]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - net/ipv4/ipmr.c
Merge branch 'for-linus-4.11' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[mirror_ubuntu-focal-kernel.git] / net / ipv4 / ipmr.c
1 /*
2 * IP multicast routing support for mrouted 3.6/3.8
3 *
4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5 * Linux Consultancy and Custom Driver Development
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 *
12 * Fixes:
13 * Michael Chastain : Incorrect size of copying.
14 * Alan Cox : Added the cache manager code
15 * Alan Cox : Fixed the clone/copy bug and device race.
16 * Mike McLagan : Routing by source
17 * Malcolm Beattie : Buffer handling fixes.
18 * Alexey Kuznetsov : Double buffer free and other fixes.
19 * SVR Anand : Fixed several multicast bugs and problems.
20 * Alexey Kuznetsov : Status, optimisations and more.
21 * Brad Parker : Better behaviour on mrouted upcall
22 * overflow.
23 * Carlos Picoto : PIMv1 Support
24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
25 * Relax this requirement to work with older peers.
26 *
27 */
28
29 #include <linux/uaccess.h>
30 #include <linux/types.h>
31 #include <linux/capability.h>
32 #include <linux/errno.h>
33 #include <linux/timer.h>
34 #include <linux/mm.h>
35 #include <linux/kernel.h>
36 #include <linux/fcntl.h>
37 #include <linux/stat.h>
38 #include <linux/socket.h>
39 #include <linux/in.h>
40 #include <linux/inet.h>
41 #include <linux/netdevice.h>
42 #include <linux/inetdevice.h>
43 #include <linux/igmp.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/mroute.h>
47 #include <linux/init.h>
48 #include <linux/if_ether.h>
49 #include <linux/slab.h>
50 #include <net/net_namespace.h>
51 #include <net/ip.h>
52 #include <net/protocol.h>
53 #include <linux/skbuff.h>
54 #include <net/route.h>
55 #include <net/sock.h>
56 #include <net/icmp.h>
57 #include <net/udp.h>
58 #include <net/raw.h>
59 #include <linux/notifier.h>
60 #include <linux/if_arp.h>
61 #include <linux/netfilter_ipv4.h>
62 #include <linux/compat.h>
63 #include <linux/export.h>
64 #include <net/ip_tunnels.h>
65 #include <net/checksum.h>
66 #include <net/netlink.h>
67 #include <net/fib_rules.h>
68 #include <linux/netconf.h>
69 #include <net/nexthop.h>
70
71 struct ipmr_rule {
72 struct fib_rule common;
73 };
74
75 struct ipmr_result {
76 struct mr_table *mrt;
77 };
78
79 /* Big lock, protecting vif table, mrt cache and mroute socket state.
80 * Note that the changes are semaphored via rtnl_lock.
81 */
82
83 static DEFINE_RWLOCK(mrt_lock);
84
85 /* Multicast router control variables */
86
87 /* Special spinlock for queue of unresolved entries */
88 static DEFINE_SPINLOCK(mfc_unres_lock);
89
90 /* We return to original Alan's scheme. Hash table of resolved
91 * entries is changed only in process context and protected
92 * with weak lock mrt_lock. Queue of unresolved entries is protected
93 * with strong spinlock mfc_unres_lock.
94 *
95 * In this case data path is free of exclusive locks at all.
96 */
97
98 static struct kmem_cache *mrt_cachep __read_mostly;
99
100 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
101 static void ipmr_free_table(struct mr_table *mrt);
102
103 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
104 struct sk_buff *skb, struct mfc_cache *cache,
105 int local);
106 static int ipmr_cache_report(struct mr_table *mrt,
107 struct sk_buff *pkt, vifi_t vifi, int assert);
108 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
109 struct mfc_cache *c, struct rtmsg *rtm);
110 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
111 int cmd);
112 static void mroute_clean_tables(struct mr_table *mrt, bool all);
113 static void ipmr_expire_process(unsigned long arg);
114
115 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
116 #define ipmr_for_each_table(mrt, net) \
117 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
118
119 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
120 {
121 struct mr_table *mrt;
122
123 ipmr_for_each_table(mrt, net) {
124 if (mrt->id == id)
125 return mrt;
126 }
127 return NULL;
128 }
129
130 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
131 struct mr_table **mrt)
132 {
133 int err;
134 struct ipmr_result res;
135 struct fib_lookup_arg arg = {
136 .result = &res,
137 .flags = FIB_LOOKUP_NOREF,
138 };
139
140 /* update flow if oif or iif point to device enslaved to l3mdev */
141 l3mdev_update_flow(net, flowi4_to_flowi(flp4));
142
143 err = fib_rules_lookup(net->ipv4.mr_rules_ops,
144 flowi4_to_flowi(flp4), 0, &arg);
145 if (err < 0)
146 return err;
147 *mrt = res.mrt;
148 return 0;
149 }
150
151 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
152 int flags, struct fib_lookup_arg *arg)
153 {
154 struct ipmr_result *res = arg->result;
155 struct mr_table *mrt;
156
157 switch (rule->action) {
158 case FR_ACT_TO_TBL:
159 break;
160 case FR_ACT_UNREACHABLE:
161 return -ENETUNREACH;
162 case FR_ACT_PROHIBIT:
163 return -EACCES;
164 case FR_ACT_BLACKHOLE:
165 default:
166 return -EINVAL;
167 }
168
169 arg->table = fib_rule_get_table(rule, arg);
170
171 mrt = ipmr_get_table(rule->fr_net, arg->table);
172 if (!mrt)
173 return -EAGAIN;
174 res->mrt = mrt;
175 return 0;
176 }
177
178 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
179 {
180 return 1;
181 }
182
183 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
184 FRA_GENERIC_POLICY,
185 };
186
187 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
188 struct fib_rule_hdr *frh, struct nlattr **tb)
189 {
190 return 0;
191 }
192
193 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
194 struct nlattr **tb)
195 {
196 return 1;
197 }
198
199 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
200 struct fib_rule_hdr *frh)
201 {
202 frh->dst_len = 0;
203 frh->src_len = 0;
204 frh->tos = 0;
205 return 0;
206 }
207
208 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
209 .family = RTNL_FAMILY_IPMR,
210 .rule_size = sizeof(struct ipmr_rule),
211 .addr_size = sizeof(u32),
212 .action = ipmr_rule_action,
213 .match = ipmr_rule_match,
214 .configure = ipmr_rule_configure,
215 .compare = ipmr_rule_compare,
216 .fill = ipmr_rule_fill,
217 .nlgroup = RTNLGRP_IPV4_RULE,
218 .policy = ipmr_rule_policy,
219 .owner = THIS_MODULE,
220 };
221
222 static int __net_init ipmr_rules_init(struct net *net)
223 {
224 struct fib_rules_ops *ops;
225 struct mr_table *mrt;
226 int err;
227
228 ops = fib_rules_register(&ipmr_rules_ops_template, net);
229 if (IS_ERR(ops))
230 return PTR_ERR(ops);
231
232 INIT_LIST_HEAD(&net->ipv4.mr_tables);
233
234 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
235 if (IS_ERR(mrt)) {
236 err = PTR_ERR(mrt);
237 goto err1;
238 }
239
240 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
241 if (err < 0)
242 goto err2;
243
244 net->ipv4.mr_rules_ops = ops;
245 return 0;
246
247 err2:
248 ipmr_free_table(mrt);
249 err1:
250 fib_rules_unregister(ops);
251 return err;
252 }
253
254 static void __net_exit ipmr_rules_exit(struct net *net)
255 {
256 struct mr_table *mrt, *next;
257
258 rtnl_lock();
259 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
260 list_del(&mrt->list);
261 ipmr_free_table(mrt);
262 }
263 fib_rules_unregister(net->ipv4.mr_rules_ops);
264 rtnl_unlock();
265 }
266 #else
267 #define ipmr_for_each_table(mrt, net) \
268 for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
269
270 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
271 {
272 return net->ipv4.mrt;
273 }
274
275 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
276 struct mr_table **mrt)
277 {
278 *mrt = net->ipv4.mrt;
279 return 0;
280 }
281
282 static int __net_init ipmr_rules_init(struct net *net)
283 {
284 struct mr_table *mrt;
285
286 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
287 if (IS_ERR(mrt))
288 return PTR_ERR(mrt);
289 net->ipv4.mrt = mrt;
290 return 0;
291 }
292
293 static void __net_exit ipmr_rules_exit(struct net *net)
294 {
295 rtnl_lock();
296 ipmr_free_table(net->ipv4.mrt);
297 net->ipv4.mrt = NULL;
298 rtnl_unlock();
299 }
300 #endif
301
302 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
303 const void *ptr)
304 {
305 const struct mfc_cache_cmp_arg *cmparg = arg->key;
306 struct mfc_cache *c = (struct mfc_cache *)ptr;
307
308 return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
309 cmparg->mfc_origin != c->mfc_origin;
310 }
311
312 static const struct rhashtable_params ipmr_rht_params = {
313 .head_offset = offsetof(struct mfc_cache, mnode),
314 .key_offset = offsetof(struct mfc_cache, cmparg),
315 .key_len = sizeof(struct mfc_cache_cmp_arg),
316 .nelem_hint = 3,
317 .locks_mul = 1,
318 .obj_cmpfn = ipmr_hash_cmp,
319 .automatic_shrinking = true,
320 };
321
322 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
323 {
324 struct mr_table *mrt;
325
326 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
327 if (id != RT_TABLE_DEFAULT && id >= 1000000000)
328 return ERR_PTR(-EINVAL);
329
330 mrt = ipmr_get_table(net, id);
331 if (mrt)
332 return mrt;
333
334 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
335 if (!mrt)
336 return ERR_PTR(-ENOMEM);
337 write_pnet(&mrt->net, net);
338 mrt->id = id;
339
340 rhltable_init(&mrt->mfc_hash, &ipmr_rht_params);
341 INIT_LIST_HEAD(&mrt->mfc_cache_list);
342 INIT_LIST_HEAD(&mrt->mfc_unres_queue);
343
344 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
345 (unsigned long)mrt);
346
347 mrt->mroute_reg_vif_num = -1;
348 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
349 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
350 #endif
351 return mrt;
352 }
353
354 static void ipmr_free_table(struct mr_table *mrt)
355 {
356 del_timer_sync(&mrt->ipmr_expire_timer);
357 mroute_clean_tables(mrt, true);
358 rhltable_destroy(&mrt->mfc_hash);
359 kfree(mrt);
360 }
361
362 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
363
364 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
365 {
366 struct net *net = dev_net(dev);
367
368 dev_close(dev);
369
370 dev = __dev_get_by_name(net, "tunl0");
371 if (dev) {
372 const struct net_device_ops *ops = dev->netdev_ops;
373 struct ifreq ifr;
374 struct ip_tunnel_parm p;
375
376 memset(&p, 0, sizeof(p));
377 p.iph.daddr = v->vifc_rmt_addr.s_addr;
378 p.iph.saddr = v->vifc_lcl_addr.s_addr;
379 p.iph.version = 4;
380 p.iph.ihl = 5;
381 p.iph.protocol = IPPROTO_IPIP;
382 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
383 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
384
385 if (ops->ndo_do_ioctl) {
386 mm_segment_t oldfs = get_fs();
387
388 set_fs(KERNEL_DS);
389 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
390 set_fs(oldfs);
391 }
392 }
393 }
394
395 /* Initialize ipmr pimreg/tunnel in_device */
396 static bool ipmr_init_vif_indev(const struct net_device *dev)
397 {
398 struct in_device *in_dev;
399
400 ASSERT_RTNL();
