]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - net/ipv4/ipmr.c
Merge branch 'ras-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-focal-kernel.git] / net / ipv4 / ipmr.c
1 /*
2 * IP multicast routing support for mrouted 3.6/3.8
3 *
4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5 * Linux Consultancy and Custom Driver Development
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 *
12 * Fixes:
13 * Michael Chastain : Incorrect size of copying.
14 * Alan Cox : Added the cache manager code
15 * Alan Cox : Fixed the clone/copy bug and device race.
16 * Mike McLagan : Routing by source
17 * Malcolm Beattie : Buffer handling fixes.
18 * Alexey Kuznetsov : Double buffer free and other fixes.
19 * SVR Anand : Fixed several multicast bugs and problems.
20 * Alexey Kuznetsov : Status, optimisations and more.
21 * Brad Parker : Better behaviour on mrouted upcall
22 * overflow.
23 * Carlos Picoto : PIMv1 Support
24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
25 * Relax this requirement to work with older peers.
26 *
27 */
28
29 #include <linux/uaccess.h>
30 #include <linux/types.h>
31 #include <linux/capability.h>
32 #include <linux/errno.h>
33 #include <linux/timer.h>
34 #include <linux/mm.h>
35 #include <linux/kernel.h>
36 #include <linux/fcntl.h>
37 #include <linux/stat.h>
38 #include <linux/socket.h>
39 #include <linux/in.h>
40 #include <linux/inet.h>
41 #include <linux/netdevice.h>
42 #include <linux/inetdevice.h>
43 #include <linux/igmp.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/mroute.h>
47 #include <linux/init.h>
48 #include <linux/if_ether.h>
49 #include <linux/slab.h>
50 #include <net/net_namespace.h>
51 #include <net/ip.h>
52 #include <net/protocol.h>
53 #include <linux/skbuff.h>
54 #include <net/route.h>
55 #include <net/sock.h>
56 #include <net/icmp.h>
57 #include <net/udp.h>
58 #include <net/raw.h>
59 #include <linux/notifier.h>
60 #include <linux/if_arp.h>
61 #include <linux/netfilter_ipv4.h>
62 #include <linux/compat.h>
63 #include <linux/export.h>
64 #include <net/ip_tunnels.h>
65 #include <net/checksum.h>
66 #include <net/netlink.h>
67 #include <net/fib_rules.h>
68 #include <linux/netconf.h>
69 #include <net/nexthop.h>
70
71 struct ipmr_rule {
72 struct fib_rule common;
73 };
74
75 struct ipmr_result {
76 struct mr_table *mrt;
77 };
78
79 /* Big lock, protecting vif table, mrt cache and mroute socket state.
80 * Note that the changes are semaphored via rtnl_lock.
81 */
82
83 static DEFINE_RWLOCK(mrt_lock);
84
85 /* Multicast router control variables */
86
87 /* Special spinlock for queue of unresolved entries */
88 static DEFINE_SPINLOCK(mfc_unres_lock);
89
90 /* We return to original Alan's scheme. Hash table of resolved
91 * entries is changed only in process context and protected
92 * with weak lock mrt_lock. Queue of unresolved entries is protected
93 * with strong spinlock mfc_unres_lock.
94 *
95 * In this case data path is free of exclusive locks at all.
96 */
97
98 static struct kmem_cache *mrt_cachep __read_mostly;
99
100 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
101 static void ipmr_free_table(struct mr_table *mrt);
102
103 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
104 struct sk_buff *skb, struct mfc_cache *cache,
105 int local);
106 static int ipmr_cache_report(struct mr_table *mrt,
107 struct sk_buff *pkt, vifi_t vifi, int assert);
108 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
109 struct mfc_cache *c, struct rtmsg *rtm);
110 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
111 int cmd);
112 static void mroute_clean_tables(struct mr_table *mrt, bool all);
113 static void ipmr_expire_process(unsigned long arg);
114
115 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
116 #define ipmr_for_each_table(mrt, net) \
117 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
118
119 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
120 {
121 struct mr_table *mrt;
122
123 ipmr_for_each_table(mrt, net) {
124 if (mrt->id == id)
125 return mrt;
126 }
127 return NULL;
128 }
129
130 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
131 struct mr_table **mrt)
132 {
133 int err;
134 struct ipmr_result res;
135 struct fib_lookup_arg arg = {
136 .result = &res,
137 .flags = FIB_LOOKUP_NOREF,
138 };
139
140 /* update flow if oif or iif point to device enslaved to l3mdev */
141 l3mdev_update_flow(net, flowi4_to_flowi(flp4));
142
143 err = fib_rules_lookup(net->ipv4.mr_rules_ops,
144 flowi4_to_flowi(flp4), 0, &arg);
145 if (err < 0)
146 return err;
147 *mrt = res.mrt;
148 return 0;
149 }
150
151 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
152 int flags, struct fib_lookup_arg *arg)
153 {
154 struct ipmr_result *res = arg->result;
155 struct mr_table *mrt;
156
157 switch (rule->action) {
158 case FR_ACT_TO_TBL:
159 break;
160 case FR_ACT_UNREACHABLE:
161 return -ENETUNREACH;
162 case FR_ACT_PROHIBIT:
163 return -EACCES;
164 case FR_ACT_BLACKHOLE:
165 default:
166 return -EINVAL;
167 }
168
169 arg->table = fib_rule_get_table(rule, arg);
170
171 mrt = ipmr_get_table(rule->fr_net, arg->table);
172 if (!mrt)
173 return -EAGAIN;
174 res->mrt = mrt;
175 return 0;
176 }
177
178 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
179 {
180 return 1;
181 }
182
183 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
184 FRA_GENERIC_POLICY,
185 };
186
187 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
188 struct fib_rule_hdr *frh, struct nlattr **tb)
189 {
190 return 0;
191 }
192
193 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
194 struct nlattr **tb)
195 {
196 return 1;
197 }
198
199 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
200 struct fib_rule_hdr *frh)
201 {
202 frh->dst_len = 0;
203 frh->src_len = 0;
204 frh->tos = 0;
205 return 0;
206 }
207
208 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
209 .family = RTNL_FAMILY_IPMR,
210 .rule_size = sizeof(struct ipmr_rule),
211 .addr_size = sizeof(u32),
212 .action = ipmr_rule_action,
213 .match = ipmr_rule_match,
214 .configure = ipmr_rule_configure,
215 .compare = ipmr_rule_compare,
216 .fill = ipmr_rule_fill,
217 .nlgroup = RTNLGRP_IPV4_RULE,
218 .policy = ipmr_rule_policy,
219 .owner = THIS_MODULE,
220 };
221
222 static int __net_init ipmr_rules_init(struct net *net)
223 {
224 struct fib_rules_ops *ops;
225 struct mr_table *mrt;
226 int err;
227
228 ops = fib_rules_register(&ipmr_rules_ops_template, net);
229 if (IS_ERR(ops))
230 return PTR_ERR(ops);
231
232 INIT_LIST_HEAD(&net->ipv4.mr_tables);
233
234 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
235 if (IS_ERR(mrt)) {
236 err = PTR_ERR(mrt);
237 goto err1;
238 }
239
240 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
241 if (err < 0)
242 goto err2;
243
244 net->ipv4.mr_rules_ops = ops;
245 return 0;
246
247 err2:
248 ipmr_free_table(mrt);
249 err1:
250 fib_rules_unregister(ops);
251 return err;
252 }
253
254 static void __net_exit ipmr_rules_exit(struct net *net)
255 {
256 struct mr_table *mrt, *next;
257
258 rtnl_lock();
259 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
260 list_del(&mrt->list);
261 ipmr_free_table(mrt);
262 }
263 fib_rules_unregister(net->ipv4.mr_rules_ops);
264 rtnl_unlock();
265 }
266 #else
267 #define ipmr_for_each_table(mrt, net) \
268 for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
269
270 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
271 {
272 return net->ipv4.mrt;
273 }
274
275 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
276 struct mr_table **mrt)
277 {
278 *mrt = net->ipv4.mrt;
279 return 0;
280 }
281
282 static int __net_init ipmr_rules_init(struct net *net)
283 {
284 struct mr_table *mrt;
285
286 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
287 if (IS_ERR(mrt))
288 return PTR_ERR(mrt);
289 net->ipv4.mrt = mrt;
290 return 0;
291 }
292
293 static void __net_exit ipmr_rules_exit(struct net *net)
294 {
295 rtnl_lock();
296 ipmr_free_table(net->ipv4.mrt);
297 net->ipv4.mrt = NULL;
298 rtnl_unlock();
299 }
300 #endif
301
302 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
303 const void *ptr)
304 {
305 const struct mfc_cache_cmp_arg *cmparg = arg->key;
306 struct mfc_cache *c = (struct mfc_cache *)ptr;
307
308 return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
309 cmparg->mfc_origin != c->mfc_origin;
310 }
311
312 static const struct rhashtable_params ipmr_rht_params = {
313 .head_offset = offsetof(struct mfc_cache, mnode),
314 .key_offset = offsetof(struct mfc_cache, cmparg),
315 .key_len = sizeof(struct mfc_cache_cmp_arg),
316 .nelem_hint = 3,
317 .locks_mul = 1,
318 .obj_cmpfn = ipmr_hash_cmp,
319 .automatic_shrinking = true,
320 };
321
322 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
323 {
324 struct mr_table *mrt;
325
326 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
327 if (id != RT_TABLE_DEFAULT && id >= 1000000000)
328 return ERR_PTR(-EINVAL);
329
330 mrt = ipmr_get_table(net, id);
331 if (mrt)
332 return mrt;
333
334 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
335 if (!mrt)
336 return ERR_PTR(-ENOMEM);
337 write_pnet(&mrt->net, net);
338 mrt->id = id;
339
340 rhltable_init(&mrt->mfc_hash, &ipmr_rht_params);
341 INIT_LIST_HEAD(&mrt->mfc_cache_list);
342 INIT_LIST_HEAD(&mrt->mfc_unres_queue);
343
344 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
345 (unsigned long)mrt);
346
347 mrt->mroute_reg_vif_num = -1;
348 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
349 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
350 #endif
351 return mrt;
352 }
353
354 static void ipmr_free_table(struct mr_table *mrt)
355 {
356 del_timer_sync(&mrt->ipmr_expire_timer);
357 mroute_clean_tables(mrt, true);
358 rhltable_destroy(&mrt->mfc_hash);
359 kfree(mrt);
360 }
361
362 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
363
364 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
365 {
366 struct net *net = dev_net(dev);
367
368 dev_close(dev);
369
370 dev = __dev_get_by_name(net, "tunl0");
371 if (dev) {
372 const struct net_device_ops *ops = dev->netdev_ops;
373 struct ifreq ifr;
374 struct ip_tunnel_parm p;
375
376 memset(&p, 0, sizeof(p));
377 p.iph.daddr = v->vifc_rmt_addr.s_addr;
378 p.iph.saddr = v->vifc_lcl_addr.s_addr;
379 p.iph.version = 4;
380 p.iph.ihl = 5;
381 p.iph.protocol = IPPROTO_IPIP;
382 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
383 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
384
385 if (ops->ndo_do_ioctl) {
386 mm_segment_t oldfs = get_fs();
387
388 set_fs(KERNEL_DS);
389 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
390 set_fs(oldfs);
391 }
392 }
393 }
394
395 /* Initialize ipmr pimreg/tunnel in_device */
396 static bool ipmr_init_vif_indev(const struct net_device *dev)
397 {
398 struct in_device *in_dev;
399
400 ASSERT_RTNL();
401
