]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/ipv4/ipmr.c
UBUNTU: Ubuntu-raspi2-4.10.0-1011.14
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / ipmr.c
1 /*
2 * IP multicast routing support for mrouted 3.6/3.8
3 *
4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5 * Linux Consultancy and Custom Driver Development
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 *
12 * Fixes:
13 * Michael Chastain : Incorrect size of copying.
14 * Alan Cox : Added the cache manager code
15 * Alan Cox : Fixed the clone/copy bug and device race.
16 * Mike McLagan : Routing by source
17 * Malcolm Beattie : Buffer handling fixes.
18 * Alexey Kuznetsov : Double buffer free and other fixes.
19 * SVR Anand : Fixed several multicast bugs and problems.
20 * Alexey Kuznetsov : Status, optimisations and more.
21 * Brad Parker : Better behaviour on mrouted upcall
22 * overflow.
23 * Carlos Picoto : PIMv1 Support
24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
25 * Relax this requirement to work with older peers.
26 *
27 */
28
29 #include <linux/uaccess.h>
30 #include <linux/types.h>
31 #include <linux/capability.h>
32 #include <linux/errno.h>
33 #include <linux/timer.h>
34 #include <linux/mm.h>
35 #include <linux/kernel.h>
36 #include <linux/fcntl.h>
37 #include <linux/stat.h>
38 #include <linux/socket.h>
39 #include <linux/in.h>
40 #include <linux/inet.h>
41 #include <linux/netdevice.h>
42 #include <linux/inetdevice.h>
43 #include <linux/igmp.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/mroute.h>
47 #include <linux/init.h>
48 #include <linux/if_ether.h>
49 #include <linux/slab.h>
50 #include <net/net_namespace.h>
51 #include <net/ip.h>
52 #include <net/protocol.h>
53 #include <linux/skbuff.h>
54 #include <net/route.h>
55 #include <net/sock.h>
56 #include <net/icmp.h>
57 #include <net/udp.h>
58 #include <net/raw.h>
59 #include <linux/notifier.h>
60 #include <linux/if_arp.h>
61 #include <linux/netfilter_ipv4.h>
62 #include <linux/compat.h>
63 #include <linux/export.h>
64 #include <net/ip_tunnels.h>
65 #include <net/checksum.h>
66 #include <net/netlink.h>
67 #include <net/fib_rules.h>
68 #include <linux/netconf.h>
69 #include <net/nexthop.h>
70
71 struct ipmr_rule {
72 struct fib_rule common;
73 };
74
75 struct ipmr_result {
76 struct mr_table *mrt;
77 };
78
79 /* Big lock, protecting vif table, mrt cache and mroute socket state.
80 * Note that the changes are semaphored via rtnl_lock.
81 */
82
83 static DEFINE_RWLOCK(mrt_lock);
84
85 /* Multicast router control variables */
86
87 /* Special spinlock for queue of unresolved entries */
88 static DEFINE_SPINLOCK(mfc_unres_lock);
89
90 /* We return to original Alan's scheme. Hash table of resolved
91 * entries is changed only in process context and protected
92 * with weak lock mrt_lock. Queue of unresolved entries is protected
93 * with strong spinlock mfc_unres_lock.
94 *
95 * In this case data path is free of exclusive locks at all.
96 */
97
98 static struct kmem_cache *mrt_cachep __read_mostly;
99
100 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
101 static void ipmr_free_table(struct mr_table *mrt);
102
103 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
104 struct sk_buff *skb, struct mfc_cache *cache,
105 int local);
106 static int ipmr_cache_report(struct mr_table *mrt,
107 struct sk_buff *pkt, vifi_t vifi, int assert);
108 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
109 struct mfc_cache *c, struct rtmsg *rtm);
110 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
111 int cmd);
112 static void mroute_clean_tables(struct mr_table *mrt, bool all);
113 static void ipmr_expire_process(unsigned long arg);
114
115 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
116 #define ipmr_for_each_table(mrt, net) \
117 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
118
119 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
120 {
121 struct mr_table *mrt;
122
123 ipmr_for_each_table(mrt, net) {
124 if (mrt->id == id)
125 return mrt;
126 }
127 return NULL;
128 }
129
130 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
131 struct mr_table **mrt)
132 {
133 int err;
134 struct ipmr_result res;
135 struct fib_lookup_arg arg = {
136 .result = &res,
137 .flags = FIB_LOOKUP_NOREF,
138 };
139
140 /* update flow if oif or iif point to device enslaved to l3mdev */
141 l3mdev_update_flow(net, flowi4_to_flowi(flp4));
142
143 err = fib_rules_lookup(net->ipv4.mr_rules_ops,
144 flowi4_to_flowi(flp4), 0, &arg);
145 if (err < 0)
146 return err;
147 *mrt = res.mrt;
148 return 0;
149 }
150
151 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
152 int flags, struct fib_lookup_arg *arg)
153 {
154 struct ipmr_result *res = arg->result;
155 struct mr_table *mrt;
156
157 switch (rule->action) {
158 case FR_ACT_TO_TBL:
159 break;
160 case FR_ACT_UNREACHABLE:
161 return -ENETUNREACH;
162 case FR_ACT_PROHIBIT:
163 return -EACCES;
164 case FR_ACT_BLACKHOLE:
165 default:
166 return -EINVAL;
167 }
168
169 arg->table = fib_rule_get_table(rule, arg);
170
171 mrt = ipmr_get_table(rule->fr_net, arg->table);
172 if (!mrt)
173 return -EAGAIN;
174 res->mrt = mrt;
175 return 0;
176 }
177
178 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
179 {
180 return 1;
181 }
182
183 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
184 FRA_GENERIC_POLICY,
185 };
186
187 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
188 struct fib_rule_hdr *frh, struct nlattr **tb)
189 {
190 return 0;
191 }
192
193 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
194 struct nlattr **tb)
195 {
196 return 1;
197 }
198
199 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
200 struct fib_rule_hdr *frh)
201 {
202 frh->dst_len = 0;
203 frh->src_len = 0;
204 frh->tos = 0;
205 return 0;
206 }
207
208 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
209 .family = RTNL_FAMILY_IPMR,
210 .rule_size = sizeof(struct ipmr_rule),
211 .addr_size = sizeof(u32),
212 .action = ipmr_rule_action,
213 .match = ipmr_rule_match,
214 .configure = ipmr_rule_configure,
215 .compare = ipmr_rule_compare,
216 .fill = ipmr_rule_fill,
217 .nlgroup = RTNLGRP_IPV4_RULE,
218 .policy = ipmr_rule_policy,
219 .owner = THIS_MODULE,
220 };
221
222 static int __net_init ipmr_rules_init(struct net *net)
223 {
224 struct fib_rules_ops *ops;
225 struct mr_table *mrt;
226 int err;
227
228 ops = fib_rules_register(&ipmr_rules_ops_template, net);
229 if (IS_ERR(ops))
230 return PTR_ERR(ops);
231
232 INIT_LIST_HEAD(&net->ipv4.mr_tables);
233
234 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
235 if (IS_ERR(mrt)) {
236 err = PTR_ERR(mrt);
237 goto err1;
238 }
239
240 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
241 if (err < 0)
242 goto err2;
243
244 net->ipv4.mr_rules_ops = ops;
245 return 0;
246
247 err2:
248 ipmr_free_table(mrt);
249 err1:
250 fib_rules_unregister(ops);
251 return err;
252 }
253
254 static void __net_exit ipmr_rules_exit(struct net *net)
255 {
256 struct mr_table *mrt, *next;
257
258 rtnl_lock();
259 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
260 list_del(&mrt->list);
261 ipmr_free_table(mrt);
262 }
263 fib_rules_unregister(net->ipv4.mr_rules_ops);
264 rtnl_unlock();
265 }
266 #else
267 #define ipmr_for_each_table(mrt, net) \
268 for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
269
270 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
271 {
272 return net->ipv4.mrt;
273 }
274
275 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
276 struct mr_table **mrt)
277 {
278 *mrt = net->ipv4.mrt;
279 return 0;
280 }
281
282 static int __net_init ipmr_rules_init(struct net *net)
283 {
284 struct mr_table *mrt;
285
286 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
287 if (IS_ERR(mrt))
288 return PTR_ERR(mrt);
289 net->ipv4.mrt = mrt;
290 return 0;
291 }
292
293 static void __net_exit ipmr_rules_exit(struct net *net)
294 {
295 rtnl_lock();
296 ipmr_free_table(net->ipv4.mrt);
297 net->ipv4.mrt = NULL;
298 rtnl_unlock();
299 }
300 #endif
301
302 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
303 {
304 struct mr_table *mrt;
305 unsigned int i;
306
307 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
308 if (id != RT_TABLE_DEFAULT && id >= 1000000000)
309 return ERR_PTR(-EINVAL);
310
311 mrt = ipmr_get_table(net, id);
312 if (mrt)
313 return mrt;
314
315 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
316 if (!mrt)
317 return ERR_PTR(-ENOMEM);
318 write_pnet(&mrt->net, net);
319 mrt->id = id;
320
321 /* Forwarding cache */
322 for (i = 0; i < MFC_LINES; i++)
323 INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
324
325 INIT_LIST_HEAD(&mrt->mfc_unres_queue);
326
327 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
328 (unsigned long)mrt);
329
330 mrt->mroute_reg_vif_num = -1;
331 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
332 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
333 #endif
334 return mrt;
335 }
336
337 static void ipmr_free_table(struct mr_table *mrt)
338 {
339 del_timer_sync(&mrt->ipmr_expire_timer);
340 mroute_clean_tables(mrt, true);
341 kfree(mrt);
342 }
343
344 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
345
346 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
347 {
348 struct net *net = dev_net(dev);
349
350 dev_close(dev);
351
352 dev = __dev_get_by_name(net, "tunl0");
353 if (dev) {
354 const struct net_device_ops *ops = dev->netdev_ops;
355 struct ifreq ifr;
356 struct ip_tunnel_parm p;
357
358 memset(&p, 0, sizeof(p));
359 p.iph.daddr = v->vifc_rmt_addr.s_addr;
360 p.iph.saddr = v->vifc_lcl_addr.s_addr;
361 p.iph.version = 4;
362 p.iph.ihl = 5;
363 p.iph.protocol = IPPROTO_IPIP;
364 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
365 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
366
367 if (ops->ndo_do_ioctl) {
368 mm_segment_t oldfs = get_fs();
369
370 set_fs(KERNEL_DS);
371 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
372 set_fs(oldfs);
373 }
374 }
375 }
376
377 /* Initialize ipmr pimreg/tunnel in_device */
378 static bool ipmr_init_vif_indev(const struct net_device *dev)
379 {
380 struct in_device *in_dev;
381
382 ASSERT_RTNL();
383
384 in_dev = __in_dev_get_rtnl(dev);
385 if (!in_dev)
386 return false;
387 ipv4_devconf_setall(in_dev);
388 neigh_parms_data_state_setall(in_dev->arp_parms);
