]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/ipv4/ipmr.c
UBUNTU: [Config] CONFIG_BCM2835_THERMAL=y
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / ipmr.c
1 /*
2 * IP multicast routing support for mrouted 3.6/3.8
3 *
4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5 * Linux Consultancy and Custom Driver Development
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 *
12 * Fixes:
13 * Michael Chastain : Incorrect size of copying.
14 * Alan Cox : Added the cache manager code
15 * Alan Cox : Fixed the clone/copy bug and device race.
16 * Mike McLagan : Routing by source
17 * Malcolm Beattie : Buffer handling fixes.
18 * Alexey Kuznetsov : Double buffer free and other fixes.
19 * SVR Anand : Fixed several multicast bugs and problems.
20 * Alexey Kuznetsov : Status, optimisations and more.
21 * Brad Parker : Better behaviour on mrouted upcall
22 * overflow.
23 * Carlos Picoto : PIMv1 Support
24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
25 * Relax this requirement to work with older peers.
26 *
27 */
28
29 #include <linux/uaccess.h>
30 #include <linux/types.h>
31 #include <linux/capability.h>
32 #include <linux/errno.h>
33 #include <linux/timer.h>
34 #include <linux/mm.h>
35 #include <linux/kernel.h>
36 #include <linux/fcntl.h>
37 #include <linux/stat.h>
38 #include <linux/socket.h>
39 #include <linux/in.h>
40 #include <linux/inet.h>
41 #include <linux/netdevice.h>
42 #include <linux/inetdevice.h>
43 #include <linux/igmp.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/mroute.h>
47 #include <linux/init.h>
48 #include <linux/if_ether.h>
49 #include <linux/slab.h>
50 #include <net/net_namespace.h>
51 #include <net/ip.h>
52 #include <net/protocol.h>
53 #include <linux/skbuff.h>
54 #include <net/route.h>
55 #include <net/sock.h>
56 #include <net/icmp.h>
57 #include <net/udp.h>
58 #include <net/raw.h>
59 #include <linux/notifier.h>
60 #include <linux/if_arp.h>
61 #include <linux/netfilter_ipv4.h>
62 #include <linux/compat.h>
63 #include <linux/export.h>
64 #include <net/ip_tunnels.h>
65 #include <net/checksum.h>
66 #include <net/netlink.h>
67 #include <net/fib_rules.h>
68 #include <linux/netconf.h>
69 #include <net/nexthop.h>
70
71 struct ipmr_rule {
72 struct fib_rule common;
73 };
74
75 struct ipmr_result {
76 struct mr_table *mrt;
77 };
78
79 /* Big lock, protecting vif table, mrt cache and mroute socket state.
80 * Note that the changes are semaphored via rtnl_lock.
81 */
82
83 static DEFINE_RWLOCK(mrt_lock);
84
85 /* Multicast router control variables */
86
87 /* Special spinlock for queue of unresolved entries */
88 static DEFINE_SPINLOCK(mfc_unres_lock);
89
90 /* We return to original Alan's scheme. Hash table of resolved
91 * entries is changed only in process context and protected
92 * with weak lock mrt_lock. Queue of unresolved entries is protected
93 * with strong spinlock mfc_unres_lock.
94 *
95 * In this case data path is free of exclusive locks at all.
96 */
97
98 static struct kmem_cache *mrt_cachep __read_mostly;
99
100 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
101 static void ipmr_free_table(struct mr_table *mrt);
102
103 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
104 struct net_device *dev, struct sk_buff *skb,
105 struct mfc_cache *cache, int local);
106 static int ipmr_cache_report(struct mr_table *mrt,
107 struct sk_buff *pkt, vifi_t vifi, int assert);
108 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
109 struct mfc_cache *c, struct rtmsg *rtm);
110 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
111 int cmd);
112 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt);
113 static void mroute_clean_tables(struct mr_table *mrt, bool all);
114 static void ipmr_expire_process(unsigned long arg);
115
116 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
117 #define ipmr_for_each_table(mrt, net) \
118 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
119
120 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
121 {
122 struct mr_table *mrt;
123
124 ipmr_for_each_table(mrt, net) {
125 if (mrt->id == id)
126 return mrt;
127 }
128 return NULL;
129 }
130
131 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
132 struct mr_table **mrt)
133 {
134 int err;
135 struct ipmr_result res;
136 struct fib_lookup_arg arg = {
137 .result = &res,
138 .flags = FIB_LOOKUP_NOREF,
139 };
140
141 /* update flow if oif or iif point to device enslaved to l3mdev */
142 l3mdev_update_flow(net, flowi4_to_flowi(flp4));
143
144 err = fib_rules_lookup(net->ipv4.mr_rules_ops,
145 flowi4_to_flowi(flp4), 0, &arg);
146 if (err < 0)
147 return err;
148 *mrt = res.mrt;
149 return 0;
150 }
151
152 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
153 int flags, struct fib_lookup_arg *arg)
154 {
155 struct ipmr_result *res = arg->result;
156 struct mr_table *mrt;
157
158 switch (rule->action) {
159 case FR_ACT_TO_TBL:
160 break;
161 case FR_ACT_UNREACHABLE:
162 return -ENETUNREACH;
163 case FR_ACT_PROHIBIT:
164 return -EACCES;
165 case FR_ACT_BLACKHOLE:
166 default:
167 return -EINVAL;
168 }
169
170 arg->table = fib_rule_get_table(rule, arg);
171
172 mrt = ipmr_get_table(rule->fr_net, arg->table);
173 if (!mrt)
174 return -EAGAIN;
175 res->mrt = mrt;
176 return 0;
177 }
178
179 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
180 {
181 return 1;
182 }
183
184 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
185 FRA_GENERIC_POLICY,
186 };
187
188 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
189 struct fib_rule_hdr *frh, struct nlattr **tb)
190 {
191 return 0;
192 }
193
194 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
195 struct nlattr **tb)
196 {
197 return 1;
198 }
199
200 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
201 struct fib_rule_hdr *frh)
202 {
203 frh->dst_len = 0;
204 frh->src_len = 0;
205 frh->tos = 0;
206 return 0;
207 }
208
209 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
210 .family = RTNL_FAMILY_IPMR,
211 .rule_size = sizeof(struct ipmr_rule),
212 .addr_size = sizeof(u32),
213 .action = ipmr_rule_action,
214 .match = ipmr_rule_match,
215 .configure = ipmr_rule_configure,
216 .compare = ipmr_rule_compare,
217 .fill = ipmr_rule_fill,
218 .nlgroup = RTNLGRP_IPV4_RULE,
219 .policy = ipmr_rule_policy,
220 .owner = THIS_MODULE,
221 };
222
223 static int __net_init ipmr_rules_init(struct net *net)
224 {
225 struct fib_rules_ops *ops;
226 struct mr_table *mrt;
227 int err;
228
229 ops = fib_rules_register(&ipmr_rules_ops_template, net);
230 if (IS_ERR(ops))
231 return PTR_ERR(ops);
232
233 INIT_LIST_HEAD(&net->ipv4.mr_tables);
234
235 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
236 if (IS_ERR(mrt)) {
237 err = PTR_ERR(mrt);
238 goto err1;
239 }
240
241 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
242 if (err < 0)
243 goto err2;
244
245 net->ipv4.mr_rules_ops = ops;
246 return 0;
247
248 err2:
249 ipmr_free_table(mrt);
250 err1:
251 fib_rules_unregister(ops);
252 return err;
253 }
254
255 static void __net_exit ipmr_rules_exit(struct net *net)
256 {
257 struct mr_table *mrt, *next;
258
259 rtnl_lock();
260 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
261 list_del(&mrt->list);
262 ipmr_free_table(mrt);
263 }
264 fib_rules_unregister(net->ipv4.mr_rules_ops);
265 rtnl_unlock();
266 }
267 #else
268 #define ipmr_for_each_table(mrt, net) \
269 for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
270
271 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
272 {
273 return net->ipv4.mrt;
274 }
275
276 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
277 struct mr_table **mrt)
278 {
279 *mrt = net->ipv4.mrt;
280 return 0;
281 }
282
283 static int __net_init ipmr_rules_init(struct net *net)
284 {
285 struct mr_table *mrt;
286
287 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
288 if (IS_ERR(mrt))
289 return PTR_ERR(mrt);
290 net->ipv4.mrt = mrt;
291 return 0;
292 }
293
294 static void __net_exit ipmr_rules_exit(struct net *net)
295 {
296 rtnl_lock();
297 ipmr_free_table(net->ipv4.mrt);
298 net->ipv4.mrt = NULL;
299 rtnl_unlock();
300 }
301 #endif
302
303 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
304 const void *ptr)
305 {
306 const struct mfc_cache_cmp_arg *cmparg = arg->key;
307 struct mfc_cache *c = (struct mfc_cache *)ptr;
308
309 return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
310 cmparg->mfc_origin != c->mfc_origin;
311 }
312
313 static const struct rhashtable_params ipmr_rht_params = {
314 .head_offset = offsetof(struct mfc_cache, mnode),
315 .key_offset = offsetof(struct mfc_cache, cmparg),
316 .key_len = sizeof(struct mfc_cache_cmp_arg),
317 .nelem_hint = 3,
318 .locks_mul = 1,
319 .obj_cmpfn = ipmr_hash_cmp,
320 .automatic_shrinking = true,
321 };
322
323 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
324 {
325 struct mr_table *mrt;
326
327 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
328 if (id != RT_TABLE_DEFAULT && id >= 1000000000)
329 return ERR_PTR(-EINVAL);
330
331 mrt = ipmr_get_table(net, id);
332 if (mrt)
333 return mrt;
334
335 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
336 if (!mrt)
337 return ERR_PTR(-ENOMEM);
338 write_pnet(&mrt->net, net);
339 mrt->id = id;
340
341 rhltable_init(&mrt->mfc_hash, &ipmr_rht_params);
342 INIT_LIST_HEAD(&mrt->mfc_cache_list);
343 INIT_LIST_HEAD(&mrt->mfc_unres_queue);
344
345 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
346 (unsigned long)mrt);
347
348 mrt->mroute_reg_vif_num = -1;
349 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
350 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
351 #endif
352 return mrt;
353 }
354
355 static void ipmr_free_table(struct mr_table *mrt)
356 {
357 del_timer_sync(&mrt->ipmr_expire_timer);
358 mroute_clean_tables(mrt, true);
359 rhltable_destroy(&mrt->mfc_hash);
360 kfree(mrt);
361 }
362
363 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
364
365 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
366 {
367 struct net *net = dev_net(dev);
368
369 dev_close(dev);
370
371 dev = __dev_get_by_name(net, "tunl0");
372 if (dev) {
373 const struct net_device_ops *ops = dev->netdev_ops;
374 struct ifreq ifr;
375 struct ip_tunnel_parm p;
376
377 memset(&p, 0, sizeof(p));
378 p.iph.daddr = v->vifc_rmt_addr.s_addr;
379 p.iph.saddr = v->vifc_lcl_addr.s_addr;
380 p.iph.version = 4;
381 p.iph.ihl = 5;
382 p.iph.protocol = IPPROTO_IPIP;
383 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
384 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
385
386 if (ops->ndo_do_ioctl) {
387 mm_segment_t oldfs = get_fs();
388
389 set_fs(KERNEL_DS);
390 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
391 set_fs(oldfs);
392 }
393 }
394 }
395
396 /* Initialize ipmr pimreg/tunnel in_device */
397 static bool ipmr_init_vif_indev(const struct net_device *dev)
398 {
399 struct in_device *in_dev;
400
401 ASSERT_RTNL();
402
