]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/ipv4/ipmr.c
net: skb->rtable accessor
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / ipmr.c
1 /*
2 * IP multicast routing support for mrouted 3.6/3.8
3 *
4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5 * Linux Consultancy and Custom Driver Development
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 *
12 * Fixes:
13 * Michael Chastain : Incorrect size of copying.
14 * Alan Cox : Added the cache manager code
15 * Alan Cox : Fixed the clone/copy bug and device race.
16 * Mike McLagan : Routing by source
17 * Malcolm Beattie : Buffer handling fixes.
18 * Alexey Kuznetsov : Double buffer free and other fixes.
19 * SVR Anand : Fixed several multicast bugs and problems.
20 * Alexey Kuznetsov : Status, optimisations and more.
21 * Brad Parker : Better behaviour on mrouted upcall
22 * overflow.
23 * Carlos Picoto : PIMv1 Support
24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
25 * Relax this requrement to work with older peers.
26 *
27 */
28
29 #include <asm/system.h>
30 #include <asm/uaccess.h>
31 #include <linux/types.h>
32 #include <linux/capability.h>
33 #include <linux/errno.h>
34 #include <linux/timer.h>
35 #include <linux/mm.h>
36 #include <linux/kernel.h>
37 #include <linux/fcntl.h>
38 #include <linux/stat.h>
39 #include <linux/socket.h>
40 #include <linux/in.h>
41 #include <linux/inet.h>
42 #include <linux/netdevice.h>
43 #include <linux/inetdevice.h>
44 #include <linux/igmp.h>
45 #include <linux/proc_fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/mroute.h>
48 #include <linux/init.h>
49 #include <linux/if_ether.h>
50 #include <net/net_namespace.h>
51 #include <net/ip.h>
52 #include <net/protocol.h>
53 #include <linux/skbuff.h>
54 #include <net/route.h>
55 #include <net/sock.h>
56 #include <net/icmp.h>
57 #include <net/udp.h>
58 #include <net/raw.h>
59 #include <linux/notifier.h>
60 #include <linux/if_arp.h>
61 #include <linux/netfilter_ipv4.h>
62 #include <net/ipip.h>
63 #include <net/checksum.h>
64 #include <net/netlink.h>
65
66 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
67 #define CONFIG_IP_PIMSM 1
68 #endif
69
70 /* Big lock, protecting vif table, mrt cache and mroute socket state.
71 Note that the changes are semaphored via rtnl_lock.
72 */
73
74 static DEFINE_RWLOCK(mrt_lock);
75
76 /*
77 * Multicast router control variables
78 */
79
80 #define VIF_EXISTS(_net, _idx) ((_net)->ipv4.vif_table[_idx].dev != NULL)
81
82 static struct mfc_cache *mfc_unres_queue; /* Queue of unresolved entries */
83
84 /* Special spinlock for queue of unresolved entries */
85 static DEFINE_SPINLOCK(mfc_unres_lock);
86
87 /* We return to original Alan's scheme. Hash table of resolved
88 entries is changed only in process context and protected
89 with weak lock mrt_lock. Queue of unresolved entries is protected
90 with strong spinlock mfc_unres_lock.
91
92 In this case data path is free of exclusive locks at all.
93 */
94
95 static struct kmem_cache *mrt_cachep __read_mostly;
96
97 static int ip_mr_forward(struct sk_buff *skb, struct mfc_cache *cache, int local);
98 static int ipmr_cache_report(struct net *net,
99 struct sk_buff *pkt, vifi_t vifi, int assert);
100 static int ipmr_fill_mroute(struct sk_buff *skb, struct mfc_cache *c, struct rtmsg *rtm);
101
102 #ifdef CONFIG_IP_PIMSM_V2
103 static struct net_protocol pim_protocol;
104 #endif
105
106 static struct timer_list ipmr_expire_timer;
107
108 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
109
110 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
111 {
112 struct net *net = dev_net(dev);
113
114 dev_close(dev);
115
116 dev = __dev_get_by_name(net, "tunl0");
117 if (dev) {
118 const struct net_device_ops *ops = dev->netdev_ops;
119 struct ifreq ifr;
120 struct ip_tunnel_parm p;
121
122 memset(&p, 0, sizeof(p));
123 p.iph.daddr = v->vifc_rmt_addr.s_addr;
124 p.iph.saddr = v->vifc_lcl_addr.s_addr;
125 p.iph.version = 4;
126 p.iph.ihl = 5;
127 p.iph.protocol = IPPROTO_IPIP;
128 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
129 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
130
131 if (ops->ndo_do_ioctl) {
132 mm_segment_t oldfs = get_fs();
133
134 set_fs(KERNEL_DS);
135 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
136 set_fs(oldfs);
137 }
138 }
139 }
140
141 static
142 struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
143 {
144 struct net_device *dev;
145
146 dev = __dev_get_by_name(net, "tunl0");
147
148 if (dev) {
149 const struct net_device_ops *ops = dev->netdev_ops;
150 int err;
151 struct ifreq ifr;
152 struct ip_tunnel_parm p;
153 struct in_device *in_dev;
154
155 memset(&p, 0, sizeof(p));
156 p.iph.daddr = v->vifc_rmt_addr.s_addr;
157 p.iph.saddr = v->vifc_lcl_addr.s_addr;
158 p.iph.version = 4;
159 p.iph.ihl = 5;
160 p.iph.protocol = IPPROTO_IPIP;
161 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
162 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
163
164 if (ops->ndo_do_ioctl) {
165 mm_segment_t oldfs = get_fs();
166
167 set_fs(KERNEL_DS);
168 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
169 set_fs(oldfs);
170 } else
171 err = -EOPNOTSUPP;
172
173 dev = NULL;
174
175 if (err == 0 &&
176 (dev = __dev_get_by_name(net, p.name)) != NULL) {
177 dev->flags |= IFF_MULTICAST;
178
179 in_dev = __in_dev_get_rtnl(dev);
180 if (in_dev == NULL)
181 goto failure;
182
183 ipv4_devconf_setall(in_dev);
184 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
185
186 if (dev_open(dev))
187 goto failure;
188 dev_hold(dev);
189 }
190 }
191 return dev;
192
193 failure:
194 /* allow the register to be completed before unregistering. */
195 rtnl_unlock();
196 rtnl_lock();
197
198 unregister_netdevice(dev);
199 return NULL;
200 }
201
202 #ifdef CONFIG_IP_PIMSM
203
204 static int reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
205 {
206 struct net *net = dev_net(dev);
207
208 read_lock(&mrt_lock);
209 dev->stats.tx_bytes += skb->len;
210 dev->stats.tx_packets++;
211 ipmr_cache_report(net, skb, net->ipv4.mroute_reg_vif_num,
212 IGMPMSG_WHOLEPKT);
213 read_unlock(&mrt_lock);
214 kfree_skb(skb);
215 return 0;
216 }
217
218 static const struct net_device_ops reg_vif_netdev_ops = {
219 .ndo_start_xmit = reg_vif_xmit,
220 };
221
222 static void reg_vif_setup(struct net_device *dev)
223 {
224 dev->type = ARPHRD_PIMREG;
225 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
226 dev->flags = IFF_NOARP;
227 dev->netdev_ops = &reg_vif_netdev_ops,
228 dev->destructor = free_netdev;
229 }
230
231 static struct net_device *ipmr_reg_vif(void)
232 {
233 struct net_device *dev;
234 struct in_device *in_dev;
235
236 dev = alloc_netdev(0, "pimreg", reg_vif_setup);
237
238 if (dev == NULL)
239 return NULL;
240
241 if (register_netdevice(dev)) {
242 free_netdev(dev);
243 return NULL;
244 }
245 dev->iflink = 0;
246
247 rcu_read_lock();
248 if ((in_dev = __in_dev_get_rcu(dev)) == NULL) {
249 rcu_read_unlock();
250 goto failure;
251 }
252
253 ipv4_devconf_setall(in_dev);
254 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
255 rcu_read_unlock();
256
257 if (dev_open(dev))
258 goto failure;
259
260 dev_hold(dev);
261
262 return dev;
263
264 failure:
265 /* allow the register to be completed before unregistering. */
266 rtnl_unlock();
267 rtnl_lock();
268
269 unregister_netdevice(dev);
270 return NULL;
271 }
272 #endif
273
274 /*
275 * Delete a VIF entry
276 * @notify: Set to 1, if the caller is a notifier_call
277 */
278
279 static int vif_delete(struct net *net, int vifi, int notify)
280 {
281 struct vif_device *v;
282 struct net_device *dev;
283 struct in_device *in_dev;
284
285 if (vifi < 0 || vifi >= net->ipv4.maxvif)
286 return -EADDRNOTAVAIL;
287
288 v = &net->ipv4.vif_table[vifi];
289
290 write_lock_bh(&mrt_lock);
291 dev = v->dev;
292 v->dev = NULL;
293
294 if (!dev) {
295 write_unlock_bh(&mrt_lock);
296 return -EADDRNOTAVAIL;
297 }
298
299 #ifdef CONFIG_IP_PIMSM
300 if (vifi == net->ipv4.mroute_reg_vif_num)
301 net->ipv4.mroute_reg_vif_num = -1;
302 #endif
303
304 if (vifi+1 == net->ipv4.maxvif) {
305 int tmp;
306 for (tmp=vifi-1; tmp>=0; tmp--) {
307 if (VIF_EXISTS(net, tmp))
308 break;
309 }
310 net->ipv4.maxvif = tmp+1;
311 }
312
313 write_unlock_bh(&mrt_lock);
314
315 dev_set_allmulti(dev, -1);
316
317 if ((in_dev = __in_dev_get_rtnl(dev)) != NULL) {
318 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
319 ip_rt_multicast_event(in_dev);
320 }
321
322 if (v->flags&(VIFF_TUNNEL|VIFF_REGISTER) && !notify)
323 unregister_netdevice(dev);
324
325 dev_put(dev);
326 return 0;
327 }
328
329 static inline void ipmr_cache_free(struct mfc_cache *c)
330 {
331 release_net(mfc_net(c));
332 kmem_cache_free(mrt_cachep, c);
333 }
334
335 /* Destroy an unresolved cache entry, killing queued skbs
336 and reporting error to netlink readers.