389 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
390
391 return true;
392 }
393
394 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
395 {
396 struct net_device *dev;
397
398 dev = __dev_get_by_name(net, "tunl0");
399
400 if (dev) {
401 const struct net_device_ops *ops = dev->netdev_ops;
402 int err;
403 struct ifreq ifr;
404 struct ip_tunnel_parm p;
405
406 memset(&p, 0, sizeof(p));
407 p.iph.daddr = v->vifc_rmt_addr.s_addr;
408 p.iph.saddr = v->vifc_lcl_addr.s_addr;
409 p.iph.version = 4;
410 p.iph.ihl = 5;
411 p.iph.protocol = IPPROTO_IPIP;
412 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
413 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
414
415 if (ops->ndo_do_ioctl) {
416 mm_segment_t oldfs = get_fs();
417
418 set_fs(KERNEL_DS);
419 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
420 set_fs(oldfs);
421 } else {
422 err = -EOPNOTSUPP;
423 }
424 dev = NULL;
425
426 if (err == 0 &&
427 (dev = __dev_get_by_name(net, p.name)) != NULL) {
428 dev->flags |= IFF_MULTICAST;
429 if (!ipmr_init_vif_indev(dev))
430 goto failure;
431 if (dev_open(dev))
432 goto failure;
433 dev_hold(dev);
434 }
435 }
436 return dev;
437
438 failure:
439 unregister_netdevice(dev);
440 return NULL;
441 }
442
443 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
444 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
445 {
446 struct net *net = dev_net(dev);
447 struct mr_table *mrt;
448 struct flowi4 fl4 = {
449 .flowi4_oif = dev->ifindex,
450 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
451 .flowi4_mark = skb->mark,
452 };
453 int err;
454
455 err = ipmr_fib_lookup(net, &fl4, &mrt);
456 if (err < 0) {
457 kfree_skb(skb);
458 return err;
459 }
460
461 read_lock(&mrt_lock);
462 dev->stats.tx_bytes += skb->len;
463 dev->stats.tx_packets++;
464 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
465 read_unlock(&mrt_lock);
466 kfree_skb(skb);
467 return NETDEV_TX_OK;
468 }
469
470 static int reg_vif_get_iflink(const struct net_device *dev)
471 {
472 return 0;
473 }
474
475 static const struct net_device_ops reg_vif_netdev_ops = {
476 .ndo_start_xmit = reg_vif_xmit,
477 .ndo_get_iflink = reg_vif_get_iflink,
478 };
479
480 static void reg_vif_setup(struct net_device *dev)
481 {
482 dev->type = ARPHRD_PIMREG;
483 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
484 dev->flags = IFF_NOARP;
485 dev->netdev_ops = &reg_vif_netdev_ops;
486 dev->destructor = free_netdev;
487 dev->features |= NETIF_F_NETNS_LOCAL;
488 }
489
490 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
491 {
492 struct net_device *dev;
493 char name[IFNAMSIZ];
494
495 if (mrt->id == RT_TABLE_DEFAULT)
496 sprintf(name, "pimreg");
497 else
498 sprintf(name, "pimreg%u", mrt->id);
499
500 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
501
502 if (!dev)
503 return NULL;
504
505 dev_net_set(dev, net);
506
507 if (register_netdevice(dev)) {
508 free_netdev(dev);
509 return NULL;
510 }
511
512 if (!ipmr_init_vif_indev(dev))
513 goto failure;
514 if (dev_open(dev))
515 goto failure;
516
517 dev_hold(dev);
518
519 return dev;
520
521 failure:
522 unregister_netdevice(dev);
523 return NULL;
524 }
525
526 /* called with rcu_read_lock() */
527 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
528 unsigned int pimlen)
529 {
530 struct net_device *reg_dev = NULL;
531 struct iphdr *encap;
532
533 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
534 /* Check that:
535 * a. packet is really sent to a multicast group
536 * b. packet is not a NULL-REGISTER
537 * c. packet is not truncated
538 */
539 if (!ipv4_is_multicast(encap->daddr) ||
540 encap->tot_len == 0 ||
541 ntohs(encap->tot_len) + pimlen > skb->len)
542 return 1;
543
544 read_lock(&mrt_lock);
545 if (mrt->mroute_reg_vif_num >= 0)
546 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
547 read_unlock(&mrt_lock);
548
549 if (!reg_dev)
550 return 1;
551
552 skb->mac_header = skb->network_header;
553 skb_pull(skb, (u8 *)encap - skb->data);
554 skb_reset_network_header(skb);
555 skb->protocol = htons(ETH_P_IP);
556 skb->ip_summed = CHECKSUM_NONE;
557
558 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
559
560 netif_rx(skb);
561
562 return NET_RX_SUCCESS;
563 }
564 #else
565 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
566 {
567 return NULL;
568 }
569 #endif
570
571 /**
572 * vif_delete - Delete a VIF entry
573 * @notify: Set to 1, if the caller is a notifier_call
574 */
575 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
576 struct list_head *head)
577 {
578 struct vif_device *v;
579 struct net_device *dev;
580 struct in_device *in_dev;
581
582 if (vifi < 0 || vifi >= mrt->maxvif)
583 return -EADDRNOTAVAIL;
584
585 v = &mrt->vif_table[vifi];
586
587 write_lock_bh(&mrt_lock);
588 dev = v->dev;
589 v->dev = NULL;
590
591 if (!dev) {
592 write_unlock_bh(&mrt_lock);
593 return -EADDRNOTAVAIL;
594 }
595
596 if (vifi == mrt->mroute_reg_vif_num)
597 mrt->mroute_reg_vif_num = -1;
598
599 if (vifi + 1 == mrt->maxvif) {
600 int tmp;
601
602 for (tmp = vifi - 1; tmp >= 0; tmp--) {
603 if (VIF_EXISTS(mrt, tmp))
604 break;
605 }
606 mrt->maxvif = tmp+1;
607 }
608
609 write_unlock_bh(&mrt_lock);
610
611 dev_set_allmulti(dev, -1);
612
613 in_dev = __in_dev_get_rtnl(dev);
614 if (in_dev) {
615 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
616 inet_netconf_notify_devconf(dev_net(dev),
617 NETCONFA_MC_FORWARDING,
618 dev->ifindex, &in_dev->cnf);
619 ip_rt_multicast_event(in_dev);
620 }
621
622 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
623 unregister_netdevice_queue(dev, head);
624
625 dev_put(dev);
626 return 0;
627 }
628
629 static void ipmr_cache_free_rcu(struct rcu_head *head)
630 {
631 struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
632
633 kmem_cache_free(mrt_cachep, c);
634 }
635
636 static inline void ipmr_cache_free(struct mfc_cache *c)
637 {
638 call_rcu(&c->rcu, ipmr_cache_free_rcu);
639 }
640
641 /* Destroy an unresolved cache entry, killing queued skbs
642 * and reporting error to netlink readers.
643 */
644 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
645 {
646 struct net *net = read_pnet(&mrt->net);
647 struct sk_buff *skb;
648 struct nlmsgerr *e;
649
650 atomic_dec(&mrt->cache_resolve_queue_len);
651
652 while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
653 if (ip_hdr(skb)->version == 0) {
654 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
655 nlh->nlmsg_type = NLMSG_ERROR;
656 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
657 skb_trim(skb, nlh->nlmsg_len);
658 e = nlmsg_data(nlh);
659 e->error = -ETIMEDOUT;
660 memset(&e->msg, 0, sizeof(e->msg));
661
662 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
663 } else {
664 kfree_skb(skb);
665 }
666 }
667
668 ipmr_cache_free(c);
669 }
670
671 /* Timer process for the unresolved queue. */
672 static void ipmr_expire_process(unsigned long arg)
673 {
674 struct mr_table *mrt = (struct mr_table *)arg;
675 unsigned long now;
676 unsigned long expires;
677 struct mfc_cache *c, *next;
678
679 if (!spin_trylock(&mfc_unres_lock)) {
680 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
681 return;
682 }
683
684 if (list_empty(&mrt->mfc_unres_queue))
685 goto out;
686
687 now = jiffies;
688 expires = 10*HZ;
689
690 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
691 if (time_after(c->mfc_un.unres.expires, now)) {
692 unsigned long interval = c->mfc_un.unres.expires - now;
693 if (interval < expires)
694 expires = interval;
695 continue;
696 }
697
698 list_del(&c->list);
699 mroute_netlink_event(mrt, c, RTM_DELROUTE);
700 ipmr_destroy_unres(mrt, c);
701 }
702
703 if (!list_empty(&mrt->mfc_unres_queue))
704 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
705
706 out:
707 spin_unlock(&mfc_unres_lock);
708 }
709
710 /* Fill oifs list. It is called under write locked mrt_lock. */
711 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
712 unsigned char *ttls)
713 {
714 int vifi;
715
716 cache->mfc_un.res.minvif = MAXVIFS;
717 cache->mfc_un.res.maxvif = 0;
718 memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
719
720 for (vifi = 0; vifi < mrt->maxvif; vifi++) {
721 if (VIF_EXISTS(mrt, vifi) &&
722 ttls[vifi] && ttls[vifi] < 255) {
723 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
724 if (cache->mfc_un.res.minvif > vifi)
725 cache->mfc_un.res.minvif = vifi;
726 if (cache->mfc_un.res.maxvif <= vifi)
727 cache->mfc_un.res.maxvif = vifi + 1;
728 }
729 }
730 cache->mfc_un.res.lastuse = jiffies;
731 }
732
733 static int vif_add(struct net *net, struct mr_table *mrt,
734 struct vifctl *vifc, int mrtsock)
735 {
736 int vifi = vifc->vifc_vifi;
737 struct vif_device *v = &mrt->vif_table[vifi];
738 struct net_device *dev;
739 struct in_device *in_dev;
740 int err;
741
742 /* Is vif busy ? */
743 if (VIF_EXISTS(mrt, vifi))
744 return -EADDRINUSE;
745
746 switch (vifc->vifc_flags) {
747 case VIFF_REGISTER:
748 if (!ipmr_pimsm_enabled())
749 return -EINVAL;
750 /* Special Purpose VIF in PIM
751 * All the packets will be sent to the daemon
752 */
753 if (mrt->mroute_reg_vif_num >= 0)
754 return -EADDRINUSE;
755 dev = ipmr_reg_vif(net, mrt);
756 if (!dev)
757 return -ENOBUFS;
758 err = dev_set_allmulti(dev, 1);
759 if (err) {
760 unregister_netdevice(dev);
761 dev_put(dev);
762 return err;
763 }
764 break;
765 case VIFF_TUNNEL:
766 dev = ipmr_new_tunnel(net, vifc);
767 if (!dev)
768 return -ENOBUFS;
769 err = dev_set_allmulti(dev, 1);
770 if (err) {
771 ipmr_del_tunnel(dev, vifc);
772 dev_put(dev);
773 return err;
774 }
775 break;
776 case VIFF_USE_IFINDEX:
777 case 0:
778 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
779 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
780 if (dev && !__in_dev_get_rtnl(dev)) {
781 dev_put(dev);
782 return -EADDRNOTAVAIL;
783 }
784 } else {
785 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
786 }
787 if (!dev)
788 return -EADDRNOTAVAIL;
789 err = dev_set_allmulti(dev, 1);
790 if (err) {
791 dev_put(dev);
792 return err;
793 }
794 break;
795 default:
796 return -EINVAL;
797 }
798
799 in_dev = __in_dev_get_rtnl(dev);
800 if (!in_dev) {
801 dev_put(dev);
802 return -EADDRNOTAVAIL;
803 }
804 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
805 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
806 &in_dev->cnf);
807 ip_rt_multicast_event(in_dev);
808
