]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/ipmr.c
Merge branch 'for-4.3-rc/ti-clk-fixes' of https://github.com/t-kristo/linux-pm into...
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / ipmr.c
1 /*
2 * IP multicast routing support for mrouted 3.6/3.8
3 *
4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5 * Linux Consultancy and Custom Driver Development
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 *
12 * Fixes:
13 * Michael Chastain : Incorrect size of copying.
14 * Alan Cox : Added the cache manager code
15 * Alan Cox : Fixed the clone/copy bug and device race.
16 * Mike McLagan : Routing by source
17 * Malcolm Beattie : Buffer handling fixes.
18 * Alexey Kuznetsov : Double buffer free and other fixes.
19 * SVR Anand : Fixed several multicast bugs and problems.
20 * Alexey Kuznetsov : Status, optimisations and more.
21 * Brad Parker : Better behaviour on mrouted upcall
22 * overflow.
23 * Carlos Picoto : PIMv1 Support
24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
25 * Relax this requirement to work with older peers.
26 *
27 */
28
29 #include <asm/uaccess.h>
30 #include <linux/types.h>
31 #include <linux/capability.h>
32 #include <linux/errno.h>
33 #include <linux/timer.h>
34 #include <linux/mm.h>
35 #include <linux/kernel.h>
36 #include <linux/fcntl.h>
37 #include <linux/stat.h>
38 #include <linux/socket.h>
39 #include <linux/in.h>
40 #include <linux/inet.h>
41 #include <linux/netdevice.h>
42 #include <linux/inetdevice.h>
43 #include <linux/igmp.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/mroute.h>
47 #include <linux/init.h>
48 #include <linux/if_ether.h>
49 #include <linux/slab.h>
50 #include <net/net_namespace.h>
51 #include <net/ip.h>
52 #include <net/protocol.h>
53 #include <linux/skbuff.h>
54 #include <net/route.h>
55 #include <net/sock.h>
56 #include <net/icmp.h>
57 #include <net/udp.h>
58 #include <net/raw.h>
59 #include <linux/notifier.h>
60 #include <linux/if_arp.h>
61 #include <linux/netfilter_ipv4.h>
62 #include <linux/compat.h>
63 #include <linux/export.h>
64 #include <net/ip_tunnels.h>
65 #include <net/checksum.h>
66 #include <net/netlink.h>
67 #include <net/fib_rules.h>
68 #include <linux/netconf.h>
69
70 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
71 #define CONFIG_IP_PIMSM 1
72 #endif
73
74 struct mr_table {
75 struct list_head list;
76 possible_net_t net;
77 u32 id;
78 struct sock __rcu *mroute_sk;
79 struct timer_list ipmr_expire_timer;
80 struct list_head mfc_unres_queue;
81 struct list_head mfc_cache_array[MFC_LINES];
82 struct vif_device vif_table[MAXVIFS];
83 int maxvif;
84 atomic_t cache_resolve_queue_len;
85 bool mroute_do_assert;
86 bool mroute_do_pim;
87 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
88 int mroute_reg_vif_num;
89 #endif
90 };
91
92 struct ipmr_rule {
93 struct fib_rule common;
94 };
95
96 struct ipmr_result {
97 struct mr_table *mrt;
98 };
99
100 /* Big lock, protecting vif table, mrt cache and mroute socket state.
101 * Note that the changes are semaphored via rtnl_lock.
102 */
103
104 static DEFINE_RWLOCK(mrt_lock);
105
106 /*
107 * Multicast router control variables
108 */
109
110 #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
111
112 /* Special spinlock for queue of unresolved entries */
113 static DEFINE_SPINLOCK(mfc_unres_lock);
114
115 /* We return to original Alan's scheme. Hash table of resolved
116 * entries is changed only in process context and protected
117 * with weak lock mrt_lock. Queue of unresolved entries is protected
118 * with strong spinlock mfc_unres_lock.
119 *
120 * In this case data path is free of exclusive locks at all.
121 */
122
123 static struct kmem_cache *mrt_cachep __read_mostly;
124
125 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
126 static void ipmr_free_table(struct mr_table *mrt);
127
128 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
129 struct sk_buff *skb, struct mfc_cache *cache,
130 int local);
131 static int ipmr_cache_report(struct mr_table *mrt,
132 struct sk_buff *pkt, vifi_t vifi, int assert);
133 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
134 struct mfc_cache *c, struct rtmsg *rtm);
135 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
136 int cmd);
137 static void mroute_clean_tables(struct mr_table *mrt);
138 static void ipmr_expire_process(unsigned long arg);
139
140 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
141 #define ipmr_for_each_table(mrt, net) \
142 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
143
144 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
145 {
146 struct mr_table *mrt;
147
148 ipmr_for_each_table(mrt, net) {
149 if (mrt->id == id)
150 return mrt;
151 }
152 return NULL;
153 }
154
155 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
156 struct mr_table **mrt)
157 {
158 int err;
159 struct ipmr_result res;
160 struct fib_lookup_arg arg = {
161 .result = &res,
162 .flags = FIB_LOOKUP_NOREF,
163 };
164
165 err = fib_rules_lookup(net->ipv4.mr_rules_ops,
166 flowi4_to_flowi(flp4), 0, &arg);
167 if (err < 0)
168 return err;
169 *mrt = res.mrt;
170 return 0;
171 }
172
173 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
174 int flags, struct fib_lookup_arg *arg)
175 {
176 struct ipmr_result *res = arg->result;
177 struct mr_table *mrt;
178
179 switch (rule->action) {
180 case FR_ACT_TO_TBL:
181 break;
182 case FR_ACT_UNREACHABLE:
183 return -ENETUNREACH;
184 case FR_ACT_PROHIBIT:
185 return -EACCES;
186 case FR_ACT_BLACKHOLE:
187 default:
188 return -EINVAL;
189 }
190
191 mrt = ipmr_get_table(rule->fr_net, rule->table);
192 if (!mrt)
193 return -EAGAIN;
194 res->mrt = mrt;
195 return 0;
196 }
197
198 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
199 {
200 return 1;
201 }
202
203 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
204 FRA_GENERIC_POLICY,
205 };
206
207 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
208 struct fib_rule_hdr *frh, struct nlattr **tb)
209 {
210 return 0;
211 }
212
213 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
214 struct nlattr **tb)
215 {
216 return 1;
217 }
218
219 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
220 struct fib_rule_hdr *frh)
221 {
222 frh->dst_len = 0;
223 frh->src_len = 0;
224 frh->tos = 0;
225 return 0;
226 }
227
228 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
229 .family = RTNL_FAMILY_IPMR,
230 .rule_size = sizeof(struct ipmr_rule),
231 .addr_size = sizeof(u32),
232 .action = ipmr_rule_action,
233 .match = ipmr_rule_match,
234 .configure = ipmr_rule_configure,
235 .compare = ipmr_rule_compare,
236 .fill = ipmr_rule_fill,
237 .nlgroup = RTNLGRP_IPV4_RULE,
238 .policy = ipmr_rule_policy,
239 .owner = THIS_MODULE,
240 };
241
242 static int __net_init ipmr_rules_init(struct net *net)
243 {
244 struct fib_rules_ops *ops;
245 struct mr_table *mrt;
246 int err;
247
248 ops = fib_rules_register(&ipmr_rules_ops_template, net);
249 if (IS_ERR(ops))
250 return PTR_ERR(ops);
251
252 INIT_LIST_HEAD(&net->ipv4.mr_tables);
253
254 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
255 if (!mrt) {
256 err = -ENOMEM;
257 goto err1;
258 }
259
260 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
261 if (err < 0)
262 goto err2;
263
264 net->ipv4.mr_rules_ops = ops;
265 return 0;
266
267 err2:
268 ipmr_free_table(mrt);
269 err1:
270 fib_rules_unregister(ops);
271 return err;
272 }
273
274 static void __net_exit ipmr_rules_exit(struct net *net)
275 {
276 struct mr_table *mrt, *next;
277
278 rtnl_lock();
279 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
280 list_del(&mrt->list);
281 ipmr_free_table(mrt);
282 }
283 fib_rules_unregister(net->ipv4.mr_rules_ops);
284 rtnl_unlock();
285 }
286 #else
287 #define ipmr_for_each_table(mrt, net) \
288 for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
289
290 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
291 {
292 return net->ipv4.mrt;
293 }
294
295 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
296 struct mr_table **mrt)
297 {
298 *mrt = net->ipv4.mrt;
299 return 0;
300 }
301
302 static int __net_init ipmr_rules_init(struct net *net)
303 {
304 net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
305 return net->ipv4.mrt ? 0 : -ENOMEM;
306 }
307
308 static void __net_exit ipmr_rules_exit(struct net *net)
309 {
310 rtnl_lock();
311 ipmr_free_table(net->ipv4.mrt);
312 net->ipv4.mrt = NULL;
313 rtnl_unlock();
314 }
315 #endif
316
317 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
318 {
319 struct mr_table *mrt;
320 unsigned int i;
321
322 mrt = ipmr_get_table(net, id);
323 if (mrt)
324 return mrt;
325
326 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
327 if (!mrt)
328 return NULL;
329 write_pnet(&mrt->net, net);
330 mrt->id = id;
331
332 /* Forwarding cache */
333 for (i = 0; i < MFC_LINES; i++)
334 INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
335
336 INIT_LIST_HEAD(&mrt->mfc_unres_queue);
337
338 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
339 (unsigned long)mrt);
340
341 #ifdef CONFIG_IP_PIMSM
342 mrt->mroute_reg_vif_num = -1;
343 #endif
344 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
345 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
346 #endif
347 return mrt;
348 }
349
350 static void ipmr_free_table(struct mr_table *mrt)
351 {
352 del_timer_sync(&mrt->ipmr_expire_timer);
353 mroute_clean_tables(mrt);
354 kfree(mrt);
355 }
356
357 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
358
359 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
360 {
361 struct net *net = dev_net(dev);
362
363 dev_close(dev);
364
365 dev = __dev_get_by_name(net, "tunl0");
366 if (dev) {
367 const struct net_device_ops *ops = dev->netdev_ops;
368 struct ifreq ifr;
369 struct ip_tunnel_parm p;
370
371 memset(&p, 0, sizeof(p));
372 p.iph.daddr = v->vifc_rmt_addr.s_addr;
373 p.iph.saddr = v->vifc_lcl_addr.s_addr;
374 p.iph.version = 4;
375 p.iph.ihl = 5;
376 p.iph.protocol = IPPROTO_IPIP;
377 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
378 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
379
380 if (ops->ndo_do_ioctl) {
381 mm_segment_t oldfs = get_fs();
382
383 set_fs(KERNEL_DS);