337 */
338
339 static void ipmr_destroy_unres(struct mfc_cache *c)
340 {
341 struct sk_buff *skb;
342 struct nlmsgerr *e;
343 struct net *net = mfc_net(c);
344
345 atomic_dec(&net->ipv4.cache_resolve_queue_len);
346
347 while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
348 if (ip_hdr(skb)->version == 0) {
349 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
350 nlh->nlmsg_type = NLMSG_ERROR;
351 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
352 skb_trim(skb, nlh->nlmsg_len);
353 e = NLMSG_DATA(nlh);
354 e->error = -ETIMEDOUT;
355 memset(&e->msg, 0, sizeof(e->msg));
356
357 rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
358 } else
359 kfree_skb(skb);
360 }
361
362 ipmr_cache_free(c);
363 }
364
365
366 /* Single timer process for all the unresolved queue. */
367
368 static void ipmr_expire_process(unsigned long dummy)
369 {
370 unsigned long now;
371 unsigned long expires;
372 struct mfc_cache *c, **cp;
373
374 if (!spin_trylock(&mfc_unres_lock)) {
375 mod_timer(&ipmr_expire_timer, jiffies+HZ/10);
376 return;
377 }
378
379 if (mfc_unres_queue == NULL)
380 goto out;
381
382 now = jiffies;
383 expires = 10*HZ;
384 cp = &mfc_unres_queue;
385
386 while ((c=*cp) != NULL) {
387 if (time_after(c->mfc_un.unres.expires, now)) {
388 unsigned long interval = c->mfc_un.unres.expires - now;
389 if (interval < expires)
390 expires = interval;
391 cp = &c->next;
392 continue;
393 }
394
395 *cp = c->next;
396
397 ipmr_destroy_unres(c);
398 }
399
400 if (mfc_unres_queue != NULL)
401 mod_timer(&ipmr_expire_timer, jiffies + expires);
402
403 out:
404 spin_unlock(&mfc_unres_lock);
405 }
406
407 /* Fill oifs list. It is called under write locked mrt_lock. */
408
409 static void ipmr_update_thresholds(struct mfc_cache *cache, unsigned char *ttls)
410 {
411 int vifi;
412 struct net *net = mfc_net(cache);
413
414 cache->mfc_un.res.minvif = MAXVIFS;
415 cache->mfc_un.res.maxvif = 0;
416 memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
417
418 for (vifi = 0; vifi < net->ipv4.maxvif; vifi++) {
419 if (VIF_EXISTS(net, vifi) &&
420 ttls[vifi] && ttls[vifi] < 255) {
421 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
422 if (cache->mfc_un.res.minvif > vifi)
423 cache->mfc_un.res.minvif = vifi;
424 if (cache->mfc_un.res.maxvif <= vifi)
425 cache->mfc_un.res.maxvif = vifi + 1;
426 }
427 }
428 }
429
430 static int vif_add(struct net *net, struct vifctl *vifc, int mrtsock)
431 {
432 int vifi = vifc->vifc_vifi;
433 struct vif_device *v = &net->ipv4.vif_table[vifi];
434 struct net_device *dev;
435 struct in_device *in_dev;
436 int err;
437
438 /* Is vif busy ? */
439 if (VIF_EXISTS(net, vifi))
440 return -EADDRINUSE;
441
442 switch (vifc->vifc_flags) {
443 #ifdef CONFIG_IP_PIMSM
444 case VIFF_REGISTER:
445 /*
446 * Special Purpose VIF in PIM
447 * All the packets will be sent to the daemon
448 */
449 if (net->ipv4.mroute_reg_vif_num >= 0)
450 return -EADDRINUSE;
451 dev = ipmr_reg_vif();
452 if (!dev)
453 return -ENOBUFS;
454 err = dev_set_allmulti(dev, 1);
455 if (err) {
456 unregister_netdevice(dev);
457 dev_put(dev);
458 return err;
459 }
460 break;
461 #endif
462 case VIFF_TUNNEL:
463 dev = ipmr_new_tunnel(net, vifc);
464 if (!dev)
465 return -ENOBUFS;
466 err = dev_set_allmulti(dev, 1);
467 if (err) {
468 ipmr_del_tunnel(dev, vifc);
469 dev_put(dev);
470 return err;
471 }
472 break;
473 case 0:
474 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
475 if (!dev)
476 return -EADDRNOTAVAIL;
477 err = dev_set_allmulti(dev, 1);
478 if (err) {
479 dev_put(dev);
480 return err;
481 }
482 break;
483 default:
484 return -EINVAL;
485 }
486
487 if ((in_dev = __in_dev_get_rtnl(dev)) == NULL)
488 return -EADDRNOTAVAIL;
489 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
490 ip_rt_multicast_event(in_dev);
491
492 /*
493 * Fill in the VIF structures
494 */
495 v->rate_limit = vifc->vifc_rate_limit;
496 v->local = vifc->vifc_lcl_addr.s_addr;
497 v->remote = vifc->vifc_rmt_addr.s_addr;
498 v->flags = vifc->vifc_flags;
499 if (!mrtsock)
500 v->flags |= VIFF_STATIC;
501 v->threshold = vifc->vifc_threshold;
502 v->bytes_in = 0;
503 v->bytes_out = 0;
504 v->pkt_in = 0;
505 v->pkt_out = 0;
506 v->link = dev->ifindex;
507 if (v->flags&(VIFF_TUNNEL|VIFF_REGISTER))
508 v->link = dev->iflink;
509
510 /* And finish update writing critical data */
511 write_lock_bh(&mrt_lock);
512 v->dev = dev;
513 #ifdef CONFIG_IP_PIMSM
514 if (v->flags&VIFF_REGISTER)
515 net->ipv4.mroute_reg_vif_num = vifi;
516 #endif
517 if (vifi+1 > net->ipv4.maxvif)
518 net->ipv4.maxvif = vifi+1;
519 write_unlock_bh(&mrt_lock);
520 return 0;
521 }
522
523 static struct mfc_cache *ipmr_cache_find(struct net *net,
524 __be32 origin,
525 __be32 mcastgrp)
526 {
527 int line = MFC_HASH(mcastgrp, origin);
528 struct mfc_cache *c;
529
530 for (c = net->ipv4.mfc_cache_array[line]; c; c = c->next) {
531 if (c->mfc_origin==origin && c->mfc_mcastgrp==mcastgrp)
532 break;
533 }
534 return c;
535 }
536
537 /*
538 * Allocate a multicast cache entry
539 */
540 static struct mfc_cache *ipmr_cache_alloc(struct net *net)
541 {
542 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
543 if (c == NULL)
544 return NULL;
545 c->mfc_un.res.minvif = MAXVIFS;
546 mfc_net_set(c, net);
547 return c;
548 }
549
550 static struct mfc_cache *ipmr_cache_alloc_unres(struct net *net)
551 {
552 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
553 if (c == NULL)
554 return NULL;
555 skb_queue_head_init(&c->mfc_un.unres.unresolved);
556 c->mfc_un.unres.expires = jiffies + 10*HZ;
557 mfc_net_set(c, net);
558 return c;
559 }
560
561 /*
562 * A cache entry has gone into a resolved state from queued
563 */
564
565 static void ipmr_cache_resolve(struct mfc_cache *uc, struct mfc_cache *c)
566 {
567 struct sk_buff *skb;
568 struct nlmsgerr *e;
569
570 /*
571 * Play the pending entries through our router
572 */
573
574 while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
575 if (ip_hdr(skb)->version == 0) {
576 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
577
578 if (ipmr_fill_mroute(skb, c, NLMSG_DATA(nlh)) > 0) {
579 nlh->nlmsg_len = (skb_tail_pointer(skb) -
580 (u8 *)nlh);
581 } else {
582 nlh->nlmsg_type = NLMSG_ERROR;
583 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
584 skb_trim(skb, nlh->nlmsg_len);
585 e = NLMSG_DATA(nlh);
586 e->error = -EMSGSIZE;
587 memset(&e->msg, 0, sizeof(e->msg));
588 }
589
590 rtnl_unicast(skb, mfc_net(c), NETLINK_CB(skb).pid);
591 } else
592 ip_mr_forward(skb, c, 0);
593 }
594 }
595
596 /*
597 * Bounce a cache query up to mrouted. We could use netlink for this but mrouted
598 * expects the following bizarre scheme.