809 /* Fill in the VIF structures */
810
811 v->rate_limit = vifc->vifc_rate_limit;
812 v->local = vifc->vifc_lcl_addr.s_addr;
813 v->remote = vifc->vifc_rmt_addr.s_addr;
814 v->flags = vifc->vifc_flags;
815 if (!mrtsock)
816 v->flags |= VIFF_STATIC;
817 v->threshold = vifc->vifc_threshold;
818 v->bytes_in = 0;
819 v->bytes_out = 0;
820 v->pkt_in = 0;
821 v->pkt_out = 0;
822 v->link = dev->ifindex;
823 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
824 v->link = dev_get_iflink(dev);
825
826 /* And finish update writing critical data */
827 write_lock_bh(&mrt_lock);
828 v->dev = dev;
829 if (v->flags & VIFF_REGISTER)
830 mrt->mroute_reg_vif_num = vifi;
831 if (vifi+1 > mrt->maxvif)
832 mrt->maxvif = vifi+1;
833 write_unlock_bh(&mrt_lock);
834 return 0;
835 }
836
837 /* called with rcu_read_lock() */
838 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
839 __be32 origin,
840 __be32 mcastgrp)
841 {
842 int line = MFC_HASH(mcastgrp, origin);
843 struct mfc_cache *c;
844
845 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
846 if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
847 return c;
848 }
849 return NULL;
850 }
851
852 /* Look for a (*,*,oif) entry */
853 static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
854 int vifi)
855 {
856 int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY));
857 struct mfc_cache *c;
858
859 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
860 if (c->mfc_origin == htonl(INADDR_ANY) &&
861 c->mfc_mcastgrp == htonl(INADDR_ANY) &&
862 c->mfc_un.res.ttls[vifi] < 255)
863 return c;
864
865 return NULL;
866 }
867
868 /* Look for a (*,G) entry */
869 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
870 __be32 mcastgrp, int vifi)
871 {
872 int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY));
873 struct mfc_cache *c, *proxy;
874
875 if (mcastgrp == htonl(INADDR_ANY))
876 goto skip;
877
878 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
879 if (c->mfc_origin == htonl(INADDR_ANY) &&
880 c->mfc_mcastgrp == mcastgrp) {
881 if (c->mfc_un.res.ttls[vifi] < 255)
882 return c;
883
884 /* It's ok if the vifi is part of the static tree */
885 proxy = ipmr_cache_find_any_parent(mrt,
886 c->mfc_parent);
887 if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
888 return c;
889 }
890
891 skip:
892 return ipmr_cache_find_any_parent(mrt, vifi);
893 }
894
895 /* Allocate a multicast cache entry */
896 static struct mfc_cache *ipmr_cache_alloc(void)
897 {
898 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
899
900 if (c) {
901 c->mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
902 c->mfc_un.res.minvif = MAXVIFS;
903 }
904 return c;
905 }
906
907 static struct mfc_cache *ipmr_cache_alloc_unres(void)
908 {
909 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
910
911 if (c) {
912 skb_queue_head_init(&c->mfc_un.unres.unresolved);
913 c->mfc_un.unres.expires = jiffies + 10*HZ;
914 }
915 return c;
916 }
917
918 /* A cache entry has gone into a resolved state from queued */
919 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
920 struct mfc_cache *uc, struct mfc_cache *c)
921 {
922 struct sk_buff *skb;
923 struct nlmsgerr *e;
924
925 /* Play the pending entries through our router */
926 while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
927 if (ip_hdr(skb)->version == 0) {
928 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
929
930 if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
931 nlh->nlmsg_len = skb_tail_pointer(skb) -
932 (u8 *)nlh;
933 } else {
934 nlh->nlmsg_type = NLMSG_ERROR;
935 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
936 skb_trim(skb, nlh->nlmsg_len);
937 e = nlmsg_data(nlh);
938 e->error = -EMSGSIZE;
939 memset(&e->msg, 0, sizeof(e->msg));
940 }
941
942 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
943 } else {
944 ip_mr_forward(net, mrt, skb, c, 0);
945 }
946 }
947 }
948
949 /* Bounce a cache query up to mrouted. We could use netlink for this but mrouted
950 * expects the following bizarre scheme.
951 *
952 * Called under mrt_lock.
953 */
954 static int ipmr_cache_report(struct mr_table *mrt,
955 struct sk_buff *pkt, vifi_t vifi, int assert)
956 {
957 const int ihl = ip_hdrlen(pkt);
958 struct sock *mroute_sk;
959 struct igmphdr *igmp;
960 struct igmpmsg *msg;
961 struct sk_buff *skb;
962 int ret;
963
964 if (assert == IGMPMSG_WHOLEPKT)
965 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
966 else
967 skb = alloc_skb(128, GFP_ATOMIC);
968
969 if (!skb)
970 return -ENOBUFS;
971
972 if (assert == IGMPMSG_WHOLEPKT) {
973 /* Ugly, but we have no choice with this interface.
974 * Duplicate old header, fix ihl, length etc.
975 * And all this only to mangle msg->im_msgtype and
976 * to set msg->im_mbz to "mbz" :-)
977 */
978 skb_push(skb, sizeof(struct iphdr));
979 skb_reset_network_header(skb);
980 skb_reset_transport_header(skb);
981 msg = (struct igmpmsg *)skb_network_header(skb);
982 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
983 msg->im_msgtype = IGMPMSG_WHOLEPKT;
984 msg->im_mbz = 0;
985 msg->im_vif = mrt->mroute_reg_vif_num;
986 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
987 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
988 sizeof(struct iphdr));
989 } else {
990 /* Copy the IP header */
991 skb_set_network_header(skb, skb->len);
992 skb_put(skb, ihl);
993 skb_copy_to_linear_data(skb, pkt->data, ihl);
994 /* Flag to the kernel this is a route add */
995 ip_hdr(skb)->protocol = 0;
996 msg = (struct igmpmsg *)skb_network_header(skb);
997 msg->im_vif = vifi;
998 skb_dst_set(skb, dst_clone(skb_dst(pkt)));
999 /* Add our header */
1000 igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
1001 igmp->type = assert;
1002 msg->im_msgtype = assert;
1003 igmp->code = 0;
1004 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
1005 skb->transport_header = skb->network_header;
1006 }
1007
1008 rcu_read_lock();
1009 mroute_sk = rcu_dereference(mrt->mroute_sk);
1010 if (!mroute_sk) {
1011 rcu_read_unlock();
1012 kfree_skb(skb);
1013 return -EINVAL;
1014 }
1015
1016 /* Deliver to mrouted */
1017 ret = sock_queue_rcv_skb(mroute_sk, skb);
1018 rcu_read_unlock();
1019 if (ret < 0) {
1020 net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1021 kfree_skb(skb);
1022 }
1023
1024 return ret;
1025 }
1026
1027 /* Queue a packet for resolution. It gets locked cache entry! */
1028 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1029 struct sk_buff *skb)
1030 {
1031 bool found = false;
1032 int err;
1033 struct mfc_cache *c;
1034 const struct iphdr *iph = ip_hdr(skb);
1035
1036 spin_lock_bh(&mfc_unres_lock);
1037 list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
1038 if (c->mfc_mcastgrp == iph->daddr &&
1039 c->mfc_origin == iph->saddr) {
1040 found = true;
1041 break;
1042 }
1043 }
1044
1045 if (!found) {
1046 /* Create a new entry if allowable */
1047 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1048 (c = ipmr_cache_alloc_unres()) == NULL) {
1049 spin_unlock_bh(&mfc_unres_lock);
1050
1051 kfree_skb(skb);
1052 return -ENOBUFS;
1053 }
1054
1055 /* Fill in the new cache entry */
1056 c->mfc_parent = -1;
1057 c->mfc_origin = iph->saddr;
1058 c->mfc_mcastgrp = iph->daddr;
1059
1060 /* Reflect first query at mrouted. */
1061 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1062 if (err < 0) {
1063 /* If the report failed throw the cache entry
1064 out - Brad Parker
1065 */
1066 spin_unlock_bh(&mfc_unres_lock);
1067
1068 ipmr_cache_free(c);
1069 kfree_skb(skb);
1070 return err;
1071 }
1072
1073 atomic_inc(&mrt->cache_resolve_queue_len);
1074 list_add(&c->list, &mrt->mfc_unres_queue);
1075 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1076
1077 if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1078 mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1079 }
1080
1081 /* See if we can append the packet */
1082 if (c->mfc_un.unres.unresolved.qlen > 3) {
1083 kfree_skb(skb);
1084 err = -ENOBUFS;
1085 } else {
1086 skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1087 err = 0;
1088 }
1089
1090 spin_unlock_bh(&mfc_unres_lock);
1091 return err;
1092 }
1093
1094 /* MFC cache manipulation by user space mroute daemon */
1095
1096 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1097 {
1098 int line;
1099 struct mfc_cache *c, *next;
1100
1101 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1102
1103 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1104 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1105 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1106 (parent == -1 || parent == c->mfc_parent)) {
1107 list_del_rcu(&c->list);
1108 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1109 ipmr_cache_free(c);
1110 return 0;
1111 }
1112 }
1113 return -ENOENT;
1114 }
1115
1116 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1117 struct mfcctl *mfc, int mrtsock, int parent)
1118 {
1119 bool found = false;
1120 int line;
1121 struct mfc_cache *uc, *c;
1122
1123 if (mfc->mfcc_parent >= MAXVIFS)
1124 return -ENFILE;
1125
1126 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1127
1128 list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1129 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1130 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1131 (parent == -1 || parent == c->mfc_parent)) {
1132 found = true;
1133 break;
1134 }
1135 }
1136
1137 if (found) {
1138 write_lock_bh(&mrt_lock);
1139 c->mfc_parent = mfc->mfcc_parent;
1140 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1141 if (!mrtsock)
1142 c->mfc_flags |= MFC_STATIC;
1143 write_unlock_bh(&mrt_lock);
1144 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1145 return 0;
1146 }
1147
1148 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1149 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1150 return -EINVAL;
1151
1152 c = ipmr_cache_alloc();
1153 if (!c)
1154 return -ENOMEM;
1155
1156 c->mfc_origin = mfc->mfcc_origin.s_addr;
1157 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1158 c->mfc_parent = mfc->mfcc_parent;
1159 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1160 if (!mrtsock)
1161 c->mfc_flags |= MFC_STATIC;
1162
1163 list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1164
1165 /* Check to see if we resolved a queued list. If so we
1166 * need to send on the frames and tidy up.