384 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
385 set_fs(oldfs);
386 }
387 }
388 }
389
390 static
391 struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
392 {
393 struct net_device *dev;
394
395 dev = __dev_get_by_name(net, "tunl0");
396
397 if (dev) {
398 const struct net_device_ops *ops = dev->netdev_ops;
399 int err;
400 struct ifreq ifr;
401 struct ip_tunnel_parm p;
402 struct in_device *in_dev;
403
404 memset(&p, 0, sizeof(p));
405 p.iph.daddr = v->vifc_rmt_addr.s_addr;
406 p.iph.saddr = v->vifc_lcl_addr.s_addr;
407 p.iph.version = 4;
408 p.iph.ihl = 5;
409 p.iph.protocol = IPPROTO_IPIP;
410 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
411 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
412
413 if (ops->ndo_do_ioctl) {
414 mm_segment_t oldfs = get_fs();
415
416 set_fs(KERNEL_DS);
417 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
418 set_fs(oldfs);
419 } else {
420 err = -EOPNOTSUPP;
421 }
422 dev = NULL;
423
424 if (err == 0 &&
425 (dev = __dev_get_by_name(net, p.name)) != NULL) {
426 dev->flags |= IFF_MULTICAST;
427
428 in_dev = __in_dev_get_rtnl(dev);
429 if (!in_dev)
430 goto failure;
431
432 ipv4_devconf_setall(in_dev);
433 neigh_parms_data_state_setall(in_dev->arp_parms);
434 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
435
436 if (dev_open(dev))
437 goto failure;
438 dev_hold(dev);
439 }
440 }
441 return dev;
442
443 failure:
444 /* allow the register to be completed before unregistering. */
445 rtnl_unlock();
446 rtnl_lock();
447
448 unregister_netdevice(dev);
449 return NULL;
450 }
451
452 #ifdef CONFIG_IP_PIMSM
453
454 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
455 {
456 struct net *net = dev_net(dev);
457 struct mr_table *mrt;
458 struct flowi4 fl4 = {
459 .flowi4_oif = dev->ifindex,
460 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
461 .flowi4_mark = skb->mark,
462 };
463 int err;
464
465 err = ipmr_fib_lookup(net, &fl4, &mrt);
466 if (err < 0) {
467 kfree_skb(skb);
468 return err;
469 }
470
471 read_lock(&mrt_lock);
472 dev->stats.tx_bytes += skb->len;
473 dev->stats.tx_packets++;
474 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
475 read_unlock(&mrt_lock);
476 kfree_skb(skb);
477 return NETDEV_TX_OK;
478 }
479
480 static int reg_vif_get_iflink(const struct net_device *dev)
481 {
482 return 0;
483 }
484
485 static const struct net_device_ops reg_vif_netdev_ops = {
486 .ndo_start_xmit = reg_vif_xmit,
487 .ndo_get_iflink = reg_vif_get_iflink,
488 };
489
490 static void reg_vif_setup(struct net_device *dev)
491 {
492 dev->type = ARPHRD_PIMREG;
493 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
494 dev->flags = IFF_NOARP;
495 dev->netdev_ops = &reg_vif_netdev_ops;
496 dev->destructor = free_netdev;
497 dev->features |= NETIF_F_NETNS_LOCAL;
498 }
499
500 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
501 {
502 struct net_device *dev;
503 struct in_device *in_dev;
504 char name[IFNAMSIZ];
505
506 if (mrt->id == RT_TABLE_DEFAULT)
507 sprintf(name, "pimreg");
508 else
509 sprintf(name, "pimreg%u", mrt->id);
510
511 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
512
513 if (!dev)
514 return NULL;
515
516 dev_net_set(dev, net);
517
518 if (register_netdevice(dev)) {
519 free_netdev(dev);
520 return NULL;
521 }
522
523 rcu_read_lock();
524 in_dev = __in_dev_get_rcu(dev);
525 if (!in_dev) {
526 rcu_read_unlock();
527 goto failure;
528 }
529
530 ipv4_devconf_setall(in_dev);
531 neigh_parms_data_state_setall(in_dev->arp_parms);
532 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
533 rcu_read_unlock();
534
535 if (dev_open(dev))
536 goto failure;
537
538 dev_hold(dev);
539
540 return dev;
541
542 failure:
543 /* allow the register to be completed before unregistering. */
544 rtnl_unlock();
545 rtnl_lock();
546
547 unregister_netdevice(dev);
548 return NULL;
549 }
550 #endif
551
552 /**
553 * vif_delete - Delete a VIF entry
554 * @notify: Set to 1, if the caller is a notifier_call
555 */
556
557 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
558 struct list_head *head)
559 {
560 struct vif_device *v;
561 struct net_device *dev;
562 struct in_device *in_dev;
563
564 if (vifi < 0 || vifi >= mrt->maxvif)
565 return -EADDRNOTAVAIL;
566
567 v = &mrt->vif_table[vifi];
568
569 write_lock_bh(&mrt_lock);
570 dev = v->dev;
571 v->dev = NULL;
572
573 if (!dev) {
574 write_unlock_bh(&mrt_lock);
575 return -EADDRNOTAVAIL;
576 }
577
578 #ifdef CONFIG_IP_PIMSM
579 if (vifi == mrt->mroute_reg_vif_num)
580 mrt->mroute_reg_vif_num = -1;
581 #endif
582
583 if (vifi + 1 == mrt->maxvif) {
584 int tmp;
585
586 for (tmp = vifi - 1; tmp >= 0; tmp--) {
587 if (VIF_EXISTS(mrt, tmp))
588 break;
589 }
590 mrt->maxvif = tmp+1;
591 }
592
593 write_unlock_bh(&mrt_lock);
594
595 dev_set_allmulti(dev, -1);
596
597 in_dev = __in_dev_get_rtnl(dev);
598 if (in_dev) {
599 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
600 inet_netconf_notify_devconf(dev_net(dev),
601 NETCONFA_MC_FORWARDING,
602 dev->ifindex, &in_dev->cnf);
603 ip_rt_multicast_event(in_dev);
604 }
605
606 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
607 unregister_netdevice_queue(dev, head);
608
609 dev_put(dev);
610 return 0;
611 }
612
613 static void ipmr_cache_free_rcu(struct rcu_head *head)
614 {
615 struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
616
617 kmem_cache_free(mrt_cachep, c);
618 }
619
620 static inline void ipmr_cache_free(struct mfc_cache *c)
621 {
622 call_rcu(&c->rcu, ipmr_cache_free_rcu);
623 }
624
625 /* Destroy an unresolved cache entry, killing queued skbs
626 * and reporting error to netlink readers.
627 */
628
629 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
630 {
631 struct net *net = read_pnet(&mrt->net);
632 struct sk_buff *skb;
633 struct nlmsgerr *e;
634
635 atomic_dec(&mrt->cache_resolve_queue_len);
636
637 while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
638 if (ip_hdr(skb)->version == 0) {
639 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
640 nlh->nlmsg_type = NLMSG_ERROR;
641 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
642 skb_trim(skb, nlh->nlmsg_len);
643 e = nlmsg_data(nlh);
644 e->error = -ETIMEDOUT;
645 memset(&e->msg, 0, sizeof(e->msg));
646
647 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
648 } else {
649 kfree_skb(skb);
650 }
651 }
652
653 ipmr_cache_free(c);
654 }
655
656
657 /* Timer process for the unresolved queue. */
658
659 static void ipmr_expire_process(unsigned long arg)
660 {
661 struct mr_table *mrt = (struct mr_table *)arg;
662 unsigned long now;
663 unsigned long expires;
664 struct mfc_cache *c, *next;
665
666 if (!spin_trylock(&mfc_unres_lock)) {
667 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
668 return;
669 }
670
671 if (list_empty(&mrt->mfc_unres_queue))
672 goto out;
673
674 now = jiffies;
675 expires = 10*HZ;
676
677 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
678 if (time_after(c->mfc_un.unres.expires, now)) {
679 unsigned long interval = c->mfc_un.unres.expires - now;
680 if (interval < expires)
681 expires = interval;
682 continue;
683 }
684
685 list_del(&c->list);
686 mroute_netlink_event(mrt, c, RTM_DELROUTE);
687 ipmr_destroy_unres(mrt, c);
688 }
689
690 if (!list_empty(&mrt->mfc_unres_queue))
691 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
692
693 out:
694 spin_unlock(&mfc_unres_lock);
695 }
696
697 /* Fill oifs list. It is called under write locked mrt_lock. */
698
699 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
700 unsigned char *ttls)
701 {
702 int vifi;
703
704 cache->mfc_un.res.minvif = MAXVIFS;
705 cache->mfc_un.res.maxvif = 0;
706 memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
707
708 for (vifi = 0; vifi < mrt->maxvif; vifi++) {
709 if (VIF_EXISTS(mrt, vifi) &&
710 ttls[vifi] && ttls[vifi] < 255) {
711 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
712 if (cache->mfc_un.res.minvif > vifi)
713 cache->mfc_un.res.minvif = vifi;
714 if (cache->mfc_un.res.maxvif <= vifi)
715 cache->mfc_un.res.maxvif = vifi + 1;
716 }
717 }
718 }
719
720 static int vif_add(struct net *net, struct mr_table *mrt,
721 struct vifctl *vifc, int mrtsock)
722 {
723 int vifi = vifc->vifc_vifi;
724 struct vif_device *v = &mrt->vif_table[vifi];
725 struct net_device *dev;
726 struct in_device *in_dev;
727 int err;
728
729 /* Is vif busy ? */
730 if (VIF_EXISTS(mrt, vifi))
731 return -EADDRINUSE;
732
733 switch (vifc->vifc_flags) {
734 #ifdef CONFIG_IP_PIMSM
735 case VIFF_REGISTER:
736 /*
737 * Special Purpose VIF in PIM
738 * All the packets will be sent to the daemon
739 */
740 if (mrt->mroute_reg_vif_num >= 0)
741 return -EADDRINUSE;
742 dev = ipmr_reg_vif(net, mrt);
743 if (!dev)
744 return -ENOBUFS;
745 err = dev_set_allmulti(dev, 1);
746 if (err) {
747 unregister_netdevice(dev);
748 dev_put(dev);
749 return err;
750 }
751 break;
752 #endif
753 case VIFF_TUNNEL:
754 dev = ipmr_new_tunnel(net, vifc);
755 if (!dev)
756 return -ENOBUFS;
757 err = dev_set_allmulti(dev, 1);
758 if (err) {
759 ipmr_del_tunnel(dev, vifc);
760 dev_put(dev);
761 return err;
762 }
763 break;
764
765 case VIFF_USE_IFINDEX:
766 case 0:
767 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
768 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
769 if (dev && !__in_dev_get_rtnl(dev)) {
770 dev_put(dev);
771 return -EADDRNOTAVAIL;
772 }
773 } else {
774 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
775 }
776 if (!dev)
777 return -EADDRNOTAVAIL;
778 err = dev_set_allmulti(dev, 1);
779 if (err) {
780 dev_put(dev);
781 return err;
782 }
783 break;
784 default:
785 return -EINVAL;
786 }
787
788 in_dev = __in_dev_get_rtnl(dev);
789 if (!in_dev) {
790 dev_put(dev);
791 return -EADDRNOTAVAIL;
792 }
793 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
794 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
795 &in_dev->cnf);
796 ip_rt_multicast_event(in_dev);
797
798 /* Fill in the VIF structures */
799
800 v->rate_limit = vifc->vifc_rate_limit;
801 v->local = vifc->vifc_lcl_addr.s_addr;
802 v->remote = vifc->vifc_rmt_addr.s_addr;
803 v->flags = vifc->vifc_flags;
804 if (!mrtsock)
805 v->flags |= VIFF_STATIC;
806 v->threshold = vifc->vifc_threshold;
807 v->bytes_in = 0;