403 in_dev = __in_dev_get_rtnl(dev);
404 if (!in_dev)
405 return false;
406 ipv4_devconf_setall(in_dev);
407 neigh_parms_data_state_setall(in_dev->arp_parms);
408 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
409
410 return true;
411 }
412
413 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
414 {
415 struct net_device *dev;
416
417 dev = __dev_get_by_name(net, "tunl0");
418
419 if (dev) {
420 const struct net_device_ops *ops = dev->netdev_ops;
421 int err;
422 struct ifreq ifr;
423 struct ip_tunnel_parm p;
424
425 memset(&p, 0, sizeof(p));
426 p.iph.daddr = v->vifc_rmt_addr.s_addr;
427 p.iph.saddr = v->vifc_lcl_addr.s_addr;
428 p.iph.version = 4;
429 p.iph.ihl = 5;
430 p.iph.protocol = IPPROTO_IPIP;
431 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
432 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
433
434 if (ops->ndo_do_ioctl) {
435 mm_segment_t oldfs = get_fs();
436
437 set_fs(KERNEL_DS);
438 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
439 set_fs(oldfs);
440 } else {
441 err = -EOPNOTSUPP;
442 }
443 dev = NULL;
444
445 if (err == 0 &&
446 (dev = __dev_get_by_name(net, p.name)) != NULL) {
447 dev->flags |= IFF_MULTICAST;
448 if (!ipmr_init_vif_indev(dev))
449 goto failure;
450 if (dev_open(dev))
451 goto failure;
452 dev_hold(dev);
453 }
454 }
455 return dev;
456
457 failure:
458 unregister_netdevice(dev);
459 return NULL;
460 }
461
462 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
463 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
464 {
465 struct net *net = dev_net(dev);
466 struct mr_table *mrt;
467 struct flowi4 fl4 = {
468 .flowi4_oif = dev->ifindex,
469 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
470 .flowi4_mark = skb->mark,
471 };
472 int err;
473
474 err = ipmr_fib_lookup(net, &fl4, &mrt);
475 if (err < 0) {
476 kfree_skb(skb);
477 return err;
478 }
479
480 read_lock(&mrt_lock);
481 dev->stats.tx_bytes += skb->len;
482 dev->stats.tx_packets++;
483 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
484 read_unlock(&mrt_lock);
485 kfree_skb(skb);
486 return NETDEV_TX_OK;
487 }
488
489 static int reg_vif_get_iflink(const struct net_device *dev)
490 {
491 return 0;
492 }
493
494 static const struct net_device_ops reg_vif_netdev_ops = {
495 .ndo_start_xmit = reg_vif_xmit,
496 .ndo_get_iflink = reg_vif_get_iflink,
497 };
498
499 static void reg_vif_setup(struct net_device *dev)
500 {
501 dev->type = ARPHRD_PIMREG;
502 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
503 dev->flags = IFF_NOARP;
504 dev->netdev_ops = &reg_vif_netdev_ops;
505 dev->needs_free_netdev = true;
506 dev->features |= NETIF_F_NETNS_LOCAL;
507 }
508
509 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
510 {
511 struct net_device *dev;
512 char name[IFNAMSIZ];
513
514 if (mrt->id == RT_TABLE_DEFAULT)
515 sprintf(name, "pimreg");
516 else
517 sprintf(name, "pimreg%u", mrt->id);
518
519 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
520
521 if (!dev)
522 return NULL;
523
524 dev_net_set(dev, net);
525
526 if (register_netdevice(dev)) {
527 free_netdev(dev);
528 return NULL;
529 }
530
531 if (!ipmr_init_vif_indev(dev))
532 goto failure;
533 if (dev_open(dev))
534 goto failure;
535
536 dev_hold(dev);
537
538 return dev;
539
540 failure:
541 unregister_netdevice(dev);
542 return NULL;
543 }
544
545 /* called with rcu_read_lock() */
546 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
547 unsigned int pimlen)
548 {
549 struct net_device *reg_dev = NULL;
550 struct iphdr *encap;
551
552 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
553 /* Check that:
554 * a. packet is really sent to a multicast group
555 * b. packet is not a NULL-REGISTER
556 * c. packet is not truncated
557 */
558 if (!ipv4_is_multicast(encap->daddr) ||
559 encap->tot_len == 0 ||
560 ntohs(encap->tot_len) + pimlen > skb->len)
561 return 1;
562
563 read_lock(&mrt_lock);
564 if (mrt->mroute_reg_vif_num >= 0)
565 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
566 read_unlock(&mrt_lock);
567
568 if (!reg_dev)
569 return 1;
570
571 skb->mac_header = skb->network_header;
572 skb_pull(skb, (u8 *)encap - skb->data);
573 skb_reset_network_header(skb);
574 skb->protocol = htons(ETH_P_IP);
575 skb->ip_summed = CHECKSUM_NONE;
576
577 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
578
579 netif_rx(skb);
580
581 return NET_RX_SUCCESS;
582 }
583 #else
584 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
585 {
586 return NULL;
587 }
588 #endif
589
590 /**
591 * vif_delete - Delete a VIF entry
592 * @notify: Set to 1, if the caller is a notifier_call
593 */
594 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
595 struct list_head *head)
596 {
597 struct vif_device *v;
598 struct net_device *dev;
599 struct in_device *in_dev;
600
601 if (vifi < 0 || vifi >= mrt->maxvif)
602 return -EADDRNOTAVAIL;
603
604 v = &mrt->vif_table[vifi];
605
606 write_lock_bh(&mrt_lock);
607 dev = v->dev;
608 v->dev = NULL;
609
610 if (!dev) {
611 write_unlock_bh(&mrt_lock);
612 return -EADDRNOTAVAIL;
613 }
614
615 if (vifi == mrt->mroute_reg_vif_num)
616 mrt->mroute_reg_vif_num = -1;
617
618 if (vifi + 1 == mrt->maxvif) {
619 int tmp;
620
621 for (tmp = vifi - 1; tmp >= 0; tmp--) {
622 if (VIF_EXISTS(mrt, tmp))
623 break;
624 }
625 mrt->maxvif = tmp+1;
626 }
627
628 write_unlock_bh(&mrt_lock);
629
630 dev_set_allmulti(dev, -1);
631
632 in_dev = __in_dev_get_rtnl(dev);
633 if (in_dev) {
634 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
635 inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
636 NETCONFA_MC_FORWARDING,
637 dev->ifindex, &in_dev->cnf);
638 ip_rt_multicast_event(in_dev);
639 }
640
641 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
642 unregister_netdevice_queue(dev, head);
643
644 dev_put(dev);
645 return 0;
646 }
647
648 static void ipmr_cache_free_rcu(struct rcu_head *head)
649 {
650 struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
651
652 kmem_cache_free(mrt_cachep, c);
653 }
654
655 static inline void ipmr_cache_free(struct mfc_cache *c)
656 {
657 call_rcu(&c->rcu, ipmr_cache_free_rcu);
658 }
659
660 /* Destroy an unresolved cache entry, killing queued skbs
661 * and reporting error to netlink readers.
662 */
663 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
664 {
665 struct net *net = read_pnet(&mrt->net);
666 struct sk_buff *skb;
667 struct nlmsgerr *e;
668
669 atomic_dec(&mrt->cache_resolve_queue_len);
670
671 while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
672 if (ip_hdr(skb)->version == 0) {
673 struct nlmsghdr *nlh = skb_pull(skb,
674 sizeof(struct iphdr));
675 nlh->nlmsg_type = NLMSG_ERROR;
676 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
677 skb_trim(skb, nlh->nlmsg_len);
678 e = nlmsg_data(nlh);
679 e->error = -ETIMEDOUT;
680 memset(&e->msg, 0, sizeof(e->msg));
681
682 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
683 } else {
684 kfree_skb(skb);
685 }
686 }
687
688 ipmr_cache_free(c);
689 }
690
691 /* Timer process for the unresolved queue. */
692 static void ipmr_expire_process(unsigned long arg)
693 {
694 struct mr_table *mrt = (struct mr_table *)arg;
695 unsigned long now;
696 unsigned long expires;
697 struct mfc_cache *c, *next;
698
699 if (!spin_trylock(&mfc_unres_lock)) {
700 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
701 return;
702 }
703
704 if (list_empty(&mrt->mfc_unres_queue))
705 goto out;
706
707 now = jiffies;
708 expires = 10*HZ;
709
710 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
711 if (time_after(c->mfc_un.unres.expires, now)) {
712 unsigned long interval = c->mfc_un.unres.expires - now;
713 if (interval < expires)
714 expires = interval;
715 continue;
716 }
717
718 list_del(&c->list);
719 mroute_netlink_event(mrt, c, RTM_DELROUTE);
720 ipmr_destroy_unres(mrt, c);
721 }
722
723 if (!list_empty(&mrt->mfc_unres_queue))
724 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
725
726 out:
727 spin_unlock(&mfc_unres_lock);
728 }
729
730 /* Fill oifs list. It is called under write locked mrt_lock. */
731 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
732 unsigned char *ttls)
733 {
734 int vifi;
735
736 cache->mfc_un.res.minvif = MAXVIFS;
737 cache->mfc_un.res.maxvif = 0;
738 memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
739
740 for (vifi = 0; vifi < mrt->maxvif; vifi++) {
741 if (VIF_EXISTS(mrt, vifi) &&
742 ttls[vifi] && ttls[vifi] < 255) {
743 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
744 if (cache->mfc_un.res.minvif > vifi)
745 cache->mfc_un.res.minvif = vifi;
746 if (cache->mfc_un.res.maxvif <= vifi)
747 cache->mfc_un.res.maxvif = vifi + 1;
748 }
749 }
750 cache->mfc_un.res.lastuse = jiffies;
751 }
752
753 static int vif_add(struct net *net, struct mr_table *mrt,
754 struct vifctl *vifc, int mrtsock)
755 {
756 int vifi = vifc->vifc_vifi;
757 struct vif_device *v = &mrt->vif_table[vifi];
758 struct net_device *dev;
759 struct in_device *in_dev;
760 int err;
761
762 /* Is vif busy ? */
763 if (VIF_EXISTS(mrt, vifi))
764 return -EADDRINUSE;
765
766 switch (vifc->vifc_flags) {
767 case VIFF_REGISTER:
768 if (!ipmr_pimsm_enabled())
769 return -EINVAL;
770 /* Special Purpose VIF in PIM
771 * All the packets will be sent to the daemon
772 */
773 if (mrt->mroute_reg_vif_num >= 0)
774 return -EADDRINUSE;
775 dev = ipmr_reg_vif(net, mrt);
776 if (!dev)
777 return -ENOBUFS;
778 err = dev_set_allmulti(dev, 1);
779 if (err) {
780 unregister_netdevice(dev);
781 dev_put(dev);
782 return err;
783 }
784 break;
785 case VIFF_TUNNEL:
786 dev = ipmr_new_tunnel(net, vifc);
787 if (!dev)
788 return -ENOBUFS;
789 err = dev_set_allmulti(dev, 1);
790 if (err) {
791 ipmr_del_tunnel(dev, vifc);
792 dev_put(dev);
793 return err;
794 }
795 break;
796 case VIFF_USE_IFINDEX:
797 case 0:
798 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
799 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
800 if (dev && !__in_dev_get_rtnl(dev)) {
801 dev_put(dev);
802 return -EADDRNOTAVAIL;
803 }
804 } else {
805 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
806 }
807 if (!dev)
808 return -EADDRNOTAVAIL;
809 err = dev_set_allmulti(dev, 1);
810 if (err) {
811 dev_put(dev);
812 return err;
813 }
814 break;
815 default:
816 return -EINVAL;
817 }
818
819 in_dev = __in_dev_get_rtnl(dev);
820 if (!in_dev) {
821 dev_put(dev);
822 return -EADDRNOTAVAIL;
823 }
824 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
825 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
826 dev->ifindex, &in_dev->cnf);
827 ip_rt_multicast_event(in_dev);
828
829 /* Fill in the VIF structures */
830
831 v->rate_limit = vifc->vifc_rate_limit;
832 v->local = vifc->vifc_lcl_addr.s_addr;
833 v->remote = vifc->vifc_rmt_addr.s_addr;
834 v->flags = vifc->vifc_flags;
835 if (!mrtsock)
836 v->flags |= VIFF_STATIC;
837 v->threshold = vifc->vifc_threshold;
838 v->bytes_in = 0;
839 v->bytes_out = 0;
840 v->pkt_in = 0;