402 in_dev = __in_dev_get_rtnl(dev);
403 if (!in_dev)
404 return false;
405 ipv4_devconf_setall(in_dev);
406 neigh_parms_data_state_setall(in_dev->arp_parms);
407 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
408
409 return true;
410 }
411
412 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
413 {
414 struct net_device *dev;
415
416 dev = __dev_get_by_name(net, "tunl0");
417
418 if (dev) {
419 const struct net_device_ops *ops = dev->netdev_ops;
420 int err;
421 struct ifreq ifr;
422 struct ip_tunnel_parm p;
423
424 memset(&p, 0, sizeof(p));
425 p.iph.daddr = v->vifc_rmt_addr.s_addr;
426 p.iph.saddr = v->vifc_lcl_addr.s_addr;
427 p.iph.version = 4;
428 p.iph.ihl = 5;
429 p.iph.protocol = IPPROTO_IPIP;
430 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
431 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
432
433 if (ops->ndo_do_ioctl) {
434 mm_segment_t oldfs = get_fs();
435
436 set_fs(KERNEL_DS);
437 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
438 set_fs(oldfs);
439 } else {
440 err = -EOPNOTSUPP;
441 }
442 dev = NULL;
443
444 if (err == 0 &&
445 (dev = __dev_get_by_name(net, p.name)) != NULL) {
446 dev->flags |= IFF_MULTICAST;
447 if (!ipmr_init_vif_indev(dev))
448 goto failure;
449 if (dev_open(dev))
450 goto failure;
451 dev_hold(dev);
452 }
453 }
454 return dev;
455
456 failure:
457 unregister_netdevice(dev);
458 return NULL;
459 }
460
461 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
462 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
463 {
464 struct net *net = dev_net(dev);
465 struct mr_table *mrt;
466 struct flowi4 fl4 = {
467 .flowi4_oif = dev->ifindex,
468 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
469 .flowi4_mark = skb->mark,
470 };
471 int err;
472
473 err = ipmr_fib_lookup(net, &fl4, &mrt);
474 if (err < 0) {
475 kfree_skb(skb);
476 return err;
477 }
478
479 read_lock(&mrt_lock);
480 dev->stats.tx_bytes += skb->len;
481 dev->stats.tx_packets++;
482 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
483 read_unlock(&mrt_lock);
484 kfree_skb(skb);
485 return NETDEV_TX_OK;
486 }
487
488 static int reg_vif_get_iflink(const struct net_device *dev)
489 {
490 return 0;
491 }
492
493 static const struct net_device_ops reg_vif_netdev_ops = {
494 .ndo_start_xmit = reg_vif_xmit,
495 .ndo_get_iflink = reg_vif_get_iflink,
496 };
497
498 static void reg_vif_setup(struct net_device *dev)
499 {
500 dev->type = ARPHRD_PIMREG;
501 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
502 dev->flags = IFF_NOARP;
503 dev->netdev_ops = &reg_vif_netdev_ops;
504 dev->destructor = free_netdev;
505 dev->features |= NETIF_F_NETNS_LOCAL;
506 }
507
508 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
509 {
510 struct net_device *dev;
511 char name[IFNAMSIZ];
512
513 if (mrt->id == RT_TABLE_DEFAULT)
514 sprintf(name, "pimreg");
515 else
516 sprintf(name, "pimreg%u", mrt->id);
517
518 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
519
520 if (!dev)
521 return NULL;
522
523 dev_net_set(dev, net);
524
525 if (register_netdevice(dev)) {
526 free_netdev(dev);
527 return NULL;
528 }
529
530 if (!ipmr_init_vif_indev(dev))
531 goto failure;
532 if (dev_open(dev))
533 goto failure;
534
535 dev_hold(dev);
536
537 return dev;
538
539 failure:
540 unregister_netdevice(dev);
541 return NULL;
542 }
543
544 /* called with rcu_read_lock() */
545 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
546 unsigned int pimlen)
547 {
548 struct net_device *reg_dev = NULL;
549 struct iphdr *encap;
550
551 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
552 /* Check that:
553 * a. packet is really sent to a multicast group
554 * b. packet is not a NULL-REGISTER
555 * c. packet is not truncated
556 */
557 if (!ipv4_is_multicast(encap->daddr) ||
558 encap->tot_len == 0 ||
559 ntohs(encap->tot_len) + pimlen > skb->len)
560 return 1;
561
562 read_lock(&mrt_lock);
563 if (mrt->mroute_reg_vif_num >= 0)
564 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
565 read_unlock(&mrt_lock);
566
567 if (!reg_dev)
568 return 1;
569
570 skb->mac_header = skb->network_header;
571 skb_pull(skb, (u8 *)encap - skb->data);
572 skb_reset_network_header(skb);
573 skb->protocol = htons(ETH_P_IP);
574 skb->ip_summed = CHECKSUM_NONE;
575
576 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
577
578 netif_rx(skb);
579
580 return NET_RX_SUCCESS;
581 }
582 #else
583 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
584 {
585 return NULL;
586 }
587 #endif
588
589 /**
590 * vif_delete - Delete a VIF entry
591 * @notify: Set to 1, if the caller is a notifier_call
592 */
593 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
594 struct list_head *head)
595 {
596 struct vif_device *v;
597 struct net_device *dev;
598 struct in_device *in_dev;
599
600 if (vifi < 0 || vifi >= mrt->maxvif)
601 return -EADDRNOTAVAIL;
602
603 v = &mrt->vif_table[vifi];
604
605 write_lock_bh(&mrt_lock);
606 dev = v->dev;
607 v->dev = NULL;
608
609 if (!dev) {
610 write_unlock_bh(&mrt_lock);
611 return -EADDRNOTAVAIL;
612 }
613
614 if (vifi == mrt->mroute_reg_vif_num)
615 mrt->mroute_reg_vif_num = -1;
616
617 if (vifi + 1 == mrt->maxvif) {
618 int tmp;
619
620 for (tmp = vifi - 1; tmp >= 0; tmp--) {
621 if (VIF_EXISTS(mrt, tmp))
622 break;
623 }
624 mrt->maxvif = tmp+1;
625 }
626
627 write_unlock_bh(&mrt_lock);
628
629 dev_set_allmulti(dev, -1);
630
631 in_dev = __in_dev_get_rtnl(dev);
632 if (in_dev) {
633 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
634 inet_netconf_notify_devconf(dev_net(dev),
635 NETCONFA_MC_FORWARDING,
636 dev->ifindex, &in_dev->cnf);
637 ip_rt_multicast_event(in_dev);
638 }
639
640 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
641 unregister_netdevice_queue(dev, head);
642
643 dev_put(dev);
644 return 0;
645 }
646
647 static void ipmr_cache_free_rcu(struct rcu_head *head)
648 {
649 struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
650
651 kmem_cache_free(mrt_cachep, c);
652 }
653
654 static inline void ipmr_cache_free(struct mfc_cache *c)
655 {
656 call_rcu(&c->rcu, ipmr_cache_free_rcu);
657 }
658
659 /* Destroy an unresolved cache entry, killing queued skbs
660 * and reporting error to netlink readers.
661 */
662 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
663 {
664 struct net *net = read_pnet(&mrt->net);
665 struct sk_buff *skb;
666 struct nlmsgerr *e;
667
668 atomic_dec(&mrt->cache_resolve_queue_len);
669
670 while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
671 if (ip_hdr(skb)->version == 0) {
672 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
673 nlh->nlmsg_type = NLMSG_ERROR;
674 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
675 skb_trim(skb, nlh->nlmsg_len);
676 e = nlmsg_data(nlh);
677 e->error = -ETIMEDOUT;
678 memset(&e->msg, 0, sizeof(e->msg));
679
680 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
681 } else {
682 kfree_skb(skb);
683 }
684 }
685
686 ipmr_cache_free(c);
687 }
688
689 /* Timer process for the unresolved queue. */
690 static void ipmr_expire_process(unsigned long arg)
691 {
692 struct mr_table *mrt = (struct mr_table *)arg;
693 unsigned long now;
694 unsigned long expires;
695 struct mfc_cache *c, *next;
696
697 if (!spin_trylock(&mfc_unres_lock)) {
698 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
699 return;
700 }
701
702 if (list_empty(&mrt->mfc_unres_queue))
703 goto out;
704
705 now = jiffies;
706 expires = 10*HZ;
707
708 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
709 if (time_after(c->mfc_un.unres.expires, now)) {
710 unsigned long interval = c->mfc_un.unres.expires - now;
711 if (interval < expires)
712 expires = interval;
713 continue;
714 }
715
716 list_del(&c->list);
717 mroute_netlink_event(mrt, c, RTM_DELROUTE);
718 ipmr_destroy_unres(mrt, c);
719 }
720
721 if (!list_empty(&mrt->mfc_unres_queue))
722 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
723
724 out:
725 spin_unlock(&mfc_unres_lock);
726 }
727
728 /* Fill oifs list. It is called under write locked mrt_lock. */
729 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
730 unsigned char *ttls)
731 {
732 int vifi;
733
734 cache->mfc_un.res.minvif = MAXVIFS;
735 cache->mfc_un.res.maxvif = 0;
736 memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
737
738 for (vifi = 0; vifi < mrt->maxvif; vifi++) {
739 if (VIF_EXISTS(mrt, vifi) &&
740 ttls[vifi] && ttls[vifi] < 255) {
741 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
742 if (cache->mfc_un.res.minvif > vifi)
743 cache->mfc_un.res.minvif = vifi;
744 if (cache->mfc_un.res.maxvif <= vifi)
745 cache->mfc_un.res.maxvif = vifi + 1;
746 }
747 }
748 cache->mfc_un.res.lastuse = jiffies;
749 }
750
751 static int vif_add(struct net *net, struct mr_table *mrt,
752 struct vifctl *vifc, int mrtsock)
753 {
754 int vifi = vifc->vifc_vifi;
755 struct vif_device *v = &mrt->vif_table[vifi];
756 struct net_device *dev;
757 struct in_device *in_dev;
758 int err;
759
760 /* Is vif busy ? */
761 if (VIF_EXISTS(mrt, vifi))
762 return -EADDRINUSE;
763
764 switch (vifc->vifc_flags) {
765 case VIFF_REGISTER:
766 if (!ipmr_pimsm_enabled())
767 return -EINVAL;
768 /* Special Purpose VIF in PIM
769 * All the packets will be sent to the daemon
770 */
771 if (mrt->mroute_reg_vif_num >= 0)
772 return -EADDRINUSE;
773 dev = ipmr_reg_vif(net, mrt);
774 if (!dev)
775 return -ENOBUFS;
776 err = dev_set_allmulti(dev, 1);
777 if (err) {
778 unregister_netdevice(dev);
779 dev_put(dev);
780 return err;
781 }
782 break;
783 case VIFF_TUNNEL:
784 dev = ipmr_new_tunnel(net, vifc);
785 if (!dev)
786 return -ENOBUFS;
787 err = dev_set_allmulti(dev, 1);
788 if (err) {
789 ipmr_del_tunnel(dev, vifc);
790 dev_put(dev);
791 return err;
792 }
793 break;
794 case VIFF_USE_IFINDEX:
795 case 0:
796 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
797 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
798 if (dev && !__in_dev_get_rtnl(dev)) {
799 dev_put(dev);
800 return -EADDRNOTAVAIL;
801 }
802 } else {
803 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
804 }
805 if (!dev)
806 return -EADDRNOTAVAIL;
807 err = dev_set_allmulti(dev, 1);
808 if (err) {
809 dev_put(dev);
810 return err;
811 }
812 break;
813 default:
814 return -EINVAL;
815 }
816
817 in_dev = __in_dev_get_rtnl(dev);
818 if (!in_dev) {
819 dev_put(dev);
820 return -EADDRNOTAVAIL;
821 }
822 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
823 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
824 &in_dev->cnf);
825 ip_rt_multicast_event(in_dev);
826
827 /* Fill in the VIF structures */
828
829 v->rate_limit = vifc->vifc_rate_limit;
830 v->local = vifc->vifc_lcl_addr.s_addr;
831 v->remote = vifc->vifc_rmt_addr.s_addr;
832 v->flags = vifc->vifc_flags;
833 if (!mrtsock)
834 v->flags |= VIFF_STATIC;
835 v->threshold = vifc->vifc_threshold;
836 v->bytes_in = 0;
837 v->bytes_out = 0;