808 v->bytes_out = 0;
809 v->pkt_in = 0;
810 v->pkt_out = 0;
811 v->link = dev->ifindex;
812 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
813 v->link = dev_get_iflink(dev);
814
815 /* And finish update writing critical data */
816 write_lock_bh(&mrt_lock);
817 v->dev = dev;
818 #ifdef CONFIG_IP_PIMSM
819 if (v->flags & VIFF_REGISTER)
820 mrt->mroute_reg_vif_num = vifi;
821 #endif
822 if (vifi+1 > mrt->maxvif)
823 mrt->maxvif = vifi+1;
824 write_unlock_bh(&mrt_lock);
825 return 0;
826 }
827
828 /* called with rcu_read_lock() */
829 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
830 __be32 origin,
831 __be32 mcastgrp)
832 {
833 int line = MFC_HASH(mcastgrp, origin);
834 struct mfc_cache *c;
835
836 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
837 if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
838 return c;
839 }
840 return NULL;
841 }
842
843 /* Look for a (*,*,oif) entry */
844 static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
845 int vifi)
846 {
847 int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY));
848 struct mfc_cache *c;
849
850 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
851 if (c->mfc_origin == htonl(INADDR_ANY) &&
852 c->mfc_mcastgrp == htonl(INADDR_ANY) &&
853 c->mfc_un.res.ttls[vifi] < 255)
854 return c;
855
856 return NULL;
857 }
858
859 /* Look for a (*,G) entry */
860 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
861 __be32 mcastgrp, int vifi)
862 {
863 int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY));
864 struct mfc_cache *c, *proxy;
865
866 if (mcastgrp == htonl(INADDR_ANY))
867 goto skip;
868
869 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
870 if (c->mfc_origin == htonl(INADDR_ANY) &&
871 c->mfc_mcastgrp == mcastgrp) {
872 if (c->mfc_un.res.ttls[vifi] < 255)
873 return c;
874
875 /* It's ok if the vifi is part of the static tree */
876 proxy = ipmr_cache_find_any_parent(mrt,
877 c->mfc_parent);
878 if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
879 return c;
880 }
881
882 skip:
883 return ipmr_cache_find_any_parent(mrt, vifi);
884 }
885
886 /*
887 * Allocate a multicast cache entry
888 */
889 static struct mfc_cache *ipmr_cache_alloc(void)
890 {
891 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
892
893 if (c)
894 c->mfc_un.res.minvif = MAXVIFS;
895 return c;
896 }
897
898 static struct mfc_cache *ipmr_cache_alloc_unres(void)
899 {
900 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
901
902 if (c) {
903 skb_queue_head_init(&c->mfc_un.unres.unresolved);
904 c->mfc_un.unres.expires = jiffies + 10*HZ;
905 }
906 return c;
907 }
908
909 /*
910 * A cache entry has gone into a resolved state from queued
911 */
912
913 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
914 struct mfc_cache *uc, struct mfc_cache *c)
915 {
916 struct sk_buff *skb;
917 struct nlmsgerr *e;
918
919 /* Play the pending entries through our router */
920
921 while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
922 if (ip_hdr(skb)->version == 0) {
923 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
924
925 if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
926 nlh->nlmsg_len = skb_tail_pointer(skb) -
927 (u8 *)nlh;
928 } else {
929 nlh->nlmsg_type = NLMSG_ERROR;
930 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
931 skb_trim(skb, nlh->nlmsg_len);
932 e = nlmsg_data(nlh);
933 e->error = -EMSGSIZE;
934 memset(&e->msg, 0, sizeof(e->msg));
935 }
936
937 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
938 } else {
939 ip_mr_forward(net, mrt, skb, c, 0);
940 }
941 }
942 }
943
944 /*
945 * Bounce a cache query up to mrouted. We could use netlink for this but mrouted
946 * expects the following bizarre scheme.
947 *
948 * Called under mrt_lock.
949 */
950
951 static int ipmr_cache_report(struct mr_table *mrt,
952 struct sk_buff *pkt, vifi_t vifi, int assert)
953 {
954 struct sk_buff *skb;
955 const int ihl = ip_hdrlen(pkt);
956 struct igmphdr *igmp;
957 struct igmpmsg *msg;
958 struct sock *mroute_sk;
959 int ret;
960
961 #ifdef CONFIG_IP_PIMSM
962 if (assert == IGMPMSG_WHOLEPKT)
963 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
964 else
965 #endif
966 skb = alloc_skb(128, GFP_ATOMIC);
967
968 if (!skb)
969 return -ENOBUFS;
970
971 #ifdef CONFIG_IP_PIMSM
972 if (assert == IGMPMSG_WHOLEPKT) {
973 /* Ugly, but we have no choice with this interface.
974 * Duplicate old header, fix ihl, length etc.
975 * And all this only to mangle msg->im_msgtype and
976 * to set msg->im_mbz to "mbz" :-)
977 */
978 skb_push(skb, sizeof(struct iphdr));
979 skb_reset_network_header(skb);
980 skb_reset_transport_header(skb);
981 msg = (struct igmpmsg *)skb_network_header(skb);
982 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
983 msg->im_msgtype = IGMPMSG_WHOLEPKT;
984 msg->im_mbz = 0;
985 msg->im_vif = mrt->mroute_reg_vif_num;
986 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
987 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
988 sizeof(struct iphdr));
989 } else
990 #endif
991 {
992
993 /* Copy the IP header */
994
995 skb_set_network_header(skb, skb->len);
996 skb_put(skb, ihl);
997 skb_copy_to_linear_data(skb, pkt->data, ihl);
998 ip_hdr(skb)->protocol = 0; /* Flag to the kernel this is a route add */
999 msg = (struct igmpmsg *)skb_network_header(skb);
1000 msg->im_vif = vifi;
1001 skb_dst_set(skb, dst_clone(skb_dst(pkt)));
1002
1003 /* Add our header */
1004
1005 igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
1006 igmp->type =
1007 msg->im_msgtype = assert;
1008 igmp->code = 0;
1009 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
1010 skb->transport_header = skb->network_header;
1011 }
1012
1013 rcu_read_lock();
1014 mroute_sk = rcu_dereference(mrt->mroute_sk);
1015 if (!mroute_sk) {
1016 rcu_read_unlock();
1017 kfree_skb(skb);
1018 return -EINVAL;
1019 }
1020
1021 /* Deliver to mrouted */
1022
1023 ret = sock_queue_rcv_skb(mroute_sk, skb);
1024 rcu_read_unlock();
1025 if (ret < 0) {
1026 net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1027 kfree_skb(skb);
1028 }
1029
1030 return ret;
1031 }
1032
1033 /*
1034 * Queue a packet for resolution. It gets locked cache entry!
1035 */
1036
1037 static int
1038 ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
1039 {
1040 bool found = false;
1041 int err;
1042 struct mfc_cache *c;
1043 const struct iphdr *iph = ip_hdr(skb);
1044
1045 spin_lock_bh(&mfc_unres_lock);
1046 list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
1047 if (c->mfc_mcastgrp == iph->daddr &&
1048 c->mfc_origin == iph->saddr) {
1049 found = true;
1050 break;
1051 }
1052 }
1053
1054 if (!found) {
1055 /* Create a new entry if allowable */
1056
1057 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1058 (c = ipmr_cache_alloc_unres()) == NULL) {
1059 spin_unlock_bh(&mfc_unres_lock);
1060
1061 kfree_skb(skb);
1062 return -ENOBUFS;
1063 }
1064
1065 /* Fill in the new cache entry */
1066
1067 c->mfc_parent = -1;
1068 c->mfc_origin = iph->saddr;
1069 c->mfc_mcastgrp = iph->daddr;
1070
1071 /* Reflect first query at mrouted. */
1072
1073 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1074 if (err < 0) {
1075 /* If the report failed throw the cache entry
1076 out - Brad Parker
1077 */
1078 spin_unlock_bh(&mfc_unres_lock);
1079
1080 ipmr_cache_free(c);
1081 kfree_skb(skb);
1082 return err;
1083 }
1084
1085 atomic_inc(&mrt->cache_resolve_queue_len);
1086 list_add(&c->list, &mrt->mfc_unres_queue);
1087 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1088
1089 if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1090 mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1091 }
1092
1093 /* See if we can append the packet */
1094
1095 if (c->mfc_un.unres.unresolved.qlen > 3) {
1096 kfree_skb(skb);
1097 err = -ENOBUFS;
1098 } else {
1099 skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1100 err = 0;
1101 }
1102
1103 spin_unlock_bh(&mfc_unres_lock);
1104 return err;
1105 }
1106
1107 /*
1108 * MFC cache manipulation by user space mroute daemon
1109 */
1110
1111 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1112 {
1113 int line;
1114 struct mfc_cache *c, *next;
1115
1116 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1117
1118 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1119 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1120 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1121 (parent == -1 || parent == c->mfc_parent)) {
1122 list_del_rcu(&c->list);
1123 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1124 ipmr_cache_free(c);
1125 return 0;
1126 }
1127 }
1128 return -ENOENT;
1129 }
1130
1131 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1132 struct mfcctl *mfc, int mrtsock, int parent)
1133 {
1134 bool found = false;
1135 int line;
1136 struct mfc_cache *uc, *c;
1137
1138 if (mfc->mfcc_parent >= MAXVIFS)
1139 return -ENFILE;
1140
1141 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1142
1143 list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1144 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1145 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1146 (parent == -1 || parent == c->mfc_parent)) {
1147 found = true;
1148 break;
1149 }
1150 }
1151
1152 if (found) {
1153 write_lock_bh(&mrt_lock);
1154 c->mfc_parent = mfc->mfcc_parent;
1155 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1156 if (!mrtsock)
1157 c->mfc_flags |= MFC_STATIC;
1158 write_unlock_bh(&mrt_lock);
1159 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1160 return 0;
1161 }
1162
1163 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1164 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1165 return -EINVAL;
1166
1167 c = ipmr_cache_alloc();
1168 if (!c)
1169 return -ENOMEM;
1170
1171 c->mfc_origin = mfc->mfcc_origin.s_addr;
1172 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1173 c->mfc_parent = mfc->mfcc_parent;
1174 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1175 if (!mrtsock)
1176 c->mfc_flags |= MFC_STATIC;
1177
1178 list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1179
1180 /*
1181 * Check to see if we resolved a queued list. If so we
1182 * need to send on the frames and tidy up.