841 v->pkt_out = 0;
842 v->link = dev->ifindex;
843 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
844 v->link = dev_get_iflink(dev);
845
846 /* And finish update writing critical data */
847 write_lock_bh(&mrt_lock);
848 v->dev = dev;
849 if (v->flags & VIFF_REGISTER)
850 mrt->mroute_reg_vif_num = vifi;
851 if (vifi+1 > mrt->maxvif)
852 mrt->maxvif = vifi+1;
853 write_unlock_bh(&mrt_lock);
854 return 0;
855 }
856
857 /* called with rcu_read_lock() */
858 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
859 __be32 origin,
860 __be32 mcastgrp)
861 {
862 struct mfc_cache_cmp_arg arg = {
863 .mfc_mcastgrp = mcastgrp,
864 .mfc_origin = origin
865 };
866 struct rhlist_head *tmp, *list;
867 struct mfc_cache *c;
868
869 list = rhltable_lookup(&mrt->mfc_hash, &arg, ipmr_rht_params);
870 rhl_for_each_entry_rcu(c, tmp, list, mnode)
871 return c;
872
873 return NULL;
874 }
875
876 /* Look for a (*,*,oif) entry */
877 static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
878 int vifi)
879 {
880 struct mfc_cache_cmp_arg arg = {
881 .mfc_mcastgrp = htonl(INADDR_ANY),
882 .mfc_origin = htonl(INADDR_ANY)
883 };
884 struct rhlist_head *tmp, *list;
885 struct mfc_cache *c;
886
887 list = rhltable_lookup(&mrt->mfc_hash, &arg, ipmr_rht_params);
888 rhl_for_each_entry_rcu(c, tmp, list, mnode)
889 if (c->mfc_un.res.ttls[vifi] < 255)
890 return c;
891
892 return NULL;
893 }
894
895 /* Look for a (*,G) entry */
896 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
897 __be32 mcastgrp, int vifi)
898 {
899 struct mfc_cache_cmp_arg arg = {
900 .mfc_mcastgrp = mcastgrp,
901 .mfc_origin = htonl(INADDR_ANY)
902 };
903 struct rhlist_head *tmp, *list;
904 struct mfc_cache *c, *proxy;
905
906 if (mcastgrp == htonl(INADDR_ANY))
907 goto skip;
908
909 list = rhltable_lookup(&mrt->mfc_hash, &arg, ipmr_rht_params);
910 rhl_for_each_entry_rcu(c, tmp, list, mnode) {
911 if (c->mfc_un.res.ttls[vifi] < 255)
912 return c;
913
914 /* It's ok if the vifi is part of the static tree */
915 proxy = ipmr_cache_find_any_parent(mrt, c->mfc_parent);
916 if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
917 return c;
918 }
919
920 skip:
921 return ipmr_cache_find_any_parent(mrt, vifi);
922 }
923
924 /* Look for a (S,G,iif) entry if parent != -1 */
925 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
926 __be32 origin, __be32 mcastgrp,
927 int parent)
928 {
929 struct mfc_cache_cmp_arg arg = {
930 .mfc_mcastgrp = mcastgrp,
931 .mfc_origin = origin,
932 };
933 struct rhlist_head *tmp, *list;
934 struct mfc_cache *c;
935
936 list = rhltable_lookup(&mrt->mfc_hash, &arg, ipmr_rht_params);
937 rhl_for_each_entry_rcu(c, tmp, list, mnode)
938 if (parent == -1 || parent == c->mfc_parent)
939 return c;
940
941 return NULL;
942 }
943
944 /* Allocate a multicast cache entry */
945 static struct mfc_cache *ipmr_cache_alloc(void)
946 {
947 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
948
949 if (c) {
950 c->mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
951 c->mfc_un.res.minvif = MAXVIFS;
952 }
953 return c;
954 }
955
956 static struct mfc_cache *ipmr_cache_alloc_unres(void)
957 {
958 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
959
960 if (c) {
961 skb_queue_head_init(&c->mfc_un.unres.unresolved);
962 c->mfc_un.unres.expires = jiffies + 10*HZ;
963 }
964 return c;
965 }
966
967 /* A cache entry has gone into a resolved state from queued */
968 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
969 struct mfc_cache *uc, struct mfc_cache *c)
970 {
971 struct sk_buff *skb;
972 struct nlmsgerr *e;
973
974 /* Play the pending entries through our router */
975 while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
976 if (ip_hdr(skb)->version == 0) {
977 struct nlmsghdr *nlh = skb_pull(skb,
978 sizeof(struct iphdr));
979
980 if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
981 nlh->nlmsg_len = skb_tail_pointer(skb) -
982 (u8 *)nlh;
983 } else {
984 nlh->nlmsg_type = NLMSG_ERROR;
985 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
986 skb_trim(skb, nlh->nlmsg_len);
987 e = nlmsg_data(nlh);
988 e->error = -EMSGSIZE;
989 memset(&e->msg, 0, sizeof(e->msg));
990 }
991
992 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
993 } else {
994 ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
995 }
996 }
997 }
998
999 /* Bounce a cache query up to mrouted and netlink.
1000 *
1001 * Called under mrt_lock.
1002 */
1003 static int ipmr_cache_report(struct mr_table *mrt,
1004 struct sk_buff *pkt, vifi_t vifi, int assert)
1005 {
1006 const int ihl = ip_hdrlen(pkt);
1007 struct sock *mroute_sk;
1008 struct igmphdr *igmp;
1009 struct igmpmsg *msg;
1010 struct sk_buff *skb;
1011 int ret;
1012
1013 if (assert == IGMPMSG_WHOLEPKT)
1014 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1015 else
1016 skb = alloc_skb(128, GFP_ATOMIC);
1017
1018 if (!skb)
1019 return -ENOBUFS;
1020
1021 if (assert == IGMPMSG_WHOLEPKT) {
1022 /* Ugly, but we have no choice with this interface.
1023 * Duplicate old header, fix ihl, length etc.
1024 * And all this only to mangle msg->im_msgtype and
1025 * to set msg->im_mbz to "mbz" :-)
1026 */
1027 skb_push(skb, sizeof(struct iphdr));
1028 skb_reset_network_header(skb);
1029 skb_reset_transport_header(skb);
1030 msg = (struct igmpmsg *)skb_network_header(skb);
1031 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1032 msg->im_msgtype = IGMPMSG_WHOLEPKT;
1033 msg->im_mbz = 0;
1034 msg->im_vif = mrt->mroute_reg_vif_num;
1035 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1036 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1037 sizeof(struct iphdr));
1038 } else {
1039 /* Copy the IP header */
1040 skb_set_network_header(skb, skb->len);
1041 skb_put(skb, ihl);
1042 skb_copy_to_linear_data(skb, pkt->data, ihl);
1043 /* Flag to the kernel this is a route add */
1044 ip_hdr(skb)->protocol = 0;
1045 msg = (struct igmpmsg *)skb_network_header(skb);
1046 msg->im_vif = vifi;
1047 skb_dst_set(skb, dst_clone(skb_dst(pkt)));
1048 /* Add our header */
1049 igmp = skb_put(skb, sizeof(struct igmphdr));
1050 igmp->type = assert;
1051 msg->im_msgtype = assert;
1052 igmp->code = 0;
1053 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
1054 skb->transport_header = skb->network_header;
1055 }
1056
1057 rcu_read_lock();
1058 mroute_sk = rcu_dereference(mrt->mroute_sk);
1059 if (!mroute_sk) {
1060 rcu_read_unlock();
1061 kfree_skb(skb);
1062 return -EINVAL;
1063 }
1064
1065 igmpmsg_netlink_event(mrt, skb);
1066
1067 /* Deliver to mrouted */
1068 ret = sock_queue_rcv_skb(mroute_sk, skb);
1069 rcu_read_unlock();
1070 if (ret < 0) {
1071 net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1072 kfree_skb(skb);
1073 }
1074
1075 return ret;
1076 }
1077
1078 /* Queue a packet for resolution. It gets locked cache entry! */
1079 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1080 struct sk_buff *skb, struct net_device *dev)
1081 {
1082 const struct iphdr *iph = ip_hdr(skb);
1083 struct mfc_cache *c;
1084 bool found = false;
1085 int err;
1086
1087 spin_lock_bh(&mfc_unres_lock);
1088 list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
1089 if (c->mfc_mcastgrp == iph->daddr &&
1090 c->mfc_origin == iph->saddr) {
1091 found = true;
1092 break;
1093 }
1094 }
1095
1096 if (!found) {
1097 /* Create a new entry if allowable */
1098 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1099 (c = ipmr_cache_alloc_unres()) == NULL) {
1100 spin_unlock_bh(&mfc_unres_lock);
1101
1102 kfree_skb(skb);
1103 return -ENOBUFS;
1104 }
1105
1106 /* Fill in the new cache entry */
1107 c->mfc_parent = -1;
1108 c->mfc_origin = iph->saddr;
1109 c->mfc_mcastgrp = iph->daddr;
1110
1111 /* Reflect first query at mrouted. */
1112 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1113 if (err < 0) {
1114 /* If the report failed throw the cache entry
1115 out - Brad Parker
1116 */
1117 spin_unlock_bh(&mfc_unres_lock);
1118
1119 ipmr_cache_free(c);
1120 kfree_skb(skb);
1121 return err;
1122 }
1123
1124 atomic_inc(&mrt->cache_resolve_queue_len);
1125 list_add(&c->list, &mrt->mfc_unres_queue);
1126 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1127
1128 if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1129 mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1130 }
1131
1132 /* See if we can append the packet */
1133 if (c->mfc_un.unres.unresolved.qlen > 3) {
1134 kfree_skb(skb);
1135 err = -ENOBUFS;
1136 } else {
1137 if (dev) {
1138 skb->dev = dev;
1139 skb->skb_iif = dev->ifindex;
1140 }
1141 skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1142 err = 0;
1143 }
1144
1145 spin_unlock_bh(&mfc_unres_lock);
1146 return err;
1147 }
1148
1149 /* MFC cache manipulation by user space mroute daemon */
1150
1151 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1152 {
1153 struct mfc_cache *c;
1154
1155 /* The entries are added/deleted only under RTNL */
1156 rcu_read_lock();
1157 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1158 mfc->mfcc_mcastgrp.s_addr, parent);
1159 rcu_read_unlock();
1160 if (!c)
1161 return -ENOENT;
1162 rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1163 list_del_rcu(&c->list);
1164 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1165 ipmr_cache_free(c);
1166
1167 return 0;
1168 }
1169
1170 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1171 struct mfcctl *mfc, int mrtsock, int parent)
1172 {
1173 struct mfc_cache *uc, *c;
1174 bool found;
1175 int ret;
1176
1177 if (mfc->mfcc_parent >= MAXVIFS)
1178 return -ENFILE;
1179
1180 /* The entries are added/deleted only under RTNL */
1181 rcu_read_lock();
1182 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1183 mfc->mfcc_mcastgrp.s_addr, parent);
1184 rcu_read_unlock();
1185 if (c) {
1186 write_lock_bh(&mrt_lock);
1187 c->mfc_parent = mfc->mfcc_parent;
1188 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1189 if (!mrtsock)
1190 c->mfc_flags |= MFC_STATIC;
1191 write_unlock_bh(&mrt_lock);
1192 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1193 return 0;
1194 }
1195
1196 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1197 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1198 return -EINVAL;
1199
1200 c = ipmr_cache_alloc();
1201 if (!c)
1202 return -ENOMEM;
1203
1204 c->mfc_origin = mfc->mfcc_origin.s_addr;
1205 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1206 c->mfc_parent = mfc->mfcc_parent;
1207 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1208 if (!mrtsock)
1209 c->mfc_flags |= MFC_STATIC;
1210
1211 ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->mnode,
1212 ipmr_rht_params);
1213 if (ret) {
1214 pr_err("ipmr: rhtable insert error %d\n", ret);
1215 ipmr_cache_free(c);
1216 return ret;
1217 }
1218 list_add_tail_rcu(&c->list, &mrt->mfc_cache_list);
1219 /* Check to see if we resolved a queued list. If so we
1220 * need to send on the frames and tidy up.
