]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/ipv4/ipmr.c
ASoC: sti: fix missing clk_disable_unprepare() on error in uni_player_start()
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / ipmr.c
1 /*
2 * IP multicast routing support for mrouted 3.6/3.8
3 *
4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5 * Linux Consultancy and Custom Driver Development
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 *
12 * Fixes:
13 * Michael Chastain : Incorrect size of copying.
14 * Alan Cox : Added the cache manager code
15 * Alan Cox : Fixed the clone/copy bug and device race.
16 * Mike McLagan : Routing by source
17 * Malcolm Beattie : Buffer handling fixes.
18 * Alexey Kuznetsov : Double buffer free and other fixes.
19 * SVR Anand : Fixed several multicast bugs and problems.
20 * Alexey Kuznetsov : Status, optimisations and more.
21 * Brad Parker : Better behaviour on mrouted upcall
22 * overflow.
23 * Carlos Picoto : PIMv1 Support
24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
25 * Relax this requirement to work with older peers.
26 *
27 */
28
29 #include <asm/uaccess.h>
30 #include <linux/types.h>
31 #include <linux/capability.h>
32 #include <linux/errno.h>
33 #include <linux/timer.h>
34 #include <linux/mm.h>
35 #include <linux/kernel.h>
36 #include <linux/fcntl.h>
37 #include <linux/stat.h>
38 #include <linux/socket.h>
39 #include <linux/in.h>
40 #include <linux/inet.h>
41 #include <linux/netdevice.h>
42 #include <linux/inetdevice.h>
43 #include <linux/igmp.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/mroute.h>
47 #include <linux/init.h>
48 #include <linux/if_ether.h>
49 #include <linux/slab.h>
50 #include <net/net_namespace.h>
51 #include <net/ip.h>
52 #include <net/protocol.h>
53 #include <linux/skbuff.h>
54 #include <net/route.h>
55 #include <net/sock.h>
56 #include <net/icmp.h>
57 #include <net/udp.h>
58 #include <net/raw.h>
59 #include <linux/notifier.h>
60 #include <linux/if_arp.h>
61 #include <linux/netfilter_ipv4.h>
62 #include <linux/compat.h>
63 #include <linux/export.h>
64 #include <net/ip_tunnels.h>
65 #include <net/checksum.h>
66 #include <net/netlink.h>
67 #include <net/fib_rules.h>
68 #include <linux/netconf.h>
69 #include <net/nexthop.h>
70
71 struct ipmr_rule {
72 struct fib_rule common;
73 };
74
75 struct ipmr_result {
76 struct mr_table *mrt;
77 };
78
79 /* Big lock, protecting vif table, mrt cache and mroute socket state.
80 * Note that the changes are semaphored via rtnl_lock.
81 */
82
83 static DEFINE_RWLOCK(mrt_lock);
84
85 /* Multicast router control variables */
86
87 /* Special spinlock for queue of unresolved entries */
88 static DEFINE_SPINLOCK(mfc_unres_lock);
89
90 /* We return to original Alan's scheme. Hash table of resolved
91 * entries is changed only in process context and protected
92 * with weak lock mrt_lock. Queue of unresolved entries is protected
93 * with strong spinlock mfc_unres_lock.
94 *
95 * In this case data path is free of exclusive locks at all.
96 */
97
98 static struct kmem_cache *mrt_cachep __read_mostly;
99
100 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
101 static void ipmr_free_table(struct mr_table *mrt);
102
103 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
104 struct sk_buff *skb, struct mfc_cache *cache,
105 int local);
106 static int ipmr_cache_report(struct mr_table *mrt,
107 struct sk_buff *pkt, vifi_t vifi, int assert);
108 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
109 struct mfc_cache *c, struct rtmsg *rtm);
110 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
111 int cmd);
112 static void mroute_clean_tables(struct mr_table *mrt, bool all);
113 static void ipmr_expire_process(unsigned long arg);
114
115 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
116 #define ipmr_for_each_table(mrt, net) \
117 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
118
119 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
120 {
121 struct mr_table *mrt;
122
123 ipmr_for_each_table(mrt, net) {
124 if (mrt->id == id)
125 return mrt;
126 }
127 return NULL;
128 }
129
130 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
131 struct mr_table **mrt)
132 {
133 int err;
134 struct ipmr_result res;
135 struct fib_lookup_arg arg = {
136 .result = &res,
137 .flags = FIB_LOOKUP_NOREF,
138 };
139
140 err = fib_rules_lookup(net->ipv4.mr_rules_ops,
141 flowi4_to_flowi(flp4), 0, &arg);
142 if (err < 0)
143 return err;
144 *mrt = res.mrt;
145 return 0;
146 }
147
148 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
149 int flags, struct fib_lookup_arg *arg)
150 {
151 struct ipmr_result *res = arg->result;
152 struct mr_table *mrt;
153
154 switch (rule->action) {
155 case FR_ACT_TO_TBL:
156 break;
157 case FR_ACT_UNREACHABLE:
158 return -ENETUNREACH;
159 case FR_ACT_PROHIBIT:
160 return -EACCES;
161 case FR_ACT_BLACKHOLE:
162 default:
163 return -EINVAL;
164 }
165
166 mrt = ipmr_get_table(rule->fr_net, rule->table);
167 if (!mrt)
168 return -EAGAIN;
169 res->mrt = mrt;
170 return 0;
171 }
172
173 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
174 {
175 return 1;
176 }
177
178 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
179 FRA_GENERIC_POLICY,
180 };
181
182 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
183 struct fib_rule_hdr *frh, struct nlattr **tb)
184 {
185 return 0;
186 }
187
188 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
189 struct nlattr **tb)
190 {
191 return 1;
192 }
193
194 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
195 struct fib_rule_hdr *frh)
196 {
197 frh->dst_len = 0;
198 frh->src_len = 0;
199 frh->tos = 0;
200 return 0;
201 }
202
203 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
204 .family = RTNL_FAMILY_IPMR,
205 .rule_size = sizeof(struct ipmr_rule),
206 .addr_size = sizeof(u32),
207 .action = ipmr_rule_action,
208 .match = ipmr_rule_match,
209 .configure = ipmr_rule_configure,
210 .compare = ipmr_rule_compare,
211 .fill = ipmr_rule_fill,
212 .nlgroup = RTNLGRP_IPV4_RULE,
213 .policy = ipmr_rule_policy,
214 .owner = THIS_MODULE,
215 };
216
217 static int __net_init ipmr_rules_init(struct net *net)
218 {
219 struct fib_rules_ops *ops;
220 struct mr_table *mrt;
221 int err;
222
223 ops = fib_rules_register(&ipmr_rules_ops_template, net);
224 if (IS_ERR(ops))
225 return PTR_ERR(ops);
226
227 INIT_LIST_HEAD(&net->ipv4.mr_tables);
228
229 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
230 if (IS_ERR(mrt)) {
231 err = PTR_ERR(mrt);
232 goto err1;
233 }
234
235 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
236 if (err < 0)
237 goto err2;
238
239 net->ipv4.mr_rules_ops = ops;
240 return 0;
241
242 err2:
243 ipmr_free_table(mrt);
244 err1:
245 fib_rules_unregister(ops);
246 return err;
247 }
248
249 static void __net_exit ipmr_rules_exit(struct net *net)
250 {
251 struct mr_table *mrt, *next;
252
253 rtnl_lock();
254 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
255 list_del(&mrt->list);
256 ipmr_free_table(mrt);
257 }
258 fib_rules_unregister(net->ipv4.mr_rules_ops);
259 rtnl_unlock();
260 }
261 #else
262 #define ipmr_for_each_table(mrt, net) \
263 for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
264
265 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
266 {
267 return net->ipv4.mrt;
268 }
269
270 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
271 struct mr_table **mrt)
272 {
273 *mrt = net->ipv4.mrt;
274 return 0;
275 }
276
277 static int __net_init ipmr_rules_init(struct net *net)
278 {
279 struct mr_table *mrt;
280
281 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
282 if (IS_ERR(mrt))
283 return PTR_ERR(mrt);
284 net->ipv4.mrt = mrt;
285 return 0;
286 }
287
288 static void __net_exit ipmr_rules_exit(struct net *net)
289 {
290 rtnl_lock();
291 ipmr_free_table(net->ipv4.mrt);
292 net->ipv4.mrt = NULL;
293 rtnl_unlock();
294 }
295 #endif
296
297 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
298 {
299 struct mr_table *mrt;
300 unsigned int i;
301
302 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
303 if (id != RT_TABLE_DEFAULT && id >= 1000000000)
304 return ERR_PTR(-EINVAL);
305
306 mrt = ipmr_get_table(net, id);
307 if (mrt)
308 return mrt;
309
310 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
311 if (!mrt)
312 return ERR_PTR(-ENOMEM);
313 write_pnet(&mrt->net, net);
314 mrt->id = id;
315
316 /* Forwarding cache */
317 for (i = 0; i < MFC_LINES; i++)
318 INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
319
320 INIT_LIST_HEAD(&mrt->mfc_unres_queue);
321
322 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
323 (unsigned long)mrt);
324
325 mrt->mroute_reg_vif_num = -1;
326 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
327 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
328 #endif
329 return mrt;
330 }
331
332 static void ipmr_free_table(struct mr_table *mrt)
333 {
334 del_timer_sync(&mrt->ipmr_expire_timer);
335 mroute_clean_tables(mrt, true);
336 kfree(mrt);
337 }
338
339 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
340
341 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
342 {
343 struct net *net = dev_net(dev);
344
345 dev_close(dev);
346
347 dev = __dev_get_by_name(net, "tunl0");
348 if (dev) {
349 const struct net_device_ops *ops = dev->netdev_ops;
350 struct ifreq ifr;
351 struct ip_tunnel_parm p;
352
353 memset(&p, 0, sizeof(p));
354 p.iph.daddr = v->vifc_rmt_addr.s_addr;
355 p.iph.saddr = v->vifc_lcl_addr.s_addr;
356 p.iph.version = 4;
357 p.iph.ihl = 5;
358 p.iph.protocol = IPPROTO_IPIP;
359 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
360 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
361
362 if (ops->ndo_do_ioctl) {
363 mm_segment_t oldfs = get_fs();
364
365 set_fs(KERNEL_DS);
366 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
367 set_fs(oldfs);
368 }
369 }
370 }
371
372 /* Initialize ipmr pimreg/tunnel in_device */
373 static bool ipmr_init_vif_indev(const struct net_device *dev)
374 {
375 struct in_device *in_dev;
376
377 ASSERT_RTNL();
378
379 in_dev = __in_dev_get_rtnl(dev);
380 if (!in_dev)
381 return false;
382 ipv4_devconf_setall(in_dev);
383 neigh_parms_data_state_setall(in_dev->arp_parms);
384 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
385
386 return true;
387 }
388