1183 */
1184 found = false;
1185 spin_lock_bh(&mfc_unres_lock);
1186 list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1187 if (uc->mfc_origin == c->mfc_origin &&
1188 uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1189 list_del(&uc->list);
1190 atomic_dec(&mrt->cache_resolve_queue_len);
1191 found = true;
1192 break;
1193 }
1194 }
1195 if (list_empty(&mrt->mfc_unres_queue))
1196 del_timer(&mrt->ipmr_expire_timer);
1197 spin_unlock_bh(&mfc_unres_lock);
1198
1199 if (found) {
1200 ipmr_cache_resolve(net, mrt, uc, c);
1201 ipmr_cache_free(uc);
1202 }
1203 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1204 return 0;
1205 }
1206
1207 /*
1208 * Close the multicast socket, and clear the vif tables etc
1209 */
1210
1211 static void mroute_clean_tables(struct mr_table *mrt)
1212 {
1213 int i;
1214 LIST_HEAD(list);
1215 struct mfc_cache *c, *next;
1216
1217 /* Shut down all active vif entries */
1218
1219 for (i = 0; i < mrt->maxvif; i++) {
1220 if (!(mrt->vif_table[i].flags & VIFF_STATIC))
1221 vif_delete(mrt, i, 0, &list);
1222 }
1223 unregister_netdevice_many(&list);
1224
1225 /* Wipe the cache */
1226
1227 for (i = 0; i < MFC_LINES; i++) {
1228 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1229 if (c->mfc_flags & MFC_STATIC)
1230 continue;
1231 list_del_rcu(&c->list);
1232 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1233 ipmr_cache_free(c);
1234 }
1235 }
1236
1237 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1238 spin_lock_bh(&mfc_unres_lock);
1239 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1240 list_del(&c->list);
1241 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1242 ipmr_destroy_unres(mrt, c);
1243 }
1244 spin_unlock_bh(&mfc_unres_lock);
1245 }
1246 }
1247
1248 /* called from ip_ra_control(), before an RCU grace period,
1249 * we dont need to call synchronize_rcu() here
1250 */
1251 static void mrtsock_destruct(struct sock *sk)
1252 {
1253 struct net *net = sock_net(sk);
1254 struct mr_table *mrt;
1255
1256 rtnl_lock();
1257 ipmr_for_each_table(mrt, net) {
1258 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1259 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1260 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1261 NETCONFA_IFINDEX_ALL,
1262 net->ipv4.devconf_all);
1263 RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1264 mroute_clean_tables(mrt);
1265 }
1266 }
1267 rtnl_unlock();
1268 }
1269
1270 /*
1271 * Socket options and virtual interface manipulation. The whole
1272 * virtual interface system is a complete heap, but unfortunately
1273 * that's how BSD mrouted happens to think. Maybe one day with a proper
1274 * MOSPF/PIM router set up we can clean this up.
1275 */
1276
1277 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1278 {
1279 int ret, parent = 0;
1280 struct vifctl vif;
1281 struct mfcctl mfc;
1282 struct net *net = sock_net(sk);
1283 struct mr_table *mrt;
1284
1285 if (sk->sk_type != SOCK_RAW ||
1286 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1287 return -EOPNOTSUPP;
1288
1289 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1290 if (!mrt)
1291 return -ENOENT;
1292
1293 if (optname != MRT_INIT) {
1294 if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1295 !ns_capable(net->user_ns, CAP_NET_ADMIN))
1296 return -EACCES;
1297 }
1298
1299 switch (optname) {
1300 case MRT_INIT:
1301 if (optlen != sizeof(int))
1302 return -EINVAL;
1303
1304 rtnl_lock();
1305 if (rtnl_dereference(mrt->mroute_sk)) {
1306 rtnl_unlock();
1307 return -EADDRINUSE;
1308 }
1309
1310 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1311 if (ret == 0) {
1312 rcu_assign_pointer(mrt->mroute_sk, sk);
1313 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1314 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1315 NETCONFA_IFINDEX_ALL,
1316 net->ipv4.devconf_all);
1317 }
1318 rtnl_unlock();
1319 return ret;
1320 case MRT_DONE:
1321 if (sk != rcu_access_pointer(mrt->mroute_sk))
1322 return -EACCES;
1323 return ip_ra_control(sk, 0, NULL);
1324 case MRT_ADD_VIF:
1325 case MRT_DEL_VIF:
1326 if (optlen != sizeof(vif))
1327 return -EINVAL;
1328 if (copy_from_user(&vif, optval, sizeof(vif)))
1329 return -EFAULT;
1330 if (vif.vifc_vifi >= MAXVIFS)
1331 return -ENFILE;
1332 rtnl_lock();
1333 if (optname == MRT_ADD_VIF) {
1334 ret = vif_add(net, mrt, &vif,
1335 sk == rtnl_dereference(mrt->mroute_sk));
1336 } else {
1337 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1338 }
1339 rtnl_unlock();
1340 return ret;
1341
1342 /*
1343 * Manipulate the forwarding caches. These live
1344 * in a sort of kernel/user symbiosis.
1345 */
1346 case MRT_ADD_MFC:
1347 case MRT_DEL_MFC:
1348 parent = -1;
1349 case MRT_ADD_MFC_PROXY:
1350 case MRT_DEL_MFC_PROXY:
1351 if (optlen != sizeof(mfc))
1352 return -EINVAL;
1353 if (copy_from_user(&mfc, optval, sizeof(mfc)))
1354 return -EFAULT;
1355 if (parent == 0)
1356 parent = mfc.mfcc_parent;
1357 rtnl_lock();
1358 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1359 ret = ipmr_mfc_delete(mrt, &mfc, parent);
1360 else
1361 ret = ipmr_mfc_add(net, mrt, &mfc,
1362 sk == rtnl_dereference(mrt->mroute_sk),
1363 parent);
1364 rtnl_unlock();
1365 return ret;
1366 /*
1367 * Control PIM assert.
1368 */
1369 case MRT_ASSERT:
1370 {
1371 int v;
1372 if (optlen != sizeof(v))
1373 return -EINVAL;
1374 if (get_user(v, (int __user *)optval))
1375 return -EFAULT;
1376 mrt->mroute_do_assert = v;
1377 return 0;
1378 }
1379 #ifdef CONFIG_IP_PIMSM
1380 case MRT_PIM:
1381 {
1382 int v;
1383
1384 if (optlen != sizeof(v))
1385 return -EINVAL;
1386 if (get_user(v, (int __user *)optval))
1387 return -EFAULT;
1388 v = !!v;
1389
1390 rtnl_lock();
1391 ret = 0;
1392 if (v != mrt->mroute_do_pim) {
1393 mrt->mroute_do_pim = v;
1394 mrt->mroute_do_assert = v;
1395 }
1396 rtnl_unlock();
1397 return ret;
1398 }
1399 #endif
1400 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1401 case MRT_TABLE:
1402 {
1403 u32 v;
1404
1405 if (optlen != sizeof(u32))
1406 return -EINVAL;
1407 if (get_user(v, (u32 __user *)optval))
1408 return -EFAULT;
1409
1410 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
1411 if (v != RT_TABLE_DEFAULT && v >= 1000000000)
1412 return -EINVAL;
1413
1414 rtnl_lock();
1415 ret = 0;
1416 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1417 ret = -EBUSY;
1418 } else {
1419 if (!ipmr_new_table(net, v))
1420 ret = -ENOMEM;
1421 else
1422 raw_sk(sk)->ipmr_table = v;
1423 }
1424 rtnl_unlock();
1425 return ret;
1426 }
1427 #endif
1428 /*
1429 * Spurious command, or MRT_VERSION which you cannot
1430 * set.
1431 */
1432 default:
1433 return -ENOPROTOOPT;
1434 }
1435 }
1436
1437 /*
1438 * Getsock opt support for the multicast routing system.
1439 */
1440
1441 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1442 {
1443 int olr;
1444 int val;
1445 struct net *net = sock_net(sk);
1446 struct mr_table *mrt;
1447
1448 if (sk->sk_type != SOCK_RAW ||
1449 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1450 return -EOPNOTSUPP;
1451
1452 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1453 if (!mrt)
1454 return -ENOENT;
1455
1456 if (optname != MRT_VERSION &&
1457 #ifdef CONFIG_IP_PIMSM
1458 optname != MRT_PIM &&
1459 #endif
1460 optname != MRT_ASSERT)
1461 return -ENOPROTOOPT;
1462
1463 if (get_user(olr, optlen))
1464 return -EFAULT;
1465
1466 olr = min_t(unsigned int, olr, sizeof(int));
1467 if (olr < 0)
1468 return -EINVAL;
1469
1470 if (put_user(olr, optlen))
1471 return -EFAULT;
1472 if (optname == MRT_VERSION)
1473 val = 0x0305;
1474 #ifdef CONFIG_IP_PIMSM
1475 else if (optname == MRT_PIM)
1476 val = mrt->mroute_do_pim;
1477 #endif
1478 else
1479 val = mrt->mroute_do_assert;
1480 if (copy_to_user(optval, &val, olr))
1481 return -EFAULT;
1482 return 0;
1483 }
1484
1485 /*
1486 * The IP multicast ioctl support routines.
