]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - net/ipv4/route.c
net: convert /proc/net/rt_acct to seq_file
[mirror_ubuntu-focal-kernel.git] / net / ipv4 / route.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * ROUTE - implementation of the IP router.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Alan Cox, <gw4pts@gw4pts.ampr.org>
11 * Linus Torvalds, <Linus.Torvalds@helsinki.fi>
12 * Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
13 *
14 * Fixes:
15 * Alan Cox : Verify area fixes.
16 * Alan Cox : cli() protects routing changes
17 * Rui Oliveira : ICMP routing table updates
18 * (rco@di.uminho.pt) Routing table insertion and update
19 * Linus Torvalds : Rewrote bits to be sensible
20 * Alan Cox : Added BSD route gw semantics
21 * Alan Cox : Super /proc >4K
22 * Alan Cox : MTU in route table
23 * Alan Cox : MSS actually. Also added the window
24 * clamper.
25 * Sam Lantinga : Fixed route matching in rt_del()
26 * Alan Cox : Routing cache support.
27 * Alan Cox : Removed compatibility cruft.
28 * Alan Cox : RTF_REJECT support.
29 * Alan Cox : TCP irtt support.
30 * Jonathan Naylor : Added Metric support.
31 * Miquel van Smoorenburg : BSD API fixes.
32 * Miquel van Smoorenburg : Metrics.
33 * Alan Cox : Use __u32 properly
34 * Alan Cox : Aligned routing errors more closely with BSD
35 * our system is still very different.
36 * Alan Cox : Faster /proc handling
37 * Alexey Kuznetsov : Massive rework to support tree based routing,
38 * routing caches and better behaviour.
39 *
40 * Olaf Erb : irtt wasn't being copied right.
41 * Bjorn Ekwall : Kerneld route support.
42 * Alan Cox : Multicast fixed (I hope)
43 * Pavel Krauz : Limited broadcast fixed
44 * Mike McLagan : Routing by source
45 * Alexey Kuznetsov : End of old history. Split to fib.c and
46 * route.c and rewritten from scratch.
47 * Andi Kleen : Load-limit warning messages.
48 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
49 * Vitaly E. Lavrov : Race condition in ip_route_input_slow.
50 * Tobias Ringstrom : Uninitialized res.type in ip_route_output_slow.
51 * Vladimir V. Ivanov : IP rule info (flowid) is really useful.
52 * Marc Boucher : routing by fwmark
53 * Robert Olsson : Added rt_cache statistics
54 * Arnaldo C. Melo : Convert proc stuff to seq_file
55 * Eric Dumazet : hashed spinlocks and rt_check_expire() fixes.
56 * Ilia Sotnikov : Ignore TOS on PMTUD and Redirect
57 * Ilia Sotnikov : Removed TOS from hash calculations
58 *
59 * This program is free software; you can redistribute it and/or
60 * modify it under the terms of the GNU General Public License
61 * as published by the Free Software Foundation; either version
62 * 2 of the License, or (at your option) any later version.
63 */
64
65 #include <linux/module.h>
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
68 #include <linux/bitops.h>
69 #include <linux/types.h>
70 #include <linux/kernel.h>
71 #include <linux/mm.h>
72 #include <linux/bootmem.h>
73 #include <linux/string.h>
74 #include <linux/socket.h>
75 #include <linux/sockios.h>
76 #include <linux/errno.h>
77 #include <linux/in.h>
78 #include <linux/inet.h>
79 #include <linux/netdevice.h>
80 #include <linux/proc_fs.h>
81 #include <linux/init.h>
82 #include <linux/workqueue.h>
83 #include <linux/skbuff.h>
84 #include <linux/inetdevice.h>
85 #include <linux/igmp.h>
86 #include <linux/pkt_sched.h>
87 #include <linux/mroute.h>
88 #include <linux/netfilter_ipv4.h>
89 #include <linux/random.h>
90 #include <linux/jhash.h>
91 #include <linux/rcupdate.h>
92 #include <linux/times.h>
93 #include <net/dst.h>
94 #include <net/net_namespace.h>
95 #include <net/protocol.h>
96 #include <net/ip.h>
97 #include <net/route.h>
98 #include <net/inetpeer.h>
99 #include <net/sock.h>
100 #include <net/ip_fib.h>
101 #include <net/arp.h>
102 #include <net/tcp.h>
103 #include <net/icmp.h>
104 #include <net/xfrm.h>
105 #include <net/netevent.h>
106 #include <net/rtnetlink.h>
107 #ifdef CONFIG_SYSCTL
108 #include <linux/sysctl.h>
109 #endif
110
111 #define RT_FL_TOS(oldflp) \
112 ((u32)(oldflp->fl4_tos & (IPTOS_RT_MASK | RTO_ONLINK)))
113
114 #define IP_MAX_MTU 0xFFF0
115
116 #define RT_GC_TIMEOUT (300*HZ)
117
118 static int ip_rt_max_size;
119 static int ip_rt_gc_timeout __read_mostly = RT_GC_TIMEOUT;
120 static int ip_rt_gc_interval __read_mostly = 60 * HZ;
121 static int ip_rt_gc_min_interval __read_mostly = HZ / 2;
122 static int ip_rt_redirect_number __read_mostly = 9;
123 static int ip_rt_redirect_load __read_mostly = HZ / 50;
124 static int ip_rt_redirect_silence __read_mostly = ((HZ / 50) << (9 + 1));
125 static int ip_rt_error_cost __read_mostly = HZ;
126 static int ip_rt_error_burst __read_mostly = 5 * HZ;
127 static int ip_rt_gc_elasticity __read_mostly = 8;
128 static int ip_rt_mtu_expires __read_mostly = 10 * 60 * HZ;
129 static int ip_rt_min_pmtu __read_mostly = 512 + 20 + 20;
130 static int ip_rt_min_advmss __read_mostly = 256;
131 static int ip_rt_secret_interval __read_mostly = 10 * 60 * HZ;
132 static int rt_chain_length_max __read_mostly = 20;
133
134 static struct delayed_work expires_work;
135 static unsigned long expires_ljiffies;
136
137 /*
138 * Interface to generic destination cache.
139 */
140
141 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie);
142 static void ipv4_dst_destroy(struct dst_entry *dst);
143 static void ipv4_dst_ifdown(struct dst_entry *dst,
144 struct net_device *dev, int how);
145 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst);
146 static void ipv4_link_failure(struct sk_buff *skb);
147 static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu);
148 static int rt_garbage_collect(struct dst_ops *ops);
149 static void rt_emergency_hash_rebuild(struct net *net);
150
151
152 static struct dst_ops ipv4_dst_ops = {
153 .family = AF_INET,
154 .protocol = cpu_to_be16(ETH_P_IP),
155 .gc = rt_garbage_collect,
156 .check = ipv4_dst_check,
157 .destroy = ipv4_dst_destroy,
158 .ifdown = ipv4_dst_ifdown,
159 .negative_advice = ipv4_negative_advice,
160 .link_failure = ipv4_link_failure,
161 .update_pmtu = ip_rt_update_pmtu,
162 .local_out = __ip_local_out,
163 .entries = ATOMIC_INIT(0),
164 };
165
166 #define ECN_OR_COST(class) TC_PRIO_##class
167
168 const __u8 ip_tos2prio[16] = {
169 TC_PRIO_BESTEFFORT,
170 ECN_OR_COST(FILLER),
171 TC_PRIO_BESTEFFORT,
172 ECN_OR_COST(BESTEFFORT),
173 TC_PRIO_BULK,
174 ECN_OR_COST(BULK),
175 TC_PRIO_BULK,
176 ECN_OR_COST(BULK),
177 TC_PRIO_INTERACTIVE,
178 ECN_OR_COST(INTERACTIVE),
179 TC_PRIO_INTERACTIVE,
180 ECN_OR_COST(INTERACTIVE),
181 TC_PRIO_INTERACTIVE_BULK,
182 ECN_OR_COST(INTERACTIVE_BULK),
183 TC_PRIO_INTERACTIVE_BULK,
184 ECN_OR_COST(INTERACTIVE_BULK)
185 };
186
187
188 /*
189 * Route cache.
190 */
191
192 /* The locking scheme is rather straight forward:
193 *
194 * 1) Read-Copy Update protects the buckets of the central route hash.
195 * 2) Only writers remove entries, and they hold the lock
196 * as they look at rtable reference counts.
197 * 3) Only readers acquire references to rtable entries,
198 * they do so with atomic increments and with the
199 * lock held.
200 */
201
202 struct rt_hash_bucket {
203 struct rtable *chain;
204 };
205
206 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) || \
207 defined(CONFIG_PROVE_LOCKING)
208 /*
209 * Instead of using one spinlock for each rt_hash_bucket, we use a table of spinlocks
210 * The size of this table is a power of two and depends on the number of CPUS.
211 * (on lockdep we have a quite big spinlock_t, so keep the size down there)
212 */
213 #ifdef CONFIG_LOCKDEP
214 # define RT_HASH_LOCK_SZ 256
215 #else
216 # if NR_CPUS >= 32
217 # define RT_HASH_LOCK_SZ 4096
218 # elif NR_CPUS >= 16
219 # define RT_HASH_LOCK_SZ 2048
220 # elif NR_CPUS >= 8
221 # define RT_HASH_LOCK_SZ 1024
222 # elif NR_CPUS >= 4
223 # define RT_HASH_LOCK_SZ 512
224 # else
225 # define RT_HASH_LOCK_SZ 256
226 # endif
227 #endif
228
229 static spinlock_t *rt_hash_locks;
230 # define rt_hash_lock_addr(slot) &rt_hash_locks[(slot) & (RT_HASH_LOCK_SZ - 1)]
231
232 static __init void rt_hash_lock_init(void)
233 {
234 int i;
235
236 rt_hash_locks = kmalloc(sizeof(spinlock_t) * RT_HASH_LOCK_SZ,
237 GFP_KERNEL);
238 if (!rt_hash_locks)
239 panic("IP: failed to allocate rt_hash_locks\n");
240
241 for (i = 0; i < RT_HASH_LOCK_SZ; i++)
242 spin_lock_init(&rt_hash_locks[i]);
243 }
244 #else
245 # define rt_hash_lock_addr(slot) NULL
246
247 static inline void rt_hash_lock_init(void)
248 {
249 }
250 #endif
251
252 static struct rt_hash_bucket *rt_hash_table __read_mostly;
253 static unsigned rt_hash_mask __read_mostly;
254 static unsigned int rt_hash_log __read_mostly;
255
256 static DEFINE_PER_CPU(struct rt_cache_stat, rt_cache_stat);
257 #define RT_CACHE_STAT_INC(field) \
258 (__raw_get_cpu_var(rt_cache_stat).field++)
259
260 static inline unsigned int rt_hash(__be32 daddr, __be32 saddr, int idx,
261 int genid)
262 {
263 return jhash_3words((__force u32)(__be32)(daddr),
264 (__force u32)(__be32)(saddr),
265 idx, genid)
266 & rt_hash_mask;
267 }
268
269 static inline int rt_genid(struct net *net)
270 {
271 return atomic_read(&net->ipv4.rt_genid);
272 }
273
274 #ifdef CONFIG_PROC_FS
275 struct rt_cache_iter_state {
276 struct seq_net_private p;
277 int bucket;
278 int genid;
279 };
280
281 static struct rtable *rt_cache_get_first(struct seq_file *seq)
282 {
283 struct rt_cache_iter_state *st = seq->private;
284 struct rtable *r = NULL;
285
286 for (st->bucket = rt_hash_mask; st->bucket >= 0; --st->bucket) {
287 if (!rt_hash_table[st->bucket].chain)
288 continue;
289 rcu_read_lock_bh();
290 r = rcu_dereference(rt_hash_table[st->bucket].chain);
291 while (r) {
292 if (dev_net(r->u.dst.dev) == seq_file_net(seq) &&
293 r->rt_genid == st->genid)
294 return r;
295 r = rcu_dereference(r->u.dst.rt_next);
296 }
297 rcu_read_unlock_bh();
298 }
299 return r;
300 }
301
302 static struct rtable *__rt_cache_get_next(struct seq_file *seq,
303 struct rtable *r)
304 {
305 struct rt_cache_iter_state *st = seq->private;
306
307 r = r->u.dst.rt_next;
308 while (!r) {
309 rcu_read_unlock_bh();
310 do {
311 if (--st->bucket < 0)
312 return NULL;
313 } while (!rt_hash_table[st->bucket].chain);
314 rcu_read_lock_bh();
315 r = rt_hash_table[st->bucket].chain;
316 }
317 return rcu_dereference(r);
318 }
319
320 static struct rtable *rt_cache_get_next(struct seq_file *seq,
321 struct rtable *r)
322 {
323 struct rt_cache_iter_state *st = seq->private;
324 while ((r = __rt_cache_get_next(seq, r)) != NULL) {
325 if (dev_net(r->u.dst.dev) != seq_file_net(seq))
326 continue;
327 if (r->rt_genid == st->genid)
328 break;
329 }
330 return r;
331 }
332
333 static struct rtable *rt_cache_get_idx(struct seq_file *seq, loff_t pos)
334 {
335 struct rtable *r = rt_cache_get_first(seq);
336
337 if (r)
338 while (pos && (r = rt_cache_get_next(seq, r)))
339 --pos;
340 return pos ? NULL : r;
341 }
342
343 static void *rt_cache_seq_start(struct seq_file *seq, loff_t *pos)
344 {
345 struct rt_cache_iter_state *st = seq->private;
346 if (*pos)
347 return rt_cache_get_idx(seq, *pos - 1);
348 st->genid = rt_genid(seq_file_net(seq));
349 return SEQ_START_TOKEN;
350 }
351
352 static void *rt_cache_seq_next(struct seq_file *seq, void *v, loff_t *pos)
353 {
354 struct rtable *r;
355
356 if (v == SEQ_START_TOKEN)
357 r = rt_cache_get_first(seq);
358 else
359 r = rt_cache_get_next(seq, v);
360 ++*pos;
361 return r;
362 }
363
364 static void rt_cache_seq_stop(struct seq_file *seq, void *v)
365 {
366 if (v && v != SEQ_START_TOKEN)
367 rcu_read_unlock_bh();
368 }
369
370 static int rt_cache_seq_show(struct seq_file *seq, void *v)
371 {
372 if (v == SEQ_START_TOKEN)
373 seq_printf(seq, "%-127s\n",
374 "Iface\tDestination\tGateway \tFlags\t\tRefCnt\tUse\t"
375 "Metric\tSource\t\tMTU\tWindow\tIRTT\tTOS\tHHRef\t"
376 "HHUptod\tSpecDst");
377 else {
378 struct rtable *r = v;
379 int len;
380
381 seq_printf(seq, "%s\t%08lX\t%08lX\t%8X\t%d\t%u\t%d\t"
382 "%08lX\t%d\t%u\t%u\t%02X\t%d\t%1d\t%08X%n",
383 r->u.dst.dev ? r->u.dst.dev->name : "*",
384 (unsigned long)r->rt_dst, (unsigned long)r->rt_gateway,
385 r->rt_flags, atomic_read(&r->u.dst.__refcnt),
386 r->u.dst.__use, 0, (unsigned long)r->rt_src,
387 (dst_metric(&r->u.dst, RTAX_ADVMSS) ?