389 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
390 {
391 struct net_device *dev;
392
393 dev = __dev_get_by_name(net, "tunl0");
394
395 if (dev) {
396 const struct net_device_ops *ops = dev->netdev_ops;
397 int err;
398 struct ifreq ifr;
399 struct ip_tunnel_parm p;
400
401 memset(&p, 0, sizeof(p));
402 p.iph.daddr = v->vifc_rmt_addr.s_addr;
403 p.iph.saddr = v->vifc_lcl_addr.s_addr;
404 p.iph.version = 4;
405 p.iph.ihl = 5;
406 p.iph.protocol = IPPROTO_IPIP;
407 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
408 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
409
410 if (ops->ndo_do_ioctl) {
411 mm_segment_t oldfs = get_fs();
412
413 set_fs(KERNEL_DS);
414 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
415 set_fs(oldfs);
416 } else {
417 err = -EOPNOTSUPP;
418 }
419 dev = NULL;
420
421 if (err == 0 &&
422 (dev = __dev_get_by_name(net, p.name)) != NULL) {
423 dev->flags |= IFF_MULTICAST;
424 if (!ipmr_init_vif_indev(dev))
425 goto failure;
426 if (dev_open(dev))
427 goto failure;
428 dev_hold(dev);
429 }
430 }
431 return dev;
432
433 failure:
434 unregister_netdevice(dev);
435 return NULL;
436 }
437
438 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
439 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
440 {
441 struct net *net = dev_net(dev);
442 struct mr_table *mrt;
443 struct flowi4 fl4 = {
444 .flowi4_oif = dev->ifindex,
445 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
446 .flowi4_mark = skb->mark,
447 };
448 int err;
449
450 err = ipmr_fib_lookup(net, &fl4, &mrt);
451 if (err < 0) {
452 kfree_skb(skb);
453 return err;
454 }
455
456 read_lock(&mrt_lock);
457 dev->stats.tx_bytes += skb->len;
458 dev->stats.tx_packets++;
459 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
460 read_unlock(&mrt_lock);
461 kfree_skb(skb);
462 return NETDEV_TX_OK;
463 }
464
465 static int reg_vif_get_iflink(const struct net_device *dev)
466 {
467 return 0;
468 }
469
470 static const struct net_device_ops reg_vif_netdev_ops = {
471 .ndo_start_xmit = reg_vif_xmit,
472 .ndo_get_iflink = reg_vif_get_iflink,
473 };
474
475 static void reg_vif_setup(struct net_device *dev)
476 {
477 dev->type = ARPHRD_PIMREG;
478 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
479 dev->flags = IFF_NOARP;
480 dev->netdev_ops = &reg_vif_netdev_ops;
481 dev->destructor = free_netdev;
482 dev->features |= NETIF_F_NETNS_LOCAL;
483 }
484
485 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
486 {
487 struct net_device *dev;
488 char name[IFNAMSIZ];
489
490 if (mrt->id == RT_TABLE_DEFAULT)
491 sprintf(name, "pimreg");
492 else
493 sprintf(name, "pimreg%u", mrt->id);
494
495 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
496
497 if (!dev)
498 return NULL;
499
500 dev_net_set(dev, net);
501
502 if (register_netdevice(dev)) {
503 free_netdev(dev);
504 return NULL;
505 }
506
507 if (!ipmr_init_vif_indev(dev))
508 goto failure;
509 if (dev_open(dev))
510 goto failure;
511
512 dev_hold(dev);
513
514 return dev;
515
516 failure:
517 unregister_netdevice(dev);
518 return NULL;
519 }
520
521 /* called with rcu_read_lock() */
522 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
523 unsigned int pimlen)
524 {
525 struct net_device *reg_dev = NULL;
526 struct iphdr *encap;
527
528 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
529 /* Check that:
530 * a. packet is really sent to a multicast group
531 * b. packet is not a NULL-REGISTER
532 * c. packet is not truncated
533 */
534 if (!ipv4_is_multicast(encap->daddr) ||
535 encap->tot_len == 0 ||
536 ntohs(encap->tot_len) + pimlen > skb->len)
537 return 1;
538
539 read_lock(&mrt_lock);
540 if (mrt->mroute_reg_vif_num >= 0)
541 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
542 read_unlock(&mrt_lock);
543
544 if (!reg_dev)
545 return 1;
546
547 skb->mac_header = skb->network_header;
548 skb_pull(skb, (u8 *)encap - skb->data);
549 skb_reset_network_header(skb);
550 skb->protocol = htons(ETH_P_IP);
551 skb->ip_summed = CHECKSUM_NONE;
552
553 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
554
555 netif_rx(skb);
556
557 return NET_RX_SUCCESS;
558 }
559 #else
560 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
561 {
562 return NULL;
563 }
564 #endif
565
566 /**
567 * vif_delete - Delete a VIF entry
568 * @notify: Set to 1, if the caller is a notifier_call
569 */
570 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
571 struct list_head *head)
572 {
573 struct vif_device *v;
574 struct net_device *dev;
575 struct in_device *in_dev;
576
577 if (vifi < 0 || vifi >= mrt->maxvif)
578 return -EADDRNOTAVAIL;
579
580 v = &mrt->vif_table[vifi];
581
582 write_lock_bh(&mrt_lock);
583 dev = v->dev;
584 v->dev = NULL;
585
586 if (!dev) {
587 write_unlock_bh(&mrt_lock);
588 return -EADDRNOTAVAIL;
589 }
590
591 if (vifi == mrt->mroute_reg_vif_num)
592 mrt->mroute_reg_vif_num = -1;
593
594 if (vifi + 1 == mrt->maxvif) {
595 int tmp;
596
597 for (tmp = vifi - 1; tmp >= 0; tmp--) {
598 if (VIF_EXISTS(mrt, tmp))
599 break;
600 }
601 mrt->maxvif = tmp+1;
602 }
603
604 write_unlock_bh(&mrt_lock);
605
606 dev_set_allmulti(dev, -1);
607
608 in_dev = __in_dev_get_rtnl(dev);
609 if (in_dev) {
610 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
611 inet_netconf_notify_devconf(dev_net(dev),
612 NETCONFA_MC_FORWARDING,
613 dev->ifindex, &in_dev->cnf);
614 ip_rt_multicast_event(in_dev);
615 }
616
617 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
618 unregister_netdevice_queue(dev, head);
619
620 dev_put(dev);
621 return 0;
622 }
623
624 static void ipmr_cache_free_rcu(struct rcu_head *head)
625 {
626 struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
627
628 kmem_cache_free(mrt_cachep, c);
629 }
630
631 static inline void ipmr_cache_free(struct mfc_cache *c)
632 {
633 call_rcu(&c->rcu, ipmr_cache_free_rcu);
634 }
635
636 /* Destroy an unresolved cache entry, killing queued skbs
637 * and reporting error to netlink readers.
638 */
639 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
640 {
641 struct net *net = read_pnet(&mrt->net);
642 struct sk_buff *skb;
643 struct nlmsgerr *e;
644
645 atomic_dec(&mrt->cache_resolve_queue_len);
646
647 while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
648 if (ip_hdr(skb)->version == 0) {
649 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
650 nlh->nlmsg_type = NLMSG_ERROR;
651 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
652 skb_trim(skb, nlh->nlmsg_len);
653 e = nlmsg_data(nlh);
654 e->error = -ETIMEDOUT;
655 memset(&e->msg, 0, sizeof(e->msg));
656
657 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
658 } else {
659 kfree_skb(skb);
660 }
661 }
662
663 ipmr_cache_free(c);
664 }
665
666 /* Timer process for the unresolved queue. */
667 static void ipmr_expire_process(unsigned long arg)
668 {
669 struct mr_table *mrt = (struct mr_table *)arg;
670 unsigned long now;
671 unsigned long expires;
672 struct mfc_cache *c, *next;
673
674 if (!spin_trylock(&mfc_unres_lock)) {
675 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
676 return;
677 }
678
679 if (list_empty(&mrt->mfc_unres_queue))
680 goto out;
681
682 now = jiffies;
683 expires = 10*HZ;
684
685 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
686 if (time_after(c->mfc_un.unres.expires, now)) {
687 unsigned long interval = c->mfc_un.unres.expires - now;
688 if (interval < expires)
689 expires = interval;
690 continue;
691 }
692
693 list_del(&c->list);
694 mroute_netlink_event(mrt, c, RTM_DELROUTE);
695 ipmr_destroy_unres(mrt, c);
696 }
697
698 if (!list_empty(&mrt->mfc_unres_queue))
699 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
700
701 out:
702 spin_unlock(&mfc_unres_lock);
703 }
704
705 /* Fill oifs list. It is called under write locked mrt_lock. */
706 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
707 unsigned char *ttls)
708 {
709 int vifi;
710
711 cache->mfc_un.res.minvif = MAXVIFS;
712 cache->mfc_un.res.maxvif = 0;
713 memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
714
715 for (vifi = 0; vifi < mrt->maxvif; vifi++) {
716 if (VIF_EXISTS(mrt, vifi) &&
717 ttls[vifi] && ttls[vifi] < 255) {
718 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
719 if (cache->mfc_un.res.minvif > vifi)
720 cache->mfc_un.res.minvif = vifi;
721 if (cache->mfc_un.res.maxvif <= vifi)
722 cache->mfc_un.res.maxvif = vifi + 1;
723 }
724 }
725 cache->mfc_un.res.lastuse = jiffies;
726 }
727
728 static int vif_add(struct net *net, struct mr_table *mrt,
729 struct vifctl *vifc, int mrtsock)
730 {
731 int vifi = vifc->vifc_vifi;
732 struct vif_device *v = &mrt->vif_table[vifi];
733 struct net_device *dev;
734 struct in_device *in_dev;
735 int err;
736
737 /* Is vif busy ? */
738 if (VIF_EXISTS(mrt, vifi))
739 return -EADDRINUSE;
740
741 switch (vifc->vifc_flags) {
742 case VIFF_REGISTER:
743 if (!ipmr_pimsm_enabled())
744 return -EINVAL;
745 /* Special Purpose VIF in PIM
746 * All the packets will be sent to the daemon
747 */
748 if (mrt->mroute_reg_vif_num >= 0)
749 return -EADDRINUSE;
750 dev = ipmr_reg_vif(net, mrt);
751 if (!dev)
752 return -ENOBUFS;
753 err = dev_set_allmulti(dev, 1);
754 if (err) {
755 unregister_netdevice(dev);
756 dev_put(dev);
757 return err;
758 }
759 break;
760 case VIFF_TUNNEL:
761 dev = ipmr_new_tunnel(net, vifc);
762 if (!dev)
763 return -ENOBUFS;
764 err = dev_set_allmulti(dev, 1);
765 if (err) {
766 ipmr_del_tunnel(dev, vifc);
767 dev_put(dev);
768 return err;
769 }
770 break;
771 case VIFF_USE_IFINDEX:
772 case 0:
773 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
774 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
775 if (dev && !__in_dev_get_rtnl(dev)) {
776 dev_put(dev);
777 return -EADDRNOTAVAIL;
778 }
779 } else {
780 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
781 }
782 if (!dev)
783 return -EADDRNOTAVAIL;
784 err = dev_set_allmulti(dev, 1);
785 if (err) {
786 dev_put(dev);
787 return err;
788 }
789 break;
790 default:
791 return -EINVAL;
792 }
793
794 in_dev = __in_dev_get_rtnl(dev);
795 if (!in_dev) {
796 dev_put(dev);
797 return -EADDRNOTAVAIL;
798 }
799 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
800 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
801 &in_dev->cnf);
802 ip_rt_multicast_event(in_dev);
803
804 /* Fill in the VIF structures */
805
