]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - net/ipv4/route.c
[NETNS]: Process /proc/net/rt_cache inside a namespace.
[mirror_ubuntu-focal-kernel.git] / net / ipv4 / route.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * ROUTE - implementation of the IP router.
7 *
8 * Version: $Id: route.c,v 1.103 2002/01/12 07:44:09 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Alan Cox, <gw4pts@gw4pts.ampr.org>
13 * Linus Torvalds, <Linus.Torvalds@helsinki.fi>
14 * Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
15 *
16 * Fixes:
17 * Alan Cox : Verify area fixes.
18 * Alan Cox : cli() protects routing changes
19 * Rui Oliveira : ICMP routing table updates
20 * (rco@di.uminho.pt) Routing table insertion and update
21 * Linus Torvalds : Rewrote bits to be sensible
22 * Alan Cox : Added BSD route gw semantics
23 * Alan Cox : Super /proc >4K
24 * Alan Cox : MTU in route table
25 * Alan Cox : MSS actually. Also added the window
26 * clamper.
27 * Sam Lantinga : Fixed route matching in rt_del()
28 * Alan Cox : Routing cache support.
29 * Alan Cox : Removed compatibility cruft.
30 * Alan Cox : RTF_REJECT support.
31 * Alan Cox : TCP irtt support.
32 * Jonathan Naylor : Added Metric support.
33 * Miquel van Smoorenburg : BSD API fixes.
34 * Miquel van Smoorenburg : Metrics.
35 * Alan Cox : Use __u32 properly
36 * Alan Cox : Aligned routing errors more closely with BSD
37 * our system is still very different.
38 * Alan Cox : Faster /proc handling
39 * Alexey Kuznetsov : Massive rework to support tree based routing,
40 * routing caches and better behaviour.
41 *
42 * Olaf Erb : irtt wasn't being copied right.
43 * Bjorn Ekwall : Kerneld route support.
44 * Alan Cox : Multicast fixed (I hope)
45 * Pavel Krauz : Limited broadcast fixed
46 * Mike McLagan : Routing by source
47 * Alexey Kuznetsov : End of old history. Split to fib.c and
48 * route.c and rewritten from scratch.
49 * Andi Kleen : Load-limit warning messages.
50 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
51 * Vitaly E. Lavrov : Race condition in ip_route_input_slow.
52 * Tobias Ringstrom : Uninitialized res.type in ip_route_output_slow.
53 * Vladimir V. Ivanov : IP rule info (flowid) is really useful.
54 * Marc Boucher : routing by fwmark
55 * Robert Olsson : Added rt_cache statistics
56 * Arnaldo C. Melo : Convert proc stuff to seq_file
57 * Eric Dumazet : hashed spinlocks and rt_check_expire() fixes.
58 * Ilia Sotnikov : Ignore TOS on PMTUD and Redirect
59 * Ilia Sotnikov : Removed TOS from hash calculations
60 *
61 * This program is free software; you can redistribute it and/or
62 * modify it under the terms of the GNU General Public License
63 * as published by the Free Software Foundation; either version
64 * 2 of the License, or (at your option) any later version.
65 */
66
67 #include <linux/module.h>
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
70 #include <linux/bitops.h>
71 #include <linux/types.h>
72 #include <linux/kernel.h>
73 #include <linux/mm.h>
74 #include <linux/bootmem.h>
75 #include <linux/string.h>
76 #include <linux/socket.h>
77 #include <linux/sockios.h>
78 #include <linux/errno.h>
79 #include <linux/in.h>
80 #include <linux/inet.h>
81 #include <linux/netdevice.h>
82 #include <linux/proc_fs.h>
83 #include <linux/init.h>
84 #include <linux/workqueue.h>
85 #include <linux/skbuff.h>
86 #include <linux/inetdevice.h>
87 #include <linux/igmp.h>
88 #include <linux/pkt_sched.h>
89 #include <linux/mroute.h>
90 #include <linux/netfilter_ipv4.h>
91 #include <linux/random.h>
92 #include <linux/jhash.h>
93 #include <linux/rcupdate.h>
94 #include <linux/times.h>
95 #include <net/dst.h>
96 #include <net/net_namespace.h>
97 #include <net/protocol.h>
98 #include <net/ip.h>
99 #include <net/route.h>
100 #include <net/inetpeer.h>
101 #include <net/sock.h>
102 #include <net/ip_fib.h>
103 #include <net/arp.h>
104 #include <net/tcp.h>
105 #include <net/icmp.h>
106 #include <net/xfrm.h>
107 #include <net/netevent.h>
108 #include <net/rtnetlink.h>
109 #ifdef CONFIG_SYSCTL
110 #include <linux/sysctl.h>
111 #endif
112
113 #define RT_FL_TOS(oldflp) \
114 ((u32)(oldflp->fl4_tos & (IPTOS_RT_MASK | RTO_ONLINK)))
115
116 #define IP_MAX_MTU 0xFFF0
117
118 #define RT_GC_TIMEOUT (300*HZ)
119
120 static int ip_rt_max_size;
121 static int ip_rt_gc_timeout = RT_GC_TIMEOUT;
122 static int ip_rt_gc_interval = 60 * HZ;
123 static int ip_rt_gc_min_interval = HZ / 2;
124 static int ip_rt_redirect_number = 9;
125 static int ip_rt_redirect_load = HZ / 50;
126 static int ip_rt_redirect_silence = ((HZ / 50) << (9 + 1));
127 static int ip_rt_error_cost = HZ;
128 static int ip_rt_error_burst = 5 * HZ;
129 static int ip_rt_gc_elasticity = 8;
130 static int ip_rt_mtu_expires = 10 * 60 * HZ;
131 static int ip_rt_min_pmtu = 512 + 20 + 20;
132 static int ip_rt_min_advmss = 256;
133 static int ip_rt_secret_interval = 10 * 60 * HZ;
134
135 #define RTprint(a...) printk(KERN_DEBUG a)
136
137 static void rt_worker_func(struct work_struct *work);
138 static DECLARE_DELAYED_WORK(expires_work, rt_worker_func);
139 static struct timer_list rt_secret_timer;
140
141 /*
142 * Interface to generic destination cache.