401
402 in_dev = __in_dev_get_rtnl(dev);
403 if (!in_dev)
404 return false;
405 ipv4_devconf_setall(in_dev);
406 neigh_parms_data_state_setall(in_dev->arp_parms);
407 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
408
409 return true;
410 }
411
412 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
413 {
414 struct net_device *dev;
415
416 dev = __dev_get_by_name(net, "tunl0");
417
418 if (dev) {
419 const struct net_device_ops *ops = dev->netdev_ops;
420 int err;
421 struct ifreq ifr;
422 struct ip_tunnel_parm p;
423
424 memset(&p, 0, sizeof(p));
425 p.iph.daddr = v->vifc_rmt_addr.s_addr;
426 p.iph.saddr = v->vifc_lcl_addr.s_addr;
427 p.iph.version = 4;
428 p.iph.ihl = 5;
429 p.iph.protocol = IPPROTO_IPIP;
430 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
431 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
432
433 if (ops->ndo_do_ioctl) {
434 mm_segment_t oldfs = get_fs();
435
436 set_fs(KERNEL_DS);
437 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
438 set_fs(oldfs);
439 } else {
440 err = -EOPNOTSUPP;
441 }
442 dev = NULL;
443
444 if (err == 0 &&
445 (dev = __dev_get_by_name(net, p.name)) != NULL) {
446 dev->flags |= IFF_MULTICAST;
447 if (!ipmr_init_vif_indev(dev))
448 goto failure;
449 if (dev_open(dev))
450 goto failure;
451 dev_hold(dev);
452 }
453 }
454 return dev;
455
456 failure:
457 unregister_netdevice(dev);
458 return NULL;
459 }
460
461 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
462 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
463 {
464 struct net *net = dev_net(dev);
465 struct mr_table *mrt;
466 struct flowi4 fl4 = {
467 .flowi4_oif = dev->ifindex,
468 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
469 .flowi4_mark = skb->mark,
470 };
471 int err;
472
473 err = ipmr_fib_lookup(net, &fl4, &mrt);
474 if (err < 0) {
475 kfree_skb(skb);
476 return err;
477 }
478
479 read_lock(&mrt_lock);
480 dev->stats.tx_bytes += skb->len;
481 dev->stats.tx_packets++;
482 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
483 read_unlock(&mrt_lock);
484 kfree_skb(skb);
485 return NETDEV_TX_OK;
486 }
487
488 static int reg_vif_get_iflink(const struct net_device *dev)
489 {
490 return 0;
491 }
492
493 static const struct net_device_ops reg_vif_netdev_ops = {
494 .ndo_start_xmit = reg_vif_xmit,
495 .ndo_get_iflink = reg_vif_get_iflink,
496 };
497
498 static void reg_vif_setup(struct net_device *dev)
499 {
500 dev->type = ARPHRD_PIMREG;
501 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
502 dev->flags = IFF_NOARP;
503 dev->netdev_ops = &reg_vif_netdev_ops;
504 dev->destructor = free_netdev;
505 dev->features |= NETIF_F_NETNS_LOCAL;
506 }
507
508 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
509 {
510 struct net_device *dev;
511 char name[IFNAMSIZ];
512
513 if (mrt->id == RT_TABLE_DEFAULT)
514 sprintf(name, "pimreg");
515 else
516 sprintf(name, "pimreg%u", mrt->id);
517
518 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
519
520 if (!dev)
521 return NULL;
522
523 dev_net_set(dev, net);
524
525 if (register_netdevice(dev)) {
526 free_netdev(dev);
527 return NULL;
528 }
529
530 if (!ipmr_init_vif_indev(dev))
531 goto failure;
532 if (dev_open(dev))
533 goto failure;
534
535 dev_hold(dev);
536
537 return dev;
538
539 failure:
540 unregister_netdevice(dev);
541 return NULL;
542 }
543
544 /* called with rcu_read_lock() */
545 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
546 unsigned int pimlen)
547 {
548 struct net_device *reg_dev = NULL;
549 struct iphdr *encap;
550
551 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
552 /* Check that:
553 * a. packet is really sent to a multicast group
554 * b. packet is not a NULL-REGISTER
555 * c. packet is not truncated
556 */
557 if (!ipv4_is_multicast(encap->daddr) ||
558 encap->tot_len == 0 ||
559 ntohs(encap->tot_len) + pimlen > skb->len)
560 return 1;
561
562 read_lock(&mrt_lock);
563 if (mrt->mroute_reg_vif_num >= 0)
564 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
565 read_unlock(&mrt_lock);
566
567 if (!reg_dev)
568 return 1;
569
570 skb->mac_header = skb->network_header;
571 skb_pull(skb, (u8 *)encap - skb->data);
572 skb_reset_network_header(skb);
573 skb->protocol = htons(ETH_P_IP);
574 skb->ip_summed = CHECKSUM_NONE;
575
576 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
577
578 netif_rx(skb);
579
580 return NET_RX_SUCCESS;
581 }
582 #else
583 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
584 {
585 return NULL;
586 }
587 #endif
588
589 /**
590 * vif_delete - Delete a VIF entry
591 * @notify: Set to 1, if the caller is a notifier_call
592 */
593 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
594 struct list_head *head)
595 {
596 struct vif_device *v;
597 struct net_device *dev;
598 struct in_device *in_dev;
599
600 if (vifi < 0 || vifi >= mrt->maxvif)
601 return -EADDRNOTAVAIL;
602
603 v = &mrt->vif_table[vifi];
604
605 write_lock_bh(&mrt_lock);
606 dev = v->dev;
607 v->dev = NULL;
608
609 if (!dev) {
610 write_unlock_bh(&mrt_lock);
611 return -EADDRNOTAVAIL;
612 }
613
614 if (vifi == mrt->mroute_reg_vif_num)
615 mrt->mroute_reg_vif_num = -1;
616
617 if (vifi + 1 == mrt->maxvif) {
618 int tmp;
619
620 for (tmp = vifi - 1; tmp >= 0; tmp--) {
621 if (VIF_EXISTS(mrt, tmp))
622 break;
623 }
624 mrt->maxvif = tmp+1;
625 }
626
627 write_unlock_bh(&mrt_lock);
628
629 dev_set_allmulti(dev, -1);
630
631 in_dev = __in_dev_get_rtnl(dev);
632 if (in_dev) {
633 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
634 inet_netconf_notify_devconf(dev_net(dev),
635 NETCONFA_MC_FORWARDING,
636 dev->ifindex, &in_dev->cnf);
637 ip_rt_multicast_event(in_dev);
638 }
639
640 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
641 unregister_netdevice_queue(dev, head);
642
643 dev_put(dev);
644 return 0;
645 }
646
647 static void ipmr_cache_free_rcu(struct rcu_head *head)
648 {
649 struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
650
651 kmem_cache_free(mrt_cachep, c);
652 }
653
654 static inline void ipmr_cache_free(struct mfc_cache *c)
655 {
656 call_rcu(&c->rcu, ipmr_cache_free_rcu);
657 }
658
659 /* Destroy an unresolved cache entry, killing queued skbs
660 * and reporting error to netlink readers.
661 */
662 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
663 {
664 struct net *net = read_pnet(&mrt->net);
665 struct sk_buff *skb;
666 struct nlmsgerr *e;
667
668 atomic_dec(&mrt->cache_resolve_queue_len);
669
670 while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
671 if (ip_hdr(skb)->version == 0) {
672 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
673 nlh->nlmsg_type = NLMSG_ERROR;
674 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
675 skb_trim(skb, nlh->nlmsg_len);
676 e = nlmsg_data(nlh);
677 e->error = -ETIMEDOUT;
678 memset(&e->msg, 0, sizeof(e->msg));
679
680 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
681 } else {
682 kfree_skb(skb);
683 }
684 }
685
686 ipmr_cache_free(c);
687 }
688
689 /* Timer process for the unresolved queue. */
690 static void ipmr_expire_process(unsigned long arg)
691 {
692 struct mr_table *mrt = (struct mr_table *)arg;
693 unsigned long now;
694 unsigned long expires;
695 struct mfc_cache *c, *next;
696
697 if (!spin_trylock(&mfc_unres_lock)) {
698 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
699 return;
700 }
701
702 if (list_empty(&mrt->mfc_unres_queue))
703 goto out;
704
705 now = jiffies;
706 expires = 10*HZ;
707
708 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
709 if (time_after(c->mfc_un.unres.expires, now)) {
710 unsigned long interval = c->mfc_un.unres.expires - now;
711 if (interval < expires)
712 expires = interval;
713 continue;
714 }
715
716 list_del(&c->list);
717 mroute_netlink_event(mrt, c, RTM_DELROUTE);
718 ipmr_destroy_unres(mrt, c);
719 }
720
721 if (!list_empty(&mrt->mfc_unres_queue))
722 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
723
724 out:
725 spin_unlock(&mfc_unres_lock);
726 }
727
728 /* Fill oifs list. It is called under write locked mrt_lock. */
729 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
730 unsigned char *ttls)
731 {
732 int vifi;
733
734 cache->mfc_un.res.minvif = MAXVIFS;
735 cache->mfc_un.res.maxvif = 0;
736 memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
737
738 for (vifi = 0; vifi < mrt->maxvif; vifi++) {
739 if (VIF_EXISTS(mrt, vifi) &&
740 ttls[vifi] && ttls[vifi] < 255) {
741 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
742 if (cache->mfc_un.res.minvif > vifi)
743 cache->mfc_un.res.minvif = vifi;
744 if (cache->mfc_un.res.maxvif <= vifi)
745 cache->mfc_un.res.maxvif = vifi + 1;
746 }
747 }
748 cache->mfc_un.res.lastuse = jiffies;
749 }
750
751 static int vif_add(struct net *net, struct mr_table *mrt,
752 struct vifctl *vifc, int mrtsock)
753 {
754 int vifi = vifc->vifc_vifi;
755 struct vif_device *v = &mrt->vif_table[vifi];
756 struct net_device *dev;
757 struct in_device *in_dev;
758 int err;
759
760 /* Is vif busy ? */
761 if (VIF_EXISTS(mrt, vifi))
762 return -EADDRINUSE;
763
764 switch (vifc->vifc_flags) {
765 case VIFF_REGISTER:
766 if (!ipmr_pimsm_enabled())
767 return -EINVAL;
768 /* Special Purpose VIF in PIM
769 * All the packets will be sent to the daemon
770 */
771 if (mrt->mroute_reg_vif_num >= 0)
772 return -EADDRINUSE;
773 dev = ipmr_reg_vif(net, mrt);
774 if (!dev)
775 return -ENOBUFS;
776 err = dev_set_allmulti(dev, 1);
777 if (err) {
778 unregister_netdevice(dev);
779 dev_put(dev);
780 return err;
781 }
782 break;
783 case VIFF_TUNNEL:
784 dev = ipmr_new_tunnel(net, vifc);
785 if (!dev)
786 return -ENOBUFS;
787 err = dev_set_allmulti(dev, 1);
788 if (err) {
789 ipmr_del_tunnel(dev, vifc);
790 dev_put(dev);
791 return err;
792 }
793 break;
794 case VIFF_USE_IFINDEX:
795 case 0:
796 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
797 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
798 if (dev && !__in_dev_get_rtnl(dev)) {
799 dev_put(dev);
800 return -EADDRNOTAVAIL;
801 }
802 } else {
803 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
804 }
805 if (!dev)
806 return -EADDRNOTAVAIL;
807 err = dev_set_allmulti(dev, 1);
808 if (err) {
809 dev_put(dev);
810 return err;
811 }
812 break;
813 default:
814 return -EINVAL;
815 }
816
817 in_dev = __in_dev_get_rtnl(dev);
818 if (!in_dev) {
819 dev_put(dev);
820 return -EADDRNOTAVAIL;
821 }
822 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
823 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
824 &in_dev->cnf);
825 ip_rt_multicast_event(in_dev);
826
827 /* Fill in the VIF structures */
828
829 v->rate_limit = vifc->vifc_rate_limit;
830 v->local = vifc->vifc_lcl_addr.s_addr;
831 v->remote = vifc->vifc_rmt_addr.s_addr;
832 v->flags = vifc->vifc_flags;
833 if (!mrtsock)
834 v->flags |= VIFF_STATIC;
835 v->threshold = vifc->vifc_threshold;
836 v->bytes_in = 0;
