]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - net/ipv4/route.c
net: replace NIPQUAD() in net/ipv4/ net/ipv6/
[mirror_ubuntu-focal-kernel.git] / net / ipv4 / route.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * ROUTE - implementation of the IP router.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Alan Cox, <gw4pts@gw4pts.ampr.org>
11 * Linus Torvalds, <Linus.Torvalds@helsinki.fi>
12 * Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
13 *
14 * Fixes:
15 * Alan Cox : Verify area fixes.
16 * Alan Cox : cli() protects routing changes
17 * Rui Oliveira : ICMP routing table updates
18 * (rco@di.uminho.pt) Routing table insertion and update
19 * Linus Torvalds : Rewrote bits to be sensible
20 * Alan Cox : Added BSD route gw semantics
21 * Alan Cox : Super /proc >4K
22 * Alan Cox : MTU in route table
23 * Alan Cox : MSS actually. Also added the window
24 * clamper.
25 * Sam Lantinga : Fixed route matching in rt_del()
26 * Alan Cox : Routing cache support.
27 * Alan Cox : Removed compatibility cruft.
28 * Alan Cox : RTF_REJECT support.
29 * Alan Cox : TCP irtt support.
30 * Jonathan Naylor : Added Metric support.
31 * Miquel van Smoorenburg : BSD API fixes.
32 * Miquel van Smoorenburg : Metrics.
33 * Alan Cox : Use __u32 properly
34 * Alan Cox : Aligned routing errors more closely with BSD
35 * our system is still very different.
36 * Alan Cox : Faster /proc handling
37 * Alexey Kuznetsov : Massive rework to support tree based routing,
38 * routing caches and better behaviour.
39 *
40 * Olaf Erb : irtt wasn't being copied right.
41 * Bjorn Ekwall : Kerneld route support.
42 * Alan Cox : Multicast fixed (I hope)
43 * Pavel Krauz : Limited broadcast fixed
44 * Mike McLagan : Routing by source
45 * Alexey Kuznetsov : End of old history. Split to fib.c and
46 * route.c and rewritten from scratch.
47 * Andi Kleen : Load-limit warning messages.
48 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
49 * Vitaly E. Lavrov : Race condition in ip_route_input_slow.
50 * Tobias Ringstrom : Uninitialized res.type in ip_route_output_slow.
51 * Vladimir V. Ivanov : IP rule info (flowid) is really useful.
52 * Marc Boucher : routing by fwmark
53 * Robert Olsson : Added rt_cache statistics
54 * Arnaldo C. Melo : Convert proc stuff to seq_file
55 * Eric Dumazet : hashed spinlocks and rt_check_expire() fixes.
56 * Ilia Sotnikov : Ignore TOS on PMTUD and Redirect
57 * Ilia Sotnikov : Removed TOS from hash calculations
58 *
59 * This program is free software; you can redistribute it and/or
60 * modify it under the terms of the GNU General Public License
61 * as published by the Free Software Foundation; either version
62 * 2 of the License, or (at your option) any later version.
63 */
64
65 #include <linux/module.h>
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
68 #include <linux/bitops.h>
69 #include <linux/types.h>
70 #include <linux/kernel.h>
71 #include <linux/mm.h>
72 #include <linux/bootmem.h>
73 #include <linux/string.h>
74 #include <linux/socket.h>
75 #include <linux/sockios.h>
76 #include <linux/errno.h>
77 #include <linux/in.h>
78 #include <linux/inet.h>
79 #include <linux/netdevice.h>
80 #include <linux/proc_fs.h>
81 #include <linux/init.h>
82 #include <linux/workqueue.h>
83 #include <linux/skbuff.h>
84 #include <linux/inetdevice.h>
85 #include <linux/igmp.h>
86 #include <linux/pkt_sched.h>
87 #include <linux/mroute.h>
88 #include <linux/netfilter_ipv4.h>
89 #include <linux/random.h>
90 #include <linux/jhash.h>
91 #include <linux/rcupdate.h>
92 #include <linux/times.h>
93 #include <net/dst.h>
94 #include <net/net_namespace.h>
95 #include <net/protocol.h>
96 #include <net/ip.h>
97 #include <net/route.h>
98 #include <net/inetpeer.h>
99 #include <net/sock.h>
100 #include <net/ip_fib.h>
101 #include <net/arp.h>
102 #include <net/tcp.h>
103 #include <net/icmp.h>
104 #include <net/xfrm.h>
105 #include <net/netevent.h>
106 #include <net/rtnetlink.h>
107 #ifdef CONFIG_SYSCTL
108 #include <linux/sysctl.h>
109 #endif
110
111 #define RT_FL_TOS(oldflp) \
112 ((u32)(oldflp->fl4_tos & (IPTOS_RT_MASK | RTO_ONLINK)))
113
114 #define IP_MAX_MTU 0xFFF0
115
116 #define RT_GC_TIMEOUT (300*HZ)
117
118 static int ip_rt_max_size;
119 static int ip_rt_gc_timeout __read_mostly = RT_GC_TIMEOUT;
120 static int ip_rt_gc_interval __read_mostly = 60 * HZ;
121 static int ip_rt_gc_min_interval __read_mostly = HZ / 2;
122 static int ip_rt_redirect_number __read_mostly = 9;
123 static int ip_rt_redirect_load __read_mostly = HZ / 50;
124 static int ip_rt_redirect_silence __read_mostly = ((HZ / 50) << (9 + 1));
125 static int ip_rt_error_cost __read_mostly = HZ;
126 static int ip_rt_error_burst __read_mostly = 5 * HZ;
127 static int ip_rt_gc_elasticity __read_mostly = 8;
128 static int ip_rt_mtu_expires __read_mostly = 10 * 60 * HZ;
129 static int ip_rt_min_pmtu __read_mostly = 512 + 20 + 20;
130 static int ip_rt_min_advmss __read_mostly = 256;
131 static int ip_rt_secret_interval __read_mostly = 10 * 60 * HZ;
132 static int rt_chain_length_max __read_mostly = 20;
133
134 static void rt_worker_func(struct work_struct *work);
135 static DECLARE_DELAYED_WORK(expires_work, rt_worker_func);
136
137 /*
138 * Interface to generic destination cache.
139 */
140
141 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie);
142 static void ipv4_dst_destroy(struct dst_entry *dst);
143 static void ipv4_dst_ifdown(struct dst_entry *dst,
144 struct net_device *dev, int how);
145 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst);
146 static void ipv4_link_failure(struct sk_buff *skb);
147 static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu);
148 static int rt_garbage_collect(struct dst_ops *ops);
149 static void rt_emergency_hash_rebuild(struct net *net);
150
151
152 static struct dst_ops ipv4_dst_ops = {
153 .family = AF_INET,
154 .protocol = __constant_htons(ETH_P_IP),
155 .gc = rt_garbage_collect,
156 .check = ipv4_dst_check,
157 .destroy = ipv4_dst_destroy,
158 .ifdown = ipv4_dst_ifdown,
159 .negative_advice = ipv4_negative_advice,
160 .link_failure = ipv4_link_failure,
161 .update_pmtu = ip_rt_update_pmtu,
162 .local_out = __ip_local_out,
163 .entry_size = sizeof(struct rtable),
164 .entries = ATOMIC_INIT(0),
165 };
166
167 #define ECN_OR_COST(class) TC_PRIO_##class
168
169 const __u8 ip_tos2prio[16] = {
170 TC_PRIO_BESTEFFORT,
171 ECN_OR_COST(FILLER),
172 TC_PRIO_BESTEFFORT,
173 ECN_OR_COST(BESTEFFORT),
174 TC_PRIO_BULK,
175 ECN_OR_COST(BULK),
176 TC_PRIO_BULK,
177 ECN_OR_COST(BULK),
178 TC_PRIO_INTERACTIVE,
179 ECN_OR_COST(INTERACTIVE),
180 TC_PRIO_INTERACTIVE,
181 ECN_OR_COST(INTERACTIVE),
182 TC_PRIO_INTERACTIVE_BULK,
183 ECN_OR_COST(INTERACTIVE_BULK),
184 TC_PRIO_INTERACTIVE_BULK,
185 ECN_OR_COST(INTERACTIVE_BULK)
186 };
187
188
189 /*
190 * Route cache.
191 */
192
193 /* The locking scheme is rather straight forward:
194 *
195 * 1) Read-Copy Update protects the buckets of the central route hash.
196 * 2) Only writers remove entries, and they hold the lock
197 * as they look at rtable reference counts.
198 * 3) Only readers acquire references to rtable entries,
199 * they do so with atomic increments and with the
200 * lock held.
201 */
202
203 struct rt_hash_bucket {
204 struct rtable *chain;
205 };
206
207 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) || \
208 defined(CONFIG_PROVE_LOCKING)
209 /*
210 * Instead of using one spinlock for each rt_hash_bucket, we use a table of spinlocks
211 * The size of this table is a power of two and depends on the number of CPUS.
212 * (on lockdep we have a quite big spinlock_t, so keep the size down there)
213 */
214 #ifdef CONFIG_LOCKDEP
215 # define RT_HASH_LOCK_SZ 256
216 #else
217 # if NR_CPUS >= 32
218 # define RT_HASH_LOCK_SZ 4096
219 # elif NR_CPUS >= 16
220 # define RT_HASH_LOCK_SZ 2048
221 # elif NR_CPUS >= 8
222 # define RT_HASH_LOCK_SZ 1024
223 # elif NR_CPUS >= 4
224 # define RT_HASH_LOCK_SZ 512
225 # else
226 # define RT_HASH_LOCK_SZ 256
227 # endif
228 #endif
229
230 static spinlock_t *rt_hash_locks;
231 # define rt_hash_lock_addr(slot) &rt_hash_locks[(slot) & (RT_HASH_LOCK_SZ - 1)]
232
233 static __init void rt_hash_lock_init(void)
234 {
235 int i;
236
237 rt_hash_locks = kmalloc(sizeof(spinlock_t) * RT_HASH_LOCK_SZ,
238 GFP_KERNEL);
239 if (!rt_hash_locks)
240 panic("IP: failed to allocate rt_hash_locks\n");
241
242 for (i = 0; i < RT_HASH_LOCK_SZ; i++)
243 spin_lock_init(&rt_hash_locks[i]);
244 }
245 #else
246 # define rt_hash_lock_addr(slot) NULL
247
248 static inline void rt_hash_lock_init(void)
249 {
250 }
251 #endif
252
253 static struct rt_hash_bucket *rt_hash_table __read_mostly;
254 static unsigned rt_hash_mask __read_mostly;
255 static unsigned int rt_hash_log __read_mostly;
256
257 static DEFINE_PER_CPU(struct rt_cache_stat, rt_cache_stat);
258 #define RT_CACHE_STAT_INC(field) \
259 (__raw_get_cpu_var(rt_cache_stat).field++)
260
261 static inline unsigned int rt_hash(__be32 daddr, __be32 saddr, int idx,
262 int genid)
263 {
264 return jhash_3words((__force u32)(__be32)(daddr),
265 (__force u32)(__be32)(saddr),
266 idx, genid)
267 & rt_hash_mask;
268 }
269
270 static inline int rt_genid(struct net *net)
271 {
272 return atomic_read(&net->ipv4.rt_genid);
273 }
274
275 #ifdef CONFIG_PROC_FS
276 struct rt_cache_iter_state {
277 struct seq_net_private p;
278 int bucket;
279 int genid;
280 };
281
282 static struct rtable *rt_cache_get_first(struct seq_file *seq)
283 {
284 struct rt_cache_iter_state *st = seq->private;
285 struct rtable *r = NULL;
286
287 for (st->bucket = rt_hash_mask; st->bucket >= 0; --st->bucket) {
288 if (!rt_hash_table[st->bucket].chain)
289 continue;
290 rcu_read_lock_bh();
291 r = rcu_dereference(rt_hash_table[st->bucket].chain);
292 while (r) {
293 if (dev_net(r->u.dst.dev) == seq_file_net(seq) &&
294 r->rt_genid == st->genid)
295 return r;
296 r = rcu_dereference(r->u.dst.rt_next);
297 }
298 rcu_read_unlock_bh();
299 }
300 return r;
301 }
302
303 static struct rtable *__rt_cache_get_next(struct seq_file *seq,
304 struct rtable *r)
305 {
306 struct rt_cache_iter_state *st = seq->private;
307
308 r = r->u.dst.rt_next;
309 while (!r) {
310 rcu_read_unlock_bh();
311 do {
312 if (--st->bucket < 0)
313 return NULL;
314 } while (!rt_hash_table[st->bucket].chain);
315 rcu_read_lock_bh();
316 r = rt_hash_table[st->bucket].chain;
317 }
318 return rcu_dereference(r);
319 }
320
321 static struct rtable *rt_cache_get_next(struct seq_file *seq,
322 struct rtable *r)
323 {
324 struct rt_cache_iter_state *st = seq->private;
325 while ((r = __rt_cache_get_next(seq, r)) != NULL) {
326 if (dev_net(r->u.dst.dev) != seq_file_net(seq))
327 continue;
328 if (r->rt_genid == st->genid)
329 break;
330 }
331 return r;
332 }
333
334 static struct rtable *rt_cache_get_idx(struct seq_file *seq, loff_t pos)
335 {
336 struct rtable *r = rt_cache_get_first(seq);
337
338 if (r)
339 while (pos && (r = rt_cache_get_next(seq, r)))
340 --pos;
341 return pos ? NULL : r;
342 }
343
344 static void *rt_cache_seq_start(struct seq_file *seq, loff_t *pos)
345 {
346 struct rt_cache_iter_state *st = seq->private;
347 if (*pos)
348 return rt_cache_get_idx(seq, *pos - 1);
349 st->genid = rt_genid(seq_file_net(seq));
350 return SEQ_START_TOKEN;
351 }
352
353 static void *rt_cache_seq_next(struct seq_file *seq, void *v, loff_t *pos)
354 {
355 struct rtable *r;
356
357 if (v == SEQ_START_TOKEN)
358 r = rt_cache_get_first(seq);
359 else
360 r = rt_cache_get_next(seq, v);
361 ++*pos;
362 return r;
363 }
364
365 static void rt_cache_seq_stop(struct seq_file *seq, void *v)
366 {
367 if (v && v != SEQ_START_TOKEN)
368 rcu_read_unlock_bh();
369 }
370
371 static int rt_cache_seq_show(struct seq_file *seq, void *v)
372 {
373 if (v == SEQ_START_TOKEN)
374 seq_printf(seq, "%-127s\n",
375 "Iface\tDestination\tGateway \tFlags\t\tRefCnt\tUse\t"
376 "Metric\tSource\t\tMTU\tWindow\tIRTT\tTOS\tHHRef\t"
377 "HHUptod\tSpecDst");
378 else {
379 struct rtable *r = v;
380 int len;
381
382 seq_printf(seq, "%s\t%08lX\t%08lX\t%8X\t%d\t%u\t%d\t"
383 "%08lX\t%d\t%u\t%u\t%02X\t%d\t%1d\t%08X%n",
384 r->u.dst.dev ? r->u.dst.dev->name : "*",
385 (unsigned long)r->rt_dst, (unsigned long)r->rt_gateway,
386 r->rt_flags, atomic_read(&r->u.dst.__refcnt),
387 r->u.dst.__use, 0, (unsigned long)r->rt_src,
388 (dst_metric(&r->u.dst, RTAX_ADVMSS) ?