806 v->rate_limit = vifc->vifc_rate_limit;
807 v->local = vifc->vifc_lcl_addr.s_addr;
808 v->remote = vifc->vifc_rmt_addr.s_addr;
809 v->flags = vifc->vifc_flags;
810 if (!mrtsock)
811 v->flags |= VIFF_STATIC;
812 v->threshold = vifc->vifc_threshold;
813 v->bytes_in = 0;
814 v->bytes_out = 0;
815 v->pkt_in = 0;
816 v->pkt_out = 0;
817 v->link = dev->ifindex;
818 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
819 v->link = dev_get_iflink(dev);
820
821 /* And finish update writing critical data */
822 write_lock_bh(&mrt_lock);
823 v->dev = dev;
824 if (v->flags & VIFF_REGISTER)
825 mrt->mroute_reg_vif_num = vifi;
826 if (vifi+1 > mrt->maxvif)
827 mrt->maxvif = vifi+1;
828 write_unlock_bh(&mrt_lock);
829 return 0;
830 }
831
832 /* called with rcu_read_lock() */
833 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
834 __be32 origin,
835 __be32 mcastgrp)
836 {
837 int line = MFC_HASH(mcastgrp, origin);
838 struct mfc_cache *c;
839
840 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
841 if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
842 return c;
843 }
844 return NULL;
845 }
846
847 /* Look for a (*,*,oif) entry */
848 static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
849 int vifi)
850 {
851 int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY));
852 struct mfc_cache *c;
853
854 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
855 if (c->mfc_origin == htonl(INADDR_ANY) &&
856 c->mfc_mcastgrp == htonl(INADDR_ANY) &&
857 c->mfc_un.res.ttls[vifi] < 255)
858 return c;
859
860 return NULL;
861 }
862
863 /* Look for a (*,G) entry */
864 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
865 __be32 mcastgrp, int vifi)
866 {
867 int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY));
868 struct mfc_cache *c, *proxy;
869
870 if (mcastgrp == htonl(INADDR_ANY))
871 goto skip;
872
873 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
874 if (c->mfc_origin == htonl(INADDR_ANY) &&
875 c->mfc_mcastgrp == mcastgrp) {
876 if (c->mfc_un.res.ttls[vifi] < 255)
877 return c;
878
879 /* It's ok if the vifi is part of the static tree */
880 proxy = ipmr_cache_find_any_parent(mrt,
881 c->mfc_parent);
882 if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
883 return c;
884 }
885
886 skip:
887 return ipmr_cache_find_any_parent(mrt, vifi);
888 }
889
890 /* Allocate a multicast cache entry */
891 static struct mfc_cache *ipmr_cache_alloc(void)
892 {
893 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
894
895 if (c) {
896 c->mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
897 c->mfc_un.res.minvif = MAXVIFS;
898 }
899 return c;
900 }
901
902 static struct mfc_cache *ipmr_cache_alloc_unres(void)
903 {
904 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
905
906 if (c) {
907 skb_queue_head_init(&c->mfc_un.unres.unresolved);
908 c->mfc_un.unres.expires = jiffies + 10*HZ;
909 }
910 return c;
911 }
912
913 /* A cache entry has gone into a resolved state from queued */
914 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
915 struct mfc_cache *uc, struct mfc_cache *c)
916 {
917 struct sk_buff *skb;
918 struct nlmsgerr *e;
919
920 /* Play the pending entries through our router */
921 while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
922 if (ip_hdr(skb)->version == 0) {
923 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
924
925 if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
926 nlh->nlmsg_len = skb_tail_pointer(skb) -
927 (u8 *)nlh;
928 } else {
929 nlh->nlmsg_type = NLMSG_ERROR;
930 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
931 skb_trim(skb, nlh->nlmsg_len);
932 e = nlmsg_data(nlh);
933 e->error = -EMSGSIZE;
934 memset(&e->msg, 0, sizeof(e->msg));
935 }
936
937 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
938 } else {
939 ip_mr_forward(net, mrt, skb, c, 0);
940 }
941 }
942 }
943
944 /* Bounce a cache query up to mrouted. We could use netlink for this but mrouted
945 * expects the following bizarre scheme.
946 *
947 * Called under mrt_lock.
948 */
949 static int ipmr_cache_report(struct mr_table *mrt,
950 struct sk_buff *pkt, vifi_t vifi, int assert)
951 {
952 const int ihl = ip_hdrlen(pkt);
953 struct sock *mroute_sk;
954 struct igmphdr *igmp;
955 struct igmpmsg *msg;
956 struct sk_buff *skb;
957 int ret;
958
959 if (assert == IGMPMSG_WHOLEPKT)
960 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
961 else
962 skb = alloc_skb(128, GFP_ATOMIC);
963
964 if (!skb)
965 return -ENOBUFS;
966
967 if (assert == IGMPMSG_WHOLEPKT) {
968 /* Ugly, but we have no choice with this interface.
969 * Duplicate old header, fix ihl, length etc.
970 * And all this only to mangle msg->im_msgtype and
971 * to set msg->im_mbz to "mbz" :-)
972 */
973 skb_push(skb, sizeof(struct iphdr));
974 skb_reset_network_header(skb);
975 skb_reset_transport_header(skb);
976 msg = (struct igmpmsg *)skb_network_header(skb);
977 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
978 msg->im_msgtype = IGMPMSG_WHOLEPKT;
979 msg->im_mbz = 0;
980 msg->im_vif = mrt->mroute_reg_vif_num;
981 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
982 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
983 sizeof(struct iphdr));
984 } else {
985 /* Copy the IP header */
986 skb_set_network_header(skb, skb->len);
987 skb_put(skb, ihl);
988 skb_copy_to_linear_data(skb, pkt->data, ihl);
989 /* Flag to the kernel this is a route add */
990 ip_hdr(skb)->protocol = 0;
991 msg = (struct igmpmsg *)skb_network_header(skb);
992 msg->im_vif = vifi;
993 skb_dst_set(skb, dst_clone(skb_dst(pkt)));
994 /* Add our header */
995 igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
996 igmp->type = assert;
997 msg->im_msgtype = assert;
998 igmp->code = 0;
999 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
1000 skb->transport_header = skb->network_header;
1001 }
1002
1003 rcu_read_lock();
1004 mroute_sk = rcu_dereference(mrt->mroute_sk);
1005 if (!mroute_sk) {
1006 rcu_read_unlock();
1007 kfree_skb(skb);
1008 return -EINVAL;
1009 }
1010
1011 /* Deliver to mrouted */
1012 ret = sock_queue_rcv_skb(mroute_sk, skb);
1013 rcu_read_unlock();
1014 if (ret < 0) {
1015 net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1016 kfree_skb(skb);
1017 }
1018
1019 return ret;
1020 }
1021
1022 /* Queue a packet for resolution. It gets locked cache entry! */
1023 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1024 struct sk_buff *skb)
1025 {
1026 bool found = false;
1027 int err;
1028 struct mfc_cache *c;
1029 const struct iphdr *iph = ip_hdr(skb);
1030
1031 spin_lock_bh(&mfc_unres_lock);
1032 list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
1033 if (c->mfc_mcastgrp == iph->daddr &&
1034 c->mfc_origin == iph->saddr) {
1035 found = true;
1036 break;
1037 }
1038 }
1039
1040 if (!found) {
1041 /* Create a new entry if allowable */
1042 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1043 (c = ipmr_cache_alloc_unres()) == NULL) {
1044 spin_unlock_bh(&mfc_unres_lock);
1045
1046 kfree_skb(skb);
1047 return -ENOBUFS;
1048 }
1049
1050 /* Fill in the new cache entry */
1051 c->mfc_parent = -1;
1052 c->mfc_origin = iph->saddr;
1053 c->mfc_mcastgrp = iph->daddr;
1054
1055 /* Reflect first query at mrouted. */
1056 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1057 if (err < 0) {
1058 /* If the report failed throw the cache entry
1059 out - Brad Parker
1060 */
1061 spin_unlock_bh(&mfc_unres_lock);
1062
1063 ipmr_cache_free(c);
1064 kfree_skb(skb);
1065 return err;
1066 }
1067
1068 atomic_inc(&mrt->cache_resolve_queue_len);
1069 list_add(&c->list, &mrt->mfc_unres_queue);
1070 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1071
1072 if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1073 mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1074 }
1075
1076 /* See if we can append the packet */
1077 if (c->mfc_un.unres.unresolved.qlen > 3) {
1078 kfree_skb(skb);
1079 err = -ENOBUFS;
1080 } else {
1081 skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1082 err = 0;
1083 }
1084
1085 spin_unlock_bh(&mfc_unres_lock);
1086 return err;
1087 }
1088
1089 /* MFC cache manipulation by user space mroute daemon */
1090
1091 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1092 {
1093 int line;
1094 struct mfc_cache *c, *next;
1095
1096 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1097
1098 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1099 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1100 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1101 (parent == -1 || parent == c->mfc_parent)) {
1102 list_del_rcu(&c->list);
1103 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1104 ipmr_cache_free(c);
1105 return 0;
1106 }
1107 }
1108 return -ENOENT;
1109 }
1110
1111 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1112 struct mfcctl *mfc, int mrtsock, int parent)
1113 {
1114 bool found = false;
1115 int line;
1116 struct mfc_cache *uc, *c;
1117
1118 if (mfc->mfcc_parent >= MAXVIFS)
1119 return -ENFILE;
1120
1121 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1122
1123 list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1124 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1125 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1126 (parent == -1 || parent == c->mfc_parent)) {
1127 found = true;
1128 break;
1129 }
1130 }
1131
1132 if (found) {
1133 write_lock_bh(&mrt_lock);
1134 c->mfc_parent = mfc->mfcc_parent;
1135 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1136 if (!mrtsock)
1137 c->mfc_flags |= MFC_STATIC;
1138 write_unlock_bh(&mrt_lock);
1139 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1140 return 0;
1141 }
1142
1143 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1144 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1145 return -EINVAL;
1146
1147 c = ipmr_cache_alloc();
1148 if (!c)
1149 return -ENOMEM;
1150
1151 c->mfc_origin = mfc->mfcc_origin.s_addr;
1152 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1153 c->mfc_parent = mfc->mfcc_parent;
1154 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1155 if (!mrtsock)
1156 c->mfc_flags |= MFC_STATIC;
1157
1158 list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1159
1160 /* Check to see if we resolved a queued list. If so we
1161 * need to send on the frames and tidy up.