837 v->bytes_out = 0;
838 v->pkt_in = 0;
839 v->pkt_out = 0;
840 v->link = dev->ifindex;
841 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
842 v->link = dev_get_iflink(dev);
843
844 /* And finish update writing critical data */
845 write_lock_bh(&mrt_lock);
846 v->dev = dev;
847 if (v->flags & VIFF_REGISTER)
848 mrt->mroute_reg_vif_num = vifi;
849 if (vifi+1 > mrt->maxvif)
850 mrt->maxvif = vifi+1;
851 write_unlock_bh(&mrt_lock);
852 return 0;
853 }
854
855 /* called with rcu_read_lock() */
856 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
857 __be32 origin,
858 __be32 mcastgrp)
859 {
860 struct mfc_cache_cmp_arg arg = {
861 .mfc_mcastgrp = mcastgrp,
862 .mfc_origin = origin
863 };
864 struct rhlist_head *tmp, *list;
865 struct mfc_cache *c;
866
867 list = rhltable_lookup(&mrt->mfc_hash, &arg, ipmr_rht_params);
868 rhl_for_each_entry_rcu(c, tmp, list, mnode)
869 return c;
870
871 return NULL;
872 }
873
874 /* Look for a (*,*,oif) entry */
875 static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
876 int vifi)
877 {
878 struct mfc_cache_cmp_arg arg = {
879 .mfc_mcastgrp = htonl(INADDR_ANY),
880 .mfc_origin = htonl(INADDR_ANY)
881 };
882 struct rhlist_head *tmp, *list;
883 struct mfc_cache *c;
884
885 list = rhltable_lookup(&mrt->mfc_hash, &arg, ipmr_rht_params);
886 rhl_for_each_entry_rcu(c, tmp, list, mnode)
887 if (c->mfc_un.res.ttls[vifi] < 255)
888 return c;
889
890 return NULL;
891 }
892
893 /* Look for a (*,G) entry */
894 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
895 __be32 mcastgrp, int vifi)
896 {
897 struct mfc_cache_cmp_arg arg = {
898 .mfc_mcastgrp = mcastgrp,
899 .mfc_origin = htonl(INADDR_ANY)
900 };
901 struct rhlist_head *tmp, *list;
902 struct mfc_cache *c, *proxy;
903
904 if (mcastgrp == htonl(INADDR_ANY))
905 goto skip;
906
907 list = rhltable_lookup(&mrt->mfc_hash, &arg, ipmr_rht_params);
908 rhl_for_each_entry_rcu(c, tmp, list, mnode) {
909 if (c->mfc_un.res.ttls[vifi] < 255)
910 return c;
911
912 /* It's ok if the vifi is part of the static tree */
913 proxy = ipmr_cache_find_any_parent(mrt, c->mfc_parent);
914 if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
915 return c;
916 }
917
918 skip:
919 return ipmr_cache_find_any_parent(mrt, vifi);
920 }
921
922 /* Look for a (S,G,iif) entry if parent != -1 */
923 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
924 __be32 origin, __be32 mcastgrp,
925 int parent)
926 {
927 struct mfc_cache_cmp_arg arg = {
928 .mfc_mcastgrp = mcastgrp,
929 .mfc_origin = origin,
930 };
931 struct rhlist_head *tmp, *list;
932 struct mfc_cache *c;
933
934 list = rhltable_lookup(&mrt->mfc_hash, &arg, ipmr_rht_params);
935 rhl_for_each_entry_rcu(c, tmp, list, mnode)
936 if (parent == -1 || parent == c->mfc_parent)
937 return c;
938
939 return NULL;
940 }
941
942 /* Allocate a multicast cache entry */
943 static struct mfc_cache *ipmr_cache_alloc(void)
944 {
945 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
946
947 if (c) {
948 c->mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
949 c->mfc_un.res.minvif = MAXVIFS;
950 }
951 return c;
952 }
953
954 static struct mfc_cache *ipmr_cache_alloc_unres(void)
955 {
956 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
957
958 if (c) {
959 skb_queue_head_init(&c->mfc_un.unres.unresolved);
960 c->mfc_un.unres.expires = jiffies + 10*HZ;
961 }
962 return c;
963 }
964
965 /* A cache entry has gone into a resolved state from queued */
966 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
967 struct mfc_cache *uc, struct mfc_cache *c)
968 {
969 struct sk_buff *skb;
970 struct nlmsgerr *e;
971
972 /* Play the pending entries through our router */
973 while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
974 if (ip_hdr(skb)->version == 0) {
975 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
976
977 if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
978 nlh->nlmsg_len = skb_tail_pointer(skb) -
979 (u8 *)nlh;
980 } else {
981 nlh->nlmsg_type = NLMSG_ERROR;
982 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
983 skb_trim(skb, nlh->nlmsg_len);
984 e = nlmsg_data(nlh);
985 e->error = -EMSGSIZE;
986 memset(&e->msg, 0, sizeof(e->msg));
987 }
988
989 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
990 } else {
991 ip_mr_forward(net, mrt, skb, c, 0);
992 }
993 }
994 }
995
996 /* Bounce a cache query up to mrouted. We could use netlink for this but mrouted
997 * expects the following bizarre scheme.
998 *
999 * Called under mrt_lock.
1000 */
1001 static int ipmr_cache_report(struct mr_table *mrt,
1002 struct sk_buff *pkt, vifi_t vifi, int assert)
1003 {
1004 const int ihl = ip_hdrlen(pkt);
1005 struct sock *mroute_sk;
1006 struct igmphdr *igmp;
1007 struct igmpmsg *msg;
1008 struct sk_buff *skb;
1009 int ret;
1010
1011 if (assert == IGMPMSG_WHOLEPKT)
1012 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1013 else
1014 skb = alloc_skb(128, GFP_ATOMIC);
1015
1016 if (!skb)
1017 return -ENOBUFS;
1018
1019 if (assert == IGMPMSG_WHOLEPKT) {
1020 /* Ugly, but we have no choice with this interface.
1021 * Duplicate old header, fix ihl, length etc.
1022 * And all this only to mangle msg->im_msgtype and
1023 * to set msg->im_mbz to "mbz" :-)
1024 */
1025 skb_push(skb, sizeof(struct iphdr));
1026 skb_reset_network_header(skb);
1027 skb_reset_transport_header(skb);
1028 msg = (struct igmpmsg *)skb_network_header(skb);
1029 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1030 msg->im_msgtype = IGMPMSG_WHOLEPKT;
1031 msg->im_mbz = 0;
1032 msg->im_vif = mrt->mroute_reg_vif_num;
1033 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1034 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1035 sizeof(struct iphdr));
1036 } else {
1037 /* Copy the IP header */
1038 skb_set_network_header(skb, skb->len);
1039 skb_put(skb, ihl);
1040 skb_copy_to_linear_data(skb, pkt->data, ihl);
1041 /* Flag to the kernel this is a route add */
1042 ip_hdr(skb)->protocol = 0;
1043 msg = (struct igmpmsg *)skb_network_header(skb);
1044 msg->im_vif = vifi;
1045 skb_dst_set(skb, dst_clone(skb_dst(pkt)));
1046 /* Add our header */
1047 igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
1048 igmp->type = assert;
1049 msg->im_msgtype = assert;
1050 igmp->code = 0;
1051 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
1052 skb->transport_header = skb->network_header;
1053 }
1054
1055 rcu_read_lock();
1056 mroute_sk = rcu_dereference(mrt->mroute_sk);
1057 if (!mroute_sk) {
1058 rcu_read_unlock();
1059 kfree_skb(skb);
1060 return -EINVAL;
1061 }
1062
1063 /* Deliver to mrouted */
1064 ret = sock_queue_rcv_skb(mroute_sk, skb);
1065 rcu_read_unlock();
1066 if (ret < 0) {
1067 net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1068 kfree_skb(skb);
1069 }
1070
1071 return ret;
1072 }
1073
1074 /* Queue a packet for resolution. It gets locked cache entry! */
1075 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1076 struct sk_buff *skb)
1077 {
1078 const struct iphdr *iph = ip_hdr(skb);
1079 struct mfc_cache *c;
1080 bool found = false;
1081 int err;
1082
1083 spin_lock_bh(&mfc_unres_lock);
1084 list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
1085 if (c->mfc_mcastgrp == iph->daddr &&
1086 c->mfc_origin == iph->saddr) {
1087 found = true;
1088 break;
1089 }
1090 }
1091
1092 if (!found) {
1093 /* Create a new entry if allowable */
1094 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1095 (c = ipmr_cache_alloc_unres()) == NULL) {
1096 spin_unlock_bh(&mfc_unres_lock);
1097
1098 kfree_skb(skb);
1099 return -ENOBUFS;
1100 }
1101
1102 /* Fill in the new cache entry */
1103 c->mfc_parent = -1;
1104 c->mfc_origin = iph->saddr;
1105 c->mfc_mcastgrp = iph->daddr;
1106
1107 /* Reflect first query at mrouted. */
1108 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1109 if (err < 0) {
1110 /* If the report failed throw the cache entry
1111 out - Brad Parker
1112 */
1113 spin_unlock_bh(&mfc_unres_lock);
1114
1115 ipmr_cache_free(c);
1116 kfree_skb(skb);
1117 return err;
1118 }
1119
1120 atomic_inc(&mrt->cache_resolve_queue_len);
1121 list_add(&c->list, &mrt->mfc_unres_queue);
1122 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1123
1124 if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1125 mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1126 }
1127
1128 /* See if we can append the packet */
1129 if (c->mfc_un.unres.unresolved.qlen > 3) {
1130 kfree_skb(skb);
1131 err = -ENOBUFS;
1132 } else {
1133 skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1134 err = 0;
1135 }
1136
1137 spin_unlock_bh(&mfc_unres_lock);
1138 return err;
1139 }
1140
1141 /* MFC cache manipulation by user space mroute daemon */
1142
1143 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1144 {
1145 struct mfc_cache *c;
1146
1147 /* The entries are added/deleted only under RTNL */
1148 rcu_read_lock();
1149 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1150 mfc->mfcc_mcastgrp.s_addr, parent);
1151 rcu_read_unlock();
1152 if (!c)
1153 return -ENOENT;
1154 rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1155 list_del_rcu(&c->list);
1156 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1157 ipmr_cache_free(c);
1158
1159 return 0;
1160 }
1161
1162 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1163 struct mfcctl *mfc, int mrtsock, int parent)
1164 {
1165 struct mfc_cache *uc, *c;
1166 bool found;
1167 int ret;
1168
1169 if (mfc->mfcc_parent >= MAXVIFS)
1170 return -ENFILE;
1171
1172 /* The entries are added/deleted only under RTNL */
1173 rcu_read_lock();
1174 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1175 mfc->mfcc_mcastgrp.s_addr, parent);
1176 rcu_read_unlock();
1177 if (c) {
1178 write_lock_bh(&mrt_lock);
1179 c->mfc_parent = mfc->mfcc_parent;
1180 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1181 if (!mrtsock)
1182 c->mfc_flags |= MFC_STATIC;
1183 write_unlock_bh(&mrt_lock);
1184 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1185 return 0;
1186 }
1187
1188 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1189 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1190 return -EINVAL;
1191
1192 c = ipmr_cache_alloc();
1193 if (!c)
1194 return -ENOMEM;
1195
1196 c->mfc_origin = mfc->mfcc_origin.s_addr;
1197 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1198 c->mfc_parent = mfc->mfcc_parent;
1199 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1200 if (!mrtsock)
1201 c->mfc_flags |= MFC_STATIC;
1202
1203 ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->mnode,
1204 ipmr_rht_params);
1205 if (ret) {
1206 pr_err("ipmr: rhtable insert error %d\n", ret);
1207 ipmr_cache_free(c);
1208 return ret;
1209 }
1210 list_add_tail_rcu(&c->list, &mrt->mfc_cache_list);
1211 /* Check to see if we resolved a queued list. If so we
1212 * need to send on the frames and tidy up.