1487 */
1488
1489 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1490 {
1491 struct sioc_sg_req sr;
1492 struct sioc_vif_req vr;
1493 struct vif_device *vif;
1494 struct mfc_cache *c;
1495 struct net *net = sock_net(sk);
1496 struct mr_table *mrt;
1497
1498 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1499 if (!mrt)
1500 return -ENOENT;
1501
1502 switch (cmd) {
1503 case SIOCGETVIFCNT:
1504 if (copy_from_user(&vr, arg, sizeof(vr)))
1505 return -EFAULT;
1506 if (vr.vifi >= mrt->maxvif)
1507 return -EINVAL;
1508 read_lock(&mrt_lock);
1509 vif = &mrt->vif_table[vr.vifi];
1510 if (VIF_EXISTS(mrt, vr.vifi)) {
1511 vr.icount = vif->pkt_in;
1512 vr.ocount = vif->pkt_out;
1513 vr.ibytes = vif->bytes_in;
1514 vr.obytes = vif->bytes_out;
1515 read_unlock(&mrt_lock);
1516
1517 if (copy_to_user(arg, &vr, sizeof(vr)))
1518 return -EFAULT;
1519 return 0;
1520 }
1521 read_unlock(&mrt_lock);
1522 return -EADDRNOTAVAIL;
1523 case SIOCGETSGCNT:
1524 if (copy_from_user(&sr, arg, sizeof(sr)))
1525 return -EFAULT;
1526
1527 rcu_read_lock();
1528 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1529 if (c) {
1530 sr.pktcnt = c->mfc_un.res.pkt;
1531 sr.bytecnt = c->mfc_un.res.bytes;
1532 sr.wrong_if = c->mfc_un.res.wrong_if;
1533 rcu_read_unlock();
1534
1535 if (copy_to_user(arg, &sr, sizeof(sr)))
1536 return -EFAULT;
1537 return 0;
1538 }
1539 rcu_read_unlock();
1540 return -EADDRNOTAVAIL;
1541 default:
1542 return -ENOIOCTLCMD;
1543 }
1544 }
1545
1546 #ifdef CONFIG_COMPAT
1547 struct compat_sioc_sg_req {
1548 struct in_addr src;
1549 struct in_addr grp;
1550 compat_ulong_t pktcnt;
1551 compat_ulong_t bytecnt;
1552 compat_ulong_t wrong_if;
1553 };
1554
1555 struct compat_sioc_vif_req {
1556 vifi_t vifi; /* Which iface */
1557 compat_ulong_t icount;
1558 compat_ulong_t ocount;
1559 compat_ulong_t ibytes;
1560 compat_ulong_t obytes;
1561 };
1562
1563 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1564 {
1565 struct compat_sioc_sg_req sr;
1566 struct compat_sioc_vif_req vr;
1567 struct vif_device *vif;
1568 struct mfc_cache *c;
1569 struct net *net = sock_net(sk);
1570 struct mr_table *mrt;
1571
1572 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1573 if (!mrt)
1574 return -ENOENT;
1575
1576 switch (cmd) {
1577 case SIOCGETVIFCNT:
1578 if (copy_from_user(&vr, arg, sizeof(vr)))
1579 return -EFAULT;
1580 if (vr.vifi >= mrt->maxvif)
1581 return -EINVAL;
1582 read_lock(&mrt_lock);
1583 vif = &mrt->vif_table[vr.vifi];
1584 if (VIF_EXISTS(mrt, vr.vifi)) {
1585 vr.icount = vif->pkt_in;
1586 vr.ocount = vif->pkt_out;
1587 vr.ibytes = vif->bytes_in;
1588 vr.obytes = vif->bytes_out;
1589 read_unlock(&mrt_lock);
1590
1591 if (copy_to_user(arg, &vr, sizeof(vr)))
1592 return -EFAULT;
1593 return 0;
1594 }
1595 read_unlock(&mrt_lock);
1596 return -EADDRNOTAVAIL;
1597 case SIOCGETSGCNT:
1598 if (copy_from_user(&sr, arg, sizeof(sr)))
1599 return -EFAULT;
1600
1601 rcu_read_lock();
1602 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1603 if (c) {
1604 sr.pktcnt = c->mfc_un.res.pkt;
1605 sr.bytecnt = c->mfc_un.res.bytes;
1606 sr.wrong_if = c->mfc_un.res.wrong_if;
1607 rcu_read_unlock();
1608
1609 if (copy_to_user(arg, &sr, sizeof(sr)))
1610 return -EFAULT;
1611 return 0;
1612 }
1613 rcu_read_unlock();
1614 return -EADDRNOTAVAIL;
1615 default:
1616 return -ENOIOCTLCMD;
1617 }
1618 }
1619 #endif
1620
1621
1622 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1623 {
1624 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1625 struct net *net = dev_net(dev);
1626 struct mr_table *mrt;
1627 struct vif_device *v;
1628 int ct;
1629
1630 if (event != NETDEV_UNREGISTER)
1631 return NOTIFY_DONE;
1632
1633 ipmr_for_each_table(mrt, net) {
1634 v = &mrt->vif_table[0];
1635 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1636 if (v->dev == dev)
1637 vif_delete(mrt, ct, 1, NULL);
1638 }
1639 }
1640 return NOTIFY_DONE;
1641 }
1642
1643
1644 static struct notifier_block ip_mr_notifier = {
1645 .notifier_call = ipmr_device_event,
1646 };
1647
1648 /*
1649 * Encapsulate a packet by attaching a valid IPIP header to it.
1650 * This avoids tunnel drivers and other mess and gives us the speed so
1651 * important for multicast video.
1652 */
1653
1654 static void ip_encap(struct net *net, struct sk_buff *skb,
1655 __be32 saddr, __be32 daddr)
1656 {
1657 struct iphdr *iph;
1658 const struct iphdr *old_iph = ip_hdr(skb);
1659
1660 skb_push(skb, sizeof(struct iphdr));
1661 skb->transport_header = skb->network_header;
1662 skb_reset_network_header(skb);
1663 iph = ip_hdr(skb);
1664
1665 iph->version = 4;
1666 iph->tos = old_iph->tos;
1667 iph->ttl = old_iph->ttl;
1668 iph->frag_off = 0;
1669 iph->daddr = daddr;
1670 iph->saddr = saddr;
1671 iph->protocol = IPPROTO_IPIP;
1672 iph->ihl = 5;
1673 iph->tot_len = htons(skb->len);
1674 ip_select_ident(net, skb, NULL);
1675 ip_send_check(iph);
1676
1677 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1678 nf_reset(skb);
1679 }
1680
1681 static inline int ipmr_forward_finish(struct sock *sk, struct sk_buff *skb)
1682 {
1683 struct ip_options *opt = &(IPCB(skb)->opt);
1684
1685 IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
1686 IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len);
1687
1688 if (unlikely(opt->optlen))
1689 ip_forward_options(skb);
1690
1691 return dst_output_sk(sk, skb);
1692 }
1693
1694 /*
1695 * Processing handlers for ipmr_forward
1696 */
1697
1698 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1699 struct sk_buff *skb, struct mfc_cache *c, int vifi)
1700 {
1701 const struct iphdr *iph = ip_hdr(skb);
1702 struct vif_device *vif = &mrt->vif_table[vifi];
1703 struct net_device *dev;
1704 struct rtable *rt;
1705 struct flowi4 fl4;
1706 int encap = 0;
1707
1708 if (!vif->dev)
1709 goto out_free;
1710
1711 #ifdef CONFIG_IP_PIMSM
1712 if (vif->flags & VIFF_REGISTER) {
1713 vif->pkt_out++;
1714 vif->bytes_out += skb->len;
1715 vif->dev->stats.tx_bytes += skb->len;
1716 vif->dev->stats.tx_packets++;
1717 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1718 goto out_free;
1719 }
1720 #endif
1721
1722 if (vif->flags & VIFF_TUNNEL) {
1723 rt = ip_route_output_ports(net, &fl4, NULL,
1724 vif->remote, vif->local,
1725 0, 0,
1726 IPPROTO_IPIP,
1727 RT_TOS(iph->tos), vif->link);
1728 if (IS_ERR(rt))
1729 goto out_free;
1730 encap = sizeof(struct iphdr);
1731 } else {
1732 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1733 0, 0,
1734 IPPROTO_IPIP,
1735 RT_TOS(iph->tos), vif->link);
1736 if (IS_ERR(rt))
1737 goto out_free;
1738 }
1739
1740 dev = rt->dst.dev;
1741
1742 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1743 /* Do not fragment multicasts. Alas, IPv4 does not
1744 * allow to send ICMP, so that packets will disappear
1745 * to blackhole.
1746 */
1747
1748 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1749 ip_rt_put(rt);
1750 goto out_free;
1751 }
1752
1753 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1754
1755 if (skb_cow(skb, encap)) {
1756 ip_rt_put(rt);
1757 goto out_free;
1758 }
1759
1760 vif->pkt_out++;
1761 vif->bytes_out += skb->len;
1762
1763 skb_dst_drop(skb);
1764 skb_dst_set(skb, &rt->dst);
1765 ip_decrease_ttl(ip_hdr(skb));
1766
1767 /* FIXME: forward and output firewalls used to be called here.
1768 * What do we do with netfilter? -- RR
1769 */
1770 if (vif->flags & VIFF_TUNNEL) {
1771 ip_encap(net, skb, vif->local, vif->remote);
1772 /* FIXME: extra output firewall step used to be here. --RR */
1773 vif->dev->stats.tx_packets++;
1774 vif->dev->stats.tx_bytes += skb->len;
1775 }
1776
1777 IPCB(skb)->flags |= IPSKB_FORWARDED;
1778
1779 /*
1780 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1781 * not only before forwarding, but after forwarding on all output
1782 * interfaces. It is clear, if mrouter runs a multicasting
1783 * program, it should receive packets not depending to what interface
1784 * program is joined.
