]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/ipv4/route.c
[NET] NETNS: Omit net_device->nd_net without CONFIG_NET_NS.
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / route.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * ROUTE - implementation of the IP router.
7 *
8 * Version: $Id: route.c,v 1.103 2002/01/12 07:44:09 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Alan Cox, <gw4pts@gw4pts.ampr.org>
13 * Linus Torvalds, <Linus.Torvalds@helsinki.fi>
14 * Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
15 *
16 * Fixes:
17 * Alan Cox : Verify area fixes.
18 * Alan Cox : cli() protects routing changes
19 * Rui Oliveira : ICMP routing table updates
20 * (rco@di.uminho.pt) Routing table insertion and update
21 * Linus Torvalds : Rewrote bits to be sensible
22 * Alan Cox : Added BSD route gw semantics
23 * Alan Cox : Super /proc >4K
24 * Alan Cox : MTU in route table
25 * Alan Cox : MSS actually. Also added the window
26 * clamper.
27 * Sam Lantinga : Fixed route matching in rt_del()
28 * Alan Cox : Routing cache support.
29 * Alan Cox : Removed compatibility cruft.
30 * Alan Cox : RTF_REJECT support.
31 * Alan Cox : TCP irtt support.
32 * Jonathan Naylor : Added Metric support.
33 * Miquel van Smoorenburg : BSD API fixes.
34 * Miquel van Smoorenburg : Metrics.
35 * Alan Cox : Use __u32 properly
36 * Alan Cox : Aligned routing errors more closely with BSD
37 * our system is still very different.
38 * Alan Cox : Faster /proc handling
39 * Alexey Kuznetsov : Massive rework to support tree based routing,
40 * routing caches and better behaviour.
41 *
42 * Olaf Erb : irtt wasn't being copied right.
43 * Bjorn Ekwall : Kerneld route support.
44 * Alan Cox : Multicast fixed (I hope)
45 * Pavel Krauz : Limited broadcast fixed
46 * Mike McLagan : Routing by source
47 * Alexey Kuznetsov : End of old history. Split to fib.c and
48 * route.c and rewritten from scratch.
49 * Andi Kleen : Load-limit warning messages.
50 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
51 * Vitaly E. Lavrov : Race condition in ip_route_input_slow.
52 * Tobias Ringstrom : Uninitialized res.type in ip_route_output_slow.
53 * Vladimir V. Ivanov : IP rule info (flowid) is really useful.
54 * Marc Boucher : routing by fwmark
55 * Robert Olsson : Added rt_cache statistics
56 * Arnaldo C. Melo : Convert proc stuff to seq_file
57 * Eric Dumazet : hashed spinlocks and rt_check_expire() fixes.
58 * Ilia Sotnikov : Ignore TOS on PMTUD and Redirect
59 * Ilia Sotnikov : Removed TOS from hash calculations
60 *
61 * This program is free software; you can redistribute it and/or
62 * modify it under the terms of the GNU General Public License
63 * as published by the Free Software Foundation; either version
64 * 2 of the License, or (at your option) any later version.
65 */
66
67 #include <linux/module.h>
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
70 #include <linux/bitops.h>
71 #include <linux/types.h>
72 #include <linux/kernel.h>
73 #include <linux/mm.h>
74 #include <linux/bootmem.h>
75 #include <linux/string.h>
76 #include <linux/socket.h>
77 #include <linux/sockios.h>
78 #include <linux/errno.h>
79 #include <linux/in.h>
80 #include <linux/inet.h>
81 #include <linux/netdevice.h>
82 #include <linux/proc_fs.h>
83 #include <linux/init.h>
84 #include <linux/workqueue.h>
85 #include <linux/skbuff.h>
86 #include <linux/inetdevice.h>
87 #include <linux/igmp.h>
88 #include <linux/pkt_sched.h>
89 #include <linux/mroute.h>
90 #include <linux/netfilter_ipv4.h>
91 #include <linux/random.h>
92 #include <linux/jhash.h>
93 #include <linux/rcupdate.h>
94 #include <linux/times.h>
95 #include <net/dst.h>
96 #include <net/net_namespace.h>
97 #include <net/protocol.h>
98 #include <net/ip.h>
99 #include <net/route.h>
100 #include <net/inetpeer.h>
101 #include <net/sock.h>
102 #include <net/ip_fib.h>
103 #include <net/arp.h>
104 #include <net/tcp.h>
105 #include <net/icmp.h>
106 #include <net/xfrm.h>
107 #include <net/netevent.h>
108 #include <net/rtnetlink.h>
109 #ifdef CONFIG_SYSCTL
110 #include <linux/sysctl.h>
111 #endif
112
113 #define RT_FL_TOS(oldflp) \
114 ((u32)(oldflp->fl4_tos & (IPTOS_RT_MASK | RTO_ONLINK)))
115
116 #define IP_MAX_MTU 0xFFF0
117
118 #define RT_GC_TIMEOUT (300*HZ)
119
120 static int ip_rt_max_size;
121 static int ip_rt_gc_timeout __read_mostly = RT_GC_TIMEOUT;
122 static int ip_rt_gc_interval __read_mostly = 60 * HZ;
123 static int ip_rt_gc_min_interval __read_mostly = HZ / 2;
124 static int ip_rt_redirect_number __read_mostly = 9;
125 static int ip_rt_redirect_load __read_mostly = HZ / 50;
126 static int ip_rt_redirect_silence __read_mostly = ((HZ / 50) << (9 + 1));
127 static int ip_rt_error_cost __read_mostly = HZ;
128 static int ip_rt_error_burst __read_mostly = 5 * HZ;
129 static int ip_rt_gc_elasticity __read_mostly = 8;
130 static int ip_rt_mtu_expires __read_mostly = 10 * 60 * HZ;
131 static int ip_rt_min_pmtu __read_mostly = 512 + 20 + 20;
132 static int ip_rt_min_advmss __read_mostly = 256;
133 static int ip_rt_secret_interval __read_mostly = 10 * 60 * HZ;
134
135 static void rt_worker_func(struct work_struct *work);
136 static DECLARE_DELAYED_WORK(expires_work, rt_worker_func);
137 static struct timer_list rt_secret_timer;
138
139 /*
140 * Interface to generic destination cache.
141 */
142
143 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie);
144 static void ipv4_dst_destroy(struct dst_entry *dst);
145 static void ipv4_dst_ifdown(struct dst_entry *dst,
146 struct net_device *dev, int how);
147 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst);
148 static void ipv4_link_failure(struct sk_buff *skb);
149 static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu);
150 static int rt_garbage_collect(struct dst_ops *ops);
151
152
153 static struct dst_ops ipv4_dst_ops = {
154 .family = AF_INET,
155 .protocol = __constant_htons(ETH_P_IP),
156 .gc = rt_garbage_collect,
157 .check = ipv4_dst_check,
158 .destroy = ipv4_dst_destroy,
159 .ifdown = ipv4_dst_ifdown,
160 .negative_advice = ipv4_negative_advice,
161 .link_failure = ipv4_link_failure,
162 .update_pmtu = ip_rt_update_pmtu,
163 .local_out = ip_local_out,
164 .entry_size = sizeof(struct rtable),
165 .entries = ATOMIC_INIT(0),
166 };
167
168 #define ECN_OR_COST(class) TC_PRIO_##class
169
170 const __u8 ip_tos2prio[16] = {
171 TC_PRIO_BESTEFFORT,
172 ECN_OR_COST(FILLER),
173 TC_PRIO_BESTEFFORT,
174 ECN_OR_COST(BESTEFFORT),
175 TC_PRIO_BULK,
176 ECN_OR_COST(BULK),
177 TC_PRIO_BULK,
178 ECN_OR_COST(BULK),
179 TC_PRIO_INTERACTIVE,
180 ECN_OR_COST(INTERACTIVE),
181 TC_PRIO_INTERACTIVE,
182 ECN_OR_COST(INTERACTIVE),
183 TC_PRIO_INTERACTIVE_BULK,
184 ECN_OR_COST(INTERACTIVE_BULK),
185 TC_PRIO_INTERACTIVE_BULK,
186 ECN_OR_COST(INTERACTIVE_BULK)
187 };
188
189
190 /*
191 * Route cache.
192 */
193
194 /* The locking scheme is rather straight forward:
195 *
196 * 1) Read-Copy Update protects the buckets of the central route hash.
197 * 2) Only writers remove entries, and they hold the lock
198 * as they look at rtable reference counts.
199 * 3) Only readers acquire references to rtable entries,
200 * they do so with atomic increments and with the
201 * lock held.
202 */
203
204 struct rt_hash_bucket {
205 struct rtable *chain;
206 };
207 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) || \
208 defined(CONFIG_PROVE_LOCKING)
209 /*
210 * Instead of using one spinlock for each rt_hash_bucket, we use a table of spinlocks
211 * The size of this table is a power of two and depends on the number of CPUS.
212 * (on lockdep we have a quite big spinlock_t, so keep the size down there)
213 */
214 #ifdef CONFIG_LOCKDEP
215 # define RT_HASH_LOCK_SZ 256
216 #else
217 # if NR_CPUS >= 32
218 # define RT_HASH_LOCK_SZ 4096
219 # elif NR_CPUS >= 16
220 # define RT_HASH_LOCK_SZ 2048
221 # elif NR_CPUS >= 8
222 # define RT_HASH_LOCK_SZ 1024
223 # elif NR_CPUS >= 4
224 # define RT_HASH_LOCK_SZ 512
225 # else
226 # define RT_HASH_LOCK_SZ 256
227 # endif
228 #endif
229
230 static spinlock_t *rt_hash_locks;
231 # define rt_hash_lock_addr(slot) &rt_hash_locks[(slot) & (RT_HASH_LOCK_SZ - 1)]
232
233 static __init void rt_hash_lock_init(void)
234 {
235 int i;
236
237 rt_hash_locks = kmalloc(sizeof(spinlock_t) * RT_HASH_LOCK_SZ,
238 GFP_KERNEL);
239 if (!rt_hash_locks)
240 panic("IP: failed to allocate rt_hash_locks\n");
241
242 for (i = 0; i < RT_HASH_LOCK_SZ; i++)
243 spin_lock_init(&rt_hash_locks[i]);
244 }
245 #else
246 # define rt_hash_lock_addr(slot) NULL
247
248 static inline void rt_hash_lock_init(void)
249 {
250 }
251 #endif
252
253 static struct rt_hash_bucket *rt_hash_table __read_mostly;
254 static unsigned rt_hash_mask __read_mostly;
255 static unsigned int rt_hash_log __read_mostly;
256 static atomic_t rt_genid __read_mostly;
257
258 static DEFINE_PER_CPU(struct rt_cache_stat, rt_cache_stat);
259 #define RT_CACHE_STAT_INC(field) \
260 (__raw_get_cpu_var(rt_cache_stat).field++)
261
262 static unsigned int rt_hash_code(u32 daddr, u32 saddr)
263 {
264 return jhash_2words(daddr, saddr, atomic_read(&rt_genid))
265 & rt_hash_mask;
266 }
267
268 #define rt_hash(daddr, saddr, idx) \
269 rt_hash_code((__force u32)(__be32)(daddr),\
270 (__force u32)(__be32)(saddr) ^ ((idx) << 5))
271
272 #ifdef CONFIG_PROC_FS
273 struct rt_cache_iter_state {
274 struct seq_net_private p;
275 int bucket;
276 int genid;
277 };
278
279 static struct rtable *rt_cache_get_first(struct rt_cache_iter_state *st)
280 {
281 struct rtable *r = NULL;
282
283 for (st->bucket = rt_hash_mask; st->bucket >= 0; --st->bucket) {
284 rcu_read_lock_bh();
285 r = rcu_dereference(rt_hash_table[st->bucket].chain);
286 while (r) {
287 if (dev_net(r->u.dst.dev) == st->p.net &&
288 r->rt_genid == st->genid)
289 return r;
290 r = rcu_dereference(r->u.dst.rt_next);
291 }
292 rcu_read_unlock_bh();
293 }
294 return r;
295 }
296
297 static struct rtable *__rt_cache_get_next(struct rt_cache_iter_state *st,
298 struct rtable *r)
299 {
300 r = r->u.dst.rt_next;
301 while (!r) {
302 rcu_read_unlock_bh();
303 if (--st->bucket < 0)
304 break;
305 rcu_read_lock_bh();
306 r = rt_hash_table[st->bucket].chain;
307 }
308 return rcu_dereference(r);
309 }
310
311 static struct rtable *rt_cache_get_next(struct rt_cache_iter_state *st,
312 struct rtable *r)
313 {
314 while ((r = __rt_cache_get_next(st, r)) != NULL) {
315 if (dev_net(r->u.dst.dev) != st->p.net)
316 continue;
317 if (r->rt_genid == st->genid)
318 break;
319 }
320 return r;
321 }
322
323 static struct rtable *rt_cache_get_idx(struct rt_cache_iter_state *st, loff_t pos)
324 {
325 struct rtable *r = rt_cache_get_first(st);
326
327 if (r)
328 while (pos && (r = rt_cache_get_next(st, r)))
329 --pos;
330 return pos ? NULL : r;
331 }
332
333 static void *rt_cache_seq_start(struct seq_file *seq, loff_t *pos)
334 {
335 struct rt_cache_iter_state *st = seq->private;
336
337 if (*pos)
338 return rt_cache_get_idx(st, *pos - 1);
339 st->genid = atomic_read(&rt_genid);
340 return SEQ_START_TOKEN;
341 }
342
343 static void *rt_cache_seq_next(struct seq_file *seq, void *v, loff_t *pos)
344 {
345 struct rtable *r;
346 struct rt_cache_iter_state *st = seq->private;
347
348 if (v == SEQ_START_TOKEN)
349 r = rt_cache_get_first(st);
350 else
351 r = rt_cache_get_next(st, v);
352 ++*pos;
353 return r;
354 }
355
356 static void rt_cache_seq_stop(struct seq_file *seq, void *v)
357 {
358 if (v && v != SEQ_START_TOKEN)
359 rcu_read_unlock_bh();
360 }
361
362 static int rt_cache_seq_show(struct seq_file *seq, void *v)
363 {
364 if (v == SEQ_START_TOKEN)
365 seq_printf(seq, "%-127s\n",
366 "Iface\tDestination\tGateway \tFlags\t\tRefCnt\tUse\t"
367 "Metric\tSource\t\tMTU\tWindow\tIRTT\tTOS\tHHRef\t"
368 "HHUptod\tSpecDst");
369 else {
370 struct rtable *r = v;
371 char temp[256];
372
373 sprintf(temp, "%s\t%08lX\t%08lX\t%8X\t%d\t%u\t%d\t"
374 "%08lX\t%d\t%u\t%u\t%02X\t%d\t%1d\t%08X",
375 r->u.dst.dev ? r->u.dst.dev->name : "*",
376 (unsigned long)r->rt_dst, (unsigned long)r->rt_gateway,
377 r->rt_flags, atomic_read(&r->u.dst.__refcnt),
378 r->u.dst.__use, 0, (unsigned long)r->rt_src,
379 (dst_metric(&r->u.dst, RTAX_ADVMSS) ?