1213 */
1214 found = false;
1215 spin_lock_bh(&mfc_unres_lock);
1216 list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1217 if (uc->mfc_origin == c->mfc_origin &&
1218 uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1219 list_del(&uc->list);
1220 atomic_dec(&mrt->cache_resolve_queue_len);
1221 found = true;
1222 break;
1223 }
1224 }
1225 if (list_empty(&mrt->mfc_unres_queue))
1226 del_timer(&mrt->ipmr_expire_timer);
1227 spin_unlock_bh(&mfc_unres_lock);
1228
1229 if (found) {
1230 ipmr_cache_resolve(net, mrt, uc, c);
1231 ipmr_cache_free(uc);
1232 }
1233 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1234 return 0;
1235 }
1236
1237 /* Close the multicast socket, and clear the vif tables etc */
1238 static void mroute_clean_tables(struct mr_table *mrt, bool all)
1239 {
1240 struct mfc_cache *c, *tmp;
1241 LIST_HEAD(list);
1242 int i;
1243
1244 /* Shut down all active vif entries */
1245 for (i = 0; i < mrt->maxvif; i++) {
1246 if (!all && (mrt->vif_table[i].flags & VIFF_STATIC))
1247 continue;
1248 vif_delete(mrt, i, 0, &list);
1249 }
1250 unregister_netdevice_many(&list);
1251
1252 /* Wipe the cache */
1253 list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1254 if (!all && (c->mfc_flags & MFC_STATIC))
1255 continue;
1256 rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1257 list_del_rcu(&c->list);
1258 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1259 ipmr_cache_free(c);
1260 }
1261
1262 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1263 spin_lock_bh(&mfc_unres_lock);
1264 list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1265 list_del(&c->list);
1266 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1267 ipmr_destroy_unres(mrt, c);
1268 }
1269 spin_unlock_bh(&mfc_unres_lock);
1270 }
1271 }
1272
1273 /* called from ip_ra_control(), before an RCU grace period,
1274 * we dont need to call synchronize_rcu() here
1275 */
1276 static void mrtsock_destruct(struct sock *sk)
1277 {
1278 struct net *net = sock_net(sk);
1279 struct mr_table *mrt;
1280
1281 rtnl_lock();
1282 ipmr_for_each_table(mrt, net) {
1283 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1284 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1285 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1286 NETCONFA_IFINDEX_ALL,
1287 net->ipv4.devconf_all);
1288 RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1289 mroute_clean_tables(mrt, false);
1290 }
1291 }
1292 rtnl_unlock();
1293 }
1294
1295 /* Socket options and virtual interface manipulation. The whole
1296 * virtual interface system is a complete heap, but unfortunately
1297 * that's how BSD mrouted happens to think. Maybe one day with a proper
1298 * MOSPF/PIM router set up we can clean this up.
1299 */
1300
1301 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval,
1302 unsigned int optlen)
1303 {
1304 struct net *net = sock_net(sk);
1305 int val, ret = 0, parent = 0;
1306 struct mr_table *mrt;
1307 struct vifctl vif;
1308 struct mfcctl mfc;
1309 u32 uval;
1310
1311 /* There's one exception to the lock - MRT_DONE which needs to unlock */
1312 rtnl_lock();
1313 if (sk->sk_type != SOCK_RAW ||
1314 inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1315 ret = -EOPNOTSUPP;
1316 goto out_unlock;
1317 }
1318
1319 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1320 if (!mrt) {
1321 ret = -ENOENT;
1322 goto out_unlock;
1323 }
1324 if (optname != MRT_INIT) {
1325 if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1326 !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1327 ret = -EACCES;
1328 goto out_unlock;
1329 }
1330 }
1331
1332 switch (optname) {
1333 case MRT_INIT:
1334 if (optlen != sizeof(int)) {
1335 ret = -EINVAL;
1336 break;
1337 }
1338 if (rtnl_dereference(mrt->mroute_sk)) {
1339 ret = -EADDRINUSE;
1340 break;
1341 }
1342
1343 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1344 if (ret == 0) {
1345 rcu_assign_pointer(mrt->mroute_sk, sk);
1346 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1347 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1348 NETCONFA_IFINDEX_ALL,
1349 net->ipv4.devconf_all);
1350 }
1351 break;
1352 case MRT_DONE:
1353 if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1354 ret = -EACCES;
1355 } else {
1356 /* We need to unlock here because mrtsock_destruct takes
1357 * care of rtnl itself and we can't change that due to
1358 * the IP_ROUTER_ALERT setsockopt which runs without it.
1359 */
1360 rtnl_unlock();
1361 ret = ip_ra_control(sk, 0, NULL);
1362 goto out;
1363 }
1364 break;
1365 case MRT_ADD_VIF:
1366 case MRT_DEL_VIF:
1367 if (optlen != sizeof(vif)) {
1368 ret = -EINVAL;
1369 break;
1370 }
1371 if (copy_from_user(&vif, optval, sizeof(vif))) {
1372 ret = -EFAULT;
1373 break;
1374 }
1375 if (vif.vifc_vifi >= MAXVIFS) {
1376 ret = -ENFILE;
1377 break;
1378 }
1379 if (optname == MRT_ADD_VIF) {
1380 ret = vif_add(net, mrt, &vif,
1381 sk == rtnl_dereference(mrt->mroute_sk));
1382 } else {
1383 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1384 }
1385 break;
1386 /* Manipulate the forwarding caches. These live
1387 * in a sort of kernel/user symbiosis.