1162 */
1163 found = false;
1164 spin_lock_bh(&mfc_unres_lock);
1165 list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1166 if (uc->mfc_origin == c->mfc_origin &&
1167 uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1168 list_del(&uc->list);
1169 atomic_dec(&mrt->cache_resolve_queue_len);
1170 found = true;
1171 break;
1172 }
1173 }
1174 if (list_empty(&mrt->mfc_unres_queue))
1175 del_timer(&mrt->ipmr_expire_timer);
1176 spin_unlock_bh(&mfc_unres_lock);
1177
1178 if (found) {
1179 ipmr_cache_resolve(net, mrt, uc, c);
1180 ipmr_cache_free(uc);
1181 }
1182 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1183 return 0;
1184 }
1185
1186 /* Close the multicast socket, and clear the vif tables etc */
1187 static void mroute_clean_tables(struct mr_table *mrt, bool all)
1188 {
1189 int i;
1190 LIST_HEAD(list);
1191 struct mfc_cache *c, *next;
1192
1193 /* Shut down all active vif entries */
1194 for (i = 0; i < mrt->maxvif; i++) {
1195 if (!all && (mrt->vif_table[i].flags & VIFF_STATIC))
1196 continue;
1197 vif_delete(mrt, i, 0, &list);
1198 }
1199 unregister_netdevice_many(&list);
1200
1201 /* Wipe the cache */
1202 for (i = 0; i < MFC_LINES; i++) {
1203 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1204 if (!all && (c->mfc_flags & MFC_STATIC))
1205 continue;
1206 list_del_rcu(&c->list);
1207 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1208 ipmr_cache_free(c);
1209 }
1210 }
1211
1212 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1213 spin_lock_bh(&mfc_unres_lock);
1214 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1215 list_del(&c->list);
1216 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1217 ipmr_destroy_unres(mrt, c);
1218 }
1219 spin_unlock_bh(&mfc_unres_lock);
1220 }
1221 }
1222
1223 /* called from ip_ra_control(), before an RCU grace period,
1224 * we dont need to call synchronize_rcu() here
1225 */
1226 static void mrtsock_destruct(struct sock *sk)
1227 {
1228 struct net *net = sock_net(sk);
1229 struct mr_table *mrt;
1230
1231 rtnl_lock();
1232 ipmr_for_each_table(mrt, net) {
1233 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1234 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1235 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1236 NETCONFA_IFINDEX_ALL,
1237 net->ipv4.devconf_all);
1238 RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1239 mroute_clean_tables(mrt, false);
1240 }
1241 }
1242 rtnl_unlock();
1243 }
1244
1245 /* Socket options and virtual interface manipulation. The whole
1246 * virtual interface system is a complete heap, but unfortunately
1247 * that's how BSD mrouted happens to think. Maybe one day with a proper
1248 * MOSPF/PIM router set up we can clean this up.
1249 */
1250
1251 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval,
1252 unsigned int optlen)
1253 {
1254 struct net *net = sock_net(sk);
1255 int val, ret = 0, parent = 0;
1256 struct mr_table *mrt;
1257 struct vifctl vif;
1258 struct mfcctl mfc;
1259 u32 uval;
1260
1261 /* There's one exception to the lock - MRT_DONE which needs to unlock */
1262 rtnl_lock();
1263 if (sk->sk_type != SOCK_RAW ||
1264 inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1265 ret = -EOPNOTSUPP;
1266 goto out_unlock;
1267 }
1268
1269 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1270 if (!mrt) {
1271 ret = -ENOENT;
1272 goto out_unlock;
1273 }
1274 if (optname != MRT_INIT) {
1275 if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1276 !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1277 ret = -EACCES;
1278 goto out_unlock;
1279 }
1280 }
1281
1282 switch (optname) {
1283 case MRT_INIT:
1284 if (optlen != sizeof(int)) {
1285 ret = -EINVAL;
1286 break;
1287 }
1288 if (rtnl_dereference(mrt->mroute_sk)) {
1289 ret = -EADDRINUSE;
1290 break;
1291 }
1292
1293 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1294 if (ret == 0) {
1295 rcu_assign_pointer(mrt->mroute_sk, sk);
1296 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1297 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1298 NETCONFA_IFINDEX_ALL,
1299 net->ipv4.devconf_all);
1300 }
1301 break;
1302 case MRT_DONE:
1303 if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1304 ret = -EACCES;
1305 } else {
1306 /* We need to unlock here because mrtsock_destruct takes
1307 * care of rtnl itself and we can't change that due to
1308 * the IP_ROUTER_ALERT setsockopt which runs without it.
1309 */
1310 rtnl_unlock();
1311 ret = ip_ra_control(sk, 0, NULL);
1312 goto out;
1313 }
1314 break;
1315 case MRT_ADD_VIF:
1316 case MRT_DEL_VIF:
1317 if (optlen != sizeof(vif)) {
1318 ret = -EINVAL;
1319 break;
1320 }
1321 if (copy_from_user(&vif, optval, sizeof(vif))) {
1322 ret = -EFAULT;
1323 break;
1324 }
1325 if (vif.vifc_vifi >= MAXVIFS) {
1326 ret = -ENFILE;
1327 break;
1328 }
1329 if (optname == MRT_ADD_VIF) {
1330 ret = vif_add(net, mrt, &vif,
1331 sk == rtnl_dereference(mrt->mroute_sk));
1332 } else {
1333 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1334 }
1335 break;
1336 /* Manipulate the forwarding caches. These live
1337 * in a sort of kernel/user symbiosis.
1338 */
1339 case MRT_ADD_MFC:
1340 case MRT_DEL_MFC:
1341 parent = -1;
1342 case MRT_ADD_MFC_PROXY:
1343 case MRT_DEL_MFC_PROXY:
1344 if (optlen != sizeof(mfc)) {
1345 ret = -EINVAL;
1346 break;
1347 }
1348 if (copy_from_user(&mfc, optval, sizeof(mfc))) {
1349 ret = -EFAULT;
1350 break;
1351 }
1352 if (parent == 0)
1353 parent = mfc.mfcc_parent;
1354 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1355 ret = ipmr_mfc_delete(mrt, &mfc, parent);
1356 else
1357 ret = ipmr_mfc_add(net, mrt, &mfc,
1358 sk == rtnl_dereference(mrt->mroute_sk),
1359 parent);
1360 break;
1361 /* Control PIM assert. */
1362 case MRT_ASSERT:
1363 if (optlen != sizeof(val)) {
1364 ret = -EINVAL;
1365 break;
1366 }
1367 if (get_user(val, (int __user *)optval)) {
1368 ret = -EFAULT;
1369 break;
1370 }
1371 mrt->mroute_do_assert = val;
1372 break;
1373 case MRT_PIM:
1374 if (!ipmr_pimsm_enabled()) {
1375 ret = -ENOPROTOOPT;
1376 break;
1377 }
1378 if (optlen != sizeof(val)) {
1379 ret = -EINVAL;
1380 break;
1381 }
1382 if (get_user(val, (int __user *)optval)) {
1383 ret = -EFAULT;
1384 break;
1385 }
1386
1387 val = !!val;
1388 if (val != mrt->mroute_do_pim) {
1389 mrt->mroute_do_pim = val;
1390 mrt->mroute_do_assert = val;
1391 }
1392 break;
1393 case MRT_TABLE:
1394 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1395 ret = -ENOPROTOOPT;
1396 break;
1397 }
1398 if (optlen != sizeof(uval)) {
1399 ret = -EINVAL;
1400 break;
1401 }
1402 if (get_user(uval, (u32 __user *)optval)) {
1403 ret = -EFAULT;
1404 break;
1405 }
1406
1407 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1408 ret = -EBUSY;
1409 } else {
1410 mrt = ipmr_new_table(net, uval);
1411 if (IS_ERR(mrt))
1412 ret = PTR_ERR(mrt);
1413 else
1414 raw_sk(sk)->ipmr_table = uval;
1415 }
1416 break;
1417 /* Spurious command, or MRT_VERSION which you cannot set. */
1418 default:
1419 ret = -ENOPROTOOPT;
1420 }
1421 out_unlock:
1422 rtnl_unlock();
1423 out:
1424 return ret;
1425 }
1426
1427 /* Getsock opt support for the multicast routing system. */
1428 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1429 {
1430 int olr;
1431 int val;
1432 struct net *net = sock_net(sk);
1433 struct mr_table *mrt;
1434
1435 if (sk->sk_type != SOCK_RAW ||
1436 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1437 return -EOPNOTSUPP;
1438
1439 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1440 if (!mrt)
1441 return -ENOENT;
1442
1443 switch (optname) {
1444 case MRT_VERSION:
1445 val = 0x0305;
1446 break;
1447 case MRT_PIM:
1448 if (!ipmr_pimsm_enabled())
1449 return -ENOPROTOOPT;
1450 val = mrt->mroute_do_pim;
1451 break;
1452 case MRT_ASSERT:
1453 val = mrt->mroute_do_assert;
1454 break;
1455 default:
1456 return -ENOPROTOOPT;
1457 }
1458
1459 if (get_user(olr, optlen))
1460 return -EFAULT;
1461 olr = min_t(unsigned int, olr, sizeof(int));
1462 if (olr < 0)
1463 return -EINVAL;
1464 if (put_user(olr, optlen))
1465 return -EFAULT;
1466 if (copy_to_user(optval, &val, olr))
1467 return -EFAULT;
1468 return 0;
1469 }
1470
1471 /* The IP multicast ioctl support routines. */
1472 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1473 {
1474 struct sioc_sg_req sr;
1475 struct sioc_vif_req vr;
1476 struct vif_device *vif;
1477 struct mfc_cache *c;
1478 struct net *net = sock_net(sk);
1479 struct mr_table *mrt;
1480
1481 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1482 if (!mrt)
1483 return -ENOENT;
1484
1485 switch (cmd) {
1486 case SIOCGETVIFCNT:
1487 if (copy_from_user(&vr, arg, sizeof(vr)))
1488 return -EFAULT;
1489 if (vr.vifi >= mrt->maxvif)