380 (int)dst_metric(&r->u.dst, RTAX_ADVMSS) + 40 : 0),
381 dst_metric(&r->u.dst, RTAX_WINDOW),
382 (int)((dst_metric(&r->u.dst, RTAX_RTT) >> 3) +
383 dst_metric(&r->u.dst, RTAX_RTTVAR)),
384 r->fl.fl4_tos,
385 r->u.dst.hh ? atomic_read(&r->u.dst.hh->hh_refcnt) : -1,
386 r->u.dst.hh ? (r->u.dst.hh->hh_output ==
387 dev_queue_xmit) : 0,
388 r->rt_spec_dst);
389 seq_printf(seq, "%-127s\n", temp);
390 }
391 return 0;
392 }
393
394 static const struct seq_operations rt_cache_seq_ops = {
395 .start = rt_cache_seq_start,
396 .next = rt_cache_seq_next,
397 .stop = rt_cache_seq_stop,
398 .show = rt_cache_seq_show,
399 };
400
401 static int rt_cache_seq_open(struct inode *inode, struct file *file)
402 {
403 return seq_open_net(inode, file, &rt_cache_seq_ops,
404 sizeof(struct rt_cache_iter_state));
405 }
406
407 static const struct file_operations rt_cache_seq_fops = {
408 .owner = THIS_MODULE,
409 .open = rt_cache_seq_open,
410 .read = seq_read,
411 .llseek = seq_lseek,
412 .release = seq_release_net,
413 };
414
415
416 static void *rt_cpu_seq_start(struct seq_file *seq, loff_t *pos)
417 {
418 int cpu;
419
420 if (*pos == 0)
421 return SEQ_START_TOKEN;
422
423 for (cpu = *pos-1; cpu < NR_CPUS; ++cpu) {
424 if (!cpu_possible(cpu))
425 continue;
426 *pos = cpu+1;
427 return &per_cpu(rt_cache_stat, cpu);
428 }
429 return NULL;
430 }
431
432 static void *rt_cpu_seq_next(struct seq_file *seq, void *v, loff_t *pos)
433 {
434 int cpu;
435
436 for (cpu = *pos; cpu < NR_CPUS; ++cpu) {
437 if (!cpu_possible(cpu))
438 continue;
439 *pos = cpu+1;
440 return &per_cpu(rt_cache_stat, cpu);
441 }
442 return NULL;
443
444 }
445
446 static void rt_cpu_seq_stop(struct seq_file *seq, void *v)
447 {
448
449 }
450
451 static int rt_cpu_seq_show(struct seq_file *seq, void *v)
452 {
453 struct rt_cache_stat *st = v;
454
455 if (v == SEQ_START_TOKEN) {
456 seq_printf(seq, "entries in_hit in_slow_tot in_slow_mc in_no_route in_brd in_martian_dst in_martian_src out_hit out_slow_tot out_slow_mc gc_total gc_ignored gc_goal_miss gc_dst_overflow in_hlist_search out_hlist_search\n");
457 return 0;
458 }
459
460 seq_printf(seq,"%08x %08x %08x %08x %08x %08x %08x %08x "
461 " %08x %08x %08x %08x %08x %08x %08x %08x %08x \n",
462 atomic_read(&ipv4_dst_ops.entries),
463 st->in_hit,
464 st->in_slow_tot,
465 st->in_slow_mc,
466 st->in_no_route,
467 st->in_brd,
468 st->in_martian_dst,
469 st->in_martian_src,
470
471 st->out_hit,
472 st->out_slow_tot,
473 st->out_slow_mc,
474
475 st->gc_total,
476 st->gc_ignored,
477 st->gc_goal_miss,
478 st->gc_dst_overflow,
479 st->in_hlist_search,
480 st->out_hlist_search
481 );
482 return 0;
483 }
484
485 static const struct seq_operations rt_cpu_seq_ops = {
486 .start = rt_cpu_seq_start,
487 .next = rt_cpu_seq_next,
488 .stop = rt_cpu_seq_stop,
489 .show = rt_cpu_seq_show,
490 };
491
492
493 static int rt_cpu_seq_open(struct inode *inode, struct file *file)
494 {
495 return seq_open(file, &rt_cpu_seq_ops);
496 }
497
498 static const struct file_operations rt_cpu_seq_fops = {
499 .owner = THIS_MODULE,
500 .open = rt_cpu_seq_open,
501 .read = seq_read,
502 .llseek = seq_lseek,
503 .release = seq_release,
504 };
505
506 #ifdef CONFIG_NET_CLS_ROUTE
507 static int ip_rt_acct_read(char *buffer, char **start, off_t offset,
508 int length, int *eof, void *data)
509 {
510 unsigned int i;
511
512 if ((offset & 3) || (length & 3))
513 return -EIO;
514
515 if (offset >= sizeof(struct ip_rt_acct) * 256) {
516 *eof = 1;
517 return 0;
518 }
519
520 if (offset + length >= sizeof(struct ip_rt_acct) * 256) {
521 length = sizeof(struct ip_rt_acct) * 256 - offset;
522 *eof = 1;
523 }
524
525 offset /= sizeof(u32);
526
527 if (length > 0) {
528 u32 *dst = (u32 *) buffer;
529
530 *start = buffer;
531 memset(dst, 0, length);
532
533 for_each_possible_cpu(i) {
534 unsigned int j;
535 u32 *src;
536
537 src = ((u32 *) per_cpu_ptr(ip_rt_acct, i)) + offset;
538 for (j = 0; j < length/4; j++)
539 dst[j] += src[j];
540 }
541 }
542 return length;
543 }
544 #endif
545
546 static int __net_init ip_rt_do_proc_init(struct net *net)
547 {
548 struct proc_dir_entry *pde;
549
550 pde = proc_net_fops_create(net, "rt_cache", S_IRUGO,
551 &rt_cache_seq_fops);
552 if (!pde)
553 goto err1;
554
555 pde = proc_create("rt_cache", S_IRUGO,
556 net->proc_net_stat, &rt_cpu_seq_fops);
557 if (!pde)
558 goto err2;
559
560 #ifdef CONFIG_NET_CLS_ROUTE
561 pde = create_proc_read_entry("rt_acct", 0, net->proc_net,
562 ip_rt_acct_read, NULL);
563 if (!pde)
564 goto err3;
565 #endif
566 return 0;
567
568 #ifdef CONFIG_NET_CLS_ROUTE
569 err3:
570 remove_proc_entry("rt_cache", net->proc_net_stat);
571 #endif
572 err2:
573 remove_proc_entry("rt_cache", net->proc_net);
574 err1:
575 return -ENOMEM;
576 }
577
578 static void __net_exit ip_rt_do_proc_exit(struct net *net)
579 {
580 remove_proc_entry("rt_cache", net->proc_net_stat);
581 remove_proc_entry("rt_cache", net->proc_net);
582 remove_proc_entry("rt_acct", net->proc_net);
583 }
584
585 static struct pernet_operations ip_rt_proc_ops __net_initdata = {
586 .init = ip_rt_do_proc_init,
587 .exit = ip_rt_do_proc_exit,
588 };
589
590 static int __init ip_rt_proc_init(void)
591 {
592 return register_pernet_subsys(&ip_rt_proc_ops);
593 }
594
595 #else
596 static inline int ip_rt_proc_init(void)
597 {
598 return 0;
599 }
600 #endif /* CONFIG_PROC_FS */
601
602 static __inline__ void rt_free(struct rtable *rt)
603 {
604 call_rcu_bh(&rt->u.dst.rcu_head, dst_rcu_free);
605 }
606
607 static __inline__ void rt_drop(struct rtable *rt)
608 {
609 ip_rt_put(rt);
610 call_rcu_bh(&rt->u.dst.rcu_head, dst_rcu_free);
611 }
612
613 static __inline__ int rt_fast_clean(struct rtable *rth)
614 {
615 /* Kill broadcast/multicast entries very aggresively, if they
616 collide in hash table with more useful entries */
617 return (rth->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) &&
618 rth->fl.iif && rth->u.dst.rt_next;
619 }
620
621 static __inline__ int rt_valuable(struct rtable *rth)
622 {
623 return (rth->rt_flags & (RTCF_REDIRECTED | RTCF_NOTIFY)) ||
624 rth->u.dst.expires;
625 }
626
627 static int rt_may_expire(struct rtable *rth, unsigned long tmo1, unsigned long tmo2)
628 {
629 unsigned long age;
630 int ret = 0;
631
632 if (atomic_read(&rth->u.dst.__refcnt))
633 goto out;
634
635 ret = 1;
636 if (rth->u.dst.expires &&
637 time_after_eq(jiffies, rth->u.dst.expires))
638 goto out;
639
640 age = jiffies - rth->u.dst.lastuse;
641 ret = 0;
642 if ((age <= tmo1 && !rt_fast_clean(rth)) ||
643 (age <= tmo2 && rt_valuable(rth)))
644 goto out;
645 ret = 1;
646 out: return ret;
647 }
648
649 /* Bits of score are:
650 * 31: very valuable
651 * 30: not quite useless
652 * 29..0: usage counter
653 */
654 static inline u32 rt_score(struct rtable *rt)
655 {
656 u32 score = jiffies - rt->u.dst.lastuse;
657
658 score = ~score & ~(3<<30);
659
660 if (rt_valuable(rt))
661 score |= (1<<31);
662
663 if (!rt->fl.iif ||
664 !(rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST|RTCF_LOCAL)))
665 score |= (1<<30);
666
667 return score;
668 }
669
670 static inline int compare_keys(struct flowi *fl1, struct flowi *fl2)
671 {
672 return ((__force u32)((fl1->nl_u.ip4_u.daddr ^ fl2->nl_u.ip4_u.daddr) |
673 (fl1->nl_u.ip4_u.saddr ^ fl2->nl_u.ip4_u.saddr)) |
674 (fl1->mark ^ fl2->mark) |
675 (*(u16 *)&fl1->nl_u.ip4_u.tos ^
676 *(u16 *)&fl2->nl_u.ip4_u.tos) |
677 (fl1->oif ^ fl2->oif) |
678 (fl1->iif ^ fl2->iif)) == 0;
679 }
680
681 static inline int compare_netns(struct rtable *rt1, struct rtable *rt2)
682 {
683 return dev_net(rt1->u.dst.dev) == dev_net(rt2->u.dst.dev);
684 }
685
686 /*
687 * Perform a full scan of hash table and free all entries.
688 * Can be called by a softirq or a process.
689 * In the later case, we want to be reschedule if necessary
690 */
691 static void rt_do_flush(int process_context)
692 {
693 unsigned int i;
694 struct rtable *rth, *next;
695
696 for (i = 0; i <= rt_hash_mask; i++) {
697 if (process_context && need_resched())
698 cond_resched();
699 rth = rt_hash_table[i].chain;
700 if (!rth)
701 continue;
702
703 spin_lock_bh(rt_hash_lock_addr(i));
704 rth = rt_hash_table[i].chain;
705 rt_hash_table[i].chain = NULL;
706 spin_unlock_bh(rt_hash_lock_addr(i));
707
708 for (; rth; rth = next) {
709 next = rth->u.dst.rt_next;
710 rt_free(rth);
711 }
712 }
713 }
714
715 static void rt_check_expire(void)
716 {
717 static unsigned int rover;
718 unsigned int i = rover, goal;
719 struct rtable *rth, **rthp;
720 u64 mult;
721
722 mult = ((u64)ip_rt_gc_interval) << rt_hash_log;
723 if (ip_rt_gc_timeout > 1)
724 do_div(mult, ip_rt_gc_timeout);
725 goal = (unsigned int)mult;
726 if (goal > rt_hash_mask)
727 goal = rt_hash_mask + 1;
728 for (; goal > 0; goal--) {
729 unsigned long tmo = ip_rt_gc_timeout;
730
731 i = (i + 1) & rt_hash_mask;
732 rthp = &rt_hash_table[i].chain;
733
734 if (need_resched())
735 cond_resched();
736
737 if (*rthp == NULL)
738 continue;
739 spin_lock_bh(rt_hash_lock_addr(i));
740 while ((rth = *rthp) != NULL) {
741 if (rth->rt_genid != atomic_read(&rt_genid)) {
742 *rthp = rth->u.dst.rt_next;
743 rt_free(rth);
744 continue;
745 }
746 if (rth->u.dst.expires) {
747 /* Entry is expired even if it is in use */
748 if (time_before_eq(jiffies, rth->u.dst.expires)) {
749 tmo >>= 1;
750 rthp = &rth->u.dst.rt_next;
751 continue;
752 }
753 } else if (!rt_may_expire(rth, tmo, ip_rt_gc_timeout)) {
754 tmo >>= 1;
755 rthp = &rth->u.dst.rt_next;
756 continue;
757 }
758
759 /* Cleanup aged off entries. */
760 *rthp = rth->u.dst.rt_next;
761 rt_free(rth);
762 }
763 spin_unlock_bh(rt_hash_lock_addr(i));
764 }
765 rover = i;
766 }
767
768 /*
769 * rt_worker_func() is run in process context.
770 * we call rt_check_expire() to scan part of the hash table
771 */
772 static void rt_worker_func(struct work_struct *work)
773 {
774 rt_check_expire();
775 schedule_delayed_work(&expires_work, ip_rt_gc_interval);
776 }
777
778 /*
779 * Pertubation of rt_genid by a small quantity [1..256]
780 * Using 8 bits of shuffling ensure we can call rt_cache_invalidate()
781 * many times (2^24) without giving recent rt_genid.
782 * Jenkins hash is strong enough that litle changes of rt_genid are OK.
783 */
784 static void rt_cache_invalidate(void)
785 {
786 unsigned char shuffle;
787
788 get_random_bytes(&shuffle, sizeof(shuffle));
789 atomic_add(shuffle + 1U, &rt_genid);
790 }
791
792 /*
793 * delay < 0 : invalidate cache (fast : entries will be deleted later)
794 * delay >= 0 : invalidate & flush cache (can be long)
795 */
796 void rt_cache_flush(int delay)
797 {
798 rt_cache_invalidate();
799 if (delay >= 0)
800 rt_do_flush(!in_softirq());
801 }
802
803 /*
804 * We change rt_genid and let gc do the cleanup
805 */
806 static void rt_secret_rebuild(unsigned long dummy)
807 {
808 rt_cache_invalidate();
809 mod_timer(&rt_secret_timer, jiffies + ip_rt_secret_interval);
810 }
811
812 /*
813 Short description of GC goals.
814
815 We want to build algorithm, which will keep routing cache
816 at some equilibrium point, when number of aged off entries
817 is kept approximately equal to newly generated ones.