1388 */
1389 case MRT_ADD_MFC:
1390 case MRT_DEL_MFC:
1391 parent = -1;
1392 case MRT_ADD_MFC_PROXY:
1393 case MRT_DEL_MFC_PROXY:
1394 if (optlen != sizeof(mfc)) {
1395 ret = -EINVAL;
1396 break;
1397 }
1398 if (copy_from_user(&mfc, optval, sizeof(mfc))) {
1399 ret = -EFAULT;
1400 break;
1401 }
1402 if (parent == 0)
1403 parent = mfc.mfcc_parent;
1404 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1405 ret = ipmr_mfc_delete(mrt, &mfc, parent);
1406 else
1407 ret = ipmr_mfc_add(net, mrt, &mfc,
1408 sk == rtnl_dereference(mrt->mroute_sk),
1409 parent);
1410 break;
1411 /* Control PIM assert. */
1412 case MRT_ASSERT:
1413 if (optlen != sizeof(val)) {
1414 ret = -EINVAL;
1415 break;
1416 }
1417 if (get_user(val, (int __user *)optval)) {
1418 ret = -EFAULT;
1419 break;
1420 }
1421 mrt->mroute_do_assert = val;
1422 break;
1423 case MRT_PIM:
1424 if (!ipmr_pimsm_enabled()) {
1425 ret = -ENOPROTOOPT;
1426 break;
1427 }
1428 if (optlen != sizeof(val)) {
1429 ret = -EINVAL;
1430 break;
1431 }
1432 if (get_user(val, (int __user *)optval)) {
1433 ret = -EFAULT;
1434 break;
1435 }
1436
1437 val = !!val;
1438 if (val != mrt->mroute_do_pim) {
1439 mrt->mroute_do_pim = val;
1440 mrt->mroute_do_assert = val;
1441 }
1442 break;
1443 case MRT_TABLE:
1444 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1445 ret = -ENOPROTOOPT;
1446 break;
1447 }
1448 if (optlen != sizeof(uval)) {
1449 ret = -EINVAL;
1450 break;
1451 }
1452 if (get_user(uval, (u32 __user *)optval)) {
1453 ret = -EFAULT;
1454 break;
1455 }
1456
1457 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1458 ret = -EBUSY;
1459 } else {
1460 mrt = ipmr_new_table(net, uval);
1461 if (IS_ERR(mrt))
1462 ret = PTR_ERR(mrt);
1463 else
1464 raw_sk(sk)->ipmr_table = uval;
1465 }
1466 break;
1467 /* Spurious command, or MRT_VERSION which you cannot set. */
1468 default:
1469 ret = -ENOPROTOOPT;
1470 }
1471 out_unlock:
1472 rtnl_unlock();
1473 out:
1474 return ret;
1475 }
1476
1477 /* Getsock opt support for the multicast routing system. */
1478 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1479 {
1480 int olr;
1481 int val;
1482 struct net *net = sock_net(sk);
1483 struct mr_table *mrt;
1484
1485 if (sk->sk_type != SOCK_RAW ||
1486 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1487 return -EOPNOTSUPP;
1488
1489 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1490 if (!mrt)
1491 return -ENOENT;
1492
1493 switch (optname) {
1494 case MRT_VERSION:
1495 val = 0x0305;
1496 break;
1497 case MRT_PIM:
1498 if (!ipmr_pimsm_enabled())
1499 return -ENOPROTOOPT;
1500 val = mrt->mroute_do_pim;
1501 break;
1502 case MRT_ASSERT:
1503 val = mrt->mroute_do_assert;
1504 break;
1505 default:
1506 return -ENOPROTOOPT;
1507 }
1508
1509 if (get_user(olr, optlen))
1510 return -EFAULT;
1511 olr = min_t(unsigned int, olr, sizeof(int));
1512 if (olr < 0)
1513 return -EINVAL;
1514 if (put_user(olr, optlen))
1515 return -EFAULT;
1516 if (copy_to_user(optval, &val, olr))
1517 return -EFAULT;
1518 return 0;
1519 }
1520
1521 /* The IP multicast ioctl support routines. */
1522 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1523 {
1524 struct sioc_sg_req sr;
1525 struct sioc_vif_req vr;
1526 struct vif_device *vif;
1527 struct mfc_cache *c;
1528 struct net *net = sock_net(sk);
1529 struct mr_table *mrt;
1530
1531 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1532 if (!mrt)
1533 return -ENOENT;
1534
1535 switch (cmd) {
1536 case SIOCGETVIFCNT:
1537 if (copy_from_user(&vr, arg, sizeof(vr)))
1538 return -EFAULT;
1539 if (vr.vifi >= mrt->maxvif)
1540 return -EINVAL;
1541 read_lock(&mrt_lock);
1542 vif = &mrt->vif_table[vr.vifi];
1543 if (VIF_EXISTS(mrt, vr.vifi)) {
1544 vr.icount = vif->pkt_in;
1545 vr.ocount = vif->pkt_out;
1546 vr.ibytes = vif->bytes_in;
1547 vr.obytes = vif->bytes_out;
1548 read_unlock(&mrt_lock);
1549
1550 if (copy_to_user(arg, &vr, sizeof(vr)))
1551 return -EFAULT;
1552 return 0;
1553 }
1554 read_unlock(&mrt_lock);
1555 return -EADDRNOTAVAIL;
1556 case SIOCGETSGCNT:
1557 if (copy_from_user(&sr, arg, sizeof(sr)))
1558 return -EFAULT;
1559
1560 rcu_read_lock();
1561 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1562 if (c) {
1563 sr.pktcnt = c->mfc_un.res.pkt;
1564 sr.bytecnt = c->mfc_un.res.bytes;
1565 sr.wrong_if = c->mfc_un.res.wrong_if;
1566 rcu_read_unlock();
1567
1568 if (copy_to_user(arg, &sr, sizeof(sr)))
1569 return -EFAULT;
1570 return 0;
1571 }
1572 rcu_read_unlock();
1573 return -EADDRNOTAVAIL;
1574 default:
1575 return -ENOIOCTLCMD;
1576 }
1577 }
1578
1579 #ifdef CONFIG_COMPAT
1580 struct compat_sioc_sg_req {
1581 struct in_addr src;
1582 struct in_addr grp;
1583 compat_ulong_t pktcnt;
1584 compat_ulong_t bytecnt;
1585 compat_ulong_t wrong_if;
1586 };
1587
1588 struct compat_sioc_vif_req {
1589 vifi_t vifi; /* Which iface */
1590 compat_ulong_t icount;
1591 compat_ulong_t ocount;
1592 compat_ulong_t ibytes;
1593 compat_ulong_t obytes;
1594 };
1595
1596 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1597 {
1598 struct compat_sioc_sg_req sr;
1599 struct compat_sioc_vif_req vr;
1600 struct vif_device *vif;
1601 struct mfc_cache *c;
1602 struct net *net = sock_net(sk);
1603 struct mr_table *mrt;
1604
1605 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1606 if (!mrt)
1607 return -ENOENT;
1608
1609 switch (cmd) {
1610 case SIOCGETVIFCNT:
1611 if (copy_from_user(&vr, arg, sizeof(vr)))
1612 return -EFAULT;
1613 if (vr.vifi >= mrt->maxvif)
1614 return -EINVAL;
1615 read_lock(&mrt_lock);
1616 vif = &mrt->vif_table[vr.vifi];
1617 if (VIF_EXISTS(mrt, vr.vifi)) {
1618 vr.icount = vif->pkt_in;
1619 vr.ocount = vif->pkt_out;
1620 vr.ibytes = vif->bytes_in;
1621 vr.obytes = vif->bytes_out;
1622 read_unlock(&mrt_lock);
1623
1624 if (copy_to_user(arg, &vr, sizeof(vr)))
1625 return -EFAULT;
1626 return 0;
1627 }
1628 read_unlock(&mrt_lock);
1629 return -EADDRNOTAVAIL;
1630 case SIOCGETSGCNT:
1631 if (copy_from_user(&sr, arg, sizeof(sr)))
1632 return -EFAULT;
1633
1634 rcu_read_lock();
1635 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1636 if (c) {
1637 sr.pktcnt = c->mfc_un.res.pkt;
1638 sr.bytecnt = c->mfc_un.res.bytes;
1639 sr.wrong_if = c->mfc_un.res.wrong_if;
1640 rcu_read_unlock();
1641
1642 if (copy_to_user(arg, &sr, sizeof(sr)))
1643 return -EFAULT;
1644 return 0;
1645 }
1646 rcu_read_unlock();
1647 return -EADDRNOTAVAIL;
1648 default:
1649 return -ENOIOCTLCMD;
1650 }
1651 }
1652 #endif
1653
1654 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1655 {
1656 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1657 struct net *net = dev_net(dev);
1658 struct mr_table *mrt;
1659 struct vif_device *v;
1660 int ct;
1661
1662 if (event != NETDEV_UNREGISTER)
1663 return NOTIFY_DONE;
1664
1665 ipmr_for_each_table(mrt, net) {
1666 v = &mrt->vif_table[0];
1667 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1668 if (v->dev == dev)
1669 vif_delete(mrt, ct, 1, NULL);
1670 }
1671 }
1672 return NOTIFY_DONE;
1673 }
1674
1675 static struct notifier_block ip_mr_notifier = {
1676 .notifier_call = ipmr_device_event,
1677 };
1678
1679 /* Encapsulate a packet by attaching a valid IPIP header to it.
1680 * This avoids tunnel drivers and other mess and gives us the speed so
1681 * important for multicast video.
1682 */
1683 static void ip_encap(struct net *net, struct sk_buff *skb,
1684 __be32 saddr, __be32 daddr)
1685 {
1686 struct iphdr *iph;
1687 const struct iphdr *old_iph = ip_hdr(skb);
1688
1689 skb_push(skb, sizeof(struct iphdr));
1690 skb->transport_header = skb->network_header;
1691 skb_reset_network_header(skb);
1692 iph = ip_hdr(skb);
1693
1694 iph->version = 4;
1695 iph->tos = old_iph->tos;
1696 iph->ttl = old_iph->ttl;
1697 iph->frag_off = 0;
1698 iph->daddr = daddr;
1699 iph->saddr = saddr;
1700 iph->protocol = IPPROTO_IPIP;
1701 iph->ihl = 5;
1702 iph->tot_len = htons(skb->len);
1703 ip_select_ident(net, skb, NULL);
1704 ip_send_check(iph);
1705
1706 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1707 nf_reset(skb);
1708 }
1709
1710 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1711 struct sk_buff *skb)
1712 {
1713 struct ip_options *opt = &(IPCB(skb)->opt);
1714
1715 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1716 IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1717
1718 if (unlikely(opt->optlen))
1719 ip_forward_options(skb);
1720
1721 return dst_output(net, sk, skb);
1722 }
1723
1724 /* Processing handlers for ipmr_forward */
1725
1726 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1727 struct sk_buff *skb, struct mfc_cache *c, int vifi)
1728 {
1729 const struct iphdr *iph = ip_hdr(skb);
1730 struct vif_device *vif = &mrt->vif_table[vifi];
1731 struct net_device *dev;
1732 struct rtable *rt;
1733 struct flowi4 fl4;
1734 int encap = 0;
1735
1736 if (!vif->dev)
1737 goto out_free;
1738
1739 if (vif->flags & VIFF_REGISTER) {
1740 vif->pkt_out++;
1741 vif->bytes_out += skb->len;
1742 vif->dev->stats.tx_bytes += skb->len;
1743 vif->dev->stats.tx_packets++;
1744 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1745 goto out_free;
1746 }
1747
1748 if (vif->flags & VIFF_TUNNEL) {
1749 rt = ip_route_output_ports(net, &fl4, NULL,
1750 vif->remote, vif->local,
1751 0, 0,
1752 IPPROTO_IPIP,
1753 RT_TOS(iph->tos), vif->link);
1754 if (IS_ERR(rt))
1755 goto out_free;
1756 encap = sizeof(struct iphdr);
1757 } else {
1758 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1759 0, 0,
1760 IPPROTO_IPIP,
1761 RT_TOS(iph->tos), vif->link);
1762 if (IS_ERR(rt))
1763 goto out_free;
1764 }
1765
1766 dev = rt->dst.dev;
1767
1768 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1769 /* Do not fragment multicasts. Alas, IPv4 does not
1770 * allow to send ICMP, so that packets will disappear
1771 * to blackhole.
1772 */
1773 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1774 ip_rt_put(rt);
1775 goto out_free;
1776 }
1777
1778 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1779
1780 if (skb_cow(skb, encap)) {
1781 ip_rt_put(rt);
1782 goto out_free;
1783 }
1784
1785 vif->pkt_out++;
1786 vif->bytes_out += skb->len;
1787
1788 skb_dst_drop(skb);
1789 skb_dst_set(skb, &rt->dst);
1790 ip_decrease_ttl(ip_hdr(skb));
1791
1792 /* FIXME: forward and output firewalls used to be called here.
1793 * What do we do with netfilter? -- RR
1794 */
1795 if (vif->flags & VIFF_TUNNEL) {
1796 ip_encap(net, skb, vif->local, vif->remote);
1797 /* FIXME: extra output firewall step used to be here. --RR */
1798 vif->dev->stats.tx_packets++;
1799 vif->dev->stats.tx_bytes += skb->len;
1800 }
1801
1802 IPCB(skb)->flags |= IPSKB_FORWARDED;
1803
1804 /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1805 * not only before forwarding, but after forwarding on all output
1806 * interfaces. It is clear, if mrouter runs a multicasting
1807 * program, it should receive packets not depending to what interface
1808 * program is joined.
1809 * If we will not make it, the program will have to join on all
1810 * interfaces. On the other hand, multihoming host (or router, but
1811 * not mrouter) cannot join to more than one interface - it will
1812 * result in receiving multiple packets.