1221 */
1222 found = false;
1223 spin_lock_bh(&mfc_unres_lock);
1224 list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1225 if (uc->mfc_origin == c->mfc_origin &&
1226 uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1227 list_del(&uc->list);
1228 atomic_dec(&mrt->cache_resolve_queue_len);
1229 found = true;
1230 break;
1231 }
1232 }
1233 if (list_empty(&mrt->mfc_unres_queue))
1234 del_timer(&mrt->ipmr_expire_timer);
1235 spin_unlock_bh(&mfc_unres_lock);
1236
1237 if (found) {
1238 ipmr_cache_resolve(net, mrt, uc, c);
1239 ipmr_cache_free(uc);
1240 }
1241 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1242 return 0;
1243 }
1244
1245 /* Close the multicast socket, and clear the vif tables etc */
1246 static void mroute_clean_tables(struct mr_table *mrt, bool all)
1247 {
1248 struct mfc_cache *c, *tmp;
1249 LIST_HEAD(list);
1250 int i;
1251
1252 /* Shut down all active vif entries */
1253 for (i = 0; i < mrt->maxvif; i++) {
1254 if (!all && (mrt->vif_table[i].flags & VIFF_STATIC))
1255 continue;
1256 vif_delete(mrt, i, 0, &list);
1257 }
1258 unregister_netdevice_many(&list);
1259
1260 /* Wipe the cache */
1261 list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1262 if (!all && (c->mfc_flags & MFC_STATIC))
1263 continue;
1264 rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1265 list_del_rcu(&c->list);
1266 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1267 ipmr_cache_free(c);
1268 }
1269
1270 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1271 spin_lock_bh(&mfc_unres_lock);
1272 list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1273 list_del(&c->list);
1274 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1275 ipmr_destroy_unres(mrt, c);
1276 }
1277 spin_unlock_bh(&mfc_unres_lock);
1278 }
1279 }
1280
1281 /* called from ip_ra_control(), before an RCU grace period,
1282 * we dont need to call synchronize_rcu() here
1283 */
1284 static void mrtsock_destruct(struct sock *sk)
1285 {
1286 struct net *net = sock_net(sk);
1287 struct mr_table *mrt;
1288
1289 ASSERT_RTNL();
1290 ipmr_for_each_table(mrt, net) {
1291 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1292 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1293 inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1294 NETCONFA_MC_FORWARDING,
1295 NETCONFA_IFINDEX_ALL,
1296 net->ipv4.devconf_all);
1297 RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1298 mroute_clean_tables(mrt, false);
1299 }
1300 }
1301 }
1302
1303 /* Socket options and virtual interface manipulation. The whole
1304 * virtual interface system is a complete heap, but unfortunately
1305 * that's how BSD mrouted happens to think. Maybe one day with a proper
1306 * MOSPF/PIM router set up we can clean this up.
1307 */
1308
1309 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval,
1310 unsigned int optlen)
1311 {
1312 struct net *net = sock_net(sk);
1313 int val, ret = 0, parent = 0;
1314 struct mr_table *mrt;
1315 struct vifctl vif;
1316 struct mfcctl mfc;
1317 u32 uval;
1318
1319 /* There's one exception to the lock - MRT_DONE which needs to unlock */
1320 rtnl_lock();
1321 if (sk->sk_type != SOCK_RAW ||
1322 inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1323 ret = -EOPNOTSUPP;
1324 goto out_unlock;
1325 }
1326
1327 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1328 if (!mrt) {
1329 ret = -ENOENT;
1330 goto out_unlock;
1331 }
1332 if (optname != MRT_INIT) {
1333 if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1334 !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1335 ret = -EACCES;
1336 goto out_unlock;
1337 }
1338 }
1339
1340 switch (optname) {
1341 case MRT_INIT:
1342 if (optlen != sizeof(int)) {
1343 ret = -EINVAL;
1344 break;
1345 }
1346 if (rtnl_dereference(mrt->mroute_sk)) {
1347 ret = -EADDRINUSE;
1348 break;
1349 }
1350
1351 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1352 if (ret == 0) {
1353 rcu_assign_pointer(mrt->mroute_sk, sk);
1354 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1355 inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1356 NETCONFA_MC_FORWARDING,
1357 NETCONFA_IFINDEX_ALL,
1358 net->ipv4.devconf_all);
1359 }
1360 break;
1361 case MRT_DONE:
1362 if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1363 ret = -EACCES;
1364 } else {
1365 ret = ip_ra_control(sk, 0, NULL);
1366 goto out_unlock;
1367 }
1368 break;
1369 case MRT_ADD_VIF:
1370 case MRT_DEL_VIF:
1371 if (optlen != sizeof(vif)) {
1372 ret = -EINVAL;
1373 break;
1374 }
1375 if (copy_from_user(&vif, optval, sizeof(vif))) {
1376 ret = -EFAULT;
1377 break;
1378 }
1379 if (vif.vifc_vifi >= MAXVIFS) {
1380 ret = -ENFILE;
1381 break;
1382 }
1383 if (optname == MRT_ADD_VIF) {
1384 ret = vif_add(net, mrt, &vif,
1385 sk == rtnl_dereference(mrt->mroute_sk));
1386 } else {
1387 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1388 }
1389 break;
1390 /* Manipulate the forwarding caches. These live
1391 * in a sort of kernel/user symbiosis.
1392 */
1393 case MRT_ADD_MFC:
1394 case MRT_DEL_MFC:
1395 parent = -1;
1396 case MRT_ADD_MFC_PROXY:
1397 case MRT_DEL_MFC_PROXY:
1398 if (optlen != sizeof(mfc)) {
1399 ret = -EINVAL;
1400 break;
1401 }
1402 if (copy_from_user(&mfc, optval, sizeof(mfc))) {
1403 ret = -EFAULT;
1404 break;
1405 }
1406 if (parent == 0)
1407 parent = mfc.mfcc_parent;
1408 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1409 ret = ipmr_mfc_delete(mrt, &mfc, parent);
1410 else
1411 ret = ipmr_mfc_add(net, mrt, &mfc,
1412 sk == rtnl_dereference(mrt->mroute_sk),
1413 parent);
1414 break;
1415 /* Control PIM assert. */
1416 case MRT_ASSERT:
1417 if (optlen != sizeof(val)) {
1418 ret = -EINVAL;
1419 break;
1420 }
1421 if (get_user(val, (int __user *)optval)) {
1422 ret = -EFAULT;
1423 break;
1424 }
1425 mrt->mroute_do_assert = val;
1426 break;
1427 case MRT_PIM:
1428 if (!ipmr_pimsm_enabled()) {
1429 ret = -ENOPROTOOPT;
1430 break;
1431 }
1432 if (optlen != sizeof(val)) {
1433 ret = -EINVAL;
1434 break;
1435 }
1436 if (get_user(val, (int __user *)optval)) {
1437 ret = -EFAULT;
1438 break;
1439 }
1440
1441 val = !!val;
1442 if (val != mrt->mroute_do_pim) {
1443 mrt->mroute_do_pim = val;
1444 mrt->mroute_do_assert = val;
1445 }
1446 break;
1447 case MRT_TABLE:
1448 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1449 ret = -ENOPROTOOPT;
1450 break;
1451 }
1452 if (optlen != sizeof(uval)) {
1453 ret = -EINVAL;
1454 break;
1455 }
1456 if (get_user(uval, (u32 __user *)optval)) {
1457 ret = -EFAULT;
1458 break;
1459 }
1460
1461 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1462 ret = -EBUSY;
1463 } else {
1464 mrt = ipmr_new_table(net, uval);
1465 if (IS_ERR(mrt))
1466 ret = PTR_ERR(mrt);
1467 else
1468 raw_sk(sk)->ipmr_table = uval;
1469 }
1470 break;
1471 /* Spurious command, or MRT_VERSION which you cannot set. */
1472 default:
1473 ret = -ENOPROTOOPT;
1474 }
1475 out_unlock:
1476 rtnl_unlock();
1477 return ret;
1478 }
1479
1480 /* Getsock opt support for the multicast routing system. */
1481 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1482 {
1483 int olr;
1484 int val;
1485 struct net *net = sock_net(sk);
1486 struct mr_table *mrt;
1487
1488 if (sk->sk_type != SOCK_RAW ||
1489 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1490 return -EOPNOTSUPP;
1491
1492 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1493 if (!mrt)
1494 return -ENOENT;
1495
1496 switch (optname) {
1497 case MRT_VERSION:
1498 val = 0x0305;
1499 break;
1500 case MRT_PIM:
1501 if (!ipmr_pimsm_enabled())
1502 return -ENOPROTOOPT;
1503 val = mrt->mroute_do_pim;
1504 break;
1505 case MRT_ASSERT:
1506 val = mrt->mroute_do_assert;
1507 break;
1508 default:
1509 return -ENOPROTOOPT;
1510 }
1511
1512 if (get_user(olr, optlen))
1513 return -EFAULT;
1514 olr = min_t(unsigned int, olr, sizeof(int));
1515 if (olr < 0)
1516 return -EINVAL;
1517 if (put_user(olr, optlen))
1518 return -EFAULT;
1519 if (copy_to_user(optval, &val, olr))
1520 return -EFAULT;
1521 return 0;
1522 }
1523
1524 /* The IP multicast ioctl support routines. */
1525 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1526 {
1527 struct sioc_sg_req sr;
1528 struct sioc_vif_req vr;
1529 struct vif_device *vif;
1530 struct mfc_cache *c;
1531 struct net *net = sock_net(sk);
1532 struct mr_table *mrt;
1533
1534 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1535 if (!mrt)
1536 return -ENOENT;
1537
1538 switch (cmd) {
1539 case SIOCGETVIFCNT:
1540 if (copy_from_user(&vr, arg, sizeof(vr)))
1541 return -EFAULT;
1542 if (vr.vifi >= mrt->maxvif)
1543 return -EINVAL;
1544 read_lock(&mrt_lock);
1545 vif = &mrt->vif_table[vr.vifi];
1546 if (VIF_EXISTS(mrt, vr.vifi)) {
1547 vr.icount = vif->pkt_in;
1548 vr.ocount = vif->pkt_out;
1549 vr.ibytes = vif->bytes_in;
1550 vr.obytes = vif->bytes_out;
1551 read_unlock(&mrt_lock);
1552
1553 if (copy_to_user(arg, &vr, sizeof(vr)))
1554 return -EFAULT;
1555 return 0;
1556 }
1557 read_unlock(&mrt_lock);
1558 return -EADDRNOTAVAIL;
1559 case SIOCGETSGCNT:
1560 if (copy_from_user(&sr, arg, sizeof(sr)))
1561 return -EFAULT;
1562
1563 rcu_read_lock();
1564 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1565 if (c) {
1566 sr.pktcnt = c->mfc_un.res.pkt;
1567 sr.bytecnt = c->mfc_un.res.bytes;
1568 sr.wrong_if = c->mfc_un.res.wrong_if;
1569 rcu_read_unlock();
1570
1571 if (copy_to_user(arg, &sr, sizeof(sr)))
1572 return -EFAULT;
1573 return 0;
1574 }
1575 rcu_read_unlock();
1576 return -EADDRNOTAVAIL;
1577 default:
1578 return -ENOIOCTLCMD;
1579 }
1580 }
1581
1582 #ifdef CONFIG_COMPAT
1583 struct compat_sioc_sg_req {
1584 struct in_addr src;
1585 struct in_addr grp;
1586 compat_ulong_t pktcnt;
1587 compat_ulong_t bytecnt;
1588 compat_ulong_t wrong_if;
1589 };
1590
1591 struct compat_sioc_vif_req {
1592 vifi_t vifi; /* Which iface */
1593 compat_ulong_t icount;
1594 compat_ulong_t ocount;
1595 compat_ulong_t ibytes;
1596 compat_ulong_t obytes;
1597 };
1598
1599 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1600 {
1601 struct compat_sioc_sg_req sr;
1602 struct compat_sioc_vif_req vr;
1603 struct vif_device *vif;
1604 struct mfc_cache *c;
1605 struct net *net = sock_net(sk);
1606 struct mr_table *mrt;
1607
1608 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1609 if (!mrt)
1610 return -ENOENT;
1611
1612 switch (cmd) {
1613 case SIOCGETVIFCNT:
1614 if (copy_from_user(&vr, arg, sizeof(vr)))
1615 return -EFAULT;
1616 if (vr.vifi >= mrt->maxvif)
1617 return -EINVAL;
1618 read_lock(&mrt_lock);
1619 vif = &mrt->vif_table[vr.vifi];
1620 if (VIF_EXISTS(mrt, vr.vifi)) {
1621 vr.icount = vif->pkt_in;
1622 vr.ocount = vif->pkt_out;
1623 vr.ibytes = vif->bytes_in;
1624 vr.obytes = vif->bytes_out;
1625 read_unlock(&mrt_lock);
1626
1627 if (copy_to_user(arg, &vr, sizeof(vr)))
1628 return -EFAULT;
1629 return 0;
1630 }
1631 read_unlock(&mrt_lock);
1632 return -EADDRNOTAVAIL;
1633 case SIOCGETSGCNT:
1634 if (copy_from_user(&sr, arg, sizeof(sr)))
1635 return -EFAULT;
1636
1637 rcu_read_lock();
1638 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1639 if (c) {
1640 sr.pktcnt = c->mfc_un.res.pkt;
1641 sr.bytecnt = c->mfc_un.res.bytes;
1642 sr.wrong_if = c->mfc_un.res.wrong_if;
1643 rcu_read_unlock();
1644
1645 if (copy_to_user(arg, &sr, sizeof(sr)))
1646 return -EFAULT;
1647 return 0;
1648 }
1649 rcu_read_unlock();
1650 return -EADDRNOTAVAIL;
1651 default:
1652 return -ENOIOCTLCMD;
1653 }
1654 }
1655 #endif
1656
1657 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1658 {
1659 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1660 struct net *net = dev_net(dev);
1661 struct mr_table *mrt;
1662 struct vif_device *v;
1663 int ct;
1664
1665 if (event != NETDEV_UNREGISTER)
1666 return NOTIFY_DONE;
1667
1668 ipmr_for_each_table(mrt, net) {
1669 v = &mrt->vif_table[0];
1670 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1671 if (v->dev == dev)
1672 vif_delete(mrt, ct, 1, NULL);
1673 }
1674 }
1675 return NOTIFY_DONE;
1676 }
1677
1678 static struct notifier_block ip_mr_notifier = {
1679 .notifier_call = ipmr_device_event,
1680 };
1681
1682 /* Encapsulate a packet by attaching a valid IPIP header to it.