838 v->pkt_in = 0;
839 v->pkt_out = 0;
840 v->link = dev->ifindex;
841 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
842 v->link = dev_get_iflink(dev);
843
844 /* And finish update writing critical data */
845 write_lock_bh(&mrt_lock);
846 v->dev = dev;
847 if (v->flags & VIFF_REGISTER)
848 mrt->mroute_reg_vif_num = vifi;
849 if (vifi+1 > mrt->maxvif)
850 mrt->maxvif = vifi+1;
851 write_unlock_bh(&mrt_lock);
852 return 0;
853 }
854
855 /* called with rcu_read_lock() */
856 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
857 __be32 origin,
858 __be32 mcastgrp)
859 {
860 struct mfc_cache_cmp_arg arg = {
861 .mfc_mcastgrp = mcastgrp,
862 .mfc_origin = origin
863 };
864 struct rhlist_head *tmp, *list;
865 struct mfc_cache *c;
866
867 list = rhltable_lookup(&mrt->mfc_hash, &arg, ipmr_rht_params);
868 rhl_for_each_entry_rcu(c, tmp, list, mnode)
869 return c;
870
871 return NULL;
872 }
873
874 /* Look for a (*,*,oif) entry */
875 static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
876 int vifi)
877 {
878 struct mfc_cache_cmp_arg arg = {
879 .mfc_mcastgrp = htonl(INADDR_ANY),
880 .mfc_origin = htonl(INADDR_ANY)
881 };
882 struct rhlist_head *tmp, *list;
883 struct mfc_cache *c;
884
885 list = rhltable_lookup(&mrt->mfc_hash, &arg, ipmr_rht_params);
886 rhl_for_each_entry_rcu(c, tmp, list, mnode)
887 if (c->mfc_un.res.ttls[vifi] < 255)
888 return c;
889
890 return NULL;
891 }
892
893 /* Look for a (*,G) entry */
894 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
895 __be32 mcastgrp, int vifi)
896 {
897 struct mfc_cache_cmp_arg arg = {
898 .mfc_mcastgrp = mcastgrp,
899 .mfc_origin = htonl(INADDR_ANY)
900 };
901 struct rhlist_head *tmp, *list;
902 struct mfc_cache *c, *proxy;
903
904 if (mcastgrp == htonl(INADDR_ANY))
905 goto skip;
906
907 list = rhltable_lookup(&mrt->mfc_hash, &arg, ipmr_rht_params);
908 rhl_for_each_entry_rcu(c, tmp, list, mnode) {
909 if (c->mfc_un.res.ttls[vifi] < 255)
910 return c;
911
912 /* It's ok if the vifi is part of the static tree */
913 proxy = ipmr_cache_find_any_parent(mrt, c->mfc_parent);
914 if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
915 return c;
916 }
917
918 skip:
919 return ipmr_cache_find_any_parent(mrt, vifi);
920 }
921
922 /* Look for a (S,G,iif) entry if parent != -1 */
923 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
924 __be32 origin, __be32 mcastgrp,
925 int parent)
926 {
927 struct mfc_cache_cmp_arg arg = {
928 .mfc_mcastgrp = mcastgrp,
929 .mfc_origin = origin,
930 };
931 struct rhlist_head *tmp, *list;
932 struct mfc_cache *c;
933
934 list = rhltable_lookup(&mrt->mfc_hash, &arg, ipmr_rht_params);
935 rhl_for_each_entry_rcu(c, tmp, list, mnode)
936 if (parent == -1 || parent == c->mfc_parent)
937 return c;
938
939 return NULL;
940 }
941
942 /* Allocate a multicast cache entry */
943 static struct mfc_cache *ipmr_cache_alloc(void)
944 {
945 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
946
947 if (c) {
948 c->mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
949 c->mfc_un.res.minvif = MAXVIFS;
950 }
951 return c;
952 }
953
954 static struct mfc_cache *ipmr_cache_alloc_unres(void)
955 {
956 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
957
958 if (c) {
959 skb_queue_head_init(&c->mfc_un.unres.unresolved);
960 c->mfc_un.unres.expires = jiffies + 10*HZ;
961 }
962 return c;
963 }
964
965 /* A cache entry has gone into a resolved state from queued */
966 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
967 struct mfc_cache *uc, struct mfc_cache *c)
968 {
969 struct sk_buff *skb;
970 struct nlmsgerr *e;
971
972 /* Play the pending entries through our router */
973 while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
974 if (ip_hdr(skb)->version == 0) {
975 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
976
977 if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
978 nlh->nlmsg_len = skb_tail_pointer(skb) -
979 (u8 *)nlh;
980 } else {
981 nlh->nlmsg_type = NLMSG_ERROR;
982 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
983 skb_trim(skb, nlh->nlmsg_len);
984 e = nlmsg_data(nlh);
985 e->error = -EMSGSIZE;
986 memset(&e->msg, 0, sizeof(e->msg));
987 }
988
989 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
990 } else {
991 ip_mr_forward(net, mrt, skb, c, 0);
992 }
993 }
994 }
995
996 /* Bounce a cache query up to mrouted. We could use netlink for this but mrouted
997 * expects the following bizarre scheme.
998 *
999 * Called under mrt_lock.
1000 */
1001 static int ipmr_cache_report(struct mr_table *mrt,
1002 struct sk_buff *pkt, vifi_t vifi, int assert)
1003 {
1004 const int ihl = ip_hdrlen(pkt);
1005 struct sock *mroute_sk;
1006 struct igmphdr *igmp;
1007 struct igmpmsg *msg;
1008 struct sk_buff *skb;
1009 int ret;
1010
1011 if (assert == IGMPMSG_WHOLEPKT)
1012 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1013 else
1014 skb = alloc_skb(128, GFP_ATOMIC);
1015
1016 if (!skb)
1017 return -ENOBUFS;
1018
1019 if (assert == IGMPMSG_WHOLEPKT) {
1020 /* Ugly, but we have no choice with this interface.
1021 * Duplicate old header, fix ihl, length etc.
1022 * And all this only to mangle msg->im_msgtype and
1023 * to set msg->im_mbz to "mbz" :-)
1024 */
1025 skb_push(skb, sizeof(struct iphdr));
1026 skb_reset_network_header(skb);
1027 skb_reset_transport_header(skb);
1028 msg = (struct igmpmsg *)skb_network_header(skb);
1029 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1030 msg->im_msgtype = IGMPMSG_WHOLEPKT;
1031 msg->im_mbz = 0;
1032 msg->im_vif = mrt->mroute_reg_vif_num;
1033 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1034 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1035 sizeof(struct iphdr));
1036 } else {
1037 /* Copy the IP header */
1038 skb_set_network_header(skb, skb->len);
1039 skb_put(skb, ihl);
1040 skb_copy_to_linear_data(skb, pkt->data, ihl);
1041 /* Flag to the kernel this is a route add */
1042 ip_hdr(skb)->protocol = 0;
1043 msg = (struct igmpmsg *)skb_network_header(skb);
1044 msg->im_vif = vifi;
1045 skb_dst_set(skb, dst_clone(skb_dst(pkt)));
1046 /* Add our header */
1047 igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
1048 igmp->type = assert;
1049 msg->im_msgtype = assert;
1050 igmp->code = 0;
1051 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
1052 skb->transport_header = skb->network_header;
1053 }
1054
1055 rcu_read_lock();
1056 mroute_sk = rcu_dereference(mrt->mroute_sk);
1057 if (!mroute_sk) {
1058 rcu_read_unlock();
1059 kfree_skb(skb);
1060 return -EINVAL;
1061 }
1062
1063 /* Deliver to mrouted */
1064 ret = sock_queue_rcv_skb(mroute_sk, skb);
1065 rcu_read_unlock();
1066 if (ret < 0) {
1067 net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1068 kfree_skb(skb);
1069 }
1070
1071 return ret;
1072 }
1073
1074 /* Queue a packet for resolution. It gets locked cache entry! */
1075 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1076 struct sk_buff *skb)
1077 {
1078 const struct iphdr *iph = ip_hdr(skb);
1079 struct mfc_cache *c;
1080 bool found = false;
1081 int err;
1082
1083 spin_lock_bh(&mfc_unres_lock);
1084 list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
1085 if (c->mfc_mcastgrp == iph->daddr &&
1086 c->mfc_origin == iph->saddr) {
1087 found = true;
1088 break;
1089 }
1090 }
1091
1092 if (!found) {
1093 /* Create a new entry if allowable */
1094 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1095 (c = ipmr_cache_alloc_unres()) == NULL) {
1096 spin_unlock_bh(&mfc_unres_lock);
1097
1098 kfree_skb(skb);
1099 return -ENOBUFS;
1100 }
1101
1102 /* Fill in the new cache entry */
1103 c->mfc_parent = -1;
1104 c->mfc_origin = iph->saddr;
1105 c->mfc_mcastgrp = iph->daddr;
1106
1107 /* Reflect first query at mrouted. */
1108 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1109 if (err < 0) {
1110 /* If the report failed throw the cache entry
1111 out - Brad Parker
1112 */
1113 spin_unlock_bh(&mfc_unres_lock);
1114
1115 ipmr_cache_free(c);
1116 kfree_skb(skb);
1117 return err;
1118 }
1119
1120 atomic_inc(&mrt->cache_resolve_queue_len);
1121 list_add(&c->list, &mrt->mfc_unres_queue);
1122 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1123
1124 if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1125 mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1126 }
1127
1128 /* See if we can append the packet */
1129 if (c->mfc_un.unres.unresolved.qlen > 3) {
1130 kfree_skb(skb);
1131 err = -ENOBUFS;
1132 } else {
1133 skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1134 err = 0;
1135 }
1136
1137 spin_unlock_bh(&mfc_unres_lock);
1138 return err;
1139 }
1140
1141 /* MFC cache manipulation by user space mroute daemon */
1142
1143 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1144 {
1145 struct mfc_cache *c;
1146
1147 /* The entries are added/deleted only under RTNL */
1148 rcu_read_lock();
1149 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1150 mfc->mfcc_mcastgrp.s_addr, parent);
1151 rcu_read_unlock();
1152 if (!c)
1153 return -ENOENT;
1154 rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1155 list_del_rcu(&c->list);
1156 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1157 ipmr_cache_free(c);
1158
1159 return 0;
1160 }
1161
1162 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1163 struct mfcctl *mfc, int mrtsock, int parent)
1164 {
1165 struct mfc_cache *uc, *c;
1166 bool found;
1167 int ret;
1168
1169 if (mfc->mfcc_parent >= MAXVIFS)
1170 return -ENFILE;
1171
1172 /* The entries are added/deleted only under RTNL */
1173 rcu_read_lock();
1174 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1175 mfc->mfcc_mcastgrp.s_addr, parent);
1176 rcu_read_unlock();
1177 if (c) {
1178 write_lock_bh(&mrt_lock);
1179 c->mfc_parent = mfc->mfcc_parent;
1180 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1181 if (!mrtsock)
1182 c->mfc_flags |= MFC_STATIC;
1183 write_unlock_bh(&mrt_lock);
1184 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1185 return 0;
1186 }
1187
1188 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1189 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1190 return -EINVAL;
1191
1192 c = ipmr_cache_alloc();
1193 if (!c)
1194 return -ENOMEM;
1195
1196 c->mfc_origin = mfc->mfcc_origin.s_addr;
1197 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1198 c->mfc_parent = mfc->mfcc_parent;
1199 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1200 if (!mrtsock)
1201 c->mfc_flags |= MFC_STATIC;
1202
1203 ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->mnode,
1204 ipmr_rht_params);
1205 if (ret) {
1206 pr_err("ipmr: rhtable insert error %d\n", ret);
1207 ipmr_cache_free(c);
1208 return ret;
1209 }
1210 list_add_tail_rcu(&c->list, &mrt->mfc_cache_list);
1211 /* Check to see if we resolved a queued list. If so we
1212 * need to send on the frames and tidy up.