1813 */
1814 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1815 net, NULL, skb, skb->dev, dev,
1816 ipmr_forward_finish);
1817 return;
1818
1819 out_free:
1820 kfree_skb(skb);
1821 }
1822
1823 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1824 {
1825 int ct;
1826
1827 for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1828 if (mrt->vif_table[ct].dev == dev)
1829 break;
1830 }
1831 return ct;
1832 }
1833
1834 /* "local" means that we should preserve one skb (for local delivery) */
1835 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1836 struct sk_buff *skb, struct mfc_cache *cache,
1837 int local)
1838 {
1839 int true_vifi = ipmr_find_vif(mrt, skb->dev);
1840 int psend = -1;
1841 int vif, ct;
1842
1843 vif = cache->mfc_parent;
1844 cache->mfc_un.res.pkt++;
1845 cache->mfc_un.res.bytes += skb->len;
1846 cache->mfc_un.res.lastuse = jiffies;
1847
1848 if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1849 struct mfc_cache *cache_proxy;
1850
1851 /* For an (*,G) entry, we only check that the incomming
1852 * interface is part of the static tree.
1853 */
1854 cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
1855 if (cache_proxy &&
1856 cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
1857 goto forward;
1858 }
1859
1860 /* Wrong interface: drop packet and (maybe) send PIM assert. */
1861 if (mrt->vif_table[vif].dev != skb->dev) {
1862 struct net_device *mdev;
1863
1864 mdev = l3mdev_master_dev_rcu(mrt->vif_table[vif].dev);
1865 if (mdev == skb->dev)
1866 goto forward;
1867
1868 if (rt_is_output_route(skb_rtable(skb))) {
1869 /* It is our own packet, looped back.
1870 * Very complicated situation...
1871 *
1872 * The best workaround until routing daemons will be
1873 * fixed is not to redistribute packet, if it was
1874 * send through wrong interface. It means, that
1875 * multicast applications WILL NOT work for
1876 * (S,G), which have default multicast route pointing
1877 * to wrong oif. In any case, it is not a good
1878 * idea to use multicasting applications on router.
1879 */
1880 goto dont_forward;
1881 }
1882
1883 cache->mfc_un.res.wrong_if++;
1884
1885 if (true_vifi >= 0 && mrt->mroute_do_assert &&
1886 /* pimsm uses asserts, when switching from RPT to SPT,
1887 * so that we cannot check that packet arrived on an oif.
1888 * It is bad, but otherwise we would need to move pretty
1889 * large chunk of pimd to kernel. Ough... --ANK
1890 */
1891 (mrt->mroute_do_pim ||
1892 cache->mfc_un.res.ttls[true_vifi] < 255) &&
1893 time_after(jiffies,
1894 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1895 cache->mfc_un.res.last_assert = jiffies;
1896 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1897 }
1898 goto dont_forward;
1899 }
1900
1901 forward:
1902 mrt->vif_table[vif].pkt_in++;
1903 mrt->vif_table[vif].bytes_in += skb->len;
1904
1905 /* Forward the frame */
1906 if (cache->mfc_origin == htonl(INADDR_ANY) &&
1907 cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
1908 if (true_vifi >= 0 &&
1909 true_vifi != cache->mfc_parent &&
1910 ip_hdr(skb)->ttl >
1911 cache->mfc_un.res.ttls[cache->mfc_parent]) {
1912 /* It's an (*,*) entry and the packet is not coming from
1913 * the upstream: forward the packet to the upstream
1914 * only.
1915 */
1916 psend = cache->mfc_parent;
1917 goto last_forward;
1918 }
1919 goto dont_forward;
1920 }
1921 for (ct = cache->mfc_un.res.maxvif - 1;
1922 ct >= cache->mfc_un.res.minvif; ct--) {
1923 /* For (*,G) entry, don't forward to the incoming interface */
1924 if ((cache->mfc_origin != htonl(INADDR_ANY) ||
1925 ct != true_vifi) &&
1926 ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1927 if (psend != -1) {
1928 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1929
1930 if (skb2)
1931 ipmr_queue_xmit(net, mrt, skb2, cache,
1932 psend);
1933 }
1934 psend = ct;
1935 }
1936 }
1937 last_forward:
1938 if (psend != -1) {
1939 if (local) {
1940 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1941
1942 if (skb2)
1943 ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1944 } else {
1945 ipmr_queue_xmit(net, mrt, skb, cache, psend);
1946 return;
1947 }
1948 }
1949
1950 dont_forward:
1951 if (!local)
1952 kfree_skb(skb);
1953 }
1954
1955 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1956 {
1957 struct rtable *rt = skb_rtable(skb);
1958 struct iphdr *iph = ip_hdr(skb);
1959 struct flowi4 fl4 = {
1960 .daddr = iph->daddr,
1961 .saddr = iph->saddr,
1962 .flowi4_tos = RT_TOS(iph->tos),
1963 .flowi4_oif = (rt_is_output_route(rt) ?
1964 skb->dev->ifindex : 0),
1965 .flowi4_iif = (rt_is_output_route(rt) ?
1966 LOOPBACK_IFINDEX :
1967 skb->dev->ifindex),
1968 .flowi4_mark = skb->mark,
1969 };
1970 struct mr_table *mrt;
1971 int err;
1972
1973 err = ipmr_fib_lookup(net, &fl4, &mrt);
1974 if (err)
1975 return ERR_PTR(err);
1976 return mrt;
1977 }
1978
1979 /* Multicast packets for forwarding arrive here
1980 * Called with rcu_read_lock();
1981 */
1982 int ip_mr_input(struct sk_buff *skb)
1983 {
1984 struct mfc_cache *cache;
1985 struct net *net = dev_net(skb->dev);
1986 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1987 struct mr_table *mrt;
1988
1989 /* Packet is looped back after forward, it should not be
1990 * forwarded second time, but still can be delivered locally.
1991 */
1992 if (IPCB(skb)->flags & IPSKB_FORWARDED)
1993 goto dont_forward;
1994
1995 mrt = ipmr_rt_fib_lookup(net, skb);
1996 if (IS_ERR(mrt)) {
1997 kfree_skb(skb);
1998 return PTR_ERR(mrt);
1999 }
2000 if (!local) {
2001 if (IPCB(skb)->opt.router_alert) {
2002 if (ip_call_ra_chain(skb))
2003 return 0;
2004 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2005 /* IGMPv1 (and broken IGMPv2 implementations sort of
2006 * Cisco IOS <= 11.2(8)) do not put router alert
2007 * option to IGMP packets destined to routable
2008 * groups. It is very bad, because it means
2009 * that we can forward NO IGMP messages.
2010 */
2011 struct sock *mroute_sk;
2012
2013 mroute_sk = rcu_dereference(mrt->mroute_sk);
2014 if (mroute_sk) {
2015 nf_reset(skb);
2016 raw_rcv(mroute_sk, skb);
2017 return 0;
2018 }
2019 }
2020 }
2021
2022 /* already under rcu_read_lock() */
2023 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2024 if (!cache) {
2025 int vif = ipmr_find_vif(mrt, skb->dev);
2026
2027 if (vif >= 0)
2028 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2029 vif);
2030 }
2031
2032 /* No usable cache entry */
2033 if (!cache) {
2034 int vif;
2035
2036 if (local) {
2037 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2038 ip_local_deliver(skb);
2039 if (!skb2)
2040 return -ENOBUFS;
2041 skb = skb2;
2042 }
2043
2044 read_lock(&mrt_lock);
2045 vif = ipmr_find_vif(mrt, skb->dev);
2046 if (vif >= 0) {
2047 int err2 = ipmr_cache_unresolved(mrt, vif, skb);
2048 read_unlock(&mrt_lock);
2049
2050 return err2;
2051 }
2052 read_unlock(&mrt_lock);
2053 kfree_skb(skb);
2054 return -ENODEV;
2055 }
2056
2057 read_lock(&mrt_lock);
2058 ip_mr_forward(net, mrt, skb, cache, local);
2059 read_unlock(&mrt_lock);
2060
2061 if (local)
2062 return ip_local_deliver(skb);
2063
2064 return 0;
2065
2066 dont_forward:
2067 if (local)
2068 return ip_local_deliver(skb);
2069 kfree_skb(skb);
2070 return 0;
2071 }
2072
2073 #ifdef CONFIG_IP_PIMSM_V1
2074 /* Handle IGMP messages of PIMv1 */
2075 int pim_rcv_v1(struct sk_buff *skb)
2076 {
2077 struct igmphdr *pim;
2078 struct net *net = dev_net(skb->dev);
2079 struct mr_table *mrt;
2080
2081 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2082 goto drop;
2083
2084 pim = igmp_hdr(skb);
2085
2086 mrt = ipmr_rt_fib_lookup(net, skb);
2087 if (IS_ERR(mrt))
2088 goto drop;
2089 if (!mrt->mroute_do_pim ||
2090 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2091 goto drop;
2092
2093 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2094 drop:
2095 kfree_skb(skb);
2096 }
2097 return 0;
2098 }
2099 #endif
2100
2101 #ifdef CONFIG_IP_PIMSM_V2
2102 static int pim_rcv(struct sk_buff *skb)
2103 {
2104 struct pimreghdr *pim;
2105 struct net *net = dev_net(skb->dev);
2106 struct mr_table *mrt;
2107
2108 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2109 goto drop;
2110
2111 pim = (struct pimreghdr *)skb_transport_header(skb);
2112 if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2113 (pim->flags & PIM_NULL_REGISTER) ||
2114 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2115 csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2116 goto drop;
2117
2118 mrt = ipmr_rt_fib_lookup(net, skb);
2119 if (IS_ERR(mrt))
2120 goto drop;
2121 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2122 drop:
2123 kfree_skb(skb);
2124 }
2125 return 0;
2126 }
2127 #endif
2128
2129 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2130 struct mfc_cache *c, struct rtmsg *rtm)
2131 {
2132 struct rta_mfc_stats mfcs;
2133 struct nlattr *mp_attr;
2134 struct rtnexthop *nhp;
2135 unsigned long lastuse;
2136 int ct;
2137
2138 /* If cache is unresolved, don't try to parse IIF and OIF */
2139 if (c->mfc_parent >= MAXVIFS) {
2140 rtm->rtm_flags |= RTNH_F_UNRESOLVED;
2141 return -ENOENT;
2142 }
2143
2144 if (VIF_EXISTS(mrt, c->mfc_parent) &&
2145 nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2146 return -EMSGSIZE;
2147
2148 if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2149 return -EMSGSIZE;
2150
2151 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2152 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2153 if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2154 nla_nest_cancel(skb, mp_attr);