1683 * This avoids tunnel drivers and other mess and gives us the speed so
1684 * important for multicast video.
1685 */
1686 static void ip_encap(struct net *net, struct sk_buff *skb,
1687 __be32 saddr, __be32 daddr)
1688 {
1689 struct iphdr *iph;
1690 const struct iphdr *old_iph = ip_hdr(skb);
1691
1692 skb_push(skb, sizeof(struct iphdr));
1693 skb->transport_header = skb->network_header;
1694 skb_reset_network_header(skb);
1695 iph = ip_hdr(skb);
1696
1697 iph->version = 4;
1698 iph->tos = old_iph->tos;
1699 iph->ttl = old_iph->ttl;
1700 iph->frag_off = 0;
1701 iph->daddr = daddr;
1702 iph->saddr = saddr;
1703 iph->protocol = IPPROTO_IPIP;
1704 iph->ihl = 5;
1705 iph->tot_len = htons(skb->len);
1706 ip_select_ident(net, skb, NULL);
1707 ip_send_check(iph);
1708
1709 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1710 nf_reset(skb);
1711 }
1712
1713 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1714 struct sk_buff *skb)
1715 {
1716 struct ip_options *opt = &(IPCB(skb)->opt);
1717
1718 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1719 IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1720
1721 if (unlikely(opt->optlen))
1722 ip_forward_options(skb);
1723
1724 return dst_output(net, sk, skb);
1725 }
1726
1727 /* Processing handlers for ipmr_forward */
1728
1729 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1730 struct sk_buff *skb, struct mfc_cache *c, int vifi)
1731 {
1732 const struct iphdr *iph = ip_hdr(skb);
1733 struct vif_device *vif = &mrt->vif_table[vifi];
1734 struct net_device *dev;
1735 struct rtable *rt;
1736 struct flowi4 fl4;
1737 int encap = 0;
1738
1739 if (!vif->dev)
1740 goto out_free;
1741
1742 if (vif->flags & VIFF_REGISTER) {
1743 vif->pkt_out++;
1744 vif->bytes_out += skb->len;
1745 vif->dev->stats.tx_bytes += skb->len;
1746 vif->dev->stats.tx_packets++;
1747 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1748 goto out_free;
1749 }
1750
1751 if (vif->flags & VIFF_TUNNEL) {
1752 rt = ip_route_output_ports(net, &fl4, NULL,
1753 vif->remote, vif->local,
1754 0, 0,
1755 IPPROTO_IPIP,
1756 RT_TOS(iph->tos), vif->link);
1757 if (IS_ERR(rt))
1758 goto out_free;
1759 encap = sizeof(struct iphdr);
1760 } else {
1761 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1762 0, 0,
1763 IPPROTO_IPIP,
1764 RT_TOS(iph->tos), vif->link);
1765 if (IS_ERR(rt))
1766 goto out_free;
1767 }
1768
1769 dev = rt->dst.dev;
1770
1771 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1772 /* Do not fragment multicasts. Alas, IPv4 does not
1773 * allow to send ICMP, so that packets will disappear
1774 * to blackhole.
1775 */
1776 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1777 ip_rt_put(rt);
1778 goto out_free;
1779 }
1780
1781 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1782
1783 if (skb_cow(skb, encap)) {
1784 ip_rt_put(rt);
1785 goto out_free;
1786 }
1787
1788 vif->pkt_out++;
1789 vif->bytes_out += skb->len;
1790
1791 skb_dst_drop(skb);
1792 skb_dst_set(skb, &rt->dst);
1793 ip_decrease_ttl(ip_hdr(skb));
1794
1795 /* FIXME: forward and output firewalls used to be called here.
1796 * What do we do with netfilter? -- RR
1797 */
1798 if (vif->flags & VIFF_TUNNEL) {
1799 ip_encap(net, skb, vif->local, vif->remote);
1800 /* FIXME: extra output firewall step used to be here. --RR */
1801 vif->dev->stats.tx_packets++;
1802 vif->dev->stats.tx_bytes += skb->len;
1803 }
1804
1805 IPCB(skb)->flags |= IPSKB_FORWARDED;
1806
1807 /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1808 * not only before forwarding, but after forwarding on all output
1809 * interfaces. It is clear, if mrouter runs a multicasting
1810 * program, it should receive packets not depending to what interface
1811 * program is joined.
1812 * If we will not make it, the program will have to join on all
1813 * interfaces. On the other hand, multihoming host (or router, but
1814 * not mrouter) cannot join to more than one interface - it will
1815 * result in receiving multiple packets.
1816 */
1817 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1818 net, NULL, skb, skb->dev, dev,
1819 ipmr_forward_finish);
1820 return;
1821
1822 out_free:
1823 kfree_skb(skb);
1824 }
1825
1826 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1827 {
1828 int ct;
1829
1830 for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1831 if (mrt->vif_table[ct].dev == dev)
1832 break;
1833 }
1834 return ct;
1835 }
1836
1837 /* "local" means that we should preserve one skb (for local delivery) */
1838 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1839 struct net_device *dev, struct sk_buff *skb,
1840 struct mfc_cache *cache, int local)
1841 {
1842 int true_vifi = ipmr_find_vif(mrt, dev);
1843 int psend = -1;
1844 int vif, ct;
1845
1846 vif = cache->mfc_parent;
1847 cache->mfc_un.res.pkt++;
1848 cache->mfc_un.res.bytes += skb->len;
1849 cache->mfc_un.res.lastuse = jiffies;
1850
1851 if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1852 struct mfc_cache *cache_proxy;
1853
1854 /* For an (*,G) entry, we only check that the incomming
1855 * interface is part of the static tree.
1856 */
1857 cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
1858 if (cache_proxy &&
1859 cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
1860 goto forward;
1861 }
1862
1863 /* Wrong interface: drop packet and (maybe) send PIM assert. */
1864 if (mrt->vif_table[vif].dev != dev) {
1865 if (rt_is_output_route(skb_rtable(skb))) {
1866 /* It is our own packet, looped back.
1867 * Very complicated situation...
1868 *
1869 * The best workaround until routing daemons will be
1870 * fixed is not to redistribute packet, if it was
1871 * send through wrong interface. It means, that
1872 * multicast applications WILL NOT work for
1873 * (S,G), which have default multicast route pointing
1874 * to wrong oif. In any case, it is not a good
1875 * idea to use multicasting applications on router.
1876 */
1877 goto dont_forward;
1878 }
1879
1880 cache->mfc_un.res.wrong_if++;
1881
1882 if (true_vifi >= 0 && mrt->mroute_do_assert &&
1883 /* pimsm uses asserts, when switching from RPT to SPT,
1884 * so that we cannot check that packet arrived on an oif.
1885 * It is bad, but otherwise we would need to move pretty
1886 * large chunk of pimd to kernel. Ough... --ANK
1887 */
1888 (mrt->mroute_do_pim ||
1889 cache->mfc_un.res.ttls[true_vifi] < 255) &&
1890 time_after(jiffies,
1891 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1892 cache->mfc_un.res.last_assert = jiffies;
1893 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1894 }
1895 goto dont_forward;
1896 }
1897
1898 forward:
1899 mrt->vif_table[vif].pkt_in++;
1900 mrt->vif_table[vif].bytes_in += skb->len;
1901
1902 /* Forward the frame */
1903 if (cache->mfc_origin == htonl(INADDR_ANY) &&
1904 cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
1905 if (true_vifi >= 0 &&
1906 true_vifi != cache->mfc_parent &&
1907 ip_hdr(skb)->ttl >
1908 cache->mfc_un.res.ttls[cache->mfc_parent]) {
1909 /* It's an (*,*) entry and the packet is not coming from
1910 * the upstream: forward the packet to the upstream
1911 * only.
1912 */
1913 psend = cache->mfc_parent;
1914 goto last_forward;
1915 }
1916 goto dont_forward;
1917 }
1918 for (ct = cache->mfc_un.res.maxvif - 1;
1919 ct >= cache->mfc_un.res.minvif; ct--) {
1920 /* For (*,G) entry, don't forward to the incoming interface */
1921 if ((cache->mfc_origin != htonl(INADDR_ANY) ||
1922 ct != true_vifi) &&
1923 ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1924 if (psend != -1) {
1925 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1926
1927 if (skb2)
1928 ipmr_queue_xmit(net, mrt, skb2, cache,
1929 psend);
1930 }
1931 psend = ct;
1932 }
1933 }
1934 last_forward:
1935 if (psend != -1) {
1936 if (local) {
1937 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1938
1939 if (skb2)
1940 ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1941 } else {
1942 ipmr_queue_xmit(net, mrt, skb, cache, psend);
1943 return;
1944 }
1945 }
1946
1947 dont_forward:
1948 if (!local)
1949 kfree_skb(skb);
1950 }
1951
1952 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1953 {
1954 struct rtable *rt = skb_rtable(skb);
1955 struct iphdr *iph = ip_hdr(skb);
1956 struct flowi4 fl4 = {
1957 .daddr = iph->daddr,
1958 .saddr = iph->saddr,
1959 .flowi4_tos = RT_TOS(iph->tos),
1960 .flowi4_oif = (rt_is_output_route(rt) ?