599 *
600 * Called under mrt_lock.
601 */
602
603 static int ipmr_cache_report(struct net *net,
604 struct sk_buff *pkt, vifi_t vifi, int assert)
605 {
606 struct sk_buff *skb;
607 const int ihl = ip_hdrlen(pkt);
608 struct igmphdr *igmp;
609 struct igmpmsg *msg;
610 int ret;
611
612 #ifdef CONFIG_IP_PIMSM
613 if (assert == IGMPMSG_WHOLEPKT)
614 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
615 else
616 #endif
617 skb = alloc_skb(128, GFP_ATOMIC);
618
619 if (!skb)
620 return -ENOBUFS;
621
622 #ifdef CONFIG_IP_PIMSM
623 if (assert == IGMPMSG_WHOLEPKT) {
624 /* Ugly, but we have no choice with this interface.
625 Duplicate old header, fix ihl, length etc.
626 And all this only to mangle msg->im_msgtype and
627 to set msg->im_mbz to "mbz" :-)
628 */
629 skb_push(skb, sizeof(struct iphdr));
630 skb_reset_network_header(skb);
631 skb_reset_transport_header(skb);
632 msg = (struct igmpmsg *)skb_network_header(skb);
633 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
634 msg->im_msgtype = IGMPMSG_WHOLEPKT;
635 msg->im_mbz = 0;
636 msg->im_vif = net->ipv4.mroute_reg_vif_num;
637 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
638 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
639 sizeof(struct iphdr));
640 } else
641 #endif
642 {
643
644 /*
645 * Copy the IP header
646 */
647
648 skb->network_header = skb->tail;
649 skb_put(skb, ihl);
650 skb_copy_to_linear_data(skb, pkt->data, ihl);
651 ip_hdr(skb)->protocol = 0; /* Flag to the kernel this is a route add */
652 msg = (struct igmpmsg *)skb_network_header(skb);
653 msg->im_vif = vifi;
654 skb->dst = dst_clone(pkt->dst);
655
656 /*
657 * Add our header
658 */
659
660 igmp=(struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
661 igmp->type =
662 msg->im_msgtype = assert;
663 igmp->code = 0;
664 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
665 skb->transport_header = skb->network_header;
666 }
667
668 if (net->ipv4.mroute_sk == NULL) {
669 kfree_skb(skb);
670 return -EINVAL;
671 }
672
673 /*
674 * Deliver to mrouted
675 */
676 ret = sock_queue_rcv_skb(net->ipv4.mroute_sk, skb);
677 if (ret < 0) {
678 if (net_ratelimit())
679 printk(KERN_WARNING "mroute: pending queue full, dropping entries.\n");
680 kfree_skb(skb);
681 }
682
683 return ret;
684 }
685
686 /*
687 * Queue a packet for resolution. It gets locked cache entry!
688 */
689
690 static int
691 ipmr_cache_unresolved(struct net *net, vifi_t vifi, struct sk_buff *skb)
692 {
693 int err;
694 struct mfc_cache *c;
695 const struct iphdr *iph = ip_hdr(skb);
696
697 spin_lock_bh(&mfc_unres_lock);
698 for (c=mfc_unres_queue; c; c=c->next) {
699 if (net_eq(mfc_net(c), net) &&
700 c->mfc_mcastgrp == iph->daddr &&
701 c->mfc_origin == iph->saddr)
702 break;
703 }
704
705 if (c == NULL) {
706 /*
707 * Create a new entry if allowable
708 */
709
710 if (atomic_read(&net->ipv4.cache_resolve_queue_len) >= 10 ||
711 (c = ipmr_cache_alloc_unres(net)) == NULL) {
712 spin_unlock_bh(&mfc_unres_lock);
713
714 kfree_skb(skb);
715 return -ENOBUFS;
716 }
717
718 /*
719 * Fill in the new cache entry
720 */
721 c->mfc_parent = -1;
722 c->mfc_origin = iph->saddr;
723 c->mfc_mcastgrp = iph->daddr;
724
725 /*
726 * Reflect first query at mrouted.
727 */
728 err = ipmr_cache_report(net, skb, vifi, IGMPMSG_NOCACHE);
729 if (err < 0) {
730 /* If the report failed throw the cache entry
731 out - Brad Parker
732 */
733 spin_unlock_bh(&mfc_unres_lock);
734
735 ipmr_cache_free(c);
736 kfree_skb(skb);
737 return err;
738 }
739
740 atomic_inc(&net->ipv4.cache_resolve_queue_len);
741 c->next = mfc_unres_queue;
742 mfc_unres_queue = c;
743
744 mod_timer(&ipmr_expire_timer, c->mfc_un.unres.expires);
745 }
746
747 /*
748 * See if we can append the packet
749 */
750 if (c->mfc_un.unres.unresolved.qlen>3) {
751 kfree_skb(skb);
752 err = -ENOBUFS;
753 } else {
754 skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
755 err = 0;
756 }
757
758 spin_unlock_bh(&mfc_unres_lock);
759 return err;
760 }
761
762 /*
763 * MFC cache manipulation by user space mroute daemon
764 */
765
766 static int ipmr_mfc_delete(struct net *net, struct mfcctl *mfc)
767 {
768 int line;
769 struct mfc_cache *c, **cp;
770
771 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
772
773 for (cp = &net->ipv4.mfc_cache_array[line];
774 (c = *cp) != NULL; cp = &c->next) {
775 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
776 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
777 write_lock_bh(&mrt_lock);
778 *cp = c->next;
779 write_unlock_bh(&mrt_lock);
780
781 ipmr_cache_free(c);
782 return 0;
783 }
784 }
785 return -ENOENT;
786 }
787
788 static int ipmr_mfc_add(struct net *net, struct mfcctl *mfc, int mrtsock)
789 {
790 int line;
791 struct mfc_cache *uc, *c, **cp;
792
793 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
794
795 for (cp = &net->ipv4.mfc_cache_array[line];
796 (c = *cp) != NULL; cp = &c->next) {
797 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
798 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr)
799 break;
800 }
801
802 if (c != NULL) {
803 write_lock_bh(&mrt_lock);
804 c->mfc_parent = mfc->mfcc_parent;
805 ipmr_update_thresholds(c, mfc->mfcc_ttls);
806 if (!mrtsock)
807 c->mfc_flags |= MFC_STATIC;
808 write_unlock_bh(&mrt_lock);
809 return 0;
810 }
811
812 if (!ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
813 return -EINVAL;
814
815 c = ipmr_cache_alloc(net);
816 if (c == NULL)
817 return -ENOMEM;
818
819 c->mfc_origin = mfc->mfcc_origin.s_addr;
820 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
821 c->mfc_parent = mfc->mfcc_parent;
822 ipmr_update_thresholds(c, mfc->mfcc_ttls);
823 if (!mrtsock)
824 c->mfc_flags |= MFC_STATIC;
825
826 write_lock_bh(&mrt_lock);
827 c->next = net->ipv4.mfc_cache_array[line];
828 net->ipv4.mfc_cache_array[line] = c;
829 write_unlock_bh(&mrt_lock);
830
831 /*
832 * Check to see if we resolved a queued list. If so we
833 * need to send on the frames and tidy up.