388 (int)dst_metric(&r->u.dst, RTAX_ADVMSS) + 40 : 0),
389 dst_metric(&r->u.dst, RTAX_WINDOW),
390 (int)((dst_metric(&r->u.dst, RTAX_RTT) >> 3) +
391 dst_metric(&r->u.dst, RTAX_RTTVAR)),
392 r->fl.fl4_tos,
393 r->u.dst.hh ? atomic_read(&r->u.dst.hh->hh_refcnt) : -1,
394 r->u.dst.hh ? (r->u.dst.hh->hh_output ==
395 dev_queue_xmit) : 0,
396 r->rt_spec_dst, &len);
397
398 seq_printf(seq, "%*s\n", 127 - len, "");
399 }
400 return 0;
401 }
402
403 static const struct seq_operations rt_cache_seq_ops = {
404 .start = rt_cache_seq_start,
405 .next = rt_cache_seq_next,
406 .stop = rt_cache_seq_stop,
407 .show = rt_cache_seq_show,
408 };
409
410 static int rt_cache_seq_open(struct inode *inode, struct file *file)
411 {
412 return seq_open_net(inode, file, &rt_cache_seq_ops,
413 sizeof(struct rt_cache_iter_state));
414 }
415
416 static const struct file_operations rt_cache_seq_fops = {
417 .owner = THIS_MODULE,
418 .open = rt_cache_seq_open,
419 .read = seq_read,
420 .llseek = seq_lseek,
421 .release = seq_release_net,
422 };
423
424
425 static void *rt_cpu_seq_start(struct seq_file *seq, loff_t *pos)
426 {
427 int cpu;
428
429 if (*pos == 0)
430 return SEQ_START_TOKEN;
431
432 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
433 if (!cpu_possible(cpu))
434 continue;
435 *pos = cpu+1;
436 return &per_cpu(rt_cache_stat, cpu);
437 }
438 return NULL;
439 }
440
441 static void *rt_cpu_seq_next(struct seq_file *seq, void *v, loff_t *pos)
442 {
443 int cpu;
444
445 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
446 if (!cpu_possible(cpu))
447 continue;
448 *pos = cpu+1;
449 return &per_cpu(rt_cache_stat, cpu);
450 }
451 return NULL;
452
453 }
454
455 static void rt_cpu_seq_stop(struct seq_file *seq, void *v)
456 {
457
458 }
459
460 static int rt_cpu_seq_show(struct seq_file *seq, void *v)
461 {
462 struct rt_cache_stat *st = v;
463
464 if (v == SEQ_START_TOKEN) {
465 seq_printf(seq, "entries in_hit in_slow_tot in_slow_mc in_no_route in_brd in_martian_dst in_martian_src out_hit out_slow_tot out_slow_mc gc_total gc_ignored gc_goal_miss gc_dst_overflow in_hlist_search out_hlist_search\n");
466 return 0;
467 }
468
469 seq_printf(seq,"%08x %08x %08x %08x %08x %08x %08x %08x "
470 " %08x %08x %08x %08x %08x %08x %08x %08x %08x \n",
471 atomic_read(&ipv4_dst_ops.entries),
472 st->in_hit,
473 st->in_slow_tot,
474 st->in_slow_mc,
475 st->in_no_route,
476 st->in_brd,
477 st->in_martian_dst,
478 st->in_martian_src,
479
480 st->out_hit,
481 st->out_slow_tot,
482 st->out_slow_mc,
483
484 st->gc_total,
485 st->gc_ignored,
486 st->gc_goal_miss,
487 st->gc_dst_overflow,
488 st->in_hlist_search,
489 st->out_hlist_search
490 );
491 return 0;
492 }
493
494 static const struct seq_operations rt_cpu_seq_ops = {
495 .start = rt_cpu_seq_start,
496 .next = rt_cpu_seq_next,
497 .stop = rt_cpu_seq_stop,
498 .show = rt_cpu_seq_show,
499 };
500
501
502 static int rt_cpu_seq_open(struct inode *inode, struct file *file)
503 {
504 return seq_open(file, &rt_cpu_seq_ops);
505 }
506
507 static const struct file_operations rt_cpu_seq_fops = {
508 .owner = THIS_MODULE,
509 .open = rt_cpu_seq_open,
510 .read = seq_read,
511 .llseek = seq_lseek,
512 .release = seq_release,
513 };
514
515 #ifdef CONFIG_NET_CLS_ROUTE
516 static int rt_acct_proc_show(struct seq_file *m, void *v)
517 {
518 struct ip_rt_acct *dst, *src;
519 unsigned int i, j;
520
521 dst = kcalloc(256, sizeof(struct ip_rt_acct), GFP_KERNEL);
522 if (!dst)
523 return -ENOMEM;
524
525 for_each_possible_cpu(i) {
526 src = (struct ip_rt_acct *)per_cpu_ptr(ip_rt_acct, i);
527 for (j = 0; j < 256; j++) {
528 dst[j].o_bytes += src[j].o_bytes;
529 dst[j].o_packets += src[j].o_packets;
530 dst[j].i_bytes += src[j].i_bytes;
531 dst[j].i_packets += src[j].i_packets;
532 }
533 }
534
535 seq_write(m, dst, 256 * sizeof(struct ip_rt_acct));
536 kfree(dst);
537 return 0;
538 }
539
540 static int rt_acct_proc_open(struct inode *inode, struct file *file)
541 {
542 return single_open(file, rt_acct_proc_show, NULL);
543 }
544
545 static const struct file_operations rt_acct_proc_fops = {
546 .owner = THIS_MODULE,
547 .open = rt_acct_proc_open,
548 .read = seq_read,
549 .llseek = seq_lseek,
550 .release = single_release,
551 };
552 #endif
553
554 static int __net_init ip_rt_do_proc_init(struct net *net)
555 {
556 struct proc_dir_entry *pde;
557
558 pde = proc_net_fops_create(net, "rt_cache", S_IRUGO,
559 &rt_cache_seq_fops);
560 if (!pde)
561 goto err1;
562
563 pde = proc_create("rt_cache", S_IRUGO,
564 net->proc_net_stat, &rt_cpu_seq_fops);
565 if (!pde)
566 goto err2;
567
568 #ifdef CONFIG_NET_CLS_ROUTE
569 pde = proc_create("rt_acct", 0, net->proc_net, &rt_acct_proc_fops);
570 if (!pde)
571 goto err3;
572 #endif
573 return 0;
574
575 #ifdef CONFIG_NET_CLS_ROUTE
576 err3:
577 remove_proc_entry("rt_cache", net->proc_net_stat);
578 #endif
579 err2:
580 remove_proc_entry("rt_cache", net->proc_net);
581 err1:
582 return -ENOMEM;
583 }
584
585 static void __net_exit ip_rt_do_proc_exit(struct net *net)
586 {
587 remove_proc_entry("rt_cache", net->proc_net_stat);
588 remove_proc_entry("rt_cache", net->proc_net);
589 remove_proc_entry("rt_acct", net->proc_net);
590 }
591
592 static struct pernet_operations ip_rt_proc_ops __net_initdata = {
593 .init = ip_rt_do_proc_init,
594 .exit = ip_rt_do_proc_exit,
595 };
596
597 static int __init ip_rt_proc_init(void)
598 {
599 return register_pernet_subsys(&ip_rt_proc_ops);
600 }
601
602 #else
603 static inline int ip_rt_proc_init(void)
604 {
605 return 0;
606 }
607 #endif /* CONFIG_PROC_FS */
608
609 static inline void rt_free(struct rtable *rt)
610 {
611 call_rcu_bh(&rt->u.dst.rcu_head, dst_rcu_free);
612 }
613
614 static inline void rt_drop(struct rtable *rt)
615 {
616 ip_rt_put(rt);
617 call_rcu_bh(&rt->u.dst.rcu_head, dst_rcu_free);
618 }
619
620 static inline int rt_fast_clean(struct rtable *rth)
621 {
622 /* Kill broadcast/multicast entries very aggresively, if they
623 collide in hash table with more useful entries */
624 return (rth->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) &&
625 rth->fl.iif && rth->u.dst.rt_next;
626 }
627
628 static inline int rt_valuable(struct rtable *rth)
629 {
630 return (rth->rt_flags & (RTCF_REDIRECTED | RTCF_NOTIFY)) ||
631 rth->u.dst.expires;
632 }
633
634 static int rt_may_expire(struct rtable *rth, unsigned long tmo1, unsigned long tmo2)
635 {
636 unsigned long age;
637 int ret = 0;
638
639 if (atomic_read(&rth->u.dst.__refcnt))
640 goto out;
641
642 ret = 1;
643 if (rth->u.dst.expires &&
644 time_after_eq(jiffies, rth->u.dst.expires))
645 goto out;
646
647 age = jiffies - rth->u.dst.lastuse;
648 ret = 0;
649 if ((age <= tmo1 && !rt_fast_clean(rth)) ||
650 (age <= tmo2 && rt_valuable(rth)))
651 goto out;
652 ret = 1;
653 out: return ret;
654 }
655
656 /* Bits of score are:
657 * 31: very valuable
658 * 30: not quite useless
659 * 29..0: usage counter
660 */
661 static inline u32 rt_score(struct rtable *rt)
662 {
663 u32 score = jiffies - rt->u.dst.lastuse;
664
665 score = ~score & ~(3<<30);
666
667 if (rt_valuable(rt))
668 score |= (1<<31);
669
670 if (!rt->fl.iif ||
671 !(rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST|RTCF_LOCAL)))
672 score |= (1<<30);
673
674 return score;
675 }
676
677 static inline bool rt_caching(const struct net *net)
678 {
679 return net->ipv4.current_rt_cache_rebuild_count <=
680 net->ipv4.sysctl_rt_cache_rebuild_count;
681 }
682
683 static inline bool compare_hash_inputs(const struct flowi *fl1,
684 const struct flowi *fl2)
685 {
686 return (__force u32)(((fl1->nl_u.ip4_u.daddr ^ fl2->nl_u.ip4_u.daddr) |
687 (fl1->nl_u.ip4_u.saddr ^ fl2->nl_u.ip4_u.saddr) |
688 (fl1->iif ^ fl2->iif)) == 0);
689 }
690
691 static inline int compare_keys(struct flowi *fl1, struct flowi *fl2)
692 {
693 return ((__force u32)((fl1->nl_u.ip4_u.daddr ^ fl2->nl_u.ip4_u.daddr) |
694 (fl1->nl_u.ip4_u.saddr ^ fl2->nl_u.ip4_u.saddr)) |
695 (fl1->mark ^ fl2->mark) |
696 (*(u16 *)&fl1->nl_u.ip4_u.tos ^
697 *(u16 *)&fl2->nl_u.ip4_u.tos) |
698 (fl1->oif ^ fl2->oif) |
699 (fl1->iif ^ fl2->iif)) == 0;
700 }
701
702 static inline int compare_netns(struct rtable *rt1, struct rtable *rt2)
703 {
704 return net_eq(dev_net(rt1->u.dst.dev), dev_net(rt2->u.dst.dev));
705 }
706
707 static inline int rt_is_expired(struct rtable *rth)
708 {
709 return rth->rt_genid != rt_genid(dev_net(rth->u.dst.dev));
710 }
711
712 /*
713 * Perform a full scan of hash table and free all entries.
714 * Can be called by a softirq or a process.
715 * In the later case, we want to be reschedule if necessary
716 */
717 static void rt_do_flush(int process_context)
718 {
719 unsigned int i;
720 struct rtable *rth, *next;
721 struct rtable * tail;
722
723 for (i = 0; i <= rt_hash_mask; i++) {
724 if (process_context && need_resched())
725 cond_resched();
726 rth = rt_hash_table[i].chain;
727 if (!rth)
728 continue;
729
730 spin_lock_bh(rt_hash_lock_addr(i));
731 #ifdef CONFIG_NET_NS
732 {
733 struct rtable ** prev, * p;
734
735 rth = rt_hash_table[i].chain;
736
737 /* defer releasing the head of the list after spin_unlock */
738 for (tail = rth; tail; tail = tail->u.dst.rt_next)
739 if (!rt_is_expired(tail))
740 break;
741 if (rth != tail)
742 rt_hash_table[i].chain = tail;
743
744 /* call rt_free on entries after the tail requiring flush */
745 prev = &rt_hash_table[i].chain;
746 for (p = *prev; p; p = next) {
747 next = p->u.dst.rt_next;
748 if (!rt_is_expired(p)) {
749 prev = &p->u.dst.rt_next;
750 } else {
751 *prev = next;
752 rt_free(p);
753 }
754 }
755 }
756 #else
757 rth = rt_hash_table[i].chain;
758 rt_hash_table[i].chain = NULL;
759 tail = NULL;
760 #endif
761 spin_unlock_bh(rt_hash_lock_addr(i));
762
763 for (; rth != tail; rth = next) {
764 next = rth->u.dst.rt_next;
765 rt_free(rth);
766 }
767 }
768 }
769
770 /*
771 * While freeing expired entries, we compute average chain length
772 * and standard deviation, using fixed-point arithmetic.
773 * This to have an estimation of rt_chain_length_max
774 * rt_chain_length_max = max(elasticity, AVG + 4*SD)
775 * We use 3 bits for frational part, and 29 (or 61) for magnitude.
776 */
777
778 #define FRACT_BITS 3
779 #define ONE (1UL << FRACT_BITS)
780
781 static void rt_check_expire(void)
782 {
783 static unsigned int rover;
784 unsigned int i = rover, goal;
785 struct rtable *rth, *aux, **rthp;
786 unsigned long samples = 0;
787 unsigned long sum = 0, sum2 = 0;
788 unsigned long delta;
789 u64 mult;
790
791 delta = jiffies - expires_ljiffies;
792 expires_ljiffies = jiffies;
793 mult = ((u64)delta) << rt_hash_log;
794 if (ip_rt_gc_timeout > 1)
795 do_div(mult, ip_rt_gc_timeout);
796 goal = (unsigned int)mult;
797 if (goal > rt_hash_mask)
798 goal = rt_hash_mask + 1;
799 for (; goal > 0; goal--) {
800 unsigned long tmo = ip_rt_gc_timeout;
801 unsigned long length;
802
803 i = (i + 1) & rt_hash_mask;
804 rthp = &rt_hash_table[i].chain;
805
806 if (need_resched())
807 cond_resched();
808
809 samples++;
810
811 if (*rthp == NULL)
812 continue;
813 length = 0;
814 spin_lock_bh(rt_hash_lock_addr(i));
815 while ((rth = *rthp) != NULL) {
816 prefetch(rth->u.dst.rt_next);
817 if (rt_is_expired(rth)) {
818 *rthp = rth->u.dst.rt_next;
819 rt_free(rth);
820 continue;
821 }
822 if (rth->u.dst.expires) {
823 /* Entry is expired even if it is in use */
824 if (time_before_eq(jiffies, rth->u.dst.expires)) {
825 nofree:
826 tmo >>= 1;
827 rthp = &rth->u.dst.rt_next;
828 /*
829 * We only count entries on
830 * a chain with equal hash inputs once
831 * so that entries for different QOS
832 * levels, and other non-hash input
833 * attributes don't unfairly skew
834 * the length computation
835 */
836 for (aux = rt_hash_table[i].chain;;) {
837 if (aux == rth) {
838 length += ONE;
839 break;
840 }
841 if (compare_hash_inputs(&aux->fl, &rth->fl))
842 break;
843 aux = aux->u.dst.rt_next;
844 }
845 continue;
846 }
847 } else if (!rt_may_expire(rth, tmo, ip_rt_gc_timeout))
848 goto nofree;
849
850 /* Cleanup aged off entries. */
851 *rthp = rth->u.dst.rt_next;
852 rt_free(rth);
853 }
854 spin_unlock_bh(rt_hash_lock_addr(i));
855 sum += length;
856 sum2 += length*length;
857 }
858 if (samples) {
859 unsigned long avg = sum / samples;
860 unsigned long sd = int_sqrt(sum2 / samples - avg*avg);
861 rt_chain_length_max = max_t(unsigned long,
862 ip_rt_gc_elasticity,
863 (avg + 4*sd) >> FRACT_BITS);
864 }
865 rover = i;
866 }
867
868 /*
869 * rt_worker_func() is run in process context.
870 * we call rt_check_expire() to scan part of the hash table
871 */
872 static void rt_worker_func(struct work_struct *work)
873 {
874 rt_check_expire();
875 schedule_delayed_work(&expires_work, ip_rt_gc_interval);
876 }
877
878 /*
879 * Pertubation of rt_genid by a small quantity [1..256]
880 * Using 8 bits of shuffling ensure we can call rt_cache_invalidate()
881 * many times (2^24) without giving recent rt_genid.
882 * Jenkins hash is strong enough that litle changes of rt_genid are OK.