818
819 Current expiration strength is variable "expire".
820 We try to adjust it dynamically, so that if networking
821 is idle expires is large enough to keep enough of warm entries,
822 and when load increases it reduces to limit cache size.
823 */
824
825 static int rt_garbage_collect(struct dst_ops *ops)
826 {
827 static unsigned long expire = RT_GC_TIMEOUT;
828 static unsigned long last_gc;
829 static int rover;
830 static int equilibrium;
831 struct rtable *rth, **rthp;
832 unsigned long now = jiffies;
833 int goal;
834
835 /*
836 * Garbage collection is pretty expensive,
837 * do not make it too frequently.
838 */
839
840 RT_CACHE_STAT_INC(gc_total);
841
842 if (now - last_gc < ip_rt_gc_min_interval &&
843 atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size) {
844 RT_CACHE_STAT_INC(gc_ignored);
845 goto out;
846 }
847
848 /* Calculate number of entries, which we want to expire now. */
849 goal = atomic_read(&ipv4_dst_ops.entries) -
850 (ip_rt_gc_elasticity << rt_hash_log);
851 if (goal <= 0) {
852 if (equilibrium < ipv4_dst_ops.gc_thresh)
853 equilibrium = ipv4_dst_ops.gc_thresh;
854 goal = atomic_read(&ipv4_dst_ops.entries) - equilibrium;
855 if (goal > 0) {
856 equilibrium += min_t(unsigned int, goal >> 1, rt_hash_mask + 1);
857 goal = atomic_read(&ipv4_dst_ops.entries) - equilibrium;
858 }
859 } else {
860 /* We are in dangerous area. Try to reduce cache really
861 * aggressively.
862 */
863 goal = max_t(unsigned int, goal >> 1, rt_hash_mask + 1);
864 equilibrium = atomic_read(&ipv4_dst_ops.entries) - goal;
865 }
866
867 if (now - last_gc >= ip_rt_gc_min_interval)
868 last_gc = now;
869
870 if (goal <= 0) {
871 equilibrium += goal;
872 goto work_done;
873 }
874
875 do {
876 int i, k;
877
878 for (i = rt_hash_mask, k = rover; i >= 0; i--) {
879 unsigned long tmo = expire;
880
881 k = (k + 1) & rt_hash_mask;
882 rthp = &rt_hash_table[k].chain;
883 spin_lock_bh(rt_hash_lock_addr(k));
884 while ((rth = *rthp) != NULL) {
885 if (rth->rt_genid == atomic_read(&rt_genid) &&
886 !rt_may_expire(rth, tmo, expire)) {
887 tmo >>= 1;
888 rthp = &rth->u.dst.rt_next;
889 continue;
890 }
891 *rthp = rth->u.dst.rt_next;
892 rt_free(rth);
893 goal--;
894 }
895 spin_unlock_bh(rt_hash_lock_addr(k));
896 if (goal <= 0)
897 break;
898 }
899 rover = k;
900
901 if (goal <= 0)
902 goto work_done;
903
904 /* Goal is not achieved. We stop process if:
905
906 - if expire reduced to zero. Otherwise, expire is halfed.
907 - if table is not full.
908 - if we are called from interrupt.
909 - jiffies check is just fallback/debug loop breaker.
910 We will not spin here for long time in any case.
911 */
912
913 RT_CACHE_STAT_INC(gc_goal_miss);
914
915 if (expire == 0)
916 break;
917
918 expire >>= 1;
919 #if RT_CACHE_DEBUG >= 2
920 printk(KERN_DEBUG "expire>> %u %d %d %d\n", expire,
921 atomic_read(&ipv4_dst_ops.entries), goal, i);
922 #endif
923
924 if (atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size)
925 goto out;
926 } while (!in_softirq() && time_before_eq(jiffies, now));
927
928 if (atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size)
929 goto out;
930 if (net_ratelimit())
931 printk(KERN_WARNING "dst cache overflow\n");
932 RT_CACHE_STAT_INC(gc_dst_overflow);
933 return 1;
934
935 work_done:
936 expire += ip_rt_gc_min_interval;
937 if (expire > ip_rt_gc_timeout ||
938 atomic_read(&ipv4_dst_ops.entries) < ipv4_dst_ops.gc_thresh)
939 expire = ip_rt_gc_timeout;
940 #if RT_CACHE_DEBUG >= 2
941 printk(KERN_DEBUG "expire++ %u %d %d %d\n", expire,
942 atomic_read(&ipv4_dst_ops.entries), goal, rover);
943 #endif
944 out: return 0;
945 }
946
947 static int rt_intern_hash(unsigned hash, struct rtable *rt, struct rtable **rp)
948 {
949 struct rtable *rth, **rthp;
950 unsigned long now;
951 struct rtable *cand, **candp;
952 u32 min_score;
953 int chain_length;
954 int attempts = !in_softirq();
955
956 restart:
957 chain_length = 0;
958 min_score = ~(u32)0;
959 cand = NULL;
960 candp = NULL;
961 now = jiffies;
962
963 rthp = &rt_hash_table[hash].chain;
964
965 spin_lock_bh(rt_hash_lock_addr(hash));
966 while ((rth = *rthp) != NULL) {
967 if (rth->rt_genid != atomic_read(&rt_genid)) {
968 *rthp = rth->u.dst.rt_next;
969 rt_free(rth);
970 continue;
971 }
972 if (compare_keys(&rth->fl, &rt->fl) && compare_netns(rth, rt)) {
973 /* Put it first */
974 *rthp = rth->u.dst.rt_next;
975 /*
976 * Since lookup is lockfree, the deletion
977 * must be visible to another weakly ordered CPU before
978 * the insertion at the start of the hash chain.
979 */
980 rcu_assign_pointer(rth->u.dst.rt_next,
981 rt_hash_table[hash].chain);
982 /*
983 * Since lookup is lockfree, the update writes
984 * must be ordered for consistency on SMP.
985 */
986 rcu_assign_pointer(rt_hash_table[hash].chain, rth);
987
988 dst_use(&rth->u.dst, now);
989 spin_unlock_bh(rt_hash_lock_addr(hash));
990
991 rt_drop(rt);
992 *rp = rth;
993 return 0;
994 }
995
996 if (!atomic_read(&rth->u.dst.__refcnt)) {
997 u32 score = rt_score(rth);
998
999 if (score <= min_score) {
1000 cand = rth;
1001 candp = rthp;
1002 min_score = score;
1003 }
1004 }
1005
1006 chain_length++;
1007
1008 rthp = &rth->u.dst.rt_next;
1009 }
1010
1011 if (cand) {
1012 /* ip_rt_gc_elasticity used to be average length of chain
1013 * length, when exceeded gc becomes really aggressive.
1014 *
1015 * The second limit is less certain. At the moment it allows
1016 * only 2 entries per bucket. We will see.
1017 */
1018 if (chain_length > ip_rt_gc_elasticity) {
1019 *candp = cand->u.dst.rt_next;
1020 rt_free(cand);
1021 }
1022 }
1023
1024 /* Try to bind route to arp only if it is output
1025 route or unicast forwarding path.
1026 */
1027 if (rt->rt_type == RTN_UNICAST || rt->fl.iif == 0) {
1028 int err = arp_bind_neighbour(&rt->u.dst);
1029 if (err) {
1030 spin_unlock_bh(rt_hash_lock_addr(hash));
1031
1032 if (err != -ENOBUFS) {
1033 rt_drop(rt);
1034 return err;
1035 }
1036
1037 /* Neighbour tables are full and nothing
1038 can be released. Try to shrink route cache,
1039 it is most likely it holds some neighbour records.
1040 */
1041 if (attempts-- > 0) {
1042 int saved_elasticity = ip_rt_gc_elasticity;
1043 int saved_int = ip_rt_gc_min_interval;
1044 ip_rt_gc_elasticity = 1;
1045 ip_rt_gc_min_interval = 0;
1046 rt_garbage_collect(&ipv4_dst_ops);
1047 ip_rt_gc_min_interval = saved_int;
1048 ip_rt_gc_elasticity = saved_elasticity;
1049 goto restart;
1050 }
1051
1052 if (net_ratelimit())
1053 printk(KERN_WARNING "Neighbour table overflow.\n");
1054 rt_drop(rt);
1055 return -ENOBUFS;
1056 }
1057 }
1058
1059 rt->u.dst.rt_next = rt_hash_table[hash].chain;
1060 #if RT_CACHE_DEBUG >= 2
1061 if (rt->u.dst.rt_next) {
1062 struct rtable *trt;
1063 printk(KERN_DEBUG "rt_cache @%02x: %u.%u.%u.%u", hash,
1064 NIPQUAD(rt->rt_dst));
1065 for (trt = rt->u.dst.rt_next; trt; trt = trt->u.dst.rt_next)
1066 printk(" . %u.%u.%u.%u", NIPQUAD(trt->rt_dst));
1067 printk("\n");
1068 }
1069 #endif
1070 rt_hash_table[hash].chain = rt;
1071 spin_unlock_bh(rt_hash_lock_addr(hash));
1072 *rp = rt;
1073 return 0;
1074 }
1075
1076 void rt_bind_peer(struct rtable *rt, int create)
1077 {
1078 static DEFINE_SPINLOCK(rt_peer_lock);
1079 struct inet_peer *peer;
1080
1081 peer = inet_getpeer(rt->rt_dst, create);
1082
1083 spin_lock_bh(&rt_peer_lock);
1084 if (rt->peer == NULL) {
1085 rt->peer = peer;
1086 peer = NULL;
1087 }
1088 spin_unlock_bh(&rt_peer_lock);
1089 if (peer)
1090 inet_putpeer(peer);
1091 }
1092
1093 /*
1094 * Peer allocation may fail only in serious out-of-memory conditions. However
1095 * we still can generate some output.
1096 * Random ID selection looks a bit dangerous because we have no chances to
1097 * select ID being unique in a reasonable period of time.
1098 * But broken packet identifier may be better than no packet at all.
1099 */
1100 static void ip_select_fb_ident(struct iphdr *iph)
1101 {
1102 static DEFINE_SPINLOCK(ip_fb_id_lock);
1103 static u32 ip_fallback_id;
1104 u32 salt;
1105
1106 spin_lock_bh(&ip_fb_id_lock);
1107 salt = secure_ip_id((__force __be32)ip_fallback_id ^ iph->daddr);
1108 iph->id = htons(salt & 0xFFFF);
1109 ip_fallback_id = salt;
1110 spin_unlock_bh(&ip_fb_id_lock);
1111 }
1112
1113 void __ip_select_ident(struct iphdr *iph, struct dst_entry *dst, int more)
1114 {
1115 struct rtable *rt = (struct rtable *) dst;
1116
1117 if (rt) {
1118 if (rt->peer == NULL)
1119 rt_bind_peer(rt, 1);
1120
1121 /* If peer is attached to destination, it is never detached,
1122 so that we need not to grab a lock to dereference it.