389 (int)dst_metric(&r->u.dst, RTAX_ADVMSS) + 40 : 0),
390 dst_metric(&r->u.dst, RTAX_WINDOW),
391 (int)((dst_metric(&r->u.dst, RTAX_RTT) >> 3) +
392 dst_metric(&r->u.dst, RTAX_RTTVAR)),
393 r->fl.fl4_tos,
394 r->u.dst.hh ? atomic_read(&r->u.dst.hh->hh_refcnt) : -1,
395 r->u.dst.hh ? (r->u.dst.hh->hh_output ==
396 dev_queue_xmit) : 0,
397 r->rt_spec_dst, &len);
398
399 seq_printf(seq, "%*s\n", 127 - len, "");
400 }
401 return 0;
402 }
403
404 static const struct seq_operations rt_cache_seq_ops = {
405 .start = rt_cache_seq_start,
406 .next = rt_cache_seq_next,
407 .stop = rt_cache_seq_stop,
408 .show = rt_cache_seq_show,
409 };
410
411 static int rt_cache_seq_open(struct inode *inode, struct file *file)
412 {
413 return seq_open_net(inode, file, &rt_cache_seq_ops,
414 sizeof(struct rt_cache_iter_state));
415 }
416
417 static const struct file_operations rt_cache_seq_fops = {
418 .owner = THIS_MODULE,
419 .open = rt_cache_seq_open,
420 .read = seq_read,
421 .llseek = seq_lseek,
422 .release = seq_release_net,
423 };
424
425
426 static void *rt_cpu_seq_start(struct seq_file *seq, loff_t *pos)
427 {
428 int cpu;
429
430 if (*pos == 0)
431 return SEQ_START_TOKEN;
432
433 for (cpu = *pos-1; cpu < NR_CPUS; ++cpu) {
434 if (!cpu_possible(cpu))
435 continue;
436 *pos = cpu+1;
437 return &per_cpu(rt_cache_stat, cpu);
438 }
439 return NULL;
440 }
441
442 static void *rt_cpu_seq_next(struct seq_file *seq, void *v, loff_t *pos)
443 {
444 int cpu;
445
446 for (cpu = *pos; cpu < NR_CPUS; ++cpu) {
447 if (!cpu_possible(cpu))
448 continue;
449 *pos = cpu+1;
450 return &per_cpu(rt_cache_stat, cpu);
451 }
452 return NULL;
453
454 }
455
456 static void rt_cpu_seq_stop(struct seq_file *seq, void *v)
457 {
458
459 }
460
461 static int rt_cpu_seq_show(struct seq_file *seq, void *v)
462 {
463 struct rt_cache_stat *st = v;
464
465 if (v == SEQ_START_TOKEN) {
466 seq_printf(seq, "entries in_hit in_slow_tot in_slow_mc in_no_route in_brd in_martian_dst in_martian_src out_hit out_slow_tot out_slow_mc gc_total gc_ignored gc_goal_miss gc_dst_overflow in_hlist_search out_hlist_search\n");
467 return 0;
468 }
469
470 seq_printf(seq,"%08x %08x %08x %08x %08x %08x %08x %08x "
471 " %08x %08x %08x %08x %08x %08x %08x %08x %08x \n",
472 atomic_read(&ipv4_dst_ops.entries),
473 st->in_hit,
474 st->in_slow_tot,
475 st->in_slow_mc,
476 st->in_no_route,
477 st->in_brd,
478 st->in_martian_dst,
479 st->in_martian_src,
480
481 st->out_hit,
482 st->out_slow_tot,
483 st->out_slow_mc,
484
485 st->gc_total,
486 st->gc_ignored,
487 st->gc_goal_miss,
488 st->gc_dst_overflow,
489 st->in_hlist_search,
490 st->out_hlist_search
491 );
492 return 0;
493 }
494
495 static const struct seq_operations rt_cpu_seq_ops = {
496 .start = rt_cpu_seq_start,
497 .next = rt_cpu_seq_next,
498 .stop = rt_cpu_seq_stop,
499 .show = rt_cpu_seq_show,
500 };
501
502
503 static int rt_cpu_seq_open(struct inode *inode, struct file *file)
504 {
505 return seq_open(file, &rt_cpu_seq_ops);
506 }
507
508 static const struct file_operations rt_cpu_seq_fops = {
509 .owner = THIS_MODULE,
510 .open = rt_cpu_seq_open,
511 .read = seq_read,
512 .llseek = seq_lseek,
513 .release = seq_release,
514 };
515
516 #ifdef CONFIG_NET_CLS_ROUTE
517 static int ip_rt_acct_read(char *buffer, char **start, off_t offset,
518 int length, int *eof, void *data)
519 {
520 unsigned int i;
521
522 if ((offset & 3) || (length & 3))
523 return -EIO;
524
525 if (offset >= sizeof(struct ip_rt_acct) * 256) {
526 *eof = 1;
527 return 0;
528 }
529
530 if (offset + length >= sizeof(struct ip_rt_acct) * 256) {
531 length = sizeof(struct ip_rt_acct) * 256 - offset;
532 *eof = 1;
533 }
534
535 offset /= sizeof(u32);
536
537 if (length > 0) {
538 u32 *dst = (u32 *) buffer;
539
540 *start = buffer;
541 memset(dst, 0, length);
542
543 for_each_possible_cpu(i) {
544 unsigned int j;
545 u32 *src;
546
547 src = ((u32 *) per_cpu_ptr(ip_rt_acct, i)) + offset;
548 for (j = 0; j < length/4; j++)
549 dst[j] += src[j];
550 }
551 }
552 return length;
553 }
554 #endif
555
556 static int __net_init ip_rt_do_proc_init(struct net *net)
557 {
558 struct proc_dir_entry *pde;
559
560 pde = proc_net_fops_create(net, "rt_cache", S_IRUGO,
561 &rt_cache_seq_fops);
562 if (!pde)
563 goto err1;
564
565 pde = proc_create("rt_cache", S_IRUGO,
566 net->proc_net_stat, &rt_cpu_seq_fops);
567 if (!pde)
568 goto err2;
569
570 #ifdef CONFIG_NET_CLS_ROUTE
571 pde = create_proc_read_entry("rt_acct", 0, net->proc_net,
572 ip_rt_acct_read, NULL);
573 if (!pde)
574 goto err3;
575 #endif
576 return 0;
577
578 #ifdef CONFIG_NET_CLS_ROUTE
579 err3:
580 remove_proc_entry("rt_cache", net->proc_net_stat);
581 #endif
582 err2:
583 remove_proc_entry("rt_cache", net->proc_net);
584 err1:
585 return -ENOMEM;
586 }
587
588 static void __net_exit ip_rt_do_proc_exit(struct net *net)
589 {
590 remove_proc_entry("rt_cache", net->proc_net_stat);
591 remove_proc_entry("rt_cache", net->proc_net);
592 remove_proc_entry("rt_acct", net->proc_net);
593 }
594
595 static struct pernet_operations ip_rt_proc_ops __net_initdata = {
596 .init = ip_rt_do_proc_init,
597 .exit = ip_rt_do_proc_exit,
598 };
599
600 static int __init ip_rt_proc_init(void)
601 {
602 return register_pernet_subsys(&ip_rt_proc_ops);
603 }
604
605 #else
606 static inline int ip_rt_proc_init(void)
607 {
608 return 0;
609 }
610 #endif /* CONFIG_PROC_FS */
611
612 static inline void rt_free(struct rtable *rt)
613 {
614 call_rcu_bh(&rt->u.dst.rcu_head, dst_rcu_free);
615 }
616
617 static inline void rt_drop(struct rtable *rt)
618 {
619 ip_rt_put(rt);
620 call_rcu_bh(&rt->u.dst.rcu_head, dst_rcu_free);
621 }
622
623 static inline int rt_fast_clean(struct rtable *rth)
624 {
625 /* Kill broadcast/multicast entries very aggresively, if they
626 collide in hash table with more useful entries */
627 return (rth->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) &&
628 rth->fl.iif && rth->u.dst.rt_next;
629 }
630
631 static inline int rt_valuable(struct rtable *rth)
632 {
633 return (rth->rt_flags & (RTCF_REDIRECTED | RTCF_NOTIFY)) ||
634 rth->u.dst.expires;
635 }
636
637 static int rt_may_expire(struct rtable *rth, unsigned long tmo1, unsigned long tmo2)
638 {
639 unsigned long age;
640 int ret = 0;
641
642 if (atomic_read(&rth->u.dst.__refcnt))
643 goto out;
644
645 ret = 1;
646 if (rth->u.dst.expires &&
647 time_after_eq(jiffies, rth->u.dst.expires))
648 goto out;
649
650 age = jiffies - rth->u.dst.lastuse;
651 ret = 0;
652 if ((age <= tmo1 && !rt_fast_clean(rth)) ||
653 (age <= tmo2 && rt_valuable(rth)))
654 goto out;
655 ret = 1;
656 out: return ret;
657 }
658
659 /* Bits of score are:
660 * 31: very valuable
661 * 30: not quite useless
662 * 29..0: usage counter
663 */
664 static inline u32 rt_score(struct rtable *rt)
665 {
666 u32 score = jiffies - rt->u.dst.lastuse;
667
668 score = ~score & ~(3<<30);
669
670 if (rt_valuable(rt))
671 score |= (1<<31);
672
673 if (!rt->fl.iif ||
674 !(rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST|RTCF_LOCAL)))
675 score |= (1<<30);
676
677 return score;
678 }
679
680 static inline bool rt_caching(const struct net *net)
681 {
682 return net->ipv4.current_rt_cache_rebuild_count <=
683 net->ipv4.sysctl_rt_cache_rebuild_count;
684 }
685
686 static inline bool compare_hash_inputs(const struct flowi *fl1,
687 const struct flowi *fl2)
688 {
689 return (__force u32)(((fl1->nl_u.ip4_u.daddr ^ fl2->nl_u.ip4_u.daddr) |
690 (fl1->nl_u.ip4_u.saddr ^ fl2->nl_u.ip4_u.saddr) |
691 (fl1->iif ^ fl2->iif)) == 0);
692 }
693
694 static inline int compare_keys(struct flowi *fl1, struct flowi *fl2)
695 {
696 return ((__force u32)((fl1->nl_u.ip4_u.daddr ^ fl2->nl_u.ip4_u.daddr) |
697 (fl1->nl_u.ip4_u.saddr ^ fl2->nl_u.ip4_u.saddr)) |
698 (fl1->mark ^ fl2->mark) |
699 (*(u16 *)&fl1->nl_u.ip4_u.tos ^
700 *(u16 *)&fl2->nl_u.ip4_u.tos) |
701 (fl1->oif ^ fl2->oif) |
702 (fl1->iif ^ fl2->iif)) == 0;
703 }
704
705 static inline int compare_netns(struct rtable *rt1, struct rtable *rt2)
706 {
707 return dev_net(rt1->u.dst.dev) == dev_net(rt2->u.dst.dev);
708 }
709
710 static inline int rt_is_expired(struct rtable *rth)
711 {
712 return rth->rt_genid != rt_genid(dev_net(rth->u.dst.dev));
713 }
714
715 /*
716 * Perform a full scan of hash table and free all entries.
717 * Can be called by a softirq or a process.
718 * In the later case, we want to be reschedule if necessary
719 */
720 static void rt_do_flush(int process_context)
721 {
722 unsigned int i;
723 struct rtable *rth, *next;
724 struct rtable * tail;
725
726 for (i = 0; i <= rt_hash_mask; i++) {
727 if (process_context && need_resched())
728 cond_resched();
729 rth = rt_hash_table[i].chain;
730 if (!rth)
731 continue;
732
733 spin_lock_bh(rt_hash_lock_addr(i));
734 #ifdef CONFIG_NET_NS
735 {
736 struct rtable ** prev, * p;
737
738 rth = rt_hash_table[i].chain;
739
740 /* defer releasing the head of the list after spin_unlock */
741 for (tail = rth; tail; tail = tail->u.dst.rt_next)
742 if (!rt_is_expired(tail))
743 break;
744 if (rth != tail)
745 rt_hash_table[i].chain = tail;
746
747 /* call rt_free on entries after the tail requiring flush */
748 prev = &rt_hash_table[i].chain;
749 for (p = *prev; p; p = next) {
750 next = p->u.dst.rt_next;
751 if (!rt_is_expired(p)) {
752 prev = &p->u.dst.rt_next;
753 } else {
754 *prev = next;
755 rt_free(p);
756 }
757 }
758 }
759 #else
760 rth = rt_hash_table[i].chain;
761 rt_hash_table[i].chain = NULL;
762 tail = NULL;
763 #endif
764 spin_unlock_bh(rt_hash_lock_addr(i));
765
766 for (; rth != tail; rth = next) {
767 next = rth->u.dst.rt_next;
768 rt_free(rth);
769 }
770 }
771 }
772
773 /*
774 * While freeing expired entries, we compute average chain length
775 * and standard deviation, using fixed-point arithmetic.
776 * This to have an estimation of rt_chain_length_max
777 * rt_chain_length_max = max(elasticity, AVG + 4*SD)
778 * We use 3 bits for frational part, and 29 (or 61) for magnitude.
779 */
780
781 #define FRACT_BITS 3
782 #define ONE (1UL << FRACT_BITS)
783
784 static void rt_check_expire(void)
785 {
786 static unsigned int rover;
787 unsigned int i = rover, goal;
788 struct rtable *rth, **rthp;
789 unsigned long length = 0, samples = 0;
790 unsigned long sum = 0, sum2 = 0;
791 u64 mult;
792
793 mult = ((u64)ip_rt_gc_interval) << rt_hash_log;
794 if (ip_rt_gc_timeout > 1)
795 do_div(mult, ip_rt_gc_timeout);
796 goal = (unsigned int)mult;
797 if (goal > rt_hash_mask)
798 goal = rt_hash_mask + 1;
799 length = 0;
800 for (; goal > 0; goal--) {
801 unsigned long tmo = ip_rt_gc_timeout;
802
803 i = (i + 1) & rt_hash_mask;
804 rthp = &rt_hash_table[i].chain;
805
806 if (need_resched())
807 cond_resched();
808
809 samples++;
810
811 if (*rthp == NULL)
812 continue;
813 spin_lock_bh(rt_hash_lock_addr(i));
814 while ((rth = *rthp) != NULL) {
815 if (rt_is_expired(rth)) {
816 *rthp = rth->u.dst.rt_next;
817 rt_free(rth);
818 continue;
819 }
820 if (rth->u.dst.expires) {
821 /* Entry is expired even if it is in use */
822 if (time_before_eq(jiffies, rth->u.dst.expires)) {
823 tmo >>= 1;
824 rthp = &rth->u.dst.rt_next;
825 /*
826 * Only bump our length if the hash
827 * inputs on entries n and n+1 are not
828 * the same, we only count entries on
829 * a chain with equal hash inputs once
830 * so that entries for different QOS
831 * levels, and other non-hash input
832 * attributes don't unfairly skew
833 * the length computation
834 */
835 if ((*rthp == NULL) ||
836 !compare_hash_inputs(&(*rthp)->fl,
837 &rth->fl))
838 length += ONE;
839 continue;
840 }
841 } else if (!rt_may_expire(rth, tmo, ip_rt_gc_timeout)) {
842 tmo >>= 1;
843 rthp = &rth->u.dst.rt_next;
844 if ((*rthp == NULL) ||
845 !compare_hash_inputs(&(*rthp)->fl,
846 &rth->fl))
847 length += ONE;
848 continue;
849 }
850
851 /* Cleanup aged off entries. */
852 *rthp = rth->u.dst.rt_next;
853 rt_free(rth);
854 }
855 spin_unlock_bh(rt_hash_lock_addr(i));
856 sum += length;
857 sum2 += length*length;
858 }
859 if (samples) {
860 unsigned long avg = sum / samples;
861 unsigned long sd = int_sqrt(sum2 / samples - avg*avg);
862 rt_chain_length_max = max_t(unsigned long,
863 ip_rt_gc_elasticity,
864 (avg + 4*sd) >> FRACT_BITS);
865 }
866 rover = i;
867 }
868
869 /*
870 * rt_worker_func() is run in process context.
871 * we call rt_check_expire() to scan part of the hash table
872 */
873 static void rt_worker_func(struct work_struct *work)
874 {
875 rt_check_expire();
876 schedule_delayed_work(&expires_work, ip_rt_gc_interval);
877 }
878
879 /*
880 * Pertubation of rt_genid by a small quantity [1..256]
881 * Using 8 bits of shuffling ensure we can call rt_cache_invalidate()
882 * many times (2^24) without giving recent rt_genid.
883 * Jenkins hash is strong enough that litle changes of rt_genid are OK.