883 */
884 static void rt_cache_invalidate(struct net *net)
885 {
886 unsigned char shuffle;
887
888 get_random_bytes(&shuffle, sizeof(shuffle));
889 atomic_add(shuffle + 1U, &net->ipv4.rt_genid);
890 }
891
892 /*
893 * delay < 0 : invalidate cache (fast : entries will be deleted later)
894 * delay >= 0 : invalidate & flush cache (can be long)
895 */
896 void rt_cache_flush(struct net *net, int delay)
897 {
898 rt_cache_invalidate(net);
899 if (delay >= 0)
900 rt_do_flush(!in_softirq());
901 }
902
903 /*
904 * We change rt_genid and let gc do the cleanup
905 */
906 static void rt_secret_rebuild(unsigned long __net)
907 {
908 struct net *net = (struct net *)__net;
909 rt_cache_invalidate(net);
910 mod_timer(&net->ipv4.rt_secret_timer, jiffies + ip_rt_secret_interval);
911 }
912
913 static void rt_secret_rebuild_oneshot(struct net *net)
914 {
915 del_timer_sync(&net->ipv4.rt_secret_timer);
916 rt_cache_invalidate(net);
917 if (ip_rt_secret_interval) {
918 net->ipv4.rt_secret_timer.expires += ip_rt_secret_interval;
919 add_timer(&net->ipv4.rt_secret_timer);
920 }
921 }
922
923 static void rt_emergency_hash_rebuild(struct net *net)
924 {
925 if (net_ratelimit()) {
926 printk(KERN_WARNING "Route hash chain too long!\n");
927 printk(KERN_WARNING "Adjust your secret_interval!\n");
928 }
929
930 rt_secret_rebuild_oneshot(net);
931 }
932
933 /*
934 Short description of GC goals.
935
936 We want to build algorithm, which will keep routing cache
937 at some equilibrium point, when number of aged off entries
938 is kept approximately equal to newly generated ones.
939
940 Current expiration strength is variable "expire".
941 We try to adjust it dynamically, so that if networking
942 is idle expires is large enough to keep enough of warm entries,
943 and when load increases it reduces to limit cache size.
944 */
945
946 static int rt_garbage_collect(struct dst_ops *ops)
947 {
948 static unsigned long expire = RT_GC_TIMEOUT;
949 static unsigned long last_gc;
950 static int rover;
951 static int equilibrium;
952 struct rtable *rth, **rthp;
953 unsigned long now = jiffies;
954 int goal;
955
956 /*
957 * Garbage collection is pretty expensive,
958 * do not make it too frequently.
959 */
960
961 RT_CACHE_STAT_INC(gc_total);
962
963 if (now - last_gc < ip_rt_gc_min_interval &&
964 atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size) {
965 RT_CACHE_STAT_INC(gc_ignored);
966 goto out;
967 }
968
969 /* Calculate number of entries, which we want to expire now. */
970 goal = atomic_read(&ipv4_dst_ops.entries) -
971 (ip_rt_gc_elasticity << rt_hash_log);
972 if (goal <= 0) {
973 if (equilibrium < ipv4_dst_ops.gc_thresh)
974 equilibrium = ipv4_dst_ops.gc_thresh;
975 goal = atomic_read(&ipv4_dst_ops.entries) - equilibrium;
976 if (goal > 0) {
977 equilibrium += min_t(unsigned int, goal >> 1, rt_hash_mask + 1);
978 goal = atomic_read(&ipv4_dst_ops.entries) - equilibrium;
979 }
980 } else {
981 /* We are in dangerous area. Try to reduce cache really
982 * aggressively.
983 */
984 goal = max_t(unsigned int, goal >> 1, rt_hash_mask + 1);
985 equilibrium = atomic_read(&ipv4_dst_ops.entries) - goal;
986 }
987
988 if (now - last_gc >= ip_rt_gc_min_interval)
989 last_gc = now;
990
991 if (goal <= 0) {
992 equilibrium += goal;
993 goto work_done;
994 }
995
996 do {
997 int i, k;
998
999 for (i = rt_hash_mask, k = rover; i >= 0; i--) {
1000 unsigned long tmo = expire;
1001
1002 k = (k + 1) & rt_hash_mask;
1003 rthp = &rt_hash_table[k].chain;
1004 spin_lock_bh(rt_hash_lock_addr(k));
1005 while ((rth = *rthp) != NULL) {
1006 if (!rt_is_expired(rth) &&
1007 !rt_may_expire(rth, tmo, expire)) {
1008 tmo >>= 1;
1009 rthp = &rth->u.dst.rt_next;
1010 continue;
1011 }
1012 *rthp = rth->u.dst.rt_next;
1013 rt_free(rth);
1014 goal--;
1015 }
1016 spin_unlock_bh(rt_hash_lock_addr(k));
1017 if (goal <= 0)
1018 break;
1019 }
1020 rover = k;
1021
1022 if (goal <= 0)
1023 goto work_done;
1024
1025 /* Goal is not achieved. We stop process if:
1026
1027 - if expire reduced to zero. Otherwise, expire is halfed.
1028 - if table is not full.
1029 - if we are called from interrupt.
1030 - jiffies check is just fallback/debug loop breaker.
1031 We will not spin here for long time in any case.
1032 */
1033
1034 RT_CACHE_STAT_INC(gc_goal_miss);
1035
1036 if (expire == 0)
1037 break;
1038
1039 expire >>= 1;
1040 #if RT_CACHE_DEBUG >= 2
1041 printk(KERN_DEBUG "expire>> %u %d %d %d\n", expire,
1042 atomic_read(&ipv4_dst_ops.entries), goal, i);
1043 #endif
1044
1045 if (atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size)
1046 goto out;
1047 } while (!in_softirq() && time_before_eq(jiffies, now));
1048
1049 if (atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size)
1050 goto out;
1051 if (net_ratelimit())
1052 printk(KERN_WARNING "dst cache overflow\n");
1053 RT_CACHE_STAT_INC(gc_dst_overflow);
1054 return 1;
1055
1056 work_done:
1057 expire += ip_rt_gc_min_interval;
1058 if (expire > ip_rt_gc_timeout ||
1059 atomic_read(&ipv4_dst_ops.entries) < ipv4_dst_ops.gc_thresh)
1060 expire = ip_rt_gc_timeout;
1061 #if RT_CACHE_DEBUG >= 2
1062 printk(KERN_DEBUG "expire++ %u %d %d %d\n", expire,
1063 atomic_read(&ipv4_dst_ops.entries), goal, rover);
1064 #endif
1065 out: return 0;
1066 }
1067
1068 static int rt_intern_hash(unsigned hash, struct rtable *rt,
1069 struct rtable **rp, struct sk_buff *skb)
1070 {
1071 struct rtable *rth, **rthp;
1072 unsigned long now;
1073 struct rtable *cand, **candp;
1074 u32 min_score;
1075 int chain_length;
1076 int attempts = !in_softirq();
1077
1078 restart:
1079 chain_length = 0;
1080 min_score = ~(u32)0;
1081 cand = NULL;
1082 candp = NULL;
1083 now = jiffies;
1084
1085 if (!rt_caching(dev_net(rt->u.dst.dev))) {
1086 /*
1087 * If we're not caching, just tell the caller we
1088 * were successful and don't touch the route. The
1089 * caller hold the sole reference to the cache entry, and
1090 * it will be released when the caller is done with it.
1091 * If we drop it here, the callers have no way to resolve routes
1092 * when we're not caching. Instead, just point *rp at rt, so
1093 * the caller gets a single use out of the route
1094 * Note that we do rt_free on this new route entry, so that
1095 * once its refcount hits zero, we are still able to reap it
1096 * (Thanks Alexey)
1097 * Note also the rt_free uses call_rcu. We don't actually
1098 * need rcu protection here, this is just our path to get
1099 * on the route gc list.
1100 */
1101
1102 if (rt->rt_type == RTN_UNICAST || rt->fl.iif == 0) {
1103 int err = arp_bind_neighbour(&rt->u.dst);
1104 if (err) {
1105 if (net_ratelimit())
1106 printk(KERN_WARNING
1107 "Neighbour table failure & not caching routes.\n");
1108 rt_drop(rt);
1109 return err;
1110 }
1111 }
1112
1113 rt_free(rt);
1114 goto skip_hashing;
1115 }
1116
1117 rthp = &rt_hash_table[hash].chain;
1118
1119 spin_lock_bh(rt_hash_lock_addr(hash));
1120 while ((rth = *rthp) != NULL) {
1121 if (rt_is_expired(rth)) {
1122 *rthp = rth->u.dst.rt_next;
1123 rt_free(rth);
1124 continue;
1125 }
1126 if (compare_keys(&rth->fl, &rt->fl) && compare_netns(rth, rt)) {
1127 /* Put it first */
1128 *rthp = rth->u.dst.rt_next;
1129 /*
1130 * Since lookup is lockfree, the deletion
1131 * must be visible to another weakly ordered CPU before
1132 * the insertion at the start of the hash chain.
1133 */
1134 rcu_assign_pointer(rth->u.dst.rt_next,
1135 rt_hash_table[hash].chain);
1136 /*
1137 * Since lookup is lockfree, the update writes
1138 * must be ordered for consistency on SMP.
1139 */
1140 rcu_assign_pointer(rt_hash_table[hash].chain, rth);
1141
1142 dst_use(&rth->u.dst, now);
1143 spin_unlock_bh(rt_hash_lock_addr(hash));
1144
1145 rt_drop(rt);
1146 if (rp)
1147 *rp = rth;
1148 else
1149 skb_dst_set(skb, &rth->u.dst);
1150 return 0;
1151 }
1152
1153 if (!atomic_read(&rth->u.dst.__refcnt)) {
1154 u32 score = rt_score(rth);
1155
1156 if (score <= min_score) {
1157 cand = rth;
1158 candp = rthp;
1159 min_score = score;
1160 }
1161 }
1162
1163 chain_length++;
1164
1165 rthp = &rth->u.dst.rt_next;
1166 }
1167
1168 if (cand) {
1169 /* ip_rt_gc_elasticity used to be average length of chain
1170 * length, when exceeded gc becomes really aggressive.
1171 *
1172 * The second limit is less certain. At the moment it allows
1173 * only 2 entries per bucket. We will see.
1174 */
1175 if (chain_length > ip_rt_gc_elasticity) {
1176 *candp = cand->u.dst.rt_next;
1177 rt_free(cand);
1178 }
1179 } else {
1180 if (chain_length > rt_chain_length_max) {
1181 struct net *net = dev_net(rt->u.dst.dev);
1182 int num = ++net->ipv4.current_rt_cache_rebuild_count;
1183 if (!rt_caching(dev_net(rt->u.dst.dev))) {
1184 printk(KERN_WARNING "%s: %d rebuilds is over limit, route caching disabled\n",
1185 rt->u.dst.dev->name, num);
1186 }
1187 rt_emergency_hash_rebuild(dev_net(rt->u.dst.dev));
1188 }
1189 }
1190
1191 /* Try to bind route to arp only if it is output
1192 route or unicast forwarding path.
1193 */
1194 if (rt->rt_type == RTN_UNICAST || rt->fl.iif == 0) {
1195 int err = arp_bind_neighbour(&rt->u.dst);
1196 if (err) {
1197 spin_unlock_bh(rt_hash_lock_addr(hash));
1198
1199 if (err != -ENOBUFS) {
1200 rt_drop(rt);
1201 return err;
1202 }
1203
1204 /* Neighbour tables are full and nothing
1205 can be released. Try to shrink route cache,
1206 it is most likely it holds some neighbour records.
1207 */
1208 if (attempts-- > 0) {
1209 int saved_elasticity = ip_rt_gc_elasticity;
1210 int saved_int = ip_rt_gc_min_interval;
1211 ip_rt_gc_elasticity = 1;
1212 ip_rt_gc_min_interval = 0;
1213 rt_garbage_collect(&ipv4_dst_ops);
1214 ip_rt_gc_min_interval = saved_int;
1215 ip_rt_gc_elasticity = saved_elasticity;
1216 goto restart;
1217 }
1218
1219 if (net_ratelimit())
1220 printk(KERN_WARNING "Neighbour table overflow.\n");
1221 rt_drop(rt);
1222 return -ENOBUFS;
1223 }
1224 }
1225
1226 rt->u.dst.rt_next = rt_hash_table[hash].chain;
1227
1228 #if RT_CACHE_DEBUG >= 2
1229 if (rt->u.dst.rt_next) {
1230 struct rtable *trt;
1231 printk(KERN_DEBUG "rt_cache @%02x: %pI4",
1232 hash, &rt->rt_dst);
1233 for (trt = rt->u.dst.rt_next; trt; trt = trt->u.dst.rt_next)
1234 printk(" . %pI4", &trt->rt_dst);
1235 printk("\n");
1236 }
1237 #endif
1238 /*
1239 * Since lookup is lockfree, we must make sure
1240 * previous writes to rt are comitted to memory
1241 * before making rt visible to other CPUS.
1242 */
1243 rcu_assign_pointer(rt_hash_table[hash].chain, rt);
1244
1245 spin_unlock_bh(rt_hash_lock_addr(hash));
1246
1247 skip_hashing:
1248 if (rp)
1249 *rp = rt;
1250 else
1251 skb_dst_set(skb, &rt->u.dst);
1252 return 0;
1253 }
1254
1255 void rt_bind_peer(struct rtable *rt, int create)
1256 {
1257 static DEFINE_SPINLOCK(rt_peer_lock);
1258 struct inet_peer *peer;
1259
1260 peer = inet_getpeer(rt->rt_dst, create);
1261
1262 spin_lock_bh(&rt_peer_lock);
1263 if (rt->peer == NULL) {
1264 rt->peer = peer;
1265 peer = NULL;
1266 }
1267 spin_unlock_bh(&rt_peer_lock);
1268 if (peer)
1269 inet_putpeer(peer);
1270 }
1271
1272 /*
1273 * Peer allocation may fail only in serious out-of-memory conditions. However
1274 * we still can generate some output.
1275 * Random ID selection looks a bit dangerous because we have no chances to
1276 * select ID being unique in a reasonable period of time.
1277 * But broken packet identifier may be better than no packet at all.
1278 */
1279 static void ip_select_fb_ident(struct iphdr *iph)
1280 {
1281 static DEFINE_SPINLOCK(ip_fb_id_lock);
1282 static u32 ip_fallback_id;
1283 u32 salt;
1284
1285 spin_lock_bh(&ip_fb_id_lock);
1286 salt = secure_ip_id((__force __be32)ip_fallback_id ^ iph->daddr);
1287 iph->id = htons(salt & 0xFFFF);
1288 ip_fallback_id = salt;
1289 spin_unlock_bh(&ip_fb_id_lock);
1290 }
1291
1292 void __ip_select_ident(struct iphdr *iph, struct dst_entry *dst, int more)
1293 {
1294 struct rtable *rt = (struct rtable *) dst;
1295
1296 if (rt) {
1297 if (rt->peer == NULL)
1298 rt_bind_peer(rt, 1);
1299
1300 /* If peer is attached to destination, it is never detached,
1301 so that we need not to grab a lock to dereference it.