2155 return -EMSGSIZE;
2156 }
2157
2158 nhp->rtnh_flags = 0;
2159 nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2160 nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2161 nhp->rtnh_len = sizeof(*nhp);
2162 }
2163 }
2164
2165 nla_nest_end(skb, mp_attr);
2166
2167 lastuse = READ_ONCE(c->mfc_un.res.lastuse);
2168 lastuse = time_after_eq(jiffies, lastuse) ? jiffies - lastuse : 0;
2169
2170 mfcs.mfcs_packets = c->mfc_un.res.pkt;
2171 mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2172 mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2173 if (nla_put_64bit(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs, RTA_PAD) ||
2174 nla_put_u64_64bit(skb, RTA_EXPIRES, jiffies_to_clock_t(lastuse),
2175 RTA_PAD))
2176 return -EMSGSIZE;
2177
2178 rtm->rtm_type = RTN_MULTICAST;
2179 return 1;
2180 }
2181
2182 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2183 __be32 saddr, __be32 daddr,
2184 struct rtmsg *rtm, u32 portid)
2185 {
2186 struct mfc_cache *cache;
2187 struct mr_table *mrt;
2188 int err;
2189
2190 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2191 if (!mrt)
2192 return -ENOENT;
2193
2194 rcu_read_lock();
2195 cache = ipmr_cache_find(mrt, saddr, daddr);
2196 if (!cache && skb->dev) {
2197 int vif = ipmr_find_vif(mrt, skb->dev);
2198
2199 if (vif >= 0)
2200 cache = ipmr_cache_find_any(mrt, daddr, vif);
2201 }
2202 if (!cache) {
2203 struct sk_buff *skb2;
2204 struct iphdr *iph;
2205 struct net_device *dev;
2206 int vif = -1;
2207
2208 dev = skb->dev;
2209 read_lock(&mrt_lock);
2210 if (dev)
2211 vif = ipmr_find_vif(mrt, dev);
2212 if (vif < 0) {
2213 read_unlock(&mrt_lock);
2214 rcu_read_unlock();
2215 return -ENODEV;
2216 }
2217 skb2 = skb_clone(skb, GFP_ATOMIC);
2218 if (!skb2) {
2219 read_unlock(&mrt_lock);
2220 rcu_read_unlock();
2221 return -ENOMEM;
2222 }
2223
2224 NETLINK_CB(skb2).portid = portid;
2225 skb_push(skb2, sizeof(struct iphdr));
2226 skb_reset_network_header(skb2);
2227 iph = ip_hdr(skb2);
2228 iph->ihl = sizeof(struct iphdr) >> 2;
2229 iph->saddr = saddr;
2230 iph->daddr = daddr;
2231 iph->version = 0;
2232 err = ipmr_cache_unresolved(mrt, vif, skb2);
2233 read_unlock(&mrt_lock);
2234 rcu_read_unlock();
2235 return err;
2236 }
2237
2238 read_lock(&mrt_lock);
2239 err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2240 read_unlock(&mrt_lock);
2241 rcu_read_unlock();
2242 return err;
2243 }
2244
2245 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2246 u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2247 int flags)
2248 {
2249 struct nlmsghdr *nlh;
2250 struct rtmsg *rtm;
2251 int err;
2252
2253 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2254 if (!nlh)
2255 return -EMSGSIZE;
2256
2257 rtm = nlmsg_data(nlh);
2258 rtm->rtm_family = RTNL_FAMILY_IPMR;
2259 rtm->rtm_dst_len = 32;
2260 rtm->rtm_src_len = 32;
2261 rtm->rtm_tos = 0;
2262 rtm->rtm_table = mrt->id;
2263 if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2264 goto nla_put_failure;
2265 rtm->rtm_type = RTN_MULTICAST;
2266 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2267 if (c->mfc_flags & MFC_STATIC)
2268 rtm->rtm_protocol = RTPROT_STATIC;
2269 else
2270 rtm->rtm_protocol = RTPROT_MROUTED;
2271 rtm->rtm_flags = 0;
2272
2273 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2274 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2275 goto nla_put_failure;
2276 err = __ipmr_fill_mroute(mrt, skb, c, rtm);
2277 /* do not break the dump if cache is unresolved */
2278 if (err < 0 && err != -ENOENT)
2279 goto nla_put_failure;
2280
2281 nlmsg_end(skb, nlh);
2282 return 0;
2283
2284 nla_put_failure:
2285 nlmsg_cancel(skb, nlh);
2286 return -EMSGSIZE;
2287 }
2288
2289 static size_t mroute_msgsize(bool unresolved, int maxvif)
2290 {
2291 size_t len =
2292 NLMSG_ALIGN(sizeof(struct rtmsg))
2293 + nla_total_size(4) /* RTA_TABLE */
2294 + nla_total_size(4) /* RTA_SRC */
2295 + nla_total_size(4) /* RTA_DST */
2296 ;
2297
2298 if (!unresolved)
2299 len = len
2300 + nla_total_size(4) /* RTA_IIF */
2301 + nla_total_size(0) /* RTA_MULTIPATH */
2302 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2303 /* RTA_MFC_STATS */
2304 + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2305 ;
2306
2307 return len;
2308 }
2309
2310 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2311 int cmd)
2312 {
2313 struct net *net = read_pnet(&mrt->net);
2314 struct sk_buff *skb;
2315 int err = -ENOBUFS;
2316
2317 skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
2318 GFP_ATOMIC);
2319 if (!skb)
2320 goto errout;
2321
2322 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2323 if (err < 0)
2324 goto errout;
2325
2326 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2327 return;
2328
2329 errout:
2330 kfree_skb(skb);
2331 if (err < 0)
2332 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2333 }
2334
2335 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2336 {
2337 struct net *net = sock_net(skb->sk);
2338 struct mr_table *mrt;
2339 struct mfc_cache *mfc;
2340 unsigned int t = 0, s_t;
2341 unsigned int e = 0, s_e;
2342
2343 s_t = cb->args[0];
2344 s_e = cb->args[1];
2345
2346 rcu_read_lock();
2347 ipmr_for_each_table(mrt, net) {
2348 if (t < s_t)
2349 goto next_table;
2350 list_for_each_entry_rcu(mfc, &mrt->mfc_cache_list, list) {
2351 if (e < s_e)
2352 goto next_entry;
2353 if (ipmr_fill_mroute(mrt, skb,
2354 NETLINK_CB(cb->skb).portid,
2355 cb->nlh->nlmsg_seq,
2356 mfc, RTM_NEWROUTE,
2357 NLM_F_MULTI) < 0)
2358 goto done;
2359 next_entry:
2360 e++;
2361 }
2362 e = 0;
2363 s_e = 0;
2364
2365 spin_lock_bh(&mfc_unres_lock);
2366 list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
2367 if (e < s_e)
2368 goto next_entry2;
2369 if (ipmr_fill_mroute(mrt, skb,
2370 NETLINK_CB(cb->skb).portid,
2371 cb->nlh->nlmsg_seq,
2372 mfc, RTM_NEWROUTE,
2373 NLM_F_MULTI) < 0) {
2374 spin_unlock_bh(&mfc_unres_lock);
2375 goto done;
2376 }
2377 next_entry2:
2378 e++;
2379 }
2380 spin_unlock_bh(&mfc_unres_lock);
2381 e = 0;
2382 s_e = 0;
2383 next_table:
2384 t++;
2385 }
2386 done:
2387 rcu_read_unlock();
2388
2389 cb->args[1] = e;
2390 cb->args[0] = t;
2391
2392 return skb->len;
2393 }
2394
2395 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2396 [RTA_SRC] = { .type = NLA_U32 },
2397 [RTA_DST] = { .type = NLA_U32 },
2398 [RTA_IIF] = { .type = NLA_U32 },
2399 [RTA_TABLE] = { .type = NLA_U32 },
2400 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
2401 };
2402
2403 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2404 {
2405 switch (rtm_protocol) {
2406 case RTPROT_STATIC:
2407 case RTPROT_MROUTED:
2408 return true;
2409 }
2410 return false;
2411 }
2412
2413 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2414 {
2415 struct rtnexthop *rtnh = nla_data(nla);
2416 int remaining = nla_len(nla), vifi = 0;
2417
2418 while (rtnh_ok(rtnh, remaining)) {
2419 mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2420 if (++vifi == MAXVIFS)
2421 break;
2422 rtnh = rtnh_next(rtnh, &remaining);
2423 }
2424
2425 return remaining > 0 ? -EINVAL : vifi;
2426 }
2427
2428 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2429 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2430 struct mfcctl *mfcc, int *mrtsock,
2431 struct mr_table **mrtret)
2432 {
2433 struct net_device *dev = NULL;
2434 u32 tblid = RT_TABLE_DEFAULT;
2435 struct mr_table *mrt;
2436 struct nlattr *attr;
2437 struct rtmsg *rtm;
2438 int ret, rem;
2439
2440 ret = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipmr_policy);
2441 if (ret < 0)
2442 goto out;
2443 rtm = nlmsg_data(nlh);
2444
2445 ret = -EINVAL;
2446 if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2447 rtm->rtm_type != RTN_MULTICAST ||
2448 rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2449 !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2450 goto out;
2451
2452 memset(mfcc, 0, sizeof(*mfcc));
2453 mfcc->mfcc_parent = -1;
2454 ret = 0;
2455 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2456 switch (nla_type(attr)) {
2457 case RTA_SRC:
2458 mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2459 break;
2460 case RTA_DST:
2461 mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2462 break;
2463 case RTA_IIF:
2464 dev = __dev_get_by_index(net, nla_get_u32(attr));
2465 if (!dev) {
2466 ret = -ENODEV;
2467 goto out;
2468 }
2469 break;
2470 case RTA_MULTIPATH:
2471 if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2472 ret = -EINVAL;
2473 goto out;
2474 }
2475 break;
2476 case RTA_PREFSRC:
2477 ret = 1;
2478 break;
2479 case RTA_TABLE:
2480 tblid = nla_get_u32(attr);
2481 break;
2482 }
2483 }
2484 mrt = ipmr_get_table(net, tblid);
2485 if (!mrt) {
2486 ret = -ENOENT;
2487 goto out;
2488 }
2489 *mrtret = mrt;
2490 *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2491 if (dev)
2492 mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2493
2494 out:
2495 return ret;
2496 }
2497
2498 /* takes care of both newroute and delroute */
2499 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh)
2500 {
2501 struct net *net = sock_net(skb->sk);
2502 int ret, mrtsock, parent;
2503 struct mr_table *tbl;
2504 struct mfcctl mfcc;
2505
2506 mrtsock = 0;
2507 tbl = NULL;
2508 ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl);
2509 if (ret < 0)
2510 return ret;
2511
2512 parent = ret ? mfcc.mfcc_parent : -1;
2513 if (nlh->nlmsg_type == RTM_NEWROUTE)
2514 return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2515 else
2516 return ipmr_mfc_delete(tbl, &mfcc, parent);