1213 */
1214 found = false;
1215 spin_lock_bh(&mfc_unres_lock);
1216 list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1217 if (uc->mfc_origin == c->mfc_origin &&
1218 uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1219 list_del(&uc->list);
1220 atomic_dec(&mrt->cache_resolve_queue_len);
1221 found = true;
1222 break;
1223 }
1224 }
1225 if (list_empty(&mrt->mfc_unres_queue))
1226 del_timer(&mrt->ipmr_expire_timer);
1227 spin_unlock_bh(&mfc_unres_lock);
1228
1229 if (found) {
1230 ipmr_cache_resolve(net, mrt, uc, c);
1231 ipmr_cache_free(uc);
1232 }
1233 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1234 return 0;
1235 }
1236
1237 /* Close the multicast socket, and clear the vif tables etc */
1238 static void mroute_clean_tables(struct mr_table *mrt, bool all)
1239 {
1240 struct mfc_cache *c, *tmp;
1241 LIST_HEAD(list);
1242 int i;
1243
1244 /* Shut down all active vif entries */
1245 for (i = 0; i < mrt->maxvif; i++) {
1246 if (!all && (mrt->vif_table[i].flags & VIFF_STATIC))
1247 continue;
1248 vif_delete(mrt, i, 0, &list);
1249 }
1250 unregister_netdevice_many(&list);
1251
1252 /* Wipe the cache */
1253 list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1254 if (!all && (c->mfc_flags & MFC_STATIC))
1255 continue;
1256 rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1257 list_del_rcu(&c->list);
1258 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1259 ipmr_cache_free(c);
1260 }
1261
1262 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1263 spin_lock_bh(&mfc_unres_lock);
1264 list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1265 list_del(&c->list);
1266 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1267 ipmr_destroy_unres(mrt, c);
1268 }
1269 spin_unlock_bh(&mfc_unres_lock);
1270 }
1271 }
1272
1273 /* called from ip_ra_control(), before an RCU grace period,
1274 * we dont need to call synchronize_rcu() here
1275 */
1276 static void mrtsock_destruct(struct sock *sk)
1277 {
1278 struct net *net = sock_net(sk);
1279 struct mr_table *mrt;
1280
1281 ASSERT_RTNL();
1282 ipmr_for_each_table(mrt, net) {
1283 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1284 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1285 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1286 NETCONFA_IFINDEX_ALL,
1287 net->ipv4.devconf_all);
1288 RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1289 mroute_clean_tables(mrt, false);
1290 }
1291 }
1292 }
1293
1294 /* Socket options and virtual interface manipulation. The whole
1295 * virtual interface system is a complete heap, but unfortunately
1296 * that's how BSD mrouted happens to think. Maybe one day with a proper
1297 * MOSPF/PIM router set up we can clean this up.
1298 */
1299
1300 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval,
1301 unsigned int optlen)
1302 {
1303 struct net *net = sock_net(sk);
1304 int val, ret = 0, parent = 0;
1305 struct mr_table *mrt;
1306 struct vifctl vif;
1307 struct mfcctl mfc;
1308 u32 uval;
1309
1310 /* There's one exception to the lock - MRT_DONE which needs to unlock */
1311 rtnl_lock();
1312 if (sk->sk_type != SOCK_RAW ||
1313 inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1314 ret = -EOPNOTSUPP;
1315 goto out_unlock;
1316 }
1317
1318 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1319 if (!mrt) {
1320 ret = -ENOENT;
1321 goto out_unlock;
1322 }
1323 if (optname != MRT_INIT) {
1324 if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1325 !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1326 ret = -EACCES;
1327 goto out_unlock;
1328 }
1329 }
1330
1331 switch (optname) {
1332 case MRT_INIT:
1333 if (optlen != sizeof(int)) {
1334 ret = -EINVAL;
1335 break;
1336 }
1337 if (rtnl_dereference(mrt->mroute_sk)) {
1338 ret = -EADDRINUSE;
1339 break;
1340 }
1341
1342 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1343 if (ret == 0) {
1344 rcu_assign_pointer(mrt->mroute_sk, sk);
1345 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1346 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1347 NETCONFA_IFINDEX_ALL,
1348 net->ipv4.devconf_all);
1349 }
1350 break;
1351 case MRT_DONE:
1352 if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1353 ret = -EACCES;
1354 } else {
1355 ret = ip_ra_control(sk, 0, NULL);
1356 goto out_unlock;
1357 }
1358 break;
1359 case MRT_ADD_VIF:
1360 case MRT_DEL_VIF:
1361 if (optlen != sizeof(vif)) {
1362 ret = -EINVAL;
1363 break;
1364 }
1365 if (copy_from_user(&vif, optval, sizeof(vif))) {
1366 ret = -EFAULT;
1367 break;
1368 }
1369 if (vif.vifc_vifi >= MAXVIFS) {
1370 ret = -ENFILE;
1371 break;
1372 }
1373 if (optname == MRT_ADD_VIF) {
1374 ret = vif_add(net, mrt, &vif,
1375 sk == rtnl_dereference(mrt->mroute_sk));
1376 } else {
1377 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1378 }
1379 break;
1380 /* Manipulate the forwarding caches. These live
1381 * in a sort of kernel/user symbiosis.