1302 */
1303 if (rt->peer) {
1304 iph->id = htons(inet_getid(rt->peer, more));
1305 return;
1306 }
1307 } else
1308 printk(KERN_DEBUG "rt_bind_peer(0) @%p\n",
1309 __builtin_return_address(0));
1310
1311 ip_select_fb_ident(iph);
1312 }
1313
1314 static void rt_del(unsigned hash, struct rtable *rt)
1315 {
1316 struct rtable **rthp, *aux;
1317
1318 rthp = &rt_hash_table[hash].chain;
1319 spin_lock_bh(rt_hash_lock_addr(hash));
1320 ip_rt_put(rt);
1321 while ((aux = *rthp) != NULL) {
1322 if (aux == rt || rt_is_expired(aux)) {
1323 *rthp = aux->u.dst.rt_next;
1324 rt_free(aux);
1325 continue;
1326 }
1327 rthp = &aux->u.dst.rt_next;
1328 }
1329 spin_unlock_bh(rt_hash_lock_addr(hash));
1330 }
1331
1332 void ip_rt_redirect(__be32 old_gw, __be32 daddr, __be32 new_gw,
1333 __be32 saddr, struct net_device *dev)
1334 {
1335 int i, k;
1336 struct in_device *in_dev = in_dev_get(dev);
1337 struct rtable *rth, **rthp;
1338 __be32 skeys[2] = { saddr, 0 };
1339 int ikeys[2] = { dev->ifindex, 0 };
1340 struct netevent_redirect netevent;
1341 struct net *net;
1342
1343 if (!in_dev)
1344 return;
1345
1346 net = dev_net(dev);
1347 if (new_gw == old_gw || !IN_DEV_RX_REDIRECTS(in_dev) ||
1348 ipv4_is_multicast(new_gw) || ipv4_is_lbcast(new_gw) ||
1349 ipv4_is_zeronet(new_gw))
1350 goto reject_redirect;
1351
1352 if (!rt_caching(net))
1353 goto reject_redirect;
1354
1355 if (!IN_DEV_SHARED_MEDIA(in_dev)) {
1356 if (!inet_addr_onlink(in_dev, new_gw, old_gw))
1357 goto reject_redirect;
1358 if (IN_DEV_SEC_REDIRECTS(in_dev) && ip_fib_check_default(new_gw, dev))
1359 goto reject_redirect;
1360 } else {
1361 if (inet_addr_type(net, new_gw) != RTN_UNICAST)
1362 goto reject_redirect;
1363 }
1364
1365 for (i = 0; i < 2; i++) {
1366 for (k = 0; k < 2; k++) {
1367 unsigned hash = rt_hash(daddr, skeys[i], ikeys[k],
1368 rt_genid(net));
1369
1370 rthp=&rt_hash_table[hash].chain;
1371
1372 rcu_read_lock();
1373 while ((rth = rcu_dereference(*rthp)) != NULL) {
1374 struct rtable *rt;
1375
1376 if (rth->fl.fl4_dst != daddr ||
1377 rth->fl.fl4_src != skeys[i] ||
1378 rth->fl.oif != ikeys[k] ||
1379 rth->fl.iif != 0 ||
1380 rt_is_expired(rth) ||
1381 !net_eq(dev_net(rth->u.dst.dev), net)) {
1382 rthp = &rth->u.dst.rt_next;
1383 continue;
1384 }
1385
1386 if (rth->rt_dst != daddr ||
1387 rth->rt_src != saddr ||
1388 rth->u.dst.error ||
1389 rth->rt_gateway != old_gw ||
1390 rth->u.dst.dev != dev)
1391 break;
1392
1393 dst_hold(&rth->u.dst);
1394 rcu_read_unlock();
1395
1396 rt = dst_alloc(&ipv4_dst_ops);
1397 if (rt == NULL) {
1398 ip_rt_put(rth);
1399 in_dev_put(in_dev);
1400 return;
1401 }
1402
1403 /* Copy all the information. */
1404 *rt = *rth;
1405 rt->u.dst.__use = 1;
1406 atomic_set(&rt->u.dst.__refcnt, 1);
1407 rt->u.dst.child = NULL;
1408 if (rt->u.dst.dev)
1409 dev_hold(rt->u.dst.dev);
1410 if (rt->idev)
1411 in_dev_hold(rt->idev);
1412 rt->u.dst.obsolete = 0;
1413 rt->u.dst.lastuse = jiffies;
1414 rt->u.dst.path = &rt->u.dst;
1415 rt->u.dst.neighbour = NULL;
1416 rt->u.dst.hh = NULL;
1417 #ifdef CONFIG_XFRM
1418 rt->u.dst.xfrm = NULL;
1419 #endif
1420 rt->rt_genid = rt_genid(net);
1421 rt->rt_flags |= RTCF_REDIRECTED;
1422
1423 /* Gateway is different ... */
1424 rt->rt_gateway = new_gw;
1425
1426 /* Redirect received -> path was valid */
1427 dst_confirm(&rth->u.dst);
1428
1429 if (rt->peer)
1430 atomic_inc(&rt->peer->refcnt);
1431
1432 if (arp_bind_neighbour(&rt->u.dst) ||
1433 !(rt->u.dst.neighbour->nud_state &
1434 NUD_VALID)) {
1435 if (rt->u.dst.neighbour)
1436 neigh_event_send(rt->u.dst.neighbour, NULL);
1437 ip_rt_put(rth);
1438 rt_drop(rt);
1439 goto do_next;
1440 }
1441
1442 netevent.old = &rth->u.dst;
1443 netevent.new = &rt->u.dst;
1444 call_netevent_notifiers(NETEVENT_REDIRECT,
1445 &netevent);
1446
1447 rt_del(hash, rth);
1448 if (!rt_intern_hash(hash, rt, &rt, NULL))
1449 ip_rt_put(rt);
1450 goto do_next;
1451 }
1452 rcu_read_unlock();
1453 do_next:
1454 ;
1455 }
1456 }
1457 in_dev_put(in_dev);
1458 return;
1459
1460 reject_redirect:
1461 #ifdef CONFIG_IP_ROUTE_VERBOSE
1462 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
1463 printk(KERN_INFO "Redirect from %pI4 on %s about %pI4 ignored.\n"
1464 " Advised path = %pI4 -> %pI4\n",
1465 &old_gw, dev->name, &new_gw,
1466 &saddr, &daddr);
1467 #endif
1468 in_dev_put(in_dev);
1469 }
1470
1471 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst)
1472 {
1473 struct rtable *rt = (struct rtable *)dst;
1474 struct dst_entry *ret = dst;
1475
1476 if (rt) {
1477 if (dst->obsolete) {
1478 ip_rt_put(rt);
1479 ret = NULL;
1480 } else if ((rt->rt_flags & RTCF_REDIRECTED) ||
1481 rt->u.dst.expires) {
1482 unsigned hash = rt_hash(rt->fl.fl4_dst, rt->fl.fl4_src,
1483 rt->fl.oif,
1484 rt_genid(dev_net(dst->dev)));
1485 #if RT_CACHE_DEBUG >= 1
1486 printk(KERN_DEBUG "ipv4_negative_advice: redirect to %pI4/%02x dropped\n",
1487 &rt->rt_dst, rt->fl.fl4_tos);
1488 #endif
1489 rt_del(hash, rt);
1490 ret = NULL;
1491 }
1492 }
1493 return ret;
1494 }
1495
1496 /*
1497 * Algorithm:
1498 * 1. The first ip_rt_redirect_number redirects are sent
1499 * with exponential backoff, then we stop sending them at all,
1500 * assuming that the host ignores our redirects.
1501 * 2. If we did not see packets requiring redirects
1502 * during ip_rt_redirect_silence, we assume that the host
1503 * forgot redirected route and start to send redirects again.
1504 *
1505 * This algorithm is much cheaper and more intelligent than dumb load limiting
1506 * in icmp.c.
1507 *
1508 * NOTE. Do not forget to inhibit load limiting for redirects (redundant)
1509 * and "frag. need" (breaks PMTU discovery) in icmp.c.
1510 */
1511
1512 void ip_rt_send_redirect(struct sk_buff *skb)
1513 {
1514 struct rtable *rt = skb_rtable(skb);
1515 struct in_device *in_dev;
1516 int log_martians;
1517
1518 rcu_read_lock();
1519 in_dev = __in_dev_get_rcu(rt->u.dst.dev);
1520 if (!in_dev || !IN_DEV_TX_REDIRECTS(in_dev)) {
1521 rcu_read_unlock();
1522 return;
1523 }
1524 log_martians = IN_DEV_LOG_MARTIANS(in_dev);
1525 rcu_read_unlock();
1526
1527 /* No redirected packets during ip_rt_redirect_silence;
1528 * reset the algorithm.
1529 */
1530 if (time_after(jiffies, rt->u.dst.rate_last + ip_rt_redirect_silence))
1531 rt->u.dst.rate_tokens = 0;
1532
1533 /* Too many ignored redirects; do not send anything
1534 * set u.dst.rate_last to the last seen redirected packet.
1535 */
1536 if (rt->u.dst.rate_tokens >= ip_rt_redirect_number) {
1537 rt->u.dst.rate_last = jiffies;
1538 return;
1539 }
1540
1541 /* Check for load limit; set rate_last to the latest sent
1542 * redirect.
1543 */
1544 if (rt->u.dst.rate_tokens == 0 ||
1545 time_after(jiffies,
1546 (rt->u.dst.rate_last +
1547 (ip_rt_redirect_load << rt->u.dst.rate_tokens)))) {
1548 icmp_send(skb, ICMP_REDIRECT, ICMP_REDIR_HOST, rt->rt_gateway);
1549 rt->u.dst.rate_last = jiffies;
1550 ++rt->u.dst.rate_tokens;
1551 #ifdef CONFIG_IP_ROUTE_VERBOSE
1552 if (log_martians &&
1553 rt->u.dst.rate_tokens == ip_rt_redirect_number &&
1554 net_ratelimit())
1555 printk(KERN_WARNING "host %pI4/if%d ignores redirects for %pI4 to %pI4.\n",
1556 &rt->rt_src, rt->rt_iif,
1557 &rt->rt_dst, &rt->rt_gateway);
1558 #endif
1559 }
1560 }
1561
1562 static int ip_error(struct sk_buff *skb)
1563 {
1564 struct rtable *rt = skb_rtable(skb);
1565 unsigned long now;
1566 int code;
1567
1568 switch (rt->u.dst.error) {
1569 case EINVAL:
1570 default:
1571 goto out;
1572 case EHOSTUNREACH:
1573 code = ICMP_HOST_UNREACH;
1574 break;
1575 case ENETUNREACH:
1576 code = ICMP_NET_UNREACH;
1577 IP_INC_STATS_BH(dev_net(rt->u.dst.dev),
1578 IPSTATS_MIB_INNOROUTES);
1579 break;
1580 case EACCES:
1581 code = ICMP_PKT_FILTERED;
1582 break;
1583 }
1584
1585 now = jiffies;
1586 rt->u.dst.rate_tokens += now - rt->u.dst.rate_last;
1587 if (rt->u.dst.rate_tokens > ip_rt_error_burst)
1588 rt->u.dst.rate_tokens = ip_rt_error_burst;
1589 rt->u.dst.rate_last = now;
1590 if (rt->u.dst.rate_tokens >= ip_rt_error_cost) {
1591 rt->u.dst.rate_tokens -= ip_rt_error_cost;
1592 icmp_send(skb, ICMP_DEST_UNREACH, code, 0);
1593 }
1594
1595 out: kfree_skb(skb);
1596 return 0;
1597 }
1598
1599 /*
1600 * The last two values are not from the RFC but
1601 * are needed for AMPRnet AX.25 paths.
1602 */
1603
1604 static const unsigned short mtu_plateau[] =
1605 {32000, 17914, 8166, 4352, 2002, 1492, 576, 296, 216, 128 };
1606
1607 static inline unsigned short guess_mtu(unsigned short old_mtu)
1608 {
1609 int i;
1610
1611 for (i = 0; i < ARRAY_SIZE(mtu_plateau); i++)
1612 if (old_mtu > mtu_plateau[i])
1613 return mtu_plateau[i];
1614 return 68;
1615 }
1616
1617 unsigned short ip_rt_frag_needed(struct net *net, struct iphdr *iph,
1618 unsigned short new_mtu,
1619 struct net_device *dev)
1620 {
1621 int i, k;
1622 unsigned short old_mtu = ntohs(iph->tot_len);
1623 struct rtable *rth;
1624 int ikeys[2] = { dev->ifindex, 0 };
1625 __be32 skeys[2] = { iph->saddr, 0, };
1626 __be32 daddr = iph->daddr;
1627 unsigned short est_mtu = 0;
1628
1629 for (k = 0; k < 2; k++) {
1630 for (i = 0; i < 2; i++) {
1631 unsigned hash = rt_hash(daddr, skeys[i], ikeys[k],
1632 rt_genid(net));
1633
1634 rcu_read_lock();
1635 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
1636 rth = rcu_dereference(rth->u.dst.rt_next)) {
1637 unsigned short mtu = new_mtu;
1638
1639 if (rth->fl.fl4_dst != daddr ||
1640 rth->fl.fl4_src != skeys[i] ||
1641 rth->rt_dst != daddr ||
1642 rth->rt_src != iph->saddr ||
1643 rth->fl.oif != ikeys[k] ||
1644 rth->fl.iif != 0 ||
1645 dst_metric_locked(&rth->u.dst, RTAX_MTU) ||
1646 !net_eq(dev_net(rth->u.dst.dev), net) ||
1647 rt_is_expired(rth))
1648 continue;
1649
1650 if (new_mtu < 68 || new_mtu >= old_mtu) {
1651
1652 /* BSD 4.2 compatibility hack :-( */
1653 if (mtu == 0 &&
1654 old_mtu >= dst_mtu(&rth->u.dst) &&
1655 old_mtu >= 68 + (iph->ihl << 2))
1656 old_mtu -= iph->ihl << 2;
1657
1658 mtu = guess_mtu(old_mtu);
1659 }
1660 if (mtu <= dst_mtu(&rth->u.dst)) {
1661 if (mtu < dst_mtu(&rth->u.dst)) {
1662 dst_confirm(&rth->u.dst);
1663 if (mtu < ip_rt_min_pmtu) {
1664 mtu = ip_rt_min_pmtu;
1665 rth->u.dst.metrics[RTAX_LOCK-1] |=
1666 (1 << RTAX_MTU);
1667 }
1668 rth->u.dst.metrics[RTAX_MTU-1] = mtu;
1669 dst_set_expires(&rth->u.dst,
1670 ip_rt_mtu_expires);
1671 }
1672 est_mtu = mtu;
1673 }
1674 }
1675 rcu_read_unlock();
1676 }
1677 }
1678 return est_mtu ? : new_mtu;
1679 }
1680
1681 static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu)
1682 {
1683 if (dst_mtu(dst) > mtu && mtu >= 68 &&
1684 !(dst_metric_locked(dst, RTAX_MTU))) {
1685 if (mtu < ip_rt_min_pmtu) {
1686 mtu = ip_rt_min_pmtu;
1687 dst->metrics[RTAX_LOCK-1] |= (1 << RTAX_MTU);
1688 }
1689 dst->metrics[RTAX_MTU-1] = mtu;
1690 dst_set_expires(dst, ip_rt_mtu_expires);
1691 call_netevent_notifiers(NETEVENT_PMTU_UPDATE, dst);
1692 }
1693 }
1694
1695 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie)
1696 {
1697 return NULL;
1698 }
1699
1700 static void ipv4_dst_destroy(struct dst_entry *dst)
1701 {
1702 struct rtable *rt = (struct rtable *) dst;
1703 struct inet_peer *peer = rt->peer;
1704 struct in_device *idev = rt->idev;
1705
1706 if (peer) {
1707 rt->peer = NULL;
1708 inet_putpeer(peer);
1709 }
1710
1711 if (idev) {
1712 rt->idev = NULL;
1713 in_dev_put(idev);
1714 }
1715 }
1716
1717 static void ipv4_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
1718 int how)
1719 {
1720 struct rtable *rt = (struct rtable *) dst;
1721 struct in_device *idev = rt->idev;
1722 if (dev != dev_net(dev)->loopback_dev && idev && idev->dev == dev) {
1723 struct in_device *loopback_idev =
1724 in_dev_get(dev_net(dev)->loopback_dev);
1725 if (loopback_idev) {
1726 rt->idev = loopback_idev;
1727 in_dev_put(idev);
1728 }
1729 }
1730 }
1731
1732 static void ipv4_link_failure(struct sk_buff *skb)
1733 {
1734 struct rtable *rt;
1735
1736 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_HOST_UNREACH, 0);
1737
1738 rt = skb_rtable(skb);
1739 if (rt)
1740 dst_set_expires(&rt->u.dst, 0);
1741 }
1742
1743 static int ip_rt_bug(struct sk_buff *skb)
1744 {
1745 printk(KERN_DEBUG "ip_rt_bug: %pI4 -> %pI4, %s\n",
1746 &ip_hdr(skb)->saddr, &ip_hdr(skb)->daddr,
1747 skb->dev ? skb->dev->name : "?");
1748 kfree_skb(skb);
1749 return 0;
1750 }
1751
1752 /*
1753 We do not cache source address of outgoing interface,
1754 because it is used only by IP RR, TS and SRR options,
1755 so that it out of fast path.
1756
1757 BTW remember: "addr" is allowed to be not aligned
1758 in IP options!