884 */
885 static void rt_cache_invalidate(struct net *net)
886 {
887 unsigned char shuffle;
888
889 get_random_bytes(&shuffle, sizeof(shuffle));
890 atomic_add(shuffle + 1U, &net->ipv4.rt_genid);
891 }
892
893 /*
894 * delay < 0 : invalidate cache (fast : entries will be deleted later)
895 * delay >= 0 : invalidate & flush cache (can be long)
896 */
897 void rt_cache_flush(struct net *net, int delay)
898 {
899 rt_cache_invalidate(net);
900 if (delay >= 0)
901 rt_do_flush(!in_softirq());
902 }
903
904 /*
905 * We change rt_genid and let gc do the cleanup
906 */
907 static void rt_secret_rebuild(unsigned long __net)
908 {
909 struct net *net = (struct net *)__net;
910 rt_cache_invalidate(net);
911 mod_timer(&net->ipv4.rt_secret_timer, jiffies + ip_rt_secret_interval);
912 }
913
914 static void rt_secret_rebuild_oneshot(struct net *net)
915 {
916 del_timer_sync(&net->ipv4.rt_secret_timer);
917 rt_cache_invalidate(net);
918 if (ip_rt_secret_interval) {
919 net->ipv4.rt_secret_timer.expires += ip_rt_secret_interval;
920 add_timer(&net->ipv4.rt_secret_timer);
921 }
922 }
923
924 static void rt_emergency_hash_rebuild(struct net *net)
925 {
926 if (net_ratelimit()) {
927 printk(KERN_WARNING "Route hash chain too long!\n");
928 printk(KERN_WARNING "Adjust your secret_interval!\n");
929 }
930
931 rt_secret_rebuild_oneshot(net);
932 }
933
934 /*
935 Short description of GC goals.
936
937 We want to build algorithm, which will keep routing cache
938 at some equilibrium point, when number of aged off entries
939 is kept approximately equal to newly generated ones.
940
941 Current expiration strength is variable "expire".
942 We try to adjust it dynamically, so that if networking
943 is idle expires is large enough to keep enough of warm entries,
944 and when load increases it reduces to limit cache size.
945 */
946
947 static int rt_garbage_collect(struct dst_ops *ops)
948 {
949 static unsigned long expire = RT_GC_TIMEOUT;
950 static unsigned long last_gc;
951 static int rover;
952 static int equilibrium;
953 struct rtable *rth, **rthp;
954 unsigned long now = jiffies;
955 int goal;
956
957 /*
958 * Garbage collection is pretty expensive,
959 * do not make it too frequently.
960 */
961
962 RT_CACHE_STAT_INC(gc_total);
963
964 if (now - last_gc < ip_rt_gc_min_interval &&
965 atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size) {
966 RT_CACHE_STAT_INC(gc_ignored);
967 goto out;
968 }
969
970 /* Calculate number of entries, which we want to expire now. */
971 goal = atomic_read(&ipv4_dst_ops.entries) -
972 (ip_rt_gc_elasticity << rt_hash_log);
973 if (goal <= 0) {
974 if (equilibrium < ipv4_dst_ops.gc_thresh)
975 equilibrium = ipv4_dst_ops.gc_thresh;
976 goal = atomic_read(&ipv4_dst_ops.entries) - equilibrium;
977 if (goal > 0) {
978 equilibrium += min_t(unsigned int, goal >> 1, rt_hash_mask + 1);
979 goal = atomic_read(&ipv4_dst_ops.entries) - equilibrium;
980 }
981 } else {
982 /* We are in dangerous area. Try to reduce cache really
983 * aggressively.
984 */
985 goal = max_t(unsigned int, goal >> 1, rt_hash_mask + 1);
986 equilibrium = atomic_read(&ipv4_dst_ops.entries) - goal;
987 }
988
989 if (now - last_gc >= ip_rt_gc_min_interval)
990 last_gc = now;
991
992 if (goal <= 0) {
993 equilibrium += goal;
994 goto work_done;
995 }
996
997 do {
998 int i, k;
999
1000 for (i = rt_hash_mask, k = rover; i >= 0; i--) {
1001 unsigned long tmo = expire;
1002
1003 k = (k + 1) & rt_hash_mask;
1004 rthp = &rt_hash_table[k].chain;
1005 spin_lock_bh(rt_hash_lock_addr(k));
1006 while ((rth = *rthp) != NULL) {
1007 if (!rt_is_expired(rth) &&
1008 !rt_may_expire(rth, tmo, expire)) {
1009 tmo >>= 1;
1010 rthp = &rth->u.dst.rt_next;
1011 continue;
1012 }
1013 *rthp = rth->u.dst.rt_next;
1014 rt_free(rth);
1015 goal--;
1016 }
1017 spin_unlock_bh(rt_hash_lock_addr(k));
1018 if (goal <= 0)
1019 break;
1020 }
1021 rover = k;
1022
1023 if (goal <= 0)
1024 goto work_done;
1025
1026 /* Goal is not achieved. We stop process if:
1027
1028 - if expire reduced to zero. Otherwise, expire is halfed.
1029 - if table is not full.
1030 - if we are called from interrupt.
1031 - jiffies check is just fallback/debug loop breaker.
1032 We will not spin here for long time in any case.
1033 */
1034
1035 RT_CACHE_STAT_INC(gc_goal_miss);
1036
1037 if (expire == 0)
1038 break;
1039
1040 expire >>= 1;
1041 #if RT_CACHE_DEBUG >= 2
1042 printk(KERN_DEBUG "expire>> %u %d %d %d\n", expire,
1043 atomic_read(&ipv4_dst_ops.entries), goal, i);
1044 #endif
1045
1046 if (atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size)
1047 goto out;
1048 } while (!in_softirq() && time_before_eq(jiffies, now));
1049
1050 if (atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size)
1051 goto out;
1052 if (net_ratelimit())
1053 printk(KERN_WARNING "dst cache overflow\n");
1054 RT_CACHE_STAT_INC(gc_dst_overflow);
1055 return 1;
1056
1057 work_done:
1058 expire += ip_rt_gc_min_interval;
1059 if (expire > ip_rt_gc_timeout ||
1060 atomic_read(&ipv4_dst_ops.entries) < ipv4_dst_ops.gc_thresh)
1061 expire = ip_rt_gc_timeout;
1062 #if RT_CACHE_DEBUG >= 2
1063 printk(KERN_DEBUG "expire++ %u %d %d %d\n", expire,
1064 atomic_read(&ipv4_dst_ops.entries), goal, rover);
1065 #endif
1066 out: return 0;
1067 }
1068
1069 static int rt_intern_hash(unsigned hash, struct rtable *rt, struct rtable **rp)
1070 {
1071 struct rtable *rth, **rthp;
1072 struct rtable *rthi;
1073 unsigned long now;
1074 struct rtable *cand, **candp;
1075 u32 min_score;
1076 int chain_length;
1077 int attempts = !in_softirq();
1078
1079 restart:
1080 chain_length = 0;
1081 min_score = ~(u32)0;
1082 cand = NULL;
1083 candp = NULL;
1084 now = jiffies;
1085
1086 if (!rt_caching(dev_net(rt->u.dst.dev))) {
1087 rt_drop(rt);
1088 return 0;
1089 }
1090
1091 rthp = &rt_hash_table[hash].chain;
1092 rthi = NULL;
1093
1094 spin_lock_bh(rt_hash_lock_addr(hash));
1095 while ((rth = *rthp) != NULL) {
1096 if (rt_is_expired(rth)) {
1097 *rthp = rth->u.dst.rt_next;
1098 rt_free(rth);
1099 continue;
1100 }
1101 if (compare_keys(&rth->fl, &rt->fl) && compare_netns(rth, rt)) {
1102 /* Put it first */
1103 *rthp = rth->u.dst.rt_next;
1104 /*
1105 * Since lookup is lockfree, the deletion
1106 * must be visible to another weakly ordered CPU before
1107 * the insertion at the start of the hash chain.
1108 */
1109 rcu_assign_pointer(rth->u.dst.rt_next,
1110 rt_hash_table[hash].chain);
1111 /*
1112 * Since lookup is lockfree, the update writes
1113 * must be ordered for consistency on SMP.
1114 */
1115 rcu_assign_pointer(rt_hash_table[hash].chain, rth);
1116
1117 dst_use(&rth->u.dst, now);
1118 spin_unlock_bh(rt_hash_lock_addr(hash));
1119
1120 rt_drop(rt);
1121 *rp = rth;
1122 return 0;
1123 }
1124
1125 if (!atomic_read(&rth->u.dst.__refcnt)) {
1126 u32 score = rt_score(rth);
1127
1128 if (score <= min_score) {
1129 cand = rth;
1130 candp = rthp;
1131 min_score = score;
1132 }
1133 }
1134
1135 chain_length++;
1136
1137 rthp = &rth->u.dst.rt_next;
1138
1139 /*
1140 * check to see if the next entry in the chain
1141 * contains the same hash input values as rt. If it does
1142 * This is where we will insert into the list, instead of
1143 * at the head. This groups entries that differ by aspects not
1144 * relvant to the hash function together, which we use to adjust
1145 * our chain length
1146 */
1147 if (*rthp && compare_hash_inputs(&(*rthp)->fl, &rt->fl))
1148 rthi = rth;
1149 }
1150
1151 if (cand) {
1152 /* ip_rt_gc_elasticity used to be average length of chain
1153 * length, when exceeded gc becomes really aggressive.
1154 *
1155 * The second limit is less certain. At the moment it allows
1156 * only 2 entries per bucket. We will see.
1157 */
1158 if (chain_length > ip_rt_gc_elasticity) {
1159 *candp = cand->u.dst.rt_next;
1160 rt_free(cand);
1161 }
1162 } else {
1163 if (chain_length > rt_chain_length_max) {
1164 struct net *net = dev_net(rt->u.dst.dev);
1165 int num = ++net->ipv4.current_rt_cache_rebuild_count;
1166 if (!rt_caching(dev_net(rt->u.dst.dev))) {
1167 printk(KERN_WARNING "%s: %d rebuilds is over limit, route caching disabled\n",
1168 rt->u.dst.dev->name, num);
1169 }
1170 rt_emergency_hash_rebuild(dev_net(rt->u.dst.dev));
1171 }
1172 }
1173
1174 /* Try to bind route to arp only if it is output
1175 route or unicast forwarding path.
1176 */
1177 if (rt->rt_type == RTN_UNICAST || rt->fl.iif == 0) {
1178 int err = arp_bind_neighbour(&rt->u.dst);
1179 if (err) {
1180 spin_unlock_bh(rt_hash_lock_addr(hash));
1181
1182 if (err != -ENOBUFS) {
1183 rt_drop(rt);
1184 return err;
1185 }
1186
1187 /* Neighbour tables are full and nothing
1188 can be released. Try to shrink route cache,
1189 it is most likely it holds some neighbour records.
1190 */
1191 if (attempts-- > 0) {
1192 int saved_elasticity = ip_rt_gc_elasticity;
1193 int saved_int = ip_rt_gc_min_interval;
1194 ip_rt_gc_elasticity = 1;
1195 ip_rt_gc_min_interval = 0;
1196 rt_garbage_collect(&ipv4_dst_ops);
1197 ip_rt_gc_min_interval = saved_int;
1198 ip_rt_gc_elasticity = saved_elasticity;
1199 goto restart;
1200 }
1201
1202 if (net_ratelimit())
1203 printk(KERN_WARNING "Neighbour table overflow.\n");
1204 rt_drop(rt);
1205 return -ENOBUFS;
1206 }
1207 }
1208
1209 if (rthi)
1210 rt->u.dst.rt_next = rthi->u.dst.rt_next;
1211 else
1212 rt->u.dst.rt_next = rt_hash_table[hash].chain;
1213
1214 #if RT_CACHE_DEBUG >= 2
1215 if (rt->u.dst.rt_next) {
1216 struct rtable *trt;
1217 printk(KERN_DEBUG "rt_cache @%02x: %pI4", hash, &rt->rt_dst);
1218 for (trt = rt->u.dst.rt_next; trt; trt = trt->u.dst.rt_next)
1219 printk(" . %pI4", &trt->rt_dst);
1220 printk("\n");
1221 }
1222 #endif
1223 /*
1224 * Since lookup is lockfree, we must make sure
1225 * previous writes to rt are comitted to memory
1226 * before making rt visible to other CPUS.
1227 */
1228 if (rthi)
1229 rcu_assign_pointer(rthi->u.dst.rt_next, rt);
1230 else
1231 rcu_assign_pointer(rt_hash_table[hash].chain, rt);
1232
1233 spin_unlock_bh(rt_hash_lock_addr(hash));
1234 *rp = rt;
1235 return 0;
1236 }
1237
1238 void rt_bind_peer(struct rtable *rt, int create)
1239 {
1240 static DEFINE_SPINLOCK(rt_peer_lock);
1241 struct inet_peer *peer;
1242
1243 peer = inet_getpeer(rt->rt_dst, create);
1244
1245 spin_lock_bh(&rt_peer_lock);
1246 if (rt->peer == NULL) {
1247 rt->peer = peer;
1248 peer = NULL;
1249 }
1250 spin_unlock_bh(&rt_peer_lock);
1251 if (peer)
1252 inet_putpeer(peer);
1253 }
1254
1255 /*
1256 * Peer allocation may fail only in serious out-of-memory conditions. However
1257 * we still can generate some output.
1258 * Random ID selection looks a bit dangerous because we have no chances to
1259 * select ID being unique in a reasonable period of time.
1260 * But broken packet identifier may be better than no packet at all.
1261 */
1262 static void ip_select_fb_ident(struct iphdr *iph)
1263 {
1264 static DEFINE_SPINLOCK(ip_fb_id_lock);
1265 static u32 ip_fallback_id;
1266 u32 salt;
1267
1268 spin_lock_bh(&ip_fb_id_lock);
1269 salt = secure_ip_id((__force __be32)ip_fallback_id ^ iph->daddr);
1270 iph->id = htons(salt & 0xFFFF);
1271 ip_fallback_id = salt;
1272 spin_unlock_bh(&ip_fb_id_lock);
1273 }
1274
1275 void __ip_select_ident(struct iphdr *iph, struct dst_entry *dst, int more)
1276 {
1277 struct rtable *rt = (struct rtable *) dst;
1278
1279 if (rt) {
1280 if (rt->peer == NULL)
1281 rt_bind_peer(rt, 1);
1282
1283 /* If peer is attached to destination, it is never detached,
1284 so that we need not to grab a lock to dereference it.