1167 */
1168 found = false;
1169 spin_lock_bh(&mfc_unres_lock);
1170 list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1171 if (uc->mfc_origin == c->mfc_origin &&
1172 uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1173 list_del(&uc->list);
1174 atomic_dec(&mrt->cache_resolve_queue_len);
1175 found = true;
1176 break;
1177 }
1178 }
1179 if (list_empty(&mrt->mfc_unres_queue))
1180 del_timer(&mrt->ipmr_expire_timer);
1181 spin_unlock_bh(&mfc_unres_lock);
1182
1183 if (found) {
1184 ipmr_cache_resolve(net, mrt, uc, c);
1185 ipmr_cache_free(uc);
1186 }
1187 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1188 return 0;
1189 }
1190
1191 /* Close the multicast socket, and clear the vif tables etc */
1192 static void mroute_clean_tables(struct mr_table *mrt, bool all)
1193 {
1194 int i;
1195 LIST_HEAD(list);
1196 struct mfc_cache *c, *next;
1197
1198 /* Shut down all active vif entries */
1199 for (i = 0; i < mrt->maxvif; i++) {
1200 if (!all && (mrt->vif_table[i].flags & VIFF_STATIC))
1201 continue;
1202 vif_delete(mrt, i, 0, &list);
1203 }
1204 unregister_netdevice_many(&list);
1205
1206 /* Wipe the cache */
1207 for (i = 0; i < MFC_LINES; i++) {
1208 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1209 if (!all && (c->mfc_flags & MFC_STATIC))
1210 continue;
1211 list_del_rcu(&c->list);
1212 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1213 ipmr_cache_free(c);
1214 }
1215 }
1216
1217 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1218 spin_lock_bh(&mfc_unres_lock);
1219 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1220 list_del(&c->list);
1221 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1222 ipmr_destroy_unres(mrt, c);
1223 }
1224 spin_unlock_bh(&mfc_unres_lock);
1225 }
1226 }
1227
1228 /* called from ip_ra_control(), before an RCU grace period,
1229 * we dont need to call synchronize_rcu() here
1230 */
1231 static void mrtsock_destruct(struct sock *sk)
1232 {
1233 struct net *net = sock_net(sk);
1234 struct mr_table *mrt;
1235
1236 rtnl_lock();
1237 ipmr_for_each_table(mrt, net) {
1238 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1239 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1240 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1241 NETCONFA_IFINDEX_ALL,
1242 net->ipv4.devconf_all);
1243 RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1244 mroute_clean_tables(mrt, false);
1245 }
1246 }
1247 rtnl_unlock();
1248 }
1249
1250 /* Socket options and virtual interface manipulation. The whole
1251 * virtual interface system is a complete heap, but unfortunately
1252 * that's how BSD mrouted happens to think. Maybe one day with a proper
1253 * MOSPF/PIM router set up we can clean this up.
1254 */
1255
1256 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval,
1257 unsigned int optlen)
1258 {
1259 struct net *net = sock_net(sk);
1260 int val, ret = 0, parent = 0;
1261 struct mr_table *mrt;
1262 struct vifctl vif;
1263 struct mfcctl mfc;
1264 u32 uval;
1265
1266 /* There's one exception to the lock - MRT_DONE which needs to unlock */
1267 rtnl_lock();
1268 if (sk->sk_type != SOCK_RAW ||
1269 inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1270 ret = -EOPNOTSUPP;
1271 goto out_unlock;
1272 }
1273
1274 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1275 if (!mrt) {
1276 ret = -ENOENT;
1277 goto out_unlock;
1278 }
1279 if (optname != MRT_INIT) {
1280 if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1281 !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1282 ret = -EACCES;
1283 goto out_unlock;
1284 }
1285 }
1286
1287 switch (optname) {
1288 case MRT_INIT:
1289 if (optlen != sizeof(int)) {
1290 ret = -EINVAL;
1291 break;
1292 }
1293 if (rtnl_dereference(mrt->mroute_sk)) {
1294 ret = -EADDRINUSE;
1295 break;
1296 }
1297
1298 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1299 if (ret == 0) {
1300 rcu_assign_pointer(mrt->mroute_sk, sk);
1301 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1302 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1303 NETCONFA_IFINDEX_ALL,
1304 net->ipv4.devconf_all);
1305 }
1306 break;
1307 case MRT_DONE:
1308 if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1309 ret = -EACCES;
1310 } else {
1311 /* We need to unlock here because mrtsock_destruct takes
1312 * care of rtnl itself and we can't change that due to
1313 * the IP_ROUTER_ALERT setsockopt which runs without it.
1314 */
1315 rtnl_unlock();
1316 ret = ip_ra_control(sk, 0, NULL);
1317 goto out;
1318 }
1319 break;
1320 case MRT_ADD_VIF:
1321 case MRT_DEL_VIF:
1322 if (optlen != sizeof(vif)) {
1323 ret = -EINVAL;
1324 break;
1325 }
1326 if (copy_from_user(&vif, optval, sizeof(vif))) {
1327 ret = -EFAULT;
1328 break;
1329 }
1330 if (vif.vifc_vifi >= MAXVIFS) {
1331 ret = -ENFILE;
1332 break;
1333 }
1334 if (optname == MRT_ADD_VIF) {
1335 ret = vif_add(net, mrt, &vif,
1336 sk == rtnl_dereference(mrt->mroute_sk));
1337 } else {
1338 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1339 }
1340 break;
1341 /* Manipulate the forwarding caches. These live
1342 * in a sort of kernel/user symbiosis.
1343 */
1344 case MRT_ADD_MFC:
1345 case MRT_DEL_MFC:
1346 parent = -1;
1347 case MRT_ADD_MFC_PROXY:
1348 case MRT_DEL_MFC_PROXY:
1349 if (optlen != sizeof(mfc)) {
1350 ret = -EINVAL;
1351 break;
1352 }
1353 if (copy_from_user(&mfc, optval, sizeof(mfc))) {
1354 ret = -EFAULT;
1355 break;
1356 }
1357 if (parent == 0)
1358 parent = mfc.mfcc_parent;
1359 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1360 ret = ipmr_mfc_delete(mrt, &mfc, parent);
1361 else
1362 ret = ipmr_mfc_add(net, mrt, &mfc,
1363 sk == rtnl_dereference(mrt->mroute_sk),
1364 parent);
1365 break;
1366 /* Control PIM assert. */
1367 case MRT_ASSERT:
1368 if (optlen != sizeof(val)) {
1369 ret = -EINVAL;
1370 break;
1371 }
1372 if (get_user(val, (int __user *)optval)) {
1373 ret = -EFAULT;
1374 break;
1375 }
1376 mrt->mroute_do_assert = val;
1377 break;
1378 case MRT_PIM:
1379 if (!ipmr_pimsm_enabled()) {
1380 ret = -ENOPROTOOPT;
1381 break;
1382 }
1383 if (optlen != sizeof(val)) {
1384 ret = -EINVAL;
1385 break;
1386 }
1387 if (get_user(val, (int __user *)optval)) {
1388 ret = -EFAULT;
1389 break;
1390 }
1391
1392 val = !!val;
1393 if (val != mrt->mroute_do_pim) {
1394 mrt->mroute_do_pim = val;
1395 mrt->mroute_do_assert = val;
1396 }
1397 break;
1398 case MRT_TABLE:
1399 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1400 ret = -ENOPROTOOPT;
1401 break;
1402 }
1403 if (optlen != sizeof(uval)) {
1404 ret = -EINVAL;
1405 break;
1406 }
1407 if (get_user(uval, (u32 __user *)optval)) {
1408 ret = -EFAULT;
1409 break;
1410 }
1411
1412 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1413 ret = -EBUSY;
1414 } else {
1415 mrt = ipmr_new_table(net, uval);
1416 if (IS_ERR(mrt))
1417 ret = PTR_ERR(mrt);
1418 else
1419 raw_sk(sk)->ipmr_table = uval;
1420 }
1421 break;
1422 /* Spurious command, or MRT_VERSION which you cannot set. */
1423 default:
1424 ret = -ENOPROTOOPT;
1425 }
1426 out_unlock:
1427 rtnl_unlock();
1428 out:
1429 return ret;
1430 }
1431
1432 /* Getsock opt support for the multicast routing system. */
1433 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1434 {
1435 int olr;
1436 int val;
1437 struct net *net = sock_net(sk);
1438 struct mr_table *mrt;
1439
1440 if (sk->sk_type != SOCK_RAW ||
1441 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1442 return -EOPNOTSUPP;
1443
1444 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1445 if (!mrt)
1446 return -ENOENT;
1447
1448 switch (optname) {
1449 case MRT_VERSION:
1450 val = 0x0305;
1451 break;
1452 case MRT_PIM:
1453 if (!ipmr_pimsm_enabled())
1454 return -ENOPROTOOPT;
1455 val = mrt->mroute_do_pim;
1456 break;
1457 case MRT_ASSERT:
1458 val = mrt->mroute_do_assert;
1459 break;
1460 default:
1461 return -ENOPROTOOPT;
1462 }
1463
1464 if (get_user(olr, optlen))
1465 return -EFAULT;
1466 olr = min_t(unsigned int, olr, sizeof(int));
1467 if (olr < 0)
1468 return -EINVAL;
1469 if (put_user(olr, optlen))
1470 return -EFAULT;
1471 if (copy_to_user(optval, &val, olr))
1472 return -EFAULT;
1473 return 0;
1474 }
1475
1476 /* The IP multicast ioctl support routines. */
1477 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1478 {
1479 struct sioc_sg_req sr;
1480 struct sioc_vif_req vr;
1481 struct vif_device *vif;
1482 struct mfc_cache *c;
1483 struct net *net = sock_net(sk);
1484 struct mr_table *mrt;
1485
1486 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1487 if (!mrt)
1488 return -ENOENT;
1489
1490 switch (cmd) {
1491 case SIOCGETVIFCNT:
1492 if (copy_from_user(&vr, arg, sizeof(vr)))
1493 return -EFAULT;
1494 if (vr.vifi >= mrt->maxvif)