1490 return -EINVAL;
1491 read_lock(&mrt_lock);
1492 vif = &mrt->vif_table[vr.vifi];
1493 if (VIF_EXISTS(mrt, vr.vifi)) {
1494 vr.icount = vif->pkt_in;
1495 vr.ocount = vif->pkt_out;
1496 vr.ibytes = vif->bytes_in;
1497 vr.obytes = vif->bytes_out;
1498 read_unlock(&mrt_lock);
1499
1500 if (copy_to_user(arg, &vr, sizeof(vr)))
1501 return -EFAULT;
1502 return 0;
1503 }
1504 read_unlock(&mrt_lock);
1505 return -EADDRNOTAVAIL;
1506 case SIOCGETSGCNT:
1507 if (copy_from_user(&sr, arg, sizeof(sr)))
1508 return -EFAULT;
1509
1510 rcu_read_lock();
1511 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1512 if (c) {
1513 sr.pktcnt = c->mfc_un.res.pkt;
1514 sr.bytecnt = c->mfc_un.res.bytes;
1515 sr.wrong_if = c->mfc_un.res.wrong_if;
1516 rcu_read_unlock();
1517
1518 if (copy_to_user(arg, &sr, sizeof(sr)))
1519 return -EFAULT;
1520 return 0;
1521 }
1522 rcu_read_unlock();
1523 return -EADDRNOTAVAIL;
1524 default:
1525 return -ENOIOCTLCMD;
1526 }
1527 }
1528
1529 #ifdef CONFIG_COMPAT
1530 struct compat_sioc_sg_req {
1531 struct in_addr src;
1532 struct in_addr grp;
1533 compat_ulong_t pktcnt;
1534 compat_ulong_t bytecnt;
1535 compat_ulong_t wrong_if;
1536 };
1537
1538 struct compat_sioc_vif_req {
1539 vifi_t vifi; /* Which iface */
1540 compat_ulong_t icount;
1541 compat_ulong_t ocount;
1542 compat_ulong_t ibytes;
1543 compat_ulong_t obytes;
1544 };
1545
1546 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1547 {
1548 struct compat_sioc_sg_req sr;
1549 struct compat_sioc_vif_req vr;
1550 struct vif_device *vif;
1551 struct mfc_cache *c;
1552 struct net *net = sock_net(sk);
1553 struct mr_table *mrt;
1554
1555 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1556 if (!mrt)
1557 return -ENOENT;
1558
1559 switch (cmd) {
1560 case SIOCGETVIFCNT:
1561 if (copy_from_user(&vr, arg, sizeof(vr)))
1562 return -EFAULT;
1563 if (vr.vifi >= mrt->maxvif)
1564 return -EINVAL;
1565 read_lock(&mrt_lock);
1566 vif = &mrt->vif_table[vr.vifi];
1567 if (VIF_EXISTS(mrt, vr.vifi)) {
1568 vr.icount = vif->pkt_in;
1569 vr.ocount = vif->pkt_out;
1570 vr.ibytes = vif->bytes_in;
1571 vr.obytes = vif->bytes_out;
1572 read_unlock(&mrt_lock);
1573
1574 if (copy_to_user(arg, &vr, sizeof(vr)))
1575 return -EFAULT;
1576 return 0;
1577 }
1578 read_unlock(&mrt_lock);
1579 return -EADDRNOTAVAIL;
1580 case SIOCGETSGCNT:
1581 if (copy_from_user(&sr, arg, sizeof(sr)))
1582 return -EFAULT;
1583
1584 rcu_read_lock();
1585 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1586 if (c) {
1587 sr.pktcnt = c->mfc_un.res.pkt;
1588 sr.bytecnt = c->mfc_un.res.bytes;
1589 sr.wrong_if = c->mfc_un.res.wrong_if;
1590 rcu_read_unlock();
1591
1592 if (copy_to_user(arg, &sr, sizeof(sr)))
1593 return -EFAULT;
1594 return 0;
1595 }
1596 rcu_read_unlock();
1597 return -EADDRNOTAVAIL;
1598 default:
1599 return -ENOIOCTLCMD;
1600 }
1601 }
1602 #endif
1603
1604 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1605 {
1606 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1607 struct net *net = dev_net(dev);
1608 struct mr_table *mrt;
1609 struct vif_device *v;
1610 int ct;
1611
1612 if (event != NETDEV_UNREGISTER)
1613 return NOTIFY_DONE;
1614
1615 ipmr_for_each_table(mrt, net) {
1616 v = &mrt->vif_table[0];
1617 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1618 if (v->dev == dev)
1619 vif_delete(mrt, ct, 1, NULL);
1620 }
1621 }
1622 return NOTIFY_DONE;
1623 }
1624
1625 static struct notifier_block ip_mr_notifier = {
1626 .notifier_call = ipmr_device_event,
1627 };
1628
1629 /* Encapsulate a packet by attaching a valid IPIP header to it.
1630 * This avoids tunnel drivers and other mess and gives us the speed so
1631 * important for multicast video.
1632 */
1633 static void ip_encap(struct net *net, struct sk_buff *skb,
1634 __be32 saddr, __be32 daddr)
1635 {
1636 struct iphdr *iph;
1637 const struct iphdr *old_iph = ip_hdr(skb);
1638
1639 skb_push(skb, sizeof(struct iphdr));
1640 skb->transport_header = skb->network_header;
1641 skb_reset_network_header(skb);
1642 iph = ip_hdr(skb);
1643
1644 iph->version = 4;
1645 iph->tos = old_iph->tos;
1646 iph->ttl = old_iph->ttl;
1647 iph->frag_off = 0;
1648 iph->daddr = daddr;
1649 iph->saddr = saddr;
1650 iph->protocol = IPPROTO_IPIP;
1651 iph->ihl = 5;
1652 iph->tot_len = htons(skb->len);
1653 ip_select_ident(net, skb, NULL);
1654 ip_send_check(iph);
1655
1656 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1657 nf_reset(skb);
1658 }
1659
1660 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1661 struct sk_buff *skb)
1662 {
1663 struct ip_options *opt = &(IPCB(skb)->opt);
1664
1665 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1666 IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1667
1668 if (unlikely(opt->optlen))
1669 ip_forward_options(skb);
1670
1671 return dst_output(net, sk, skb);
1672 }
1673
1674 /* Processing handlers for ipmr_forward */
1675
1676 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1677 struct sk_buff *skb, struct mfc_cache *c, int vifi)
1678 {
1679 const struct iphdr *iph = ip_hdr(skb);
1680 struct vif_device *vif = &mrt->vif_table[vifi];
1681 struct net_device *dev;
1682 struct rtable *rt;
1683 struct flowi4 fl4;
1684 int encap = 0;
1685
1686 if (!vif->dev)
1687 goto out_free;
1688
1689 if (vif->flags & VIFF_REGISTER) {
1690 vif->pkt_out++;
1691 vif->bytes_out += skb->len;
1692 vif->dev->stats.tx_bytes += skb->len;
1693 vif->dev->stats.tx_packets++;
1694 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1695 goto out_free;
1696 }
1697
1698 if (vif->flags & VIFF_TUNNEL) {
1699 rt = ip_route_output_ports(net, &fl4, NULL,
1700 vif->remote, vif->local,
1701 0, 0,
1702 IPPROTO_IPIP,
1703 RT_TOS(iph->tos), vif->link);
1704 if (IS_ERR(rt))
1705 goto out_free;
1706 encap = sizeof(struct iphdr);
1707 } else {
1708 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1709 0, 0,
1710 IPPROTO_IPIP,
1711 RT_TOS(iph->tos), vif->link);
1712 if (IS_ERR(rt))
1713 goto out_free;
1714 }
1715
1716 dev = rt->dst.dev;
1717
1718 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1719 /* Do not fragment multicasts. Alas, IPv4 does not
1720 * allow to send ICMP, so that packets will disappear
1721 * to blackhole.
1722 */
1723 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1724 ip_rt_put(rt);
1725 goto out_free;
1726 }
1727
1728 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1729
1730 if (skb_cow(skb, encap)) {
1731 ip_rt_put(rt);
1732 goto out_free;
1733 }
1734
1735 vif->pkt_out++;
1736 vif->bytes_out += skb->len;
1737
1738 skb_dst_drop(skb);
1739 skb_dst_set(skb, &rt->dst);
1740 ip_decrease_ttl(ip_hdr(skb));
1741
1742 /* FIXME: forward and output firewalls used to be called here.
1743 * What do we do with netfilter? -- RR
1744 */
1745 if (vif->flags & VIFF_TUNNEL) {
1746 ip_encap(net, skb, vif->local, vif->remote);
1747 /* FIXME: extra output firewall step used to be here. --RR */
1748 vif->dev->stats.tx_packets++;
1749 vif->dev->stats.tx_bytes += skb->len;
1750 }
1751
1752 IPCB(skb)->flags |= IPSKB_FORWARDED | IPSKB_FRAG_SEGS;
1753
1754 /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1755 * not only before forwarding, but after forwarding on all output
1756 * interfaces. It is clear, if mrouter runs a multicasting
1757 * program, it should receive packets not depending to what interface
1758 * program is joined.
1759 * If we will not make it, the program will have to join on all
1760 * interfaces. On the other hand, multihoming host (or router, but
1761 * not mrouter) cannot join to more than one interface - it will
1762 * result in receiving multiple packets.
1763 */
1764 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1765 net, NULL, skb, skb->dev, dev,
1766 ipmr_forward_finish);
1767 return;
1768
1769 out_free:
1770 kfree_skb(skb);
1771 }
1772
1773 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1774 {
1775 int ct;
1776
1777 for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1778 if (mrt->vif_table[ct].dev == dev)
1779 break;
1780 }
1781 return ct;
1782 }
1783
1784 /* "local" means that we should preserve one skb (for local delivery) */
1785 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1786 struct sk_buff *skb, struct mfc_cache *cache,
1787 int local)
1788 {
1789 int psend = -1;
1790 int vif, ct;
1791 int true_vifi = ipmr_find_vif(mrt, skb->dev);
1792
1793 vif = cache->mfc_parent;
1794 cache->mfc_un.res.pkt++;
1795 cache->mfc_un.res.bytes += skb->len;
1796 cache->mfc_un.res.lastuse = jiffies;
1797
1798 if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1799 struct mfc_cache *cache_proxy;
1800
1801 /* For an (*,G) entry, we only check that the incomming
1802 * interface is part of the static tree.