1285 */
1286 if (rt->peer) {
1287 iph->id = htons(inet_getid(rt->peer, more));
1288 return;
1289 }
1290 } else
1291 printk(KERN_DEBUG "rt_bind_peer(0) @%p\n",
1292 __builtin_return_address(0));
1293
1294 ip_select_fb_ident(iph);
1295 }
1296
1297 static void rt_del(unsigned hash, struct rtable *rt)
1298 {
1299 struct rtable **rthp, *aux;
1300
1301 rthp = &rt_hash_table[hash].chain;
1302 spin_lock_bh(rt_hash_lock_addr(hash));
1303 ip_rt_put(rt);
1304 while ((aux = *rthp) != NULL) {
1305 if (aux == rt || rt_is_expired(aux)) {
1306 *rthp = aux->u.dst.rt_next;
1307 rt_free(aux);
1308 continue;
1309 }
1310 rthp = &aux->u.dst.rt_next;
1311 }
1312 spin_unlock_bh(rt_hash_lock_addr(hash));
1313 }
1314
1315 void ip_rt_redirect(__be32 old_gw, __be32 daddr, __be32 new_gw,
1316 __be32 saddr, struct net_device *dev)
1317 {
1318 int i, k;
1319 struct in_device *in_dev = in_dev_get(dev);
1320 struct rtable *rth, **rthp;
1321 __be32 skeys[2] = { saddr, 0 };
1322 int ikeys[2] = { dev->ifindex, 0 };
1323 struct netevent_redirect netevent;
1324 struct net *net;
1325
1326 if (!in_dev)
1327 return;
1328
1329 net = dev_net(dev);
1330 if (new_gw == old_gw || !IN_DEV_RX_REDIRECTS(in_dev)
1331 || ipv4_is_multicast(new_gw) || ipv4_is_lbcast(new_gw)
1332 || ipv4_is_zeronet(new_gw))
1333 goto reject_redirect;
1334
1335 if (!rt_caching(net))
1336 goto reject_redirect;
1337
1338 if (!IN_DEV_SHARED_MEDIA(in_dev)) {
1339 if (!inet_addr_onlink(in_dev, new_gw, old_gw))
1340 goto reject_redirect;
1341 if (IN_DEV_SEC_REDIRECTS(in_dev) && ip_fib_check_default(new_gw, dev))
1342 goto reject_redirect;
1343 } else {
1344 if (inet_addr_type(net, new_gw) != RTN_UNICAST)
1345 goto reject_redirect;
1346 }
1347
1348 for (i = 0; i < 2; i++) {
1349 for (k = 0; k < 2; k++) {
1350 unsigned hash = rt_hash(daddr, skeys[i], ikeys[k],
1351 rt_genid(net));
1352
1353 rthp=&rt_hash_table[hash].chain;
1354
1355 rcu_read_lock();
1356 while ((rth = rcu_dereference(*rthp)) != NULL) {
1357 struct rtable *rt;
1358
1359 if (rth->fl.fl4_dst != daddr ||
1360 rth->fl.fl4_src != skeys[i] ||
1361 rth->fl.oif != ikeys[k] ||
1362 rth->fl.iif != 0 ||
1363 rt_is_expired(rth) ||
1364 !net_eq(dev_net(rth->u.dst.dev), net)) {
1365 rthp = &rth->u.dst.rt_next;
1366 continue;
1367 }
1368
1369 if (rth->rt_dst != daddr ||
1370 rth->rt_src != saddr ||
1371 rth->u.dst.error ||
1372 rth->rt_gateway != old_gw ||
1373 rth->u.dst.dev != dev)
1374 break;
1375
1376 dst_hold(&rth->u.dst);
1377 rcu_read_unlock();
1378
1379 rt = dst_alloc(&ipv4_dst_ops);
1380 if (rt == NULL) {
1381 ip_rt_put(rth);
1382 in_dev_put(in_dev);
1383 return;
1384 }
1385
1386 /* Copy all the information. */
1387 *rt = *rth;
1388 rt->u.dst.__use = 1;
1389 atomic_set(&rt->u.dst.__refcnt, 1);
1390 rt->u.dst.child = NULL;
1391 if (rt->u.dst.dev)
1392 dev_hold(rt->u.dst.dev);
1393 if (rt->idev)
1394 in_dev_hold(rt->idev);
1395 rt->u.dst.obsolete = 0;
1396 rt->u.dst.lastuse = jiffies;
1397 rt->u.dst.path = &rt->u.dst;
1398 rt->u.dst.neighbour = NULL;
1399 rt->u.dst.hh = NULL;
1400 #ifdef CONFIG_XFRM
1401 rt->u.dst.xfrm = NULL;
1402 #endif
1403 rt->rt_genid = rt_genid(net);
1404 rt->rt_flags |= RTCF_REDIRECTED;
1405
1406 /* Gateway is different ... */
1407 rt->rt_gateway = new_gw;
1408
1409 /* Redirect received -> path was valid */
1410 dst_confirm(&rth->u.dst);
1411
1412 if (rt->peer)
1413 atomic_inc(&rt->peer->refcnt);
1414
1415 if (arp_bind_neighbour(&rt->u.dst) ||
1416 !(rt->u.dst.neighbour->nud_state &
1417 NUD_VALID)) {
1418 if (rt->u.dst.neighbour)
1419 neigh_event_send(rt->u.dst.neighbour, NULL);
1420 ip_rt_put(rth);
1421 rt_drop(rt);
1422 goto do_next;
1423 }
1424
1425 netevent.old = &rth->u.dst;
1426 netevent.new = &rt->u.dst;
1427 call_netevent_notifiers(NETEVENT_REDIRECT,
1428 &netevent);
1429
1430 rt_del(hash, rth);
1431 if (!rt_intern_hash(hash, rt, &rt))
1432 ip_rt_put(rt);
1433 goto do_next;
1434 }
1435 rcu_read_unlock();
1436 do_next:
1437 ;
1438 }
1439 }
1440 in_dev_put(in_dev);
1441 return;
1442
1443 reject_redirect:
1444 #ifdef CONFIG_IP_ROUTE_VERBOSE
1445 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
1446 printk(KERN_INFO "Redirect from %pI4 on %s about %pI4 ignored.\n"
1447 " Advised path = %pI4 -> %pI4\n",
1448 &old_gw, dev->name, &new_gw,
1449 &saddr, &daddr);
1450 #endif
1451 in_dev_put(in_dev);
1452 }
1453
1454 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst)
1455 {
1456 struct rtable *rt = (struct rtable *)dst;
1457 struct dst_entry *ret = dst;
1458
1459 if (rt) {
1460 if (dst->obsolete) {
1461 ip_rt_put(rt);
1462 ret = NULL;
1463 } else if ((rt->rt_flags & RTCF_REDIRECTED) ||
1464 rt->u.dst.expires) {
1465 unsigned hash = rt_hash(rt->fl.fl4_dst, rt->fl.fl4_src,
1466 rt->fl.oif,
1467 rt_genid(dev_net(dst->dev)));
1468 #if RT_CACHE_DEBUG >= 1
1469 printk(KERN_DEBUG "ipv4_negative_advice: redirect to %pI4/%02x dropped\n",
1470 &rt->rt_dst, rt->fl.fl4_tos);
1471 #endif
1472 rt_del(hash, rt);
1473 ret = NULL;
1474 }
1475 }
1476 return ret;
1477 }
1478
1479 /*
1480 * Algorithm:
1481 * 1. The first ip_rt_redirect_number redirects are sent
1482 * with exponential backoff, then we stop sending them at all,
1483 * assuming that the host ignores our redirects.
1484 * 2. If we did not see packets requiring redirects
1485 * during ip_rt_redirect_silence, we assume that the host
1486 * forgot redirected route and start to send redirects again.
1487 *
1488 * This algorithm is much cheaper and more intelligent than dumb load limiting
1489 * in icmp.c.
1490 *
1491 * NOTE. Do not forget to inhibit load limiting for redirects (redundant)
1492 * and "frag. need" (breaks PMTU discovery) in icmp.c.
1493 */
1494
1495 void ip_rt_send_redirect(struct sk_buff *skb)
1496 {
1497 struct rtable *rt = skb->rtable;
1498 struct in_device *in_dev = in_dev_get(rt->u.dst.dev);
1499
1500 if (!in_dev)
1501 return;
1502
1503 if (!IN_DEV_TX_REDIRECTS(in_dev))
1504 goto out;
1505
1506 /* No redirected packets during ip_rt_redirect_silence;
1507 * reset the algorithm.
1508 */
1509 if (time_after(jiffies, rt->u.dst.rate_last + ip_rt_redirect_silence))
1510 rt->u.dst.rate_tokens = 0;
1511
1512 /* Too many ignored redirects; do not send anything
1513 * set u.dst.rate_last to the last seen redirected packet.
1514 */
1515 if (rt->u.dst.rate_tokens >= ip_rt_redirect_number) {
1516 rt->u.dst.rate_last = jiffies;
1517 goto out;
1518 }
1519
1520 /* Check for load limit; set rate_last to the latest sent
1521 * redirect.
1522 */
1523 if (rt->u.dst.rate_tokens == 0 ||
1524 time_after(jiffies,
1525 (rt->u.dst.rate_last +
1526 (ip_rt_redirect_load << rt->u.dst.rate_tokens)))) {
1527 icmp_send(skb, ICMP_REDIRECT, ICMP_REDIR_HOST, rt->rt_gateway);
1528 rt->u.dst.rate_last = jiffies;
1529 ++rt->u.dst.rate_tokens;
1530 #ifdef CONFIG_IP_ROUTE_VERBOSE
1531 if (IN_DEV_LOG_MARTIANS(in_dev) &&
1532 rt->u.dst.rate_tokens == ip_rt_redirect_number &&
1533 net_ratelimit())
1534 printk(KERN_WARNING "host %pI4/if%d ignores redirects for %pI4 to %pI4.\n",
1535 &rt->rt_src, rt->rt_iif,
1536 &rt->rt_dst, &rt->rt_gateway);
1537 #endif
1538 }
1539 out:
1540 in_dev_put(in_dev);
1541 }
1542
1543 static int ip_error(struct sk_buff *skb)
1544 {
1545 struct rtable *rt = skb->rtable;
1546 unsigned long now;
1547 int code;
1548
1549 switch (rt->u.dst.error) {
1550 case EINVAL:
1551 default:
1552 goto out;
1553 case EHOSTUNREACH:
1554 code = ICMP_HOST_UNREACH;
1555 break;
1556 case ENETUNREACH:
1557 code = ICMP_NET_UNREACH;
1558 IP_INC_STATS_BH(dev_net(rt->u.dst.dev),
1559 IPSTATS_MIB_INNOROUTES);
1560 break;
1561 case EACCES:
1562 code = ICMP_PKT_FILTERED;
1563 break;
1564 }
1565
1566 now = jiffies;
1567 rt->u.dst.rate_tokens += now - rt->u.dst.rate_last;
1568 if (rt->u.dst.rate_tokens > ip_rt_error_burst)
1569 rt->u.dst.rate_tokens = ip_rt_error_burst;
1570 rt->u.dst.rate_last = now;
1571 if (rt->u.dst.rate_tokens >= ip_rt_error_cost) {
1572 rt->u.dst.rate_tokens -= ip_rt_error_cost;
1573 icmp_send(skb, ICMP_DEST_UNREACH, code, 0);
1574 }
1575
1576 out: kfree_skb(skb);
1577 return 0;
1578 }
1579
1580 /*
1581 * The last two values are not from the RFC but
1582 * are needed for AMPRnet AX.25 paths.
1583 */
1584
1585 static const unsigned short mtu_plateau[] =
1586 {32000, 17914, 8166, 4352, 2002, 1492, 576, 296, 216, 128 };
1587
1588 static inline unsigned short guess_mtu(unsigned short old_mtu)
1589 {
1590 int i;
1591
1592 for (i = 0; i < ARRAY_SIZE(mtu_plateau); i++)
1593 if (old_mtu > mtu_plateau[i])
1594 return mtu_plateau[i];
1595 return 68;
1596 }
1597
1598 unsigned short ip_rt_frag_needed(struct net *net, struct iphdr *iph,
1599 unsigned short new_mtu,
1600 struct net_device *dev)
1601 {
1602 int i, k;
1603 unsigned short old_mtu = ntohs(iph->tot_len);
1604 struct rtable *rth;
1605 int ikeys[2] = { dev->ifindex, 0 };
1606 __be32 skeys[2] = { iph->saddr, 0, };
1607 __be32 daddr = iph->daddr;
1608 unsigned short est_mtu = 0;
1609
1610 if (ipv4_config.no_pmtu_disc)
1611 return 0;
1612
1613 for (k = 0; k < 2; k++) {
1614 for (i = 0; i < 2; i++) {
1615 unsigned hash = rt_hash(daddr, skeys[i], ikeys[k],
1616 rt_genid(net));
1617
1618 rcu_read_lock();
1619 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
1620 rth = rcu_dereference(rth->u.dst.rt_next)) {
1621 unsigned short mtu = new_mtu;
1622
1623 if (rth->fl.fl4_dst != daddr ||
1624 rth->fl.fl4_src != skeys[i] ||
1625 rth->rt_dst != daddr ||
1626 rth->rt_src != iph->saddr ||
1627 rth->fl.oif != ikeys[k] ||
1628 rth->fl.iif != 0 ||
1629 dst_metric_locked(&rth->u.dst, RTAX_MTU) ||
1630 !net_eq(dev_net(rth->u.dst.dev), net) ||
1631 rt_is_expired(rth))
1632 continue;
1633
1634 if (new_mtu < 68 || new_mtu >= old_mtu) {
1635
1636 /* BSD 4.2 compatibility hack :-( */
1637 if (mtu == 0 &&
1638 old_mtu >= dst_mtu(&rth->u.dst) &&
1639 old_mtu >= 68 + (iph->ihl << 2))
1640 old_mtu -= iph->ihl << 2;
1641
1642 mtu = guess_mtu(old_mtu);
1643 }
1644 if (mtu <= dst_mtu(&rth->u.dst)) {
1645 if (mtu < dst_mtu(&rth->u.dst)) {
1646 dst_confirm(&rth->u.dst);
1647 if (mtu < ip_rt_min_pmtu) {
1648 mtu = ip_rt_min_pmtu;
1649 rth->u.dst.metrics[RTAX_LOCK-1] |=
1650 (1 << RTAX_MTU);
1651 }
1652 rth->u.dst.metrics[RTAX_MTU-1] = mtu;
1653 dst_set_expires(&rth->u.dst,
1654 ip_rt_mtu_expires);
1655 }
1656 est_mtu = mtu;
1657 }
1658 }
1659 rcu_read_unlock();
1660 }
1661 }
1662 return est_mtu ? : new_mtu;
1663 }
1664
1665 static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu)
1666 {
1667 if (dst_mtu(dst) > mtu && mtu >= 68 &&
1668 !(dst_metric_locked(dst, RTAX_MTU))) {
1669 if (mtu < ip_rt_min_pmtu) {
1670 mtu = ip_rt_min_pmtu;
1671 dst->metrics[RTAX_LOCK-1] |= (1 << RTAX_MTU);
1672 }
1673 dst->metrics[RTAX_MTU-1] = mtu;
1674 dst_set_expires(dst, ip_rt_mtu_expires);
1675 call_netevent_notifiers(NETEVENT_PMTU_UPDATE, dst);
1676 }
1677 }
1678
1679 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie)
1680 {
1681 return NULL;
1682 }
1683
1684 static void ipv4_dst_destroy(struct dst_entry *dst)
1685 {
1686 struct rtable *rt = (struct rtable *) dst;
1687 struct inet_peer *peer = rt->peer;
1688 struct in_device *idev = rt->idev;
1689
1690 if (peer) {
1691 rt->peer = NULL;
1692 inet_putpeer(peer);
1693 }
1694
1695 if (idev) {
1696 rt->idev = NULL;
1697 in_dev_put(idev);
1698 }
1699 }
1700
1701 static void ipv4_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
1702 int how)
1703 {
1704 struct rtable *rt = (struct rtable *) dst;
1705 struct in_device *idev = rt->idev;
1706 if (dev != dev_net(dev)->loopback_dev && idev && idev->dev == dev) {
1707 struct in_device *loopback_idev =
1708 in_dev_get(dev_net(dev)->loopback_dev);
1709 if (loopback_idev) {
1710 rt->idev = loopback_idev;
1711 in_dev_put(idev);
1712 }
1713 }
1714 }
1715
1716 static void ipv4_link_failure(struct sk_buff *skb)
1717 {
1718 struct rtable *rt;
1719
1720 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_HOST_UNREACH, 0);
1721
1722 rt = skb->rtable;
1723 if (rt)
1724 dst_set_expires(&rt->u.dst, 0);
1725 }
1726
1727 static int ip_rt_bug(struct sk_buff *skb)
1728 {
1729 printk(KERN_DEBUG "ip_rt_bug: %pI4 -> %pI4, %s\n",
1730 &ip_hdr(skb)->saddr, &ip_hdr(skb)->daddr,
1731 skb->dev ? skb->dev->name : "?");
1732 kfree_skb(skb);
1733 return 0;
1734 }
1735
1736 /*
1737 We do not cache source address of outgoing interface,
1738 because it is used only by IP RR, TS and SRR options,
1739 so that it out of fast path.
1740
1741 BTW remember: "addr" is allowed to be not aligned
1742 in IP options!