1495 return -EINVAL;
1496 read_lock(&mrt_lock);
1497 vif = &mrt->vif_table[vr.vifi];
1498 if (VIF_EXISTS(mrt, vr.vifi)) {
1499 vr.icount = vif->pkt_in;
1500 vr.ocount = vif->pkt_out;
1501 vr.ibytes = vif->bytes_in;
1502 vr.obytes = vif->bytes_out;
1503 read_unlock(&mrt_lock);
1504
1505 if (copy_to_user(arg, &vr, sizeof(vr)))
1506 return -EFAULT;
1507 return 0;
1508 }
1509 read_unlock(&mrt_lock);
1510 return -EADDRNOTAVAIL;
1511 case SIOCGETSGCNT:
1512 if (copy_from_user(&sr, arg, sizeof(sr)))
1513 return -EFAULT;
1514
1515 rcu_read_lock();
1516 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1517 if (c) {
1518 sr.pktcnt = c->mfc_un.res.pkt;
1519 sr.bytecnt = c->mfc_un.res.bytes;
1520 sr.wrong_if = c->mfc_un.res.wrong_if;
1521 rcu_read_unlock();
1522
1523 if (copy_to_user(arg, &sr, sizeof(sr)))
1524 return -EFAULT;
1525 return 0;
1526 }
1527 rcu_read_unlock();
1528 return -EADDRNOTAVAIL;
1529 default:
1530 return -ENOIOCTLCMD;
1531 }
1532 }
1533
1534 #ifdef CONFIG_COMPAT
1535 struct compat_sioc_sg_req {
1536 struct in_addr src;
1537 struct in_addr grp;
1538 compat_ulong_t pktcnt;
1539 compat_ulong_t bytecnt;
1540 compat_ulong_t wrong_if;
1541 };
1542
1543 struct compat_sioc_vif_req {
1544 vifi_t vifi; /* Which iface */
1545 compat_ulong_t icount;
1546 compat_ulong_t ocount;
1547 compat_ulong_t ibytes;
1548 compat_ulong_t obytes;
1549 };
1550
1551 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1552 {
1553 struct compat_sioc_sg_req sr;
1554 struct compat_sioc_vif_req vr;
1555 struct vif_device *vif;
1556 struct mfc_cache *c;
1557 struct net *net = sock_net(sk);
1558 struct mr_table *mrt;
1559
1560 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1561 if (!mrt)
1562 return -ENOENT;
1563
1564 switch (cmd) {
1565 case SIOCGETVIFCNT:
1566 if (copy_from_user(&vr, arg, sizeof(vr)))
1567 return -EFAULT;
1568 if (vr.vifi >= mrt->maxvif)
1569 return -EINVAL;
1570 read_lock(&mrt_lock);
1571 vif = &mrt->vif_table[vr.vifi];
1572 if (VIF_EXISTS(mrt, vr.vifi)) {
1573 vr.icount = vif->pkt_in;
1574 vr.ocount = vif->pkt_out;
1575 vr.ibytes = vif->bytes_in;
1576 vr.obytes = vif->bytes_out;
1577 read_unlock(&mrt_lock);
1578
1579 if (copy_to_user(arg, &vr, sizeof(vr)))
1580 return -EFAULT;
1581 return 0;
1582 }
1583 read_unlock(&mrt_lock);
1584 return -EADDRNOTAVAIL;
1585 case SIOCGETSGCNT:
1586 if (copy_from_user(&sr, arg, sizeof(sr)))
1587 return -EFAULT;
1588
1589 rcu_read_lock();
1590 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1591 if (c) {
1592 sr.pktcnt = c->mfc_un.res.pkt;
1593 sr.bytecnt = c->mfc_un.res.bytes;
1594 sr.wrong_if = c->mfc_un.res.wrong_if;
1595 rcu_read_unlock();
1596
1597 if (copy_to_user(arg, &sr, sizeof(sr)))
1598 return -EFAULT;
1599 return 0;
1600 }
1601 rcu_read_unlock();
1602 return -EADDRNOTAVAIL;
1603 default:
1604 return -ENOIOCTLCMD;
1605 }
1606 }
1607 #endif
1608
1609 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1610 {
1611 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1612 struct net *net = dev_net(dev);
1613 struct mr_table *mrt;
1614 struct vif_device *v;
1615 int ct;
1616
1617 if (event != NETDEV_UNREGISTER)
1618 return NOTIFY_DONE;
1619
1620 ipmr_for_each_table(mrt, net) {
1621 v = &mrt->vif_table[0];
1622 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1623 if (v->dev == dev)
1624 vif_delete(mrt, ct, 1, NULL);
1625 }
1626 }
1627 return NOTIFY_DONE;
1628 }
1629
1630 static struct notifier_block ip_mr_notifier = {
1631 .notifier_call = ipmr_device_event,
1632 };
1633
1634 /* Encapsulate a packet by attaching a valid IPIP header to it.
1635 * This avoids tunnel drivers and other mess and gives us the speed so
1636 * important for multicast video.
1637 */
1638 static void ip_encap(struct net *net, struct sk_buff *skb,
1639 __be32 saddr, __be32 daddr)
1640 {
1641 struct iphdr *iph;
1642 const struct iphdr *old_iph = ip_hdr(skb);
1643
1644 skb_push(skb, sizeof(struct iphdr));
1645 skb->transport_header = skb->network_header;
1646 skb_reset_network_header(skb);
1647 iph = ip_hdr(skb);
1648
1649 iph->version = 4;
1650 iph->tos = old_iph->tos;
1651 iph->ttl = old_iph->ttl;
1652 iph->frag_off = 0;
1653 iph->daddr = daddr;
1654 iph->saddr = saddr;
1655 iph->protocol = IPPROTO_IPIP;
1656 iph->ihl = 5;
1657 iph->tot_len = htons(skb->len);
1658 ip_select_ident(net, skb, NULL);
1659 ip_send_check(iph);
1660
1661 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1662 nf_reset(skb);
1663 }
1664
1665 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1666 struct sk_buff *skb)
1667 {
1668 struct ip_options *opt = &(IPCB(skb)->opt);
1669
1670 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1671 IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1672
1673 if (unlikely(opt->optlen))
1674 ip_forward_options(skb);
1675
1676 return dst_output(net, sk, skb);
1677 }
1678
1679 /* Processing handlers for ipmr_forward */
1680
1681 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1682 struct sk_buff *skb, struct mfc_cache *c, int vifi)
1683 {
1684 const struct iphdr *iph = ip_hdr(skb);
1685 struct vif_device *vif = &mrt->vif_table[vifi];
1686 struct net_device *dev;
1687 struct rtable *rt;
1688 struct flowi4 fl4;
1689 int encap = 0;
1690
1691 if (!vif->dev)
1692 goto out_free;
1693
1694 if (vif->flags & VIFF_REGISTER) {
1695 vif->pkt_out++;
1696 vif->bytes_out += skb->len;
1697 vif->dev->stats.tx_bytes += skb->len;
1698 vif->dev->stats.tx_packets++;
1699 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1700 goto out_free;
1701 }
1702
1703 if (vif->flags & VIFF_TUNNEL) {
1704 rt = ip_route_output_ports(net, &fl4, NULL,
1705 vif->remote, vif->local,
1706 0, 0,
1707 IPPROTO_IPIP,
1708 RT_TOS(iph->tos), vif->link);
1709 if (IS_ERR(rt))
1710 goto out_free;
1711 encap = sizeof(struct iphdr);
1712 } else {
1713 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1714 0, 0,
1715 IPPROTO_IPIP,
1716 RT_TOS(iph->tos), vif->link);
1717 if (IS_ERR(rt))
1718 goto out_free;
1719 }
1720
1721 dev = rt->dst.dev;
1722
1723 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1724 /* Do not fragment multicasts. Alas, IPv4 does not
1725 * allow to send ICMP, so that packets will disappear
1726 * to blackhole.
1727 */
1728 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1729 ip_rt_put(rt);
1730 goto out_free;
1731 }
1732
1733 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1734
1735 if (skb_cow(skb, encap)) {
1736 ip_rt_put(rt);
1737 goto out_free;
1738 }
1739
1740 vif->pkt_out++;
1741 vif->bytes_out += skb->len;
1742
1743 skb_dst_drop(skb);
1744 skb_dst_set(skb, &rt->dst);
1745 ip_decrease_ttl(ip_hdr(skb));
1746
1747 /* FIXME: forward and output firewalls used to be called here.
1748 * What do we do with netfilter? -- RR
1749 */
1750 if (vif->flags & VIFF_TUNNEL) {
1751 ip_encap(net, skb, vif->local, vif->remote);
1752 /* FIXME: extra output firewall step used to be here. --RR */
1753 vif->dev->stats.tx_packets++;
1754 vif->dev->stats.tx_bytes += skb->len;
1755 }
1756
1757 IPCB(skb)->flags |= IPSKB_FORWARDED;
1758
1759 /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1760 * not only before forwarding, but after forwarding on all output
1761 * interfaces. It is clear, if mrouter runs a multicasting
1762 * program, it should receive packets not depending to what interface
1763 * program is joined.
1764 * If we will not make it, the program will have to join on all
1765 * interfaces. On the other hand, multihoming host (or router, but
1766 * not mrouter) cannot join to more than one interface - it will
1767 * result in receiving multiple packets.
1768 */
1769 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1770 net, NULL, skb, skb->dev, dev,
1771 ipmr_forward_finish);
1772 return;
1773
1774 out_free:
1775 kfree_skb(skb);
1776 }
1777
1778 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1779 {
1780 int ct;
1781
1782 for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1783 if (mrt->vif_table[ct].dev == dev)
1784 break;
1785 }
1786 return ct;
1787 }
1788
1789 /* "local" means that we should preserve one skb (for local delivery) */
1790 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1791 struct sk_buff *skb, struct mfc_cache *cache,
1792 int local)
1793 {
1794 int psend = -1;
1795 int vif, ct;
1796 int true_vifi = ipmr_find_vif(mrt, skb->dev);
1797
1798 vif = cache->mfc_parent;
1799 cache->mfc_un.res.pkt++;
1800 cache->mfc_un.res.bytes += skb->len;
1801 cache->mfc_un.res.lastuse = jiffies;
1802
1803 if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1804 struct mfc_cache *cache_proxy;
1805
1806 /* For an (*,G) entry, we only check that the incomming
1807 * interface is part of the static tree.