1785 * If we will not make it, the program will have to join on all
1786 * interfaces. On the other hand, multihoming host (or router, but
1787 * not mrouter) cannot join to more than one interface - it will
1788 * result in receiving multiple packets.
1789 */
1790 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, NULL, skb,
1791 skb->dev, dev,
1792 ipmr_forward_finish);
1793 return;
1794
1795 out_free:
1796 kfree_skb(skb);
1797 }
1798
1799 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1800 {
1801 int ct;
1802
1803 for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1804 if (mrt->vif_table[ct].dev == dev)
1805 break;
1806 }
1807 return ct;
1808 }
1809
1810 /* "local" means that we should preserve one skb (for local delivery) */
1811
1812 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1813 struct sk_buff *skb, struct mfc_cache *cache,
1814 int local)
1815 {
1816 int psend = -1;
1817 int vif, ct;
1818 int true_vifi = ipmr_find_vif(mrt, skb->dev);
1819
1820 vif = cache->mfc_parent;
1821 cache->mfc_un.res.pkt++;
1822 cache->mfc_un.res.bytes += skb->len;
1823
1824 if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1825 struct mfc_cache *cache_proxy;
1826
1827 /* For an (*,G) entry, we only check that the incomming
1828 * interface is part of the static tree.
1829 */
1830 cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
1831 if (cache_proxy &&
1832 cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
1833 goto forward;
1834 }
1835
1836 /*
1837 * Wrong interface: drop packet and (maybe) send PIM assert.
1838 */
1839 if (mrt->vif_table[vif].dev != skb->dev) {
1840 if (rt_is_output_route(skb_rtable(skb))) {
1841 /* It is our own packet, looped back.
1842 * Very complicated situation...
1843 *
1844 * The best workaround until routing daemons will be
1845 * fixed is not to redistribute packet, if it was
1846 * send through wrong interface. It means, that
1847 * multicast applications WILL NOT work for
1848 * (S,G), which have default multicast route pointing
1849 * to wrong oif. In any case, it is not a good
1850 * idea to use multicasting applications on router.
1851 */
1852 goto dont_forward;
1853 }
1854
1855 cache->mfc_un.res.wrong_if++;
1856
1857 if (true_vifi >= 0 && mrt->mroute_do_assert &&
1858 /* pimsm uses asserts, when switching from RPT to SPT,
1859 * so that we cannot check that packet arrived on an oif.
1860 * It is bad, but otherwise we would need to move pretty
1861 * large chunk of pimd to kernel. Ough... --ANK
1862 */
1863 (mrt->mroute_do_pim ||
1864 cache->mfc_un.res.ttls[true_vifi] < 255) &&
1865 time_after(jiffies,
1866 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1867 cache->mfc_un.res.last_assert = jiffies;
1868 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1869 }
1870 goto dont_forward;
1871 }
1872
1873 forward:
1874 mrt->vif_table[vif].pkt_in++;
1875 mrt->vif_table[vif].bytes_in += skb->len;
1876
1877 /*
1878 * Forward the frame
1879 */
1880 if (cache->mfc_origin == htonl(INADDR_ANY) &&
1881 cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
1882 if (true_vifi >= 0 &&
1883 true_vifi != cache->mfc_parent &&
1884 ip_hdr(skb)->ttl >
1885 cache->mfc_un.res.ttls[cache->mfc_parent]) {
1886 /* It's an (*,*) entry and the packet is not coming from
1887 * the upstream: forward the packet to the upstream
1888 * only.
1889 */
1890 psend = cache->mfc_parent;
1891 goto last_forward;
1892 }
1893 goto dont_forward;
1894 }
1895 for (ct = cache->mfc_un.res.maxvif - 1;
1896 ct >= cache->mfc_un.res.minvif; ct--) {
1897 /* For (*,G) entry, don't forward to the incoming interface */
1898 if ((cache->mfc_origin != htonl(INADDR_ANY) ||
1899 ct != true_vifi) &&
1900 ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1901 if (psend != -1) {
1902 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1903
1904 if (skb2)
1905 ipmr_queue_xmit(net, mrt, skb2, cache,
1906 psend);
1907 }
1908 psend = ct;
1909 }
1910 }
1911 last_forward:
1912 if (psend != -1) {
1913 if (local) {
1914 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1915
1916 if (skb2)
1917 ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1918 } else {
1919 ipmr_queue_xmit(net, mrt, skb, cache, psend);
1920 return;
1921 }
1922 }
1923
1924 dont_forward:
1925 if (!local)
1926 kfree_skb(skb);
1927 }
1928
1929 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1930 {
1931 struct rtable *rt = skb_rtable(skb);
1932 struct iphdr *iph = ip_hdr(skb);
1933 struct flowi4 fl4 = {
1934 .daddr = iph->daddr,
1935 .saddr = iph->saddr,
1936 .flowi4_tos = RT_TOS(iph->tos),
1937 .flowi4_oif = (rt_is_output_route(rt) ?
1938 skb->dev->ifindex : 0),
1939 .flowi4_iif = (rt_is_output_route(rt) ?
1940 LOOPBACK_IFINDEX :
1941 skb->dev->ifindex),
1942 .flowi4_mark = skb->mark,
1943 };
1944 struct mr_table *mrt;
1945 int err;
1946
1947 err = ipmr_fib_lookup(net, &fl4, &mrt);
1948 if (err)
1949 return ERR_PTR(err);
1950 return mrt;
1951 }
1952
1953 /*
1954 * Multicast packets for forwarding arrive here
1955 * Called with rcu_read_lock();
1956 */
1957
1958 int ip_mr_input(struct sk_buff *skb)
1959 {
1960 struct mfc_cache *cache;
1961 struct net *net = dev_net(skb->dev);
1962 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1963 struct mr_table *mrt;
1964
1965 /* Packet is looped back after forward, it should not be
1966 * forwarded second time, but still can be delivered locally.
1967 */
1968 if (IPCB(skb)->flags & IPSKB_FORWARDED)
1969 goto dont_forward;
1970
1971 mrt = ipmr_rt_fib_lookup(net, skb);
1972 if (IS_ERR(mrt)) {
1973 kfree_skb(skb);
1974 return PTR_ERR(mrt);
1975 }
1976 if (!local) {
1977 if (IPCB(skb)->opt.router_alert) {
1978 if (ip_call_ra_chain(skb))
1979 return 0;
1980 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1981 /* IGMPv1 (and broken IGMPv2 implementations sort of
1982 * Cisco IOS <= 11.2(8)) do not put router alert
1983 * option to IGMP packets destined to routable
1984 * groups. It is very bad, because it means
1985 * that we can forward NO IGMP messages.
1986 */
1987 struct sock *mroute_sk;
1988
1989 mroute_sk = rcu_dereference(mrt->mroute_sk);
1990 if (mroute_sk) {
1991 nf_reset(skb);
1992 raw_rcv(mroute_sk, skb);
1993 return 0;
1994 }
1995 }
1996 }
1997
1998 /* already under rcu_read_lock() */
1999 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2000 if (!cache) {
2001 int vif = ipmr_find_vif(mrt, skb->dev);
2002
2003 if (vif >= 0)
2004 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2005 vif);
2006 }
2007
2008 /*
2009 * No usable cache entry
2010 */
2011 if (!cache) {
2012 int vif;
2013
2014 if (local) {
2015 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2016 ip_local_deliver(skb);
2017 if (!skb2)
2018 return -ENOBUFS;
2019 skb = skb2;
2020 }
2021
2022 read_lock(&mrt_lock);
2023 vif = ipmr_find_vif(mrt, skb->dev);
2024 if (vif >= 0) {
2025 int err2 = ipmr_cache_unresolved(mrt, vif, skb);
2026 read_unlock(&mrt_lock);
2027
2028 return err2;
2029 }
2030 read_unlock(&mrt_lock);
2031 kfree_skb(skb);
2032 return -ENODEV;
2033 }
2034
2035 read_lock(&mrt_lock);
2036 ip_mr_forward(net, mrt, skb, cache, local);
2037 read_unlock(&mrt_lock);
2038
2039 if (local)
2040 return ip_local_deliver(skb);
2041
2042 return 0;
2043
2044 dont_forward:
2045 if (local)
2046 return ip_local_deliver(skb);
2047 kfree_skb(skb);
2048 return 0;
2049 }
2050
2051 #ifdef CONFIG_IP_PIMSM
2052 /* called with rcu_read_lock() */
2053 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
2054 unsigned int pimlen)
2055 {
2056 struct net_device *reg_dev = NULL;
2057 struct iphdr *encap;
2058
2059 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
2060 /*
2061 * Check that:
2062 * a. packet is really sent to a multicast group
2063 * b. packet is not a NULL-REGISTER
2064 * c. packet is not truncated
2065 */
2066 if (!ipv4_is_multicast(encap->daddr) ||
2067 encap->tot_len == 0 ||
2068 ntohs(encap->tot_len) + pimlen > skb->len)
2069 return 1;
2070
2071 read_lock(&mrt_lock);
2072 if (mrt->mroute_reg_vif_num >= 0)
2073 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
2074 read_unlock(&mrt_lock);
2075
2076 if (!reg_dev)
2077 return 1;
2078
2079 skb->mac_header = skb->network_header;
2080 skb_pull(skb, (u8 *)encap - skb->data);
2081 skb_reset_network_header(skb);
2082 skb->protocol = htons(ETH_P_IP);
2083 skb->ip_summed = CHECKSUM_NONE;
2084
2085 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
2086
2087 netif_rx(skb);
2088
2089 return NET_RX_SUCCESS;
2090 }
2091 #endif
2092
2093 #ifdef CONFIG_IP_PIMSM_V1
2094 /*
2095 * Handle IGMP messages of PIMv1
2096 */
2097
2098 int pim_rcv_v1(struct sk_buff *skb)
2099 {
2100 struct igmphdr *pim;
2101 struct net *net = dev_net(skb->dev);
2102 struct mr_table *mrt;
2103
2104 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2105 goto drop;
2106
2107 pim = igmp_hdr(skb);
2108
2109 mrt = ipmr_rt_fib_lookup(net, skb);
2110 if (IS_ERR(mrt))