1743 */
1744
1745 void ip_rt_get_source(u8 *addr, struct rtable *rt)
1746 {
1747 __be32 src;
1748 struct fib_result res;
1749
1750 if (rt->fl.iif == 0)
1751 src = rt->rt_src;
1752 else if (fib_lookup(dev_net(rt->u.dst.dev), &rt->fl, &res) == 0) {
1753 src = FIB_RES_PREFSRC(res);
1754 fib_res_put(&res);
1755 } else
1756 src = inet_select_addr(rt->u.dst.dev, rt->rt_gateway,
1757 RT_SCOPE_UNIVERSE);
1758 memcpy(addr, &src, 4);
1759 }
1760
1761 #ifdef CONFIG_NET_CLS_ROUTE
1762 static void set_class_tag(struct rtable *rt, u32 tag)
1763 {
1764 if (!(rt->u.dst.tclassid & 0xFFFF))
1765 rt->u.dst.tclassid |= tag & 0xFFFF;
1766 if (!(rt->u.dst.tclassid & 0xFFFF0000))
1767 rt->u.dst.tclassid |= tag & 0xFFFF0000;
1768 }
1769 #endif
1770
1771 static void rt_set_nexthop(struct rtable *rt, struct fib_result *res, u32 itag)
1772 {
1773 struct fib_info *fi = res->fi;
1774
1775 if (fi) {
1776 if (FIB_RES_GW(*res) &&
1777 FIB_RES_NH(*res).nh_scope == RT_SCOPE_LINK)
1778 rt->rt_gateway = FIB_RES_GW(*res);
1779 memcpy(rt->u.dst.metrics, fi->fib_metrics,
1780 sizeof(rt->u.dst.metrics));
1781 if (fi->fib_mtu == 0) {
1782 rt->u.dst.metrics[RTAX_MTU-1] = rt->u.dst.dev->mtu;
1783 if (dst_metric_locked(&rt->u.dst, RTAX_MTU) &&
1784 rt->rt_gateway != rt->rt_dst &&
1785 rt->u.dst.dev->mtu > 576)
1786 rt->u.dst.metrics[RTAX_MTU-1] = 576;
1787 }
1788 #ifdef CONFIG_NET_CLS_ROUTE
1789 rt->u.dst.tclassid = FIB_RES_NH(*res).nh_tclassid;
1790 #endif
1791 } else
1792 rt->u.dst.metrics[RTAX_MTU-1]= rt->u.dst.dev->mtu;
1793
1794 if (dst_metric(&rt->u.dst, RTAX_HOPLIMIT) == 0)
1795 rt->u.dst.metrics[RTAX_HOPLIMIT-1] = sysctl_ip_default_ttl;
1796 if (dst_mtu(&rt->u.dst) > IP_MAX_MTU)
1797 rt->u.dst.metrics[RTAX_MTU-1] = IP_MAX_MTU;
1798 if (dst_metric(&rt->u.dst, RTAX_ADVMSS) == 0)
1799 rt->u.dst.metrics[RTAX_ADVMSS-1] = max_t(unsigned int, rt->u.dst.dev->mtu - 40,
1800 ip_rt_min_advmss);
1801 if (dst_metric(&rt->u.dst, RTAX_ADVMSS) > 65535 - 40)
1802 rt->u.dst.metrics[RTAX_ADVMSS-1] = 65535 - 40;
1803
1804 #ifdef CONFIG_NET_CLS_ROUTE
1805 #ifdef CONFIG_IP_MULTIPLE_TABLES
1806 set_class_tag(rt, fib_rules_tclass(res));
1807 #endif
1808 set_class_tag(rt, itag);
1809 #endif
1810 rt->rt_type = res->type;
1811 }
1812
1813 static int ip_route_input_mc(struct sk_buff *skb, __be32 daddr, __be32 saddr,
1814 u8 tos, struct net_device *dev, int our)
1815 {
1816 unsigned hash;
1817 struct rtable *rth;
1818 __be32 spec_dst;
1819 struct in_device *in_dev = in_dev_get(dev);
1820 u32 itag = 0;
1821
1822 /* Primary sanity checks. */
1823
1824 if (in_dev == NULL)
1825 return -EINVAL;
1826
1827 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1828 ipv4_is_loopback(saddr) || skb->protocol != htons(ETH_P_IP))
1829 goto e_inval;
1830
1831 if (ipv4_is_zeronet(saddr)) {
1832 if (!ipv4_is_local_multicast(daddr))
1833 goto e_inval;
1834 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
1835 } else if (fib_validate_source(saddr, 0, tos, 0,
1836 dev, &spec_dst, &itag) < 0)
1837 goto e_inval;
1838
1839 rth = dst_alloc(&ipv4_dst_ops);
1840 if (!rth)
1841 goto e_nobufs;
1842
1843 rth->u.dst.output= ip_rt_bug;
1844
1845 atomic_set(&rth->u.dst.__refcnt, 1);
1846 rth->u.dst.flags= DST_HOST;
1847 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
1848 rth->u.dst.flags |= DST_NOPOLICY;
1849 rth->fl.fl4_dst = daddr;
1850 rth->rt_dst = daddr;
1851 rth->fl.fl4_tos = tos;
1852 rth->fl.mark = skb->mark;
1853 rth->fl.fl4_src = saddr;
1854 rth->rt_src = saddr;
1855 #ifdef CONFIG_NET_CLS_ROUTE
1856 rth->u.dst.tclassid = itag;
1857 #endif
1858 rth->rt_iif =
1859 rth->fl.iif = dev->ifindex;
1860 rth->u.dst.dev = init_net.loopback_dev;
1861 dev_hold(rth->u.dst.dev);
1862 rth->idev = in_dev_get(rth->u.dst.dev);
1863 rth->fl.oif = 0;
1864 rth->rt_gateway = daddr;
1865 rth->rt_spec_dst= spec_dst;
1866 rth->rt_genid = rt_genid(dev_net(dev));
1867 rth->rt_flags = RTCF_MULTICAST;
1868 rth->rt_type = RTN_MULTICAST;
1869 if (our) {
1870 rth->u.dst.input= ip_local_deliver;
1871 rth->rt_flags |= RTCF_LOCAL;
1872 }
1873
1874 #ifdef CONFIG_IP_MROUTE
1875 if (!ipv4_is_local_multicast(daddr) && IN_DEV_MFORWARD(in_dev))
1876 rth->u.dst.input = ip_mr_input;
1877 #endif
1878 RT_CACHE_STAT_INC(in_slow_mc);
1879
1880 in_dev_put(in_dev);
1881 hash = rt_hash(daddr, saddr, dev->ifindex, rt_genid(dev_net(dev)));
1882 return rt_intern_hash(hash, rth, &skb->rtable);
1883
1884 e_nobufs:
1885 in_dev_put(in_dev);
1886 return -ENOBUFS;
1887
1888 e_inval:
1889 in_dev_put(in_dev);
1890 return -EINVAL;
1891 }
1892
1893
1894 static void ip_handle_martian_source(struct net_device *dev,
1895 struct in_device *in_dev,
1896 struct sk_buff *skb,
1897 __be32 daddr,
1898 __be32 saddr)
1899 {
1900 RT_CACHE_STAT_INC(in_martian_src);
1901 #ifdef CONFIG_IP_ROUTE_VERBOSE
1902 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit()) {
1903 /*
1904 * RFC1812 recommendation, if source is martian,
1905 * the only hint is MAC header.
1906 */
1907 printk(KERN_WARNING "martian source %pI4 from %pI4, on dev %s\n",
1908 &daddr, &saddr, dev->name);
1909 if (dev->hard_header_len && skb_mac_header_was_set(skb)) {
1910 int i;
1911 const unsigned char *p = skb_mac_header(skb);
1912 printk(KERN_WARNING "ll header: ");
1913 for (i = 0; i < dev->hard_header_len; i++, p++) {
1914 printk("%02x", *p);
1915 if (i < (dev->hard_header_len - 1))
1916 printk(":");
1917 }
1918 printk("\n");
1919 }
1920 }
1921 #endif
1922 }
1923
1924 static int __mkroute_input(struct sk_buff *skb,
1925 struct fib_result *res,
1926 struct in_device *in_dev,
1927 __be32 daddr, __be32 saddr, u32 tos,
1928 struct rtable **result)
1929 {
1930
1931 struct rtable *rth;
1932 int err;
1933 struct in_device *out_dev;
1934 unsigned flags = 0;
1935 __be32 spec_dst;
1936 u32 itag;
1937
1938 /* get a working reference to the output device */
1939 out_dev = in_dev_get(FIB_RES_DEV(*res));
1940 if (out_dev == NULL) {
1941 if (net_ratelimit())
1942 printk(KERN_CRIT "Bug in ip_route_input" \
1943 "_slow(). Please, report\n");
1944 return -EINVAL;
1945 }
1946
1947
1948 err = fib_validate_source(saddr, daddr, tos, FIB_RES_OIF(*res),
1949 in_dev->dev, &spec_dst, &itag);
1950 if (err < 0) {
1951 ip_handle_martian_source(in_dev->dev, in_dev, skb, daddr,
1952 saddr);
1953
1954 err = -EINVAL;
1955 goto cleanup;
1956 }
1957
1958 if (err)
1959 flags |= RTCF_DIRECTSRC;
1960
1961 if (out_dev == in_dev && err &&
1962 (IN_DEV_SHARED_MEDIA(out_dev) ||
1963 inet_addr_onlink(out_dev, saddr, FIB_RES_GW(*res))))
1964 flags |= RTCF_DOREDIRECT;
1965
1966 if (skb->protocol != htons(ETH_P_IP)) {
1967 /* Not IP (i.e. ARP). Do not create route, if it is
1968 * invalid for proxy arp. DNAT routes are always valid.
1969 */
1970 if (out_dev == in_dev) {
1971 err = -EINVAL;
1972 goto cleanup;
1973 }
1974 }
1975
1976
1977 rth = dst_alloc(&ipv4_dst_ops);
1978 if (!rth) {
1979 err = -ENOBUFS;
1980 goto cleanup;
1981 }
1982
1983 atomic_set(&rth->u.dst.__refcnt, 1);
1984 rth->u.dst.flags= DST_HOST;
1985 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
1986 rth->u.dst.flags |= DST_NOPOLICY;
1987 if (IN_DEV_CONF_GET(out_dev, NOXFRM))
1988 rth->u.dst.flags |= DST_NOXFRM;
1989 rth->fl.fl4_dst = daddr;
1990 rth->rt_dst = daddr;
1991 rth->fl.fl4_tos = tos;
1992 rth->fl.mark = skb->mark;
1993 rth->fl.fl4_src = saddr;
1994 rth->rt_src = saddr;
1995 rth->rt_gateway = daddr;
1996 rth->rt_iif =
1997 rth->fl.iif = in_dev->dev->ifindex;
1998 rth->u.dst.dev = (out_dev)->dev;
1999 dev_hold(rth->u.dst.dev);
2000 rth->idev = in_dev_get(rth->u.dst.dev);
2001 rth->fl.oif = 0;
2002 rth->rt_spec_dst= spec_dst;
2003
2004 rth->u.dst.input = ip_forward;
2005 rth->u.dst.output = ip_output;
2006 rth->rt_genid = rt_genid(dev_net(rth->u.dst.dev));
2007
2008 rt_set_nexthop(rth, res, itag);
2009
2010 rth->rt_flags = flags;
2011
2012 *result = rth;
2013 err = 0;
2014 cleanup:
2015 /* release the working reference to the output device */
2016 in_dev_put(out_dev);
2017 return err;
2018 }
2019
2020 static int ip_mkroute_input(struct sk_buff *skb,
2021 struct fib_result *res,
2022 const struct flowi *fl,
2023 struct in_device *in_dev,
2024 __be32 daddr, __be32 saddr, u32 tos)
2025 {
2026 struct rtable* rth = NULL;
2027 int err;
2028 unsigned hash;
2029
2030 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2031 if (res->fi && res->fi->fib_nhs > 1 && fl->oif == 0)
2032 fib_select_multipath(fl, res);
2033 #endif
2034
2035 /* create a routing cache entry */
2036 err = __mkroute_input(skb, res, in_dev, daddr, saddr, tos, &rth);
2037 if (err)
2038 return err;
2039
2040 /* put it into the cache */
2041 hash = rt_hash(daddr, saddr, fl->iif,
2042 rt_genid(dev_net(rth->u.dst.dev)));
2043 return rt_intern_hash(hash, rth, &skb->rtable);
2044 }
2045
2046 /*
2047 * NOTE. We drop all the packets that has local source
2048 * addresses, because every properly looped back packet
2049 * must have correct destination already attached by output routine.
2050 *
2051 * Such approach solves two big problems:
2052 * 1. Not simplex devices are handled properly.
2053 * 2. IP spoofing attempts are filtered with 100% of guarantee.
2054 */
2055
2056 static int ip_route_input_slow(struct sk_buff *skb, __be32 daddr, __be32 saddr,
2057 u8 tos, struct net_device *dev)
2058 {
2059 struct fib_result res;
2060 struct in_device *in_dev = in_dev_get(dev);
2061 struct flowi fl = { .nl_u = { .ip4_u =
2062 { .daddr = daddr,
2063 .saddr = saddr,
2064 .tos = tos,
2065 .scope = RT_SCOPE_UNIVERSE,
2066 } },
2067 .mark = skb->mark,
2068 .iif = dev->ifindex };
2069 unsigned flags = 0;
2070 u32 itag = 0;
2071 struct rtable * rth;
2072 unsigned hash;
2073 __be32 spec_dst;
2074 int err = -EINVAL;
2075 int free_res = 0;
2076 struct net * net = dev_net(dev);
2077
2078 /* IP on this device is disabled. */
2079
2080 if (!in_dev)
2081 goto out;
2082
2083 /* Check for the most weird martians, which can be not detected
2084 by fib_lookup.
2085 */
2086
2087 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
2088 ipv4_is_loopback(saddr))
2089 goto martian_source;
2090
2091 if (daddr == htonl(0xFFFFFFFF) || (saddr == 0 && daddr == 0))
2092 goto brd_input;
2093
2094 /* Accept zero addresses only to limited broadcast;
2095 * I even do not know to fix it or not. Waiting for complains :-)
2096 */
2097 if (ipv4_is_zeronet(saddr))
2098 goto martian_source;
2099
2100 if (ipv4_is_lbcast(daddr) || ipv4_is_zeronet(daddr) ||
2101 ipv4_is_loopback(daddr))
2102 goto martian_destination;
2103
2104 /*
2105 * Now we are ready to route packet.