1961 skb->dev->ifindex : 0),
1962 .flowi4_iif = (rt_is_output_route(rt) ?
1963 LOOPBACK_IFINDEX :
1964 skb->dev->ifindex),
1965 .flowi4_mark = skb->mark,
1966 };
1967 struct mr_table *mrt;
1968 int err;
1969
1970 err = ipmr_fib_lookup(net, &fl4, &mrt);
1971 if (err)
1972 return ERR_PTR(err);
1973 return mrt;
1974 }
1975
1976 /* Multicast packets for forwarding arrive here
1977 * Called with rcu_read_lock();
1978 */
1979 int ip_mr_input(struct sk_buff *skb)
1980 {
1981 struct mfc_cache *cache;
1982 struct net *net = dev_net(skb->dev);
1983 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1984 struct mr_table *mrt;
1985 struct net_device *dev;
1986
1987 /* skb->dev passed in is the loX master dev for vrfs.
1988 * As there are no vifs associated with loopback devices,
1989 * get the proper interface that does have a vif associated with it.
1990 */
1991 dev = skb->dev;
1992 if (netif_is_l3_master(skb->dev)) {
1993 dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
1994 if (!dev) {
1995 kfree_skb(skb);
1996 return -ENODEV;
1997 }
1998 }
1999
2000 /* Packet is looped back after forward, it should not be
2001 * forwarded second time, but still can be delivered locally.
2002 */
2003 if (IPCB(skb)->flags & IPSKB_FORWARDED)
2004 goto dont_forward;
2005
2006 mrt = ipmr_rt_fib_lookup(net, skb);
2007 if (IS_ERR(mrt)) {
2008 kfree_skb(skb);
2009 return PTR_ERR(mrt);
2010 }
2011 if (!local) {
2012 if (IPCB(skb)->opt.router_alert) {
2013 if (ip_call_ra_chain(skb))
2014 return 0;
2015 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2016 /* IGMPv1 (and broken IGMPv2 implementations sort of
2017 * Cisco IOS <= 11.2(8)) do not put router alert
2018 * option to IGMP packets destined to routable
2019 * groups. It is very bad, because it means
2020 * that we can forward NO IGMP messages.
2021 */
2022 struct sock *mroute_sk;
2023
2024 mroute_sk = rcu_dereference(mrt->mroute_sk);
2025 if (mroute_sk) {
2026 nf_reset(skb);
2027 raw_rcv(mroute_sk, skb);
2028 return 0;
2029 }
2030 }
2031 }
2032
2033 /* already under rcu_read_lock() */
2034 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2035 if (!cache) {
2036 int vif = ipmr_find_vif(mrt, dev);
2037
2038 if (vif >= 0)
2039 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2040 vif);
2041 }
2042
2043 /* No usable cache entry */
2044 if (!cache) {
2045 int vif;
2046
2047 if (local) {
2048 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2049 ip_local_deliver(skb);
2050 if (!skb2)
2051 return -ENOBUFS;
2052 skb = skb2;
2053 }
2054
2055 read_lock(&mrt_lock);
2056 vif = ipmr_find_vif(mrt, dev);
2057 if (vif >= 0) {
2058 int err2 = ipmr_cache_unresolved(mrt, vif, skb, dev);
2059 read_unlock(&mrt_lock);
2060
2061 return err2;
2062 }
2063 read_unlock(&mrt_lock);
2064 kfree_skb(skb);
2065 return -ENODEV;
2066 }
2067
2068 read_lock(&mrt_lock);
2069 ip_mr_forward(net, mrt, dev, skb, cache, local);
2070 read_unlock(&mrt_lock);
2071
2072 if (local)
2073 return ip_local_deliver(skb);
2074
2075 return 0;
2076
2077 dont_forward:
2078 if (local)
2079 return ip_local_deliver(skb);
2080 kfree_skb(skb);
2081 return 0;
2082 }
2083
2084 #ifdef CONFIG_IP_PIMSM_V1
2085 /* Handle IGMP messages of PIMv1 */
2086 int pim_rcv_v1(struct sk_buff *skb)
2087 {
2088 struct igmphdr *pim;
2089 struct net *net = dev_net(skb->dev);
2090 struct mr_table *mrt;
2091
2092 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2093 goto drop;
2094
2095 pim = igmp_hdr(skb);
2096
2097 mrt = ipmr_rt_fib_lookup(net, skb);
2098 if (IS_ERR(mrt))
2099 goto drop;
2100 if (!mrt->mroute_do_pim ||
2101 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2102 goto drop;
2103
2104 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2105 drop:
2106 kfree_skb(skb);
2107 }
2108 return 0;
2109 }
2110 #endif
2111
2112 #ifdef CONFIG_IP_PIMSM_V2
2113 static int pim_rcv(struct sk_buff *skb)
2114 {
2115 struct pimreghdr *pim;
2116 struct net *net = dev_net(skb->dev);
2117 struct mr_table *mrt;
2118
2119 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2120 goto drop;
2121
2122 pim = (struct pimreghdr *)skb_transport_header(skb);
2123 if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2124 (pim->flags & PIM_NULL_REGISTER) ||
2125 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2126 csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2127 goto drop;
2128
2129 mrt = ipmr_rt_fib_lookup(net, skb);
2130 if (IS_ERR(mrt))
2131 goto drop;
2132 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2133 drop:
2134 kfree_skb(skb);
2135 }
2136 return 0;
2137 }
2138 #endif
2139
2140 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2141 struct mfc_cache *c, struct rtmsg *rtm)
2142 {
2143 struct rta_mfc_stats mfcs;
2144 struct nlattr *mp_attr;
2145 struct rtnexthop *nhp;
2146 unsigned long lastuse;
2147 int ct;
2148
2149 /* If cache is unresolved, don't try to parse IIF and OIF */
2150 if (c->mfc_parent >= MAXVIFS) {
2151 rtm->rtm_flags |= RTNH_F_UNRESOLVED;
2152 return -ENOENT;
2153 }
2154
2155 if (VIF_EXISTS(mrt, c->mfc_parent) &&
2156 nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2157 return -EMSGSIZE;
2158
2159 if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2160 return -EMSGSIZE;
2161
2162 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2163 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2164 if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2165 nla_nest_cancel(skb, mp_attr);
2166 return -EMSGSIZE;
2167 }
2168
2169 nhp->rtnh_flags = 0;
2170 nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2171 nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2172 nhp->rtnh_len = sizeof(*nhp);
2173 }
2174 }
2175
2176 nla_nest_end(skb, mp_attr);
2177
2178 lastuse = READ_ONCE(c->mfc_un.res.lastuse);
2179 lastuse = time_after_eq(jiffies, lastuse) ? jiffies - lastuse : 0;
2180
2181 mfcs.mfcs_packets = c->mfc_un.res.pkt;
2182 mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2183 mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2184 if (nla_put_64bit(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs, RTA_PAD) ||
2185 nla_put_u64_64bit(skb, RTA_EXPIRES, jiffies_to_clock_t(lastuse),
2186 RTA_PAD))
2187 return -EMSGSIZE;
2188
2189 rtm->rtm_type = RTN_MULTICAST;
2190 return 1;
2191 }
2192
2193 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2194 __be32 saddr, __be32 daddr,
2195 struct rtmsg *rtm, u32 portid)
2196 {
2197 struct mfc_cache *cache;
2198 struct mr_table *mrt;
2199 int err;
2200
2201 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2202 if (!mrt)
2203 return -ENOENT;
2204
2205 rcu_read_lock();
2206 cache = ipmr_cache_find(mrt, saddr, daddr);
2207 if (!cache && skb->dev) {
2208 int vif = ipmr_find_vif(mrt, skb->dev);
2209
2210 if (vif >= 0)
2211 cache = ipmr_cache_find_any(mrt, daddr, vif);
2212 }
2213 if (!cache) {
2214 struct sk_buff *skb2;
2215 struct iphdr *iph;
2216 struct net_device *dev;
2217 int vif = -1;
2218
2219 dev = skb->dev;
2220 read_lock(&mrt_lock);
2221 if (dev)
2222 vif = ipmr_find_vif(mrt, dev);
2223 if (vif < 0) {
2224 read_unlock(&mrt_lock);
2225 rcu_read_unlock();
2226 return -ENODEV;
2227 }
2228 skb2 = skb_clone(skb, GFP_ATOMIC);
2229 if (!skb2) {
2230 read_unlock(&mrt_lock);
2231 rcu_read_unlock();
2232 return -ENOMEM;
2233 }
2234
2235 NETLINK_CB(skb2).portid = portid;
2236 skb_push(skb2, sizeof(struct iphdr));
2237 skb_reset_network_header(skb2);
2238 iph = ip_hdr(skb2);
2239 iph->ihl = sizeof(struct iphdr) >> 2;
2240 iph->saddr = saddr;
2241 iph->daddr = daddr;
2242 iph->version = 0;
2243 err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
2244 read_unlock(&mrt_lock);
2245 rcu_read_unlock();
2246 return err;
2247 }
2248
2249 read_lock(&mrt_lock);
2250 err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2251 read_unlock(&mrt_lock);
2252 rcu_read_unlock();
2253 return err;
2254 }
2255
2256 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2257 u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2258 int flags)
2259 {
2260 struct nlmsghdr *nlh;
2261 struct rtmsg *rtm;
2262 int err;
2263
2264 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2265 if (!nlh)
2266 return -EMSGSIZE;
2267
2268 rtm = nlmsg_data(nlh);
2269 rtm->rtm_family = RTNL_FAMILY_IPMR;
2270 rtm->rtm_dst_len = 32;
2271 rtm->rtm_src_len = 32;
2272 rtm->rtm_tos = 0;
2273 rtm->rtm_table = mrt->id;
2274 if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2275 goto nla_put_failure;
2276 rtm->rtm_type = RTN_MULTICAST;
2277 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2278 if (c->mfc_flags & MFC_STATIC)
2279 rtm->rtm_protocol = RTPROT_STATIC;
2280 else
2281 rtm->rtm_protocol = RTPROT_MROUTED;
2282 rtm->rtm_flags = 0;
2283
2284 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2285 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2286 goto nla_put_failure;
2287 err = __ipmr_fill_mroute(mrt, skb, c, rtm);
2288 /* do not break the dump if cache is unresolved */
2289 if (err < 0 && err != -ENOENT)
2290 goto nla_put_failure;
2291
2292 nlmsg_end(skb, nlh);
2293 return 0;
2294
2295 nla_put_failure:
2296 nlmsg_cancel(skb, nlh);
2297 return -EMSGSIZE;
2298 }
2299
2300 static size_t mroute_msgsize(bool unresolved, int maxvif)
2301 {
2302 size_t len =
2303 NLMSG_ALIGN(sizeof(struct rtmsg))
2304 + nla_total_size(4) /* RTA_TABLE */
2305 + nla_total_size(4) /* RTA_SRC */
2306 + nla_total_size(4) /* RTA_DST */
2307 ;
2308
2309 if (!unresolved)
2310 len = len
2311 + nla_total_size(4) /* RTA_IIF */
2312 + nla_total_size(0) /* RTA_MULTIPATH */
2313 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2314 /* RTA_MFC_STATS */
2315 + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2316 ;
2317
2318 return len;
2319 }
2320
2321 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2322 int cmd)
2323 {
2324 struct net *net = read_pnet(&mrt->net);
2325 struct sk_buff *skb;
2326 int err = -ENOBUFS;
2327
2328 skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
2329 GFP_ATOMIC);
2330 if (!skb)
2331 goto errout;
2332
2333 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2334 if (err < 0)
2335 goto errout;
2336
2337 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2338 return;
2339
2340 errout:
2341 kfree_skb(skb);
2342 if (err < 0)
2343 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2344 }
2345
2346 static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2347 {
2348 size_t len =
2349 NLMSG_ALIGN(sizeof(struct rtgenmsg))
2350 + nla_total_size(1) /* IPMRA_CREPORT_MSGTYPE */