143 */
144
145 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie);
146 static void ipv4_dst_destroy(struct dst_entry *dst);
147 static void ipv4_dst_ifdown(struct dst_entry *dst,
148 struct net_device *dev, int how);
149 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst);
150 static void ipv4_link_failure(struct sk_buff *skb);
151 static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu);
152 static int rt_garbage_collect(struct dst_ops *ops);
153
154
155 static struct dst_ops ipv4_dst_ops = {
156 .family = AF_INET,
157 .protocol = __constant_htons(ETH_P_IP),
158 .gc = rt_garbage_collect,
159 .check = ipv4_dst_check,
160 .destroy = ipv4_dst_destroy,
161 .ifdown = ipv4_dst_ifdown,
162 .negative_advice = ipv4_negative_advice,
163 .link_failure = ipv4_link_failure,
164 .update_pmtu = ip_rt_update_pmtu,
165 .local_out = ip_local_out,
166 .entry_size = sizeof(struct rtable),
167 .entries = ATOMIC_INIT(0),
168 };
169
170 #define ECN_OR_COST(class) TC_PRIO_##class
171
172 const __u8 ip_tos2prio[16] = {
173 TC_PRIO_BESTEFFORT,
174 ECN_OR_COST(FILLER),
175 TC_PRIO_BESTEFFORT,
176 ECN_OR_COST(BESTEFFORT),
177 TC_PRIO_BULK,
178 ECN_OR_COST(BULK),
179 TC_PRIO_BULK,
180 ECN_OR_COST(BULK),
181 TC_PRIO_INTERACTIVE,
182 ECN_OR_COST(INTERACTIVE),
183 TC_PRIO_INTERACTIVE,
184 ECN_OR_COST(INTERACTIVE),
185 TC_PRIO_INTERACTIVE_BULK,
186 ECN_OR_COST(INTERACTIVE_BULK),
187 TC_PRIO_INTERACTIVE_BULK,
188 ECN_OR_COST(INTERACTIVE_BULK)
189 };
190
191
192 /*
193 * Route cache.
194 */
195
196 /* The locking scheme is rather straight forward:
197 *
198 * 1) Read-Copy Update protects the buckets of the central route hash.
199 * 2) Only writers remove entries, and they hold the lock
200 * as they look at rtable reference counts.
201 * 3) Only readers acquire references to rtable entries,
202 * they do so with atomic increments and with the
203 * lock held.
204 */
205
206 struct rt_hash_bucket {
207 struct rtable *chain;
208 };
209 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) || \
210 defined(CONFIG_PROVE_LOCKING)
211 /*
212 * Instead of using one spinlock for each rt_hash_bucket, we use a table of spinlocks
213 * The size of this table is a power of two and depends on the number of CPUS.
214 * (on lockdep we have a quite big spinlock_t, so keep the size down there)
215 */
216 #ifdef CONFIG_LOCKDEP
217 # define RT_HASH_LOCK_SZ 256
218 #else
219 # if NR_CPUS >= 32
220 # define RT_HASH_LOCK_SZ 4096
221 # elif NR_CPUS >= 16
222 # define RT_HASH_LOCK_SZ 2048
223 # elif NR_CPUS >= 8
224 # define RT_HASH_LOCK_SZ 1024
225 # elif NR_CPUS >= 4
226 # define RT_HASH_LOCK_SZ 512
227 # else
228 # define RT_HASH_LOCK_SZ 256
229 # endif
230 #endif
231
232 static spinlock_t *rt_hash_locks;
233 # define rt_hash_lock_addr(slot) &rt_hash_locks[(slot) & (RT_HASH_LOCK_SZ - 1)]
234
235 static __init void rt_hash_lock_init(void)
236 {
237 int i;
238
239 rt_hash_locks = kmalloc(sizeof(spinlock_t) * RT_HASH_LOCK_SZ,
240 GFP_KERNEL);
241 if (!rt_hash_locks)
242 panic("IP: failed to allocate rt_hash_locks\n");
243
244 for (i = 0; i < RT_HASH_LOCK_SZ; i++)
245 spin_lock_init(&rt_hash_locks[i]);
246 }
247 #else
248 # define rt_hash_lock_addr(slot) NULL
249
250 static inline void rt_hash_lock_init(void)
251 {
252 }
253 #endif
254
255 static struct rt_hash_bucket *rt_hash_table;
256 static unsigned rt_hash_mask;
257 static unsigned int rt_hash_log;
258 static atomic_t rt_genid;
259
260 static DEFINE_PER_CPU(struct rt_cache_stat, rt_cache_stat);
261 #define RT_CACHE_STAT_INC(field) \
262 (__raw_get_cpu_var(rt_cache_stat).field++)
263
264 static unsigned int rt_hash_code(u32 daddr, u32 saddr)
265 {
266 return jhash_2words(daddr, saddr, atomic_read(&rt_genid))
267 & rt_hash_mask;
268 }
269
270 #define rt_hash(daddr, saddr, idx) \
271 rt_hash_code((__force u32)(__be32)(daddr),\
272 (__force u32)(__be32)(saddr) ^ ((idx) << 5))
273
274 #ifdef CONFIG_PROC_FS
275 struct rt_cache_iter_state {
276 struct seq_net_private p;
277 int bucket;
278 int genid;
279 };
280
281 static struct rtable *rt_cache_get_first(struct rt_cache_iter_state *st)
282 {
283 struct rtable *r = NULL;
284
285 for (st->bucket = rt_hash_mask; st->bucket >= 0; --st->bucket) {
286 rcu_read_lock_bh();
287 r = rcu_dereference(rt_hash_table[st->bucket].chain);
288 while (r) {
289 if (r->u.dst.dev->nd_net == st->p.net &&
290 r->rt_genid == st->genid)
291 return r;
292 r = rcu_dereference(r->u.dst.rt_next);
293 }
294 rcu_read_unlock_bh();
295 }
296 return r;
297 }
298
299 static struct rtable *__rt_cache_get_next(struct rt_cache_iter_state *st,
300 struct rtable *r)
301 {
302 r = r->u.dst.rt_next;
303 while (!r) {
304 rcu_read_unlock_bh();