834 */
835 spin_lock_bh(&mfc_unres_lock);
836 for (cp = &mfc_unres_queue; (uc=*cp) != NULL;
837 cp = &uc->next) {
838 if (net_eq(mfc_net(uc), net) &&
839 uc->mfc_origin == c->mfc_origin &&
840 uc->mfc_mcastgrp == c->mfc_mcastgrp) {
841 *cp = uc->next;
842 atomic_dec(&net->ipv4.cache_resolve_queue_len);
843 break;
844 }
845 }
846 if (mfc_unres_queue == NULL)
847 del_timer(&ipmr_expire_timer);
848 spin_unlock_bh(&mfc_unres_lock);
849
850 if (uc) {
851 ipmr_cache_resolve(uc, c);
852 ipmr_cache_free(uc);
853 }
854 return 0;
855 }
856
857 /*
858 * Close the multicast socket, and clear the vif tables etc
859 */
860
861 static void mroute_clean_tables(struct net *net)
862 {
863 int i;
864
865 /*
866 * Shut down all active vif entries
867 */
868 for (i = 0; i < net->ipv4.maxvif; i++) {
869 if (!(net->ipv4.vif_table[i].flags&VIFF_STATIC))
870 vif_delete(net, i, 0);
871 }
872
873 /*
874 * Wipe the cache
875 */
876 for (i=0; i<MFC_LINES; i++) {
877 struct mfc_cache *c, **cp;
878
879 cp = &net->ipv4.mfc_cache_array[i];
880 while ((c = *cp) != NULL) {
881 if (c->mfc_flags&MFC_STATIC) {
882 cp = &c->next;
883 continue;
884 }
885 write_lock_bh(&mrt_lock);
886 *cp = c->next;
887 write_unlock_bh(&mrt_lock);
888
889 ipmr_cache_free(c);
890 }
891 }
892
893 if (atomic_read(&net->ipv4.cache_resolve_queue_len) != 0) {
894 struct mfc_cache *c, **cp;
895
896 spin_lock_bh(&mfc_unres_lock);
897 cp = &mfc_unres_queue;
898 while ((c = *cp) != NULL) {
899 if (!net_eq(mfc_net(c), net)) {
900 cp = &c->next;
901 continue;
902 }
903 *cp = c->next;
904
905 ipmr_destroy_unres(c);
906 }
907 spin_unlock_bh(&mfc_unres_lock);
908 }
909 }
910
911 static void mrtsock_destruct(struct sock *sk)
912 {
913 struct net *net = sock_net(sk);
914
915 rtnl_lock();
916 if (sk == net->ipv4.mroute_sk) {
917 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
918
919 write_lock_bh(&mrt_lock);
920 net->ipv4.mroute_sk = NULL;
921 write_unlock_bh(&mrt_lock);
922
923 mroute_clean_tables(net);
924 }
925 rtnl_unlock();
926 }
927
928 /*
929 * Socket options and virtual interface manipulation. The whole
930 * virtual interface system is a complete heap, but unfortunately
931 * that's how BSD mrouted happens to think. Maybe one day with a proper
932 * MOSPF/PIM router set up we can clean this up.
933 */
934
935 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, int optlen)
936 {
937 int ret;
938 struct vifctl vif;
939 struct mfcctl mfc;
940 struct net *net = sock_net(sk);
941
942 if (optname != MRT_INIT) {
943 if (sk != net->ipv4.mroute_sk && !capable(CAP_NET_ADMIN))
944 return -EACCES;
945 }
946
947 switch (optname) {
948 case MRT_INIT:
949 if (sk->sk_type != SOCK_RAW ||
950 inet_sk(sk)->num != IPPROTO_IGMP)
951 return -EOPNOTSUPP;
952 if (optlen != sizeof(int))
953 return -ENOPROTOOPT;
954
955 rtnl_lock();
956 if (net->ipv4.mroute_sk) {
957 rtnl_unlock();
958 return -EADDRINUSE;
959 }
960
961 ret = ip_ra_control(sk, 1, mrtsock_destruct);
962 if (ret == 0) {
963 write_lock_bh(&mrt_lock);
964 net->ipv4.mroute_sk = sk;
965 write_unlock_bh(&mrt_lock);
966
967 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
968 }
969 rtnl_unlock();
970 return ret;
971 case MRT_DONE:
972 if (sk != net->ipv4.mroute_sk)
973 return -EACCES;
974 return ip_ra_control(sk, 0, NULL);
975 case MRT_ADD_VIF:
976 case MRT_DEL_VIF:
977 if (optlen != sizeof(vif))
978 return -EINVAL;
979 if (copy_from_user(&vif, optval, sizeof(vif)))
980 return -EFAULT;
981 if (vif.vifc_vifi >= MAXVIFS)
982 return -ENFILE;
983 rtnl_lock();
984 if (optname == MRT_ADD_VIF) {
985 ret = vif_add(net, &vif, sk == net->ipv4.mroute_sk);
986 } else {
987 ret = vif_delete(net, vif.vifc_vifi, 0);
988 }
989 rtnl_unlock();
990 return ret;
991
992 /*
993 * Manipulate the forwarding caches. These live
994 * in a sort of kernel/user symbiosis.
995 */
996 case MRT_ADD_MFC:
997 case MRT_DEL_MFC:
998 if (optlen != sizeof(mfc))
999 return -EINVAL;
1000 if (copy_from_user(&mfc, optval, sizeof(mfc)))
1001 return -EFAULT;
1002 rtnl_lock();
1003 if (optname == MRT_DEL_MFC)
1004 ret = ipmr_mfc_delete(net, &mfc);
1005 else
1006 ret = ipmr_mfc_add(net, &mfc, sk == net->ipv4.mroute_sk);
1007 rtnl_unlock();
1008 return ret;
1009 /*
1010 * Control PIM assert.
1011 */
1012 case MRT_ASSERT:
1013 {
1014 int v;
1015 if (get_user(v,(int __user *)optval))
1016 return -EFAULT;
1017 net->ipv4.mroute_do_assert = (v) ? 1 : 0;
1018 return 0;
1019 }
1020 #ifdef CONFIG_IP_PIMSM
1021 case MRT_PIM:
1022 {
1023 int v;
1024
1025 if (get_user(v,(int __user *)optval))
1026 return -EFAULT;
1027 v = (v) ? 1 : 0;
1028
1029 rtnl_lock();
1030 ret = 0;
1031 if (v != net->ipv4.mroute_do_pim) {
1032 net->ipv4.mroute_do_pim = v;
1033 net->ipv4.mroute_do_assert = v;
1034 #ifdef CONFIG_IP_PIMSM_V2
1035 if (net->ipv4.mroute_do_pim)
1036 ret = inet_add_protocol(&pim_protocol,
1037 IPPROTO_PIM);
1038 else
1039 ret = inet_del_protocol(&pim_protocol,
1040 IPPROTO_PIM);
1041 if (ret < 0)
1042 ret = -EAGAIN;
1043 #endif
1044 }
1045 rtnl_unlock();
1046 return ret;
1047 }
1048 #endif
1049 /*
1050 * Spurious command, or MRT_VERSION which you cannot
1051 * set.
1052 */
1053 default:
1054 return -ENOPROTOOPT;
1055 }
1056 }
1057
1058 /*
1059 * Getsock opt support for the multicast routing system.
1060 */
1061
1062 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1063 {
1064 int olr;
1065 int val;
1066 struct net *net = sock_net(sk);
1067
1068 if (optname != MRT_VERSION &&
1069 #ifdef CONFIG_IP_PIMSM
1070 optname!=MRT_PIM &&
1071 #endif
1072 optname!=MRT_ASSERT)
1073 return -ENOPROTOOPT;
1074
1075 if (get_user(olr, optlen))
1076 return -EFAULT;
1077
1078 olr = min_t(unsigned int, olr, sizeof(int));
1079 if (olr < 0)
1080 return -EINVAL;
1081
1082 if (put_user(olr, optlen))
1083 return -EFAULT;
1084 if (optname == MRT_VERSION)
1085 val = 0x0305;
1086 #ifdef CONFIG_IP_PIMSM
1087 else if (optname == MRT_PIM)
1088 val = net->ipv4.mroute_do_pim;
1089 #endif
1090 else
1091 val = net->ipv4.mroute_do_assert;
1092 if (copy_to_user(optval, &val, olr))
1093 return -EFAULT;
1094 return 0;
1095 }
1096
1097 /*
1098 * The IP multicast ioctl support routines.