2517 }
2518
2519 #ifdef CONFIG_PROC_FS
2520 /* The /proc interfaces to multicast routing :
2521 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2522 */
2523 struct ipmr_vif_iter {
2524 struct seq_net_private p;
2525 struct mr_table *mrt;
2526 int ct;
2527 };
2528
2529 static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2530 struct ipmr_vif_iter *iter,
2531 loff_t pos)
2532 {
2533 struct mr_table *mrt = iter->mrt;
2534
2535 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2536 if (!VIF_EXISTS(mrt, iter->ct))
2537 continue;
2538 if (pos-- == 0)
2539 return &mrt->vif_table[iter->ct];
2540 }
2541 return NULL;
2542 }
2543
2544 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2545 __acquires(mrt_lock)
2546 {
2547 struct ipmr_vif_iter *iter = seq->private;
2548 struct net *net = seq_file_net(seq);
2549 struct mr_table *mrt;
2550
2551 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2552 if (!mrt)
2553 return ERR_PTR(-ENOENT);
2554
2555 iter->mrt = mrt;
2556
2557 read_lock(&mrt_lock);
2558 return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2559 : SEQ_START_TOKEN;
2560 }
2561
2562 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2563 {
2564 struct ipmr_vif_iter *iter = seq->private;
2565 struct net *net = seq_file_net(seq);
2566 struct mr_table *mrt = iter->mrt;
2567
2568 ++*pos;
2569 if (v == SEQ_START_TOKEN)
2570 return ipmr_vif_seq_idx(net, iter, 0);
2571
2572 while (++iter->ct < mrt->maxvif) {
2573 if (!VIF_EXISTS(mrt, iter->ct))
2574 continue;
2575 return &mrt->vif_table[iter->ct];
2576 }
2577 return NULL;
2578 }
2579
2580 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2581 __releases(mrt_lock)
2582 {
2583 read_unlock(&mrt_lock);
2584 }
2585
2586 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2587 {
2588 struct ipmr_vif_iter *iter = seq->private;
2589 struct mr_table *mrt = iter->mrt;
2590
2591 if (v == SEQ_START_TOKEN) {
2592 seq_puts(seq,
2593 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
2594 } else {
2595 const struct vif_device *vif = v;
2596 const char *name = vif->dev ? vif->dev->name : "none";
2597
2598 seq_printf(seq,
2599 "%2zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
2600 vif - mrt->vif_table,
2601 name, vif->bytes_in, vif->pkt_in,
2602 vif->bytes_out, vif->pkt_out,
2603 vif->flags, vif->local, vif->remote);
2604 }
2605 return 0;
2606 }
2607
2608 static const struct seq_operations ipmr_vif_seq_ops = {
2609 .start = ipmr_vif_seq_start,
2610 .next = ipmr_vif_seq_next,
2611 .stop = ipmr_vif_seq_stop,
2612 .show = ipmr_vif_seq_show,
2613 };
2614
2615 static int ipmr_vif_open(struct inode *inode, struct file *file)
2616 {
2617 return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2618 sizeof(struct ipmr_vif_iter));
2619 }
2620
2621 static const struct file_operations ipmr_vif_fops = {
2622 .owner = THIS_MODULE,
2623 .open = ipmr_vif_open,
2624 .read = seq_read,
2625 .llseek = seq_lseek,
2626 .release = seq_release_net,
2627 };
2628
2629 struct ipmr_mfc_iter {
2630 struct seq_net_private p;
2631 struct mr_table *mrt;
2632 struct list_head *cache;
2633 };
2634
2635 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2636 struct ipmr_mfc_iter *it, loff_t pos)
2637 {
2638 struct mr_table *mrt = it->mrt;
2639 struct mfc_cache *mfc;
2640
2641 rcu_read_lock();
2642 it->cache = &mrt->mfc_cache_list;
2643 list_for_each_entry_rcu(mfc, &mrt->mfc_cache_list, list)
2644 if (pos-- == 0)
2645 return mfc;
2646 rcu_read_unlock();
2647
2648 spin_lock_bh(&mfc_unres_lock);
2649 it->cache = &mrt->mfc_unres_queue;
2650 list_for_each_entry(mfc, it->cache, list)
2651 if (pos-- == 0)
2652 return mfc;
2653 spin_unlock_bh(&mfc_unres_lock);
2654
2655 it->cache = NULL;
2656 return NULL;
2657 }
2658
2659
2660 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2661 {
2662 struct ipmr_mfc_iter *it = seq->private;
2663 struct net *net = seq_file_net(seq);
2664 struct mr_table *mrt;
2665
2666 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2667 if (!mrt)
2668 return ERR_PTR(-ENOENT);
2669
2670 it->mrt = mrt;
2671 it->cache = NULL;
2672 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2673 : SEQ_START_TOKEN;
2674 }
2675
2676 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2677 {
2678 struct ipmr_mfc_iter *it = seq->private;
2679 struct net *net = seq_file_net(seq);
2680 struct mr_table *mrt = it->mrt;
2681 struct mfc_cache *mfc = v;
2682
2683 ++*pos;
2684
2685 if (v == SEQ_START_TOKEN)
2686 return ipmr_mfc_seq_idx(net, seq->private, 0);
2687
2688 if (mfc->list.next != it->cache)
2689 return list_entry(mfc->list.next, struct mfc_cache, list);
2690
2691 if (it->cache == &mrt->mfc_unres_queue)
2692 goto end_of_list;
2693
2694 /* exhausted cache_array, show unresolved */
2695 rcu_read_unlock();
2696 it->cache = &mrt->mfc_unres_queue;
2697
2698 spin_lock_bh(&mfc_unres_lock);
2699 if (!list_empty(it->cache))
2700 return list_first_entry(it->cache, struct mfc_cache, list);
2701
2702 end_of_list:
2703 spin_unlock_bh(&mfc_unres_lock);
2704 it->cache = NULL;
2705
2706 return NULL;
2707 }
2708
2709 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2710 {
2711 struct ipmr_mfc_iter *it = seq->private;
2712 struct mr_table *mrt = it->mrt;
2713
2714 if (it->cache == &mrt->mfc_unres_queue)
2715 spin_unlock_bh(&mfc_unres_lock);
2716 else if (it->cache == &mrt->mfc_cache_list)
2717 rcu_read_unlock();
2718 }
2719
2720 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2721 {
2722 int n;
2723
2724 if (v == SEQ_START_TOKEN) {
2725 seq_puts(seq,
2726 "Group Origin Iif Pkts Bytes Wrong Oifs\n");
2727 } else {
2728 const struct mfc_cache *mfc = v;
2729 const struct ipmr_mfc_iter *it = seq->private;
2730 const struct mr_table *mrt = it->mrt;
2731
2732 seq_printf(seq, "%08X %08X %-3hd",
2733 (__force u32) mfc->mfc_mcastgrp,
2734 (__force u32) mfc->mfc_origin,
2735 mfc->mfc_parent);
2736
2737 if (it->cache != &mrt->mfc_unres_queue) {
2738 seq_printf(seq, " %8lu %8lu %8lu",
2739 mfc->mfc_un.res.pkt,
2740 mfc->mfc_un.res.bytes,
2741 mfc->mfc_un.res.wrong_if);
2742 for (n = mfc->mfc_un.res.minvif;
2743 n < mfc->mfc_un.res.maxvif; n++) {
2744 if (VIF_EXISTS(mrt, n) &&
2745 mfc->mfc_un.res.ttls[n] < 255)
2746 seq_printf(seq,
2747 " %2d:%-3d",
2748 n, mfc->mfc_un.res.ttls[n]);
2749 }
2750 } else {
2751 /* unresolved mfc_caches don't contain
2752 * pkt, bytes and wrong_if values
2753 */
2754 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2755 }
2756 seq_putc(seq, '\n');
2757 }
2758 return 0;
2759 }
2760
2761 static const struct seq_operations ipmr_mfc_seq_ops = {
2762 .start = ipmr_mfc_seq_start,
2763 .next = ipmr_mfc_seq_next,
2764 .stop = ipmr_mfc_seq_stop,
2765 .show = ipmr_mfc_seq_show,
2766 };
2767
2768 static int ipmr_mfc_open(struct inode *inode, struct file *file)
2769 {
2770 return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2771 sizeof(struct ipmr_mfc_iter));
2772 }
2773
2774 static const struct file_operations ipmr_mfc_fops = {
2775 .owner = THIS_MODULE,
2776 .open = ipmr_mfc_open,
2777 .read = seq_read,
2778 .llseek = seq_lseek,
2779 .release = seq_release_net,
2780 };
2781 #endif
2782
2783 #ifdef CONFIG_IP_PIMSM_V2
2784 static const struct net_protocol pim_protocol = {
2785 .handler = pim_rcv,
2786 .netns_ok = 1,
2787 };
2788 #endif
2789
2790 /* Setup for IP multicast routing */
2791 static int __net_init ipmr_net_init(struct net *net)
2792 {
2793 int err;
2794
2795 err = ipmr_rules_init(net);
2796 if (err < 0)
2797 goto fail;
2798
2799 #ifdef CONFIG_PROC_FS
2800 err = -ENOMEM;
2801 if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
2802 goto proc_vif_fail;
2803 if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
2804 goto proc_cache_fail;
2805 #endif
2806 return 0;
2807
2808 #ifdef CONFIG_PROC_FS
2809 proc_cache_fail:
2810 remove_proc_entry("ip_mr_vif", net->proc_net);
2811 proc_vif_fail:
2812 ipmr_rules_exit(net);
2813 #endif
2814 fail:
2815 return err;
2816 }
2817
2818 static void __net_exit ipmr_net_exit(struct net *net)
2819 {
2820 #ifdef CONFIG_PROC_FS
2821 remove_proc_entry("ip_mr_cache", net->proc_net);
2822 remove_proc_entry("ip_mr_vif", net->proc_net);
2823 #endif
2824 ipmr_rules_exit(net);
2825 }
2826
2827 static struct pernet_operations ipmr_net_ops = {
2828 .init = ipmr_net_init,
2829 .exit = ipmr_net_exit,
2830 };
2831
2832 int __init ip_mr_init(void)
2833 {
2834 int err;
2835
2836 mrt_cachep = kmem_cache_create("ip_mrt_cache",
2837 sizeof(struct mfc_cache),
2838 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2839 NULL);
2840
2841 err = register_pernet_subsys(&ipmr_net_ops);
2842 if (err)
2843 goto reg_pernet_fail;
2844
2845 err = register_netdevice_notifier(&ip_mr_notifier);
2846 if (err)
2847 goto reg_notif_fail;
2848 #ifdef CONFIG_IP_PIMSM_V2
2849 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2850 pr_err("%s: can't add PIM protocol\n", __func__);
2851 err = -EAGAIN;
2852 goto add_proto_fail;
2853 }
2854 #endif
2855 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2856 NULL, ipmr_rtm_dumproute, NULL);
2857 rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
2858 ipmr_rtm_route, NULL, NULL);
2859 rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
2860 ipmr_rtm_route, NULL, NULL);
2861 return 0;
2862
2863 #ifdef CONFIG_IP_PIMSM_V2
2864 add_proto_fail:
2865 unregister_netdevice_notifier(&ip_mr_notifier);
2866 #endif
2867 reg_notif_fail:
2868 unregister_pernet_subsys(&ipmr_net_ops);
2869 reg_pernet_fail:
2870 kmem_cache_destroy(mrt_cachep);
2871 return err;
2872 }