305 if (--st->bucket < 0)
306 break;
307 rcu_read_lock_bh();
308 r = rt_hash_table[st->bucket].chain;
309 }
310 return rcu_dereference(r);
311 }
312
313 static struct rtable *rt_cache_get_next(struct rt_cache_iter_state *st,
314 struct rtable *r)
315 {
316 while ((r = __rt_cache_get_next(st, r)) != NULL) {
317 if (r->u.dst.dev->nd_net != st->p.net)
318 continue;
319 if (r->rt_genid == st->genid)
320 break;
321 }
322 return r;
323 }
324
325 static struct rtable *rt_cache_get_idx(struct rt_cache_iter_state *st, loff_t pos)
326 {
327 struct rtable *r = rt_cache_get_first(st);
328
329 if (r)
330 while (pos && (r = rt_cache_get_next(st, r)))
331 --pos;
332 return pos ? NULL : r;
333 }
334
335 static void *rt_cache_seq_start(struct seq_file *seq, loff_t *pos)
336 {
337 struct rt_cache_iter_state *st = seq->private;
338
339 if (*pos)
340 return rt_cache_get_idx(st, *pos - 1);
341 st->genid = atomic_read(&rt_genid);
342 return SEQ_START_TOKEN;
343 }
344
345 static void *rt_cache_seq_next(struct seq_file *seq, void *v, loff_t *pos)
346 {
347 struct rtable *r;
348 struct rt_cache_iter_state *st = seq->private;
349
350 if (v == SEQ_START_TOKEN)
351 r = rt_cache_get_first(st);
352 else
353 r = rt_cache_get_next(st, v);
354 ++*pos;
355 return r;
356 }
357
358 static void rt_cache_seq_stop(struct seq_file *seq, void *v)
359 {
360 if (v && v != SEQ_START_TOKEN)
361 rcu_read_unlock_bh();
362 }
363
364 static int rt_cache_seq_show(struct seq_file *seq, void *v)
365 {
366 if (v == SEQ_START_TOKEN)
367 seq_printf(seq, "%-127s\n",
368 "Iface\tDestination\tGateway \tFlags\t\tRefCnt\tUse\t"
369 "Metric\tSource\t\tMTU\tWindow\tIRTT\tTOS\tHHRef\t"
370 "HHUptod\tSpecDst");
371 else {
372 struct rtable *r = v;
373 char temp[256];
374
375 sprintf(temp, "%s\t%08lX\t%08lX\t%8X\t%d\t%u\t%d\t"
376 "%08lX\t%d\t%u\t%u\t%02X\t%d\t%1d\t%08X",
377 r->u.dst.dev ? r->u.dst.dev->name : "*",
378 (unsigned long)r->rt_dst, (unsigned long)r->rt_gateway,
379 r->rt_flags, atomic_read(&r->u.dst.__refcnt),
380 r->u.dst.__use, 0, (unsigned long)r->rt_src,
381 (dst_metric(&r->u.dst, RTAX_ADVMSS) ?
382 (int)dst_metric(&r->u.dst, RTAX_ADVMSS) + 40 : 0),
383 dst_metric(&r->u.dst, RTAX_WINDOW),
384 (int)((dst_metric(&r->u.dst, RTAX_RTT) >> 3) +
385 dst_metric(&r->u.dst, RTAX_RTTVAR)),
386 r->fl.fl4_tos,
387 r->u.dst.hh ? atomic_read(&r->u.dst.hh->hh_refcnt) : -1,
388 r->u.dst.hh ? (r->u.dst.hh->hh_output ==
389 dev_queue_xmit) : 0,
390 r->rt_spec_dst);
391 seq_printf(seq, "%-127s\n", temp);
392 }
393 return 0;
394 }
395
396 static const struct seq_operations rt_cache_seq_ops = {
397 .start = rt_cache_seq_start,
398 .next = rt_cache_seq_next,
399 .stop = rt_cache_seq_stop,
400 .show = rt_cache_seq_show,
401 };
402
403 static int rt_cache_seq_open(struct inode *inode, struct file *file)
404 {
405 return seq_open_net(inode, file, &rt_cache_seq_ops,
406 sizeof(struct rt_cache_iter_state));
407 }
408
409 static const struct file_operations rt_cache_seq_fops = {
410 .owner = THIS_MODULE,
411 .open = rt_cache_seq_open,
412 .read = seq_read,
413 .llseek = seq_lseek,
414 .release = seq_release_net,
415 };
416
417
418 static void *rt_cpu_seq_start(struct seq_file *seq, loff_t *pos)
419 {
420 int cpu;
421
422 if (*pos == 0)
423 return SEQ_START_TOKEN;
424
425 for (cpu = *pos-1; cpu < NR_CPUS; ++cpu) {
426 if (!cpu_possible(cpu))
427 continue;
428 *pos = cpu+1;
429 return &per_cpu(rt_cache_stat, cpu);
430 }
431 return NULL;
432 }
433
434 static void *rt_cpu_seq_next(struct seq_file *seq, void *v, loff_t *pos)
435 {
436 int cpu;
437
438 for (cpu = *pos; cpu < NR_CPUS; ++cpu) {
439 if (!cpu_possible(cpu))
440 continue;
441 *pos = cpu+1;
442 return &per_cpu(rt_cache_stat, cpu);
443 }
444 return NULL;
445
446 }
447
448 static void rt_cpu_seq_stop(struct seq_file *seq, void *v)
449 {
450
451 }
452
453 static int rt_cpu_seq_show(struct seq_file *seq, void *v)
454 {
455 struct rt_cache_stat *st = v;
456
457 if (v == SEQ_START_TOKEN) {
458 seq_printf(seq, "entries in_hit in_slow_tot in_slow_mc in_no_route in_brd in_martian_dst in_martian_src out_hit out_slow_tot out_slow_mc gc_total gc_ignored gc_goal_miss gc_dst_overflow in_hlist_search out_hlist_search\n");
459 return 0;
460 }
461
462 seq_printf(seq,"%08x %08x %08x %08x %08x %08x %08x %08x "
463 " %08x %08x %08x %08x %08x %08x %08x %08x %08x \n",
464 atomic_read(&ipv4_dst_ops.entries),
465 st->in_hit,
466 st->in_slow_tot,
467 st->in_slow_mc,
468 st->in_no_route,
469 st->in_brd,
470 st->in_martian_dst,
471 st->in_martian_src,
472
473 st->out_hit,
474 st->out_slow_tot,
475 st->out_slow_mc,
476
477 st->gc_total,
478 st->gc_ignored,
479 st->gc_goal_miss,
480 st->gc_dst_overflow,