2106 */
2107 if ((err = fib_lookup(net, &fl, &res)) != 0) {
2108 if (!IN_DEV_FORWARD(in_dev))
2109 goto e_hostunreach;
2110 goto no_route;
2111 }
2112 free_res = 1;
2113
2114 RT_CACHE_STAT_INC(in_slow_tot);
2115
2116 if (res.type == RTN_BROADCAST)
2117 goto brd_input;
2118
2119 if (res.type == RTN_LOCAL) {
2120 int result;
2121 result = fib_validate_source(saddr, daddr, tos,
2122 net->loopback_dev->ifindex,
2123 dev, &spec_dst, &itag);
2124 if (result < 0)
2125 goto martian_source;
2126 if (result)
2127 flags |= RTCF_DIRECTSRC;
2128 spec_dst = daddr;
2129 goto local_input;
2130 }
2131
2132 if (!IN_DEV_FORWARD(in_dev))
2133 goto e_hostunreach;
2134 if (res.type != RTN_UNICAST)
2135 goto martian_destination;
2136
2137 err = ip_mkroute_input(skb, &res, &fl, in_dev, daddr, saddr, tos);
2138 done:
2139 in_dev_put(in_dev);
2140 if (free_res)
2141 fib_res_put(&res);
2142 out: return err;
2143
2144 brd_input:
2145 if (skb->protocol != htons(ETH_P_IP))
2146 goto e_inval;
2147
2148 if (ipv4_is_zeronet(saddr))
2149 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
2150 else {
2151 err = fib_validate_source(saddr, 0, tos, 0, dev, &spec_dst,
2152 &itag);
2153 if (err < 0)
2154 goto martian_source;
2155 if (err)
2156 flags |= RTCF_DIRECTSRC;
2157 }
2158 flags |= RTCF_BROADCAST;
2159 res.type = RTN_BROADCAST;
2160 RT_CACHE_STAT_INC(in_brd);
2161
2162 local_input:
2163 rth = dst_alloc(&ipv4_dst_ops);
2164 if (!rth)
2165 goto e_nobufs;
2166
2167 rth->u.dst.output= ip_rt_bug;
2168 rth->rt_genid = rt_genid(net);
2169
2170 atomic_set(&rth->u.dst.__refcnt, 1);
2171 rth->u.dst.flags= DST_HOST;
2172 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
2173 rth->u.dst.flags |= DST_NOPOLICY;
2174 rth->fl.fl4_dst = daddr;
2175 rth->rt_dst = daddr;
2176 rth->fl.fl4_tos = tos;
2177 rth->fl.mark = skb->mark;
2178 rth->fl.fl4_src = saddr;
2179 rth->rt_src = saddr;
2180 #ifdef CONFIG_NET_CLS_ROUTE
2181 rth->u.dst.tclassid = itag;
2182 #endif
2183 rth->rt_iif =
2184 rth->fl.iif = dev->ifindex;
2185 rth->u.dst.dev = net->loopback_dev;
2186 dev_hold(rth->u.dst.dev);
2187 rth->idev = in_dev_get(rth->u.dst.dev);
2188 rth->rt_gateway = daddr;
2189 rth->rt_spec_dst= spec_dst;
2190 rth->u.dst.input= ip_local_deliver;
2191 rth->rt_flags = flags|RTCF_LOCAL;
2192 if (res.type == RTN_UNREACHABLE) {
2193 rth->u.dst.input= ip_error;
2194 rth->u.dst.error= -err;
2195 rth->rt_flags &= ~RTCF_LOCAL;
2196 }
2197 rth->rt_type = res.type;
2198 hash = rt_hash(daddr, saddr, fl.iif, rt_genid(net));
2199 err = rt_intern_hash(hash, rth, &skb->rtable);
2200 goto done;
2201
2202 no_route:
2203 RT_CACHE_STAT_INC(in_no_route);
2204 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_UNIVERSE);
2205 res.type = RTN_UNREACHABLE;
2206 if (err == -ESRCH)
2207 err = -ENETUNREACH;
2208 goto local_input;
2209
2210 /*
2211 * Do not cache martian addresses: they should be logged (RFC1812)
2212 */
2213 martian_destination:
2214 RT_CACHE_STAT_INC(in_martian_dst);
2215 #ifdef CONFIG_IP_ROUTE_VERBOSE
2216 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
2217 printk(KERN_WARNING "martian destination %pI4 from %pI4, dev %s\n",
2218 &daddr, &saddr, dev->name);
2219 #endif
2220
2221 e_hostunreach:
2222 err = -EHOSTUNREACH;
2223 goto done;
2224
2225 e_inval:
2226 err = -EINVAL;
2227 goto done;
2228
2229 e_nobufs:
2230 err = -ENOBUFS;
2231 goto done;
2232
2233 martian_source:
2234 ip_handle_martian_source(dev, in_dev, skb, daddr, saddr);
2235 goto e_inval;
2236 }
2237
2238 int ip_route_input(struct sk_buff *skb, __be32 daddr, __be32 saddr,
2239 u8 tos, struct net_device *dev)
2240 {
2241 struct rtable * rth;
2242 unsigned hash;
2243 int iif = dev->ifindex;
2244 struct net *net;
2245
2246 net = dev_net(dev);
2247
2248 if (!rt_caching(net))
2249 goto skip_cache;
2250
2251 tos &= IPTOS_RT_MASK;
2252 hash = rt_hash(daddr, saddr, iif, rt_genid(net));
2253
2254 rcu_read_lock();
2255 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
2256 rth = rcu_dereference(rth->u.dst.rt_next)) {
2257 if (((rth->fl.fl4_dst ^ daddr) |
2258 (rth->fl.fl4_src ^ saddr) |
2259 (rth->fl.iif ^ iif) |
2260 rth->fl.oif |
2261 (rth->fl.fl4_tos ^ tos)) == 0 &&
2262 rth->fl.mark == skb->mark &&
2263 net_eq(dev_net(rth->u.dst.dev), net) &&
2264 !rt_is_expired(rth)) {
2265 dst_use(&rth->u.dst, jiffies);
2266 RT_CACHE_STAT_INC(in_hit);
2267 rcu_read_unlock();
2268 skb->rtable = rth;
2269 return 0;
2270 }
2271 RT_CACHE_STAT_INC(in_hlist_search);
2272 }
2273 rcu_read_unlock();
2274
2275 skip_cache:
2276 /* Multicast recognition logic is moved from route cache to here.
2277 The problem was that too many Ethernet cards have broken/missing
2278 hardware multicast filters :-( As result the host on multicasting
2279 network acquires a lot of useless route cache entries, sort of
2280 SDR messages from all the world. Now we try to get rid of them.
2281 Really, provided software IP multicast filter is organized
2282 reasonably (at least, hashed), it does not result in a slowdown
2283 comparing with route cache reject entries.
2284 Note, that multicast routers are not affected, because
2285 route cache entry is created eventually.
2286 */
2287 if (ipv4_is_multicast(daddr)) {
2288 struct in_device *in_dev;
2289
2290 rcu_read_lock();
2291 if ((in_dev = __in_dev_get_rcu(dev)) != NULL) {
2292 int our = ip_check_mc(in_dev, daddr, saddr,
2293 ip_hdr(skb)->protocol);
2294 if (our
2295 #ifdef CONFIG_IP_MROUTE
2296 || (!ipv4_is_local_multicast(daddr) &&
2297 IN_DEV_MFORWARD(in_dev))
2298 #endif
2299 ) {
2300 rcu_read_unlock();
2301 return ip_route_input_mc(skb, daddr, saddr,
2302 tos, dev, our);
2303 }
2304 }
2305 rcu_read_unlock();
2306 return -EINVAL;
2307 }
2308 return ip_route_input_slow(skb, daddr, saddr, tos, dev);
2309 }
2310
2311 static int __mkroute_output(struct rtable **result,
2312 struct fib_result *res,
2313 const struct flowi *fl,
2314 const struct flowi *oldflp,
2315 struct net_device *dev_out,
2316 unsigned flags)
2317 {
2318 struct rtable *rth;
2319 struct in_device *in_dev;
2320 u32 tos = RT_FL_TOS(oldflp);
2321 int err = 0;
2322
2323 if (ipv4_is_loopback(fl->fl4_src) && !(dev_out->flags&IFF_LOOPBACK))
2324 return -EINVAL;
2325
2326 if (fl->fl4_dst == htonl(0xFFFFFFFF))
2327 res->type = RTN_BROADCAST;
2328 else if (ipv4_is_multicast(fl->fl4_dst))
2329 res->type = RTN_MULTICAST;
2330 else if (ipv4_is_lbcast(fl->fl4_dst) || ipv4_is_zeronet(fl->fl4_dst))
2331 return -EINVAL;
2332
2333 if (dev_out->flags & IFF_LOOPBACK)
2334 flags |= RTCF_LOCAL;
2335
2336 /* get work reference to inet device */
2337 in_dev = in_dev_get(dev_out);
2338 if (!in_dev)
2339 return -EINVAL;
2340
2341 if (res->type == RTN_BROADCAST) {
2342 flags |= RTCF_BROADCAST | RTCF_LOCAL;
2343 if (res->fi) {
2344 fib_info_put(res->fi);
2345 res->fi = NULL;
2346 }
2347 } else if (res->type == RTN_MULTICAST) {
2348 flags |= RTCF_MULTICAST|RTCF_LOCAL;
2349 if (!ip_check_mc(in_dev, oldflp->fl4_dst, oldflp->fl4_src,
2350 oldflp->proto))
2351 flags &= ~RTCF_LOCAL;
2352 /* If multicast route do not exist use
2353 default one, but do not gateway in this case.
2354 Yes, it is hack.
2355 */
2356 if (res->fi && res->prefixlen < 4) {
2357 fib_info_put(res->fi);
2358 res->fi = NULL;
2359 }
2360 }
2361
2362
2363 rth = dst_alloc(&ipv4_dst_ops);
2364 if (!rth) {
2365 err = -ENOBUFS;
2366 goto cleanup;
2367 }
2368
2369 atomic_set(&rth->u.dst.__refcnt, 1);
2370 rth->u.dst.flags= DST_HOST;
2371 if (IN_DEV_CONF_GET(in_dev, NOXFRM))
2372 rth->u.dst.flags |= DST_NOXFRM;
2373 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
2374 rth->u.dst.flags |= DST_NOPOLICY;
2375
2376 rth->fl.fl4_dst = oldflp->fl4_dst;
2377 rth->fl.fl4_tos = tos;
2378 rth->fl.fl4_src = oldflp->fl4_src;
2379 rth->fl.oif = oldflp->oif;
2380 rth->fl.mark = oldflp->mark;
2381 rth->rt_dst = fl->fl4_dst;
2382 rth->rt_src = fl->fl4_src;
2383 rth->rt_iif = oldflp->oif ? : dev_out->ifindex;
2384 /* get references to the devices that are to be hold by the routing
2385 cache entry */
2386 rth->u.dst.dev = dev_out;
2387 dev_hold(dev_out);
2388 rth->idev = in_dev_get(dev_out);
2389 rth->rt_gateway = fl->fl4_dst;
2390 rth->rt_spec_dst= fl->fl4_src;
2391
2392 rth->u.dst.output=ip_output;
2393 rth->rt_genid = rt_genid(dev_net(dev_out));
2394
2395 RT_CACHE_STAT_INC(out_slow_tot);
2396
2397 if (flags & RTCF_LOCAL) {
2398 rth->u.dst.input = ip_local_deliver;
2399 rth->rt_spec_dst = fl->fl4_dst;
2400 }
2401 if (flags & (RTCF_BROADCAST | RTCF_MULTICAST)) {
2402 rth->rt_spec_dst = fl->fl4_src;
2403 if (flags & RTCF_LOCAL &&
2404 !(dev_out->flags & IFF_LOOPBACK)) {
2405 rth->u.dst.output = ip_mc_output;
2406 RT_CACHE_STAT_INC(out_slow_mc);
2407 }
2408 #ifdef CONFIG_IP_MROUTE
2409 if (res->type == RTN_MULTICAST) {
2410 if (IN_DEV_MFORWARD(in_dev) &&
2411 !ipv4_is_local_multicast(oldflp->fl4_dst)) {
2412 rth->u.dst.input = ip_mr_input;
2413 rth->u.dst.output = ip_mc_output;
2414 }
2415 }
2416 #endif
2417 }
2418
2419 rt_set_nexthop(rth, res, 0);
2420
2421 rth->rt_flags = flags;
2422
2423 *result = rth;
2424 cleanup:
2425 /* release work reference to inet device */
2426 in_dev_put(in_dev);
2427
2428 return err;
2429 }
2430
2431 static int ip_mkroute_output(struct rtable **rp,
2432 struct fib_result *res,
2433 const struct flowi *fl,
2434 const struct flowi *oldflp,
2435 struct net_device *dev_out,
2436 unsigned flags)
2437 {
2438 struct rtable *rth = NULL;
2439 int err = __mkroute_output(&rth, res, fl, oldflp, dev_out, flags);
2440 unsigned hash;
2441 if (err == 0) {
2442 hash = rt_hash(oldflp->fl4_dst, oldflp->fl4_src, oldflp->oif,
2443 rt_genid(dev_net(dev_out)));
2444 err = rt_intern_hash(hash, rth, rp);
2445 }
2446
2447 return err;
2448 }
2449
2450 /*
2451 * Major route resolver routine.
2452 */
2453
2454 static int ip_route_output_slow(struct net *net, struct rtable **rp,
2455 const struct flowi *oldflp)
2456 {
2457 u32 tos = RT_FL_TOS(oldflp);
2458 struct flowi fl = { .nl_u = { .ip4_u =
2459 { .daddr = oldflp->fl4_dst,
2460 .saddr = oldflp->fl4_src,
2461 .tos = tos & IPTOS_RT_MASK,
2462 .scope = ((tos & RTO_ONLINK) ?
2463 RT_SCOPE_LINK :
2464 RT_SCOPE_UNIVERSE),
2465 } },
2466 .mark = oldflp->mark,
2467 .iif = net->loopback_dev->ifindex,
2468 .oif = oldflp->oif };
2469 struct fib_result res;
2470 unsigned flags = 0;
2471 struct net_device *dev_out = NULL;
2472 int free_res = 0;
2473 int err;
2474
2475
2476 res.fi = NULL;
2477 #ifdef CONFIG_IP_MULTIPLE_TABLES
2478 res.r = NULL;
2479 #endif
2480
2481 if (oldflp->fl4_src) {
2482 err = -EINVAL;
2483 if (ipv4_is_multicast(oldflp->fl4_src) ||
2484 ipv4_is_lbcast(oldflp->fl4_src) ||
2485 ipv4_is_zeronet(oldflp->fl4_src))
2486 goto out;
2487
2488 /* I removed check for oif == dev_out->oif here.
2489 It was wrong for two reasons:
2490 1. ip_dev_find(net, saddr) can return wrong iface, if saddr
2491 is assigned to multiple interfaces.
2492 2. Moreover, we are allowed to send packets with saddr
2493 of another iface. --ANK
2494 */
2495
2496 if (oldflp->oif == 0
2497 && (ipv4_is_multicast(oldflp->fl4_dst) ||
2498 oldflp->fl4_dst == htonl(0xFFFFFFFF))) {
2499 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2500 dev_out = ip_dev_find(net, oldflp->fl4_src);
2501 if (dev_out == NULL)
2502 goto out;
2503
2504 /* Special hack: user can direct multicasts
2505 and limited broadcast via necessary interface
2506 without fiddling with IP_MULTICAST_IF or IP_PKTINFO.
2507 This hack is not just for fun, it allows
2508 vic,vat and friends to work.
2509 They bind socket to loopback, set ttl to zero
2510 and expect that it will work.
2511 From the viewpoint of routing cache they are broken,
2512 because we are not allowed to build multicast path
2513 with loopback source addr (look, routing cache
2514 cannot know, that ttl is zero, so that packet
2515 will not leave this host and route is valid).
2516 Luckily, this hack is good workaround.
2517 */
2518
2519 fl.oif = dev_out->ifindex;
2520 goto make_route;
2521 }
2522
2523 if (!(oldflp->flags & FLOWI_FLAG_ANYSRC)) {
2524 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2525 dev_out = ip_dev_find(net, oldflp->fl4_src);
2526 if (dev_out == NULL)
2527 goto out;
2528 dev_put(dev_out);
2529 dev_out = NULL;
2530 }
2531 }
2532
2533
2534 if (oldflp->oif) {
2535 dev_out = dev_get_by_index(net, oldflp->oif);
2536 err = -ENODEV;
2537 if (dev_out == NULL)
2538 goto out;
2539
2540 /* RACE: Check return value of inet_select_addr instead. */
2541 if (__in_dev_get_rtnl(dev_out) == NULL) {
2542 dev_put(dev_out);
2543 goto out; /* Wrong error code */
2544 }
2545
2546 if (ipv4_is_local_multicast(oldflp->fl4_dst) ||
2547 oldflp->fl4_dst == htonl(0xFFFFFFFF)) {
2548 if (!fl.fl4_src)
2549 fl.fl4_src = inet_select_addr(dev_out, 0,
2550 RT_SCOPE_LINK);
2551 goto make_route;
2552 }
2553 if (!fl.fl4_src) {
2554 if (ipv4_is_multicast(oldflp->fl4_dst))
2555 fl.fl4_src = inet_select_addr(dev_out, 0,
2556 fl.fl4_scope);
2557 else if (!oldflp->fl4_dst)
2558 fl.fl4_src = inet_select_addr(dev_out, 0,
2559 RT_SCOPE_HOST);
2560 }
2561 }
2562
2563 if (!fl.fl4_dst) {
2564 fl.fl4_dst = fl.fl4_src;
2565 if (!fl.fl4_dst)
2566 fl.fl4_dst = fl.fl4_src = htonl(INADDR_LOOPBACK);
2567 if (dev_out)
2568 dev_put(dev_out);
2569 dev_out = net->loopback_dev;
2570 dev_hold(dev_out);
2571 fl.oif = net->loopback_dev->ifindex;
2572 res.type = RTN_LOCAL;
2573 flags |= RTCF_LOCAL;
2574 goto make_route;
2575 }
2576
2577 if (fib_lookup(net, &fl, &res)) {
2578 res.fi = NULL;
2579 if (oldflp->oif) {
2580 /* Apparently, routing tables are wrong. Assume,
2581 that the destination is on link.
2582
2583 WHY? DW.
2584 Because we are allowed to send to iface
2585 even if it has NO routes and NO assigned
2586 addresses. When oif is specified, routing
2587 tables are looked up with only one purpose:
2588 to catch if destination is gatewayed, rather than
2589 direct. Moreover, if MSG_DONTROUTE is set,
2590 we send packet, ignoring both routing tables
2591 and ifaddr state. --ANK
2592
2593
2594 We could make it even if oif is unknown,
2595 likely IPv6, but we do not.