1123 */
1124 if (rt->peer) {
1125 iph->id = htons(inet_getid(rt->peer, more));
1126 return;
1127 }
1128 } else
1129 printk(KERN_DEBUG "rt_bind_peer(0) @%p\n",
1130 __builtin_return_address(0));
1131
1132 ip_select_fb_ident(iph);
1133 }
1134
1135 static void rt_del(unsigned hash, struct rtable *rt)
1136 {
1137 struct rtable **rthp, *aux;
1138
1139 rthp = &rt_hash_table[hash].chain;
1140 spin_lock_bh(rt_hash_lock_addr(hash));
1141 ip_rt_put(rt);
1142 while ((aux = *rthp) != NULL) {
1143 if (aux == rt || (aux->rt_genid != atomic_read(&rt_genid))) {
1144 *rthp = aux->u.dst.rt_next;
1145 rt_free(aux);
1146 continue;
1147 }
1148 rthp = &aux->u.dst.rt_next;
1149 }
1150 spin_unlock_bh(rt_hash_lock_addr(hash));
1151 }
1152
1153 void ip_rt_redirect(__be32 old_gw, __be32 daddr, __be32 new_gw,
1154 __be32 saddr, struct net_device *dev)
1155 {
1156 int i, k;
1157 struct in_device *in_dev = in_dev_get(dev);
1158 struct rtable *rth, **rthp;
1159 __be32 skeys[2] = { saddr, 0 };
1160 int ikeys[2] = { dev->ifindex, 0 };
1161 struct netevent_redirect netevent;
1162 struct net *net;
1163
1164 if (!in_dev)
1165 return;
1166
1167 net = dev_net(dev);
1168 if (new_gw == old_gw || !IN_DEV_RX_REDIRECTS(in_dev)
1169 || ipv4_is_multicast(new_gw) || ipv4_is_lbcast(new_gw)
1170 || ipv4_is_zeronet(new_gw))
1171 goto reject_redirect;
1172
1173 if (!IN_DEV_SHARED_MEDIA(in_dev)) {
1174 if (!inet_addr_onlink(in_dev, new_gw, old_gw))
1175 goto reject_redirect;
1176 if (IN_DEV_SEC_REDIRECTS(in_dev) && ip_fib_check_default(new_gw, dev))
1177 goto reject_redirect;
1178 } else {
1179 if (inet_addr_type(net, new_gw) != RTN_UNICAST)
1180 goto reject_redirect;
1181 }
1182
1183 for (i = 0; i < 2; i++) {
1184 for (k = 0; k < 2; k++) {
1185 unsigned hash = rt_hash(daddr, skeys[i], ikeys[k]);
1186
1187 rthp=&rt_hash_table[hash].chain;
1188
1189 rcu_read_lock();
1190 while ((rth = rcu_dereference(*rthp)) != NULL) {
1191 struct rtable *rt;
1192
1193 if (rth->fl.fl4_dst != daddr ||
1194 rth->fl.fl4_src != skeys[i] ||
1195 rth->fl.oif != ikeys[k] ||
1196 rth->fl.iif != 0 ||
1197 rth->rt_genid != atomic_read(&rt_genid) ||
1198 dev_net(rth->u.dst.dev) != net) {
1199 rthp = &rth->u.dst.rt_next;
1200 continue;
1201 }
1202
1203 if (rth->rt_dst != daddr ||
1204 rth->rt_src != saddr ||
1205 rth->u.dst.error ||
1206 rth->rt_gateway != old_gw ||
1207 rth->u.dst.dev != dev)
1208 break;
1209
1210 dst_hold(&rth->u.dst);
1211 rcu_read_unlock();
1212
1213 rt = dst_alloc(&ipv4_dst_ops);
1214 if (rt == NULL) {
1215 ip_rt_put(rth);
1216 in_dev_put(in_dev);
1217 return;
1218 }
1219
1220 /* Copy all the information. */
1221 *rt = *rth;
1222 INIT_RCU_HEAD(&rt->u.dst.rcu_head);
1223 rt->u.dst.__use = 1;
1224 atomic_set(&rt->u.dst.__refcnt, 1);
1225 rt->u.dst.child = NULL;
1226 if (rt->u.dst.dev)
1227 dev_hold(rt->u.dst.dev);
1228 if (rt->idev)
1229 in_dev_hold(rt->idev);
1230 rt->u.dst.obsolete = 0;
1231 rt->u.dst.lastuse = jiffies;
1232 rt->u.dst.path = &rt->u.dst;
1233 rt->u.dst.neighbour = NULL;
1234 rt->u.dst.hh = NULL;
1235 rt->u.dst.xfrm = NULL;
1236 rt->rt_genid = atomic_read(&rt_genid);
1237 rt->rt_flags |= RTCF_REDIRECTED;
1238
1239 /* Gateway is different ... */
1240 rt->rt_gateway = new_gw;
1241
1242 /* Redirect received -> path was valid */
1243 dst_confirm(&rth->u.dst);
1244
1245 if (rt->peer)
1246 atomic_inc(&rt->peer->refcnt);
1247
1248 if (arp_bind_neighbour(&rt->u.dst) ||
1249 !(rt->u.dst.neighbour->nud_state &
1250 NUD_VALID)) {
1251 if (rt->u.dst.neighbour)
1252 neigh_event_send(rt->u.dst.neighbour, NULL);
1253 ip_rt_put(rth);
1254 rt_drop(rt);
1255 goto do_next;
1256 }
1257
1258 netevent.old = &rth->u.dst;
1259 netevent.new = &rt->u.dst;
1260 call_netevent_notifiers(NETEVENT_REDIRECT,
1261 &netevent);
1262
1263 rt_del(hash, rth);
1264 if (!rt_intern_hash(hash, rt, &rt))
1265 ip_rt_put(rt);
1266 goto do_next;
1267 }
1268 rcu_read_unlock();
1269 do_next:
1270 ;
1271 }
1272 }
1273 in_dev_put(in_dev);
1274 return;
1275
1276 reject_redirect:
1277 #ifdef CONFIG_IP_ROUTE_VERBOSE
1278 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
1279 printk(KERN_INFO "Redirect from %u.%u.%u.%u on %s about "
1280 "%u.%u.%u.%u ignored.\n"
1281 " Advised path = %u.%u.%u.%u -> %u.%u.%u.%u\n",
1282 NIPQUAD(old_gw), dev->name, NIPQUAD(new_gw),
1283 NIPQUAD(saddr), NIPQUAD(daddr));
1284 #endif
1285 in_dev_put(in_dev);
1286 }
1287
1288 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst)
1289 {
1290 struct rtable *rt = (struct rtable *)dst;
1291 struct dst_entry *ret = dst;
1292
1293 if (rt) {
1294 if (dst->obsolete) {
1295 ip_rt_put(rt);
1296 ret = NULL;
1297 } else if ((rt->rt_flags & RTCF_REDIRECTED) ||
1298 rt->u.dst.expires) {
1299 unsigned hash = rt_hash(rt->fl.fl4_dst, rt->fl.fl4_src,
1300 rt->fl.oif);
1301 #if RT_CACHE_DEBUG >= 1
1302 printk(KERN_DEBUG "ipv4_negative_advice: redirect to "
1303 "%u.%u.%u.%u/%02x dropped\n",
1304 NIPQUAD(rt->rt_dst), rt->fl.fl4_tos);
1305 #endif
1306 rt_del(hash, rt);
1307 ret = NULL;
1308 }
1309 }
1310 return ret;
1311 }
1312
1313 /*
1314 * Algorithm:
1315 * 1. The first ip_rt_redirect_number redirects are sent
1316 * with exponential backoff, then we stop sending them at all,
1317 * assuming that the host ignores our redirects.
1318 * 2. If we did not see packets requiring redirects
1319 * during ip_rt_redirect_silence, we assume that the host
1320 * forgot redirected route and start to send redirects again.
1321 *
1322 * This algorithm is much cheaper and more intelligent than dumb load limiting
1323 * in icmp.c.
1324 *
1325 * NOTE. Do not forget to inhibit load limiting for redirects (redundant)
1326 * and "frag. need" (breaks PMTU discovery) in icmp.c.
1327 */
1328
1329 void ip_rt_send_redirect(struct sk_buff *skb)
1330 {
1331 struct rtable *rt = skb->rtable;
1332 struct in_device *in_dev = in_dev_get(rt->u.dst.dev);
1333
1334 if (!in_dev)
1335 return;
1336
1337 if (!IN_DEV_TX_REDIRECTS(in_dev))
1338 goto out;
1339
1340 /* No redirected packets during ip_rt_redirect_silence;
1341 * reset the algorithm.
1342 */
1343 if (time_after(jiffies, rt->u.dst.rate_last + ip_rt_redirect_silence))
1344 rt->u.dst.rate_tokens = 0;
1345
1346 /* Too many ignored redirects; do not send anything
1347 * set u.dst.rate_last to the last seen redirected packet.
1348 */
1349 if (rt->u.dst.rate_tokens >= ip_rt_redirect_number) {
1350 rt->u.dst.rate_last = jiffies;
1351 goto out;
1352 }
1353
1354 /* Check for load limit; set rate_last to the latest sent
1355 * redirect.
1356 */
1357 if (rt->u.dst.rate_tokens == 0 ||
1358 time_after(jiffies,
1359 (rt->u.dst.rate_last +
1360 (ip_rt_redirect_load << rt->u.dst.rate_tokens)))) {
1361 icmp_send(skb, ICMP_REDIRECT, ICMP_REDIR_HOST, rt->rt_gateway);
1362 rt->u.dst.rate_last = jiffies;
1363 ++rt->u.dst.rate_tokens;
1364 #ifdef CONFIG_IP_ROUTE_VERBOSE
1365 if (IN_DEV_LOG_MARTIANS(in_dev) &&
1366 rt->u.dst.rate_tokens == ip_rt_redirect_number &&
1367 net_ratelimit())
1368 printk(KERN_WARNING "host %u.%u.%u.%u/if%d ignores "
1369 "redirects for %u.%u.%u.%u to %u.%u.%u.%u.\n",
1370 NIPQUAD(rt->rt_src), rt->rt_iif,
1371 NIPQUAD(rt->rt_dst), NIPQUAD(rt->rt_gateway));
1372 #endif
1373 }
1374 out:
1375 in_dev_put(in_dev);
1376 }
1377
1378 static int ip_error(struct sk_buff *skb)
1379 {
1380 struct rtable *rt = skb->rtable;
1381 unsigned long now;
1382 int code;
1383
1384 switch (rt->u.dst.error) {
1385 case EINVAL:
1386 default:
1387 goto out;
1388 case EHOSTUNREACH:
1389 code = ICMP_HOST_UNREACH;
1390 break;
1391 case ENETUNREACH:
1392 code = ICMP_NET_UNREACH;
1393 IP_INC_STATS_BH(IPSTATS_MIB_INNOROUTES);
1394 break;
1395 case EACCES:
1396 code = ICMP_PKT_FILTERED;
1397 break;
1398 }
1399
1400 now = jiffies;
1401 rt->u.dst.rate_tokens += now - rt->u.dst.rate_last;
1402 if (rt->u.dst.rate_tokens > ip_rt_error_burst)
1403 rt->u.dst.rate_tokens = ip_rt_error_burst;
1404 rt->u.dst.rate_last = now;
1405 if (rt->u.dst.rate_tokens >= ip_rt_error_cost) {
1406 rt->u.dst.rate_tokens -= ip_rt_error_cost;
1407 icmp_send(skb, ICMP_DEST_UNREACH, code, 0);
1408 }
1409
1410 out: kfree_skb(skb);
1411 return 0;
1412 }
1413
1414 /*
1415 * The last two values are not from the RFC but
1416 * are needed for AMPRnet AX.25 paths.
1417 */
1418
1419 static const unsigned short mtu_plateau[] =
1420 {32000, 17914, 8166, 4352, 2002, 1492, 576, 296, 216, 128 };
1421
1422 static __inline__ unsigned short guess_mtu(unsigned short old_mtu)
1423 {
1424 int i;
1425
1426 for (i = 0; i < ARRAY_SIZE(mtu_plateau); i++)
1427 if (old_mtu > mtu_plateau[i])
1428 return mtu_plateau[i];
1429 return 68;
1430 }
1431
1432 unsigned short ip_rt_frag_needed(struct net *net, struct iphdr *iph,
1433 unsigned short new_mtu)
1434 {
1435 int i;
1436 unsigned short old_mtu = ntohs(iph->tot_len);
1437 struct rtable *rth;
1438 __be32 skeys[2] = { iph->saddr, 0, };
1439 __be32 daddr = iph->daddr;
1440 unsigned short est_mtu = 0;
1441
1442 if (ipv4_config.no_pmtu_disc)
1443 return 0;
1444
1445 for (i = 0; i < 2; i++) {
1446 unsigned hash = rt_hash(daddr, skeys[i], 0);
1447
1448 rcu_read_lock();
1449 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
1450 rth = rcu_dereference(rth->u.dst.rt_next)) {
1451 if (rth->fl.fl4_dst == daddr &&
1452 rth->fl.fl4_src == skeys[i] &&
1453 rth->rt_dst == daddr &&
1454 rth->rt_src == iph->saddr &&
1455 rth->fl.iif == 0 &&
1456 !(dst_metric_locked(&rth->u.dst, RTAX_MTU)) &&
1457 dev_net(rth->u.dst.dev) == net &&
1458 rth->rt_genid == atomic_read(&rt_genid)) {
1459 unsigned short mtu = new_mtu;
1460
1461 if (new_mtu < 68 || new_mtu >= old_mtu) {
1462
1463 /* BSD 4.2 compatibility hack :-( */
1464 if (mtu == 0 &&
1465 old_mtu >= rth->u.dst.metrics[RTAX_MTU-1] &&
1466 old_mtu >= 68 + (iph->ihl << 2))
1467 old_mtu -= iph->ihl << 2;
1468
1469 mtu = guess_mtu(old_mtu);
1470 }
1471 if (mtu <= rth->u.dst.metrics[RTAX_MTU-1]) {
1472 if (mtu < rth->u.dst.metrics[RTAX_MTU-1]) {
1473 dst_confirm(&rth->u.dst);
1474 if (mtu < ip_rt_min_pmtu) {
1475 mtu = ip_rt_min_pmtu;
1476 rth->u.dst.metrics[RTAX_LOCK-1] |=
1477 (1 << RTAX_MTU);
1478 }
1479 rth->u.dst.metrics[RTAX_MTU-1] = mtu;
1480 dst_set_expires(&rth->u.dst,
1481 ip_rt_mtu_expires);
1482 }
1483 est_mtu = mtu;
1484 }
1485 }
1486 }
1487 rcu_read_unlock();
1488 }
1489 return est_mtu ? : new_mtu;
1490 }
1491
1492 static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu)
1493 {
1494 if (dst->metrics[RTAX_MTU-1] > mtu && mtu >= 68 &&
1495 !(dst_metric_locked(dst, RTAX_MTU))) {
1496 if (mtu < ip_rt_min_pmtu) {
1497 mtu = ip_rt_min_pmtu;
1498 dst->metrics[RTAX_LOCK-1] |= (1 << RTAX_MTU);
1499 }
1500 dst->metrics[RTAX_MTU-1] = mtu;
1501 dst_set_expires(dst, ip_rt_mtu_expires);
1502 call_netevent_notifiers(NETEVENT_PMTU_UPDATE, dst);
1503 }
1504 }
1505
1506 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie)
1507 {
1508 return NULL;
1509 }
1510
1511 static void ipv4_dst_destroy(struct dst_entry *dst)
1512 {
1513 struct rtable *rt = (struct rtable *) dst;
1514 struct inet_peer *peer = rt->peer;
1515 struct in_device *idev = rt->idev;
1516
1517 if (peer) {
1518 rt->peer = NULL;
1519 inet_putpeer(peer);
1520 }
1521
1522 if (idev) {
1523 rt->idev = NULL;
1524 in_dev_put(idev);
1525 }
1526 }
1527
1528 static void ipv4_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
1529 int how)
1530 {
1531 struct rtable *rt = (struct rtable *) dst;
1532 struct in_device *idev = rt->idev;
1533 if (dev != dev_net(dev)->loopback_dev && idev && idev->dev == dev) {
1534 struct in_device *loopback_idev =
1535 in_dev_get(dev_net(dev)->loopback_dev);
1536 if (loopback_idev) {
1537 rt->idev = loopback_idev;
1538 in_dev_put(idev);
1539 }
1540 }
1541 }
1542
1543 static void ipv4_link_failure(struct sk_buff *skb)
1544 {
1545 struct rtable *rt;
1546
1547 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_HOST_UNREACH, 0);
1548
1549 rt = skb->rtable;
1550 if (rt)
1551 dst_set_expires(&rt->u.dst, 0);
1552 }
1553
1554 static int ip_rt_bug(struct sk_buff *skb)
1555 {
1556 printk(KERN_DEBUG "ip_rt_bug: %u.%u.%u.%u -> %u.%u.%u.%u, %s\n",
1557 NIPQUAD(ip_hdr(skb)->saddr), NIPQUAD(ip_hdr(skb)->daddr),
1558 skb->dev ? skb->dev->name : "?");
1559 kfree_skb(skb);
1560 return 0;
1561 }
1562
1563 /*
1564 We do not cache source address of outgoing interface,
1565 because it is used only by IP RR, TS and SRR options,
1566 so that it out of fast path.
1567
1568 BTW remember: "addr" is allowed to be not aligned
1569 in IP options!