1803 */
1804 cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
1805 if (cache_proxy &&
1806 cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
1807 goto forward;
1808 }
1809
1810 /* Wrong interface: drop packet and (maybe) send PIM assert. */
1811 if (mrt->vif_table[vif].dev != skb->dev) {
1812 if (rt_is_output_route(skb_rtable(skb))) {
1813 /* It is our own packet, looped back.
1814 * Very complicated situation...
1815 *
1816 * The best workaround until routing daemons will be
1817 * fixed is not to redistribute packet, if it was
1818 * send through wrong interface. It means, that
1819 * multicast applications WILL NOT work for
1820 * (S,G), which have default multicast route pointing
1821 * to wrong oif. In any case, it is not a good
1822 * idea to use multicasting applications on router.
1823 */
1824 goto dont_forward;
1825 }
1826
1827 cache->mfc_un.res.wrong_if++;
1828
1829 if (true_vifi >= 0 && mrt->mroute_do_assert &&
1830 /* pimsm uses asserts, when switching from RPT to SPT,
1831 * so that we cannot check that packet arrived on an oif.
1832 * It is bad, but otherwise we would need to move pretty
1833 * large chunk of pimd to kernel. Ough... --ANK
1834 */
1835 (mrt->mroute_do_pim ||
1836 cache->mfc_un.res.ttls[true_vifi] < 255) &&
1837 time_after(jiffies,
1838 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1839 cache->mfc_un.res.last_assert = jiffies;
1840 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1841 }
1842 goto dont_forward;
1843 }
1844
1845 forward:
1846 mrt->vif_table[vif].pkt_in++;
1847 mrt->vif_table[vif].bytes_in += skb->len;
1848
1849 /* Forward the frame */
1850 if (cache->mfc_origin == htonl(INADDR_ANY) &&
1851 cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
1852 if (true_vifi >= 0 &&
1853 true_vifi != cache->mfc_parent &&
1854 ip_hdr(skb)->ttl >
1855 cache->mfc_un.res.ttls[cache->mfc_parent]) {
1856 /* It's an (*,*) entry and the packet is not coming from
1857 * the upstream: forward the packet to the upstream
1858 * only.
1859 */
1860 psend = cache->mfc_parent;
1861 goto last_forward;
1862 }
1863 goto dont_forward;
1864 }
1865 for (ct = cache->mfc_un.res.maxvif - 1;
1866 ct >= cache->mfc_un.res.minvif; ct--) {
1867 /* For (*,G) entry, don't forward to the incoming interface */
1868 if ((cache->mfc_origin != htonl(INADDR_ANY) ||
1869 ct != true_vifi) &&
1870 ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1871 if (psend != -1) {
1872 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1873
1874 if (skb2)
1875 ipmr_queue_xmit(net, mrt, skb2, cache,
1876 psend);
1877 }
1878 psend = ct;
1879 }
1880 }
1881 last_forward:
1882 if (psend != -1) {
1883 if (local) {
1884 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1885
1886 if (skb2)
1887 ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1888 } else {
1889 ipmr_queue_xmit(net, mrt, skb, cache, psend);
1890 return;
1891 }
1892 }
1893
1894 dont_forward:
1895 if (!local)
1896 kfree_skb(skb);
1897 }
1898
1899 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1900 {
1901 struct rtable *rt = skb_rtable(skb);
1902 struct iphdr *iph = ip_hdr(skb);
1903 struct flowi4 fl4 = {
1904 .daddr = iph->daddr,
1905 .saddr = iph->saddr,
1906 .flowi4_tos = RT_TOS(iph->tos),
1907 .flowi4_oif = (rt_is_output_route(rt) ?
1908 skb->dev->ifindex : 0),
1909 .flowi4_iif = (rt_is_output_route(rt) ?
1910 LOOPBACK_IFINDEX :
1911 skb->dev->ifindex),
1912 .flowi4_mark = skb->mark,
1913 };
1914 struct mr_table *mrt;
1915 int err;
1916
1917 err = ipmr_fib_lookup(net, &fl4, &mrt);
1918 if (err)
1919 return ERR_PTR(err);
1920 return mrt;
1921 }
1922
1923 /* Multicast packets for forwarding arrive here
1924 * Called with rcu_read_lock();
1925 */
1926 int ip_mr_input(struct sk_buff *skb)
1927 {
1928 struct mfc_cache *cache;
1929 struct net *net = dev_net(skb->dev);
1930 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1931 struct mr_table *mrt;
1932
1933 /* Packet is looped back after forward, it should not be
1934 * forwarded second time, but still can be delivered locally.
1935 */
1936 if (IPCB(skb)->flags & IPSKB_FORWARDED)
1937 goto dont_forward;
1938
1939 mrt = ipmr_rt_fib_lookup(net, skb);
1940 if (IS_ERR(mrt)) {
1941 kfree_skb(skb);
1942 return PTR_ERR(mrt);
1943 }
1944 if (!local) {
1945 if (IPCB(skb)->opt.router_alert) {
1946 if (ip_call_ra_chain(skb))
1947 return 0;
1948 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1949 /* IGMPv1 (and broken IGMPv2 implementations sort of
1950 * Cisco IOS <= 11.2(8)) do not put router alert
1951 * option to IGMP packets destined to routable
1952 * groups. It is very bad, because it means
1953 * that we can forward NO IGMP messages.
1954 */
1955 struct sock *mroute_sk;
1956
1957 mroute_sk = rcu_dereference(mrt->mroute_sk);
1958 if (mroute_sk) {
1959 nf_reset(skb);
1960 raw_rcv(mroute_sk, skb);
1961 return 0;
1962 }
1963 }
1964 }
1965
1966 /* already under rcu_read_lock() */
1967 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1968 if (!cache) {
1969 int vif = ipmr_find_vif(mrt, skb->dev);
1970
1971 if (vif >= 0)
1972 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
1973 vif);
1974 }
1975
1976 /* No usable cache entry */
1977 if (!cache) {
1978 int vif;
1979
1980 if (local) {
1981 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1982 ip_local_deliver(skb);
1983 if (!skb2)
1984 return -ENOBUFS;
1985 skb = skb2;
1986 }
1987
1988 read_lock(&mrt_lock);
1989 vif = ipmr_find_vif(mrt, skb->dev);
1990 if (vif >= 0) {
1991 int err2 = ipmr_cache_unresolved(mrt, vif, skb);
1992 read_unlock(&mrt_lock);
1993
1994 return err2;
1995 }
1996 read_unlock(&mrt_lock);
1997 kfree_skb(skb);
1998 return -ENODEV;
1999 }
2000
2001 read_lock(&mrt_lock);
2002 ip_mr_forward(net, mrt, skb, cache, local);
2003 read_unlock(&mrt_lock);
2004
2005 if (local)
2006 return ip_local_deliver(skb);
2007
2008 return 0;
2009
2010 dont_forward:
2011 if (local)
2012 return ip_local_deliver(skb);
2013 kfree_skb(skb);
2014 return 0;
2015 }
2016
2017 #ifdef CONFIG_IP_PIMSM_V1
2018 /* Handle IGMP messages of PIMv1 */
2019 int pim_rcv_v1(struct sk_buff *skb)
2020 {
2021 struct igmphdr *pim;
2022 struct net *net = dev_net(skb->dev);
2023 struct mr_table *mrt;
2024
2025 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2026 goto drop;
2027
2028 pim = igmp_hdr(skb);
2029
2030 mrt = ipmr_rt_fib_lookup(net, skb);
2031 if (IS_ERR(mrt))
2032 goto drop;
2033 if (!mrt->mroute_do_pim ||
2034 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2035 goto drop;
2036
2037 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2038 drop:
2039 kfree_skb(skb);
2040 }
2041 return 0;
2042 }
2043 #endif
2044
2045 #ifdef CONFIG_IP_PIMSM_V2
2046 static int pim_rcv(struct sk_buff *skb)
2047 {
2048 struct pimreghdr *pim;
2049 struct net *net = dev_net(skb->dev);
2050 struct mr_table *mrt;
2051
2052 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2053 goto drop;
2054
2055 pim = (struct pimreghdr *)skb_transport_header(skb);
2056 if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
2057 (pim->flags & PIM_NULL_REGISTER) ||
2058 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2059 csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2060 goto drop;
2061
2062 mrt = ipmr_rt_fib_lookup(net, skb);
2063 if (IS_ERR(mrt))
2064 goto drop;
2065 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2066 drop:
2067 kfree_skb(skb);
2068 }
2069 return 0;
2070 }
2071 #endif
2072
2073 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2074 struct mfc_cache *c, struct rtmsg *rtm)
2075 {
2076 struct rta_mfc_stats mfcs;
2077 struct nlattr *mp_attr;
2078 struct rtnexthop *nhp;
2079 int ct;
2080
2081 /* If cache is unresolved, don't try to parse IIF and OIF */
2082 if (c->mfc_parent >= MAXVIFS)
2083 return -ENOENT;
2084
2085 if (VIF_EXISTS(mrt, c->mfc_parent) &&
2086 nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2087 return -EMSGSIZE;
2088
2089 if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2090 return -EMSGSIZE;
2091
2092 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2093 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2094 if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2095 nla_nest_cancel(skb, mp_attr);
2096 return -EMSGSIZE;
2097 }
2098
2099 nhp->rtnh_flags = 0;
2100 nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2101 nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2102 nhp->rtnh_len = sizeof(*nhp);
2103 }
2104 }
2105
2106 nla_nest_end(skb, mp_attr);
2107
2108 mfcs.mfcs_packets = c->mfc_un.res.pkt;
2109 mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2110 mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2111 if (nla_put_64bit(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs, RTA_PAD) ||
2112 nla_put_u64_64bit(skb, RTA_EXPIRES,
2113 jiffies_to_clock_t(c->mfc_un.res.lastuse),
2114 RTA_PAD))
2115 return -EMSGSIZE;
2116
2117 rtm->rtm_type = RTN_MULTICAST;
2118 return 1;
2119 }
2120
2121 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2122 __be32 saddr, __be32 daddr,
2123 struct rtmsg *rtm, int nowait)
2124 {
2125 struct mfc_cache *cache;
2126 struct mr_table *mrt;
2127 int err;
2128
2129 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2130 if (!mrt)