1382 */
1383 case MRT_ADD_MFC:
1384 case MRT_DEL_MFC:
1385 parent = -1;
1386 case MRT_ADD_MFC_PROXY:
1387 case MRT_DEL_MFC_PROXY:
1388 if (optlen != sizeof(mfc)) {
1389 ret = -EINVAL;
1390 break;
1391 }
1392 if (copy_from_user(&mfc, optval, sizeof(mfc))) {
1393 ret = -EFAULT;
1394 break;
1395 }
1396 if (parent == 0)
1397 parent = mfc.mfcc_parent;
1398 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1399 ret = ipmr_mfc_delete(mrt, &mfc, parent);
1400 else
1401 ret = ipmr_mfc_add(net, mrt, &mfc,
1402 sk == rtnl_dereference(mrt->mroute_sk),
1403 parent);
1404 break;
1405 /* Control PIM assert. */
1406 case MRT_ASSERT:
1407 if (optlen != sizeof(val)) {
1408 ret = -EINVAL;
1409 break;
1410 }
1411 if (get_user(val, (int __user *)optval)) {
1412 ret = -EFAULT;
1413 break;
1414 }
1415 mrt->mroute_do_assert = val;
1416 break;
1417 case MRT_PIM:
1418 if (!ipmr_pimsm_enabled()) {
1419 ret = -ENOPROTOOPT;
1420 break;
1421 }
1422 if (optlen != sizeof(val)) {
1423 ret = -EINVAL;
1424 break;
1425 }
1426 if (get_user(val, (int __user *)optval)) {
1427 ret = -EFAULT;
1428 break;
1429 }
1430
1431 val = !!val;
1432 if (val != mrt->mroute_do_pim) {
1433 mrt->mroute_do_pim = val;
1434 mrt->mroute_do_assert = val;
1435 }
1436 break;
1437 case MRT_TABLE:
1438 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1439 ret = -ENOPROTOOPT;
1440 break;
1441 }
1442 if (optlen != sizeof(uval)) {
1443 ret = -EINVAL;
1444 break;
1445 }
1446 if (get_user(uval, (u32 __user *)optval)) {
1447 ret = -EFAULT;
1448 break;
1449 }
1450
1451 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1452 ret = -EBUSY;
1453 } else {
1454 mrt = ipmr_new_table(net, uval);
1455 if (IS_ERR(mrt))
1456 ret = PTR_ERR(mrt);
1457 else
1458 raw_sk(sk)->ipmr_table = uval;
1459 }
1460 break;
1461 /* Spurious command, or MRT_VERSION which you cannot set. */
1462 default:
1463 ret = -ENOPROTOOPT;
1464 }
1465 out_unlock:
1466 rtnl_unlock();
1467 return ret;
1468 }
1469
1470 /* Getsock opt support for the multicast routing system. */
1471 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1472 {
1473 int olr;
1474 int val;
1475 struct net *net = sock_net(sk);
1476 struct mr_table *mrt;
1477
1478 if (sk->sk_type != SOCK_RAW ||
1479 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1480 return -EOPNOTSUPP;
1481
1482 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1483 if (!mrt)
1484 return -ENOENT;
1485
1486 switch (optname) {
1487 case MRT_VERSION:
1488 val = 0x0305;
1489 break;
1490 case MRT_PIM:
1491 if (!ipmr_pimsm_enabled())
1492 return -ENOPROTOOPT;
1493 val = mrt->mroute_do_pim;
1494 break;
1495 case MRT_ASSERT:
1496 val = mrt->mroute_do_assert;
1497 break;
1498 default:
1499 return -ENOPROTOOPT;
1500 }
1501
1502 if (get_user(olr, optlen))
1503 return -EFAULT;
1504 olr = min_t(unsigned int, olr, sizeof(int));
1505 if (olr < 0)
1506 return -EINVAL;
1507 if (put_user(olr, optlen))
1508 return -EFAULT;
1509 if (copy_to_user(optval, &val, olr))
1510 return -EFAULT;
1511 return 0;
1512 }
1513
1514 /* The IP multicast ioctl support routines. */
1515 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1516 {
1517 struct sioc_sg_req sr;
1518 struct sioc_vif_req vr;
1519 struct vif_device *vif;
1520 struct mfc_cache *c;
1521 struct net *net = sock_net(sk);
1522 struct mr_table *mrt;
1523
1524 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1525 if (!mrt)
1526 return -ENOENT;
1527
1528 switch (cmd) {
1529 case SIOCGETVIFCNT:
1530 if (copy_from_user(&vr, arg, sizeof(vr)))
1531 return -EFAULT;
1532 if (vr.vifi >= mrt->maxvif)
1533 return -EINVAL;
1534 read_lock(&mrt_lock);
1535 vif = &mrt->vif_table[vr.vifi];
1536 if (VIF_EXISTS(mrt, vr.vifi)) {
1537 vr.icount = vif->pkt_in;
1538 vr.ocount = vif->pkt_out;
1539 vr.ibytes = vif->bytes_in;
1540 vr.obytes = vif->bytes_out;
1541 read_unlock(&mrt_lock);
1542
1543 if (copy_to_user(arg, &vr, sizeof(vr)))
1544 return -EFAULT;
1545 return 0;
1546 }
1547 read_unlock(&mrt_lock);
1548 return -EADDRNOTAVAIL;
1549 case SIOCGETSGCNT:
1550 if (copy_from_user(&sr, arg, sizeof(sr)))
1551 return -EFAULT;
1552
1553 rcu_read_lock();
1554 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1555 if (c) {
1556 sr.pktcnt = c->mfc_un.res.pkt;
1557 sr.bytecnt = c->mfc_un.res.bytes;
1558 sr.wrong_if = c->mfc_un.res.wrong_if;
1559 rcu_read_unlock();
1560
1561 if (copy_to_user(arg, &sr, sizeof(sr)))
1562 return -EFAULT;
1563 return 0;
1564 }
1565 rcu_read_unlock();
1566 return -EADDRNOTAVAIL;
1567 default:
1568 return -ENOIOCTLCMD;
1569 }
1570 }
1571
1572 #ifdef CONFIG_COMPAT
1573 struct compat_sioc_sg_req {
1574 struct in_addr src;
1575 struct in_addr grp;
1576 compat_ulong_t pktcnt;
1577 compat_ulong_t bytecnt;
1578 compat_ulong_t wrong_if;
1579 };
1580
1581 struct compat_sioc_vif_req {
1582 vifi_t vifi; /* Which iface */
1583 compat_ulong_t icount;
1584 compat_ulong_t ocount;
1585 compat_ulong_t ibytes;
1586 compat_ulong_t obytes;
1587 };
1588
1589 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1590 {
1591 struct compat_sioc_sg_req sr;
1592 struct compat_sioc_vif_req vr;
1593 struct vif_device *vif;
1594 struct mfc_cache *c;
1595 struct net *net = sock_net(sk);
1596 struct mr_table *mrt;
1597
1598 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1599 if (!mrt)
1600 return -ENOENT;
1601
1602 switch (cmd) {
1603 case SIOCGETVIFCNT:
1604 if (copy_from_user(&vr, arg, sizeof(vr)))
1605 return -EFAULT;
1606 if (vr.vifi >= mrt->maxvif)
1607 return -EINVAL;
1608 read_lock(&mrt_lock);
1609 vif = &mrt->vif_table[vr.vifi];
1610 if (VIF_EXISTS(mrt, vr.vifi)) {
1611 vr.icount = vif->pkt_in;
1612 vr.ocount = vif->pkt_out;
1613 vr.ibytes = vif->bytes_in;
1614 vr.obytes = vif->bytes_out;
1615 read_unlock(&mrt_lock);
1616
1617 if (copy_to_user(arg, &vr, sizeof(vr)))
1618 return -EFAULT;
1619 return 0;
1620 }
1621 read_unlock(&mrt_lock);
1622 return -EADDRNOTAVAIL;
1623 case SIOCGETSGCNT:
1624 if (copy_from_user(&sr, arg, sizeof(sr)))
1625 return -EFAULT;
1626
1627 rcu_read_lock();
1628 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1629 if (c) {
1630 sr.pktcnt = c->mfc_un.res.pkt;
1631 sr.bytecnt = c->mfc_un.res.bytes;
1632 sr.wrong_if = c->mfc_un.res.wrong_if;
1633 rcu_read_unlock();
1634
1635 if (copy_to_user(arg, &sr, sizeof(sr)))
1636 return -EFAULT;
1637 return 0;
1638 }
1639 rcu_read_unlock();
1640 return -EADDRNOTAVAIL;
1641 default:
1642 return -ENOIOCTLCMD;
1643 }
1644 }
1645 #endif
1646
1647 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1648 {
1649 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1650 struct net *net = dev_net(dev);
1651 struct mr_table *mrt;
1652 struct vif_device *v;
1653 int ct;
1654
1655 if (event != NETDEV_UNREGISTER)
1656 return NOTIFY_DONE;
1657
1658 ipmr_for_each_table(mrt, net) {
1659 v = &mrt->vif_table[0];
1660 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1661 if (v->dev == dev)
1662 vif_delete(mrt, ct, 1, NULL);
1663 }
1664 }
1665 return NOTIFY_DONE;
1666 }
1667
1668 static struct notifier_block ip_mr_notifier = {
1669 .notifier_call = ipmr_device_event,
1670 };
1671
1672 /* Encapsulate a packet by attaching a valid IPIP header to it.
1673 * This avoids tunnel drivers and other mess and gives us the speed so
1674 * important for multicast video.
1675 */
1676 static void ip_encap(struct net *net, struct sk_buff *skb,
1677 __be32 saddr, __be32 daddr)
1678 {
1679 struct iphdr *iph;
1680 const struct iphdr *old_iph = ip_hdr(skb);
1681
1682 skb_push(skb, sizeof(struct iphdr));
1683 skb->transport_header = skb->network_header;
1684 skb_reset_network_header(skb);
1685 iph = ip_hdr(skb);
1686
1687 iph->version = 4;
1688 iph->tos = old_iph->tos;
1689 iph->ttl = old_iph->ttl;
1690 iph->frag_off = 0;
1691 iph->daddr = daddr;
1692 iph->saddr = saddr;
1693 iph->protocol = IPPROTO_IPIP;
1694 iph->ihl = 5;
1695 iph->tot_len = htons(skb->len);
1696 ip_select_ident(net, skb, NULL);
1697 ip_send_check(iph);
1698
1699 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1700 nf_reset(skb);
1701 }
1702
1703 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1704 struct sk_buff *skb)
1705 {
1706 struct ip_options *opt = &(IPCB(skb)->opt);
1707
1708 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1709 IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1710
1711 if (unlikely(opt->optlen))
1712 ip_forward_options(skb);
1713
1714 return dst_output(net, sk, skb);
1715 }
1716
1717 /* Processing handlers for ipmr_forward */
1718
1719 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1720 struct sk_buff *skb, struct mfc_cache *c, int vifi)
1721 {
1722 const struct iphdr *iph = ip_hdr(skb);
1723 struct vif_device *vif = &mrt->vif_table[vifi];
1724 struct net_device *dev;
1725 struct rtable *rt;
1726 struct flowi4 fl4;
1727 int encap = 0;
1728
1729 if (!vif->dev)
1730 goto out_free;
1731
1732 if (vif->flags & VIFF_REGISTER) {
1733 vif->pkt_out++;
1734 vif->bytes_out += skb->len;
1735 vif->dev->stats.tx_bytes += skb->len;
1736 vif->dev->stats.tx_packets++;
1737 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1738 goto out_free;
1739 }
1740
1741 if (vif->flags & VIFF_TUNNEL) {
1742 rt = ip_route_output_ports(net, &fl4, NULL,
1743 vif->remote, vif->local,
1744 0, 0,
1745 IPPROTO_IPIP,
1746 RT_TOS(iph->tos), vif->link);
1747 if (IS_ERR(rt))
1748 goto out_free;
1749 encap = sizeof(struct iphdr);
1750 } else {
1751 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1752 0, 0,
1753 IPPROTO_IPIP,
1754 RT_TOS(iph->tos), vif->link);
1755 if (IS_ERR(rt))
1756 goto out_free;
1757 }
1758
1759 dev = rt->dst.dev;
1760
1761 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1762 /* Do not fragment multicasts. Alas, IPv4 does not
1763 * allow to send ICMP, so that packets will disappear
1764 * to blackhole.
1765 */
1766 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1767 ip_rt_put(rt);
1768 goto out_free;
1769 }
1770
1771 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1772
1773 if (skb_cow(skb, encap)) {
1774 ip_rt_put(rt);
1775 goto out_free;
1776 }
1777
1778 vif->pkt_out++;
1779 vif->bytes_out += skb->len;
1780
1781 skb_dst_drop(skb);
1782 skb_dst_set(skb, &rt->dst);
1783 ip_decrease_ttl(ip_hdr(skb));
1784
1785 /* FIXME: forward and output firewalls used to be called here.
1786 * What do we do with netfilter? -- RR
1787 */
1788 if (vif->flags & VIFF_TUNNEL) {
1789 ip_encap(net, skb, vif->local, vif->remote);
1790 /* FIXME: extra output firewall step used to be here. --RR */
1791 vif->dev->stats.tx_packets++;
1792 vif->dev->stats.tx_bytes += skb->len;
1793 }
1794
1795 IPCB(skb)->flags |= IPSKB_FORWARDED;
1796
1797 /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1798 * not only before forwarding, but after forwarding on all output
1799 * interfaces. It is clear, if mrouter runs a multicasting
1800 * program, it should receive packets not depending to what interface
1801 * program is joined.
1802 * If we will not make it, the program will have to join on all
1803 * interfaces. On the other hand, multihoming host (or router, but
1804 * not mrouter) cannot join to more than one interface - it will
1805 * result in receiving multiple packets.