481 st->in_hlist_search,
482 st->out_hlist_search
483 );
484 return 0;
485 }
486
487 static const struct seq_operations rt_cpu_seq_ops = {
488 .start = rt_cpu_seq_start,
489 .next = rt_cpu_seq_next,
490 .stop = rt_cpu_seq_stop,
491 .show = rt_cpu_seq_show,
492 };
493
494
495 static int rt_cpu_seq_open(struct inode *inode, struct file *file)
496 {
497 return seq_open(file, &rt_cpu_seq_ops);
498 }
499
500 static const struct file_operations rt_cpu_seq_fops = {
501 .owner = THIS_MODULE,
502 .open = rt_cpu_seq_open,
503 .read = seq_read,
504 .llseek = seq_lseek,
505 .release = seq_release,
506 };
507
508 #ifdef CONFIG_NET_CLS_ROUTE
509 static int ip_rt_acct_read(char *buffer, char **start, off_t offset,
510 int length, int *eof, void *data)
511 {
512 unsigned int i;
513
514 if ((offset & 3) || (length & 3))
515 return -EIO;
516
517 if (offset >= sizeof(struct ip_rt_acct) * 256) {
518 *eof = 1;
519 return 0;
520 }
521
522 if (offset + length >= sizeof(struct ip_rt_acct) * 256) {
523 length = sizeof(struct ip_rt_acct) * 256 - offset;
524 *eof = 1;
525 }
526
527 offset /= sizeof(u32);
528
529 if (length > 0) {
530 u32 *dst = (u32 *) buffer;
531
532 *start = buffer;
533 memset(dst, 0, length);
534
535 for_each_possible_cpu(i) {
536 unsigned int j;
537 u32 *src;
538
539 src = ((u32 *) per_cpu_ptr(ip_rt_acct, i)) + offset;
540 for (j = 0; j < length/4; j++)
541 dst[j] += src[j];
542 }
543 }
544 return length;
545 }
546 #endif
547
548 static __init int ip_rt_proc_init(struct net *net)
549 {
550 struct proc_dir_entry *pde;
551
552 pde = proc_net_fops_create(net, "rt_cache", S_IRUGO,
553 &rt_cache_seq_fops);
554 if (!pde)
555 goto err1;
556
557 pde = proc_create("rt_cache", S_IRUGO,
558 net->proc_net_stat, &rt_cpu_seq_fops);
559 if (!pde)
560 goto err2;
561
562 #ifdef CONFIG_NET_CLS_ROUTE
563 pde = create_proc_read_entry("rt_acct", 0, net->proc_net,
564 ip_rt_acct_read, NULL);
565 if (!pde)
566 goto err3;
567 #endif
568 return 0;
569
570 #ifdef CONFIG_NET_CLS_ROUTE
571 err3:
572 remove_proc_entry("rt_cache", net->proc_net_stat);
573 #endif
574 err2:
575 remove_proc_entry("rt_cache", net->proc_net);
576 err1:
577 return -ENOMEM;
578 }
579 #else
580 static inline int ip_rt_proc_init(struct net *net)
581 {
582 return 0;
583 }
584 #endif /* CONFIG_PROC_FS */
585
586 static __inline__ void rt_free(struct rtable *rt)
587 {
588 call_rcu_bh(&rt->u.dst.rcu_head, dst_rcu_free);
589 }
590
591 static __inline__ void rt_drop(struct rtable *rt)
592 {
593 ip_rt_put(rt);
594 call_rcu_bh(&rt->u.dst.rcu_head, dst_rcu_free);
595 }
596
597 static __inline__ int rt_fast_clean(struct rtable *rth)
598 {
599 /* Kill broadcast/multicast entries very aggresively, if they
600 collide in hash table with more useful entries */
601 return (rth->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) &&
602 rth->fl.iif && rth->u.dst.rt_next;
603 }
604
605 static __inline__ int rt_valuable(struct rtable *rth)
606 {
607 return (rth->rt_flags & (RTCF_REDIRECTED | RTCF_NOTIFY)) ||
608 rth->u.dst.expires;
609 }
610
611 static int rt_may_expire(struct rtable *rth, unsigned long tmo1, unsigned long tmo2)
612 {
613 unsigned long age;
614 int ret = 0;
615
616 if (atomic_read(&rth->u.dst.__refcnt))
617 goto out;
618
619 ret = 1;
620 if (rth->u.dst.expires &&
621 time_after_eq(jiffies, rth->u.dst.expires))
622 goto out;
623
624 age = jiffies - rth->u.dst.lastuse;
625 ret = 0;
626 if ((age <= tmo1 && !rt_fast_clean(rth)) ||
627 (age <= tmo2 && rt_valuable(rth)))
628 goto out;
629 ret = 1;
630 out: return ret;
631 }
632
633 /* Bits of score are:
634 * 31: very valuable
635 * 30: not quite useless
636 * 29..0: usage counter
637 */
638 static inline u32 rt_score(struct rtable *rt)
639 {
640 u32 score = jiffies - rt->u.dst.lastuse;
641
642 score = ~score & ~(3<<30);
643
644 if (rt_valuable(rt))
645 score |= (1<<31);
646
647 if (!rt->fl.iif ||
648 !(rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST|RTCF_LOCAL)))
649 score |= (1<<30);
650
651 return score;
652 }
653
654 static inline int compare_keys(struct flowi *fl1, struct flowi *fl2)
655 {
656 return ((__force u32)((fl1->nl_u.ip4_u.daddr ^ fl2->nl_u.ip4_u.daddr) |
657 (fl1->nl_u.ip4_u.saddr ^ fl2->nl_u.ip4_u.saddr)) |
658 (fl1->mark ^ fl2->mark) |
659 (*(u16 *)&fl1->nl_u.ip4_u.tos ^
660 *(u16 *)&fl2->nl_u.ip4_u.tos) |
661 (fl1->oif ^ fl2->oif) |
662 (fl1->iif ^ fl2->iif)) == 0;
663 }
664
665 static inline int compare_netns(struct rtable *rt1, struct rtable *rt2)
666 {
667 return rt1->u.dst.dev->nd_net == rt2->u.dst.dev->nd_net;
668 }
669
670 /*
671 * Perform a full scan of hash table and free all entries.
672 * Can be called by a softirq or a process.