1099 */
1100
1101 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1102 {
1103 struct sioc_sg_req sr;
1104 struct sioc_vif_req vr;
1105 struct vif_device *vif;
1106 struct mfc_cache *c;
1107 struct net *net = sock_net(sk);
1108
1109 switch (cmd) {
1110 case SIOCGETVIFCNT:
1111 if (copy_from_user(&vr, arg, sizeof(vr)))
1112 return -EFAULT;
1113 if (vr.vifi >= net->ipv4.maxvif)
1114 return -EINVAL;
1115 read_lock(&mrt_lock);
1116 vif = &net->ipv4.vif_table[vr.vifi];
1117 if (VIF_EXISTS(net, vr.vifi)) {
1118 vr.icount = vif->pkt_in;
1119 vr.ocount = vif->pkt_out;
1120 vr.ibytes = vif->bytes_in;
1121 vr.obytes = vif->bytes_out;
1122 read_unlock(&mrt_lock);
1123
1124 if (copy_to_user(arg, &vr, sizeof(vr)))
1125 return -EFAULT;
1126 return 0;
1127 }
1128 read_unlock(&mrt_lock);
1129 return -EADDRNOTAVAIL;
1130 case SIOCGETSGCNT:
1131 if (copy_from_user(&sr, arg, sizeof(sr)))
1132 return -EFAULT;
1133
1134 read_lock(&mrt_lock);
1135 c = ipmr_cache_find(net, sr.src.s_addr, sr.grp.s_addr);
1136 if (c) {
1137 sr.pktcnt = c->mfc_un.res.pkt;
1138 sr.bytecnt = c->mfc_un.res.bytes;
1139 sr.wrong_if = c->mfc_un.res.wrong_if;
1140 read_unlock(&mrt_lock);
1141
1142 if (copy_to_user(arg, &sr, sizeof(sr)))
1143 return -EFAULT;
1144 return 0;
1145 }
1146 read_unlock(&mrt_lock);
1147 return -EADDRNOTAVAIL;
1148 default:
1149 return -ENOIOCTLCMD;
1150 }
1151 }
1152
1153
1154 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1155 {
1156 struct net_device *dev = ptr;
1157 struct net *net = dev_net(dev);
1158 struct vif_device *v;
1159 int ct;
1160
1161 if (!net_eq(dev_net(dev), net))
1162 return NOTIFY_DONE;
1163
1164 if (event != NETDEV_UNREGISTER)
1165 return NOTIFY_DONE;
1166 v = &net->ipv4.vif_table[0];
1167 for (ct = 0; ct < net->ipv4.maxvif; ct++, v++) {
1168 if (v->dev == dev)
1169 vif_delete(net, ct, 1);
1170 }
1171 return NOTIFY_DONE;
1172 }
1173
1174
1175 static struct notifier_block ip_mr_notifier = {
1176 .notifier_call = ipmr_device_event,
1177 };
1178
1179 /*
1180 * Encapsulate a packet by attaching a valid IPIP header to it.
1181 * This avoids tunnel drivers and other mess and gives us the speed so
1182 * important for multicast video.
1183 */
1184
1185 static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
1186 {
1187 struct iphdr *iph;
1188 struct iphdr *old_iph = ip_hdr(skb);
1189
1190 skb_push(skb, sizeof(struct iphdr));
1191 skb->transport_header = skb->network_header;
1192 skb_reset_network_header(skb);
1193 iph = ip_hdr(skb);
1194
1195 iph->version = 4;
1196 iph->tos = old_iph->tos;
1197 iph->ttl = old_iph->ttl;
1198 iph->frag_off = 0;
1199 iph->daddr = daddr;
1200 iph->saddr = saddr;
1201 iph->protocol = IPPROTO_IPIP;
1202 iph->ihl = 5;
1203 iph->tot_len = htons(skb->len);
1204 ip_select_ident(iph, skb->dst, NULL);
1205 ip_send_check(iph);
1206
1207 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1208 nf_reset(skb);
1209 }
1210
1211 static inline int ipmr_forward_finish(struct sk_buff *skb)
1212 {
1213 struct ip_options * opt = &(IPCB(skb)->opt);
1214
1215 IP_INC_STATS_BH(dev_net(skb->dst->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
1216
1217 if (unlikely(opt->optlen))
1218 ip_forward_options(skb);
1219
1220 return dst_output(skb);
1221 }
1222
1223 /*
1224 * Processing handlers for ipmr_forward
1225 */
1226
1227 static void ipmr_queue_xmit(struct sk_buff *skb, struct mfc_cache *c, int vifi)
1228 {
1229 struct net *net = mfc_net(c);
1230 const struct iphdr *iph = ip_hdr(skb);
1231 struct vif_device *vif = &net->ipv4.vif_table[vifi];
1232 struct net_device *dev;
1233 struct rtable *rt;
1234 int encap = 0;
1235
1236 if (vif->dev == NULL)
1237 goto out_free;
1238
1239 #ifdef CONFIG_IP_PIMSM
1240 if (vif->flags & VIFF_REGISTER) {
1241 vif->pkt_out++;
1242 vif->bytes_out += skb->len;
1243 vif->dev->stats.tx_bytes += skb->len;
1244 vif->dev->stats.tx_packets++;
1245 ipmr_cache_report(net, skb, vifi, IGMPMSG_WHOLEPKT);
1246 goto out_free;
1247 }
1248 #endif
1249
1250 if (vif->flags&VIFF_TUNNEL) {
1251 struct flowi fl = { .oif = vif->link,
1252 .nl_u = { .ip4_u =
1253 { .daddr = vif->remote,
1254 .saddr = vif->local,
1255 .tos = RT_TOS(iph->tos) } },
1256 .proto = IPPROTO_IPIP };
1257 if (ip_route_output_key(net, &rt, &fl))
1258 goto out_free;
1259 encap = sizeof(struct iphdr);
1260 } else {
1261 struct flowi fl = { .oif = vif->link,
1262 .nl_u = { .ip4_u =
1263 { .daddr = iph->daddr,
1264 .tos = RT_TOS(iph->tos) } },
1265 .proto = IPPROTO_IPIP };
1266 if (ip_route_output_key(net, &rt, &fl))
1267 goto out_free;
1268 }
1269
1270 dev = rt->u.dst.dev;
1271
1272 if (skb->len+encap > dst_mtu(&rt->u.dst) && (ntohs(iph->frag_off) & IP_DF)) {
1273 /* Do not fragment multicasts. Alas, IPv4 does not
1274 allow to send ICMP, so that packets will disappear
1275 to blackhole.
1276 */
1277
1278 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1279 ip_rt_put(rt);
1280 goto out_free;
1281 }
1282
1283 encap += LL_RESERVED_SPACE(dev) + rt->u.dst.header_len;
1284
1285 if (skb_cow(skb, encap)) {
1286 ip_rt_put(rt);
1287 goto out_free;
1288 }
1289
1290 vif->pkt_out++;
1291 vif->bytes_out += skb->len;
1292
1293 dst_release(skb->dst);
1294 skb->dst = &rt->u.dst;
1295 ip_decrease_ttl(ip_hdr(skb));
1296
1297 /* FIXME: forward and output firewalls used to be called here.
1298 * What do we do with netfilter? -- RR */
1299 if (vif->flags & VIFF_TUNNEL) {
1300 ip_encap(skb, vif->local, vif->remote);
1301 /* FIXME: extra output firewall step used to be here. --RR */
1302 vif->dev->stats.tx_packets++;
1303 vif->dev->stats.tx_bytes += skb->len;
1304 }
1305
1306 IPCB(skb)->flags |= IPSKB_FORWARDED;
1307
1308 /*
1309 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1310 * not only before forwarding, but after forwarding on all output
1311 * interfaces. It is clear, if mrouter runs a multicasting
1312 * program, it should receive packets not depending to what interface
1313 * program is joined.