2596 */
2597
2598 if (fl.fl4_src == 0)
2599 fl.fl4_src = inet_select_addr(dev_out, 0,
2600 RT_SCOPE_LINK);
2601 res.type = RTN_UNICAST;
2602 goto make_route;
2603 }
2604 if (dev_out)
2605 dev_put(dev_out);
2606 err = -ENETUNREACH;
2607 goto out;
2608 }
2609 free_res = 1;
2610
2611 if (res.type == RTN_LOCAL) {
2612 if (!fl.fl4_src)
2613 fl.fl4_src = fl.fl4_dst;
2614 if (dev_out)
2615 dev_put(dev_out);
2616 dev_out = net->loopback_dev;
2617 dev_hold(dev_out);
2618 fl.oif = dev_out->ifindex;
2619 if (res.fi)
2620 fib_info_put(res.fi);
2621 res.fi = NULL;
2622 flags |= RTCF_LOCAL;
2623 goto make_route;
2624 }
2625
2626 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2627 if (res.fi->fib_nhs > 1 && fl.oif == 0)
2628 fib_select_multipath(&fl, &res);
2629 else
2630 #endif
2631 if (!res.prefixlen && res.type == RTN_UNICAST && !fl.oif)
2632 fib_select_default(net, &fl, &res);
2633
2634 if (!fl.fl4_src)
2635 fl.fl4_src = FIB_RES_PREFSRC(res);
2636
2637 if (dev_out)
2638 dev_put(dev_out);
2639 dev_out = FIB_RES_DEV(res);
2640 dev_hold(dev_out);
2641 fl.oif = dev_out->ifindex;
2642
2643
2644 make_route:
2645 err = ip_mkroute_output(rp, &res, &fl, oldflp, dev_out, flags);
2646
2647
2648 if (free_res)
2649 fib_res_put(&res);
2650 if (dev_out)
2651 dev_put(dev_out);
2652 out: return err;
2653 }
2654
2655 int __ip_route_output_key(struct net *net, struct rtable **rp,
2656 const struct flowi *flp)
2657 {
2658 unsigned hash;
2659 struct rtable *rth;
2660
2661 if (!rt_caching(net))
2662 goto slow_output;
2663
2664 hash = rt_hash(flp->fl4_dst, flp->fl4_src, flp->oif, rt_genid(net));
2665
2666 rcu_read_lock_bh();
2667 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
2668 rth = rcu_dereference(rth->u.dst.rt_next)) {
2669 if (rth->fl.fl4_dst == flp->fl4_dst &&
2670 rth->fl.fl4_src == flp->fl4_src &&
2671 rth->fl.iif == 0 &&
2672 rth->fl.oif == flp->oif &&
2673 rth->fl.mark == flp->mark &&
2674 !((rth->fl.fl4_tos ^ flp->fl4_tos) &
2675 (IPTOS_RT_MASK | RTO_ONLINK)) &&
2676 net_eq(dev_net(rth->u.dst.dev), net) &&
2677 !rt_is_expired(rth)) {
2678 dst_use(&rth->u.dst, jiffies);
2679 RT_CACHE_STAT_INC(out_hit);
2680 rcu_read_unlock_bh();
2681 *rp = rth;
2682 return 0;
2683 }
2684 RT_CACHE_STAT_INC(out_hlist_search);
2685 }
2686 rcu_read_unlock_bh();
2687
2688 slow_output:
2689 return ip_route_output_slow(net, rp, flp);
2690 }
2691
2692 EXPORT_SYMBOL_GPL(__ip_route_output_key);
2693
2694 static void ipv4_rt_blackhole_update_pmtu(struct dst_entry *dst, u32 mtu)
2695 {
2696 }
2697
2698 static struct dst_ops ipv4_dst_blackhole_ops = {
2699 .family = AF_INET,
2700 .protocol = __constant_htons(ETH_P_IP),
2701 .destroy = ipv4_dst_destroy,
2702 .check = ipv4_dst_check,
2703 .update_pmtu = ipv4_rt_blackhole_update_pmtu,
2704 .entry_size = sizeof(struct rtable),
2705 .entries = ATOMIC_INIT(0),
2706 };
2707
2708
2709 static int ipv4_dst_blackhole(struct net *net, struct rtable **rp, struct flowi *flp)
2710 {
2711 struct rtable *ort = *rp;
2712 struct rtable *rt = (struct rtable *)
2713 dst_alloc(&ipv4_dst_blackhole_ops);
2714
2715 if (rt) {
2716 struct dst_entry *new = &rt->u.dst;
2717
2718 atomic_set(&new->__refcnt, 1);
2719 new->__use = 1;
2720 new->input = dst_discard;
2721 new->output = dst_discard;
2722 memcpy(new->metrics, ort->u.dst.metrics, RTAX_MAX*sizeof(u32));
2723
2724 new->dev = ort->u.dst.dev;
2725 if (new->dev)
2726 dev_hold(new->dev);
2727
2728 rt->fl = ort->fl;
2729
2730 rt->idev = ort->idev;
2731 if (rt->idev)
2732 in_dev_hold(rt->idev);
2733 rt->rt_genid = rt_genid(net);
2734 rt->rt_flags = ort->rt_flags;
2735 rt->rt_type = ort->rt_type;
2736 rt->rt_dst = ort->rt_dst;
2737 rt->rt_src = ort->rt_src;
2738 rt->rt_iif = ort->rt_iif;
2739 rt->rt_gateway = ort->rt_gateway;
2740 rt->rt_spec_dst = ort->rt_spec_dst;
2741 rt->peer = ort->peer;
2742 if (rt->peer)
2743 atomic_inc(&rt->peer->refcnt);
2744
2745 dst_free(new);
2746 }
2747
2748 dst_release(&(*rp)->u.dst);
2749 *rp = rt;
2750 return (rt ? 0 : -ENOMEM);
2751 }
2752
2753 int ip_route_output_flow(struct net *net, struct rtable **rp, struct flowi *flp,
2754 struct sock *sk, int flags)
2755 {
2756 int err;
2757
2758 if ((err = __ip_route_output_key(net, rp, flp)) != 0)
2759 return err;
2760
2761 if (flp->proto) {
2762 if (!flp->fl4_src)
2763 flp->fl4_src = (*rp)->rt_src;
2764 if (!flp->fl4_dst)
2765 flp->fl4_dst = (*rp)->rt_dst;
2766 err = __xfrm_lookup((struct dst_entry **)rp, flp, sk,
2767 flags ? XFRM_LOOKUP_WAIT : 0);
2768 if (err == -EREMOTE)
2769 err = ipv4_dst_blackhole(net, rp, flp);
2770
2771 return err;
2772 }
2773
2774 return 0;
2775 }
2776
2777 EXPORT_SYMBOL_GPL(ip_route_output_flow);
2778
2779 int ip_route_output_key(struct net *net, struct rtable **rp, struct flowi *flp)
2780 {
2781 return ip_route_output_flow(net, rp, flp, NULL, 0);
2782 }
2783
2784 static int rt_fill_info(struct sk_buff *skb, u32 pid, u32 seq, int event,
2785 int nowait, unsigned int flags)
2786 {
2787 struct rtable *rt = skb->rtable;
2788 struct rtmsg *r;
2789 struct nlmsghdr *nlh;
2790 long expires;
2791 u32 id = 0, ts = 0, tsage = 0, error;
2792
2793 nlh = nlmsg_put(skb, pid, seq, event, sizeof(*r), flags);
2794 if (nlh == NULL)
2795 return -EMSGSIZE;
2796
2797 r = nlmsg_data(nlh);
2798 r->rtm_family = AF_INET;
2799 r->rtm_dst_len = 32;
2800 r->rtm_src_len = 0;
2801 r->rtm_tos = rt->fl.fl4_tos;
2802 r->rtm_table = RT_TABLE_MAIN;
2803 NLA_PUT_U32(skb, RTA_TABLE, RT_TABLE_MAIN);
2804 r->rtm_type = rt->rt_type;
2805 r->rtm_scope = RT_SCOPE_UNIVERSE;
2806 r->rtm_protocol = RTPROT_UNSPEC;
2807 r->rtm_flags = (rt->rt_flags & ~0xFFFF) | RTM_F_CLONED;
2808 if (rt->rt_flags & RTCF_NOTIFY)
2809 r->rtm_flags |= RTM_F_NOTIFY;
2810
2811 NLA_PUT_BE32(skb, RTA_DST, rt->rt_dst);
2812
2813 if (rt->fl.fl4_src) {
2814 r->rtm_src_len = 32;
2815 NLA_PUT_BE32(skb, RTA_SRC, rt->fl.fl4_src);
2816 }
2817 if (rt->u.dst.dev)
2818 NLA_PUT_U32(skb, RTA_OIF, rt->u.dst.dev->ifindex);
2819 #ifdef CONFIG_NET_CLS_ROUTE
2820 if (rt->u.dst.tclassid)
2821 NLA_PUT_U32(skb, RTA_FLOW, rt->u.dst.tclassid);
2822 #endif
2823 if (rt->fl.iif)
2824 NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_spec_dst);
2825 else if (rt->rt_src != rt->fl.fl4_src)
2826 NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_src);
2827
2828 if (rt->rt_dst != rt->rt_gateway)
2829 NLA_PUT_BE32(skb, RTA_GATEWAY, rt->rt_gateway);
2830
2831 if (rtnetlink_put_metrics(skb, rt->u.dst.metrics) < 0)
2832 goto nla_put_failure;
2833
2834 error = rt->u.dst.error;
2835 expires = rt->u.dst.expires ? rt->u.dst.expires - jiffies : 0;
2836 if (rt->peer) {
2837 id = rt->peer->ip_id_count;
2838 if (rt->peer->tcp_ts_stamp) {
2839 ts = rt->peer->tcp_ts;
2840 tsage = get_seconds() - rt->peer->tcp_ts_stamp;
2841 }
2842 }
2843
2844 if (rt->fl.iif) {
2845 #ifdef CONFIG_IP_MROUTE
2846 __be32 dst = rt->rt_dst;
2847
2848 if (ipv4_is_multicast(dst) && !ipv4_is_local_multicast(dst) &&
2849 IPV4_DEVCONF_ALL(&init_net, MC_FORWARDING)) {
2850 int err = ipmr_get_route(skb, r, nowait);
2851 if (err <= 0) {
2852 if (!nowait) {
2853 if (err == 0)
2854 return 0;
2855 goto nla_put_failure;
2856 } else {
2857 if (err == -EMSGSIZE)
2858 goto nla_put_failure;
2859 error = err;
2860 }
2861 }
2862 } else
2863 #endif
2864 NLA_PUT_U32(skb, RTA_IIF, rt->fl.iif);
2865 }
2866
2867 if (rtnl_put_cacheinfo(skb, &rt->u.dst, id, ts, tsage,
2868 expires, error) < 0)
2869 goto nla_put_failure;
2870
2871 return nlmsg_end(skb, nlh);
2872
2873 nla_put_failure:
2874 nlmsg_cancel(skb, nlh);
2875 return -EMSGSIZE;
2876 }
2877
2878 static int inet_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr* nlh, void *arg)
2879 {
2880 struct net *net = sock_net(in_skb->sk);
2881 struct rtmsg *rtm;
2882 struct nlattr *tb[RTA_MAX+1];
2883 struct rtable *rt = NULL;
2884 __be32 dst = 0;
2885 __be32 src = 0;
2886 u32 iif;
2887 int err;
2888 struct sk_buff *skb;
2889
2890 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv4_policy);
2891 if (err < 0)
2892 goto errout;
2893
2894 rtm = nlmsg_data(nlh);
2895
2896 skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
2897 if (skb == NULL) {
2898 err = -ENOBUFS;
2899 goto errout;
2900 }
2901
2902 /* Reserve room for dummy headers, this skb can pass
2903 through good chunk of routing engine.