1570 */
1571
1572 void ip_rt_get_source(u8 *addr, struct rtable *rt)
1573 {
1574 __be32 src;
1575 struct fib_result res;
1576
1577 if (rt->fl.iif == 0)
1578 src = rt->rt_src;
1579 else if (fib_lookup(dev_net(rt->u.dst.dev), &rt->fl, &res) == 0) {
1580 src = FIB_RES_PREFSRC(res);
1581 fib_res_put(&res);
1582 } else
1583 src = inet_select_addr(rt->u.dst.dev, rt->rt_gateway,
1584 RT_SCOPE_UNIVERSE);
1585 memcpy(addr, &src, 4);
1586 }
1587
1588 #ifdef CONFIG_NET_CLS_ROUTE
1589 static void set_class_tag(struct rtable *rt, u32 tag)
1590 {
1591 if (!(rt->u.dst.tclassid & 0xFFFF))
1592 rt->u.dst.tclassid |= tag & 0xFFFF;
1593 if (!(rt->u.dst.tclassid & 0xFFFF0000))
1594 rt->u.dst.tclassid |= tag & 0xFFFF0000;
1595 }
1596 #endif
1597
1598 static void rt_set_nexthop(struct rtable *rt, struct fib_result *res, u32 itag)
1599 {
1600 struct fib_info *fi = res->fi;
1601
1602 if (fi) {
1603 if (FIB_RES_GW(*res) &&
1604 FIB_RES_NH(*res).nh_scope == RT_SCOPE_LINK)
1605 rt->rt_gateway = FIB_RES_GW(*res);
1606 memcpy(rt->u.dst.metrics, fi->fib_metrics,
1607 sizeof(rt->u.dst.metrics));
1608 if (fi->fib_mtu == 0) {
1609 rt->u.dst.metrics[RTAX_MTU-1] = rt->u.dst.dev->mtu;
1610 if (rt->u.dst.metrics[RTAX_LOCK-1] & (1 << RTAX_MTU) &&
1611 rt->rt_gateway != rt->rt_dst &&
1612 rt->u.dst.dev->mtu > 576)
1613 rt->u.dst.metrics[RTAX_MTU-1] = 576;
1614 }
1615 #ifdef CONFIG_NET_CLS_ROUTE
1616 rt->u.dst.tclassid = FIB_RES_NH(*res).nh_tclassid;
1617 #endif
1618 } else
1619 rt->u.dst.metrics[RTAX_MTU-1]= rt->u.dst.dev->mtu;
1620
1621 if (rt->u.dst.metrics[RTAX_HOPLIMIT-1] == 0)
1622 rt->u.dst.metrics[RTAX_HOPLIMIT-1] = sysctl_ip_default_ttl;
1623 if (rt->u.dst.metrics[RTAX_MTU-1] > IP_MAX_MTU)
1624 rt->u.dst.metrics[RTAX_MTU-1] = IP_MAX_MTU;
1625 if (rt->u.dst.metrics[RTAX_ADVMSS-1] == 0)
1626 rt->u.dst.metrics[RTAX_ADVMSS-1] = max_t(unsigned int, rt->u.dst.dev->mtu - 40,
1627 ip_rt_min_advmss);
1628 if (rt->u.dst.metrics[RTAX_ADVMSS-1] > 65535 - 40)
1629 rt->u.dst.metrics[RTAX_ADVMSS-1] = 65535 - 40;
1630
1631 #ifdef CONFIG_NET_CLS_ROUTE
1632 #ifdef CONFIG_IP_MULTIPLE_TABLES
1633 set_class_tag(rt, fib_rules_tclass(res));
1634 #endif
1635 set_class_tag(rt, itag);
1636 #endif
1637 rt->rt_type = res->type;
1638 }
1639
1640 static int ip_route_input_mc(struct sk_buff *skb, __be32 daddr, __be32 saddr,
1641 u8 tos, struct net_device *dev, int our)
1642 {
1643 unsigned hash;
1644 struct rtable *rth;
1645 __be32 spec_dst;
1646 struct in_device *in_dev = in_dev_get(dev);
1647 u32 itag = 0;
1648
1649 /* Primary sanity checks. */
1650
1651 if (in_dev == NULL)
1652 return -EINVAL;
1653
1654 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1655 ipv4_is_loopback(saddr) || skb->protocol != htons(ETH_P_IP))
1656 goto e_inval;
1657
1658 if (ipv4_is_zeronet(saddr)) {
1659 if (!ipv4_is_local_multicast(daddr))
1660 goto e_inval;
1661 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
1662 } else if (fib_validate_source(saddr, 0, tos, 0,
1663 dev, &spec_dst, &itag) < 0)
1664 goto e_inval;
1665
1666 rth = dst_alloc(&ipv4_dst_ops);
1667 if (!rth)
1668 goto e_nobufs;
1669
1670 rth->u.dst.output= ip_rt_bug;
1671
1672 atomic_set(&rth->u.dst.__refcnt, 1);
1673 rth->u.dst.flags= DST_HOST;
1674 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
1675 rth->u.dst.flags |= DST_NOPOLICY;
1676 rth->fl.fl4_dst = daddr;
1677 rth->rt_dst = daddr;
1678 rth->fl.fl4_tos = tos;
1679 rth->fl.mark = skb->mark;
1680 rth->fl.fl4_src = saddr;
1681 rth->rt_src = saddr;
1682 #ifdef CONFIG_NET_CLS_ROUTE
1683 rth->u.dst.tclassid = itag;
1684 #endif
1685 rth->rt_iif =
1686 rth->fl.iif = dev->ifindex;
1687 rth->u.dst.dev = init_net.loopback_dev;
1688 dev_hold(rth->u.dst.dev);
1689 rth->idev = in_dev_get(rth->u.dst.dev);
1690 rth->fl.oif = 0;
1691 rth->rt_gateway = daddr;
1692 rth->rt_spec_dst= spec_dst;
1693 rth->rt_genid = atomic_read(&rt_genid);
1694 rth->rt_flags = RTCF_MULTICAST;
1695 rth->rt_type = RTN_MULTICAST;
1696 if (our) {
1697 rth->u.dst.input= ip_local_deliver;
1698 rth->rt_flags |= RTCF_LOCAL;
1699 }
1700
1701 #ifdef CONFIG_IP_MROUTE
1702 if (!ipv4_is_local_multicast(daddr) && IN_DEV_MFORWARD(in_dev))
1703 rth->u.dst.input = ip_mr_input;
1704 #endif
1705 RT_CACHE_STAT_INC(in_slow_mc);
1706
1707 in_dev_put(in_dev);
1708 hash = rt_hash(daddr, saddr, dev->ifindex);
1709 return rt_intern_hash(hash, rth, &skb->rtable);
1710
1711 e_nobufs:
1712 in_dev_put(in_dev);
1713 return -ENOBUFS;
1714
1715 e_inval:
1716 in_dev_put(in_dev);
1717 return -EINVAL;
1718 }
1719
1720
1721 static void ip_handle_martian_source(struct net_device *dev,
1722 struct in_device *in_dev,
1723 struct sk_buff *skb,
1724 __be32 daddr,
1725 __be32 saddr)
1726 {
1727 RT_CACHE_STAT_INC(in_martian_src);
1728 #ifdef CONFIG_IP_ROUTE_VERBOSE
1729 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit()) {
1730 /*
1731 * RFC1812 recommendation, if source is martian,
1732 * the only hint is MAC header.
1733 */
1734 printk(KERN_WARNING "martian source %u.%u.%u.%u from "
1735 "%u.%u.%u.%u, on dev %s\n",
1736 NIPQUAD(daddr), NIPQUAD(saddr), dev->name);
1737 if (dev->hard_header_len && skb_mac_header_was_set(skb)) {
1738 int i;
1739 const unsigned char *p = skb_mac_header(skb);
1740 printk(KERN_WARNING "ll header: ");
1741 for (i = 0; i < dev->hard_header_len; i++, p++) {
1742 printk("%02x", *p);
1743 if (i < (dev->hard_header_len - 1))
1744 printk(":");
1745 }
1746 printk("\n");
1747 }
1748 }
1749 #endif
1750 }
1751
1752 static inline int __mkroute_input(struct sk_buff *skb,
1753 struct fib_result* res,
1754 struct in_device *in_dev,
1755 __be32 daddr, __be32 saddr, u32 tos,
1756 struct rtable **result)
1757 {
1758
1759 struct rtable *rth;
1760 int err;
1761 struct in_device *out_dev;
1762 unsigned flags = 0;
1763 __be32 spec_dst;
1764 u32 itag;
1765
1766 /* get a working reference to the output device */
1767 out_dev = in_dev_get(FIB_RES_DEV(*res));
1768 if (out_dev == NULL) {
1769 if (net_ratelimit())
1770 printk(KERN_CRIT "Bug in ip_route_input" \
1771 "_slow(). Please, report\n");
1772 return -EINVAL;
1773 }
1774
1775
1776 err = fib_validate_source(saddr, daddr, tos, FIB_RES_OIF(*res),
1777 in_dev->dev, &spec_dst, &itag);
1778 if (err < 0) {
1779 ip_handle_martian_source(in_dev->dev, in_dev, skb, daddr,
1780 saddr);
1781
1782 err = -EINVAL;
1783 goto cleanup;
1784 }
1785
1786 if (err)
1787 flags |= RTCF_DIRECTSRC;
1788
1789 if (out_dev == in_dev && err && !(flags & RTCF_MASQ) &&
1790 (IN_DEV_SHARED_MEDIA(out_dev) ||
1791 inet_addr_onlink(out_dev, saddr, FIB_RES_GW(*res))))
1792 flags |= RTCF_DOREDIRECT;
1793
1794 if (skb->protocol != htons(ETH_P_IP)) {
1795 /* Not IP (i.e. ARP). Do not create route, if it is
1796 * invalid for proxy arp. DNAT routes are always valid.
1797 */
1798 if (out_dev == in_dev) {
1799 err = -EINVAL;
1800 goto cleanup;
1801 }
1802 }
1803
1804
1805 rth = dst_alloc(&ipv4_dst_ops);
1806 if (!rth) {
1807 err = -ENOBUFS;
1808 goto cleanup;
1809 }
1810
1811 atomic_set(&rth->u.dst.__refcnt, 1);
1812 rth->u.dst.flags= DST_HOST;
1813 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
1814 rth->u.dst.flags |= DST_NOPOLICY;
1815 if (IN_DEV_CONF_GET(out_dev, NOXFRM))
1816 rth->u.dst.flags |= DST_NOXFRM;
1817 rth->fl.fl4_dst = daddr;
1818 rth->rt_dst = daddr;
1819 rth->fl.fl4_tos = tos;
1820 rth->fl.mark = skb->mark;
1821 rth->fl.fl4_src = saddr;
1822 rth->rt_src = saddr;
1823 rth->rt_gateway = daddr;
1824 rth->rt_iif =
1825 rth->fl.iif = in_dev->dev->ifindex;
1826 rth->u.dst.dev = (out_dev)->dev;
1827 dev_hold(rth->u.dst.dev);
1828 rth->idev = in_dev_get(rth->u.dst.dev);
1829 rth->fl.oif = 0;
1830 rth->rt_spec_dst= spec_dst;
1831
1832 rth->u.dst.input = ip_forward;
1833 rth->u.dst.output = ip_output;
1834 rth->rt_genid = atomic_read(&rt_genid);
1835
1836 rt_set_nexthop(rth, res, itag);
1837
1838 rth->rt_flags = flags;
1839
1840 *result = rth;
1841 err = 0;
1842 cleanup:
1843 /* release the working reference to the output device */
1844 in_dev_put(out_dev);
1845 return err;
1846 }
1847
1848 static inline int ip_mkroute_input(struct sk_buff *skb,
1849 struct fib_result* res,
1850 const struct flowi *fl,
1851 struct in_device *in_dev,
1852 __be32 daddr, __be32 saddr, u32 tos)
1853 {
1854 struct rtable* rth = NULL;
1855 int err;
1856 unsigned hash;
1857
1858 #ifdef CONFIG_IP_ROUTE_MULTIPATH
1859 if (res->fi && res->fi->fib_nhs > 1 && fl->oif == 0)
1860 fib_select_multipath(fl, res);
1861 #endif
1862
1863 /* create a routing cache entry */
1864 err = __mkroute_input(skb, res, in_dev, daddr, saddr, tos, &rth);
1865 if (err)
1866 return err;
1867
1868 /* put it into the cache */
1869 hash = rt_hash(daddr, saddr, fl->iif);
1870 return rt_intern_hash(hash, rth, &skb->rtable);
1871 }
1872
1873 /*
1874 * NOTE. We drop all the packets that has local source
1875 * addresses, because every properly looped back packet
1876 * must have correct destination already attached by output routine.
1877 *
1878 * Such approach solves two big problems:
1879 * 1. Not simplex devices are handled properly.
1880 * 2. IP spoofing attempts are filtered with 100% of guarantee.
1881 */
1882
1883 static int ip_route_input_slow(struct sk_buff *skb, __be32 daddr, __be32 saddr,
1884 u8 tos, struct net_device *dev)
1885 {
1886 struct fib_result res;
1887 struct in_device *in_dev = in_dev_get(dev);
1888 struct flowi fl = { .nl_u = { .ip4_u =
1889 { .daddr = daddr,
1890 .saddr = saddr,
1891 .tos = tos,
1892 .scope = RT_SCOPE_UNIVERSE,
1893 } },
1894 .mark = skb->mark,
1895 .iif = dev->ifindex };
1896 unsigned flags = 0;
1897 u32 itag = 0;
1898 struct rtable * rth;
1899 unsigned hash;
1900 __be32 spec_dst;
1901 int err = -EINVAL;
1902 int free_res = 0;
1903 struct net * net = dev_net(dev);
1904
1905 /* IP on this device is disabled. */
1906
1907 if (!in_dev)
1908 goto out;
1909
1910 /* Check for the most weird martians, which can be not detected
1911 by fib_lookup.
1912 */
1913
1914 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1915 ipv4_is_loopback(saddr))
1916 goto martian_source;
1917
1918 if (daddr == htonl(0xFFFFFFFF) || (saddr == 0 && daddr == 0))
1919 goto brd_input;
1920
1921 /* Accept zero addresses only to limited broadcast;
1922 * I even do not know to fix it or not. Waiting for complains :-)
1923 */
1924 if (ipv4_is_zeronet(saddr))
1925 goto martian_source;
1926
1927 if (ipv4_is_lbcast(daddr) || ipv4_is_zeronet(daddr) ||
1928 ipv4_is_loopback(daddr))
1929 goto martian_destination;
1930
1931 /*
1932 * Now we are ready to route packet.