1808 */
1809 cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
1810 if (cache_proxy &&
1811 cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
1812 goto forward;
1813 }
1814
1815 /* Wrong interface: drop packet and (maybe) send PIM assert. */
1816 if (mrt->vif_table[vif].dev != skb->dev) {
1817 struct net_device *mdev;
1818
1819 mdev = l3mdev_master_dev_rcu(mrt->vif_table[vif].dev);
1820 if (mdev == skb->dev)
1821 goto forward;
1822
1823 if (rt_is_output_route(skb_rtable(skb))) {
1824 /* It is our own packet, looped back.
1825 * Very complicated situation...
1826 *
1827 * The best workaround until routing daemons will be
1828 * fixed is not to redistribute packet, if it was
1829 * send through wrong interface. It means, that
1830 * multicast applications WILL NOT work for
1831 * (S,G), which have default multicast route pointing
1832 * to wrong oif. In any case, it is not a good
1833 * idea to use multicasting applications on router.
1834 */
1835 goto dont_forward;
1836 }
1837
1838 cache->mfc_un.res.wrong_if++;
1839
1840 if (true_vifi >= 0 && mrt->mroute_do_assert &&
1841 /* pimsm uses asserts, when switching from RPT to SPT,
1842 * so that we cannot check that packet arrived on an oif.
1843 * It is bad, but otherwise we would need to move pretty
1844 * large chunk of pimd to kernel. Ough... --ANK
1845 */
1846 (mrt->mroute_do_pim ||
1847 cache->mfc_un.res.ttls[true_vifi] < 255) &&
1848 time_after(jiffies,
1849 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1850 cache->mfc_un.res.last_assert = jiffies;
1851 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1852 }
1853 goto dont_forward;
1854 }
1855
1856 forward:
1857 mrt->vif_table[vif].pkt_in++;
1858 mrt->vif_table[vif].bytes_in += skb->len;
1859
1860 /* Forward the frame */
1861 if (cache->mfc_origin == htonl(INADDR_ANY) &&
1862 cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
1863 if (true_vifi >= 0 &&
1864 true_vifi != cache->mfc_parent &&
1865 ip_hdr(skb)->ttl >
1866 cache->mfc_un.res.ttls[cache->mfc_parent]) {
1867 /* It's an (*,*) entry and the packet is not coming from
1868 * the upstream: forward the packet to the upstream
1869 * only.
1870 */
1871 psend = cache->mfc_parent;
1872 goto last_forward;
1873 }
1874 goto dont_forward;
1875 }
1876 for (ct = cache->mfc_un.res.maxvif - 1;
1877 ct >= cache->mfc_un.res.minvif; ct--) {
1878 /* For (*,G) entry, don't forward to the incoming interface */
1879 if ((cache->mfc_origin != htonl(INADDR_ANY) ||
1880 ct != true_vifi) &&
1881 ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1882 if (psend != -1) {
1883 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1884
1885 if (skb2)
1886 ipmr_queue_xmit(net, mrt, skb2, cache,
1887 psend);
1888 }
1889 psend = ct;
1890 }
1891 }
1892 last_forward:
1893 if (psend != -1) {
1894 if (local) {
1895 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1896
1897 if (skb2)
1898 ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1899 } else {
1900 ipmr_queue_xmit(net, mrt, skb, cache, psend);
1901 return;
1902 }
1903 }
1904
1905 dont_forward:
1906 if (!local)
1907 kfree_skb(skb);
1908 }
1909
1910 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1911 {
1912 struct rtable *rt = skb_rtable(skb);
1913 struct iphdr *iph = ip_hdr(skb);
1914 struct flowi4 fl4 = {
1915 .daddr = iph->daddr,
1916 .saddr = iph->saddr,
1917 .flowi4_tos = RT_TOS(iph->tos),
1918 .flowi4_oif = (rt_is_output_route(rt) ?
1919 skb->dev->ifindex : 0),
1920 .flowi4_iif = (rt_is_output_route(rt) ?
1921 LOOPBACK_IFINDEX :
1922 skb->dev->ifindex),
1923 .flowi4_mark = skb->mark,
1924 };
1925 struct mr_table *mrt;
1926 int err;
1927
1928 err = ipmr_fib_lookup(net, &fl4, &mrt);
1929 if (err)
1930 return ERR_PTR(err);
1931 return mrt;
1932 }
1933
1934 /* Multicast packets for forwarding arrive here
1935 * Called with rcu_read_lock();
1936 */
1937 int ip_mr_input(struct sk_buff *skb)
1938 {
1939 struct mfc_cache *cache;
1940 struct net *net = dev_net(skb->dev);
1941 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1942 struct mr_table *mrt;
1943
1944 /* Packet is looped back after forward, it should not be
1945 * forwarded second time, but still can be delivered locally.
1946 */
1947 if (IPCB(skb)->flags & IPSKB_FORWARDED)
1948 goto dont_forward;
1949
1950 mrt = ipmr_rt_fib_lookup(net, skb);
1951 if (IS_ERR(mrt)) {
1952 kfree_skb(skb);
1953 return PTR_ERR(mrt);
1954 }
1955 if (!local) {
1956 if (IPCB(skb)->opt.router_alert) {
1957 if (ip_call_ra_chain(skb))
1958 return 0;
1959 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1960 /* IGMPv1 (and broken IGMPv2 implementations sort of
1961 * Cisco IOS <= 11.2(8)) do not put router alert
1962 * option to IGMP packets destined to routable
1963 * groups. It is very bad, because it means
1964 * that we can forward NO IGMP messages.
1965 */
1966 struct sock *mroute_sk;
1967
1968 mroute_sk = rcu_dereference(mrt->mroute_sk);
1969 if (mroute_sk) {
1970 nf_reset(skb);
1971 raw_rcv(mroute_sk, skb);
1972 return 0;
1973 }
1974 }
1975 }
1976
1977 /* already under rcu_read_lock() */
1978 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1979 if (!cache) {
1980 int vif = ipmr_find_vif(mrt, skb->dev);
1981
1982 if (vif >= 0)
1983 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
1984 vif);
1985 }
1986
1987 /* No usable cache entry */
1988 if (!cache) {
1989 int vif;
1990
1991 if (local) {
1992 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1993 ip_local_deliver(skb);
1994 if (!skb2)
1995 return -ENOBUFS;
1996 skb = skb2;
1997 }
1998
1999 read_lock(&mrt_lock);
2000 vif = ipmr_find_vif(mrt, skb->dev);
2001 if (vif >= 0) {
2002 int err2 = ipmr_cache_unresolved(mrt, vif, skb);
2003 read_unlock(&mrt_lock);
2004
2005 return err2;
2006 }
2007 read_unlock(&mrt_lock);
2008 kfree_skb(skb);
2009 return -ENODEV;
2010 }
2011
2012 read_lock(&mrt_lock);
2013 ip_mr_forward(net, mrt, skb, cache, local);
2014 read_unlock(&mrt_lock);
2015
2016 if (local)
2017 return ip_local_deliver(skb);
2018
2019 return 0;
2020
2021 dont_forward:
2022 if (local)
2023 return ip_local_deliver(skb);
2024 kfree_skb(skb);
2025 return 0;
2026 }
2027
2028 #ifdef CONFIG_IP_PIMSM_V1
2029 /* Handle IGMP messages of PIMv1 */
2030 int pim_rcv_v1(struct sk_buff *skb)
2031 {
2032 struct igmphdr *pim;
2033 struct net *net = dev_net(skb->dev);
2034 struct mr_table *mrt;
2035
2036 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2037 goto drop;
2038
2039 pim = igmp_hdr(skb);
2040
2041 mrt = ipmr_rt_fib_lookup(net, skb);
2042 if (IS_ERR(mrt))
2043 goto drop;
2044 if (!mrt->mroute_do_pim ||
2045 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2046 goto drop;
2047
2048 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2049 drop:
2050 kfree_skb(skb);
2051 }
2052 return 0;
2053 }
2054 #endif
2055
2056 #ifdef CONFIG_IP_PIMSM_V2
2057 static int pim_rcv(struct sk_buff *skb)
2058 {
2059 struct pimreghdr *pim;
2060 struct net *net = dev_net(skb->dev);
2061 struct mr_table *mrt;
2062
2063 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2064 goto drop;
2065
2066 pim = (struct pimreghdr *)skb_transport_header(skb);
2067 if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2068 (pim->flags & PIM_NULL_REGISTER) ||
2069 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2070 csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2071 goto drop;
2072
2073 mrt = ipmr_rt_fib_lookup(net, skb);
2074 if (IS_ERR(mrt))
2075 goto drop;
2076 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2077 drop:
2078 kfree_skb(skb);
2079 }
2080 return 0;
2081 }
2082 #endif
2083
2084 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2085 struct mfc_cache *c, struct rtmsg *rtm)
2086 {
2087 struct rta_mfc_stats mfcs;
2088 struct nlattr *mp_attr;
2089 struct rtnexthop *nhp;
2090 unsigned long lastuse;
2091 int ct;
2092
2093 /* If cache is unresolved, don't try to parse IIF and OIF */
2094 if (c->mfc_parent >= MAXVIFS)
2095 return -ENOENT;
2096
2097 if (VIF_EXISTS(mrt, c->mfc_parent) &&
2098 nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2099 return -EMSGSIZE;
2100
2101 if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2102 return -EMSGSIZE;
2103
2104 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2105 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2106 if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2107 nla_nest_cancel(skb, mp_attr);
2108 return -EMSGSIZE;
2109 }
2110
2111 nhp->rtnh_flags = 0;
2112 nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2113 nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2114 nhp->rtnh_len = sizeof(*nhp);
2115 }
2116 }
2117
2118 nla_nest_end(skb, mp_attr);
2119
2120 lastuse = READ_ONCE(c->mfc_un.res.lastuse);
2121 lastuse = time_after_eq(jiffies, lastuse) ? jiffies - lastuse : 0;
2122
2123 mfcs.mfcs_packets = c->mfc_un.res.pkt;
2124 mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2125 mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2126 if (nla_put_64bit(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs, RTA_PAD) ||
2127 nla_put_u64_64bit(skb, RTA_EXPIRES, jiffies_to_clock_t(lastuse),
2128 RTA_PAD))
2129 return -EMSGSIZE;
2130
2131 rtm->rtm_type = RTN_MULTICAST;
2132 return 1;
2133 }
2134
2135 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2136 __be32 saddr, __be32 daddr,
2137 struct rtmsg *rtm, int nowait, u32 portid)