1759 */
1760
1761 void ip_rt_get_source(u8 *addr, struct rtable *rt)
1762 {
1763 __be32 src;
1764 struct fib_result res;
1765
1766 if (rt->fl.iif == 0)
1767 src = rt->rt_src;
1768 else if (fib_lookup(dev_net(rt->u.dst.dev), &rt->fl, &res) == 0) {
1769 src = FIB_RES_PREFSRC(res);
1770 fib_res_put(&res);
1771 } else
1772 src = inet_select_addr(rt->u.dst.dev, rt->rt_gateway,
1773 RT_SCOPE_UNIVERSE);
1774 memcpy(addr, &src, 4);
1775 }
1776
1777 #ifdef CONFIG_NET_CLS_ROUTE
1778 static void set_class_tag(struct rtable *rt, u32 tag)
1779 {
1780 if (!(rt->u.dst.tclassid & 0xFFFF))
1781 rt->u.dst.tclassid |= tag & 0xFFFF;
1782 if (!(rt->u.dst.tclassid & 0xFFFF0000))
1783 rt->u.dst.tclassid |= tag & 0xFFFF0000;
1784 }
1785 #endif
1786
1787 static void rt_set_nexthop(struct rtable *rt, struct fib_result *res, u32 itag)
1788 {
1789 struct fib_info *fi = res->fi;
1790
1791 if (fi) {
1792 if (FIB_RES_GW(*res) &&
1793 FIB_RES_NH(*res).nh_scope == RT_SCOPE_LINK)
1794 rt->rt_gateway = FIB_RES_GW(*res);
1795 memcpy(rt->u.dst.metrics, fi->fib_metrics,
1796 sizeof(rt->u.dst.metrics));
1797 if (fi->fib_mtu == 0) {
1798 rt->u.dst.metrics[RTAX_MTU-1] = rt->u.dst.dev->mtu;
1799 if (dst_metric_locked(&rt->u.dst, RTAX_MTU) &&
1800 rt->rt_gateway != rt->rt_dst &&
1801 rt->u.dst.dev->mtu > 576)
1802 rt->u.dst.metrics[RTAX_MTU-1] = 576;
1803 }
1804 #ifdef CONFIG_NET_CLS_ROUTE
1805 rt->u.dst.tclassid = FIB_RES_NH(*res).nh_tclassid;
1806 #endif
1807 } else
1808 rt->u.dst.metrics[RTAX_MTU-1]= rt->u.dst.dev->mtu;
1809
1810 if (dst_metric(&rt->u.dst, RTAX_HOPLIMIT) == 0)
1811 rt->u.dst.metrics[RTAX_HOPLIMIT-1] = sysctl_ip_default_ttl;
1812 if (dst_mtu(&rt->u.dst) > IP_MAX_MTU)
1813 rt->u.dst.metrics[RTAX_MTU-1] = IP_MAX_MTU;
1814 if (dst_metric(&rt->u.dst, RTAX_ADVMSS) == 0)
1815 rt->u.dst.metrics[RTAX_ADVMSS-1] = max_t(unsigned int, rt->u.dst.dev->mtu - 40,
1816 ip_rt_min_advmss);
1817 if (dst_metric(&rt->u.dst, RTAX_ADVMSS) > 65535 - 40)
1818 rt->u.dst.metrics[RTAX_ADVMSS-1] = 65535 - 40;
1819
1820 #ifdef CONFIG_NET_CLS_ROUTE
1821 #ifdef CONFIG_IP_MULTIPLE_TABLES
1822 set_class_tag(rt, fib_rules_tclass(res));
1823 #endif
1824 set_class_tag(rt, itag);
1825 #endif
1826 rt->rt_type = res->type;
1827 }
1828
1829 static int ip_route_input_mc(struct sk_buff *skb, __be32 daddr, __be32 saddr,
1830 u8 tos, struct net_device *dev, int our)
1831 {
1832 unsigned hash;
1833 struct rtable *rth;
1834 __be32 spec_dst;
1835 struct in_device *in_dev = in_dev_get(dev);
1836 u32 itag = 0;
1837
1838 /* Primary sanity checks. */
1839
1840 if (in_dev == NULL)
1841 return -EINVAL;
1842
1843 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1844 ipv4_is_loopback(saddr) || skb->protocol != htons(ETH_P_IP))
1845 goto e_inval;
1846
1847 if (ipv4_is_zeronet(saddr)) {
1848 if (!ipv4_is_local_multicast(daddr))
1849 goto e_inval;
1850 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
1851 } else if (fib_validate_source(saddr, 0, tos, 0,
1852 dev, &spec_dst, &itag, 0) < 0)
1853 goto e_inval;
1854
1855 rth = dst_alloc(&ipv4_dst_ops);
1856 if (!rth)
1857 goto e_nobufs;
1858
1859 rth->u.dst.output= ip_rt_bug;
1860
1861 atomic_set(&rth->u.dst.__refcnt, 1);
1862 rth->u.dst.flags= DST_HOST;
1863 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
1864 rth->u.dst.flags |= DST_NOPOLICY;
1865 rth->fl.fl4_dst = daddr;
1866 rth->rt_dst = daddr;
1867 rth->fl.fl4_tos = tos;
1868 rth->fl.mark = skb->mark;
1869 rth->fl.fl4_src = saddr;
1870 rth->rt_src = saddr;
1871 #ifdef CONFIG_NET_CLS_ROUTE
1872 rth->u.dst.tclassid = itag;
1873 #endif
1874 rth->rt_iif =
1875 rth->fl.iif = dev->ifindex;
1876 rth->u.dst.dev = init_net.loopback_dev;
1877 dev_hold(rth->u.dst.dev);
1878 rth->idev = in_dev_get(rth->u.dst.dev);
1879 rth->fl.oif = 0;
1880 rth->rt_gateway = daddr;
1881 rth->rt_spec_dst= spec_dst;
1882 rth->rt_genid = rt_genid(dev_net(dev));
1883 rth->rt_flags = RTCF_MULTICAST;
1884 rth->rt_type = RTN_MULTICAST;
1885 if (our) {
1886 rth->u.dst.input= ip_local_deliver;
1887 rth->rt_flags |= RTCF_LOCAL;
1888 }
1889
1890 #ifdef CONFIG_IP_MROUTE
1891 if (!ipv4_is_local_multicast(daddr) && IN_DEV_MFORWARD(in_dev))
1892 rth->u.dst.input = ip_mr_input;
1893 #endif
1894 RT_CACHE_STAT_INC(in_slow_mc);
1895
1896 in_dev_put(in_dev);
1897 hash = rt_hash(daddr, saddr, dev->ifindex, rt_genid(dev_net(dev)));
1898 return rt_intern_hash(hash, rth, NULL, skb);
1899
1900 e_nobufs:
1901 in_dev_put(in_dev);
1902 return -ENOBUFS;
1903
1904 e_inval:
1905 in_dev_put(in_dev);
1906 return -EINVAL;
1907 }
1908
1909
1910 static void ip_handle_martian_source(struct net_device *dev,
1911 struct in_device *in_dev,
1912 struct sk_buff *skb,
1913 __be32 daddr,
1914 __be32 saddr)
1915 {
1916 RT_CACHE_STAT_INC(in_martian_src);
1917 #ifdef CONFIG_IP_ROUTE_VERBOSE
1918 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit()) {
1919 /*
1920 * RFC1812 recommendation, if source is martian,
1921 * the only hint is MAC header.
1922 */
1923 printk(KERN_WARNING "martian source %pI4 from %pI4, on dev %s\n",
1924 &daddr, &saddr, dev->name);
1925 if (dev->hard_header_len && skb_mac_header_was_set(skb)) {
1926 int i;
1927 const unsigned char *p = skb_mac_header(skb);
1928 printk(KERN_WARNING "ll header: ");
1929 for (i = 0; i < dev->hard_header_len; i++, p++) {
1930 printk("%02x", *p);
1931 if (i < (dev->hard_header_len - 1))
1932 printk(":");
1933 }
1934 printk("\n");
1935 }
1936 }
1937 #endif
1938 }
1939
1940 static int __mkroute_input(struct sk_buff *skb,
1941 struct fib_result *res,
1942 struct in_device *in_dev,
1943 __be32 daddr, __be32 saddr, u32 tos,
1944 struct rtable **result)
1945 {
1946
1947 struct rtable *rth;
1948 int err;
1949 struct in_device *out_dev;
1950 unsigned flags = 0;
1951 __be32 spec_dst;
1952 u32 itag;
1953
1954 /* get a working reference to the output device */
1955 out_dev = in_dev_get(FIB_RES_DEV(*res));
1956 if (out_dev == NULL) {
1957 if (net_ratelimit())
1958 printk(KERN_CRIT "Bug in ip_route_input" \
1959 "_slow(). Please, report\n");
1960 return -EINVAL;
1961 }
1962
1963
1964 err = fib_validate_source(saddr, daddr, tos, FIB_RES_OIF(*res),
1965 in_dev->dev, &spec_dst, &itag, skb->mark);
1966 if (err < 0) {
1967 ip_handle_martian_source(in_dev->dev, in_dev, skb, daddr,
1968 saddr);
1969
1970 err = -EINVAL;
1971 goto cleanup;
1972 }
1973
1974 if (err)
1975 flags |= RTCF_DIRECTSRC;
1976
1977 if (out_dev == in_dev && err &&
1978 (IN_DEV_SHARED_MEDIA(out_dev) ||
1979 inet_addr_onlink(out_dev, saddr, FIB_RES_GW(*res))))
1980 flags |= RTCF_DOREDIRECT;
1981
1982 if (skb->protocol != htons(ETH_P_IP)) {
1983 /* Not IP (i.e. ARP). Do not create route, if it is
1984 * invalid for proxy arp. DNAT routes are always valid.
1985 */
1986 if (out_dev == in_dev) {
1987 err = -EINVAL;
1988 goto cleanup;
1989 }
1990 }
1991
1992
1993 rth = dst_alloc(&ipv4_dst_ops);
1994 if (!rth) {
1995 err = -ENOBUFS;
1996 goto cleanup;
1997 }
1998
1999 atomic_set(&rth->u.dst.__refcnt, 1);
2000 rth->u.dst.flags= DST_HOST;
2001 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
2002 rth->u.dst.flags |= DST_NOPOLICY;
2003 if (IN_DEV_CONF_GET(out_dev, NOXFRM))
2004 rth->u.dst.flags |= DST_NOXFRM;
2005 rth->fl.fl4_dst = daddr;
2006 rth->rt_dst = daddr;
2007 rth->fl.fl4_tos = tos;
2008 rth->fl.mark = skb->mark;
2009 rth->fl.fl4_src = saddr;
2010 rth->rt_src = saddr;
2011 rth->rt_gateway = daddr;
2012 rth->rt_iif =
2013 rth->fl.iif = in_dev->dev->ifindex;
2014 rth->u.dst.dev = (out_dev)->dev;
2015 dev_hold(rth->u.dst.dev);
2016 rth->idev = in_dev_get(rth->u.dst.dev);
2017 rth->fl.oif = 0;
2018 rth->rt_spec_dst= spec_dst;
2019
2020 rth->u.dst.input = ip_forward;
2021 rth->u.dst.output = ip_output;
2022 rth->rt_genid = rt_genid(dev_net(rth->u.dst.dev));
2023
2024 rt_set_nexthop(rth, res, itag);
2025
2026 rth->rt_flags = flags;
2027
2028 *result = rth;
2029 err = 0;
2030 cleanup:
2031 /* release the working reference to the output device */
2032 in_dev_put(out_dev);
2033 return err;
2034 }
2035
2036 static int ip_mkroute_input(struct sk_buff *skb,
2037 struct fib_result *res,
2038 const struct flowi *fl,
2039 struct in_device *in_dev,
2040 __be32 daddr, __be32 saddr, u32 tos)
2041 {
2042 struct rtable* rth = NULL;
2043 int err;
2044 unsigned hash;
2045
2046 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2047 if (res->fi && res->fi->fib_nhs > 1 && fl->oif == 0)
2048 fib_select_multipath(fl, res);
2049 #endif
2050
2051 /* create a routing cache entry */
2052 err = __mkroute_input(skb, res, in_dev, daddr, saddr, tos, &rth);
2053 if (err)
2054 return err;
2055
2056 /* put it into the cache */
2057 hash = rt_hash(daddr, saddr, fl->iif,
2058 rt_genid(dev_net(rth->u.dst.dev)));
2059 return rt_intern_hash(hash, rth, NULL, skb);
2060 }
2061
2062 /*
2063 * NOTE. We drop all the packets that has local source
2064 * addresses, because every properly looped back packet
2065 * must have correct destination already attached by output routine.
2066 *
2067 * Such approach solves two big problems:
2068 * 1. Not simplex devices are handled properly.
2069 * 2. IP spoofing attempts are filtered with 100% of guarantee.
2070 */
2071
2072 static int ip_route_input_slow(struct sk_buff *skb, __be32 daddr, __be32 saddr,
2073 u8 tos, struct net_device *dev)
2074 {
2075 struct fib_result res;
2076 struct in_device *in_dev = in_dev_get(dev);
2077 struct flowi fl = { .nl_u = { .ip4_u =
2078 { .daddr = daddr,
2079 .saddr = saddr,
2080 .tos = tos,
2081 .scope = RT_SCOPE_UNIVERSE,
2082 } },
2083 .mark = skb->mark,
2084 .iif = dev->ifindex };
2085 unsigned flags = 0;
2086 u32 itag = 0;
2087 struct rtable * rth;
2088 unsigned hash;
2089 __be32 spec_dst;
2090 int err = -EINVAL;
2091 int free_res = 0;
2092 struct net * net = dev_net(dev);
2093
2094 /* IP on this device is disabled. */
2095
2096 if (!in_dev)
2097 goto out;
2098
2099 /* Check for the most weird martians, which can be not detected
2100 by fib_lookup.
2101 */
2102
2103 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
2104 ipv4_is_loopback(saddr))
2105 goto martian_source;
2106
2107 if (daddr == htonl(0xFFFFFFFF) || (saddr == 0 && daddr == 0))
2108 goto brd_input;
2109
2110 /* Accept zero addresses only to limited broadcast;
2111 * I even do not know to fix it or not. Waiting for complains :-)
2112 */
2113 if (ipv4_is_zeronet(saddr))
2114 goto martian_source;
2115
2116 if (ipv4_is_lbcast(daddr) || ipv4_is_zeronet(daddr) ||
2117 ipv4_is_loopback(daddr))
2118 goto martian_destination;
2119
2120 /*
2121 * Now we are ready to route packet.