673 * In the later case, we want to be reschedule if necessary
674 */
675 static void rt_do_flush(int process_context)
676 {
677 unsigned int i;
678 struct rtable *rth, *next;
679
680 for (i = 0; i <= rt_hash_mask; i++) {
681 if (process_context && need_resched())
682 cond_resched();
683 rth = rt_hash_table[i].chain;
684 if (!rth)
685 continue;
686
687 spin_lock_bh(rt_hash_lock_addr(i));
688 rth = rt_hash_table[i].chain;
689 rt_hash_table[i].chain = NULL;
690 spin_unlock_bh(rt_hash_lock_addr(i));
691
692 for (; rth; rth = next) {
693 next = rth->u.dst.rt_next;
694 rt_free(rth);
695 }
696 }
697 }
698
699 static void rt_check_expire(void)
700 {
701 static unsigned int rover;
702 unsigned int i = rover, goal;
703 struct rtable *rth, **rthp;
704 u64 mult;
705
706 mult = ((u64)ip_rt_gc_interval) << rt_hash_log;
707 if (ip_rt_gc_timeout > 1)
708 do_div(mult, ip_rt_gc_timeout);
709 goal = (unsigned int)mult;
710 if (goal > rt_hash_mask)
711 goal = rt_hash_mask + 1;
712 for (; goal > 0; goal--) {
713 unsigned long tmo = ip_rt_gc_timeout;
714
715 i = (i + 1) & rt_hash_mask;
716 rthp = &rt_hash_table[i].chain;
717
718 if (need_resched())
719 cond_resched();
720
721 if (*rthp == NULL)
722 continue;
723 spin_lock_bh(rt_hash_lock_addr(i));
724 while ((rth = *rthp) != NULL) {
725 if (rth->rt_genid != atomic_read(&rt_genid)) {
726 *rthp = rth->u.dst.rt_next;
727 rt_free(rth);
728 continue;
729 }
730 if (rth->u.dst.expires) {
731 /* Entry is expired even if it is in use */
732 if (time_before_eq(jiffies, rth->u.dst.expires)) {
733 tmo >>= 1;
734 rthp = &rth->u.dst.rt_next;
735 continue;
736 }
737 } else if (!rt_may_expire(rth, tmo, ip_rt_gc_timeout)) {
738 tmo >>= 1;
739 rthp = &rth->u.dst.rt_next;
740 continue;
741 }
742
743 /* Cleanup aged off entries. */
744 *rthp = rth->u.dst.rt_next;
745 rt_free(rth);
746 }
747 spin_unlock_bh(rt_hash_lock_addr(i));
748 }
749 rover = i;
750 }
751
752 /*
753 * rt_worker_func() is run in process context.
754 * we call rt_check_expire() to scan part of the hash table
755 */
756 static void rt_worker_func(struct work_struct *work)
757 {
758 rt_check_expire();
759 schedule_delayed_work(&expires_work, ip_rt_gc_interval);
760 }
761
762 /*
763 * Pertubation of rt_genid by a small quantity [1..256]
764 * Using 8 bits of shuffling ensure we can call rt_cache_invalidate()
765 * many times (2^24) without giving recent rt_genid.
766 * Jenkins hash is strong enough that litle changes of rt_genid are OK.
767 */
768 static void rt_cache_invalidate(void)
769 {
770 unsigned char shuffle;
771
772 get_random_bytes(&shuffle, sizeof(shuffle));
773 atomic_add(shuffle + 1U, &rt_genid);
774 }
775
776 /*
777 * delay < 0 : invalidate cache (fast : entries will be deleted later)
778 * delay >= 0 : invalidate & flush cache (can be long)
779 */
780 void rt_cache_flush(int delay)
781 {
782 rt_cache_invalidate();
783 if (delay >= 0)
784 rt_do_flush(!in_softirq());
785 }
786
787 /*
788 * We change rt_genid and let gc do the cleanup
789 */
790 static void rt_secret_rebuild(unsigned long dummy)
791 {
792 rt_cache_invalidate();
793 mod_timer(&rt_secret_timer, jiffies + ip_rt_secret_interval);
794 }
795
796 /*
797 Short description of GC goals.
798
799 We want to build algorithm, which will keep routing cache
800 at some equilibrium point, when number of aged off entries
801 is kept approximately equal to newly generated ones.
802
803 Current expiration strength is variable "expire".
804 We try to adjust it dynamically, so that if networking
805 is idle expires is large enough to keep enough of warm entries,
806 and when load increases it reduces to limit cache size.
807 */
808
809 static int rt_garbage_collect(struct dst_ops *ops)
810 {
811 static unsigned long expire = RT_GC_TIMEOUT;
812 static unsigned long last_gc;
813 static int rover;
814 static int equilibrium;
815 struct rtable *rth, **rthp;
816 unsigned long now = jiffies;
817 int goal;
818
819 /*
820 * Garbage collection is pretty expensive,
821 * do not make it too frequently.
822 */
823
824 RT_CACHE_STAT_INC(gc_total);
825
826 if (now - last_gc < ip_rt_gc_min_interval &&
827 atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size) {
828 RT_CACHE_STAT_INC(gc_ignored);
829 goto out;
830 }
831
832 /* Calculate number of entries, which we want to expire now. */
833 goal = atomic_read(&ipv4_dst_ops.entries) -
834 (ip_rt_gc_elasticity << rt_hash_log);
835 if (goal <= 0) {
836 if (equilibrium < ipv4_dst_ops.gc_thresh)
837 equilibrium = ipv4_dst_ops.gc_thresh;
838 goal = atomic_read(&ipv4_dst_ops.entries) - equilibrium;
839 if (goal > 0) {
840 equilibrium += min_t(unsigned int, goal >> 1, rt_hash_mask + 1);
841 goal = atomic_read(&ipv4_dst_ops.entries) - equilibrium;
842 }
843 } else {
844 /* We are in dangerous area. Try to reduce cache really
845 * aggressively.
846 */
847 goal = max_t(unsigned int, goal >> 1, rt_hash_mask + 1);
848 equilibrium = atomic_read(&ipv4_dst_ops.entries) - goal;
849 }
850
851 if (now - last_gc >= ip_rt_gc_min_interval)
852 last_gc = now;
853
854 if (goal <= 0) {
855 equilibrium += goal;
856 goto work_done;
857 }
858
859 do {
860 int i, k;
861
862 for (i = rt_hash_mask, k = rover; i >= 0; i--) {
863 unsigned long tmo = expire;
864
865 k = (k + 1) & rt_hash_mask;
866 rthp = &rt_hash_table[k].chain;
867 spin_lock_bh(rt_hash_lock_addr(k));
868 while ((rth = *rthp) != NULL) {
869 if (rth->rt_genid == atomic_read(&rt_genid) &&
870 !rt_may_expire(rth, tmo, expire)) {
871 tmo >>= 1;
872 rthp = &rth->u.dst.rt_next;
873 continue;
874 }
875 *rthp = rth->u.dst.rt_next;
876 rt_free(rth);
877 goal--;
878 }
879 spin_unlock_bh(rt_hash_lock_addr(k));
880 if (goal <= 0)
881 break;
882 }
883 rover = k;
884
885 if (goal <= 0)
886 goto work_done;
887
888 /* Goal is not achieved. We stop process if:
889
890 - if expire reduced to zero. Otherwise, expire is halfed.
891 - if table is not full.
892 - if we are called from interrupt.
893 - jiffies check is just fallback/debug loop breaker.