2138 {
2139 struct mfc_cache *cache;
2140 struct mr_table *mrt;
2141 int err;
2142
2143 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2144 if (!mrt)
2145 return -ENOENT;
2146
2147 rcu_read_lock();
2148 cache = ipmr_cache_find(mrt, saddr, daddr);
2149 if (!cache && skb->dev) {
2150 int vif = ipmr_find_vif(mrt, skb->dev);
2151
2152 if (vif >= 0)
2153 cache = ipmr_cache_find_any(mrt, daddr, vif);
2154 }
2155 if (!cache) {
2156 struct sk_buff *skb2;
2157 struct iphdr *iph;
2158 struct net_device *dev;
2159 int vif = -1;
2160
2161 if (nowait) {
2162 rcu_read_unlock();
2163 return -EAGAIN;
2164 }
2165
2166 dev = skb->dev;
2167 read_lock(&mrt_lock);
2168 if (dev)
2169 vif = ipmr_find_vif(mrt, dev);
2170 if (vif < 0) {
2171 read_unlock(&mrt_lock);
2172 rcu_read_unlock();
2173 return -ENODEV;
2174 }
2175 skb2 = skb_clone(skb, GFP_ATOMIC);
2176 if (!skb2) {
2177 read_unlock(&mrt_lock);
2178 rcu_read_unlock();
2179 return -ENOMEM;
2180 }
2181
2182 NETLINK_CB(skb2).portid = portid;
2183 skb_push(skb2, sizeof(struct iphdr));
2184 skb_reset_network_header(skb2);
2185 iph = ip_hdr(skb2);
2186 iph->ihl = sizeof(struct iphdr) >> 2;
2187 iph->saddr = saddr;
2188 iph->daddr = daddr;
2189 iph->version = 0;
2190 err = ipmr_cache_unresolved(mrt, vif, skb2);
2191 read_unlock(&mrt_lock);
2192 rcu_read_unlock();
2193 return err;
2194 }
2195
2196 read_lock(&mrt_lock);
2197 err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2198 read_unlock(&mrt_lock);
2199 rcu_read_unlock();
2200 return err;
2201 }
2202
2203 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2204 u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2205 int flags)
2206 {
2207 struct nlmsghdr *nlh;
2208 struct rtmsg *rtm;
2209 int err;
2210
2211 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2212 if (!nlh)
2213 return -EMSGSIZE;
2214
2215 rtm = nlmsg_data(nlh);
2216 rtm->rtm_family = RTNL_FAMILY_IPMR;
2217 rtm->rtm_dst_len = 32;
2218 rtm->rtm_src_len = 32;
2219 rtm->rtm_tos = 0;
2220 rtm->rtm_table = mrt->id;
2221 if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2222 goto nla_put_failure;
2223 rtm->rtm_type = RTN_MULTICAST;
2224 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2225 if (c->mfc_flags & MFC_STATIC)
2226 rtm->rtm_protocol = RTPROT_STATIC;
2227 else
2228 rtm->rtm_protocol = RTPROT_MROUTED;
2229 rtm->rtm_flags = 0;
2230
2231 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2232 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2233 goto nla_put_failure;
2234 err = __ipmr_fill_mroute(mrt, skb, c, rtm);
2235 /* do not break the dump if cache is unresolved */
2236 if (err < 0 && err != -ENOENT)
2237 goto nla_put_failure;
2238
2239 nlmsg_end(skb, nlh);
2240 return 0;
2241
2242 nla_put_failure:
2243 nlmsg_cancel(skb, nlh);
2244 return -EMSGSIZE;
2245 }
2246
2247 static size_t mroute_msgsize(bool unresolved, int maxvif)
2248 {
2249 size_t len =
2250 NLMSG_ALIGN(sizeof(struct rtmsg))
2251 + nla_total_size(4) /* RTA_TABLE */
2252 + nla_total_size(4) /* RTA_SRC */
2253 + nla_total_size(4) /* RTA_DST */
2254 ;
2255
2256 if (!unresolved)
2257 len = len
2258 + nla_total_size(4) /* RTA_IIF */
2259 + nla_total_size(0) /* RTA_MULTIPATH */
2260 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2261 /* RTA_MFC_STATS */
2262 + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2263 ;
2264
2265 return len;
2266 }
2267
2268 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2269 int cmd)
2270 {
2271 struct net *net = read_pnet(&mrt->net);
2272 struct sk_buff *skb;
2273 int err = -ENOBUFS;
2274
2275 skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
2276 GFP_ATOMIC);
2277 if (!skb)
2278 goto errout;
2279
2280 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2281 if (err < 0)
2282 goto errout;
2283
2284 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2285 return;
2286
2287 errout:
2288 kfree_skb(skb);
2289 if (err < 0)
2290 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2291 }
2292
2293 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2294 {
2295 struct net *net = sock_net(skb->sk);
2296 struct mr_table *mrt;
2297 struct mfc_cache *mfc;
2298 unsigned int t = 0, s_t;
2299 unsigned int h = 0, s_h;
2300 unsigned int e = 0, s_e;
2301
2302 s_t = cb->args[0];
2303 s_h = cb->args[1];
2304 s_e = cb->args[2];
2305
2306 rcu_read_lock();
2307 ipmr_for_each_table(mrt, net) {
2308 if (t < s_t)
2309 goto next_table;
2310 if (t > s_t)
2311 s_h = 0;
2312 for (h = s_h; h < MFC_LINES; h++) {
2313 list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2314 if (e < s_e)
2315 goto next_entry;
2316 if (ipmr_fill_mroute(mrt, skb,
2317 NETLINK_CB(cb->skb).portid,
2318 cb->nlh->nlmsg_seq,
2319 mfc, RTM_NEWROUTE,
2320 NLM_F_MULTI) < 0)
2321 goto done;
2322 next_entry:
2323 e++;
2324 }
2325 e = s_e = 0;
2326 }
2327 spin_lock_bh(&mfc_unres_lock);
2328 list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
2329 if (e < s_e)
2330 goto next_entry2;
2331 if (ipmr_fill_mroute(mrt, skb,
2332 NETLINK_CB(cb->skb).portid,
2333 cb->nlh->nlmsg_seq,
2334 mfc, RTM_NEWROUTE,
2335 NLM_F_MULTI) < 0) {
2336 spin_unlock_bh(&mfc_unres_lock);
2337 goto done;
2338 }
2339 next_entry2:
2340 e++;
2341 }
2342 spin_unlock_bh(&mfc_unres_lock);
2343 e = s_e = 0;
2344 s_h = 0;
2345 next_table:
2346 t++;
2347 }
2348 done:
2349 rcu_read_unlock();
2350
2351 cb->args[2] = e;
2352 cb->args[1] = h;
2353 cb->args[0] = t;
2354
2355 return skb->len;
2356 }
2357
2358 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2359 [RTA_SRC] = { .type = NLA_U32 },
2360 [RTA_DST] = { .type = NLA_U32 },
2361 [RTA_IIF] = { .type = NLA_U32 },
2362 [RTA_TABLE] = { .type = NLA_U32 },
2363 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
2364 };
2365
2366 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2367 {
2368 switch (rtm_protocol) {
2369 case RTPROT_STATIC:
2370 case RTPROT_MROUTED:
2371 return true;
2372 }
2373 return false;
2374 }
2375
2376 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2377 {
2378 struct rtnexthop *rtnh = nla_data(nla);
2379 int remaining = nla_len(nla), vifi = 0;
2380
2381 while (rtnh_ok(rtnh, remaining)) {
2382 mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2383 if (++vifi == MAXVIFS)
2384 break;
2385 rtnh = rtnh_next(rtnh, &remaining);
2386 }
2387
2388 return remaining > 0 ? -EINVAL : vifi;
2389 }
2390
2391 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2392 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2393 struct mfcctl *mfcc, int *mrtsock,
2394 struct mr_table **mrtret)
2395 {
2396 struct net_device *dev = NULL;
2397 u32 tblid = RT_TABLE_DEFAULT;
2398 struct mr_table *mrt;
2399 struct nlattr *attr;
2400 struct rtmsg *rtm;
2401 int ret, rem;
2402
2403 ret = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipmr_policy);
2404 if (ret < 0)
2405 goto out;
2406 rtm = nlmsg_data(nlh);
2407
2408 ret = -EINVAL;
2409 if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2410 rtm->rtm_type != RTN_MULTICAST ||
2411 rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2412 !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2413 goto out;
2414
2415 memset(mfcc, 0, sizeof(*mfcc));
2416 mfcc->mfcc_parent = -1;
2417 ret = 0;
2418 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2419 switch (nla_type(attr)) {
2420 case RTA_SRC:
2421 mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2422 break;
2423 case RTA_DST:
2424 mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2425 break;
2426 case RTA_IIF:
2427 dev = __dev_get_by_index(net, nla_get_u32(attr));
2428 if (!dev) {
2429 ret = -ENODEV;
2430 goto out;
2431 }
2432 break;
2433 case RTA_MULTIPATH:
2434 if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2435 ret = -EINVAL;
2436 goto out;
2437 }
2438 break;
2439 case RTA_PREFSRC:
2440 ret = 1;
2441 break;
2442 case RTA_TABLE:
2443 tblid = nla_get_u32(attr);
2444 break;
2445 }
2446 }
2447 mrt = ipmr_get_table(net, tblid);
2448 if (!mrt) {
2449 ret = -ENOENT;
2450 goto out;
2451 }
2452 *mrtret = mrt;
2453 *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2454 if (dev)
2455 mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2456
2457 out:
2458 return ret;
2459 }
2460
2461 /* takes care of both newroute and delroute */
2462 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh)
2463 {
2464 struct net *net = sock_net(skb->sk);
2465 int ret, mrtsock, parent;
2466 struct mr_table *tbl;
2467 struct mfcctl mfcc;
2468
2469 mrtsock = 0;
2470 tbl = NULL;
2471 ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl);
2472 if (ret < 0)
2473 return ret;
2474
2475 parent = ret ? mfcc.mfcc_parent : -1;
2476 if (nlh->nlmsg_type == RTM_NEWROUTE)
2477 return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2478 else
2479 return ipmr_mfc_delete(tbl, &mfcc, parent);
2480 }
2481
2482 #ifdef CONFIG_PROC_FS
2483 /* The /proc interfaces to multicast routing :
2484 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2485 */
2486 struct ipmr_vif_iter {
2487 struct seq_net_private p;
2488 struct mr_table *mrt;
2489 int ct;
2490 };
2491
2492 static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2493 struct ipmr_vif_iter *iter,
2494 loff_t pos)
2495 {
2496 struct mr_table *mrt = iter->mrt;
2497
2498 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2499 if (!VIF_EXISTS(mrt, iter->ct))
2500 continue;
2501 if (pos-- == 0)