2351 + nla_total_size(4) /* IPMRA_CREPORT_VIF_ID */
2352 + nla_total_size(4) /* IPMRA_CREPORT_SRC_ADDR */
2353 + nla_total_size(4) /* IPMRA_CREPORT_DST_ADDR */
2354 /* IPMRA_CREPORT_PKT */
2355 + nla_total_size(payloadlen)
2356 ;
2357
2358 return len;
2359 }
2360
2361 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt)
2362 {
2363 struct net *net = read_pnet(&mrt->net);
2364 struct nlmsghdr *nlh;
2365 struct rtgenmsg *rtgenm;
2366 struct igmpmsg *msg;
2367 struct sk_buff *skb;
2368 struct nlattr *nla;
2369 int payloadlen;
2370
2371 payloadlen = pkt->len - sizeof(struct igmpmsg);
2372 msg = (struct igmpmsg *)skb_network_header(pkt);
2373
2374 skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2375 if (!skb)
2376 goto errout;
2377
2378 nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
2379 sizeof(struct rtgenmsg), 0);
2380 if (!nlh)
2381 goto errout;
2382 rtgenm = nlmsg_data(nlh);
2383 rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2384 if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
2385 nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif) ||
2386 nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
2387 msg->im_src.s_addr) ||
2388 nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
2389 msg->im_dst.s_addr))
2390 goto nla_put_failure;
2391
2392 nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
2393 if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
2394 nla_data(nla), payloadlen))
2395 goto nla_put_failure;
2396
2397 nlmsg_end(skb, nlh);
2398
2399 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2400 return;
2401
2402 nla_put_failure:
2403 nlmsg_cancel(skb, nlh);
2404 errout:
2405 kfree_skb(skb);
2406 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
2407 }
2408
2409 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2410 struct netlink_ext_ack *extack)
2411 {
2412 struct net *net = sock_net(in_skb->sk);
2413 struct nlattr *tb[RTA_MAX + 1];
2414 struct sk_buff *skb = NULL;
2415 struct mfc_cache *cache;
2416 struct mr_table *mrt;
2417 struct rtmsg *rtm;
2418 __be32 src, grp;
2419 u32 tableid;
2420 int err;
2421
2422 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX,
2423 rtm_ipv4_policy, extack);
2424 if (err < 0)
2425 goto errout;
2426
2427 rtm = nlmsg_data(nlh);
2428
2429 src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0;
2430 grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0;
2431 tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0;
2432
2433 mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
2434 if (!mrt) {
2435 err = -ENOENT;
2436 goto errout_free;
2437 }
2438
2439 /* entries are added/deleted only under RTNL */
2440 rcu_read_lock();
2441 cache = ipmr_cache_find(mrt, src, grp);
2442 rcu_read_unlock();
2443 if (!cache) {
2444 err = -ENOENT;
2445 goto errout_free;
2446 }
2447
2448 skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
2449 if (!skb) {
2450 err = -ENOBUFS;
2451 goto errout_free;
2452 }
2453
2454 err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2455 nlh->nlmsg_seq, cache,
2456 RTM_NEWROUTE, 0);
2457 if (err < 0)
2458 goto errout_free;
2459
2460 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2461
2462 errout:
2463 return err;
2464
2465 errout_free:
2466 kfree_skb(skb);
2467 goto errout;
2468 }
2469
2470 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2471 {
2472 struct net *net = sock_net(skb->sk);
2473 struct mr_table *mrt;
2474 struct mfc_cache *mfc;
2475 unsigned int t = 0, s_t;
2476 unsigned int e = 0, s_e;
2477
2478 s_t = cb->args[0];
2479 s_e = cb->args[1];
2480
2481 rcu_read_lock();
2482 ipmr_for_each_table(mrt, net) {
2483 if (t < s_t)
2484 goto next_table;
2485 list_for_each_entry_rcu(mfc, &mrt->mfc_cache_list, list) {
2486 if (e < s_e)
2487 goto next_entry;
2488 if (ipmr_fill_mroute(mrt, skb,
2489 NETLINK_CB(cb->skb).portid,
2490 cb->nlh->nlmsg_seq,
2491 mfc, RTM_NEWROUTE,
2492 NLM_F_MULTI) < 0)
2493 goto done;
2494 next_entry:
2495 e++;
2496 }
2497 e = 0;
2498 s_e = 0;
2499
2500 spin_lock_bh(&mfc_unres_lock);
2501 list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
2502 if (e < s_e)
2503 goto next_entry2;
2504 if (ipmr_fill_mroute(mrt, skb,
2505 NETLINK_CB(cb->skb).portid,
2506 cb->nlh->nlmsg_seq,
2507 mfc, RTM_NEWROUTE,
2508 NLM_F_MULTI) < 0) {
2509 spin_unlock_bh(&mfc_unres_lock);
2510 goto done;
2511 }
2512 next_entry2:
2513 e++;
2514 }
2515 spin_unlock_bh(&mfc_unres_lock);
2516 e = 0;
2517 s_e = 0;
2518 next_table:
2519 t++;
2520 }
2521 done:
2522 rcu_read_unlock();
2523
2524 cb->args[1] = e;
2525 cb->args[0] = t;
2526
2527 return skb->len;
2528 }
2529
2530 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2531 [RTA_SRC] = { .type = NLA_U32 },
2532 [RTA_DST] = { .type = NLA_U32 },
2533 [RTA_IIF] = { .type = NLA_U32 },
2534 [RTA_TABLE] = { .type = NLA_U32 },
2535 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
2536 };
2537
2538 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2539 {
2540 switch (rtm_protocol) {
2541 case RTPROT_STATIC:
2542 case RTPROT_MROUTED:
2543 return true;
2544 }
2545 return false;
2546 }
2547
2548 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2549 {
2550 struct rtnexthop *rtnh = nla_data(nla);
2551 int remaining = nla_len(nla), vifi = 0;
2552
2553 while (rtnh_ok(rtnh, remaining)) {
2554 mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2555 if (++vifi == MAXVIFS)
2556 break;
2557 rtnh = rtnh_next(rtnh, &remaining);
2558 }
2559
2560 return remaining > 0 ? -EINVAL : vifi;
2561 }
2562
2563 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2564 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2565 struct mfcctl *mfcc, int *mrtsock,
2566 struct mr_table **mrtret,
2567 struct netlink_ext_ack *extack)
2568 {
2569 struct net_device *dev = NULL;
2570 u32 tblid = RT_TABLE_DEFAULT;
2571 struct mr_table *mrt;
2572 struct nlattr *attr;
2573 struct rtmsg *rtm;
2574 int ret, rem;
2575
2576 ret = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipmr_policy,
2577 extack);
2578 if (ret < 0)
2579 goto out;
2580 rtm = nlmsg_data(nlh);
2581
2582 ret = -EINVAL;
2583 if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2584 rtm->rtm_type != RTN_MULTICAST ||
2585 rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2586 !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2587 goto out;
2588
2589 memset(mfcc, 0, sizeof(*mfcc));
2590 mfcc->mfcc_parent = -1;
2591 ret = 0;
2592 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2593 switch (nla_type(attr)) {
2594 case RTA_SRC:
2595 mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2596 break;
2597 case RTA_DST:
2598 mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2599 break;
2600 case RTA_IIF:
2601 dev = __dev_get_by_index(net, nla_get_u32(attr));
2602 if (!dev) {
2603 ret = -ENODEV;
2604 goto out;
2605 }
2606 break;
2607 case RTA_MULTIPATH:
2608 if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2609 ret = -EINVAL;
2610 goto out;
2611 }
2612 break;
2613 case RTA_PREFSRC:
2614 ret = 1;
2615 break;
2616 case RTA_TABLE:
2617 tblid = nla_get_u32(attr);
2618 break;
2619 }
2620 }
2621 mrt = ipmr_get_table(net, tblid);
2622 if (!mrt) {
2623 ret = -ENOENT;
2624 goto out;
2625 }
2626 *mrtret = mrt;
2627 *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2628 if (dev)
2629 mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2630
2631 out:
2632 return ret;
2633 }
2634
2635 /* takes care of both newroute and delroute */
2636 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2637 struct netlink_ext_ack *extack)
2638 {
2639 struct net *net = sock_net(skb->sk);
2640 int ret, mrtsock, parent;
2641 struct mr_table *tbl;
2642 struct mfcctl mfcc;
2643
2644 mrtsock = 0;
2645 tbl = NULL;
2646 ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2647 if (ret < 0)
2648 return ret;
2649
2650 parent = ret ? mfcc.mfcc_parent : -1;
2651 if (nlh->nlmsg_type == RTM_NEWROUTE)
2652 return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2653 else
2654 return ipmr_mfc_delete(tbl, &mfcc, parent);
2655 }
2656
2657 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2658 {
2659 u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
2660
2661 if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
2662 nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
2663 nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2664 mrt->mroute_reg_vif_num) ||
2665 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
2666 mrt->mroute_do_assert) ||
2667 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim))
2668 return false;
2669
2670 return true;
2671 }
2672
2673 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2674 {
2675 struct nlattr *vif_nest;
2676 struct vif_device *vif;
2677
2678 /* if the VIF doesn't exist just continue */
2679 if (!VIF_EXISTS(mrt, vifid))
2680 return true;
2681
2682 vif = &mrt->vif_table[vifid];
2683 vif_nest = nla_nest_start(skb, IPMRA_VIF);
2684 if (!vif_nest)
2685 return false;
2686 if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif->dev->ifindex) ||
2687 nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
2688 nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
2689 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
2690 IPMRA_VIFA_PAD) ||
2691 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
2692 IPMRA_VIFA_PAD) ||
2693 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
2694 IPMRA_VIFA_PAD) ||
2695 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
2696 IPMRA_VIFA_PAD) ||
2697 nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
2698 nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
2699 nla_nest_cancel(skb, vif_nest);
2700 return false;
2701 }
2702 nla_nest_end(skb, vif_nest);
2703
2704 return true;
2705 }
2706
2707 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2708 {
2709 struct net *net = sock_net(skb->sk);
2710 struct nlmsghdr *nlh = NULL;
2711 unsigned int t = 0, s_t;
2712 unsigned int e = 0, s_e;
2713 struct mr_table *mrt;
2714
2715 s_t = cb->args[0];
2716 s_e = cb->args[1];
2717
2718 ipmr_for_each_table(mrt, net) {
2719 struct nlattr *vifs, *af;
2720 struct ifinfomsg *hdr;
2721 u32 i;
2722
2723 if (t < s_t)
2724 goto skip_table;
2725 nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
2726 cb->nlh->nlmsg_seq, RTM_NEWLINK,
2727 sizeof(*hdr), NLM_F_MULTI);
2728 if (!nlh)
2729 break;
2730
2731 hdr = nlmsg_data(nlh);
2732 memset(hdr, 0, sizeof(*hdr));
2733 hdr->ifi_family = RTNL_FAMILY_IPMR;
2734