1314 * If we will not make it, the program will have to join on all
1315 * interfaces. On the other hand, multihoming host (or router, but
1316 * not mrouter) cannot join to more than one interface - it will
1317 * result in receiving multiple packets.
1318 */
1319 NF_HOOK(PF_INET, NF_INET_FORWARD, skb, skb->dev, dev,
1320 ipmr_forward_finish);
1321 return;
1322
1323 out_free:
1324 kfree_skb(skb);
1325 return;
1326 }
1327
1328 static int ipmr_find_vif(struct net_device *dev)
1329 {
1330 struct net *net = dev_net(dev);
1331 int ct;
1332 for (ct = net->ipv4.maxvif-1; ct >= 0; ct--) {
1333 if (net->ipv4.vif_table[ct].dev == dev)
1334 break;
1335 }
1336 return ct;
1337 }
1338
1339 /* "local" means that we should preserve one skb (for local delivery) */
1340
1341 static int ip_mr_forward(struct sk_buff *skb, struct mfc_cache *cache, int local)
1342 {
1343 int psend = -1;
1344 int vif, ct;
1345 struct net *net = mfc_net(cache);
1346
1347 vif = cache->mfc_parent;
1348 cache->mfc_un.res.pkt++;
1349 cache->mfc_un.res.bytes += skb->len;
1350
1351 /*
1352 * Wrong interface: drop packet and (maybe) send PIM assert.
1353 */
1354 if (net->ipv4.vif_table[vif].dev != skb->dev) {
1355 int true_vifi;
1356
1357 if (skb_rtable(skb)->fl.iif == 0) {
1358 /* It is our own packet, looped back.
1359 Very complicated situation...
1360
1361 The best workaround until routing daemons will be
1362 fixed is not to redistribute packet, if it was
1363 send through wrong interface. It means, that
1364 multicast applications WILL NOT work for
1365 (S,G), which have default multicast route pointing
1366 to wrong oif. In any case, it is not a good
1367 idea to use multicasting applications on router.
1368 */
1369 goto dont_forward;
1370 }
1371
1372 cache->mfc_un.res.wrong_if++;
1373 true_vifi = ipmr_find_vif(skb->dev);
1374
1375 if (true_vifi >= 0 && net->ipv4.mroute_do_assert &&
1376 /* pimsm uses asserts, when switching from RPT to SPT,
1377 so that we cannot check that packet arrived on an oif.
1378 It is bad, but otherwise we would need to move pretty
1379 large chunk of pimd to kernel. Ough... --ANK
1380 */
1381 (net->ipv4.mroute_do_pim ||
1382 cache->mfc_un.res.ttls[true_vifi] < 255) &&
1383 time_after(jiffies,
1384 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1385 cache->mfc_un.res.last_assert = jiffies;
1386 ipmr_cache_report(net, skb, true_vifi, IGMPMSG_WRONGVIF);
1387 }
1388 goto dont_forward;
1389 }
1390
1391 net->ipv4.vif_table[vif].pkt_in++;
1392 net->ipv4.vif_table[vif].bytes_in += skb->len;
1393
1394 /*
1395 * Forward the frame
1396 */
1397 for (ct = cache->mfc_un.res.maxvif-1; ct >= cache->mfc_un.res.minvif; ct--) {
1398 if (ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1399 if (psend != -1) {
1400 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1401 if (skb2)
1402 ipmr_queue_xmit(skb2, cache, psend);
1403 }
1404 psend = ct;
1405 }
1406 }
1407 if (psend != -1) {
1408 if (local) {
1409 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1410 if (skb2)
1411 ipmr_queue_xmit(skb2, cache, psend);
1412 } else {
1413 ipmr_queue_xmit(skb, cache, psend);
1414 return 0;
1415 }
1416 }
1417
1418 dont_forward:
1419 if (!local)
1420 kfree_skb(skb);
1421 return 0;
1422 }
1423
1424
1425 /*
1426 * Multicast packets for forwarding arrive here
1427 */
1428
1429 int ip_mr_input(struct sk_buff *skb)
1430 {
1431 struct mfc_cache *cache;
1432 struct net *net = dev_net(skb->dev);
1433 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1434
1435 /* Packet is looped back after forward, it should not be
1436 forwarded second time, but still can be delivered locally.
1437 */
1438 if (IPCB(skb)->flags&IPSKB_FORWARDED)
1439 goto dont_forward;
1440
1441 if (!local) {
1442 if (IPCB(skb)->opt.router_alert) {
1443 if (ip_call_ra_chain(skb))
1444 return 0;
1445 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP){
1446 /* IGMPv1 (and broken IGMPv2 implementations sort of
1447 Cisco IOS <= 11.2(8)) do not put router alert
1448 option to IGMP packets destined to routable
1449 groups. It is very bad, because it means
1450 that we can forward NO IGMP messages.
1451 */
1452 read_lock(&mrt_lock);
1453 if (net->ipv4.mroute_sk) {
1454 nf_reset(skb);
1455 raw_rcv(net->ipv4.mroute_sk, skb);
1456 read_unlock(&mrt_lock);
1457 return 0;
1458 }
1459 read_unlock(&mrt_lock);
1460 }
1461 }
1462
1463 read_lock(&mrt_lock);
1464 cache = ipmr_cache_find(net, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1465
1466 /*
1467 * No usable cache entry
1468 */
1469 if (cache == NULL) {
1470 int vif;
1471
1472 if (local) {
1473 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1474 ip_local_deliver(skb);
1475 if (skb2 == NULL) {
1476 read_unlock(&mrt_lock);
1477 return -ENOBUFS;
1478 }
1479 skb = skb2;
1480 }
1481
1482 vif = ipmr_find_vif(skb->dev);
1483 if (vif >= 0) {
1484 int err = ipmr_cache_unresolved(net, vif, skb);
1485 read_unlock(&mrt_lock);
1486
1487 return err;
1488 }
1489 read_unlock(&mrt_lock);
1490 kfree_skb(skb);
1491 return -ENODEV;
1492 }
1493
1494 ip_mr_forward(skb, cache, local);
1495
1496 read_unlock(&mrt_lock);
1497
1498 if (local)
1499 return ip_local_deliver(skb);
1500
1501 return 0;
1502
1503 dont_forward:
1504 if (local)
1505 return ip_local_deliver(skb);
1506 kfree_skb(skb);
1507 return 0;
1508 }
1509
1510 #ifdef CONFIG_IP_PIMSM
1511 static int __pim_rcv(struct sk_buff *skb, unsigned int pimlen)
1512 {
1513 struct net_device *reg_dev = NULL;
1514 struct iphdr *encap;
1515 struct net *net = dev_net(skb->dev);
1516
1517 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
1518 /*
1519 Check that:
1520 a. packet is really destinted to a multicast group
1521 b. packet is not a NULL-REGISTER
1522 c. packet is not truncated
1523 */
1524 if (!ipv4_is_multicast(encap->daddr) ||
1525 encap->tot_len == 0 ||
1526 ntohs(encap->tot_len) + pimlen > skb->len)
1527 return 1;
1528
1529 read_lock(&mrt_lock);
1530 if (net->ipv4.mroute_reg_vif_num >= 0)
1531 reg_dev = net->ipv4.vif_table[net->ipv4.mroute_reg_vif_num].dev;
1532 if (reg_dev)
1533 dev_hold(reg_dev);
1534 read_unlock(&mrt_lock);
1535
1536 if (reg_dev == NULL)
1537 return 1;
1538
1539 skb->mac_header = skb->network_header;
1540 skb_pull(skb, (u8*)encap - skb->data);
1541 skb_reset_network_header(skb);
1542 skb->dev = reg_dev;
1543 skb->protocol = htons(ETH_P_IP);
1544 skb->ip_summed = 0;
1545 skb->pkt_type = PACKET_HOST;
1546 dst_release(skb->dst);
1547 skb->dst = NULL;
1548 reg_dev->stats.rx_bytes += skb->len;