2502 return &mrt->vif_table[iter->ct];
2503 }
2504 return NULL;
2505 }
2506
2507 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2508 __acquires(mrt_lock)
2509 {
2510 struct ipmr_vif_iter *iter = seq->private;
2511 struct net *net = seq_file_net(seq);
2512 struct mr_table *mrt;
2513
2514 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2515 if (!mrt)
2516 return ERR_PTR(-ENOENT);
2517
2518 iter->mrt = mrt;
2519
2520 read_lock(&mrt_lock);
2521 return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2522 : SEQ_START_TOKEN;
2523 }
2524
2525 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2526 {
2527 struct ipmr_vif_iter *iter = seq->private;
2528 struct net *net = seq_file_net(seq);
2529 struct mr_table *mrt = iter->mrt;
2530
2531 ++*pos;
2532 if (v == SEQ_START_TOKEN)
2533 return ipmr_vif_seq_idx(net, iter, 0);
2534
2535 while (++iter->ct < mrt->maxvif) {
2536 if (!VIF_EXISTS(mrt, iter->ct))
2537 continue;
2538 return &mrt->vif_table[iter->ct];
2539 }
2540 return NULL;
2541 }
2542
2543 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2544 __releases(mrt_lock)
2545 {
2546 read_unlock(&mrt_lock);
2547 }
2548
2549 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2550 {
2551 struct ipmr_vif_iter *iter = seq->private;
2552 struct mr_table *mrt = iter->mrt;
2553
2554 if (v == SEQ_START_TOKEN) {
2555 seq_puts(seq,
2556 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
2557 } else {
2558 const struct vif_device *vif = v;
2559 const char *name = vif->dev ? vif->dev->name : "none";
2560
2561 seq_printf(seq,
2562 "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
2563 vif - mrt->vif_table,
2564 name, vif->bytes_in, vif->pkt_in,
2565 vif->bytes_out, vif->pkt_out,
2566 vif->flags, vif->local, vif->remote);
2567 }
2568 return 0;
2569 }
2570
2571 static const struct seq_operations ipmr_vif_seq_ops = {
2572 .start = ipmr_vif_seq_start,
2573 .next = ipmr_vif_seq_next,
2574 .stop = ipmr_vif_seq_stop,
2575 .show = ipmr_vif_seq_show,
2576 };
2577
2578 static int ipmr_vif_open(struct inode *inode, struct file *file)
2579 {
2580 return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2581 sizeof(struct ipmr_vif_iter));
2582 }
2583
2584 static const struct file_operations ipmr_vif_fops = {
2585 .owner = THIS_MODULE,
2586 .open = ipmr_vif_open,
2587 .read = seq_read,
2588 .llseek = seq_lseek,
2589 .release = seq_release_net,
2590 };
2591
2592 struct ipmr_mfc_iter {
2593 struct seq_net_private p;
2594 struct mr_table *mrt;
2595 struct list_head *cache;
2596 int ct;
2597 };
2598
2599
2600 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2601 struct ipmr_mfc_iter *it, loff_t pos)
2602 {
2603 struct mr_table *mrt = it->mrt;
2604 struct mfc_cache *mfc;
2605
2606 rcu_read_lock();
2607 for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2608 it->cache = &mrt->mfc_cache_array[it->ct];
2609 list_for_each_entry_rcu(mfc, it->cache, list)
2610 if (pos-- == 0)
2611 return mfc;
2612 }
2613 rcu_read_unlock();
2614
2615 spin_lock_bh(&mfc_unres_lock);
2616 it->cache = &mrt->mfc_unres_queue;
2617 list_for_each_entry(mfc, it->cache, list)
2618 if (pos-- == 0)
2619 return mfc;
2620 spin_unlock_bh(&mfc_unres_lock);
2621
2622 it->cache = NULL;
2623 return NULL;
2624 }
2625
2626
2627 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2628 {
2629 struct ipmr_mfc_iter *it = seq->private;
2630 struct net *net = seq_file_net(seq);
2631 struct mr_table *mrt;
2632
2633 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2634 if (!mrt)
2635 return ERR_PTR(-ENOENT);
2636
2637 it->mrt = mrt;
2638 it->cache = NULL;
2639 it->ct = 0;
2640 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2641 : SEQ_START_TOKEN;
2642 }
2643
2644 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2645 {
2646 struct mfc_cache *mfc = v;
2647 struct ipmr_mfc_iter *it = seq->private;
2648 struct net *net = seq_file_net(seq);
2649 struct mr_table *mrt = it->mrt;
2650
2651 ++*pos;
2652
2653 if (v == SEQ_START_TOKEN)
2654 return ipmr_mfc_seq_idx(net, seq->private, 0);
2655
2656 if (mfc->list.next != it->cache)
2657 return list_entry(mfc->list.next, struct mfc_cache, list);
2658
2659 if (it->cache == &mrt->mfc_unres_queue)
2660 goto end_of_list;
2661
2662 BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2663
2664 while (++it->ct < MFC_LINES) {
2665 it->cache = &mrt->mfc_cache_array[it->ct];
2666 if (list_empty(it->cache))
2667 continue;
2668 return list_first_entry(it->cache, struct mfc_cache, list);
2669 }
2670
2671 /* exhausted cache_array, show unresolved */
2672 rcu_read_unlock();
2673 it->cache = &mrt->mfc_unres_queue;
2674 it->ct = 0;
2675
2676 spin_lock_bh(&mfc_unres_lock);
2677 if (!list_empty(it->cache))
2678 return list_first_entry(it->cache, struct mfc_cache, list);
2679
2680 end_of_list:
2681 spin_unlock_bh(&mfc_unres_lock);
2682 it->cache = NULL;
2683
2684 return NULL;
2685 }
2686
2687 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2688 {
2689 struct ipmr_mfc_iter *it = seq->private;
2690 struct mr_table *mrt = it->mrt;
2691
2692 if (it->cache == &mrt->mfc_unres_queue)
2693 spin_unlock_bh(&mfc_unres_lock);
2694 else if (it->cache == &mrt->mfc_cache_array[it->ct])
2695 rcu_read_unlock();
2696 }
2697
2698 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2699 {
2700 int n;
2701
2702 if (v == SEQ_START_TOKEN) {
2703 seq_puts(seq,
2704 "Group Origin Iif Pkts Bytes Wrong Oifs\n");
2705 } else {
2706 const struct mfc_cache *mfc = v;
2707 const struct ipmr_mfc_iter *it = seq->private;
2708 const struct mr_table *mrt = it->mrt;
2709
2710 seq_printf(seq, "%08X %08X %-3hd",
2711 (__force u32) mfc->mfc_mcastgrp,
2712 (__force u32) mfc->mfc_origin,
2713 mfc->mfc_parent);
2714
2715 if (it->cache != &mrt->mfc_unres_queue) {
2716 seq_printf(seq, " %8lu %8lu %8lu",
2717 mfc->mfc_un.res.pkt,
2718 mfc->mfc_un.res.bytes,
2719 mfc->mfc_un.res.wrong_if);
2720 for (n = mfc->mfc_un.res.minvif;
2721 n < mfc->mfc_un.res.maxvif; n++) {
2722 if (VIF_EXISTS(mrt, n) &&
2723 mfc->mfc_un.res.ttls[n] < 255)
2724 seq_printf(seq,
2725 " %2d:%-3d",
2726 n, mfc->mfc_un.res.ttls[n]);
2727 }
2728 } else {
2729 /* unresolved mfc_caches don't contain
2730 * pkt, bytes and wrong_if values
2731 */
2732 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2733 }
2734 seq_putc(seq, '\n');
2735 }
2736 return 0;
2737 }
2738
2739 static const struct seq_operations ipmr_mfc_seq_ops = {
2740 .start = ipmr_mfc_seq_start,
2741 .next = ipmr_mfc_seq_next,
2742 .stop = ipmr_mfc_seq_stop,
2743 .show = ipmr_mfc_seq_show,
2744 };
2745
2746 static int ipmr_mfc_open(struct inode *inode, struct file *file)
2747 {
2748 return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2749 sizeof(struct ipmr_mfc_iter));
2750 }
2751
2752 static const struct file_operations ipmr_mfc_fops = {
2753 .owner = THIS_MODULE,
2754 .open = ipmr_mfc_open,
2755 .read = seq_read,
2756 .llseek = seq_lseek,
2757 .release = seq_release_net,
2758 };
2759 #endif
2760
2761 #ifdef CONFIG_IP_PIMSM_V2
2762 static const struct net_protocol pim_protocol = {
2763 .handler = pim_rcv,
2764 .netns_ok = 1,
2765 };
2766 #endif
2767
2768 /* Setup for IP multicast routing */
2769 static int __net_init ipmr_net_init(struct net *net)
2770 {
2771 int err;
2772
2773 err = ipmr_rules_init(net);
2774 if (err < 0)
2775 goto fail;
2776
2777 #ifdef CONFIG_PROC_FS
2778 err = -ENOMEM;
2779 if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
2780 goto proc_vif_fail;
2781 if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
2782 goto proc_cache_fail;
2783 #endif
2784 return 0;
2785
2786 #ifdef CONFIG_PROC_FS
2787 proc_cache_fail:
2788 remove_proc_entry("ip_mr_vif", net->proc_net);
2789 proc_vif_fail:
2790 ipmr_rules_exit(net);
2791 #endif
2792 fail:
2793 return err;
2794 }
2795
2796 static void __net_exit ipmr_net_exit(struct net *net)
2797 {
2798 #ifdef CONFIG_PROC_FS
2799 remove_proc_entry("ip_mr_cache", net->proc_net);
2800 remove_proc_entry("ip_mr_vif", net->proc_net);
2801 #endif
2802 ipmr_rules_exit(net);
2803 }
2804
2805 static struct pernet_operations ipmr_net_ops = {
2806 .init = ipmr_net_init,
2807 .exit = ipmr_net_exit,
2808 };
2809
2810 int __init ip_mr_init(void)
2811 {
2812 int err;
2813
2814 mrt_cachep = kmem_cache_create("ip_mrt_cache",
2815 sizeof(struct mfc_cache),
2816 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2817 NULL);
2818
2819 err = register_pernet_subsys(&ipmr_net_ops);
2820 if (err)
2821 goto reg_pernet_fail;
2822
2823 err = register_netdevice_notifier(&ip_mr_notifier);
2824 if (err)
2825 goto reg_notif_fail;
2826 #ifdef CONFIG_IP_PIMSM_V2
2827 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2828 pr_err("%s: can't add PIM protocol\n", __func__);
2829 err = -EAGAIN;
2830 goto add_proto_fail;
2831 }
2832 #endif
2833 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2834 NULL, ipmr_rtm_dumproute, NULL);
2835 rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
2836 ipmr_rtm_route, NULL, NULL);
2837 rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
2838 ipmr_rtm_route, NULL, NULL);
2839 return 0;
2840
2841 #ifdef CONFIG_IP_PIMSM_V2
2842 add_proto_fail:
2843 unregister_netdevice_notifier(&ip_mr_notifier);
2844 #endif
2845 reg_notif_fail:
2846 unregister_pernet_subsys(&ipmr_net_ops);
2847 reg_pernet_fail:
2848 kmem_cache_destroy(mrt_cachep);
2849 return err;
2850 }