1806 */
1807 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1808 net, NULL, skb, skb->dev, dev,
1809 ipmr_forward_finish);
1810 return;
1811
1812 out_free:
1813 kfree_skb(skb);
1814 }
1815
1816 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1817 {
1818 int ct;
1819
1820 for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1821 if (mrt->vif_table[ct].dev == dev)
1822 break;
1823 }
1824 return ct;
1825 }
1826
1827 /* "local" means that we should preserve one skb (for local delivery) */
1828 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1829 struct sk_buff *skb, struct mfc_cache *cache,
1830 int local)
1831 {
1832 int true_vifi = ipmr_find_vif(mrt, skb->dev);
1833 int psend = -1;
1834 int vif, ct;
1835
1836 vif = cache->mfc_parent;
1837 cache->mfc_un.res.pkt++;
1838 cache->mfc_un.res.bytes += skb->len;
1839 cache->mfc_un.res.lastuse = jiffies;
1840
1841 if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1842 struct mfc_cache *cache_proxy;
1843
1844 /* For an (*,G) entry, we only check that the incomming
1845 * interface is part of the static tree.
1846 */
1847 cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
1848 if (cache_proxy &&
1849 cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
1850 goto forward;
1851 }
1852
1853 /* Wrong interface: drop packet and (maybe) send PIM assert. */
1854 if (mrt->vif_table[vif].dev != skb->dev) {
1855 struct net_device *mdev;
1856
1857 mdev = l3mdev_master_dev_rcu(mrt->vif_table[vif].dev);
1858 if (mdev == skb->dev)
1859 goto forward;
1860
1861 if (rt_is_output_route(skb_rtable(skb))) {
1862 /* It is our own packet, looped back.
1863 * Very complicated situation...
1864 *
1865 * The best workaround until routing daemons will be
1866 * fixed is not to redistribute packet, if it was
1867 * send through wrong interface. It means, that
1868 * multicast applications WILL NOT work for
1869 * (S,G), which have default multicast route pointing
1870 * to wrong oif. In any case, it is not a good
1871 * idea to use multicasting applications on router.
1872 */
1873 goto dont_forward;
1874 }
1875
1876 cache->mfc_un.res.wrong_if++;
1877
1878 if (true_vifi >= 0 && mrt->mroute_do_assert &&
1879 /* pimsm uses asserts, when switching from RPT to SPT,
1880 * so that we cannot check that packet arrived on an oif.
1881 * It is bad, but otherwise we would need to move pretty
1882 * large chunk of pimd to kernel. Ough... --ANK
1883 */
1884 (mrt->mroute_do_pim ||
1885 cache->mfc_un.res.ttls[true_vifi] < 255) &&
1886 time_after(jiffies,
1887 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1888 cache->mfc_un.res.last_assert = jiffies;
1889 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1890 }
1891 goto dont_forward;
1892 }
1893
1894 forward:
1895 mrt->vif_table[vif].pkt_in++;
1896 mrt->vif_table[vif].bytes_in += skb->len;
1897
1898 /* Forward the frame */
1899 if (cache->mfc_origin == htonl(INADDR_ANY) &&
1900 cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
1901 if (true_vifi >= 0 &&
1902 true_vifi != cache->mfc_parent &&
1903 ip_hdr(skb)->ttl >
1904 cache->mfc_un.res.ttls[cache->mfc_parent]) {
1905 /* It's an (*,*) entry and the packet is not coming from
1906 * the upstream: forward the packet to the upstream
1907 * only.
1908 */
1909 psend = cache->mfc_parent;
1910 goto last_forward;
1911 }
1912 goto dont_forward;
1913 }
1914 for (ct = cache->mfc_un.res.maxvif - 1;
1915 ct >= cache->mfc_un.res.minvif; ct--) {
1916 /* For (*,G) entry, don't forward to the incoming interface */
1917 if ((cache->mfc_origin != htonl(INADDR_ANY) ||
1918 ct != true_vifi) &&
1919 ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1920 if (psend != -1) {
1921 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1922
1923 if (skb2)
1924 ipmr_queue_xmit(net, mrt, skb2, cache,
1925 psend);
1926 }
1927 psend = ct;
1928 }
1929 }
1930 last_forward:
1931 if (psend != -1) {
1932 if (local) {
1933 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1934
1935 if (skb2)
1936 ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1937 } else {
1938 ipmr_queue_xmit(net, mrt, skb, cache, psend);
1939 return;
1940 }
1941 }
1942
1943 dont_forward:
1944 if (!local)
1945 kfree_skb(skb);
1946 }
1947
1948 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1949 {
1950 struct rtable *rt = skb_rtable(skb);
1951 struct iphdr *iph = ip_hdr(skb);
1952 struct flowi4 fl4 = {
1953 .daddr = iph->daddr,
1954 .saddr = iph->saddr,
1955 .flowi4_tos = RT_TOS(iph->tos),
1956 .flowi4_oif = (rt_is_output_route(rt) ?
1957 skb->dev->ifindex : 0),
1958 .flowi4_iif = (rt_is_output_route(rt) ?
1959 LOOPBACK_IFINDEX :
1960 skb->dev->ifindex),
1961 .flowi4_mark = skb->mark,
1962 };
1963 struct mr_table *mrt;
1964 int err;
1965
1966 err = ipmr_fib_lookup(net, &fl4, &mrt);
1967 if (err)
1968 return ERR_PTR(err);
1969 return mrt;
1970 }
1971
1972 /* Multicast packets for forwarding arrive here
1973 * Called with rcu_read_lock();
1974 */
1975 int ip_mr_input(struct sk_buff *skb)
1976 {
1977 struct mfc_cache *cache;
1978 struct net *net = dev_net(skb->dev);
1979 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1980 struct mr_table *mrt;
1981
1982 /* Packet is looped back after forward, it should not be
1983 * forwarded second time, but still can be delivered locally.
1984 */
1985 if (IPCB(skb)->flags & IPSKB_FORWARDED)
1986 goto dont_forward;
1987
1988 mrt = ipmr_rt_fib_lookup(net, skb);
1989 if (IS_ERR(mrt)) {
1990 kfree_skb(skb);
1991 return PTR_ERR(mrt);
1992 }
1993 if (!local) {
1994 if (IPCB(skb)->opt.router_alert) {
1995 if (ip_call_ra_chain(skb))
1996 return 0;
1997 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1998 /* IGMPv1 (and broken IGMPv2 implementations sort of
1999 * Cisco IOS <= 11.2(8)) do not put router alert
2000 * option to IGMP packets destined to routable
2001 * groups. It is very bad, because it means
2002 * that we can forward NO IGMP messages.
2003 */
2004 struct sock *mroute_sk;
2005
2006 mroute_sk = rcu_dereference(mrt->mroute_sk);
2007 if (mroute_sk) {
2008 nf_reset(skb);
2009 raw_rcv(mroute_sk, skb);
2010 return 0;
2011 }
2012 }
2013 }
2014
2015 /* already under rcu_read_lock() */
2016 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2017 if (!cache) {
2018 int vif = ipmr_find_vif(mrt, skb->dev);
2019
2020 if (vif >= 0)
2021 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2022 vif);
2023 }
2024
2025 /* No usable cache entry */
2026 if (!cache) {
2027 int vif;
2028
2029 if (local) {
2030 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2031 ip_local_deliver(skb);
2032 if (!skb2)
2033 return -ENOBUFS;
2034 skb = skb2;
2035 }
2036
2037 read_lock(&mrt_lock);
2038 vif = ipmr_find_vif(mrt, skb->dev);
2039 if (vif >= 0) {
2040 int err2 = ipmr_cache_unresolved(mrt, vif, skb);
2041 read_unlock(&mrt_lock);
2042
2043 return err2;
2044 }
2045 read_unlock(&mrt_lock);
2046 kfree_skb(skb);
2047 return -ENODEV;
2048 }
2049
2050 read_lock(&mrt_lock);
2051 ip_mr_forward(net, mrt, skb, cache, local);
2052 read_unlock(&mrt_lock);
2053
2054 if (local)
2055 return ip_local_deliver(skb);
2056
2057 return 0;
2058
2059 dont_forward:
2060 if (local)
2061 return ip_local_deliver(skb);
2062 kfree_skb(skb);
2063 return 0;
2064 }
2065
2066 #ifdef CONFIG_IP_PIMSM_V1
2067 /* Handle IGMP messages of PIMv1 */
2068 int pim_rcv_v1(struct sk_buff *skb)
2069 {
2070 struct igmphdr *pim;
2071 struct net *net = dev_net(skb->dev);
2072 struct mr_table *mrt;
2073
2074 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2075 goto drop;
2076
2077 pim = igmp_hdr(skb);
2078
2079 mrt = ipmr_rt_fib_lookup(net, skb);
2080 if (IS_ERR(mrt))
2081 goto drop;
2082 if (!mrt->mroute_do_pim ||
2083 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2084 goto drop;
2085
2086 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2087 drop:
2088 kfree_skb(skb);
2089 }
2090 return 0;
2091 }
2092 #endif
2093
2094 #ifdef CONFIG_IP_PIMSM_V2
2095 static int pim_rcv(struct sk_buff *skb)
2096 {
2097 struct pimreghdr *pim;
2098 struct net *net = dev_net(skb->dev);
2099 struct mr_table *mrt;
2100
2101 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2102 goto drop;
2103
2104 pim = (struct pimreghdr *)skb_transport_header(skb);
2105 if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2106 (pim->flags & PIM_NULL_REGISTER) ||
2107 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2108 csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2109 goto drop;
2110
2111 mrt = ipmr_rt_fib_lookup(net, skb);
2112 if (IS_ERR(mrt))
2113 goto drop;
2114 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2115 drop:
2116 kfree_skb(skb);
2117 }
2118 return 0;
2119 }
2120 #endif
2121
2122 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2123 struct mfc_cache *c, struct rtmsg *rtm)
2124 {
2125 struct rta_mfc_stats mfcs;
2126 struct nlattr *mp_attr;
2127 struct rtnexthop *nhp;
2128 unsigned long lastuse;
2129 int ct;
2130
2131 /* If cache is unresolved, don't try to parse IIF and OIF */
2132 if (c->mfc_parent >= MAXVIFS) {
2133 rtm->rtm_flags |= RTNH_F_UNRESOLVED;
2134 return -ENOENT;
2135 }
2136
2137 if (VIF_EXISTS(mrt, c->mfc_parent) &&
2138 nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2139 return -EMSGSIZE;
2140
2141 if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2142 return -EMSGSIZE;
2143
2144 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2145 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2146 if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2147 nla_nest_cancel(skb, mp_attr);