894 We will not spin here for long time in any case.
895 */
896
897 RT_CACHE_STAT_INC(gc_goal_miss);
898
899 if (expire == 0)
900 break;
901
902 expire >>= 1;
903 #if RT_CACHE_DEBUG >= 2
904 printk(KERN_DEBUG "expire>> %u %d %d %d\n", expire,
905 atomic_read(&ipv4_dst_ops.entries), goal, i);
906 #endif
907
908 if (atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size)
909 goto out;
910 } while (!in_softirq() && time_before_eq(jiffies, now));
911
912 if (atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size)
913 goto out;
914 if (net_ratelimit())
915 printk(KERN_WARNING "dst cache overflow\n");
916 RT_CACHE_STAT_INC(gc_dst_overflow);
917 return 1;
918
919 work_done:
920 expire += ip_rt_gc_min_interval;
921 if (expire > ip_rt_gc_timeout ||
922 atomic_read(&ipv4_dst_ops.entries) < ipv4_dst_ops.gc_thresh)
923 expire = ip_rt_gc_timeout;
924 #if RT_CACHE_DEBUG >= 2
925 printk(KERN_DEBUG "expire++ %u %d %d %d\n", expire,
926 atomic_read(&ipv4_dst_ops.entries), goal, rover);
927 #endif
928 out: return 0;
929 }
930
931 static int rt_intern_hash(unsigned hash, struct rtable *rt, struct rtable **rp)
932 {
933 struct rtable *rth, **rthp;
934 unsigned long now;
935 struct rtable *cand, **candp;
936 u32 min_score;
937 int chain_length;
938 int attempts = !in_softirq();
939
940 restart:
941 chain_length = 0;
942 min_score = ~(u32)0;
943 cand = NULL;
944 candp = NULL;
945 now = jiffies;
946
947 rthp = &rt_hash_table[hash].chain;
948
949 spin_lock_bh(rt_hash_lock_addr(hash));
950 while ((rth = *rthp) != NULL) {
951 if (rth->rt_genid != atomic_read(&rt_genid)) {
952 *rthp = rth->u.dst.rt_next;
953 rt_free(rth);
954 continue;
955 }
956 if (compare_keys(&rth->fl, &rt->fl) && compare_netns(rth, rt)) {
957 /* Put it first */
958 *rthp = rth->u.dst.rt_next;
959 /*
960 * Since lookup is lockfree, the deletion
961 * must be visible to another weakly ordered CPU before
962 * the insertion at the start of the hash chain.
963 */
964 rcu_assign_pointer(rth->u.dst.rt_next,
965 rt_hash_table[hash].chain);
966 /*
967 * Since lookup is lockfree, the update writes
968 * must be ordered for consistency on SMP.
969 */
970 rcu_assign_pointer(rt_hash_table[hash].chain, rth);
971
972 dst_use(&rth->u.dst, now);
973 spin_unlock_bh(rt_hash_lock_addr(hash));
974
975 rt_drop(rt);
976 *rp = rth;
977 return 0;
978 }
979
980 if (!atomic_read(&rth->u.dst.__refcnt)) {
981 u32 score = rt_score(rth);
982
983 if (score <= min_score) {
984 cand = rth;
985 candp = rthp;
986 min_score = score;
987 }
988 }
989
990 chain_length++;
991
992 rthp = &rth->u.dst.rt_next;
993 }
994
995 if (cand) {
996 /* ip_rt_gc_elasticity used to be average length of chain
997 * length, when exceeded gc becomes really aggressive.
998 *
999 * The second limit is less certain. At the moment it allows
1000 * only 2 entries per bucket. We will see.
1001 */
1002 if (chain_length > ip_rt_gc_elasticity) {
1003 *candp = cand->u.dst.rt_next;
1004 rt_free(cand);
1005 }
1006 }
1007
1008 /* Try to bind route to arp only if it is output
1009 route or unicast forwarding path.
1010 */
1011 if (rt->rt_type == RTN_UNICAST || rt->fl.iif == 0) {
1012 int err = arp_bind_neighbour(&rt->u.dst);
1013 if (err) {
1014 spin_unlock_bh(rt_hash_lock_addr(hash));
1015
1016 if (err != -ENOBUFS) {
1017 rt_drop(rt);
1018 return err;
1019 }
1020
1021 /* Neighbour tables are full and nothing
1022 can be released. Try to shrink route cache,
1023 it is most likely it holds some neighbour records.
1024 */
1025 if (attempts-- > 0) {
1026 int saved_elasticity = ip_rt_gc_elasticity;
1027 int saved_int = ip_rt_gc_min_interval;
1028 ip_rt_gc_elasticity = 1;
1029 ip_rt_gc_min_interval = 0;
1030 rt_garbage_collect(&ipv4_dst_ops);
1031 ip_rt_gc_min_interval = saved_int;
1032 ip_rt_gc_elasticity = saved_elasticity;
1033 goto restart;
1034 }
1035
1036 if (net_ratelimit())
1037 printk(KERN_WARNING "Neighbour table overflow.\n");
1038 rt_drop(rt);
1039 return -ENOBUFS;
1040 }
1041 }
1042
1043 rt->u.dst.rt_next = rt_hash_table[hash].chain;
1044 #if RT_CACHE_DEBUG >= 2
1045 if (rt->u.dst.rt_next) {
1046 struct rtable *trt;
1047 printk(KERN_DEBUG "rt_cache @%02x: %u.%u.%u.%u", hash,
1048 NIPQUAD(rt->rt_dst));
1049 for (trt = rt->u.dst.rt_next; trt; trt = trt->u.dst.rt_next)
1050 printk(" . %u.%u.%u.%u", NIPQUAD(trt->rt_dst));
1051 printk("\n");
1052 }
1053 #endif
1054 rt_hash_table[hash].chain = rt;
1055 spin_unlock_bh(rt_hash_lock_addr(hash));
1056 *rp = rt;
1057 return 0;
1058 }
1059
1060 void rt_bind_peer(struct rtable *rt, int create)
1061 {
1062 static DEFINE_SPINLOCK(rt_peer_lock);
1063 struct inet_peer *peer;
1064
1065 peer = inet_getpeer(rt->rt_dst, create);
1066
1067 spin_lock_bh(&rt_peer_lock);
1068 if (rt->peer == NULL) {
1069 rt->peer = peer;
1070 peer = NULL;
1071 }
1072 spin_unlock_bh(&rt_peer_lock);
1073 if (peer)
1074 inet_putpeer(peer);
1075 }
1076
1077 /*
1078 * Peer allocation may fail only in serious out-of-memory conditions. However
1079 * we still can generate some output.