2735 af = nla_nest_start(skb, IFLA_AF_SPEC);
2736 if (!af) {
2737 nlmsg_cancel(skb, nlh);
2738 goto out;
2739 }
2740
2741 if (!ipmr_fill_table(mrt, skb)) {
2742 nlmsg_cancel(skb, nlh);
2743 goto out;
2744 }
2745
2746 vifs = nla_nest_start(skb, IPMRA_TABLE_VIFS);
2747 if (!vifs) {
2748 nla_nest_end(skb, af);
2749 nlmsg_end(skb, nlh);
2750 goto out;
2751 }
2752 for (i = 0; i < mrt->maxvif; i++) {
2753 if (e < s_e)
2754 goto skip_entry;
2755 if (!ipmr_fill_vif(mrt, i, skb)) {
2756 nla_nest_end(skb, vifs);
2757 nla_nest_end(skb, af);
2758 nlmsg_end(skb, nlh);
2759 goto out;
2760 }
2761 skip_entry:
2762 e++;
2763 }
2764 s_e = 0;
2765 e = 0;
2766 nla_nest_end(skb, vifs);
2767 nla_nest_end(skb, af);
2768 nlmsg_end(skb, nlh);
2769 skip_table:
2770 t++;
2771 }
2772
2773 out:
2774 cb->args[1] = e;
2775 cb->args[0] = t;
2776
2777 return skb->len;
2778 }
2779
2780 #ifdef CONFIG_PROC_FS
2781 /* The /proc interfaces to multicast routing :
2782 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2783 */
2784 struct ipmr_vif_iter {
2785 struct seq_net_private p;
2786 struct mr_table *mrt;
2787 int ct;
2788 };
2789
2790 static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2791 struct ipmr_vif_iter *iter,
2792 loff_t pos)
2793 {
2794 struct mr_table *mrt = iter->mrt;
2795
2796 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2797 if (!VIF_EXISTS(mrt, iter->ct))
2798 continue;
2799 if (pos-- == 0)
2800 return &mrt->vif_table[iter->ct];
2801 }
2802 return NULL;
2803 }
2804
2805 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2806 __acquires(mrt_lock)
2807 {
2808 struct ipmr_vif_iter *iter = seq->private;
2809 struct net *net = seq_file_net(seq);
2810 struct mr_table *mrt;
2811
2812 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2813 if (!mrt)
2814 return ERR_PTR(-ENOENT);
2815
2816 iter->mrt = mrt;
2817
2818 read_lock(&mrt_lock);
2819 return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2820 : SEQ_START_TOKEN;
2821 }
2822
2823 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2824 {
2825 struct ipmr_vif_iter *iter = seq->private;
2826 struct net *net = seq_file_net(seq);
2827 struct mr_table *mrt = iter->mrt;
2828
2829 ++*pos;
2830 if (v == SEQ_START_TOKEN)
2831 return ipmr_vif_seq_idx(net, iter, 0);
2832
2833 while (++iter->ct < mrt->maxvif) {
2834 if (!VIF_EXISTS(mrt, iter->ct))
2835 continue;
2836 return &mrt->vif_table[iter->ct];
2837 }
2838 return NULL;
2839 }
2840
2841 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2842 __releases(mrt_lock)
2843 {
2844 read_unlock(&mrt_lock);
2845 }
2846
2847 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2848 {
2849 struct ipmr_vif_iter *iter = seq->private;
2850 struct mr_table *mrt = iter->mrt;
2851
2852 if (v == SEQ_START_TOKEN) {
2853 seq_puts(seq,
2854 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
2855 } else {
2856 const struct vif_device *vif = v;
2857 const char *name = vif->dev ? vif->dev->name : "none";
2858
2859 seq_printf(seq,
2860 "%2zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
2861 vif - mrt->vif_table,
2862 name, vif->bytes_in, vif->pkt_in,
2863 vif->bytes_out, vif->pkt_out,
2864 vif->flags, vif->local, vif->remote);
2865 }
2866 return 0;
2867 }
2868
2869 static const struct seq_operations ipmr_vif_seq_ops = {
2870 .start = ipmr_vif_seq_start,
2871 .next = ipmr_vif_seq_next,
2872 .stop = ipmr_vif_seq_stop,
2873 .show = ipmr_vif_seq_show,
2874 };
2875
2876 static int ipmr_vif_open(struct inode *inode, struct file *file)
2877 {
2878 return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2879 sizeof(struct ipmr_vif_iter));
2880 }
2881
2882 static const struct file_operations ipmr_vif_fops = {
2883 .owner = THIS_MODULE,
2884 .open = ipmr_vif_open,
2885 .read = seq_read,
2886 .llseek = seq_lseek,
2887 .release = seq_release_net,
2888 };
2889
2890 struct ipmr_mfc_iter {
2891 struct seq_net_private p;
2892 struct mr_table *mrt;
2893 struct list_head *cache;
2894 };
2895
2896 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2897 struct ipmr_mfc_iter *it, loff_t pos)
2898 {
2899 struct mr_table *mrt = it->mrt;
2900 struct mfc_cache *mfc;
2901
2902 rcu_read_lock();
2903 it->cache = &mrt->mfc_cache_list;
2904 list_for_each_entry_rcu(mfc, &mrt->mfc_cache_list, list)
2905 if (pos-- == 0)
2906 return mfc;
2907 rcu_read_unlock();
2908
2909 spin_lock_bh(&mfc_unres_lock);
2910 it->cache = &mrt->mfc_unres_queue;
2911 list_for_each_entry(mfc, it->cache, list)
2912 if (pos-- == 0)
2913 return mfc;
2914 spin_unlock_bh(&mfc_unres_lock);
2915
2916 it->cache = NULL;
2917 return NULL;
2918 }
2919
2920
2921 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2922 {
2923 struct ipmr_mfc_iter *it = seq->private;
2924 struct net *net = seq_file_net(seq);
2925 struct mr_table *mrt;
2926
2927 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2928 if (!mrt)
2929 return ERR_PTR(-ENOENT);
2930
2931 it->mrt = mrt;
2932 it->cache = NULL;
2933 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2934 : SEQ_START_TOKEN;
2935 }
2936
2937 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2938 {
2939 struct ipmr_mfc_iter *it = seq->private;
2940 struct net *net = seq_file_net(seq);
2941 struct mr_table *mrt = it->mrt;
2942 struct mfc_cache *mfc = v;
2943
2944 ++*pos;
2945
2946 if (v == SEQ_START_TOKEN)
2947 return ipmr_mfc_seq_idx(net, seq->private, 0);
2948
2949 if (mfc->list.next != it->cache)
2950 return list_entry(mfc->list.next, struct mfc_cache, list);
2951
2952 if (it->cache == &mrt->mfc_unres_queue)
2953 goto end_of_list;
2954
2955 /* exhausted cache_array, show unresolved */
2956 rcu_read_unlock();
2957 it->cache = &mrt->mfc_unres_queue;
2958
2959 spin_lock_bh(&mfc_unres_lock);
2960 if (!list_empty(it->cache))
2961 return list_first_entry(it->cache, struct mfc_cache, list);
2962
2963 end_of_list:
2964 spin_unlock_bh(&mfc_unres_lock);
2965 it->cache = NULL;
2966
2967 return NULL;
2968 }
2969
2970 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2971 {
2972 struct ipmr_mfc_iter *it = seq->private;
2973 struct mr_table *mrt = it->mrt;
2974
2975 if (it->cache == &mrt->mfc_unres_queue)
2976 spin_unlock_bh(&mfc_unres_lock);
2977 else if (it->cache == &mrt->mfc_cache_list)
2978 rcu_read_unlock();
2979 }
2980
2981 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2982 {
2983 int n;
2984
2985 if (v == SEQ_START_TOKEN) {
2986 seq_puts(seq,
2987 "Group Origin Iif Pkts Bytes Wrong Oifs\n");
2988 } else {
2989 const struct mfc_cache *mfc = v;
2990 const struct ipmr_mfc_iter *it = seq->private;
2991 const struct mr_table *mrt = it->mrt;
2992
2993 seq_printf(seq, "%08X %08X %-3hd",
2994 (__force u32) mfc->mfc_mcastgrp,
2995 (__force u32) mfc->mfc_origin,
2996 mfc->mfc_parent);
2997
2998 if (it->cache != &mrt->mfc_unres_queue) {
2999 seq_printf(seq, " %8lu %8lu %8lu",
3000 mfc->mfc_un.res.pkt,
3001 mfc->mfc_un.res.bytes,
3002 mfc->mfc_un.res.wrong_if);
3003 for (n = mfc->mfc_un.res.minvif;
3004 n < mfc->mfc_un.res.maxvif; n++) {
3005 if (VIF_EXISTS(mrt, n) &&
3006 mfc->mfc_un.res.ttls[n] < 255)
3007 seq_printf(seq,
3008 " %2d:%-3d",
3009 n, mfc->mfc_un.res.ttls[n]);
3010 }
3011 } else {
3012 /* unresolved mfc_caches don't contain
3013 * pkt, bytes and wrong_if values
3014 */
3015 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
3016 }
3017 seq_putc(seq, '\n');
3018 }
3019 return 0;
3020 }
3021
3022 static const struct seq_operations ipmr_mfc_seq_ops = {
3023 .start = ipmr_mfc_seq_start,
3024 .next = ipmr_mfc_seq_next,
3025 .stop = ipmr_mfc_seq_stop,
3026 .show = ipmr_mfc_seq_show,
3027 };
3028
3029 static int ipmr_mfc_open(struct inode *inode, struct file *file)
3030 {
3031 return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
3032 sizeof(struct ipmr_mfc_iter));
3033 }
3034
3035 static const struct file_operations ipmr_mfc_fops = {
3036 .owner = THIS_MODULE,
3037 .open = ipmr_mfc_open,
3038 .read = seq_read,
3039 .llseek = seq_lseek,
3040 .release = seq_release_net,
3041 };
3042 #endif
3043
3044 #ifdef CONFIG_IP_PIMSM_V2
3045 static const struct net_protocol pim_protocol = {
3046 .handler = pim_rcv,
3047 .netns_ok = 1,
3048 };
3049 #endif
3050
3051 /* Setup for IP multicast routing */
3052 static int __net_init ipmr_net_init(struct net *net)
3053 {
3054 int err;
3055
3056 err = ipmr_rules_init(net);
3057 if (err < 0)
3058 goto fail;
3059
3060 #ifdef CONFIG_PROC_FS
3061 err = -ENOMEM;
3062 if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
3063 goto proc_vif_fail;
3064 if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
3065 goto proc_cache_fail;
3066 #endif
3067 return 0;
3068
3069 #ifdef CONFIG_PROC_FS
3070 proc_cache_fail:
3071 remove_proc_entry("ip_mr_vif", net->proc_net);
3072 proc_vif_fail:
3073 ipmr_rules_exit(net);
3074 #endif
3075 fail:
3076 return err;
3077 }
3078
3079 static void __net_exit ipmr_net_exit(struct net *net)
3080 {
3081 #ifdef CONFIG_PROC_FS
3082 remove_proc_entry("ip_mr_cache", net->proc_net);
3083 remove_proc_entry("ip_mr_vif", net->proc_net);
3084 #endif
3085 ipmr_rules_exit(net);
3086 }
3087
3088 static struct pernet_operations ipmr_net_ops = {
3089 .init = ipmr_net_init,
3090 .exit = ipmr_net_exit,
3091 };
3092
3093 int __init ip_mr_init(void)
3094 {
3095 int err;
3096
3097 mrt_cachep = kmem_cache_create("ip_mrt_cache",
3098 sizeof(struct mfc_cache),
3099 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
3100 NULL);
3101
3102 err = register_pernet_subsys(&ipmr_net_ops);
3103 if (err)
3104 goto reg_pernet_fail;
3105
3106 err = register_netdevice_notifier(&ip_mr_notifier);
3107 if (err)
3108 goto reg_notif_fail;
3109 #ifdef CONFIG_IP_PIMSM_V2
3110 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
3111 pr_err("%s: can't add PIM protocol\n", __func__);
3112 err = -EAGAIN;
3113 goto add_proto_fail;
3114 }
3115 #endif
3116 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
3117 ipmr_rtm_getroute, ipmr_rtm_dumproute, NULL);
3118 rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
3119 ipmr_rtm_route, NULL, NULL);
3120 rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
3121 ipmr_rtm_route, NULL, NULL);
3122
3123 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK,
3124 NULL, ipmr_rtm_dumplink, NULL);
3125 return 0;
3126
3127 #ifdef CONFIG_IP_PIMSM_V2
3128 add_proto_fail:
3129 unregister_netdevice_notifier(&ip_mr_notifier);
3130 #endif
3131 reg_notif_fail:
3132 unregister_pernet_subsys(&ipmr_net_ops);
3133 reg_pernet_fail:
3134 kmem_cache_destroy(mrt_cachep);
3135 return err;
3136 }