2148 return -EMSGSIZE;
2149 }
2150
2151 nhp->rtnh_flags = 0;
2152 nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2153 nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2154 nhp->rtnh_len = sizeof(*nhp);
2155 }
2156 }
2157
2158 nla_nest_end(skb, mp_attr);
2159
2160 lastuse = READ_ONCE(c->mfc_un.res.lastuse);
2161 lastuse = time_after_eq(jiffies, lastuse) ? jiffies - lastuse : 0;
2162
2163 mfcs.mfcs_packets = c->mfc_un.res.pkt;
2164 mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2165 mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2166 if (nla_put_64bit(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs, RTA_PAD) ||
2167 nla_put_u64_64bit(skb, RTA_EXPIRES, jiffies_to_clock_t(lastuse),
2168 RTA_PAD))
2169 return -EMSGSIZE;
2170
2171 rtm->rtm_type = RTN_MULTICAST;
2172 return 1;
2173 }
2174
2175 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2176 __be32 saddr, __be32 daddr,
2177 struct rtmsg *rtm, u32 portid)
2178 {
2179 struct mfc_cache *cache;
2180 struct mr_table *mrt;
2181 int err;
2182
2183 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2184 if (!mrt)
2185 return -ENOENT;
2186
2187 rcu_read_lock();
2188 cache = ipmr_cache_find(mrt, saddr, daddr);
2189 if (!cache && skb->dev) {
2190 int vif = ipmr_find_vif(mrt, skb->dev);
2191
2192 if (vif >= 0)
2193 cache = ipmr_cache_find_any(mrt, daddr, vif);
2194 }
2195 if (!cache) {
2196 struct sk_buff *skb2;
2197 struct iphdr *iph;
2198 struct net_device *dev;
2199 int vif = -1;
2200
2201 dev = skb->dev;
2202 read_lock(&mrt_lock);
2203 if (dev)
2204 vif = ipmr_find_vif(mrt, dev);
2205 if (vif < 0) {
2206 read_unlock(&mrt_lock);
2207 rcu_read_unlock();
2208 return -ENODEV;
2209 }
2210 skb2 = skb_clone(skb, GFP_ATOMIC);
2211 if (!skb2) {
2212 read_unlock(&mrt_lock);
2213 rcu_read_unlock();
2214 return -ENOMEM;
2215 }
2216
2217 NETLINK_CB(skb2).portid = portid;
2218 skb_push(skb2, sizeof(struct iphdr));
2219 skb_reset_network_header(skb2);
2220 iph = ip_hdr(skb2);
2221 iph->ihl = sizeof(struct iphdr) >> 2;
2222 iph->saddr = saddr;
2223 iph->daddr = daddr;
2224 iph->version = 0;
2225 err = ipmr_cache_unresolved(mrt, vif, skb2);
2226 read_unlock(&mrt_lock);
2227 rcu_read_unlock();
2228 return err;
2229 }
2230
2231 read_lock(&mrt_lock);
2232 err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2233 read_unlock(&mrt_lock);
2234 rcu_read_unlock();
2235 return err;
2236 }
2237
2238 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2239 u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2240 int flags)
2241 {
2242 struct nlmsghdr *nlh;
2243 struct rtmsg *rtm;
2244 int err;
2245
2246 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2247 if (!nlh)
2248 return -EMSGSIZE;
2249
2250 rtm = nlmsg_data(nlh);
2251 rtm->rtm_family = RTNL_FAMILY_IPMR;
2252 rtm->rtm_dst_len = 32;
2253 rtm->rtm_src_len = 32;
2254 rtm->rtm_tos = 0;
2255 rtm->rtm_table = mrt->id;
2256 if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2257 goto nla_put_failure;
2258 rtm->rtm_type = RTN_MULTICAST;
2259 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2260 if (c->mfc_flags & MFC_STATIC)
2261 rtm->rtm_protocol = RTPROT_STATIC;
2262 else
2263 rtm->rtm_protocol = RTPROT_MROUTED;
2264 rtm->rtm_flags = 0;
2265
2266 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2267 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2268 goto nla_put_failure;
2269 err = __ipmr_fill_mroute(mrt, skb, c, rtm);
2270 /* do not break the dump if cache is unresolved */
2271 if (err < 0 && err != -ENOENT)
2272 goto nla_put_failure;
2273
2274 nlmsg_end(skb, nlh);
2275 return 0;
2276
2277 nla_put_failure:
2278 nlmsg_cancel(skb, nlh);
2279 return -EMSGSIZE;
2280 }
2281
2282 static size_t mroute_msgsize(bool unresolved, int maxvif)
2283 {
2284 size_t len =
2285 NLMSG_ALIGN(sizeof(struct rtmsg))
2286 + nla_total_size(4) /* RTA_TABLE */
2287 + nla_total_size(4) /* RTA_SRC */
2288 + nla_total_size(4) /* RTA_DST */
2289 ;
2290
2291 if (!unresolved)
2292 len = len
2293 + nla_total_size(4) /* RTA_IIF */
2294 + nla_total_size(0) /* RTA_MULTIPATH */
2295 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2296 /* RTA_MFC_STATS */
2297 + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2298 ;
2299
2300 return len;
2301 }
2302
2303 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2304 int cmd)
2305 {
2306 struct net *net = read_pnet(&mrt->net);
2307 struct sk_buff *skb;
2308 int err = -ENOBUFS;
2309
2310 skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
2311 GFP_ATOMIC);
2312 if (!skb)
2313 goto errout;
2314
2315 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2316 if (err < 0)
2317 goto errout;
2318
2319 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2320 return;
2321
2322 errout:
2323 kfree_skb(skb);
2324 if (err < 0)
2325 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2326 }
2327
2328 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2329 {
2330 struct net *net = sock_net(skb->sk);
2331 struct mr_table *mrt;
2332 struct mfc_cache *mfc;
2333 unsigned int t = 0, s_t;
2334 unsigned int e = 0, s_e;
2335
2336 s_t = cb->args[0];
2337 s_e = cb->args[1];
2338
2339 rcu_read_lock();
2340 ipmr_for_each_table(mrt, net) {
2341 if (t < s_t)
2342 goto next_table;
2343 list_for_each_entry_rcu(mfc, &mrt->mfc_cache_list, list) {
2344 if (e < s_e)
2345 goto next_entry;
2346 if (ipmr_fill_mroute(mrt, skb,
2347 NETLINK_CB(cb->skb).portid,
2348 cb->nlh->nlmsg_seq,
2349 mfc, RTM_NEWROUTE,
2350 NLM_F_MULTI) < 0)
2351 goto done;
2352 next_entry:
2353 e++;
2354 }
2355 e = 0;
2356 s_e = 0;
2357
2358 spin_lock_bh(&mfc_unres_lock);
2359 list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
2360 if (e < s_e)
2361 goto next_entry2;
2362 if (ipmr_fill_mroute(mrt, skb,
2363 NETLINK_CB(cb->skb).portid,
2364 cb->nlh->nlmsg_seq,
2365 mfc, RTM_NEWROUTE,
2366 NLM_F_MULTI) < 0) {
2367 spin_unlock_bh(&mfc_unres_lock);
2368 goto done;
2369 }
2370 next_entry2:
2371 e++;
2372 }
2373 spin_unlock_bh(&mfc_unres_lock);
2374 e = 0;
2375 s_e = 0;
2376 next_table:
2377 t++;
2378 }
2379 done:
2380 rcu_read_unlock();
2381
2382 cb->args[1] = e;
2383 cb->args[0] = t;
2384
2385 return skb->len;
2386 }
2387
2388 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2389 [RTA_SRC] = { .type = NLA_U32 },
2390 [RTA_DST] = { .type = NLA_U32 },
2391 [RTA_IIF] = { .type = NLA_U32 },
2392 [RTA_TABLE] = { .type = NLA_U32 },
2393 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
2394 };
2395
2396 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2397 {
2398 switch (rtm_protocol) {
2399 case RTPROT_STATIC:
2400 case RTPROT_MROUTED:
2401 return true;
2402 }
2403 return false;
2404 }
2405
2406 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2407 {
2408 struct rtnexthop *rtnh = nla_data(nla);
2409 int remaining = nla_len(nla), vifi = 0;
2410
2411 while (rtnh_ok(rtnh, remaining)) {
2412 mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2413 if (++vifi == MAXVIFS)
2414 break;
2415 rtnh = rtnh_next(rtnh, &remaining);
2416 }
2417
2418 return remaining > 0 ? -EINVAL : vifi;
2419 }
2420
2421 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2422 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2423 struct mfcctl *mfcc, int *mrtsock,
2424 struct mr_table **mrtret)
2425 {
2426 struct net_device *dev = NULL;
2427 u32 tblid = RT_TABLE_DEFAULT;
2428 struct mr_table *mrt;
2429 struct nlattr *attr;
2430 struct rtmsg *rtm;
2431 int ret, rem;
2432
2433 ret = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipmr_policy);
2434 if (ret < 0)
2435 goto out;
2436 rtm = nlmsg_data(nlh);
2437
2438 ret = -EINVAL;
2439 if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2440 rtm->rtm_type != RTN_MULTICAST ||
2441 rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2442 !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2443 goto out;
2444
2445 memset(mfcc, 0, sizeof(*mfcc));
2446 mfcc->mfcc_parent = -1;
2447 ret = 0;
2448 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2449 switch (nla_type(attr)) {
2450 case RTA_SRC:
2451 mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2452 break;
2453 case RTA_DST:
2454 mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2455 break;
2456 case RTA_IIF:
2457 dev = __dev_get_by_index(net, nla_get_u32(attr));
2458 if (!dev) {
2459 ret = -ENODEV;
2460 goto out;
2461 }
2462 break;
2463 case RTA_MULTIPATH:
2464 if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2465 ret = -EINVAL;
2466 goto out;
2467 }
2468 break;
2469 case RTA_PREFSRC:
2470 ret = 1;
2471 break;
2472 case RTA_TABLE:
2473 tblid = nla_get_u32(attr);
2474 break;
2475 }
2476 }
2477 mrt = ipmr_get_table(net, tblid);
2478 if (!mrt) {
2479 ret = -ENOENT;
2480 goto out;
2481 }
2482 *mrtret = mrt;
2483 *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2484 if (dev)
2485 mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2486
2487 out:
2488 return ret;
2489 }
2490
2491 /* takes care of both newroute and delroute */
2492 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh)
2493 {
2494 struct net *net = sock_net(skb->sk);
2495 int ret, mrtsock, parent;
2496 struct mr_table *tbl;
2497 struct mfcctl mfcc;
2498
2499 mrtsock = 0;
2500 tbl = NULL;
2501 ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl);
2502 if (ret < 0)
2503 return ret;
2504
2505 parent = ret ? mfcc.mfcc_parent : -1;
2506 if (nlh->nlmsg_type == RTM_NEWROUTE)
2507 return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2508 else
2509 return ipmr_mfc_delete(tbl, &mfcc, parent);