1080 * Random ID selection looks a bit dangerous because we have no chances to
1081 * select ID being unique in a reasonable period of time.
1082 * But broken packet identifier may be better than no packet at all.
1083 */
1084 static void ip_select_fb_ident(struct iphdr *iph)
1085 {
1086 static DEFINE_SPINLOCK(ip_fb_id_lock);
1087 static u32 ip_fallback_id;
1088 u32 salt;
1089
1090 spin_lock_bh(&ip_fb_id_lock);
1091 salt = secure_ip_id((__force __be32)ip_fallback_id ^ iph->daddr);
1092 iph->id = htons(salt & 0xFFFF);
1093 ip_fallback_id = salt;
1094 spin_unlock_bh(&ip_fb_id_lock);
1095 }
1096
1097 void __ip_select_ident(struct iphdr *iph, struct dst_entry *dst, int more)
1098 {
1099 struct rtable *rt = (struct rtable *) dst;
1100
1101 if (rt) {
1102 if (rt->peer == NULL)
1103 rt_bind_peer(rt, 1);
1104
1105 /* If peer is attached to destination, it is never detached,
1106 so that we need not to grab a lock to dereference it.
1107 */
1108 if (rt->peer) {
1109 iph->id = htons(inet_getid(rt->peer, more));
1110 return;
1111 }
1112 } else
1113 printk(KERN_DEBUG "rt_bind_peer(0) @%p\n",
1114 __builtin_return_address(0));
1115
1116 ip_select_fb_ident(iph);
1117 }
1118
1119 static void rt_del(unsigned hash, struct rtable *rt)
1120 {
1121 struct rtable **rthp, *aux;
1122
1123 rthp = &rt_hash_table[hash].chain;
1124 spin_lock_bh(rt_hash_lock_addr(hash));
1125 ip_rt_put(rt);
1126 while ((aux = *rthp) != NULL) {
1127 if (aux == rt || (aux->rt_genid != atomic_read(&rt_genid))) {
1128 *rthp = aux->u.dst.rt_next;
1129 rt_free(aux);
1130 continue;
1131 }
1132 rthp = &aux->u.dst.rt_next;
1133 }
1134 spin_unlock_bh(rt_hash_lock_addr(hash));
1135 }
1136
1137 void ip_rt_redirect(__be32 old_gw, __be32 daddr, __be32 new_gw,
1138 __be32 saddr, struct net_device *dev)
1139 {
1140 int i, k;
1141 struct in_device *in_dev = in_dev_get(dev);
1142 struct rtable *rth, **rthp;
1143 __be32 skeys[2] = { saddr, 0 };
1144 int ikeys[2] = { dev->ifindex, 0 };
1145 struct netevent_redirect netevent;
1146 struct net *net;
1147
1148 if (!in_dev)
1149 return;
1150
1151 net = dev->nd_net;
1152 if (new_gw == old_gw || !IN_DEV_RX_REDIRECTS(in_dev)
1153 || ipv4_is_multicast(new_gw) || ipv4_is_lbcast(new_gw)
1154 || ipv4_is_zeronet(new_gw))
1155 goto reject_redirect;
1156
1157 if (!IN_DEV_SHARED_MEDIA(in_dev)) {
1158 if (!inet_addr_onlink(in_dev, new_gw, old_gw))
1159 goto reject_redirect;
1160 if (IN_DEV_SEC_REDIRECTS(in_dev) && ip_fib_check_default(new_gw, dev))
1161 goto reject_redirect;
1162 } else {
1163 if (inet_addr_type(net, new_gw) != RTN_UNICAST)
1164 goto reject_redirect;
1165 }
1166
1167 for (i = 0; i < 2; i++) {
1168 for (k = 0; k < 2; k++) {
1169 unsigned hash = rt_hash(daddr, skeys[i], ikeys[k]);
1170
1171 rthp=&rt_hash_table[hash].chain;
1172
1173 rcu_read_lock();
1174 while ((rth = rcu_dereference(*rthp)) != NULL) {
1175 struct rtable *rt;
1176
1177 if (rth->fl.fl4_dst != daddr ||
1178 rth->fl.fl4_src != skeys[i] ||
1179 rth->fl.oif != ikeys[k] ||
1180 rth->fl.iif != 0 ||
1181 rth->rt_genid != atomic_read(&rt_genid) ||
1182 rth->u.dst.dev->nd_net != net) {
1183 rthp = &rth->u.dst.rt_next;
1184 continue;
1185 }
1186
1187 if (rth->rt_dst != daddr ||
1188 rth->rt_src != saddr ||
1189 rth->u.dst.error ||
1190 rth->rt_gateway != old_gw ||
1191 rth->u.dst.dev != dev)
1192 break;
1193
1194 dst_hold(&rth->u.dst);
1195 rcu_read_unlock();
1196
1197 rt = dst_alloc(&ipv4_dst_ops);
1198 if (rt == NULL) {
1199 ip_rt_put(rth);
1200 in_dev_put(in_dev);
1201 return;
1202 }
1203
1204 /* Copy all the information. */
1205 *rt = *rth;
1206 INIT_RCU_HEAD(&rt->u.dst.rcu_head);
1207 rt->u.dst.__use = 1;
1208 atomic_set(&rt->u.dst.__refcnt, 1);
1209 rt->u.dst.child = NULL;
1210 if (rt->u.dst.dev)
1211 dev_hold(rt->u.dst.dev);
1212 if (rt->idev)
1213 in_dev_hold(rt->idev);
1214 rt->u.dst.obsolete = 0;
1215 rt->u.dst.lastuse = jiffies;
1216 rt->u.dst.path = &rt->u.dst;
1217 rt->u.dst.neighbour = NULL;
1218 rt->u.dst.hh = NULL;
1219 rt->u.dst.xfrm = NULL;
1220 rt->rt_genid = atomic_read(&rt_genid);
1221 rt->rt_flags |= RTCF_REDIRECTED;
1222
1223 /* Gateway is different ... */
1224 rt->rt_gateway = new_gw;
1225
1226 /* Redirect received -> path was valid */
1227 dst_confirm(&rth->u.dst);
1228
1229 if (rt->peer)
1230 atomic_inc(&rt->peer->refcnt);
1231
1232 if (arp_bind_neighbour(&rt->u.dst) ||
1233 !(rt->u.dst.neighbour->nud_state &
1234 NUD_VALID)) {
1235 if (rt->u.dst.neighbour)
1236 neigh_event_send(rt->u.dst.neighbour, NULL);
1237 ip_rt_put(rth);
1238 rt_drop(rt);
1239 goto do_next;
1240 }
1241
1242 netevent.old = &rth->u.dst;
1243 netevent.new = &rt->u.dst;