1933 */
1934 if ((err = fib_lookup(net, &fl, &res)) != 0) {
1935 if (!IN_DEV_FORWARD(in_dev))
1936 goto e_hostunreach;
1937 goto no_route;
1938 }
1939 free_res = 1;
1940
1941 RT_CACHE_STAT_INC(in_slow_tot);
1942
1943 if (res.type == RTN_BROADCAST)
1944 goto brd_input;
1945
1946 if (res.type == RTN_LOCAL) {
1947 int result;
1948 result = fib_validate_source(saddr, daddr, tos,
1949 net->loopback_dev->ifindex,
1950 dev, &spec_dst, &itag);
1951 if (result < 0)
1952 goto martian_source;
1953 if (result)
1954 flags |= RTCF_DIRECTSRC;
1955 spec_dst = daddr;
1956 goto local_input;
1957 }
1958
1959 if (!IN_DEV_FORWARD(in_dev))
1960 goto e_hostunreach;
1961 if (res.type != RTN_UNICAST)
1962 goto martian_destination;
1963
1964 err = ip_mkroute_input(skb, &res, &fl, in_dev, daddr, saddr, tos);
1965 done:
1966 in_dev_put(in_dev);
1967 if (free_res)
1968 fib_res_put(&res);
1969 out: return err;
1970
1971 brd_input:
1972 if (skb->protocol != htons(ETH_P_IP))
1973 goto e_inval;
1974
1975 if (ipv4_is_zeronet(saddr))
1976 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
1977 else {
1978 err = fib_validate_source(saddr, 0, tos, 0, dev, &spec_dst,
1979 &itag);
1980 if (err < 0)
1981 goto martian_source;
1982 if (err)
1983 flags |= RTCF_DIRECTSRC;
1984 }
1985 flags |= RTCF_BROADCAST;
1986 res.type = RTN_BROADCAST;
1987 RT_CACHE_STAT_INC(in_brd);
1988
1989 local_input:
1990 rth = dst_alloc(&ipv4_dst_ops);
1991 if (!rth)
1992 goto e_nobufs;
1993
1994 rth->u.dst.output= ip_rt_bug;
1995 rth->rt_genid = atomic_read(&rt_genid);
1996
1997 atomic_set(&rth->u.dst.__refcnt, 1);
1998 rth->u.dst.flags= DST_HOST;
1999 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
2000 rth->u.dst.flags |= DST_NOPOLICY;
2001 rth->fl.fl4_dst = daddr;
2002 rth->rt_dst = daddr;
2003 rth->fl.fl4_tos = tos;
2004 rth->fl.mark = skb->mark;
2005 rth->fl.fl4_src = saddr;
2006 rth->rt_src = saddr;
2007 #ifdef CONFIG_NET_CLS_ROUTE
2008 rth->u.dst.tclassid = itag;
2009 #endif
2010 rth->rt_iif =
2011 rth->fl.iif = dev->ifindex;
2012 rth->u.dst.dev = net->loopback_dev;
2013 dev_hold(rth->u.dst.dev);
2014 rth->idev = in_dev_get(rth->u.dst.dev);
2015 rth->rt_gateway = daddr;
2016 rth->rt_spec_dst= spec_dst;
2017 rth->u.dst.input= ip_local_deliver;
2018 rth->rt_flags = flags|RTCF_LOCAL;
2019 if (res.type == RTN_UNREACHABLE) {
2020 rth->u.dst.input= ip_error;
2021 rth->u.dst.error= -err;
2022 rth->rt_flags &= ~RTCF_LOCAL;
2023 }
2024 rth->rt_type = res.type;
2025 hash = rt_hash(daddr, saddr, fl.iif);
2026 err = rt_intern_hash(hash, rth, &skb->rtable);
2027 goto done;
2028
2029 no_route:
2030 RT_CACHE_STAT_INC(in_no_route);
2031 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_UNIVERSE);
2032 res.type = RTN_UNREACHABLE;
2033 if (err == -ESRCH)
2034 err = -ENETUNREACH;
2035 goto local_input;
2036
2037 /*
2038 * Do not cache martian addresses: they should be logged (RFC1812)
2039 */
2040 martian_destination:
2041 RT_CACHE_STAT_INC(in_martian_dst);
2042 #ifdef CONFIG_IP_ROUTE_VERBOSE
2043 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
2044 printk(KERN_WARNING "martian destination %u.%u.%u.%u from "
2045 "%u.%u.%u.%u, dev %s\n",
2046 NIPQUAD(daddr), NIPQUAD(saddr), dev->name);
2047 #endif
2048
2049 e_hostunreach:
2050 err = -EHOSTUNREACH;
2051 goto done;
2052
2053 e_inval:
2054 err = -EINVAL;
2055 goto done;
2056
2057 e_nobufs:
2058 err = -ENOBUFS;
2059 goto done;
2060
2061 martian_source:
2062 ip_handle_martian_source(dev, in_dev, skb, daddr, saddr);
2063 goto e_inval;
2064 }
2065
2066 int ip_route_input(struct sk_buff *skb, __be32 daddr, __be32 saddr,
2067 u8 tos, struct net_device *dev)
2068 {
2069 struct rtable * rth;
2070 unsigned hash;
2071 int iif = dev->ifindex;
2072 struct net *net;
2073
2074 net = dev_net(dev);
2075 tos &= IPTOS_RT_MASK;
2076 hash = rt_hash(daddr, saddr, iif);
2077
2078 rcu_read_lock();
2079 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
2080 rth = rcu_dereference(rth->u.dst.rt_next)) {
2081 if (rth->fl.fl4_dst == daddr &&
2082 rth->fl.fl4_src == saddr &&
2083 rth->fl.iif == iif &&
2084 rth->fl.oif == 0 &&
2085 rth->fl.mark == skb->mark &&
2086 rth->fl.fl4_tos == tos &&
2087 dev_net(rth->u.dst.dev) == net &&
2088 rth->rt_genid == atomic_read(&rt_genid)) {
2089 dst_use(&rth->u.dst, jiffies);
2090 RT_CACHE_STAT_INC(in_hit);
2091 rcu_read_unlock();
2092 skb->rtable = rth;
2093 return 0;
2094 }
2095 RT_CACHE_STAT_INC(in_hlist_search);
2096 }
2097 rcu_read_unlock();
2098
2099 /* Multicast recognition logic is moved from route cache to here.
2100 The problem was that too many Ethernet cards have broken/missing
2101 hardware multicast filters :-( As result the host on multicasting
2102 network acquires a lot of useless route cache entries, sort of
2103 SDR messages from all the world. Now we try to get rid of them.
2104 Really, provided software IP multicast filter is organized
2105 reasonably (at least, hashed), it does not result in a slowdown
2106 comparing with route cache reject entries.
2107 Note, that multicast routers are not affected, because
2108 route cache entry is created eventually.
2109 */
2110 if (ipv4_is_multicast(daddr)) {
2111 struct in_device *in_dev;
2112
2113 rcu_read_lock();
2114 if ((in_dev = __in_dev_get_rcu(dev)) != NULL) {
2115 int our = ip_check_mc(in_dev, daddr, saddr,
2116 ip_hdr(skb)->protocol);
2117 if (our
2118 #ifdef CONFIG_IP_MROUTE
2119 || (!ipv4_is_local_multicast(daddr) &&
2120 IN_DEV_MFORWARD(in_dev))
2121 #endif
2122 ) {
2123 rcu_read_unlock();
2124 return ip_route_input_mc(skb, daddr, saddr,
2125 tos, dev, our);
2126 }
2127 }
2128 rcu_read_unlock();
2129 return -EINVAL;
2130 }
2131 return ip_route_input_slow(skb, daddr, saddr, tos, dev);
2132 }
2133
2134 static inline int __mkroute_output(struct rtable **result,
2135 struct fib_result* res,
2136 const struct flowi *fl,
2137 const struct flowi *oldflp,
2138 struct net_device *dev_out,
2139 unsigned flags)
2140 {
2141 struct rtable *rth;
2142 struct in_device *in_dev;
2143 u32 tos = RT_FL_TOS(oldflp);
2144 int err = 0;
2145
2146 if (ipv4_is_loopback(fl->fl4_src) && !(dev_out->flags&IFF_LOOPBACK))
2147 return -EINVAL;
2148
2149 if (fl->fl4_dst == htonl(0xFFFFFFFF))
2150 res->type = RTN_BROADCAST;
2151 else if (ipv4_is_multicast(fl->fl4_dst))
2152 res->type = RTN_MULTICAST;
2153 else if (ipv4_is_lbcast(fl->fl4_dst) || ipv4_is_zeronet(fl->fl4_dst))
2154 return -EINVAL;
2155
2156 if (dev_out->flags & IFF_LOOPBACK)
2157 flags |= RTCF_LOCAL;
2158
2159 /* get work reference to inet device */
2160 in_dev = in_dev_get(dev_out);
2161 if (!in_dev)
2162 return -EINVAL;
2163
2164 if (res->type == RTN_BROADCAST) {
2165 flags |= RTCF_BROADCAST | RTCF_LOCAL;
2166 if (res->fi) {
2167 fib_info_put(res->fi);
2168 res->fi = NULL;
2169 }
2170 } else if (res->type == RTN_MULTICAST) {
2171 flags |= RTCF_MULTICAST|RTCF_LOCAL;
2172 if (!ip_check_mc(in_dev, oldflp->fl4_dst, oldflp->fl4_src,
2173 oldflp->proto))
2174 flags &= ~RTCF_LOCAL;
2175 /* If multicast route do not exist use
2176 default one, but do not gateway in this case.
2177 Yes, it is hack.
2178 */
2179 if (res->fi && res->prefixlen < 4) {
2180 fib_info_put(res->fi);
2181 res->fi = NULL;
2182 }
2183 }
2184
2185
2186 rth = dst_alloc(&ipv4_dst_ops);
2187 if (!rth) {
2188 err = -ENOBUFS;
2189 goto cleanup;
2190 }
2191
2192 atomic_set(&rth->u.dst.__refcnt, 1);
2193 rth->u.dst.flags= DST_HOST;
2194 if (IN_DEV_CONF_GET(in_dev, NOXFRM))
2195 rth->u.dst.flags |= DST_NOXFRM;
2196 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
2197 rth->u.dst.flags |= DST_NOPOLICY;
2198
2199 rth->fl.fl4_dst = oldflp->fl4_dst;
2200 rth->fl.fl4_tos = tos;
2201 rth->fl.fl4_src = oldflp->fl4_src;
2202 rth->fl.oif = oldflp->oif;
2203 rth->fl.mark = oldflp->mark;
2204 rth->rt_dst = fl->fl4_dst;
2205 rth->rt_src = fl->fl4_src;
2206 rth->rt_iif = oldflp->oif ? : dev_out->ifindex;
2207 /* get references to the devices that are to be hold by the routing
2208 cache entry */
2209 rth->u.dst.dev = dev_out;
2210 dev_hold(dev_out);
2211 rth->idev = in_dev_get(dev_out);
2212 rth->rt_gateway = fl->fl4_dst;
2213 rth->rt_spec_dst= fl->fl4_src;
2214
2215 rth->u.dst.output=ip_output;
2216 rth->rt_genid = atomic_read(&rt_genid);
2217
2218 RT_CACHE_STAT_INC(out_slow_tot);
2219
2220 if (flags & RTCF_LOCAL) {
2221 rth->u.dst.input = ip_local_deliver;
2222 rth->rt_spec_dst = fl->fl4_dst;
2223 }
2224 if (flags & (RTCF_BROADCAST | RTCF_MULTICAST)) {
2225 rth->rt_spec_dst = fl->fl4_src;
2226 if (flags & RTCF_LOCAL &&
2227 !(dev_out->flags & IFF_LOOPBACK)) {
2228 rth->u.dst.output = ip_mc_output;
2229 RT_CACHE_STAT_INC(out_slow_mc);
2230 }
2231 #ifdef CONFIG_IP_MROUTE
2232 if (res->type == RTN_MULTICAST) {
2233 if (IN_DEV_MFORWARD(in_dev) &&
2234 !ipv4_is_local_multicast(oldflp->fl4_dst)) {
2235 rth->u.dst.input = ip_mr_input;
2236 rth->u.dst.output = ip_mc_output;
2237 }
2238 }
2239 #endif
2240 }
2241
2242 rt_set_nexthop(rth, res, 0);
2243
2244 rth->rt_flags = flags;
2245
2246 *result = rth;
2247 cleanup:
2248 /* release work reference to inet device */
2249 in_dev_put(in_dev);
2250
2251 return err;
2252 }
2253
2254 static inline int ip_mkroute_output(struct rtable **rp,
2255 struct fib_result* res,
2256 const struct flowi *fl,
2257 const struct flowi *oldflp,
2258 struct net_device *dev_out,
2259 unsigned flags)
2260 {
2261 struct rtable *rth = NULL;
2262 int err = __mkroute_output(&rth, res, fl, oldflp, dev_out, flags);
2263 unsigned hash;
2264 if (err == 0) {
2265 hash = rt_hash(oldflp->fl4_dst, oldflp->fl4_src, oldflp->oif);
2266 err = rt_intern_hash(hash, rth, rp);
2267 }
2268
2269 return err;
2270 }
2271
2272 /*
2273 * Major route resolver routine.
2274 */
2275
2276 static int ip_route_output_slow(struct net *net, struct rtable **rp,
2277 const struct flowi *oldflp)
2278 {
2279 u32 tos = RT_FL_TOS(oldflp);
2280 struct flowi fl = { .nl_u = { .ip4_u =
2281 { .daddr = oldflp->fl4_dst,
2282 .saddr = oldflp->fl4_src,
2283 .tos = tos & IPTOS_RT_MASK,
2284 .scope = ((tos & RTO_ONLINK) ?
2285 RT_SCOPE_LINK :
2286 RT_SCOPE_UNIVERSE),
2287 } },
2288 .mark = oldflp->mark,
2289 .iif = net->loopback_dev->ifindex,
2290 .oif = oldflp->oif };
2291 struct fib_result res;
2292 unsigned flags = 0;
2293 struct net_device *dev_out = NULL;
2294 int free_res = 0;
2295 int err;
2296
2297
2298 res.fi = NULL;
2299 #ifdef CONFIG_IP_MULTIPLE_TABLES
2300 res.r = NULL;
2301 #endif
2302
2303 if (oldflp->fl4_src) {
2304 err = -EINVAL;
2305 if (ipv4_is_multicast(oldflp->fl4_src) ||
2306 ipv4_is_lbcast(oldflp->fl4_src) ||
2307 ipv4_is_zeronet(oldflp->fl4_src))
2308 goto out;
2309
2310 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2311 dev_out = ip_dev_find(net, oldflp->fl4_src);
2312 if (dev_out == NULL)
2313 goto out;
2314
2315 /* I removed check for oif == dev_out->oif here.
2316 It was wrong for two reasons:
2317 1. ip_dev_find(net, saddr) can return wrong iface, if saddr
2318 is assigned to multiple interfaces.
2319 2. Moreover, we are allowed to send packets with saddr
2320 of another iface. --ANK
2321 */
2322
2323 if (oldflp->oif == 0
2324 && (ipv4_is_multicast(oldflp->fl4_dst) ||
2325 oldflp->fl4_dst == htonl(0xFFFFFFFF))) {
2326 /* Special hack: user can direct multicasts
2327 and limited broadcast via necessary interface
2328 without fiddling with IP_MULTICAST_IF or IP_PKTINFO.