2904 */
2905 skb_reset_mac_header(skb);
2906 skb_reset_network_header(skb);
2907
2908 /* Bugfix: need to give ip_route_input enough of an IP header to not gag. */
2909 ip_hdr(skb)->protocol = IPPROTO_ICMP;
2910 skb_reserve(skb, MAX_HEADER + sizeof(struct iphdr));
2911
2912 src = tb[RTA_SRC] ? nla_get_be32(tb[RTA_SRC]) : 0;
2913 dst = tb[RTA_DST] ? nla_get_be32(tb[RTA_DST]) : 0;
2914 iif = tb[RTA_IIF] ? nla_get_u32(tb[RTA_IIF]) : 0;
2915
2916 if (iif) {
2917 struct net_device *dev;
2918
2919 dev = __dev_get_by_index(net, iif);
2920 if (dev == NULL) {
2921 err = -ENODEV;
2922 goto errout_free;
2923 }
2924
2925 skb->protocol = htons(ETH_P_IP);
2926 skb->dev = dev;
2927 local_bh_disable();
2928 err = ip_route_input(skb, dst, src, rtm->rtm_tos, dev);
2929 local_bh_enable();
2930
2931 rt = skb->rtable;
2932 if (err == 0 && rt->u.dst.error)
2933 err = -rt->u.dst.error;
2934 } else {
2935 struct flowi fl = {
2936 .nl_u = {
2937 .ip4_u = {
2938 .daddr = dst,
2939 .saddr = src,
2940 .tos = rtm->rtm_tos,
2941 },
2942 },
2943 .oif = tb[RTA_OIF] ? nla_get_u32(tb[RTA_OIF]) : 0,
2944 };
2945 err = ip_route_output_key(net, &rt, &fl);
2946 }
2947
2948 if (err)
2949 goto errout_free;
2950
2951 skb->rtable = rt;
2952 if (rtm->rtm_flags & RTM_F_NOTIFY)
2953 rt->rt_flags |= RTCF_NOTIFY;
2954
2955 err = rt_fill_info(skb, NETLINK_CB(in_skb).pid, nlh->nlmsg_seq,
2956 RTM_NEWROUTE, 0, 0);
2957 if (err <= 0)
2958 goto errout_free;
2959
2960 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).pid);
2961 errout:
2962 return err;
2963
2964 errout_free:
2965 kfree_skb(skb);
2966 goto errout;
2967 }
2968
2969 int ip_rt_dump(struct sk_buff *skb, struct netlink_callback *cb)
2970 {
2971 struct rtable *rt;
2972 int h, s_h;
2973 int idx, s_idx;
2974 struct net *net;
2975
2976 net = sock_net(skb->sk);
2977
2978 s_h = cb->args[0];
2979 if (s_h < 0)
2980 s_h = 0;
2981 s_idx = idx = cb->args[1];
2982 for (h = s_h; h <= rt_hash_mask; h++, s_idx = 0) {
2983 if (!rt_hash_table[h].chain)
2984 continue;
2985 rcu_read_lock_bh();
2986 for (rt = rcu_dereference(rt_hash_table[h].chain), idx = 0; rt;
2987 rt = rcu_dereference(rt->u.dst.rt_next), idx++) {
2988 if (!net_eq(dev_net(rt->u.dst.dev), net) || idx < s_idx)
2989 continue;
2990 if (rt_is_expired(rt))
2991 continue;
2992 skb->dst = dst_clone(&rt->u.dst);
2993 if (rt_fill_info(skb, NETLINK_CB(cb->skb).pid,
2994 cb->nlh->nlmsg_seq, RTM_NEWROUTE,
2995 1, NLM_F_MULTI) <= 0) {
2996 dst_release(xchg(&skb->dst, NULL));
2997 rcu_read_unlock_bh();
2998 goto done;
2999 }
3000 dst_release(xchg(&skb->dst, NULL));
3001 }
3002 rcu_read_unlock_bh();
3003 }
3004
3005 done:
3006 cb->args[0] = h;
3007 cb->args[1] = idx;
3008 return skb->len;
3009 }
3010
3011 void ip_rt_multicast_event(struct in_device *in_dev)
3012 {
3013 rt_cache_flush(dev_net(in_dev->dev), 0);
3014 }
3015
3016 #ifdef CONFIG_SYSCTL
3017 static int ipv4_sysctl_rtcache_flush(ctl_table *__ctl, int write,
3018 struct file *filp, void __user *buffer,
3019 size_t *lenp, loff_t *ppos)
3020 {
3021 if (write) {
3022 int flush_delay;
3023 ctl_table ctl;
3024 struct net *net;
3025
3026 memcpy(&ctl, __ctl, sizeof(ctl));
3027 ctl.data = &flush_delay;
3028 proc_dointvec(&ctl, write, filp, buffer, lenp, ppos);
3029
3030 net = (struct net *)__ctl->extra1;
3031 rt_cache_flush(net, flush_delay);
3032 return 0;
3033 }
3034
3035 return -EINVAL;
3036 }
3037
3038 static int ipv4_sysctl_rtcache_flush_strategy(ctl_table *table,
3039 void __user *oldval,
3040 size_t __user *oldlenp,
3041 void __user *newval,
3042 size_t newlen)
3043 {
3044 int delay;
3045 struct net *net;
3046 if (newlen != sizeof(int))
3047 return -EINVAL;
3048 if (get_user(delay, (int __user *)newval))
3049 return -EFAULT;
3050 net = (struct net *)table->extra1;
3051 rt_cache_flush(net, delay);
3052 return 0;
3053 }
3054
3055 static void rt_secret_reschedule(int old)
3056 {
3057 struct net *net;
3058 int new = ip_rt_secret_interval;
3059 int diff = new - old;
3060
3061 if (!diff)
3062 return;
3063
3064 rtnl_lock();
3065 for_each_net(net) {
3066 int deleted = del_timer_sync(&net->ipv4.rt_secret_timer);
3067
3068 if (!new)
3069 continue;
3070
3071 if (deleted) {
3072 long time = net->ipv4.rt_secret_timer.expires - jiffies;
3073
3074 if (time <= 0 || (time += diff) <= 0)
3075 time = 0;
3076
3077 net->ipv4.rt_secret_timer.expires = time;
3078 } else
3079 net->ipv4.rt_secret_timer.expires = new;
3080
3081 net->ipv4.rt_secret_timer.expires += jiffies;
3082 add_timer(&net->ipv4.rt_secret_timer);
3083 }
3084 rtnl_unlock();
3085 }
3086
3087 static int ipv4_sysctl_rt_secret_interval(ctl_table *ctl, int write,
3088 struct file *filp,
3089 void __user *buffer, size_t *lenp,
3090 loff_t *ppos)
3091 {
3092 int old = ip_rt_secret_interval;
3093 int ret = proc_dointvec_jiffies(ctl, write, filp, buffer, lenp, ppos);
3094
3095 rt_secret_reschedule(old);
3096
3097 return ret;
3098 }
3099
3100 static int ipv4_sysctl_rt_secret_interval_strategy(ctl_table *table,
3101 void __user *oldval,
3102 size_t __user *oldlenp,
3103 void __user *newval,
3104 size_t newlen)
3105 {
3106 int old = ip_rt_secret_interval;
3107 int ret = sysctl_jiffies(table, oldval, oldlenp, newval, newlen);
3108
3109 rt_secret_reschedule(old);
3110
3111 return ret;
3112 }
3113
3114 static ctl_table ipv4_route_table[] = {
3115 {
3116 .ctl_name = NET_IPV4_ROUTE_GC_THRESH,
3117 .procname = "gc_thresh",
3118 .data = &ipv4_dst_ops.gc_thresh,
3119 .maxlen = sizeof(int),
3120 .mode = 0644,
3121 .proc_handler = &proc_dointvec,
3122 },
3123 {
3124 .ctl_name = NET_IPV4_ROUTE_MAX_SIZE,
3125 .procname = "max_size",
3126 .data = &ip_rt_max_size,
3127 .maxlen = sizeof(int),
3128 .mode = 0644,
3129 .proc_handler = &proc_dointvec,
3130 },
3131 {
3132 /* Deprecated. Use gc_min_interval_ms */
3133
3134 .ctl_name = NET_IPV4_ROUTE_GC_MIN_INTERVAL,
3135 .procname = "gc_min_interval",
3136 .data = &ip_rt_gc_min_interval,
3137 .maxlen = sizeof(int),
3138 .mode = 0644,
3139 .proc_handler = &proc_dointvec_jiffies,
3140 .strategy = &sysctl_jiffies,
3141 },
3142 {
3143 .ctl_name = NET_IPV4_ROUTE_GC_MIN_INTERVAL_MS,
3144 .procname = "gc_min_interval_ms",
3145 .data = &ip_rt_gc_min_interval,
3146 .maxlen = sizeof(int),
3147 .mode = 0644,
3148 .proc_handler = &proc_dointvec_ms_jiffies,
3149 .strategy = &sysctl_ms_jiffies,
3150 },
3151 {
3152 .ctl_name = NET_IPV4_ROUTE_GC_TIMEOUT,
3153 .procname = "gc_timeout",
3154 .data = &ip_rt_gc_timeout,
3155 .maxlen = sizeof(int),
3156 .mode = 0644,
3157 .proc_handler = &proc_dointvec_jiffies,
3158 .strategy = &sysctl_jiffies,
3159 },
3160 {
3161 .ctl_name = NET_IPV4_ROUTE_GC_INTERVAL,
3162 .procname = "gc_interval",
3163 .data = &ip_rt_gc_interval,
3164 .maxlen = sizeof(int),
3165 .mode = 0644,
3166 .proc_handler = &proc_dointvec_jiffies,
3167 .strategy = &sysctl_jiffies,
3168 },
3169 {
3170 .ctl_name = NET_IPV4_ROUTE_REDIRECT_LOAD,
3171 .procname = "redirect_load",
3172 .data = &ip_rt_redirect_load,
3173 .maxlen = sizeof(int),
3174 .mode = 0644,
3175 .proc_handler = &proc_dointvec,
3176 },
3177 {
3178 .ctl_name = NET_IPV4_ROUTE_REDIRECT_NUMBER,
3179 .procname = "redirect_number",
3180 .data = &ip_rt_redirect_number,
3181 .maxlen = sizeof(int),
3182 .mode = 0644,
3183 .proc_handler = &proc_dointvec,
3184 },
3185 {
3186 .ctl_name = NET_IPV4_ROUTE_REDIRECT_SILENCE,
3187 .procname = "redirect_silence",
3188 .data = &ip_rt_redirect_silence,
3189 .maxlen = sizeof(int),
3190 .mode = 0644,
3191 .proc_handler = &proc_dointvec,
3192 },
3193 {
3194 .ctl_name = NET_IPV4_ROUTE_ERROR_COST,
3195 .procname = "error_cost",
3196 .data = &ip_rt_error_cost,
3197 .maxlen = sizeof(int),
3198 .mode = 0644,
3199 .proc_handler = &proc_dointvec,
3200 },
3201 {
3202 .ctl_name = NET_IPV4_ROUTE_ERROR_BURST,
3203 .procname = "error_burst",
3204 .data = &ip_rt_error_burst,
3205 .maxlen = sizeof(int),
3206 .mode = 0644,
3207 .proc_handler = &proc_dointvec,
3208 },
3209 {
3210 .ctl_name = NET_IPV4_ROUTE_GC_ELASTICITY,
3211 .procname = "gc_elasticity",
3212 .data = &ip_rt_gc_elasticity,
3213 .maxlen = sizeof(int),
3214 .mode = 0644,
3215 .proc_handler = &proc_dointvec,
3216 },
3217 {
3218 .ctl_name = NET_IPV4_ROUTE_MTU_EXPIRES,
3219 .procname = "mtu_expires",
3220 .data = &ip_rt_mtu_expires,
3221 .maxlen = sizeof(int),
3222 .mode = 0644,
3223 .proc_handler = &proc_dointvec_jiffies,
3224 .strategy = &sysctl_jiffies,
3225 },
3226 {
3227 .ctl_name = NET_IPV4_ROUTE_MIN_PMTU,
3228 .procname = "min_pmtu",
3229 .data = &ip_rt_min_pmtu,
3230 .maxlen = sizeof(int),
3231 .mode = 0644,
3232 .proc_handler = &proc_dointvec,
3233 },
3234 {
3235 .ctl_name = NET_IPV4_ROUTE_MIN_ADVMSS,
3236 .procname = "min_adv_mss",
3237 .data = &ip_rt_min_advmss,
3238 .maxlen = sizeof(int),
3239 .mode = 0644,
3240 .proc_handler = &proc_dointvec,
3241 },
3242 {
3243 .ctl_name = NET_IPV4_ROUTE_SECRET_INTERVAL,
3244 .procname = "secret_interval",
3245 .data = &ip_rt_secret_interval,
3246 .maxlen = sizeof(int),
3247 .mode = 0644,
3248 .proc_handler = &ipv4_sysctl_rt_secret_interval,
3249 .strategy = &ipv4_sysctl_rt_secret_interval_strategy,
3250 },
3251 { .ctl_name = 0 }
3252 };
3253
3254 static struct ctl_table empty[1];
3255
3256 static struct ctl_table ipv4_skeleton[] =
3257 {
3258 { .procname = "route", .ctl_name = NET_IPV4_ROUTE,
3259 .mode = 0555, .child = ipv4_route_table},
3260 { .procname = "neigh", .ctl_name = NET_IPV4_NEIGH,
3261 .mode = 0555, .child = empty},
3262 { }
3263 };
3264
3265 static __net_initdata struct ctl_path ipv4_path[] = {
3266 { .procname = "net", .ctl_name = CTL_NET, },
3267 { .procname = "ipv4", .ctl_name = NET_IPV4, },
3268 { },
3269 };
3270
3271 static struct ctl_table ipv4_route_flush_table[] = {
3272 {
3273 .ctl_name = NET_IPV4_ROUTE_FLUSH,
3274 .procname = "flush",
3275 .maxlen = sizeof(int),
3276 .mode = 0200,
3277 .proc_handler = &ipv4_sysctl_rtcache_flush,
3278 .strategy = &ipv4_sysctl_rtcache_flush_strategy,
3279 },
3280 { .ctl_name = 0 },
3281 };
3282
3283 static __net_initdata struct ctl_path ipv4_route_path[] = {
3284 { .procname = "net", .ctl_name = CTL_NET, },
3285 { .procname = "ipv4", .ctl_name = NET_IPV4, },
3286 { .procname = "route", .ctl_name = NET_IPV4_ROUTE, },
3287 { },
3288 };
3289
3290 static __net_init int sysctl_route_net_init(struct net *net)
3291 {
3292 struct ctl_table *tbl;
3293
3294 tbl = ipv4_route_flush_table;
3295 if (net != &init_net) {
3296 tbl = kmemdup(tbl, sizeof(ipv4_route_flush_table), GFP_KERNEL);
3297 if (tbl == NULL)
3298 goto err_dup;
3299 }
3300 tbl[0].extra1 = net;
3301
3302 net->ipv4.route_hdr =
3303 register_net_sysctl_table(net, ipv4_route_path, tbl);
3304 if (net->ipv4.route_hdr == NULL)
3305 goto err_reg;
3306 return 0;
3307
3308 err_reg:
3309 if (tbl != ipv4_route_flush_table)
3310 kfree(tbl);
3311 err_dup:
3312 return -ENOMEM;
3313 }
3314
3315 static __net_exit void sysctl_route_net_exit(struct net *net)
3316 {
3317 struct ctl_table *tbl;
3318
3319 tbl = net->ipv4.route_hdr->ctl_table_arg;
3320 unregister_net_sysctl_table(net->ipv4.route_hdr);
3321 BUG_ON(tbl == ipv4_route_flush_table);
3322 kfree(tbl);
3323 }
3324
3325 static __net_initdata struct pernet_operations sysctl_route_ops = {
3326 .init = sysctl_route_net_init,
3327 .exit = sysctl_route_net_exit,
3328 };
3329 #endif
3330
3331
3332 static __net_init int rt_secret_timer_init(struct net *net)
3333 {
3334 atomic_set(&net->ipv4.rt_genid,
3335 (int) ((num_physpages ^ (num_physpages>>8)) ^
3336 (jiffies ^ (jiffies >> 7))));
3337
3338 net->ipv4.rt_secret_timer.function = rt_secret_rebuild;
3339 net->ipv4.rt_secret_timer.data = (unsigned long)net;
3340 init_timer_deferrable(&net->ipv4.rt_secret_timer);
3341
3342 if (ip_rt_secret_interval) {
3343 net->ipv4.rt_secret_timer.expires =
3344 jiffies + net_random() % ip_rt_secret_interval +
3345 ip_rt_secret_interval;
3346 add_timer(&net->ipv4.rt_secret_timer);
3347 }
3348 return 0;
3349 }
3350
3351 static __net_exit void rt_secret_timer_exit(struct net *net)
3352 {
3353 del_timer_sync(&net->ipv4.rt_secret_timer);
3354 }
3355
3356 static __net_initdata struct pernet_operations rt_secret_timer_ops = {
3357 .init = rt_secret_timer_init,
3358 .exit = rt_secret_timer_exit,
3359 };
3360
3361
3362 #ifdef CONFIG_NET_CLS_ROUTE
3363 struct ip_rt_acct *ip_rt_acct __read_mostly;
3364 #endif /* CONFIG_NET_CLS_ROUTE */
3365
3366 static __initdata unsigned long rhash_entries;
3367 static int __init set_rhash_entries(char *str)
3368 {
3369 if (!str)
3370 return 0;
3371 rhash_entries = simple_strtoul(str, &str, 0);
3372 return 1;
3373 }
3374 __setup("rhash_entries=", set_rhash_entries);
3375
3376 int __init ip_rt_init(void)
3377 {
3378 int rc = 0;
3379
3380 #ifdef CONFIG_NET_CLS_ROUTE
3381 ip_rt_acct = __alloc_percpu(256 * sizeof(struct ip_rt_acct));
3382 if (!ip_rt_acct)
3383 panic("IP: failed to allocate ip_rt_acct\n");
3384 #endif
3385
3386 ipv4_dst_ops.kmem_cachep =
3387 kmem_cache_create("ip_dst_cache", sizeof(struct rtable), 0,
3388 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3389
3390 ipv4_dst_blackhole_ops.kmem_cachep = ipv4_dst_ops.kmem_cachep;
3391
3392 rt_hash_table = (struct rt_hash_bucket *)
3393 alloc_large_system_hash("IP route cache",
3394 sizeof(struct rt_hash_bucket),
3395 rhash_entries,
3396 (num_physpages >= 128 * 1024) ?
3397 15 : 17,
3398 0,
3399 &rt_hash_log,
3400 &rt_hash_mask,
3401 0);
3402 memset(rt_hash_table, 0, (rt_hash_mask + 1) * sizeof(struct rt_hash_bucket));
3403 rt_hash_lock_init();
3404
3405 ipv4_dst_ops.gc_thresh = (rt_hash_mask + 1);
3406 ip_rt_max_size = (rt_hash_mask + 1) * 16;
3407
3408 devinet_init();
3409 ip_fib_init();
3410
3411 /* All the timers, started at system startup tend
3412 to synchronize. Perturb it a bit.
3413 */
3414 schedule_delayed_work(&expires_work,
3415 net_random() % ip_rt_gc_interval + ip_rt_gc_interval);
3416
3417 if (register_pernet_subsys(&rt_secret_timer_ops))
3418 printk(KERN_ERR "Unable to setup rt_secret_timer\n");
3419
3420 if (ip_rt_proc_init())
3421 printk(KERN_ERR "Unable to create route proc files\n");
3422 #ifdef CONFIG_XFRM
3423 xfrm_init();
3424 xfrm4_init();
3425 #endif
3426 rtnl_register(PF_INET, RTM_GETROUTE, inet_rtm_getroute, NULL);
3427
3428 #ifdef CONFIG_SYSCTL
3429 register_pernet_subsys(&sysctl_route_ops);
3430 #endif
3431 return rc;
3432 }
3433
3434 #ifdef CONFIG_SYSCTL
3435 /*
3436 * We really need to sanitize the damn ipv4 init order, then all
3437 * this nonsense will go away.
3438 */
3439 void __init ip_static_sysctl_init(void)
3440 {
3441 register_sysctl_paths(ipv4_path, ipv4_skeleton);
3442 }
3443 #endif
3444
3445 EXPORT_SYMBOL(__ip_select_ident);
3446 EXPORT_SYMBOL(ip_route_input);
3447 EXPORT_SYMBOL(ip_route_output_key);