1549 reg_dev->stats.rx_packets++;
1550 nf_reset(skb);
1551 netif_rx(skb);
1552 dev_put(reg_dev);
1553
1554 return 0;
1555 }
1556 #endif
1557
1558 #ifdef CONFIG_IP_PIMSM_V1
1559 /*
1560 * Handle IGMP messages of PIMv1
1561 */
1562
1563 int pim_rcv_v1(struct sk_buff * skb)
1564 {
1565 struct igmphdr *pim;
1566 struct net *net = dev_net(skb->dev);
1567
1568 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1569 goto drop;
1570
1571 pim = igmp_hdr(skb);
1572
1573 if (!net->ipv4.mroute_do_pim ||
1574 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
1575 goto drop;
1576
1577 if (__pim_rcv(skb, sizeof(*pim))) {
1578 drop:
1579 kfree_skb(skb);
1580 }
1581 return 0;
1582 }
1583 #endif
1584
1585 #ifdef CONFIG_IP_PIMSM_V2
1586 static int pim_rcv(struct sk_buff * skb)
1587 {
1588 struct pimreghdr *pim;
1589
1590 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1591 goto drop;
1592
1593 pim = (struct pimreghdr *)skb_transport_header(skb);
1594 if (pim->type != ((PIM_VERSION<<4)|(PIM_REGISTER)) ||
1595 (pim->flags&PIM_NULL_REGISTER) ||
1596 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
1597 csum_fold(skb_checksum(skb, 0, skb->len, 0))))
1598 goto drop;
1599
1600 if (__pim_rcv(skb, sizeof(*pim))) {
1601 drop:
1602 kfree_skb(skb);
1603 }
1604 return 0;
1605 }
1606 #endif
1607
1608 static int
1609 ipmr_fill_mroute(struct sk_buff *skb, struct mfc_cache *c, struct rtmsg *rtm)
1610 {
1611 int ct;
1612 struct rtnexthop *nhp;
1613 struct net *net = mfc_net(c);
1614 struct net_device *dev = net->ipv4.vif_table[c->mfc_parent].dev;
1615 u8 *b = skb_tail_pointer(skb);
1616 struct rtattr *mp_head;
1617
1618 if (dev)
1619 RTA_PUT(skb, RTA_IIF, 4, &dev->ifindex);
1620
1621 mp_head = (struct rtattr *)skb_put(skb, RTA_LENGTH(0));
1622
1623 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
1624 if (c->mfc_un.res.ttls[ct] < 255) {
1625 if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4))
1626 goto rtattr_failure;
1627 nhp = (struct rtnexthop *)skb_put(skb, RTA_ALIGN(sizeof(*nhp)));
1628 nhp->rtnh_flags = 0;
1629 nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
1630 nhp->rtnh_ifindex = net->ipv4.vif_table[ct].dev->ifindex;
1631 nhp->rtnh_len = sizeof(*nhp);
1632 }
1633 }
1634 mp_head->rta_type = RTA_MULTIPATH;
1635 mp_head->rta_len = skb_tail_pointer(skb) - (u8 *)mp_head;
1636 rtm->rtm_type = RTN_MULTICAST;
1637 return 1;
1638
1639 rtattr_failure:
1640 nlmsg_trim(skb, b);
1641 return -EMSGSIZE;
1642 }
1643
1644 int ipmr_get_route(struct net *net,
1645 struct sk_buff *skb, struct rtmsg *rtm, int nowait)
1646 {
1647 int err;
1648 struct mfc_cache *cache;
1649 struct rtable *rt = skb_rtable(skb);
1650
1651 read_lock(&mrt_lock);
1652 cache = ipmr_cache_find(net, rt->rt_src, rt->rt_dst);
1653
1654 if (cache == NULL) {
1655 struct sk_buff *skb2;
1656 struct iphdr *iph;
1657 struct net_device *dev;
1658 int vif;
1659
1660 if (nowait) {
1661 read_unlock(&mrt_lock);
1662 return -EAGAIN;
1663 }
1664
1665 dev = skb->dev;
1666 if (dev == NULL || (vif = ipmr_find_vif(dev)) < 0) {
1667 read_unlock(&mrt_lock);
1668 return -ENODEV;
1669 }
1670 skb2 = skb_clone(skb, GFP_ATOMIC);
1671 if (!skb2) {
1672 read_unlock(&mrt_lock);
1673 return -ENOMEM;
1674 }
1675
1676 skb_push(skb2, sizeof(struct iphdr));
1677 skb_reset_network_header(skb2);
1678 iph = ip_hdr(skb2);
1679 iph->ihl = sizeof(struct iphdr) >> 2;
1680 iph->saddr = rt->rt_src;
1681 iph->daddr = rt->rt_dst;
1682 iph->version = 0;
1683 err = ipmr_cache_unresolved(net, vif, skb2);
1684 read_unlock(&mrt_lock);
1685 return err;
1686 }
1687
1688 if (!nowait && (rtm->rtm_flags&RTM_F_NOTIFY))
1689 cache->mfc_flags |= MFC_NOTIFY;
1690 err = ipmr_fill_mroute(skb, cache, rtm);
1691 read_unlock(&mrt_lock);
1692 return err;
1693 }
1694
1695 #ifdef CONFIG_PROC_FS
1696 /*
1697 * The /proc interfaces to multicast routing /proc/ip_mr_cache /proc/ip_mr_vif
1698 */
1699 struct ipmr_vif_iter {
1700 struct seq_net_private p;
1701 int ct;
1702 };
1703
1704 static struct vif_device *ipmr_vif_seq_idx(struct net *net,
1705 struct ipmr_vif_iter *iter,
1706 loff_t pos)
1707 {
1708 for (iter->ct = 0; iter->ct < net->ipv4.maxvif; ++iter->ct) {
1709 if (!VIF_EXISTS(net, iter->ct))
1710 continue;
1711 if (pos-- == 0)
1712 return &net->ipv4.vif_table[iter->ct];
1713 }
1714 return NULL;
1715 }
1716
1717 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
1718 __acquires(mrt_lock)
1719 {
1720 struct net *net = seq_file_net(seq);
1721
1722 read_lock(&mrt_lock);
1723 return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
1724 : SEQ_START_TOKEN;
1725 }
1726
1727 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1728 {
1729 struct ipmr_vif_iter *iter = seq->private;
1730 struct net *net = seq_file_net(seq);
1731
1732 ++*pos;
1733 if (v == SEQ_START_TOKEN)
1734 return ipmr_vif_seq_idx(net, iter, 0);
1735
1736 while (++iter->ct < net->ipv4.maxvif) {
1737 if (!VIF_EXISTS(net, iter->ct))
1738 continue;
1739 return &net->ipv4.vif_table[iter->ct];
1740 }
1741 return NULL;
1742 }
1743
1744 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
1745 __releases(mrt_lock)
1746 {
1747 read_unlock(&mrt_lock);
1748 }
1749
1750 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
1751 {
1752 struct net *net = seq_file_net(seq);
1753
1754 if (v == SEQ_START_TOKEN) {
1755 seq_puts(seq,
1756 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
1757 } else {
1758 const struct vif_device *vif = v;
1759 const char *name = vif->dev ? vif->dev->name : "none";
1760
1761 seq_printf(seq,
1762 "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
1763 vif - net->ipv4.vif_table,
1764 name, vif->bytes_in, vif->pkt_in,
1765 vif->bytes_out, vif->pkt_out,
1766 vif->flags, vif->local, vif->remote);
1767 }
1768 return 0;
1769 }
1770
1771 static const struct seq_operations ipmr_vif_seq_ops = {
1772 .start = ipmr_vif_seq_start,
1773 .next = ipmr_vif_seq_next,
1774 .stop = ipmr_vif_seq_stop,
1775 .show = ipmr_vif_seq_show,
1776 };
1777
1778 static int ipmr_vif_open(struct inode *inode, struct file *file)
1779 {
1780 return seq_open_net(inode, file, &ipmr_vif_seq_ops,
1781 sizeof(struct ipmr_vif_iter));
1782 }
1783
1784 static const struct file_operations ipmr_vif_fops = {
1785 .owner = THIS_MODULE,
1786 .open = ipmr_vif_open,
1787 .read = seq_read,
1788 .llseek = seq_lseek,
1789 .release = seq_release_net,
1790 };
1791
1792 struct ipmr_mfc_iter {
1793 struct seq_net_private p;
1794 struct mfc_cache **cache;
1795 int ct;
1796 };
1797
1798