2122 */
2123 if ((err = fib_lookup(net, &fl, &res)) != 0) {
2124 if (!IN_DEV_FORWARD(in_dev))
2125 goto e_hostunreach;
2126 goto no_route;
2127 }
2128 free_res = 1;
2129
2130 RT_CACHE_STAT_INC(in_slow_tot);
2131
2132 if (res.type == RTN_BROADCAST)
2133 goto brd_input;
2134
2135 if (res.type == RTN_LOCAL) {
2136 int result;
2137 result = fib_validate_source(saddr, daddr, tos,
2138 net->loopback_dev->ifindex,
2139 dev, &spec_dst, &itag, skb->mark);
2140 if (result < 0)
2141 goto martian_source;
2142 if (result)
2143 flags |= RTCF_DIRECTSRC;
2144 spec_dst = daddr;
2145 goto local_input;
2146 }
2147
2148 if (!IN_DEV_FORWARD(in_dev))
2149 goto e_hostunreach;
2150 if (res.type != RTN_UNICAST)
2151 goto martian_destination;
2152
2153 err = ip_mkroute_input(skb, &res, &fl, in_dev, daddr, saddr, tos);
2154 done:
2155 in_dev_put(in_dev);
2156 if (free_res)
2157 fib_res_put(&res);
2158 out: return err;
2159
2160 brd_input:
2161 if (skb->protocol != htons(ETH_P_IP))
2162 goto e_inval;
2163
2164 if (ipv4_is_zeronet(saddr))
2165 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
2166 else {
2167 err = fib_validate_source(saddr, 0, tos, 0, dev, &spec_dst,
2168 &itag, skb->mark);
2169 if (err < 0)
2170 goto martian_source;
2171 if (err)
2172 flags |= RTCF_DIRECTSRC;
2173 }
2174 flags |= RTCF_BROADCAST;
2175 res.type = RTN_BROADCAST;
2176 RT_CACHE_STAT_INC(in_brd);
2177
2178 local_input:
2179 rth = dst_alloc(&ipv4_dst_ops);
2180 if (!rth)
2181 goto e_nobufs;
2182
2183 rth->u.dst.output= ip_rt_bug;
2184 rth->rt_genid = rt_genid(net);
2185
2186 atomic_set(&rth->u.dst.__refcnt, 1);
2187 rth->u.dst.flags= DST_HOST;
2188 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
2189 rth->u.dst.flags |= DST_NOPOLICY;
2190 rth->fl.fl4_dst = daddr;
2191 rth->rt_dst = daddr;
2192 rth->fl.fl4_tos = tos;
2193 rth->fl.mark = skb->mark;
2194 rth->fl.fl4_src = saddr;
2195 rth->rt_src = saddr;
2196 #ifdef CONFIG_NET_CLS_ROUTE
2197 rth->u.dst.tclassid = itag;
2198 #endif
2199 rth->rt_iif =
2200 rth->fl.iif = dev->ifindex;
2201 rth->u.dst.dev = net->loopback_dev;
2202 dev_hold(rth->u.dst.dev);
2203 rth->idev = in_dev_get(rth->u.dst.dev);
2204 rth->rt_gateway = daddr;
2205 rth->rt_spec_dst= spec_dst;
2206 rth->u.dst.input= ip_local_deliver;
2207 rth->rt_flags = flags|RTCF_LOCAL;
2208 if (res.type == RTN_UNREACHABLE) {
2209 rth->u.dst.input= ip_error;
2210 rth->u.dst.error= -err;
2211 rth->rt_flags &= ~RTCF_LOCAL;
2212 }
2213 rth->rt_type = res.type;
2214 hash = rt_hash(daddr, saddr, fl.iif, rt_genid(net));
2215 err = rt_intern_hash(hash, rth, NULL, skb);
2216 goto done;
2217
2218 no_route:
2219 RT_CACHE_STAT_INC(in_no_route);
2220 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_UNIVERSE);
2221 res.type = RTN_UNREACHABLE;
2222 if (err == -ESRCH)
2223 err = -ENETUNREACH;
2224 goto local_input;
2225
2226 /*
2227 * Do not cache martian addresses: they should be logged (RFC1812)
2228 */
2229 martian_destination:
2230 RT_CACHE_STAT_INC(in_martian_dst);
2231 #ifdef CONFIG_IP_ROUTE_VERBOSE
2232 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
2233 printk(KERN_WARNING "martian destination %pI4 from %pI4, dev %s\n",
2234 &daddr, &saddr, dev->name);
2235 #endif
2236
2237 e_hostunreach:
2238 err = -EHOSTUNREACH;
2239 goto done;
2240
2241 e_inval:
2242 err = -EINVAL;
2243 goto done;
2244
2245 e_nobufs:
2246 err = -ENOBUFS;
2247 goto done;
2248
2249 martian_source:
2250 ip_handle_martian_source(dev, in_dev, skb, daddr, saddr);
2251 goto e_inval;
2252 }
2253
2254 int ip_route_input(struct sk_buff *skb, __be32 daddr, __be32 saddr,
2255 u8 tos, struct net_device *dev)
2256 {
2257 struct rtable * rth;
2258 unsigned hash;
2259 int iif = dev->ifindex;
2260 struct net *net;
2261
2262 net = dev_net(dev);
2263
2264 if (!rt_caching(net))
2265 goto skip_cache;
2266
2267 tos &= IPTOS_RT_MASK;
2268 hash = rt_hash(daddr, saddr, iif, rt_genid(net));
2269
2270 rcu_read_lock();
2271 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
2272 rth = rcu_dereference(rth->u.dst.rt_next)) {
2273 if (((rth->fl.fl4_dst ^ daddr) |
2274 (rth->fl.fl4_src ^ saddr) |
2275 (rth->fl.iif ^ iif) |
2276 rth->fl.oif |
2277 (rth->fl.fl4_tos ^ tos)) == 0 &&
2278 rth->fl.mark == skb->mark &&
2279 net_eq(dev_net(rth->u.dst.dev), net) &&
2280 !rt_is_expired(rth)) {
2281 dst_use(&rth->u.dst, jiffies);
2282 RT_CACHE_STAT_INC(in_hit);
2283 rcu_read_unlock();
2284 skb_dst_set(skb, &rth->u.dst);
2285 return 0;
2286 }
2287 RT_CACHE_STAT_INC(in_hlist_search);
2288 }
2289 rcu_read_unlock();
2290
2291 skip_cache:
2292 /* Multicast recognition logic is moved from route cache to here.
2293 The problem was that too many Ethernet cards have broken/missing
2294 hardware multicast filters :-( As result the host on multicasting
2295 network acquires a lot of useless route cache entries, sort of
2296 SDR messages from all the world. Now we try to get rid of them.
2297 Really, provided software IP multicast filter is organized
2298 reasonably (at least, hashed), it does not result in a slowdown
2299 comparing with route cache reject entries.
2300 Note, that multicast routers are not affected, because
2301 route cache entry is created eventually.
2302 */
2303 if (ipv4_is_multicast(daddr)) {
2304 struct in_device *in_dev;
2305
2306 rcu_read_lock();
2307 if ((in_dev = __in_dev_get_rcu(dev)) != NULL) {
2308 int our = ip_check_mc(in_dev, daddr, saddr,
2309 ip_hdr(skb)->protocol);
2310 if (our
2311 #ifdef CONFIG_IP_MROUTE
2312 ||
2313 (!ipv4_is_local_multicast(daddr) &&
2314 IN_DEV_MFORWARD(in_dev))
2315 #endif
2316 ) {
2317 rcu_read_unlock();
2318 return ip_route_input_mc(skb, daddr, saddr,
2319 tos, dev, our);
2320 }
2321 }
2322 rcu_read_unlock();
2323 return -EINVAL;
2324 }
2325 return ip_route_input_slow(skb, daddr, saddr, tos, dev);
2326 }
2327
2328 static int __mkroute_output(struct rtable **result,
2329 struct fib_result *res,
2330 const struct flowi *fl,
2331 const struct flowi *oldflp,
2332 struct net_device *dev_out,
2333 unsigned flags)
2334 {
2335 struct rtable *rth;
2336 struct in_device *in_dev;
2337 u32 tos = RT_FL_TOS(oldflp);
2338 int err = 0;
2339
2340 if (ipv4_is_loopback(fl->fl4_src) && !(dev_out->flags&IFF_LOOPBACK))
2341 return -EINVAL;
2342
2343 if (fl->fl4_dst == htonl(0xFFFFFFFF))
2344 res->type = RTN_BROADCAST;
2345 else if (ipv4_is_multicast(fl->fl4_dst))
2346 res->type = RTN_MULTICAST;
2347 else if (ipv4_is_lbcast(fl->fl4_dst) || ipv4_is_zeronet(fl->fl4_dst))
2348 return -EINVAL;
2349
2350 if (dev_out->flags & IFF_LOOPBACK)
2351 flags |= RTCF_LOCAL;
2352
2353 /* get work reference to inet device */
2354 in_dev = in_dev_get(dev_out);
2355 if (!in_dev)
2356 return -EINVAL;
2357
2358 if (res->type == RTN_BROADCAST) {
2359 flags |= RTCF_BROADCAST | RTCF_LOCAL;
2360 if (res->fi) {
2361 fib_info_put(res->fi);
2362 res->fi = NULL;
2363 }
2364 } else if (res->type == RTN_MULTICAST) {
2365 flags |= RTCF_MULTICAST|RTCF_LOCAL;
2366 if (!ip_check_mc(in_dev, oldflp->fl4_dst, oldflp->fl4_src,
2367 oldflp->proto))
2368 flags &= ~RTCF_LOCAL;
2369 /* If multicast route do not exist use
2370 default one, but do not gateway in this case.
2371 Yes, it is hack.
2372 */
2373 if (res->fi && res->prefixlen < 4) {
2374 fib_info_put(res->fi);
2375 res->fi = NULL;
2376 }
2377 }
2378
2379
2380 rth = dst_alloc(&ipv4_dst_ops);
2381 if (!rth) {
2382 err = -ENOBUFS;
2383 goto cleanup;
2384 }
2385
2386 atomic_set(&rth->u.dst.__refcnt, 1);
2387 rth->u.dst.flags= DST_HOST;
2388 if (IN_DEV_CONF_GET(in_dev, NOXFRM))
2389 rth->u.dst.flags |= DST_NOXFRM;
2390 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
2391 rth->u.dst.flags |= DST_NOPOLICY;
2392
2393 rth->fl.fl4_dst = oldflp->fl4_dst;
2394 rth->fl.fl4_tos = tos;
2395 rth->fl.fl4_src = oldflp->fl4_src;
2396 rth->fl.oif = oldflp->oif;
2397 rth->fl.mark = oldflp->mark;
2398 rth->rt_dst = fl->fl4_dst;
2399 rth->rt_src = fl->fl4_src;
2400 rth->rt_iif = oldflp->oif ? : dev_out->ifindex;
2401 /* get references to the devices that are to be hold by the routing
2402 cache entry */
2403 rth->u.dst.dev = dev_out;
2404 dev_hold(dev_out);
2405 rth->idev = in_dev_get(dev_out);
2406 rth->rt_gateway = fl->fl4_dst;
2407 rth->rt_spec_dst= fl->fl4_src;
2408
2409 rth->u.dst.output=ip_output;
2410 rth->rt_genid = rt_genid(dev_net(dev_out));
2411
2412 RT_CACHE_STAT_INC(out_slow_tot);
2413
2414 if (flags & RTCF_LOCAL) {
2415 rth->u.dst.input = ip_local_deliver;
2416 rth->rt_spec_dst = fl->fl4_dst;
2417 }
2418 if (flags & (RTCF_BROADCAST | RTCF_MULTICAST)) {
2419 rth->rt_spec_dst = fl->fl4_src;
2420 if (flags & RTCF_LOCAL &&
2421 !(dev_out->flags & IFF_LOOPBACK)) {
2422 rth->u.dst.output = ip_mc_output;
2423 RT_CACHE_STAT_INC(out_slow_mc);
2424 }
2425 #ifdef CONFIG_IP_MROUTE
2426 if (res->type == RTN_MULTICAST) {
2427 if (IN_DEV_MFORWARD(in_dev) &&
2428 !ipv4_is_local_multicast(oldflp->fl4_dst)) {
2429 rth->u.dst.input = ip_mr_input;
2430 rth->u.dst.output = ip_mc_output;
2431 }
2432 }
2433 #endif
2434 }
2435
2436 rt_set_nexthop(rth, res, 0);
2437
2438 rth->rt_flags = flags;
2439
2440 *result = rth;
2441 cleanup:
2442 /* release work reference to inet device */
2443 in_dev_put(in_dev);
2444
2445 return err;
2446 }
2447
2448 static int ip_mkroute_output(struct rtable **rp,
2449 struct fib_result *res,
2450 const struct flowi *fl,
2451 const struct flowi *oldflp,
2452 struct net_device *dev_out,
2453 unsigned flags)
2454 {
2455 struct rtable *rth = NULL;
2456 int err = __mkroute_output(&rth, res, fl, oldflp, dev_out, flags);
2457 unsigned hash;
2458 if (err == 0) {
2459 hash = rt_hash(oldflp->fl4_dst, oldflp->fl4_src, oldflp->oif,
2460 rt_genid(dev_net(dev_out)));
2461 err = rt_intern_hash(hash, rth, rp, NULL);
2462 }
2463
2464 return err;
2465 }
2466
2467 /*
2468 * Major route resolver routine.
2469 */
2470
2471 static int ip_route_output_slow(struct net *net, struct rtable **rp,
2472 const struct flowi *oldflp)
2473 {
2474 u32 tos = RT_FL_TOS(oldflp);
2475 struct flowi fl = { .nl_u = { .ip4_u =
2476 { .daddr = oldflp->fl4_dst,
2477 .saddr = oldflp->fl4_src,
2478 .tos = tos & IPTOS_RT_MASK,
2479 .scope = ((tos & RTO_ONLINK) ?
2480 RT_SCOPE_LINK :
2481 RT_SCOPE_UNIVERSE),
2482 } },
2483 .mark = oldflp->mark,
2484 .iif = net->loopback_dev->ifindex,
2485 .oif = oldflp->oif };
2486 struct fib_result res;
2487 unsigned flags = 0;
2488 struct net_device *dev_out = NULL;
2489 int free_res = 0;
2490 int err;
2491
2492
2493 res.fi = NULL;
2494 #ifdef CONFIG_IP_MULTIPLE_TABLES
2495 res.r = NULL;
2496 #endif
2497
2498 if (oldflp->fl4_src) {
2499 err = -EINVAL;
2500 if (ipv4_is_multicast(oldflp->fl4_src) ||
2501 ipv4_is_lbcast(oldflp->fl4_src) ||
2502 ipv4_is_zeronet(oldflp->fl4_src))
2503 goto out;
2504
2505 /* I removed check for oif == dev_out->oif here.
2506 It was wrong for two reasons:
2507 1. ip_dev_find(net, saddr) can return wrong iface, if saddr
2508 is assigned to multiple interfaces.
2509 2. Moreover, we are allowed to send packets with saddr
2510 of another iface. --ANK
2511 */
2512
2513 if (oldflp->oif == 0 &&
2514 (ipv4_is_multicast(oldflp->fl4_dst) ||
2515 oldflp->fl4_dst == htonl(0xFFFFFFFF))) {
2516 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2517 dev_out = ip_dev_find(net, oldflp->fl4_src);
2518 if (dev_out == NULL)
2519 goto out;
2520
2521 /* Special hack: user can direct multicasts
2522 and limited broadcast via necessary interface
2523 without fiddling with IP_MULTICAST_IF or IP_PKTINFO.
2524 This hack is not just for fun, it allows
2525 vic,vat and friends to work.
2526 They bind socket to loopback, set ttl to zero
2527 and expect that it will work.
2528 From the viewpoint of routing cache they are broken,
2529 because we are not allowed to build multicast path
2530 with loopback source addr (look, routing cache
2531 cannot know, that ttl is zero, so that packet
2532 will not leave this host and route is valid).
2533 Luckily, this hack is good workaround.
2534 */
2535
2536 fl.oif = dev_out->ifindex;
2537 goto make_route;
2538 }
2539
2540 if (!(oldflp->flags & FLOWI_FLAG_ANYSRC)) {
2541 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2542 dev_out = ip_dev_find(net, oldflp->fl4_src);
2543 if (dev_out == NULL)
2544 goto out;
2545 dev_put(dev_out);
2546 dev_out = NULL;
2547 }
2548 }
2549
2550
2551 if (oldflp->oif) {
2552 dev_out = dev_get_by_index(net, oldflp->oif);
2553 err = -ENODEV;
2554 if (dev_out == NULL)
2555 goto out;
2556
2557 /* RACE: Check return value of inet_select_addr instead. */
2558 if (__in_dev_get_rtnl(dev_out) == NULL) {
2559 dev_put(dev_out);
2560 goto out; /* Wrong error code */
2561 }
2562
2563 if (ipv4_is_local_multicast(oldflp->fl4_dst) ||
2564 oldflp->fl4_dst == htonl(0xFFFFFFFF)) {
2565 if (!fl.fl4_src)
2566 fl.fl4_src = inet_select_addr(dev_out, 0,
2567 RT_SCOPE_LINK);
2568 goto make_route;
2569 }
2570 if (!fl.fl4_src) {
2571 if (ipv4_is_multicast(oldflp->fl4_dst))
2572 fl.fl4_src = inet_select_addr(dev_out, 0,
2573 fl.fl4_scope);
2574 else if (!oldflp->fl4_dst)
2575 fl.fl4_src = inet_select_addr(dev_out, 0,
2576 RT_SCOPE_HOST);
2577 }
2578 }
2579
2580 if (!fl.fl4_dst) {
2581 fl.fl4_dst = fl.fl4_src;
2582 if (!fl.fl4_dst)
2583 fl.fl4_dst = fl.fl4_src = htonl(INADDR_LOOPBACK);
2584 if (dev_out)
2585 dev_put(dev_out);
2586 dev_out = net->loopback_dev;
2587 dev_hold(dev_out);
2588 fl.oif = net->loopback_dev->ifindex;
2589 res.type = RTN_LOCAL;
2590 flags |= RTCF_LOCAL;
2591 goto make_route;
2592 }
2593
2594 if (fib_lookup(net, &fl, &res)) {
2595 res.fi = NULL;
2596 if (oldflp->oif) {
2597 /* Apparently, routing tables are wrong. Assume,
2598 that the destination is on link.
2599
2600 WHY? DW.
2601 Because we are allowed to send to iface
2602 even if it has NO routes and NO assigned
2603 addresses. When oif is specified, routing
2604 tables are looked up with only one purpose:
2605 to catch if destination is gatewayed, rather than
2606 direct. Moreover, if MSG_DONTROUTE is set,
2607 we send packet, ignoring both routing tables
2608 and ifaddr state. --ANK
2609
2610
2611 We could make it even if oif is unknown,
2612 likely IPv6, but we do not.