2111 goto drop;
2112 if (!mrt->mroute_do_pim ||
2113 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2114 goto drop;
2115
2116 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2117 drop:
2118 kfree_skb(skb);
2119 }
2120 return 0;
2121 }
2122 #endif
2123
2124 #ifdef CONFIG_IP_PIMSM_V2
2125 static int pim_rcv(struct sk_buff *skb)
2126 {
2127 struct pimreghdr *pim;
2128 struct net *net = dev_net(skb->dev);
2129 struct mr_table *mrt;
2130
2131 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2132 goto drop;
2133
2134 pim = (struct pimreghdr *)skb_transport_header(skb);
2135 if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
2136 (pim->flags & PIM_NULL_REGISTER) ||
2137 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2138 csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2139 goto drop;
2140
2141 mrt = ipmr_rt_fib_lookup(net, skb);
2142 if (IS_ERR(mrt))
2143 goto drop;
2144 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2145 drop:
2146 kfree_skb(skb);
2147 }
2148 return 0;
2149 }
2150 #endif
2151
2152 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2153 struct mfc_cache *c, struct rtmsg *rtm)
2154 {
2155 int ct;
2156 struct rtnexthop *nhp;
2157 struct nlattr *mp_attr;
2158 struct rta_mfc_stats mfcs;
2159
2160 /* If cache is unresolved, don't try to parse IIF and OIF */
2161 if (c->mfc_parent >= MAXVIFS)
2162 return -ENOENT;
2163
2164 if (VIF_EXISTS(mrt, c->mfc_parent) &&
2165 nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2166 return -EMSGSIZE;
2167
2168 if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2169 return -EMSGSIZE;
2170
2171 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2172 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2173 if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2174 nla_nest_cancel(skb, mp_attr);
2175 return -EMSGSIZE;
2176 }
2177
2178 nhp->rtnh_flags = 0;
2179 nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2180 nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2181 nhp->rtnh_len = sizeof(*nhp);
2182 }
2183 }
2184
2185 nla_nest_end(skb, mp_attr);
2186
2187 mfcs.mfcs_packets = c->mfc_un.res.pkt;
2188 mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2189 mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2190 if (nla_put(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs) < 0)
2191 return -EMSGSIZE;
2192
2193 rtm->rtm_type = RTN_MULTICAST;
2194 return 1;
2195 }
2196
2197 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2198 __be32 saddr, __be32 daddr,
2199 struct rtmsg *rtm, int nowait)
2200 {
2201 struct mfc_cache *cache;
2202 struct mr_table *mrt;
2203 int err;
2204
2205 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2206 if (!mrt)
2207 return -ENOENT;
2208
2209 rcu_read_lock();
2210 cache = ipmr_cache_find(mrt, saddr, daddr);
2211 if (!cache && skb->dev) {
2212 int vif = ipmr_find_vif(mrt, skb->dev);
2213
2214 if (vif >= 0)
2215 cache = ipmr_cache_find_any(mrt, daddr, vif);
2216 }
2217 if (!cache) {
2218 struct sk_buff *skb2;
2219 struct iphdr *iph;
2220 struct net_device *dev;
2221 int vif = -1;
2222
2223 if (nowait) {
2224 rcu_read_unlock();
2225 return -EAGAIN;
2226 }
2227
2228 dev = skb->dev;
2229 read_lock(&mrt_lock);
2230 if (dev)
2231 vif = ipmr_find_vif(mrt, dev);
2232 if (vif < 0) {
2233 read_unlock(&mrt_lock);
2234 rcu_read_unlock();
2235 return -ENODEV;
2236 }
2237 skb2 = skb_clone(skb, GFP_ATOMIC);
2238 if (!skb2) {
2239 read_unlock(&mrt_lock);
2240 rcu_read_unlock();
2241 return -ENOMEM;
2242 }
2243
2244 skb_push(skb2, sizeof(struct iphdr));
2245 skb_reset_network_header(skb2);
2246 iph = ip_hdr(skb2);
2247 iph->ihl = sizeof(struct iphdr) >> 2;
2248 iph->saddr = saddr;
2249 iph->daddr = daddr;
2250 iph->version = 0;
2251 err = ipmr_cache_unresolved(mrt, vif, skb2);
2252 read_unlock(&mrt_lock);
2253 rcu_read_unlock();
2254 return err;
2255 }
2256
2257 read_lock(&mrt_lock);
2258 if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2259 cache->mfc_flags |= MFC_NOTIFY;
2260 err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2261 read_unlock(&mrt_lock);
2262 rcu_read_unlock();
2263 return err;
2264 }
2265
2266 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2267 u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2268 int flags)
2269 {
2270 struct nlmsghdr *nlh;
2271 struct rtmsg *rtm;
2272 int err;
2273
2274 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2275 if (!nlh)
2276 return -EMSGSIZE;
2277
2278 rtm = nlmsg_data(nlh);
2279 rtm->rtm_family = RTNL_FAMILY_IPMR;
2280 rtm->rtm_dst_len = 32;
2281 rtm->rtm_src_len = 32;
2282 rtm->rtm_tos = 0;
2283 rtm->rtm_table = mrt->id;
2284 if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2285 goto nla_put_failure;
2286 rtm->rtm_type = RTN_MULTICAST;
2287 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2288 if (c->mfc_flags & MFC_STATIC)
2289 rtm->rtm_protocol = RTPROT_STATIC;
2290 else
2291 rtm->rtm_protocol = RTPROT_MROUTED;
2292 rtm->rtm_flags = 0;
2293
2294 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2295 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2296 goto nla_put_failure;
2297 err = __ipmr_fill_mroute(mrt, skb, c, rtm);
2298 /* do not break the dump if cache is unresolved */
2299 if (err < 0 && err != -ENOENT)
2300 goto nla_put_failure;
2301
2302 nlmsg_end(skb, nlh);
2303 return 0;
2304
2305 nla_put_failure:
2306 nlmsg_cancel(skb, nlh);
2307 return -EMSGSIZE;
2308 }
2309
2310 static size_t mroute_msgsize(bool unresolved, int maxvif)
2311 {
2312 size_t len =
2313 NLMSG_ALIGN(sizeof(struct rtmsg))
2314 + nla_total_size(4) /* RTA_TABLE */
2315 + nla_total_size(4) /* RTA_SRC */
2316 + nla_total_size(4) /* RTA_DST */
2317 ;
2318
2319 if (!unresolved)
2320 len = len
2321 + nla_total_size(4) /* RTA_IIF */
2322 + nla_total_size(0) /* RTA_MULTIPATH */
2323 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2324 /* RTA_MFC_STATS */
2325 + nla_total_size(sizeof(struct rta_mfc_stats))
2326 ;
2327
2328 return len;
2329 }
2330
2331 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2332 int cmd)
2333 {
2334 struct net *net = read_pnet(&mrt->net);
2335 struct sk_buff *skb;
2336 int err = -ENOBUFS;
2337
2338 skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
2339 GFP_ATOMIC);
2340 if (!skb)
2341 goto errout;
2342
2343 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2344 if (err < 0)
2345 goto errout;
2346
2347 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2348 return;
2349
2350 errout:
2351 kfree_skb(skb);
2352 if (err < 0)
2353 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2354 }
2355
2356 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2357 {
2358 struct net *net = sock_net(skb->sk);
2359 struct mr_table *mrt;
2360 struct mfc_cache *mfc;
2361 unsigned int t = 0, s_t;
2362 unsigned int h = 0, s_h;
2363 unsigned int e = 0, s_e;
2364
2365 s_t = cb->args[0];
2366 s_h = cb->args[1];
2367 s_e = cb->args[2];
2368
2369 rcu_read_lock();
2370 ipmr_for_each_table(mrt, net) {
2371 if (t < s_t)
2372 goto next_table;
2373 if (t > s_t)
2374 s_h = 0;
2375 for (h = s_h; h < MFC_LINES; h++) {
2376 list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2377 if (e < s_e)
2378 goto next_entry;
2379 if (ipmr_fill_mroute(mrt, skb,
2380 NETLINK_CB(cb->skb).portid,
2381 cb->nlh->nlmsg_seq,
2382 mfc, RTM_NEWROUTE,
2383 NLM_F_MULTI) < 0)
2384 goto done;
2385 next_entry:
2386 e++;
2387 }
2388 e = s_e = 0;
2389 }
2390 spin_lock_bh(&mfc_unres_lock);
2391 list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
2392 if (e < s_e)
2393 goto next_entry2;
2394 if (ipmr_fill_mroute(mrt, skb,
2395 NETLINK_CB(cb->skb).portid,
2396 cb->nlh->nlmsg_seq,
2397 mfc, RTM_NEWROUTE,
2398 NLM_F_MULTI) < 0) {
2399 spin_unlock_bh(&mfc_unres_lock);
2400 goto done;
2401 }
2402 next_entry2:
2403 e++;
2404 }
2405 spin_unlock_bh(&mfc_unres_lock);
2406 e = s_e = 0;
2407 s_h = 0;
2408 next_table:
2409 t++;
2410 }
2411 done:
2412 rcu_read_unlock();
2413
2414 cb->args[2] = e;
2415 cb->args[1] = h;
2416 cb->args[0] = t;
2417
2418 return skb->len;
2419 }
2420
2421 #ifdef CONFIG_PROC_FS
2422 /*
2423 * The /proc interfaces to multicast routing :
2424 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2425 */
2426 struct ipmr_vif_iter {
2427 struct seq_net_private p;
2428 struct mr_table *mrt;
2429 int ct;
2430 };
2431
2432 static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2433 struct ipmr_vif_iter *iter,
2434 loff_t pos)
2435 {
2436 struct mr_table *mrt = iter->mrt;
2437
2438 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2439 if (!VIF_EXISTS(mrt, iter->ct))
2440 continue;
2441 if (pos-- == 0)
2442 return &mrt->vif_table[iter->ct];
2443 }
2444 return NULL;
2445 }
2446
2447 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2448 __acquires(mrt_lock)
2449 {
2450 struct ipmr_vif_iter *iter = seq->private;
2451 struct net *net = seq_file_net(seq);
2452 struct mr_table *mrt;
2453