1799 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
1800 struct ipmr_mfc_iter *it, loff_t pos)
1801 {
1802 struct mfc_cache *mfc;
1803
1804 it->cache = net->ipv4.mfc_cache_array;
1805 read_lock(&mrt_lock);
1806 for (it->ct = 0; it->ct < MFC_LINES; it->ct++)
1807 for (mfc = net->ipv4.mfc_cache_array[it->ct];
1808 mfc; mfc = mfc->next)
1809 if (pos-- == 0)
1810 return mfc;
1811 read_unlock(&mrt_lock);
1812
1813 it->cache = &mfc_unres_queue;
1814 spin_lock_bh(&mfc_unres_lock);
1815 for (mfc = mfc_unres_queue; mfc; mfc = mfc->next)
1816 if (net_eq(mfc_net(mfc), net) &&
1817 pos-- == 0)
1818 return mfc;
1819 spin_unlock_bh(&mfc_unres_lock);
1820
1821 it->cache = NULL;
1822 return NULL;
1823 }
1824
1825
1826 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
1827 {
1828 struct ipmr_mfc_iter *it = seq->private;
1829 struct net *net = seq_file_net(seq);
1830
1831 it->cache = NULL;
1832 it->ct = 0;
1833 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
1834 : SEQ_START_TOKEN;
1835 }
1836
1837 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1838 {
1839 struct mfc_cache *mfc = v;
1840 struct ipmr_mfc_iter *it = seq->private;
1841 struct net *net = seq_file_net(seq);
1842
1843 ++*pos;
1844
1845 if (v == SEQ_START_TOKEN)
1846 return ipmr_mfc_seq_idx(net, seq->private, 0);
1847
1848 if (mfc->next)
1849 return mfc->next;
1850
1851 if (it->cache == &mfc_unres_queue)
1852 goto end_of_list;
1853
1854 BUG_ON(it->cache != net->ipv4.mfc_cache_array);
1855
1856 while (++it->ct < MFC_LINES) {
1857 mfc = net->ipv4.mfc_cache_array[it->ct];
1858 if (mfc)
1859 return mfc;
1860 }
1861
1862 /* exhausted cache_array, show unresolved */
1863 read_unlock(&mrt_lock);
1864 it->cache = &mfc_unres_queue;
1865 it->ct = 0;
1866
1867 spin_lock_bh(&mfc_unres_lock);
1868 mfc = mfc_unres_queue;
1869 while (mfc && !net_eq(mfc_net(mfc), net))
1870 mfc = mfc->next;
1871 if (mfc)
1872 return mfc;
1873
1874 end_of_list:
1875 spin_unlock_bh(&mfc_unres_lock);
1876 it->cache = NULL;
1877
1878 return NULL;
1879 }
1880
1881 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
1882 {
1883 struct ipmr_mfc_iter *it = seq->private;
1884 struct net *net = seq_file_net(seq);
1885
1886 if (it->cache == &mfc_unres_queue)
1887 spin_unlock_bh(&mfc_unres_lock);
1888 else if (it->cache == net->ipv4.mfc_cache_array)
1889 read_unlock(&mrt_lock);
1890 }
1891
1892 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
1893 {
1894 int n;
1895 struct net *net = seq_file_net(seq);
1896
1897 if (v == SEQ_START_TOKEN) {
1898 seq_puts(seq,
1899 "Group Origin Iif Pkts Bytes Wrong Oifs\n");
1900 } else {
1901 const struct mfc_cache *mfc = v;
1902 const struct ipmr_mfc_iter *it = seq->private;
1903
1904 seq_printf(seq, "%08lX %08lX %-3hd",
1905 (unsigned long) mfc->mfc_mcastgrp,
1906 (unsigned long) mfc->mfc_origin,
1907 mfc->mfc_parent);
1908
1909 if (it->cache != &mfc_unres_queue) {
1910 seq_printf(seq, " %8lu %8lu %8lu",
1911 mfc->mfc_un.res.pkt,
1912 mfc->mfc_un.res.bytes,
1913 mfc->mfc_un.res.wrong_if);
1914 for (n = mfc->mfc_un.res.minvif;
1915 n < mfc->mfc_un.res.maxvif; n++ ) {
1916 if (VIF_EXISTS(net, n) &&
1917 mfc->mfc_un.res.ttls[n] < 255)
1918 seq_printf(seq,
1919 " %2d:%-3d",
1920 n, mfc->mfc_un.res.ttls[n]);
1921 }
1922 } else {
1923 /* unresolved mfc_caches don't contain
1924 * pkt, bytes and wrong_if values
1925 */
1926 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
1927 }
1928 seq_putc(seq, '\n');
1929 }
1930 return 0;
1931 }
1932
1933 static const struct seq_operations ipmr_mfc_seq_ops = {
1934 .start = ipmr_mfc_seq_start,
1935 .next = ipmr_mfc_seq_next,
1936 .stop = ipmr_mfc_seq_stop,
1937 .show = ipmr_mfc_seq_show,
1938 };
1939
1940 static int ipmr_mfc_open(struct inode *inode, struct file *file)
1941 {
1942 return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
1943 sizeof(struct ipmr_mfc_iter));
1944 }
1945
1946 static const struct file_operations ipmr_mfc_fops = {
1947 .owner = THIS_MODULE,
1948 .open = ipmr_mfc_open,
1949 .read = seq_read,
1950 .llseek = seq_lseek,
1951 .release = seq_release_net,
1952 };
1953 #endif
1954
1955 #ifdef CONFIG_IP_PIMSM_V2
1956 static struct net_protocol pim_protocol = {
1957 .handler = pim_rcv,
1958 };
1959 #endif
1960
1961
1962 /*
1963 * Setup for IP multicast routing
1964 */
1965 static int __net_init ipmr_net_init(struct net *net)
1966 {
1967 int err = 0;
1968
1969 net->ipv4.vif_table = kcalloc(MAXVIFS, sizeof(struct vif_device),
1970 GFP_KERNEL);
1971 if (!net->ipv4.vif_table) {
1972 err = -ENOMEM;
1973 goto fail;
1974 }
1975
1976 /* Forwarding cache */
1977 net->ipv4.mfc_cache_array = kcalloc(MFC_LINES,
1978 sizeof(struct mfc_cache *),
1979 GFP_KERNEL);
1980 if (!net->ipv4.mfc_cache_array) {
1981 err = -ENOMEM;
1982 goto fail_mfc_cache;
1983 }
1984
1985 #ifdef CONFIG_IP_PIMSM
1986 net->ipv4.mroute_reg_vif_num = -1;
1987 #endif
1988
1989 #ifdef CONFIG_PROC_FS
1990 err = -ENOMEM;
1991 if (!proc_net_fops_create(net, "ip_mr_vif", 0, &ipmr_vif_fops))
1992 goto proc_vif_fail;
1993 if (!proc_net_fops_create(net, "ip_mr_cache", 0, &ipmr_mfc_fops))
1994 goto proc_cache_fail;
1995 #endif
1996 return 0;
1997
1998 #ifdef CONFIG_PROC_FS
1999 proc_cache_fail:
2000 proc_net_remove(net, "ip_mr_vif");
2001 proc_vif_fail:
2002 kfree(net->ipv4.mfc_cache_array);
2003 #endif
2004 fail_mfc_cache:
2005 kfree(net->ipv4.vif_table);
2006 fail:
2007 return err;
2008 }
2009
2010 static void __net_exit ipmr_net_exit(struct net *net)
2011 {
2012 #ifdef CONFIG_PROC_FS
2013 proc_net_remove(net, "ip_mr_cache");
2014 proc_net_remove(net, "ip_mr_vif");
2015 #endif
2016 kfree(net->ipv4.mfc_cache_array);
2017 kfree(net->ipv4.vif_table);
2018 }
2019
2020 static struct pernet_operations ipmr_net_ops = {
2021 .init = ipmr_net_init,
2022 .exit = ipmr_net_exit,
2023 };
2024
2025 int __init ip_mr_init(void)
2026 {
2027 int err;
2028
2029 mrt_cachep = kmem_cache_create("ip_mrt_cache",
2030 sizeof(struct mfc_cache),
2031 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2032 NULL);
2033 if (!mrt_cachep)
2034 return -ENOMEM;
2035
2036 err = register_pernet_subsys(&ipmr_net_ops);
2037 if (err)
2038 goto reg_pernet_fail;
2039
2040 setup_timer(&ipmr_expire_timer, ipmr_expire_process, 0);
2041 err = register_netdevice_notifier(&ip_mr_notifier);
2042 if (err)
2043 goto reg_notif_fail;
2044 return 0;
2045
2046 reg_notif_fail:
2047 del_timer(&ipmr_expire_timer);
2048 unregister_pernet_subsys(&ipmr_net_ops);
2049 reg_pernet_fail:
2050 kmem_cache_destroy(mrt_cachep);
2051 return err;
2052 }