2613 */
2614
2615 if (fl.fl4_src == 0)
2616 fl.fl4_src = inet_select_addr(dev_out, 0,
2617 RT_SCOPE_LINK);
2618 res.type = RTN_UNICAST;
2619 goto make_route;
2620 }
2621 if (dev_out)
2622 dev_put(dev_out);
2623 err = -ENETUNREACH;
2624 goto out;
2625 }
2626 free_res = 1;
2627
2628 if (res.type == RTN_LOCAL) {
2629 if (!fl.fl4_src)
2630 fl.fl4_src = fl.fl4_dst;
2631 if (dev_out)
2632 dev_put(dev_out);
2633 dev_out = net->loopback_dev;
2634 dev_hold(dev_out);
2635 fl.oif = dev_out->ifindex;
2636 if (res.fi)
2637 fib_info_put(res.fi);
2638 res.fi = NULL;
2639 flags |= RTCF_LOCAL;
2640 goto make_route;
2641 }
2642
2643 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2644 if (res.fi->fib_nhs > 1 && fl.oif == 0)
2645 fib_select_multipath(&fl, &res);
2646 else
2647 #endif
2648 if (!res.prefixlen && res.type == RTN_UNICAST && !fl.oif)
2649 fib_select_default(net, &fl, &res);
2650
2651 if (!fl.fl4_src)
2652 fl.fl4_src = FIB_RES_PREFSRC(res);
2653
2654 if (dev_out)
2655 dev_put(dev_out);
2656 dev_out = FIB_RES_DEV(res);
2657 dev_hold(dev_out);
2658 fl.oif = dev_out->ifindex;
2659
2660
2661 make_route:
2662 err = ip_mkroute_output(rp, &res, &fl, oldflp, dev_out, flags);
2663
2664
2665 if (free_res)
2666 fib_res_put(&res);
2667 if (dev_out)
2668 dev_put(dev_out);
2669 out: return err;
2670 }
2671
2672 int __ip_route_output_key(struct net *net, struct rtable **rp,
2673 const struct flowi *flp)
2674 {
2675 unsigned hash;
2676 struct rtable *rth;
2677
2678 if (!rt_caching(net))
2679 goto slow_output;
2680
2681 hash = rt_hash(flp->fl4_dst, flp->fl4_src, flp->oif, rt_genid(net));
2682
2683 rcu_read_lock_bh();
2684 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
2685 rth = rcu_dereference(rth->u.dst.rt_next)) {
2686 if (rth->fl.fl4_dst == flp->fl4_dst &&
2687 rth->fl.fl4_src == flp->fl4_src &&
2688 rth->fl.iif == 0 &&
2689 rth->fl.oif == flp->oif &&
2690 rth->fl.mark == flp->mark &&
2691 !((rth->fl.fl4_tos ^ flp->fl4_tos) &
2692 (IPTOS_RT_MASK | RTO_ONLINK)) &&
2693 net_eq(dev_net(rth->u.dst.dev), net) &&
2694 !rt_is_expired(rth)) {
2695 dst_use(&rth->u.dst, jiffies);
2696 RT_CACHE_STAT_INC(out_hit);
2697 rcu_read_unlock_bh();
2698 *rp = rth;
2699 return 0;
2700 }
2701 RT_CACHE_STAT_INC(out_hlist_search);
2702 }
2703 rcu_read_unlock_bh();
2704
2705 slow_output:
2706 return ip_route_output_slow(net, rp, flp);
2707 }
2708
2709 EXPORT_SYMBOL_GPL(__ip_route_output_key);
2710
2711 static void ipv4_rt_blackhole_update_pmtu(struct dst_entry *dst, u32 mtu)
2712 {
2713 }
2714
2715 static struct dst_ops ipv4_dst_blackhole_ops = {
2716 .family = AF_INET,
2717 .protocol = cpu_to_be16(ETH_P_IP),
2718 .destroy = ipv4_dst_destroy,
2719 .check = ipv4_dst_check,
2720 .update_pmtu = ipv4_rt_blackhole_update_pmtu,
2721 .entries = ATOMIC_INIT(0),
2722 };
2723
2724
2725 static int ipv4_dst_blackhole(struct net *net, struct rtable **rp, struct flowi *flp)
2726 {
2727 struct rtable *ort = *rp;
2728 struct rtable *rt = (struct rtable *)
2729 dst_alloc(&ipv4_dst_blackhole_ops);
2730
2731 if (rt) {
2732 struct dst_entry *new = &rt->u.dst;
2733
2734 atomic_set(&new->__refcnt, 1);
2735 new->__use = 1;
2736 new->input = dst_discard;
2737 new->output = dst_discard;
2738 memcpy(new->metrics, ort->u.dst.metrics, RTAX_MAX*sizeof(u32));
2739
2740 new->dev = ort->u.dst.dev;
2741 if (new->dev)
2742 dev_hold(new->dev);
2743
2744 rt->fl = ort->fl;
2745
2746 rt->idev = ort->idev;
2747 if (rt->idev)
2748 in_dev_hold(rt->idev);
2749 rt->rt_genid = rt_genid(net);
2750 rt->rt_flags = ort->rt_flags;
2751 rt->rt_type = ort->rt_type;
2752 rt->rt_dst = ort->rt_dst;
2753 rt->rt_src = ort->rt_src;
2754 rt->rt_iif = ort->rt_iif;
2755 rt->rt_gateway = ort->rt_gateway;
2756 rt->rt_spec_dst = ort->rt_spec_dst;
2757 rt->peer = ort->peer;
2758 if (rt->peer)
2759 atomic_inc(&rt->peer->refcnt);
2760
2761 dst_free(new);
2762 }
2763
2764 dst_release(&(*rp)->u.dst);
2765 *rp = rt;
2766 return (rt ? 0 : -ENOMEM);
2767 }
2768
2769 int ip_route_output_flow(struct net *net, struct rtable **rp, struct flowi *flp,
2770 struct sock *sk, int flags)
2771 {
2772 int err;
2773
2774 if ((err = __ip_route_output_key(net, rp, flp)) != 0)
2775 return err;
2776
2777 if (flp->proto) {
2778 if (!flp->fl4_src)
2779 flp->fl4_src = (*rp)->rt_src;
2780 if (!flp->fl4_dst)
2781 flp->fl4_dst = (*rp)->rt_dst;
2782 err = __xfrm_lookup(net, (struct dst_entry **)rp, flp, sk,
2783 flags ? XFRM_LOOKUP_WAIT : 0);
2784 if (err == -EREMOTE)
2785 err = ipv4_dst_blackhole(net, rp, flp);
2786
2787 return err;
2788 }
2789
2790 return 0;
2791 }
2792
2793 EXPORT_SYMBOL_GPL(ip_route_output_flow);
2794
2795 int ip_route_output_key(struct net *net, struct rtable **rp, struct flowi *flp)
2796 {
2797 return ip_route_output_flow(net, rp, flp, NULL, 0);
2798 }
2799
2800 static int rt_fill_info(struct net *net,
2801 struct sk_buff *skb, u32 pid, u32 seq, int event,
2802 int nowait, unsigned int flags)
2803 {
2804 struct rtable *rt = skb_rtable(skb);
2805 struct rtmsg *r;
2806 struct nlmsghdr *nlh;
2807 long expires;
2808 u32 id = 0, ts = 0, tsage = 0, error;
2809
2810 nlh = nlmsg_put(skb, pid, seq, event, sizeof(*r), flags);
2811 if (nlh == NULL)
2812 return -EMSGSIZE;
2813
2814 r = nlmsg_data(nlh);
2815 r->rtm_family = AF_INET;
2816 r->rtm_dst_len = 32;
2817 r->rtm_src_len = 0;
2818 r->rtm_tos = rt->fl.fl4_tos;
2819 r->rtm_table = RT_TABLE_MAIN;
2820 NLA_PUT_U32(skb, RTA_TABLE, RT_TABLE_MAIN);
2821 r->rtm_type = rt->rt_type;
2822 r->rtm_scope = RT_SCOPE_UNIVERSE;
2823 r->rtm_protocol = RTPROT_UNSPEC;
2824 r->rtm_flags = (rt->rt_flags & ~0xFFFF) | RTM_F_CLONED;
2825 if (rt->rt_flags & RTCF_NOTIFY)
2826 r->rtm_flags |= RTM_F_NOTIFY;
2827
2828 NLA_PUT_BE32(skb, RTA_DST, rt->rt_dst);
2829
2830 if (rt->fl.fl4_src) {
2831 r->rtm_src_len = 32;
2832 NLA_PUT_BE32(skb, RTA_SRC, rt->fl.fl4_src);
2833 }
2834 if (rt->u.dst.dev)
2835 NLA_PUT_U32(skb, RTA_OIF, rt->u.dst.dev->ifindex);
2836 #ifdef CONFIG_NET_CLS_ROUTE
2837 if (rt->u.dst.tclassid)
2838 NLA_PUT_U32(skb, RTA_FLOW, rt->u.dst.tclassid);
2839 #endif
2840 if (rt->fl.iif)
2841 NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_spec_dst);
2842 else if (rt->rt_src != rt->fl.fl4_src)
2843 NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_src);
2844
2845 if (rt->rt_dst != rt->rt_gateway)
2846 NLA_PUT_BE32(skb, RTA_GATEWAY, rt->rt_gateway);
2847
2848 if (rtnetlink_put_metrics(skb, rt->u.dst.metrics) < 0)
2849 goto nla_put_failure;
2850
2851 error = rt->u.dst.error;
2852 expires = rt->u.dst.expires ? rt->u.dst.expires - jiffies : 0;
2853 if (rt->peer) {
2854 id = atomic_read(&rt->peer->ip_id_count) & 0xffff;
2855 if (rt->peer->tcp_ts_stamp) {
2856 ts = rt->peer->tcp_ts;
2857 tsage = get_seconds() - rt->peer->tcp_ts_stamp;
2858 }
2859 }
2860
2861 if (rt->fl.iif) {
2862 #ifdef CONFIG_IP_MROUTE
2863 __be32 dst = rt->rt_dst;
2864
2865 if (ipv4_is_multicast(dst) && !ipv4_is_local_multicast(dst) &&
2866 IPV4_DEVCONF_ALL(net, MC_FORWARDING)) {
2867 int err = ipmr_get_route(net, skb, r, nowait);
2868 if (err <= 0) {
2869 if (!nowait) {
2870 if (err == 0)
2871 return 0;
2872 goto nla_put_failure;
2873 } else {
2874 if (err == -EMSGSIZE)
2875 goto nla_put_failure;
2876 error = err;
2877 }
2878 }
2879 } else
2880 #endif
2881 NLA_PUT_U32(skb, RTA_IIF, rt->fl.iif);
2882 }
2883
2884 if (rtnl_put_cacheinfo(skb, &rt->u.dst, id, ts, tsage,
2885 expires, error) < 0)
2886 goto nla_put_failure;
2887
2888 return nlmsg_end(skb, nlh);
2889
2890 nla_put_failure:
2891 nlmsg_cancel(skb, nlh);
2892 return -EMSGSIZE;
2893 }
2894
2895 static int inet_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr* nlh, void *arg)
2896 {
2897 struct net *net = sock_net(in_skb->sk);
2898 struct rtmsg *rtm;
2899 struct nlattr *tb[RTA_MAX+1];
2900 struct rtable *rt = NULL;
2901 __be32 dst = 0;
2902 __be32 src = 0;
2903 u32 iif;
2904 int err;
2905 struct sk_buff *skb;
2906
2907 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv4_policy);
2908 if (err < 0)
2909 goto errout;
2910
2911 rtm = nlmsg_data(nlh);
2912
2913 skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
2914 if (skb == NULL) {
2915 err = -ENOBUFS;
2916 goto errout;
2917 }
2918
2919 /* Reserve room for dummy headers, this skb can pass
2920 through good chunk of routing engine.