2454 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2455 if (!mrt)
2456 return ERR_PTR(-ENOENT);
2457
2458 iter->mrt = mrt;
2459
2460 read_lock(&mrt_lock);
2461 return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2462 : SEQ_START_TOKEN;
2463 }
2464
2465 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2466 {
2467 struct ipmr_vif_iter *iter = seq->private;
2468 struct net *net = seq_file_net(seq);
2469 struct mr_table *mrt = iter->mrt;
2470
2471 ++*pos;
2472 if (v == SEQ_START_TOKEN)
2473 return ipmr_vif_seq_idx(net, iter, 0);
2474
2475 while (++iter->ct < mrt->maxvif) {
2476 if (!VIF_EXISTS(mrt, iter->ct))
2477 continue;
2478 return &mrt->vif_table[iter->ct];
2479 }
2480 return NULL;
2481 }
2482
2483 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2484 __releases(mrt_lock)
2485 {
2486 read_unlock(&mrt_lock);
2487 }
2488
2489 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2490 {
2491 struct ipmr_vif_iter *iter = seq->private;
2492 struct mr_table *mrt = iter->mrt;
2493
2494 if (v == SEQ_START_TOKEN) {
2495 seq_puts(seq,
2496 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
2497 } else {
2498 const struct vif_device *vif = v;
2499 const char *name = vif->dev ? vif->dev->name : "none";
2500
2501 seq_printf(seq,
2502 "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
2503 vif - mrt->vif_table,
2504 name, vif->bytes_in, vif->pkt_in,
2505 vif->bytes_out, vif->pkt_out,
2506 vif->flags, vif->local, vif->remote);
2507 }
2508 return 0;
2509 }
2510
2511 static const struct seq_operations ipmr_vif_seq_ops = {
2512 .start = ipmr_vif_seq_start,
2513 .next = ipmr_vif_seq_next,
2514 .stop = ipmr_vif_seq_stop,
2515 .show = ipmr_vif_seq_show,
2516 };
2517
2518 static int ipmr_vif_open(struct inode *inode, struct file *file)
2519 {
2520 return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2521 sizeof(struct ipmr_vif_iter));
2522 }
2523
2524 static const struct file_operations ipmr_vif_fops = {
2525 .owner = THIS_MODULE,
2526 .open = ipmr_vif_open,
2527 .read = seq_read,
2528 .llseek = seq_lseek,
2529 .release = seq_release_net,
2530 };
2531
2532 struct ipmr_mfc_iter {
2533 struct seq_net_private p;
2534 struct mr_table *mrt;
2535 struct list_head *cache;
2536 int ct;
2537 };
2538
2539
2540 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2541 struct ipmr_mfc_iter *it, loff_t pos)
2542 {
2543 struct mr_table *mrt = it->mrt;
2544 struct mfc_cache *mfc;
2545
2546 rcu_read_lock();
2547 for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2548 it->cache = &mrt->mfc_cache_array[it->ct];
2549 list_for_each_entry_rcu(mfc, it->cache, list)
2550 if (pos-- == 0)
2551 return mfc;
2552 }
2553 rcu_read_unlock();
2554
2555 spin_lock_bh(&mfc_unres_lock);
2556 it->cache = &mrt->mfc_unres_queue;
2557 list_for_each_entry(mfc, it->cache, list)
2558 if (pos-- == 0)
2559 return mfc;
2560 spin_unlock_bh(&mfc_unres_lock);
2561
2562 it->cache = NULL;
2563 return NULL;
2564 }
2565
2566
2567 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2568 {
2569 struct ipmr_mfc_iter *it = seq->private;
2570 struct net *net = seq_file_net(seq);
2571 struct mr_table *mrt;
2572
2573 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2574 if (!mrt)
2575 return ERR_PTR(-ENOENT);
2576
2577 it->mrt = mrt;
2578 it->cache = NULL;
2579 it->ct = 0;
2580 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2581 : SEQ_START_TOKEN;
2582 }
2583
2584 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2585 {
2586 struct mfc_cache *mfc = v;
2587 struct ipmr_mfc_iter *it = seq->private;
2588 struct net *net = seq_file_net(seq);
2589 struct mr_table *mrt = it->mrt;
2590
2591 ++*pos;
2592
2593 if (v == SEQ_START_TOKEN)
2594 return ipmr_mfc_seq_idx(net, seq->private, 0);
2595
2596 if (mfc->list.next != it->cache)
2597 return list_entry(mfc->list.next, struct mfc_cache, list);
2598
2599 if (it->cache == &mrt->mfc_unres_queue)
2600 goto end_of_list;
2601
2602 BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2603
2604 while (++it->ct < MFC_LINES) {
2605 it->cache = &mrt->mfc_cache_array[it->ct];
2606 if (list_empty(it->cache))
2607 continue;
2608 return list_first_entry(it->cache, struct mfc_cache, list);
2609 }
2610
2611 /* exhausted cache_array, show unresolved */
2612 rcu_read_unlock();
2613 it->cache = &mrt->mfc_unres_queue;
2614 it->ct = 0;
2615
2616 spin_lock_bh(&mfc_unres_lock);
2617 if (!list_empty(it->cache))
2618 return list_first_entry(it->cache, struct mfc_cache, list);
2619
2620 end_of_list:
2621 spin_unlock_bh(&mfc_unres_lock);
2622 it->cache = NULL;
2623
2624 return NULL;
2625 }
2626
2627 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2628 {
2629 struct ipmr_mfc_iter *it = seq->private;
2630 struct mr_table *mrt = it->mrt;
2631
2632 if (it->cache == &mrt->mfc_unres_queue)
2633 spin_unlock_bh(&mfc_unres_lock);
2634 else if (it->cache == &mrt->mfc_cache_array[it->ct])
2635 rcu_read_unlock();
2636 }
2637
2638 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2639 {
2640 int n;
2641
2642 if (v == SEQ_START_TOKEN) {
2643 seq_puts(seq,
2644 "Group Origin Iif Pkts Bytes Wrong Oifs\n");
2645 } else {
2646 const struct mfc_cache *mfc = v;
2647 const struct ipmr_mfc_iter *it = seq->private;
2648 const struct mr_table *mrt = it->mrt;
2649
2650 seq_printf(seq, "%08X %08X %-3hd",
2651 (__force u32) mfc->mfc_mcastgrp,
2652 (__force u32) mfc->mfc_origin,
2653 mfc->mfc_parent);
2654
2655 if (it->cache != &mrt->mfc_unres_queue) {
2656 seq_printf(seq, " %8lu %8lu %8lu",
2657 mfc->mfc_un.res.pkt,
2658 mfc->mfc_un.res.bytes,
2659 mfc->mfc_un.res.wrong_if);
2660 for (n = mfc->mfc_un.res.minvif;
2661 n < mfc->mfc_un.res.maxvif; n++) {
2662 if (VIF_EXISTS(mrt, n) &&
2663 mfc->mfc_un.res.ttls[n] < 255)
2664 seq_printf(seq,
2665 " %2d:%-3d",
2666 n, mfc->mfc_un.res.ttls[n]);
2667 }
2668 } else {
2669 /* unresolved mfc_caches don't contain
2670 * pkt, bytes and wrong_if values
2671 */
2672 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2673 }
2674 seq_putc(seq, '\n');
2675 }
2676 return 0;
2677 }
2678
2679 static const struct seq_operations ipmr_mfc_seq_ops = {
2680 .start = ipmr_mfc_seq_start,
2681 .next = ipmr_mfc_seq_next,
2682 .stop = ipmr_mfc_seq_stop,
2683 .show = ipmr_mfc_seq_show,
2684 };
2685
2686 static int ipmr_mfc_open(struct inode *inode, struct file *file)
2687 {
2688 return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2689 sizeof(struct ipmr_mfc_iter));
2690 }
2691
2692 static const struct file_operations ipmr_mfc_fops = {
2693 .owner = THIS_MODULE,
2694 .open = ipmr_mfc_open,
2695 .read = seq_read,
2696 .llseek = seq_lseek,
2697 .release = seq_release_net,
2698 };
2699 #endif
2700
2701 #ifdef CONFIG_IP_PIMSM_V2
2702 static const struct net_protocol pim_protocol = {
2703 .handler = pim_rcv,
2704 .netns_ok = 1,
2705 };
2706 #endif
2707
2708
2709 /*
2710 * Setup for IP multicast routing
2711 */
2712 static int __net_init ipmr_net_init(struct net *net)
2713 {
2714 int err;
2715
2716 err = ipmr_rules_init(net);
2717 if (err < 0)
2718 goto fail;
2719
2720 #ifdef CONFIG_PROC_FS
2721 err = -ENOMEM;
2722 if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
2723 goto proc_vif_fail;
2724 if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
2725 goto proc_cache_fail;
2726 #endif
2727 return 0;
2728
2729 #ifdef CONFIG_PROC_FS
2730 proc_cache_fail:
2731 remove_proc_entry("ip_mr_vif", net->proc_net);
2732 proc_vif_fail:
2733 ipmr_rules_exit(net);
2734 #endif
2735 fail:
2736 return err;
2737 }
2738
2739 static void __net_exit ipmr_net_exit(struct net *net)
2740 {
2741 #ifdef CONFIG_PROC_FS
2742 remove_proc_entry("ip_mr_cache", net->proc_net);
2743 remove_proc_entry("ip_mr_vif", net->proc_net);
2744 #endif
2745 ipmr_rules_exit(net);
2746 }
2747
2748 static struct pernet_operations ipmr_net_ops = {
2749 .init = ipmr_net_init,
2750 .exit = ipmr_net_exit,
2751 };
2752
2753 int __init ip_mr_init(void)
2754 {
2755 int err;
2756
2757 mrt_cachep = kmem_cache_create("ip_mrt_cache",
2758 sizeof(struct mfc_cache),
2759 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2760 NULL);
2761 if (!mrt_cachep)
2762 return -ENOMEM;
2763
2764 err = register_pernet_subsys(&ipmr_net_ops);
2765 if (err)
2766 goto reg_pernet_fail;
2767
2768 err = register_netdevice_notifier(&ip_mr_notifier);
2769 if (err)
2770 goto reg_notif_fail;
2771 #ifdef CONFIG_IP_PIMSM_V2
2772 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2773 pr_err("%s: can't add PIM protocol\n", __func__);
2774 err = -EAGAIN;
2775 goto add_proto_fail;
2776 }
2777 #endif
2778 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2779 NULL, ipmr_rtm_dumproute, NULL);
2780 return 0;
2781
2782 #ifdef CONFIG_IP_PIMSM_V2
2783 add_proto_fail:
2784 unregister_netdevice_notifier(&ip_mr_notifier);
2785 #endif
2786 reg_notif_fail:
2787 unregister_pernet_subsys(&ipmr_net_ops);
2788 reg_pernet_fail:
2789 kmem_cache_destroy(mrt_cachep);
2790 return err;
2791 }