2131 return -ENOENT;
2132
2133 rcu_read_lock();
2134 cache = ipmr_cache_find(mrt, saddr, daddr);
2135 if (!cache && skb->dev) {
2136 int vif = ipmr_find_vif(mrt, skb->dev);
2137
2138 if (vif >= 0)
2139 cache = ipmr_cache_find_any(mrt, daddr, vif);
2140 }
2141 if (!cache) {
2142 struct sk_buff *skb2;
2143 struct iphdr *iph;
2144 struct net_device *dev;
2145 int vif = -1;
2146
2147 if (nowait) {
2148 rcu_read_unlock();
2149 return -EAGAIN;
2150 }
2151
2152 dev = skb->dev;
2153 read_lock(&mrt_lock);
2154 if (dev)
2155 vif = ipmr_find_vif(mrt, dev);
2156 if (vif < 0) {
2157 read_unlock(&mrt_lock);
2158 rcu_read_unlock();
2159 return -ENODEV;
2160 }
2161 skb2 = skb_clone(skb, GFP_ATOMIC);
2162 if (!skb2) {
2163 read_unlock(&mrt_lock);
2164 rcu_read_unlock();
2165 return -ENOMEM;
2166 }
2167
2168 skb_push(skb2, sizeof(struct iphdr));
2169 skb_reset_network_header(skb2);
2170 iph = ip_hdr(skb2);
2171 iph->ihl = sizeof(struct iphdr) >> 2;
2172 iph->saddr = saddr;
2173 iph->daddr = daddr;
2174 iph->version = 0;
2175 err = ipmr_cache_unresolved(mrt, vif, skb2);
2176 read_unlock(&mrt_lock);
2177 rcu_read_unlock();
2178 return err;
2179 }
2180
2181 read_lock(&mrt_lock);
2182 err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2183 read_unlock(&mrt_lock);
2184 rcu_read_unlock();
2185 return err;
2186 }
2187
2188 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2189 u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2190 int flags)
2191 {
2192 struct nlmsghdr *nlh;
2193 struct rtmsg *rtm;
2194 int err;
2195
2196 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2197 if (!nlh)
2198 return -EMSGSIZE;
2199
2200 rtm = nlmsg_data(nlh);
2201 rtm->rtm_family = RTNL_FAMILY_IPMR;
2202 rtm->rtm_dst_len = 32;
2203 rtm->rtm_src_len = 32;
2204 rtm->rtm_tos = 0;
2205 rtm->rtm_table = mrt->id;
2206 if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2207 goto nla_put_failure;
2208 rtm->rtm_type = RTN_MULTICAST;
2209 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2210 if (c->mfc_flags & MFC_STATIC)
2211 rtm->rtm_protocol = RTPROT_STATIC;
2212 else
2213 rtm->rtm_protocol = RTPROT_MROUTED;
2214 rtm->rtm_flags = 0;
2215
2216 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2217 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2218 goto nla_put_failure;
2219 err = __ipmr_fill_mroute(mrt, skb, c, rtm);
2220 /* do not break the dump if cache is unresolved */
2221 if (err < 0 && err != -ENOENT)
2222 goto nla_put_failure;
2223
2224 nlmsg_end(skb, nlh);
2225 return 0;
2226
2227 nla_put_failure:
2228 nlmsg_cancel(skb, nlh);
2229 return -EMSGSIZE;
2230 }
2231
2232 static size_t mroute_msgsize(bool unresolved, int maxvif)
2233 {
2234 size_t len =
2235 NLMSG_ALIGN(sizeof(struct rtmsg))
2236 + nla_total_size(4) /* RTA_TABLE */
2237 + nla_total_size(4) /* RTA_SRC */
2238 + nla_total_size(4) /* RTA_DST */
2239 ;
2240
2241 if (!unresolved)
2242 len = len
2243 + nla_total_size(4) /* RTA_IIF */
2244 + nla_total_size(0) /* RTA_MULTIPATH */
2245 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2246 /* RTA_MFC_STATS */
2247 + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2248 ;
2249
2250 return len;
2251 }
2252
2253 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2254 int cmd)
2255 {
2256 struct net *net = read_pnet(&mrt->net);
2257 struct sk_buff *skb;
2258 int err = -ENOBUFS;
2259
2260 skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
2261 GFP_ATOMIC);
2262 if (!skb)
2263 goto errout;
2264
2265 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2266 if (err < 0)
2267 goto errout;
2268
2269 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2270 return;
2271
2272 errout:
2273 kfree_skb(skb);
2274 if (err < 0)
2275 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2276 }
2277
2278 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2279 {
2280 struct net *net = sock_net(skb->sk);
2281 struct mr_table *mrt;
2282 struct mfc_cache *mfc;
2283 unsigned int t = 0, s_t;
2284 unsigned int h = 0, s_h;
2285 unsigned int e = 0, s_e;
2286
2287 s_t = cb->args[0];
2288 s_h = cb->args[1];
2289 s_e = cb->args[2];
2290
2291 rcu_read_lock();
2292 ipmr_for_each_table(mrt, net) {
2293 if (t < s_t)
2294 goto next_table;
2295 if (t > s_t)
2296 s_h = 0;
2297 for (h = s_h; h < MFC_LINES; h++) {
2298 list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2299 if (e < s_e)
2300 goto next_entry;
2301 if (ipmr_fill_mroute(mrt, skb,
2302 NETLINK_CB(cb->skb).portid,
2303 cb->nlh->nlmsg_seq,
2304 mfc, RTM_NEWROUTE,
2305 NLM_F_MULTI) < 0)
2306 goto done;
2307 next_entry:
2308 e++;
2309 }
2310 e = s_e = 0;
2311 }
2312 spin_lock_bh(&mfc_unres_lock);
2313 list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
2314 if (e < s_e)
2315 goto next_entry2;
2316 if (ipmr_fill_mroute(mrt, skb,
2317 NETLINK_CB(cb->skb).portid,
2318 cb->nlh->nlmsg_seq,
2319 mfc, RTM_NEWROUTE,
2320 NLM_F_MULTI) < 0) {
2321 spin_unlock_bh(&mfc_unres_lock);
2322 goto done;
2323 }
2324 next_entry2:
2325 e++;
2326 }
2327 spin_unlock_bh(&mfc_unres_lock);
2328 e = s_e = 0;
2329 s_h = 0;
2330 next_table:
2331 t++;
2332 }
2333 done:
2334 rcu_read_unlock();
2335
2336 cb->args[2] = e;
2337 cb->args[1] = h;
2338 cb->args[0] = t;
2339
2340 return skb->len;
2341 }
2342
2343 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2344 [RTA_SRC] = { .type = NLA_U32 },
2345 [RTA_DST] = { .type = NLA_U32 },
2346 [RTA_IIF] = { .type = NLA_U32 },
2347 [RTA_TABLE] = { .type = NLA_U32 },
2348 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
2349 };
2350
2351 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2352 {
2353 switch (rtm_protocol) {
2354 case RTPROT_STATIC:
2355 case RTPROT_MROUTED:
2356 return true;
2357 }
2358 return false;
2359 }
2360
2361 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2362 {
2363 struct rtnexthop *rtnh = nla_data(nla);
2364 int remaining = nla_len(nla), vifi = 0;
2365
2366 while (rtnh_ok(rtnh, remaining)) {
2367 mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2368 if (++vifi == MAXVIFS)
2369 break;
2370 rtnh = rtnh_next(rtnh, &remaining);
2371 }
2372
2373 return remaining > 0 ? -EINVAL : vifi;
2374 }
2375
2376 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2377 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2378 struct mfcctl *mfcc, int *mrtsock,
2379 struct mr_table **mrtret)
2380 {
2381 struct net_device *dev = NULL;
2382 u32 tblid = RT_TABLE_DEFAULT;
2383 struct mr_table *mrt;
2384 struct nlattr *attr;
2385 struct rtmsg *rtm;
2386 int ret, rem;
2387
2388 ret = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipmr_policy);
2389 if (ret < 0)
2390 goto out;
2391 rtm = nlmsg_data(nlh);
2392
2393 ret = -EINVAL;
2394 if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2395 rtm->rtm_type != RTN_MULTICAST ||
2396 rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2397 !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2398 goto out;
2399
2400 memset(mfcc, 0, sizeof(*mfcc));
2401 mfcc->mfcc_parent = -1;
2402 ret = 0;
2403 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2404 switch (nla_type(attr)) {
2405 case RTA_SRC:
2406 mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2407 break;
2408 case RTA_DST:
2409 mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2410 break;
2411 case RTA_IIF:
2412 dev = __dev_get_by_index(net, nla_get_u32(attr));
2413 if (!dev) {
2414 ret = -ENODEV;
2415 goto out;
2416 }
2417 break;
2418 case RTA_MULTIPATH:
2419 if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2420 ret = -EINVAL;
2421 goto out;
2422 }
2423 break;
2424 case RTA_PREFSRC:
2425 ret = 1;
2426 break;
2427 case RTA_TABLE:
2428 tblid = nla_get_u32(attr);
2429 break;
2430 }
2431 }
2432 mrt = ipmr_get_table(net, tblid);
2433 if (!mrt) {
2434 ret = -ENOENT;
2435 goto out;
2436 }
2437 *mrtret = mrt;
2438 *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2439 if (dev)
2440 mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2441
2442 out:
2443 return ret;
2444 }
2445
2446 /* takes care of both newroute and delroute */
2447 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh)
2448 {
2449 struct net *net = sock_net(skb->sk);
2450 int ret, mrtsock, parent;
2451 struct mr_table *tbl;
2452 struct mfcctl mfcc;
2453
2454 mrtsock = 0;
2455 tbl = NULL;
2456 ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl);
2457 if (ret < 0)
2458 return ret;
2459
2460 parent = ret ? mfcc.mfcc_parent : -1;
2461 if (nlh->nlmsg_type == RTM_NEWROUTE)
2462 return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2463 else
2464 return ipmr_mfc_delete(tbl, &mfcc, parent);
2465 }
2466
2467 #ifdef CONFIG_PROC_FS
2468 /* The /proc interfaces to multicast routing :
2469 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2470 */
2471 struct ipmr_vif_iter {
2472 struct seq_net_private p;
2473 struct mr_table *mrt;
2474 int ct;
2475 };
2476
2477 static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2478 struct ipmr_vif_iter *iter,
2479 loff_t pos)
2480 {
2481 struct mr_table *mrt = iter->mrt;
2482
2483 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2484 if (!VIF_EXISTS(mrt, iter->ct))
2485 continue;
2486 if (pos-- == 0)
2487 return &mrt->vif_table[iter->ct];
2488 }
2489 return NULL;
2490 }
2491