2921 */
2922 skb_reset_mac_header(skb);
2923 skb_reset_network_header(skb);
2924
2925 /* Bugfix: need to give ip_route_input enough of an IP header to not gag. */
2926 ip_hdr(skb)->protocol = IPPROTO_ICMP;
2927 skb_reserve(skb, MAX_HEADER + sizeof(struct iphdr));
2928
2929 src = tb[RTA_SRC] ? nla_get_be32(tb[RTA_SRC]) : 0;
2930 dst = tb[RTA_DST] ? nla_get_be32(tb[RTA_DST]) : 0;
2931 iif = tb[RTA_IIF] ? nla_get_u32(tb[RTA_IIF]) : 0;
2932
2933 if (iif) {
2934 struct net_device *dev;
2935
2936 dev = __dev_get_by_index(net, iif);
2937 if (dev == NULL) {
2938 err = -ENODEV;
2939 goto errout_free;
2940 }
2941
2942 skb->protocol = htons(ETH_P_IP);
2943 skb->dev = dev;
2944 local_bh_disable();
2945 err = ip_route_input(skb, dst, src, rtm->rtm_tos, dev);
2946 local_bh_enable();
2947
2948 rt = skb_rtable(skb);
2949 if (err == 0 && rt->u.dst.error)
2950 err = -rt->u.dst.error;
2951 } else {
2952 struct flowi fl = {
2953 .nl_u = {
2954 .ip4_u = {
2955 .daddr = dst,
2956 .saddr = src,
2957 .tos = rtm->rtm_tos,
2958 },
2959 },
2960 .oif = tb[RTA_OIF] ? nla_get_u32(tb[RTA_OIF]) : 0,
2961 };
2962 err = ip_route_output_key(net, &rt, &fl);
2963 }
2964
2965 if (err)
2966 goto errout_free;
2967
2968 skb_dst_set(skb, &rt->u.dst);
2969 if (rtm->rtm_flags & RTM_F_NOTIFY)
2970 rt->rt_flags |= RTCF_NOTIFY;
2971
2972 err = rt_fill_info(net, skb, NETLINK_CB(in_skb).pid, nlh->nlmsg_seq,
2973 RTM_NEWROUTE, 0, 0);
2974 if (err <= 0)
2975 goto errout_free;
2976
2977 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).pid);
2978 errout:
2979 return err;
2980
2981 errout_free:
2982 kfree_skb(skb);
2983 goto errout;
2984 }
2985
2986 int ip_rt_dump(struct sk_buff *skb, struct netlink_callback *cb)
2987 {
2988 struct rtable *rt;
2989 int h, s_h;
2990 int idx, s_idx;
2991 struct net *net;
2992
2993 net = sock_net(skb->sk);
2994
2995 s_h = cb->args[0];
2996 if (s_h < 0)
2997 s_h = 0;
2998 s_idx = idx = cb->args[1];
2999 for (h = s_h; h <= rt_hash_mask; h++, s_idx = 0) {
3000 if (!rt_hash_table[h].chain)
3001 continue;
3002 rcu_read_lock_bh();
3003 for (rt = rcu_dereference(rt_hash_table[h].chain), idx = 0; rt;
3004 rt = rcu_dereference(rt->u.dst.rt_next), idx++) {
3005 if (!net_eq(dev_net(rt->u.dst.dev), net) || idx < s_idx)
3006 continue;
3007 if (rt_is_expired(rt))
3008 continue;
3009 skb_dst_set(skb, dst_clone(&rt->u.dst));
3010 if (rt_fill_info(net, skb, NETLINK_CB(cb->skb).pid,
3011 cb->nlh->nlmsg_seq, RTM_NEWROUTE,
3012 1, NLM_F_MULTI) <= 0) {
3013 skb_dst_drop(skb);
3014 rcu_read_unlock_bh();
3015 goto done;
3016 }
3017 skb_dst_drop(skb);
3018 }
3019 rcu_read_unlock_bh();
3020 }
3021
3022 done:
3023 cb->args[0] = h;
3024 cb->args[1] = idx;
3025 return skb->len;
3026 }
3027
3028 void ip_rt_multicast_event(struct in_device *in_dev)
3029 {
3030 rt_cache_flush(dev_net(in_dev->dev), 0);
3031 }
3032
3033 #ifdef CONFIG_SYSCTL
3034 static int ipv4_sysctl_rtcache_flush(ctl_table *__ctl, int write,
3035 void __user *buffer,
3036 size_t *lenp, loff_t *ppos)
3037 {
3038 if (write) {
3039 int flush_delay;
3040 ctl_table ctl;
3041 struct net *net;
3042
3043 memcpy(&ctl, __ctl, sizeof(ctl));
3044 ctl.data = &flush_delay;
3045 proc_dointvec(&ctl, write, buffer, lenp, ppos);
3046
3047 net = (struct net *)__ctl->extra1;
3048 rt_cache_flush(net, flush_delay);
3049 return 0;
3050 }
3051
3052 return -EINVAL;
3053 }
3054
3055 static int ipv4_sysctl_rtcache_flush_strategy(ctl_table *table,
3056 void __user *oldval,
3057 size_t __user *oldlenp,
3058 void __user *newval,
3059 size_t newlen)
3060 {
3061 int delay;
3062 struct net *net;
3063 if (newlen != sizeof(int))
3064 return -EINVAL;
3065 if (get_user(delay, (int __user *)newval))
3066 return -EFAULT;
3067 net = (struct net *)table->extra1;
3068 rt_cache_flush(net, delay);
3069 return 0;
3070 }
3071
3072 static void rt_secret_reschedule(int old)
3073 {
3074 struct net *net;
3075 int new = ip_rt_secret_interval;
3076 int diff = new - old;
3077
3078 if (!diff)
3079 return;
3080
3081 rtnl_lock();
3082 for_each_net(net) {
3083 int deleted = del_timer_sync(&net->ipv4.rt_secret_timer);
3084
3085 if (!new)
3086 continue;
3087
3088 if (deleted) {
3089 long time = net->ipv4.rt_secret_timer.expires - jiffies;
3090
3091 if (time <= 0 || (time += diff) <= 0)
3092 time = 0;
3093
3094 net->ipv4.rt_secret_timer.expires = time;
3095 } else
3096 net->ipv4.rt_secret_timer.expires = new;
3097
3098 net->ipv4.rt_secret_timer.expires += jiffies;
3099 add_timer(&net->ipv4.rt_secret_timer);
3100 }
3101 rtnl_unlock();
3102 }
3103
3104 static int ipv4_sysctl_rt_secret_interval(ctl_table *ctl, int write,
3105 void __user *buffer, size_t *lenp,
3106 loff_t *ppos)
3107 {
3108 int old = ip_rt_secret_interval;
3109 int ret = proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos);
3110
3111 rt_secret_reschedule(old);
3112
3113 return ret;
3114 }
3115
3116 static int ipv4_sysctl_rt_secret_interval_strategy(ctl_table *table,
3117 void __user *oldval,
3118 size_t __user *oldlenp,
3119 void __user *newval,
3120 size_t newlen)
3121 {
3122 int old = ip_rt_secret_interval;
3123 int ret = sysctl_jiffies(table, oldval, oldlenp, newval, newlen);
3124
3125 rt_secret_reschedule(old);
3126
3127 return ret;
3128 }
3129
3130 static ctl_table ipv4_route_table[] = {
3131 {
3132 .ctl_name = NET_IPV4_ROUTE_GC_THRESH,
3133 .procname = "gc_thresh",
3134 .data = &ipv4_dst_ops.gc_thresh,
3135 .maxlen = sizeof(int),
3136 .mode = 0644,
3137 .proc_handler = proc_dointvec,
3138 },
3139 {
3140 .ctl_name = NET_IPV4_ROUTE_MAX_SIZE,
3141 .procname = "max_size",
3142 .data = &ip_rt_max_size,
3143 .maxlen = sizeof(int),
3144 .mode = 0644,
3145 .proc_handler = proc_dointvec,
3146 },
3147 {
3148 /* Deprecated. Use gc_min_interval_ms */
3149
3150 .ctl_name = NET_IPV4_ROUTE_GC_MIN_INTERVAL,
3151 .procname = "gc_min_interval",
3152 .data = &ip_rt_gc_min_interval,
3153 .maxlen = sizeof(int),
3154 .mode = 0644,
3155 .proc_handler = proc_dointvec_jiffies,
3156 .strategy = sysctl_jiffies,
3157 },
3158 {
3159 .ctl_name = NET_IPV4_ROUTE_GC_MIN_INTERVAL_MS,
3160 .procname = "gc_min_interval_ms",
3161 .data = &ip_rt_gc_min_interval,
3162 .maxlen = sizeof(int),
3163 .mode = 0644,
3164 .proc_handler = proc_dointvec_ms_jiffies,
3165 .strategy = sysctl_ms_jiffies,
3166 },
3167 {
3168 .ctl_name = NET_IPV4_ROUTE_GC_TIMEOUT,
3169 .procname = "gc_timeout",
3170 .data = &ip_rt_gc_timeout,
3171 .maxlen = sizeof(int),
3172 .mode = 0644,
3173 .proc_handler = proc_dointvec_jiffies,
3174 .strategy = sysctl_jiffies,
3175 },
3176 {
3177 .ctl_name = NET_IPV4_ROUTE_GC_INTERVAL,
3178 .procname = "gc_interval",
3179 .data = &ip_rt_gc_interval,
3180 .maxlen = sizeof(int),
3181 .mode = 0644,
3182 .proc_handler = proc_dointvec_jiffies,
3183 .strategy = sysctl_jiffies,
3184 },
3185 {
3186 .ctl_name = NET_IPV4_ROUTE_REDIRECT_LOAD,
3187 .procname = "redirect_load",
3188 .data = &ip_rt_redirect_load,
3189 .maxlen = sizeof(int),
3190 .mode = 0644,
3191 .proc_handler = proc_dointvec,
3192 },
3193 {
3194 .ctl_name = NET_IPV4_ROUTE_REDIRECT_NUMBER,
3195 .procname = "redirect_number",
3196 .data = &ip_rt_redirect_number,
3197 .maxlen = sizeof(int),
3198 .mode = 0644,
3199 .proc_handler = proc_dointvec,
3200 },
3201 {
3202 .ctl_name = NET_IPV4_ROUTE_REDIRECT_SILENCE,
3203 .procname = "redirect_silence",
3204 .data = &ip_rt_redirect_silence,
3205 .maxlen = sizeof(int),
3206 .mode = 0644,
3207 .proc_handler = proc_dointvec,
3208 },
3209 {
3210 .ctl_name = NET_IPV4_ROUTE_ERROR_COST,
3211 .procname = "error_cost",
3212 .data = &ip_rt_error_cost,
3213 .maxlen = sizeof(int),
3214 .mode = 0644,
3215 .proc_handler = proc_dointvec,
3216 },
3217 {
3218 .ctl_name = NET_IPV4_ROUTE_ERROR_BURST,
3219 .procname = "error_burst",
3220 .data = &ip_rt_error_burst,
3221 .maxlen = sizeof(int),
3222 .mode = 0644,
3223 .proc_handler = proc_dointvec,
3224 },
3225 {
3226 .ctl_name = NET_IPV4_ROUTE_GC_ELASTICITY,
3227 .procname = "gc_elasticity",
3228 .data = &ip_rt_gc_elasticity,
3229 .maxlen = sizeof(int),
3230 .mode = 0644,
3231 .proc_handler = proc_dointvec,
3232 },
3233 {
3234 .ctl_name = NET_IPV4_ROUTE_MTU_EXPIRES,
3235 .procname = "mtu_expires",
3236 .data = &ip_rt_mtu_expires,
3237 .maxlen = sizeof(int),
3238 .mode = 0644,
3239 .proc_handler = proc_dointvec_jiffies,
3240 .strategy = sysctl_jiffies,
3241 },
3242 {
3243 .ctl_name = NET_IPV4_ROUTE_MIN_PMTU,
3244 .procname = "min_pmtu",
3245 .data = &ip_rt_min_pmtu,
3246 .maxlen = sizeof(int),
3247 .mode = 0644,
3248 .proc_handler = proc_dointvec,
3249 },
3250 {
3251 .ctl_name = NET_IPV4_ROUTE_MIN_ADVMSS,
3252 .procname = "min_adv_mss",
3253 .data = &ip_rt_min_advmss,
3254 .maxlen = sizeof(int),
3255 .mode = 0644,
3256 .proc_handler = proc_dointvec,
3257 },
3258 {
3259 .ctl_name = NET_IPV4_ROUTE_SECRET_INTERVAL,
3260 .procname = "secret_interval",
3261 .data = &ip_rt_secret_interval,
3262 .maxlen = sizeof(int),
3263 .mode = 0644,
3264 .proc_handler = ipv4_sysctl_rt_secret_interval,
3265 .strategy = ipv4_sysctl_rt_secret_interval_strategy,
3266 },
3267 { .ctl_name = 0 }
3268 };
3269
3270 static struct ctl_table empty[1];
3271
3272 static struct ctl_table ipv4_skeleton[] =
3273 {
3274 { .procname = "route", .ctl_name = NET_IPV4_ROUTE,
3275 .mode = 0555, .child = ipv4_route_table},
3276 { .procname = "neigh", .ctl_name = NET_IPV4_NEIGH,
3277 .mode = 0555, .child = empty},
3278 { }
3279 };
3280
3281 static __net_initdata struct ctl_path ipv4_path[] = {
3282 { .procname = "net", .ctl_name = CTL_NET, },
3283 { .procname = "ipv4", .ctl_name = NET_IPV4, },
3284 { },
3285 };
3286
3287 static struct ctl_table ipv4_route_flush_table[] = {
3288 {
3289 .ctl_name = NET_IPV4_ROUTE_FLUSH,
3290 .procname = "flush",
3291 .maxlen = sizeof(int),
3292 .mode = 0200,
3293 .proc_handler = ipv4_sysctl_rtcache_flush,
3294 .strategy = ipv4_sysctl_rtcache_flush_strategy,
3295 },
3296 { .ctl_name = 0 },
3297 };
3298
3299 static __net_initdata struct ctl_path ipv4_route_path[] = {
3300 { .procname = "net", .ctl_name = CTL_NET, },
3301 { .procname = "ipv4", .ctl_name = NET_IPV4, },
3302 { .procname = "route", .ctl_name = NET_IPV4_ROUTE, },
3303 { },
3304 };
3305
3306 static __net_init int sysctl_route_net_init(struct net *net)
3307 {
3308 struct ctl_table *tbl;
3309
3310 tbl = ipv4_route_flush_table;
3311 if (!net_eq(net, &init_net)) {
3312 tbl = kmemdup(tbl, sizeof(ipv4_route_flush_table), GFP_KERNEL);
3313 if (tbl == NULL)
3314 goto err_dup;
3315 }
3316 tbl[0].extra1 = net;
3317
3318 net->ipv4.route_hdr =
3319 register_net_sysctl_table(net, ipv4_route_path, tbl);
3320 if (net->ipv4.route_hdr == NULL)
3321 goto err_reg;
3322 return 0;
3323
3324 err_reg:
3325 if (tbl != ipv4_route_flush_table)
3326 kfree(tbl);
3327 err_dup:
3328 return -ENOMEM;
3329 }
3330
3331 static __net_exit void sysctl_route_net_exit(struct net *net)
3332 {
3333 struct ctl_table *tbl;
3334
3335 tbl = net->ipv4.route_hdr->ctl_table_arg;
3336 unregister_net_sysctl_table(net->ipv4.route_hdr);
3337 BUG_ON(tbl == ipv4_route_flush_table);
3338 kfree(tbl);
3339 }
3340
3341 static __net_initdata struct pernet_operations sysctl_route_ops = {
3342 .init = sysctl_route_net_init,
3343 .exit = sysctl_route_net_exit,
3344 };
3345 #endif
3346
3347
3348 static __net_init int rt_secret_timer_init(struct net *net)
3349 {
3350 atomic_set(&net->ipv4.rt_genid,
3351 (int) ((num_physpages ^ (num_physpages>>8)) ^
3352 (jiffies ^ (jiffies >> 7))));
3353
3354 net->ipv4.rt_secret_timer.function = rt_secret_rebuild;
3355 net->ipv4.rt_secret_timer.data = (unsigned long)net;
3356 init_timer_deferrable(&net->ipv4.rt_secret_timer);
3357
3358 if (ip_rt_secret_interval) {
3359 net->ipv4.rt_secret_timer.expires =
3360 jiffies + net_random() % ip_rt_secret_interval +
3361 ip_rt_secret_interval;
3362 add_timer(&net->ipv4.rt_secret_timer);
3363 }
3364 return 0;
3365 }
3366
3367 static __net_exit void rt_secret_timer_exit(struct net *net)
3368 {
3369 del_timer_sync(&net->ipv4.rt_secret_timer);
3370 }
3371
3372 static __net_initdata struct pernet_operations rt_secret_timer_ops = {
3373 .init = rt_secret_timer_init,
3374 .exit = rt_secret_timer_exit,
3375 };
3376
3377
3378 #ifdef CONFIG_NET_CLS_ROUTE
3379 struct ip_rt_acct *ip_rt_acct __read_mostly;
3380 #endif /* CONFIG_NET_CLS_ROUTE */
3381
3382 static __initdata unsigned long rhash_entries;
3383 static int __init set_rhash_entries(char *str)
3384 {
3385 if (!str)
3386 return 0;
3387 rhash_entries = simple_strtoul(str, &str, 0);
3388 return 1;
3389 }
3390 __setup("rhash_entries=", set_rhash_entries);
3391
3392 int __init ip_rt_init(void)
3393 {
3394 int rc = 0;
3395
3396 #ifdef CONFIG_NET_CLS_ROUTE
3397 ip_rt_acct = __alloc_percpu(256 * sizeof(struct ip_rt_acct), __alignof__(struct ip_rt_acct));
3398 if (!ip_rt_acct)
3399 panic("IP: failed to allocate ip_rt_acct\n");
3400 #endif
3401
3402 ipv4_dst_ops.kmem_cachep =
3403 kmem_cache_create("ip_dst_cache", sizeof(struct rtable), 0,
3404 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3405
3406 ipv4_dst_blackhole_ops.kmem_cachep = ipv4_dst_ops.kmem_cachep;
3407
3408 rt_hash_table = (struct rt_hash_bucket *)
3409 alloc_large_system_hash("IP route cache",
3410 sizeof(struct rt_hash_bucket),
3411 rhash_entries,
3412 (totalram_pages >= 128 * 1024) ?
3413 15 : 17,
3414 0,
3415 &rt_hash_log,
3416 &rt_hash_mask,
3417 rhash_entries ? 0 : 512 * 1024);
3418 memset(rt_hash_table, 0, (rt_hash_mask + 1) * sizeof(struct rt_hash_bucket));
3419 rt_hash_lock_init();
3420
3421 ipv4_dst_ops.gc_thresh = (rt_hash_mask + 1);
3422 ip_rt_max_size = (rt_hash_mask + 1) * 16;
3423
3424 devinet_init();
3425 ip_fib_init();
3426
3427 /* All the timers, started at system startup tend
3428 to synchronize. Perturb it a bit.
3429 */
3430 INIT_DELAYED_WORK_DEFERRABLE(&expires_work, rt_worker_func);
3431 expires_ljiffies = jiffies;
3432 schedule_delayed_work(&expires_work,
3433 net_random() % ip_rt_gc_interval + ip_rt_gc_interval);
3434
3435 if (register_pernet_subsys(&rt_secret_timer_ops))
3436 printk(KERN_ERR "Unable to setup rt_secret_timer\n");
3437
3438 if (ip_rt_proc_init())
3439 printk(KERN_ERR "Unable to create route proc files\n");
3440 #ifdef CONFIG_XFRM
3441 xfrm_init();
3442 xfrm4_init(ip_rt_max_size);
3443 #endif
3444 rtnl_register(PF_INET, RTM_GETROUTE, inet_rtm_getroute, NULL);
3445
3446 #ifdef CONFIG_SYSCTL
3447 register_pernet_subsys(&sysctl_route_ops);
3448 #endif
3449 return rc;
3450 }
3451
3452 #ifdef CONFIG_SYSCTL
3453 /*
3454 * We really need to sanitize the damn ipv4 init order, then all
3455 * this nonsense will go away.
3456 */
3457 void __init ip_static_sysctl_init(void)
3458 {
3459 register_sysctl_paths(ipv4_path, ipv4_skeleton);
3460 }
3461 #endif
3462
3463 EXPORT_SYMBOL(__ip_select_ident);
3464 EXPORT_SYMBOL(ip_route_input);
3465 EXPORT_SYMBOL(ip_route_output_key);