2329 This hack is not just for fun, it allows
2330 vic,vat and friends to work.
2331 They bind socket to loopback, set ttl to zero
2332 and expect that it will work.
2333 From the viewpoint of routing cache they are broken,
2334 because we are not allowed to build multicast path
2335 with loopback source addr (look, routing cache
2336 cannot know, that ttl is zero, so that packet
2337 will not leave this host and route is valid).
2338 Luckily, this hack is good workaround.
2339 */
2340
2341 fl.oif = dev_out->ifindex;
2342 goto make_route;
2343 }
2344 if (dev_out)
2345 dev_put(dev_out);
2346 dev_out = NULL;
2347 }
2348
2349
2350 if (oldflp->oif) {
2351 dev_out = dev_get_by_index(net, oldflp->oif);
2352 err = -ENODEV;
2353 if (dev_out == NULL)
2354 goto out;
2355
2356 /* RACE: Check return value of inet_select_addr instead. */
2357 if (__in_dev_get_rtnl(dev_out) == NULL) {
2358 dev_put(dev_out);
2359 goto out; /* Wrong error code */
2360 }
2361
2362 if (ipv4_is_local_multicast(oldflp->fl4_dst) ||
2363 oldflp->fl4_dst == htonl(0xFFFFFFFF)) {
2364 if (!fl.fl4_src)
2365 fl.fl4_src = inet_select_addr(dev_out, 0,
2366 RT_SCOPE_LINK);
2367 goto make_route;
2368 }
2369 if (!fl.fl4_src) {
2370 if (ipv4_is_multicast(oldflp->fl4_dst))
2371 fl.fl4_src = inet_select_addr(dev_out, 0,
2372 fl.fl4_scope);
2373 else if (!oldflp->fl4_dst)
2374 fl.fl4_src = inet_select_addr(dev_out, 0,
2375 RT_SCOPE_HOST);
2376 }
2377 }
2378
2379 if (!fl.fl4_dst) {
2380 fl.fl4_dst = fl.fl4_src;
2381 if (!fl.fl4_dst)
2382 fl.fl4_dst = fl.fl4_src = htonl(INADDR_LOOPBACK);
2383 if (dev_out)
2384 dev_put(dev_out);
2385 dev_out = net->loopback_dev;
2386 dev_hold(dev_out);
2387 fl.oif = net->loopback_dev->ifindex;
2388 res.type = RTN_LOCAL;
2389 flags |= RTCF_LOCAL;
2390 goto make_route;
2391 }
2392
2393 if (fib_lookup(net, &fl, &res)) {
2394 res.fi = NULL;
2395 if (oldflp->oif) {
2396 /* Apparently, routing tables are wrong. Assume,
2397 that the destination is on link.
2398
2399 WHY? DW.
2400 Because we are allowed to send to iface
2401 even if it has NO routes and NO assigned
2402 addresses. When oif is specified, routing
2403 tables are looked up with only one purpose:
2404 to catch if destination is gatewayed, rather than
2405 direct. Moreover, if MSG_DONTROUTE is set,
2406 we send packet, ignoring both routing tables
2407 and ifaddr state. --ANK
2408
2409
2410 We could make it even if oif is unknown,
2411 likely IPv6, but we do not.
2412 */
2413
2414 if (fl.fl4_src == 0)
2415 fl.fl4_src = inet_select_addr(dev_out, 0,
2416 RT_SCOPE_LINK);
2417 res.type = RTN_UNICAST;
2418 goto make_route;
2419 }
2420 if (dev_out)
2421 dev_put(dev_out);
2422 err = -ENETUNREACH;
2423 goto out;
2424 }
2425 free_res = 1;
2426
2427 if (res.type == RTN_LOCAL) {
2428 if (!fl.fl4_src)
2429 fl.fl4_src = fl.fl4_dst;
2430 if (dev_out)
2431 dev_put(dev_out);
2432 dev_out = net->loopback_dev;
2433 dev_hold(dev_out);
2434 fl.oif = dev_out->ifindex;
2435 if (res.fi)
2436 fib_info_put(res.fi);
2437 res.fi = NULL;
2438 flags |= RTCF_LOCAL;
2439 goto make_route;
2440 }
2441
2442 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2443 if (res.fi->fib_nhs > 1 && fl.oif == 0)
2444 fib_select_multipath(&fl, &res);
2445 else
2446 #endif
2447 if (!res.prefixlen && res.type == RTN_UNICAST && !fl.oif)
2448 fib_select_default(net, &fl, &res);
2449
2450 if (!fl.fl4_src)
2451 fl.fl4_src = FIB_RES_PREFSRC(res);
2452
2453 if (dev_out)
2454 dev_put(dev_out);
2455 dev_out = FIB_RES_DEV(res);
2456 dev_hold(dev_out);
2457 fl.oif = dev_out->ifindex;
2458
2459
2460 make_route:
2461 err = ip_mkroute_output(rp, &res, &fl, oldflp, dev_out, flags);
2462
2463
2464 if (free_res)
2465 fib_res_put(&res);
2466 if (dev_out)
2467 dev_put(dev_out);
2468 out: return err;
2469 }
2470
2471 int __ip_route_output_key(struct net *net, struct rtable **rp,
2472 const struct flowi *flp)
2473 {
2474 unsigned hash;
2475 struct rtable *rth;
2476
2477 hash = rt_hash(flp->fl4_dst, flp->fl4_src, flp->oif);
2478
2479 rcu_read_lock_bh();
2480 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
2481 rth = rcu_dereference(rth->u.dst.rt_next)) {
2482 if (rth->fl.fl4_dst == flp->fl4_dst &&
2483 rth->fl.fl4_src == flp->fl4_src &&
2484 rth->fl.iif == 0 &&
2485 rth->fl.oif == flp->oif &&
2486 rth->fl.mark == flp->mark &&
2487 !((rth->fl.fl4_tos ^ flp->fl4_tos) &
2488 (IPTOS_RT_MASK | RTO_ONLINK)) &&
2489 dev_net(rth->u.dst.dev) == net &&
2490 rth->rt_genid == atomic_read(&rt_genid)) {
2491 dst_use(&rth->u.dst, jiffies);
2492 RT_CACHE_STAT_INC(out_hit);
2493 rcu_read_unlock_bh();
2494 *rp = rth;
2495 return 0;
2496 }
2497 RT_CACHE_STAT_INC(out_hlist_search);
2498 }
2499 rcu_read_unlock_bh();
2500
2501 return ip_route_output_slow(net, rp, flp);
2502 }
2503
2504 EXPORT_SYMBOL_GPL(__ip_route_output_key);
2505
2506 static void ipv4_rt_blackhole_update_pmtu(struct dst_entry *dst, u32 mtu)
2507 {
2508 }
2509
2510 static struct dst_ops ipv4_dst_blackhole_ops = {
2511 .family = AF_INET,
2512 .protocol = __constant_htons(ETH_P_IP),
2513 .destroy = ipv4_dst_destroy,
2514 .check = ipv4_dst_check,
2515 .update_pmtu = ipv4_rt_blackhole_update_pmtu,
2516 .entry_size = sizeof(struct rtable),
2517 .entries = ATOMIC_INIT(0),
2518 };
2519
2520
2521 static int ipv4_dst_blackhole(struct rtable **rp, struct flowi *flp)
2522 {
2523 struct rtable *ort = *rp;
2524 struct rtable *rt = (struct rtable *)
2525 dst_alloc(&ipv4_dst_blackhole_ops);
2526
2527 if (rt) {
2528 struct dst_entry *new = &rt->u.dst;
2529
2530 atomic_set(&new->__refcnt, 1);
2531 new->__use = 1;
2532 new->input = dst_discard;
2533 new->output = dst_discard;
2534 memcpy(new->metrics, ort->u.dst.metrics, RTAX_MAX*sizeof(u32));
2535
2536 new->dev = ort->u.dst.dev;
2537 if (new->dev)
2538 dev_hold(new->dev);
2539
2540 rt->fl = ort->fl;
2541
2542 rt->idev = ort->idev;
2543 if (rt->idev)
2544 in_dev_hold(rt->idev);
2545 rt->rt_genid = atomic_read(&rt_genid);
2546 rt->rt_flags = ort->rt_flags;
2547 rt->rt_type = ort->rt_type;
2548 rt->rt_dst = ort->rt_dst;
2549 rt->rt_src = ort->rt_src;
2550 rt->rt_iif = ort->rt_iif;
2551 rt->rt_gateway = ort->rt_gateway;
2552 rt->rt_spec_dst = ort->rt_spec_dst;
2553 rt->peer = ort->peer;
2554 if (rt->peer)
2555 atomic_inc(&rt->peer->refcnt);
2556
2557 dst_free(new);
2558 }
2559
2560 dst_release(&(*rp)->u.dst);
2561 *rp = rt;
2562 return (rt ? 0 : -ENOMEM);
2563 }
2564
2565 int ip_route_output_flow(struct net *net, struct rtable **rp, struct flowi *flp,
2566 struct sock *sk, int flags)
2567 {
2568 int err;
2569
2570 if ((err = __ip_route_output_key(net, rp, flp)) != 0)
2571 return err;
2572
2573 if (flp->proto) {
2574 if (!flp->fl4_src)
2575 flp->fl4_src = (*rp)->rt_src;
2576 if (!flp->fl4_dst)
2577 flp->fl4_dst = (*rp)->rt_dst;
2578 err = __xfrm_lookup((struct dst_entry **)rp, flp, sk,
2579 flags ? XFRM_LOOKUP_WAIT : 0);
2580 if (err == -EREMOTE)
2581 err = ipv4_dst_blackhole(rp, flp);
2582
2583 return err;
2584 }
2585
2586 return 0;
2587 }
2588
2589 EXPORT_SYMBOL_GPL(ip_route_output_flow);
2590
2591 int ip_route_output_key(struct net *net, struct rtable **rp, struct flowi *flp)
2592 {
2593 return ip_route_output_flow(net, rp, flp, NULL, 0);
2594 }
2595
2596 static int rt_fill_info(struct sk_buff *skb, u32 pid, u32 seq, int event,
2597 int nowait, unsigned int flags)
2598 {
2599 struct rtable *rt = skb->rtable;
2600 struct rtmsg *r;
2601 struct nlmsghdr *nlh;
2602 long expires;
2603 u32 id = 0, ts = 0, tsage = 0, error;
2604
2605 nlh = nlmsg_put(skb, pid, seq, event, sizeof(*r), flags);
2606 if (nlh == NULL)
2607 return -EMSGSIZE;
2608
2609 r = nlmsg_data(nlh);
2610 r->rtm_family = AF_INET;
2611 r->rtm_dst_len = 32;
2612 r->rtm_src_len = 0;
2613 r->rtm_tos = rt->fl.fl4_tos;
2614 r->rtm_table = RT_TABLE_MAIN;
2615 NLA_PUT_U32(skb, RTA_TABLE, RT_TABLE_MAIN);
2616 r->rtm_type = rt->rt_type;
2617 r->rtm_scope = RT_SCOPE_UNIVERSE;
2618 r->rtm_protocol = RTPROT_UNSPEC;
2619 r->rtm_flags = (rt->rt_flags & ~0xFFFF) | RTM_F_CLONED;
2620 if (rt->rt_flags & RTCF_NOTIFY)
2621 r->rtm_flags |= RTM_F_NOTIFY;
2622
2623 NLA_PUT_BE32(skb, RTA_DST, rt->rt_dst);
2624
2625 if (rt->fl.fl4_src) {
2626 r->rtm_src_len = 32;
2627 NLA_PUT_BE32(skb, RTA_SRC, rt->fl.fl4_src);
2628 }
2629 if (rt->u.dst.dev)
2630 NLA_PUT_U32(skb, RTA_OIF, rt->u.dst.dev->ifindex);
2631 #ifdef CONFIG_NET_CLS_ROUTE
2632 if (rt->u.dst.tclassid)
2633 NLA_PUT_U32(skb, RTA_FLOW, rt->u.dst.tclassid);
2634 #endif
2635 if (rt->fl.iif)
2636 NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_spec_dst);
2637 else if (rt->rt_src != rt->fl.fl4_src)
2638 NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_src);
2639
2640 if (rt->rt_dst != rt->rt_gateway)
2641 NLA_PUT_BE32(skb, RTA_GATEWAY, rt->rt_gateway);
2642
2643 if (rtnetlink_put_metrics(skb, rt->u.dst.metrics) < 0)
2644 goto nla_put_failure;
2645
2646 error = rt->u.dst.error;
2647 expires = rt->u.dst.expires ? rt->u.dst.expires - jiffies : 0;
2648 if (rt->peer) {
2649 id = rt->peer->ip_id_count;
2650 if (rt->peer->tcp_ts_stamp) {
2651 ts = rt->peer->tcp_ts;
2652 tsage = get_seconds() - rt->peer->tcp_ts_stamp;
2653 }
2654 }
2655
2656 if (rt->fl.iif) {
2657 #ifdef CONFIG_IP_MROUTE
2658 __be32 dst = rt->rt_dst;
2659
2660 if (ipv4_is_multicast(dst) && !ipv4_is_local_multicast(dst) &&
2661 IPV4_DEVCONF_ALL(&init_net, MC_FORWARDING)) {
2662 int err = ipmr_get_route(skb, r, nowait);
2663 if (err <= 0) {
2664 if (!nowait) {
2665 if (err == 0)
2666 return 0;
2667 goto nla_put_failure;
2668 } else {
2669 if (err == -EMSGSIZE)
2670 goto nla_put_failure;
2671 error = err;
2672 }
2673 }
2674 } else
2675 #endif
2676 NLA_PUT_U32(skb, RTA_IIF, rt->fl.iif);
2677 }
2678
2679 if (rtnl_put_cacheinfo(skb, &rt->u.dst, id, ts, tsage,
2680 expires, error) < 0)
2681 goto nla_put_failure;
2682
2683 return nlmsg_end(skb, nlh);
2684
2685 nla_put_failure:
2686 nlmsg_cancel(skb, nlh);
2687 return -EMSGSIZE;
2688 }
2689
2690 static int inet_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr* nlh, void *arg)
2691 {
2692 struct net *net = in_skb->sk->sk_net;
2693 struct rtmsg *rtm;
2694 struct nlattr *tb[RTA_MAX+1];
2695 struct rtable *rt = NULL;
2696 __be32 dst = 0;
2697 __be32 src = 0;
2698 u32 iif;
2699 int err;
2700 struct sk_buff *skb;
2701
2702 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv4_policy);
2703 if (err < 0)
2704 goto errout;
2705
2706 rtm = nlmsg_data(nlh);
2707
2708 skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
2709 if (skb == NULL) {
2710 err = -ENOBUFS;
2711 goto errout;
2712 }
2713
2714 /* Reserve room for dummy headers, this skb can pass
2715 through good chunk of routing engine.