2492 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2493 __acquires(mrt_lock)
2494 {
2495 struct ipmr_vif_iter *iter = seq->private;
2496 struct net *net = seq_file_net(seq);
2497 struct mr_table *mrt;
2498
2499 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2500 if (!mrt)
2501 return ERR_PTR(-ENOENT);
2502
2503 iter->mrt = mrt;
2504
2505 read_lock(&mrt_lock);
2506 return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2507 : SEQ_START_TOKEN;
2508 }
2509
2510 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2511 {
2512 struct ipmr_vif_iter *iter = seq->private;
2513 struct net *net = seq_file_net(seq);
2514 struct mr_table *mrt = iter->mrt;
2515
2516 ++*pos;
2517 if (v == SEQ_START_TOKEN)
2518 return ipmr_vif_seq_idx(net, iter, 0);
2519
2520 while (++iter->ct < mrt->maxvif) {
2521 if (!VIF_EXISTS(mrt, iter->ct))
2522 continue;
2523 return &mrt->vif_table[iter->ct];
2524 }
2525 return NULL;
2526 }
2527
2528 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2529 __releases(mrt_lock)
2530 {
2531 read_unlock(&mrt_lock);
2532 }
2533
2534 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2535 {
2536 struct ipmr_vif_iter *iter = seq->private;
2537 struct mr_table *mrt = iter->mrt;
2538
2539 if (v == SEQ_START_TOKEN) {
2540 seq_puts(seq,
2541 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
2542 } else {
2543 const struct vif_device *vif = v;
2544 const char *name = vif->dev ? vif->dev->name : "none";
2545
2546 seq_printf(seq,
2547 "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
2548 vif - mrt->vif_table,
2549 name, vif->bytes_in, vif->pkt_in,
2550 vif->bytes_out, vif->pkt_out,
2551 vif->flags, vif->local, vif->remote);
2552 }
2553 return 0;
2554 }
2555
2556 static const struct seq_operations ipmr_vif_seq_ops = {
2557 .start = ipmr_vif_seq_start,
2558 .next = ipmr_vif_seq_next,
2559 .stop = ipmr_vif_seq_stop,
2560 .show = ipmr_vif_seq_show,
2561 };
2562
2563 static int ipmr_vif_open(struct inode *inode, struct file *file)
2564 {
2565 return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2566 sizeof(struct ipmr_vif_iter));
2567 }
2568
2569 static const struct file_operations ipmr_vif_fops = {
2570 .owner = THIS_MODULE,
2571 .open = ipmr_vif_open,
2572 .read = seq_read,
2573 .llseek = seq_lseek,
2574 .release = seq_release_net,
2575 };
2576
2577 struct ipmr_mfc_iter {
2578 struct seq_net_private p;
2579 struct mr_table *mrt;
2580 struct list_head *cache;
2581 int ct;
2582 };
2583
2584
2585 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2586 struct ipmr_mfc_iter *it, loff_t pos)
2587 {
2588 struct mr_table *mrt = it->mrt;
2589 struct mfc_cache *mfc;
2590
2591 rcu_read_lock();
2592 for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2593 it->cache = &mrt->mfc_cache_array[it->ct];
2594 list_for_each_entry_rcu(mfc, it->cache, list)
2595 if (pos-- == 0)
2596 return mfc;
2597 }
2598 rcu_read_unlock();
2599
2600 spin_lock_bh(&mfc_unres_lock);
2601 it->cache = &mrt->mfc_unres_queue;
2602 list_for_each_entry(mfc, it->cache, list)
2603 if (pos-- == 0)
2604 return mfc;
2605 spin_unlock_bh(&mfc_unres_lock);
2606
2607 it->cache = NULL;
2608 return NULL;
2609 }
2610
2611
2612 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2613 {
2614 struct ipmr_mfc_iter *it = seq->private;
2615 struct net *net = seq_file_net(seq);
2616 struct mr_table *mrt;
2617
2618 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2619 if (!mrt)
2620 return ERR_PTR(-ENOENT);
2621
2622 it->mrt = mrt;
2623 it->cache = NULL;
2624 it->ct = 0;
2625 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2626 : SEQ_START_TOKEN;
2627 }
2628
2629 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2630 {
2631 struct mfc_cache *mfc = v;
2632 struct ipmr_mfc_iter *it = seq->private;
2633 struct net *net = seq_file_net(seq);
2634 struct mr_table *mrt = it->mrt;
2635
2636 ++*pos;
2637
2638 if (v == SEQ_START_TOKEN)
2639 return ipmr_mfc_seq_idx(net, seq->private, 0);
2640
2641 if (mfc->list.next != it->cache)
2642 return list_entry(mfc->list.next, struct mfc_cache, list);
2643
2644 if (it->cache == &mrt->mfc_unres_queue)
2645 goto end_of_list;
2646
2647 BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2648
2649 while (++it->ct < MFC_LINES) {
2650 it->cache = &mrt->mfc_cache_array[it->ct];
2651 if (list_empty(it->cache))
2652 continue;
2653 return list_first_entry(it->cache, struct mfc_cache, list);
2654 }
2655
2656 /* exhausted cache_array, show unresolved */
2657 rcu_read_unlock();
2658 it->cache = &mrt->mfc_unres_queue;
2659 it->ct = 0;
2660
2661 spin_lock_bh(&mfc_unres_lock);
2662 if (!list_empty(it->cache))
2663 return list_first_entry(it->cache, struct mfc_cache, list);
2664
2665 end_of_list:
2666 spin_unlock_bh(&mfc_unres_lock);
2667 it->cache = NULL;
2668
2669 return NULL;
2670 }
2671
2672 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2673 {
2674 struct ipmr_mfc_iter *it = seq->private;
2675 struct mr_table *mrt = it->mrt;
2676
2677 if (it->cache == &mrt->mfc_unres_queue)
2678 spin_unlock_bh(&mfc_unres_lock);
2679 else if (it->cache == &mrt->mfc_cache_array[it->ct])
2680 rcu_read_unlock();
2681 }
2682
2683 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2684 {
2685 int n;
2686
2687 if (v == SEQ_START_TOKEN) {
2688 seq_puts(seq,
2689 "Group Origin Iif Pkts Bytes Wrong Oifs\n");
2690 } else {
2691 const struct mfc_cache *mfc = v;
2692 const struct ipmr_mfc_iter *it = seq->private;
2693 const struct mr_table *mrt = it->mrt;
2694
2695 seq_printf(seq, "%08X %08X %-3hd",
2696 (__force u32) mfc->mfc_mcastgrp,
2697 (__force u32) mfc->mfc_origin,
2698 mfc->mfc_parent);
2699
2700 if (it->cache != &mrt->mfc_unres_queue) {
2701 seq_printf(seq, " %8lu %8lu %8lu",
2702 mfc->mfc_un.res.pkt,
2703 mfc->mfc_un.res.bytes,
2704 mfc->mfc_un.res.wrong_if);
2705 for (n = mfc->mfc_un.res.minvif;
2706 n < mfc->mfc_un.res.maxvif; n++) {
2707 if (VIF_EXISTS(mrt, n) &&
2708 mfc->mfc_un.res.ttls[n] < 255)
2709 seq_printf(seq,
2710 " %2d:%-3d",
2711 n, mfc->mfc_un.res.ttls[n]);
2712 }
2713 } else {
2714 /* unresolved mfc_caches don't contain
2715 * pkt, bytes and wrong_if values
2716 */
2717 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2718 }
2719 seq_putc(seq, '\n');
2720 }
2721 return 0;
2722 }
2723
2724 static const struct seq_operations ipmr_mfc_seq_ops = {
2725 .start = ipmr_mfc_seq_start,
2726 .next = ipmr_mfc_seq_next,
2727 .stop = ipmr_mfc_seq_stop,
2728 .show = ipmr_mfc_seq_show,
2729 };
2730
2731 static int ipmr_mfc_open(struct inode *inode, struct file *file)
2732 {
2733 return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2734 sizeof(struct ipmr_mfc_iter));
2735 }
2736
2737 static const struct file_operations ipmr_mfc_fops = {
2738 .owner = THIS_MODULE,
2739 .open = ipmr_mfc_open,
2740 .read = seq_read,
2741 .llseek = seq_lseek,
2742 .release = seq_release_net,
2743 };
2744 #endif
2745
2746 #ifdef CONFIG_IP_PIMSM_V2
2747 static const struct net_protocol pim_protocol = {
2748 .handler = pim_rcv,
2749 .netns_ok = 1,
2750 };
2751 #endif
2752
2753 /* Setup for IP multicast routing */
2754 static int __net_init ipmr_net_init(struct net *net)
2755 {
2756 int err;
2757
2758 err = ipmr_rules_init(net);
2759 if (err < 0)
2760 goto fail;
2761
2762 #ifdef CONFIG_PROC_FS
2763 err = -ENOMEM;
2764 if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
2765 goto proc_vif_fail;
2766 if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
2767 goto proc_cache_fail;
2768 #endif
2769 return 0;
2770
2771 #ifdef CONFIG_PROC_FS
2772 proc_cache_fail:
2773 remove_proc_entry("ip_mr_vif", net->proc_net);
2774 proc_vif_fail:
2775 ipmr_rules_exit(net);
2776 #endif
2777 fail:
2778 return err;
2779 }
2780
2781 static void __net_exit ipmr_net_exit(struct net *net)
2782 {
2783 #ifdef CONFIG_PROC_FS
2784 remove_proc_entry("ip_mr_cache", net->proc_net);
2785 remove_proc_entry("ip_mr_vif", net->proc_net);
2786 #endif
2787 ipmr_rules_exit(net);
2788 }
2789
2790 static struct pernet_operations ipmr_net_ops = {
2791 .init = ipmr_net_init,
2792 .exit = ipmr_net_exit,
2793 };
2794
2795 int __init ip_mr_init(void)
2796 {
2797 int err;
2798
2799 mrt_cachep = kmem_cache_create("ip_mrt_cache",
2800 sizeof(struct mfc_cache),
2801 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2802 NULL);
2803
2804 err = register_pernet_subsys(&ipmr_net_ops);
2805 if (err)
2806 goto reg_pernet_fail;
2807
2808 err = register_netdevice_notifier(&ip_mr_notifier);
2809 if (err)
2810 goto reg_notif_fail;
2811 #ifdef CONFIG_IP_PIMSM_V2
2812 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2813 pr_err("%s: can't add PIM protocol\n", __func__);
2814 err = -EAGAIN;
2815 goto add_proto_fail;
2816 }
2817 #endif
2818 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2819 NULL, ipmr_rtm_dumproute, NULL);
2820 rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
2821 ipmr_rtm_route, NULL, NULL);
2822 rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
2823 ipmr_rtm_route, NULL, NULL);
2824 return 0;
2825
2826 #ifdef CONFIG_IP_PIMSM_V2
2827 add_proto_fail:
2828 unregister_netdevice_notifier(&ip_mr_notifier);
2829 #endif
2830 reg_notif_fail:
2831 unregister_pernet_subsys(&ipmr_net_ops);
2832 reg_pernet_fail:
2833 kmem_cache_destroy(mrt_cachep);
2834 return err;
2835 }