proc_init();
1556 #endif
1557 }