2716 */
2717 skb_reset_mac_header(skb);
2718 skb_reset_network_header(skb);
2719
2720 /* Bugfix: need to give ip_route_input enough of an IP header to not gag. */
2721 ip_hdr(skb)->protocol = IPPROTO_ICMP;
2722 skb_reserve(skb, MAX_HEADER + sizeof(struct iphdr));
2723
2724 src = tb[RTA_SRC] ? nla_get_be32(tb[RTA_SRC]) : 0;
2725 dst = tb[RTA_DST] ? nla_get_be32(tb[RTA_DST]) : 0;
2726 iif = tb[RTA_IIF] ? nla_get_u32(tb[RTA_IIF]) : 0;
2727
2728 if (iif) {
2729 struct net_device *dev;
2730
2731 dev = __dev_get_by_index(net, iif);
2732 if (dev == NULL) {
2733 err = -ENODEV;
2734 goto errout_free;
2735 }
2736
2737 skb->protocol = htons(ETH_P_IP);
2738 skb->dev = dev;
2739 local_bh_disable();
2740 err = ip_route_input(skb, dst, src, rtm->rtm_tos, dev);
2741 local_bh_enable();
2742
2743 rt = skb->rtable;
2744 if (err == 0 && rt->u.dst.error)
2745 err = -rt->u.dst.error;
2746 } else {
2747 struct flowi fl = {
2748 .nl_u = {
2749 .ip4_u = {
2750 .daddr = dst,
2751 .saddr = src,
2752 .tos = rtm->rtm_tos,
2753 },
2754 },
2755 .oif = tb[RTA_OIF] ? nla_get_u32(tb[RTA_OIF]) : 0,
2756 };
2757 err = ip_route_output_key(net, &rt, &fl);
2758 }
2759
2760 if (err)
2761 goto errout_free;
2762
2763 skb->rtable = rt;
2764 if (rtm->rtm_flags & RTM_F_NOTIFY)
2765 rt->rt_flags |= RTCF_NOTIFY;
2766
2767 err = rt_fill_info(skb, NETLINK_CB(in_skb).pid, nlh->nlmsg_seq,
2768 RTM_NEWROUTE, 0, 0);
2769 if (err <= 0)
2770 goto errout_free;
2771
2772 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).pid);
2773 errout:
2774 return err;
2775
2776 errout_free:
2777 kfree_skb(skb);
2778 goto errout;
2779 }
2780
2781 int ip_rt_dump(struct sk_buff *skb, struct netlink_callback *cb)
2782 {
2783 struct rtable *rt;
2784 int h, s_h;
2785 int idx, s_idx;
2786 struct net *net;
2787
2788 net = skb->sk->sk_net;
2789
2790 s_h = cb->args[0];
2791 if (s_h < 0)
2792 s_h = 0;
2793 s_idx = idx = cb->args[1];
2794 for (h = s_h; h <= rt_hash_mask; h++) {
2795 rcu_read_lock_bh();
2796 for (rt = rcu_dereference(rt_hash_table[h].chain), idx = 0; rt;
2797 rt = rcu_dereference(rt->u.dst.rt_next), idx++) {
2798 if (dev_net(rt->u.dst.dev) != net || idx < s_idx)
2799 continue;
2800 if (rt->rt_genid != atomic_read(&rt_genid))
2801 continue;
2802 skb->dst = dst_clone(&rt->u.dst);
2803 if (rt_fill_info(skb, NETLINK_CB(cb->skb).pid,
2804 cb->nlh->nlmsg_seq, RTM_NEWROUTE,
2805 1, NLM_F_MULTI) <= 0) {
2806 dst_release(xchg(&skb->dst, NULL));
2807 rcu_read_unlock_bh();
2808 goto done;
2809 }
2810 dst_release(xchg(&skb->dst, NULL));
2811 }
2812 rcu_read_unlock_bh();
2813 s_idx = 0;
2814 }
2815
2816 done:
2817 cb->args[0] = h;
2818 cb->args[1] = idx;
2819 return skb->len;
2820 }
2821
2822 void ip_rt_multicast_event(struct in_device *in_dev)
2823 {
2824 rt_cache_flush(0);
2825 }
2826
2827 #ifdef CONFIG_SYSCTL
2828 static int flush_delay;
2829
2830 static int ipv4_sysctl_rtcache_flush(ctl_table *ctl, int write,
2831 struct file *filp, void __user *buffer,
2832 size_t *lenp, loff_t *ppos)
2833 {
2834 if (write) {
2835 proc_dointvec(ctl, write, filp, buffer, lenp, ppos);
2836 rt_cache_flush(flush_delay);
2837 return 0;
2838 }
2839
2840 return -EINVAL;
2841 }
2842
2843 static int ipv4_sysctl_rtcache_flush_strategy(ctl_table *table,
2844 int __user *name,
2845 int nlen,
2846 void __user *oldval,
2847 size_t __user *oldlenp,
2848 void __user *newval,
2849 size_t newlen)
2850 {
2851 int delay;
2852 if (newlen != sizeof(int))
2853 return -EINVAL;
2854 if (get_user(delay, (int __user *)newval))
2855 return -EFAULT;
2856 rt_cache_flush(delay);
2857 return 0;
2858 }
2859
2860 ctl_table ipv4_route_table[] = {
2861 {
2862 .ctl_name = NET_IPV4_ROUTE_FLUSH,
2863 .procname = "flush",
2864 .data = &flush_delay,
2865 .maxlen = sizeof(int),
2866 .mode = 0200,
2867 .proc_handler = &ipv4_sysctl_rtcache_flush,
2868 .strategy = &ipv4_sysctl_rtcache_flush_strategy,
2869 },
2870 {
2871 .ctl_name = NET_IPV4_ROUTE_GC_THRESH,
2872 .procname = "gc_thresh",
2873 .data = &ipv4_dst_ops.gc_thresh,
2874 .maxlen = sizeof(int),
2875 .mode = 0644,
2876 .proc_handler = &proc_dointvec,
2877 },
2878 {
2879 .ctl_name = NET_IPV4_ROUTE_MAX_SIZE,
2880 .procname = "max_size",
2881 .data = &ip_rt_max_size,
2882 .maxlen = sizeof(int),
2883 .mode = 0644,
2884 .proc_handler = &proc_dointvec,
2885 },
2886 {
2887 /* Deprecated. Use gc_min_interval_ms */
2888
2889 .ctl_name = NET_IPV4_ROUTE_GC_MIN_INTERVAL,
2890 .procname = "gc_min_interval",
2891 .data = &ip_rt_gc_min_interval,
2892 .maxlen = sizeof(int),
2893 .mode = 0644,
2894 .proc_handler = &proc_dointvec_jiffies,
2895 .strategy = &sysctl_jiffies,
2896 },
2897 {
2898 .ctl_name = NET_IPV4_ROUTE_GC_MIN_INTERVAL_MS,
2899 .procname = "gc_min_interval_ms",
2900 .data = &ip_rt_gc_min_interval,
2901 .maxlen = sizeof(int),
2902 .mode = 0644,
2903 .proc_handler = &proc_dointvec_ms_jiffies,
2904 .strategy = &sysctl_ms_jiffies,
2905 },
2906 {
2907 .ctl_name = NET_IPV4_ROUTE_GC_TIMEOUT,
2908 .procname = "gc_timeout",
2909 .data = &ip_rt_gc_timeout,
2910 .maxlen = sizeof(int),
2911 .mode = 0644,
2912 .proc_handler = &proc_dointvec_jiffies,
2913 .strategy = &sysctl_jiffies,
2914 },
2915 {
2916 .ctl_name = NET_IPV4_ROUTE_GC_INTERVAL,
2917 .procname = "gc_interval",
2918 .data = &ip_rt_gc_interval,
2919 .maxlen = sizeof(int),
2920 .mode = 0644,
2921 .proc_handler = &proc_dointvec_jiffies,
2922 .strategy = &sysctl_jiffies,
2923 },
2924 {
2925 .ctl_name = NET_IPV4_ROUTE_REDIRECT_LOAD,
2926 .procname = "redirect_load",
2927 .data = &ip_rt_redirect_load,
2928 .maxlen = sizeof(int),
2929 .mode = 0644,
2930 .proc_handler = &proc_dointvec,
2931 },
2932 {
2933 .ctl_name = NET_IPV4_ROUTE_REDIRECT_NUMBER,
2934 .procname = "redirect_number",
2935 .data = &ip_rt_redirect_number,
2936 .maxlen = sizeof(int),
2937 .mode = 0644,
2938 .proc_handler = &proc_dointvec,
2939 },
2940 {
2941 .ctl_name = NET_IPV4_ROUTE_REDIRECT_SILENCE,
2942 .procname = "redirect_silence",
2943 .data = &ip_rt_redirect_silence,
2944 .maxlen = sizeof(int),
2945 .mode = 0644,
2946 .proc_handler = &proc_dointvec,
2947 },
2948 {
2949 .ctl_name = NET_IPV4_ROUTE_ERROR_COST,
2950 .procname = "error_cost",
2951 .data = &ip_rt_error_cost,
2952 .maxlen = sizeof(int),
2953 .mode = 0644,
2954 .proc_handler = &proc_dointvec,
2955 },
2956 {
2957 .ctl_name = NET_IPV4_ROUTE_ERROR_BURST,
2958 .procname = "error_burst",
2959 .data = &ip_rt_error_burst,
2960 .maxlen = sizeof(int),
2961 .mode = 0644,
2962 .proc_handler = &proc_dointvec,
2963 },
2964 {
2965 .ctl_name = NET_IPV4_ROUTE_GC_ELASTICITY,
2966 .procname = "gc_elasticity",
2967 .data = &ip_rt_gc_elasticity,
2968 .maxlen = sizeof(int),
2969 .mode = 0644,
2970 .proc_handler = &proc_dointvec,
2971 },
2972 {
2973 .ctl_name = NET_IPV4_ROUTE_MTU_EXPIRES,
2974 .procname = "mtu_expires",
2975 .data = &ip_rt_mtu_expires,
2976 .maxlen = sizeof(int),
2977 .mode = 0644,
2978 .proc_handler = &proc_dointvec_jiffies,
2979 .strategy = &sysctl_jiffies,
2980 },
2981 {
2982 .ctl_name = NET_IPV4_ROUTE_MIN_PMTU,
2983 .procname = "min_pmtu",
2984 .data = &ip_rt_min_pmtu,
2985 .maxlen = sizeof(int),
2986 .mode = 0644,
2987 .proc_handler = &proc_dointvec,
2988 },
2989 {
2990 .ctl_name = NET_IPV4_ROUTE_MIN_ADVMSS,
2991 .procname = "min_adv_mss",
2992 .data = &ip_rt_min_advmss,
2993 .maxlen = sizeof(int),
2994 .mode = 0644,
2995 .proc_handler = &proc_dointvec,
2996 },
2997 {
2998 .ctl_name = NET_IPV4_ROUTE_SECRET_INTERVAL,
2999 .procname = "secret_interval",
3000 .data = &ip_rt_secret_interval,
3001 .maxlen = sizeof(int),
3002 .mode = 0644,
3003 .proc_handler = &proc_dointvec_jiffies,
3004 .strategy = &sysctl_jiffies,
3005 },
3006 { .ctl_name = 0 }
3007 };
3008 #endif
3009
3010 #ifdef CONFIG_NET_CLS_ROUTE
3011 struct ip_rt_acct *ip_rt_acct __read_mostly;
3012 #endif /* CONFIG_NET_CLS_ROUTE */
3013
3014 static __initdata unsigned long rhash_entries;
3015 static int __init set_rhash_entries(char *str)
3016 {
3017 if (!str)
3018 return 0;
3019 rhash_entries = simple_strtoul(str, &str, 0);
3020 return 1;
3021 }
3022 __setup("rhash_entries=", set_rhash_entries);
3023
3024 int __init ip_rt_init(void)
3025 {
3026 int rc = 0;
3027
3028 atomic_set(&rt_genid, (int) ((num_physpages ^ (num_physpages>>8)) ^
3029 (jiffies ^ (jiffies >> 7))));
3030
3031 #ifdef CONFIG_NET_CLS_ROUTE
3032 ip_rt_acct = __alloc_percpu(256 * sizeof(struct ip_rt_acct));
3033 if (!ip_rt_acct)
3034 panic("IP: failed to allocate ip_rt_acct\n");
3035 #endif
3036
3037 ipv4_dst_ops.kmem_cachep =
3038 kmem_cache_create("ip_dst_cache", sizeof(struct rtable), 0,
3039 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3040
3041 ipv4_dst_blackhole_ops.kmem_cachep = ipv4_dst_ops.kmem_cachep;
3042
3043 rt_hash_table = (struct rt_hash_bucket *)
3044 alloc_large_system_hash("IP route cache",
3045 sizeof(struct rt_hash_bucket),
3046 rhash_entries,
3047 (num_physpages >= 128 * 1024) ?
3048 15 : 17,
3049 0,
3050 &rt_hash_log,
3051 &rt_hash_mask,
3052 0);
3053 memset(rt_hash_table, 0, (rt_hash_mask + 1) * sizeof(struct rt_hash_bucket));
3054 rt_hash_lock_init();
3055
3056 ipv4_dst_ops.gc_thresh = (rt_hash_mask + 1);
3057 ip_rt_max_size = (rt_hash_mask + 1) * 16;
3058
3059 devinet_init();
3060 ip_fib_init();
3061
3062 setup_timer(&rt_secret_timer, rt_secret_rebuild, 0);
3063
3064 /* All the timers, started at system startup tend
3065 to synchronize. Perturb it a bit.
3066 */
3067 schedule_delayed_work(&expires_work,
3068 net_random() % ip_rt_gc_interval + ip_rt_gc_interval);
3069
3070 rt_secret_timer.expires = jiffies + net_random() % ip_rt_secret_interval +
3071 ip_rt_secret_interval;
3072 add_timer(&rt_secret_timer);
3073
3074 if (ip_rt_proc_init())
3075 printk(KERN_ERR "Unable to create route proc files\n");
3076 #ifdef CONFIG_XFRM
3077 xfrm_init();
3078 xfrm4_init();
3079 #endif
3080 rtnl_register(PF_INET, RTM_GETROUTE, inet_rtm_getroute, NULL);
3081
3082 return rc;
3083 }
3084
3085 EXPORT_SYMBOL(__ip_select_ident);
3086 EXPORT_SYMBOL(ip_route_input);
3087 EXPORT_SYMBOL(ip_route_output_key);