2510 }
2511
2512 #ifdef CONFIG_PROC_FS
2513 /* The /proc interfaces to multicast routing :
2514 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2515 */
2516 struct ipmr_vif_iter {
2517 struct seq_net_private p;
2518 struct mr_table *mrt;
2519 int ct;
2520 };
2521
2522 static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2523 struct ipmr_vif_iter *iter,
2524 loff_t pos)
2525 {
2526 struct mr_table *mrt = iter->mrt;
2527
2528 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2529 if (!VIF_EXISTS(mrt, iter->ct))
2530 continue;
2531 if (pos-- == 0)
2532 return &mrt->vif_table[iter->ct];
2533 }
2534 return NULL;
2535 }
2536
2537 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2538 __acquires(mrt_lock)
2539 {
2540 struct ipmr_vif_iter *iter = seq->private;
2541 struct net *net = seq_file_net(seq);
2542 struct mr_table *mrt;
2543
2544 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2545 if (!mrt)
2546 return ERR_PTR(-ENOENT);
2547
2548 iter->mrt = mrt;
2549
2550 read_lock(&mrt_lock);
2551 return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2552 : SEQ_START_TOKEN;
2553 }
2554
2555 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2556 {
2557 struct ipmr_vif_iter *iter = seq->private;
2558 struct net *net = seq_file_net(seq);
2559 struct mr_table *mrt = iter->mrt;
2560
2561 ++*pos;
2562 if (v == SEQ_START_TOKEN)
2563 return ipmr_vif_seq_idx(net, iter, 0);
2564
2565 while (++iter->ct < mrt->maxvif) {
2566 if (!VIF_EXISTS(mrt, iter->ct))
2567 continue;
2568 return &mrt->vif_table[iter->ct];
2569 }
2570 return NULL;
2571 }
2572
2573 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2574 __releases(mrt_lock)
2575 {
2576 read_unlock(&mrt_lock);
2577 }
2578
2579 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2580 {
2581 struct ipmr_vif_iter *iter = seq->private;
2582 struct mr_table *mrt = iter->mrt;
2583
2584 if (v == SEQ_START_TOKEN) {
2585 seq_puts(seq,
2586 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
2587 } else {
2588 const struct vif_device *vif = v;
2589 const char *name = vif->dev ? vif->dev->name : "none";
2590
2591 seq_printf(seq,
2592 "%2zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
2593 vif - mrt->vif_table,
2594 name, vif->bytes_in, vif->pkt_in,
2595 vif->bytes_out, vif->pkt_out,
2596 vif->flags, vif->local, vif->remote);
2597 }
2598 return 0;
2599 }
2600
2601 static const struct seq_operations ipmr_vif_seq_ops = {
2602 .start = ipmr_vif_seq_start,
2603 .next = ipmr_vif_seq_next,
2604 .stop = ipmr_vif_seq_stop,
2605 .show = ipmr_vif_seq_show,
2606 };
2607
2608 static int ipmr_vif_open(struct inode *inode, struct file *file)
2609 {
2610 return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2611 sizeof(struct ipmr_vif_iter));
2612 }
2613
2614 static const struct file_operations ipmr_vif_fops = {
2615 .owner = THIS_MODULE,
2616 .open = ipmr_vif_open,
2617 .read = seq_read,
2618 .llseek = seq_lseek,
2619 .release = seq_release_net,
2620 };
2621
2622 struct ipmr_mfc_iter {
2623 struct seq_net_private p;
2624 struct mr_table *mrt;
2625 struct list_head *cache;
2626 };
2627
2628 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2629 struct ipmr_mfc_iter *it, loff_t pos)
2630 {
2631 struct mr_table *mrt = it->mrt;
2632 struct mfc_cache *mfc;
2633
2634 rcu_read_lock();
2635 it->cache = &mrt->mfc_cache_list;
2636 list_for_each_entry_rcu(mfc, &mrt->mfc_cache_list, list)
2637 if (pos-- == 0)
2638 return mfc;
2639 rcu_read_unlock();
2640
2641 spin_lock_bh(&mfc_unres_lock);
2642 it->cache = &mrt->mfc_unres_queue;
2643 list_for_each_entry(mfc, it->cache, list)
2644 if (pos-- == 0)
2645 return mfc;
2646 spin_unlock_bh(&mfc_unres_lock);
2647
2648 it->cache = NULL;
2649 return NULL;
2650 }
2651
2652
2653 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2654 {
2655 struct ipmr_mfc_iter *it = seq->private;
2656 struct net *net = seq_file_net(seq);
2657 struct mr_table *mrt;
2658
2659 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2660 if (!mrt)
2661 return ERR_PTR(-ENOENT);
2662
2663 it->mrt = mrt;
2664 it->cache = NULL;
2665 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2666 : SEQ_START_TOKEN;
2667 }
2668
2669 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2670 {
2671 struct ipmr_mfc_iter *it = seq->private;
2672 struct net *net = seq_file_net(seq);
2673 struct mr_table *mrt = it->mrt;
2674 struct mfc_cache *mfc = v;
2675
2676 ++*pos;
2677
2678 if (v == SEQ_START_TOKEN)
2679 return ipmr_mfc_seq_idx(net, seq->private, 0);
2680
2681 if (mfc->list.next != it->cache)
2682 return list_entry(mfc->list.next, struct mfc_cache, list);
2683
2684 if (it->cache == &mrt->mfc_unres_queue)
2685 goto end_of_list;
2686
2687 /* exhausted cache_array, show unresolved */
2688 rcu_read_unlock();
2689 it->cache = &mrt->mfc_unres_queue;
2690
2691 spin_lock_bh(&mfc_unres_lock);
2692 if (!list_empty(it->cache))
2693 return list_first_entry(it->cache, struct mfc_cache, list);
2694
2695 end_of_list:
2696 spin_unlock_bh(&mfc_unres_lock);
2697 it->cache = NULL;
2698
2699 return NULL;
2700 }
2701
2702 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2703 {
2704 struct ipmr_mfc_iter *it = seq->private;
2705 struct mr_table *mrt = it->mrt;
2706
2707 if (it->cache == &mrt->mfc_unres_queue)
2708 spin_unlock_bh(&mfc_unres_lock);
2709 else if (it->cache == &mrt->mfc_cache_list)
2710 rcu_read_unlock();
2711 }
2712
2713 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2714 {
2715 int n;
2716
2717 if (v == SEQ_START_TOKEN) {
2718 seq_puts(seq,
2719 "Group Origin Iif Pkts Bytes Wrong Oifs\n");
2720 } else {
2721 const struct mfc_cache *mfc = v;
2722 const struct ipmr_mfc_iter *it = seq->private;
2723 const struct mr_table *mrt = it->mrt;
2724
2725 seq_printf(seq, "%08X %08X %-3hd",
2726 (__force u32) mfc->mfc_mcastgrp,
2727 (__force u32) mfc->mfc_origin,
2728 mfc->mfc_parent);
2729
2730 if (it->cache != &mrt->mfc_unres_queue) {
2731 seq_printf(seq, " %8lu %8lu %8lu",
2732 mfc->mfc_un.res.pkt,
2733 mfc->mfc_un.res.bytes,
2734 mfc->mfc_un.res.wrong_if);
2735 for (n = mfc->mfc_un.res.minvif;
2736 n < mfc->mfc_un.res.maxvif; n++) {
2737 if (VIF_EXISTS(mrt, n) &&
2738 mfc->mfc_un.res.ttls[n] < 255)
2739 seq_printf(seq,
2740 " %2d:%-3d",
2741 n, mfc->mfc_un.res.ttls[n]);
2742 }
2743 } else {
2744 /* unresolved mfc_caches don't contain
2745 * pkt, bytes and wrong_if values
2746 */
2747 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2748 }
2749 seq_putc(seq, '\n');
2750 }
2751 return 0;
2752 }
2753
2754 static const struct seq_operations ipmr_mfc_seq_ops = {
2755 .start = ipmr_mfc_seq_start,
2756 .next = ipmr_mfc_seq_next,
2757 .stop = ipmr_mfc_seq_stop,
2758 .show = ipmr_mfc_seq_show,
2759 };
2760
2761 static int ipmr_mfc_open(struct inode *inode, struct file *file)
2762 {
2763 return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2764 sizeof(struct ipmr_mfc_iter));
2765 }
2766
2767 static const struct file_operations ipmr_mfc_fops = {
2768 .owner = THIS_MODULE,
2769 .open = ipmr_mfc_open,
2770 .read = seq_read,
2771 .llseek = seq_lseek,
2772 .release = seq_release_net,
2773 };
2774 #endif
2775
2776 #ifdef CONFIG_IP_PIMSM_V2
2777 static const struct net_protocol pim_protocol = {
2778 .handler = pim_rcv,
2779 .netns_ok = 1,
2780 };
2781 #endif
2782
2783 /* Setup for IP multicast routing */
2784 static int __net_init ipmr_net_init(struct net *net)
2785 {
2786 int err;
2787
2788 err = ipmr_rules_init(net);
2789 if (err < 0)
2790 goto fail;
2791
2792 #ifdef CONFIG_PROC_FS
2793 err = -ENOMEM;
2794 if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
2795 goto proc_vif_fail;
2796 if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
2797 goto proc_cache_fail;
2798 #endif
2799 return 0;
2800
2801 #ifdef CONFIG_PROC_FS
2802 proc_cache_fail:
2803 remove_proc_entry("ip_mr_vif", net->proc_net);
2804 proc_vif_fail:
2805 ipmr_rules_exit(net);
2806 #endif
2807 fail:
2808 return err;
2809 }
2810
2811 static void __net_exit ipmr_net_exit(struct net *net)
2812 {
2813 #ifdef CONFIG_PROC_FS
2814 remove_proc_entry("ip_mr_cache", net->proc_net);
2815 remove_proc_entry("ip_mr_vif", net->proc_net);
2816 #endif
2817 ipmr_rules_exit(net);
2818 }
2819
2820 static struct pernet_operations ipmr_net_ops = {
2821 .init = ipmr_net_init,
2822 .exit = ipmr_net_exit,
2823 };
2824
2825 int __init ip_mr_init(void)
2826 {
2827 int err;
2828
2829 mrt_cachep = kmem_cache_create("ip_mrt_cache",
2830 sizeof(struct mfc_cache),
2831 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2832 NULL);
2833
2834 err = register_pernet_subsys(&ipmr_net_ops);
2835 if (err)
2836 goto reg_pernet_fail;
2837
2838 err = register_netdevice_notifier(&ip_mr_notifier);
2839 if (err)
2840 goto reg_notif_fail;
2841 #ifdef CONFIG_IP_PIMSM_V2
2842 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2843 pr_err("%s: can't add PIM protocol\n", __func__);
2844 err = -EAGAIN;
2845 goto add_proto_fail;
2846 }
2847 #endif
2848 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2849 NULL, ipmr_rtm_dumproute, NULL);
2850 rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
2851 ipmr_rtm_route, NULL, NULL);
2852 rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
2853 ipmr_rtm_route, NULL, NULL);
2854 return 0;
2855
2856 #ifdef CONFIG_IP_PIMSM_V2
2857 add_proto_fail:
2858 unregister_netdevice_notifier(&ip_mr_notifier);
2859 #endif
2860 reg_notif_fail:
2861 unregister_pernet_subsys(&ipmr_net_ops);
2862 reg_pernet_fail:
2863 kmem_cache_destroy(mrt_cachep);
2864 return err;
2865 }