1244 call_netevent_notifiers(NETEVENT_REDIRECT,
1245 &netevent);
1246
1247 rt_del(hash, rth);
1248 if (!rt_intern_hash(hash, rt, &rt))
1249 ip_rt_put(rt);
1250 goto do_next;
1251 }
1252 rcu_read_unlock();
1253 do_next:
1254 ;
1255 }
1256 }
1257 in_dev_put(in_dev);
1258 return;
1259
1260 reject_redirect:
1261 #ifdef CONFIG_IP_ROUTE_VERBOSE
1262 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
1263 printk(KERN_INFO "Redirect from %u.%u.%u.%u on %s about "
1264 "%u.%u.%u.%u ignored.\n"
1265 " Advised path = %u.%u.%u.%u -> %u.%u.%u.%u\n",
1266 NIPQUAD(old_gw), dev->name, NIPQUAD(new_gw),
1267 NIPQUAD(saddr), NIPQUAD(daddr));
1268 #endif
1269 in_dev_put(in_dev);
1270 }
1271
1272 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst)
1273 {
1274 struct rtable *rt = (struct rtable*)dst;
1275 struct dst_entry *ret = dst;
1276
1277 if (rt) {
1278 if (dst->obsolete) {
1279 ip_rt_put(rt);
1280 ret = NULL;
1281 } else if ((rt->rt_flags & RTCF_REDIRECTED) ||
1282 rt->u.dst.expires) {
1283 unsigned hash = rt_hash(rt->fl.fl4_dst, rt->fl.fl4_src,
1284 rt->fl.oif);
1285 #if RT_CACHE_DEBUG >= 1
1286 printk(KERN_DEBUG "ipv4_negative_advice: redirect to "
1287 "%u.%u.%u.%u/%02x dropped\n",
1288 NIPQUAD(rt->rt_dst), rt->fl.fl4_tos);
1289 #endif
1290 rt_del(hash, rt);
1291 ret = NULL;
1292 }
1293 }
1294 return ret;
1295 }
1296
1297 /*
1298 * Algorithm:
1299 * 1. The first ip_rt_redirect_number redirects are sent
1300 * with exponential backoff, then we stop sending them at all,
1301 * assuming that the host ignores our redirects.
1302 * 2. If we did not see packets requiring redirects
1303 * during ip_rt_redirect_silence, we assume that the host
1304 * forgot redirected route and start to send redirects again.
1305 *
1306 * This algorithm is much cheaper and more intelligent than dumb load limiting
1307 * in icmp.c.
1308 *
1309 * NOTE. Do not forget to inhibit load limiting for redirects (redundant)
1310 * and "frag. need" (breaks PMTU discovery) in icmp.c.
1311 */
1312
1313 void ip_rt_send_redirect(struct sk_buff *skb)
1314 {
1315 struct rtable *rt = (struct rtable*)skb->dst;
1316 struct in_device *in_dev = in_dev_get(rt->u.dst.dev);
1317
1318 if (!in_dev)
1319 return;
1320
1321 if (!IN_DEV_TX_REDIRECTS(in_dev))
1322 goto out;
1323
1324 /* No redirected packets during ip_rt_redirect_silence;
1325 * reset the algorithm.
1326 */
1327 if (time_after(jiffies, rt->u.dst.rate_last + ip_rt_redirect_silence))
1328 rt->u.dst.rate_tokens = 0;
1329
1330 /* Too many ignored redirects; do not send anything
1331 * set u.dst.rate_last to the last seen redirected packet.
1332 */
1333 if (rt->u.dst.rate_tokens >= ip_rt_redirect_number) {
1334 rt->u.dst.rate_last = jiffies;
1335 goto out;
1336 }
1337
1338 /* Check for load limit; set rate_last to the latest sent
1339 * redirect.
1340 */
1341 if (rt->u.dst.rate_tokens == 0 ||
1342 time_after(jiffies,
1343 (rt->u.dst.rate_last +
1344 (ip_rt_redirect_load << rt->u.dst.rate_tokens)))) {
1345 icmp_send(skb, ICMP_REDIRECT, ICMP_REDIR_HOST, rt->rt_gateway);
1346 rt->u.dst.rate_last = jiffies;
1347 ++rt->u.dst.rate_tokens;
1348 #ifdef CONFIG_IP_ROUTE_VERBOSE
1349 if (IN_DEV_LOG_MARTIANS(in_dev) &&
1350 rt->u.dst.rate_tokens == ip_rt_redirect_number &&
1351 net_ratelimit())
1352 printk(KERN_WARNING "host %u.%u.%u.%u/if%d ignores "
1353 "redirects for %u.%u.%u.%u to %u.%u.%u.%u.\n",
1354 NIPQUAD(rt->rt_src), rt->rt_iif,
1355 NIPQUAD(rt->rt_dst), NIPQUAD(rt->rt_gateway));
1356 #endif
1357 }
1358 out:
1359 in_dev_put(in_dev);
1360 }
1361
1362 static int ip_error(struct sk_buff *skb)
1363 {
1364 struct rtable *rt = (struct rtable*)skb->dst;
1365 unsigned long now;
1366 int code;
1367
1368 switch (rt->u.dst.error) {
1369 case EINVAL:
1370 default:
1371 goto out;
1372 case EHOSTUNREACH:
1373 code = ICMP_HOST_UNREACH;
1374 break;
1375 case ENETUNREACH:
1376 code = ICMP_NET_UNREACH;
1377 IP_INC_STATS_BH(IPSTATS_MIB_INNOROUTES);
1378 break;
1379 case EACCES:
1380 code = ICMP_PKT_FILTERED;
1381 break;
1382 }
1383
1384 now = jiffies;
1385 rt->u.dst.rate_tokens += now - rt->u.dst.rate_last;
1386 if (rt->u.dst.rate_tokens > ip_rt_error_burst)
1387 rt->u.dst.rate_tokens = ip_rt_error_burst;
1388 rt->u.dst.rate_last = now;
1389 if (rt->u.dst.rate_tokens >= ip_rt_error_cost) {
1390 rt->u.dst.rate_tokens -= ip_rt_error_cost;
1391 icmp_send(skb, ICMP_DEST_UNREACH, code, 0);
1392 }
1393
1394 out: kfree_skb(skb);
1395 return 0;
1396 }
1397
1398 /*
1399 * The last two values are not from the RFC but
1400 * are needed for AMPRnet AX.25 paths.
1401 */
1402
1403 static const unsigned short mtu_plateau[] =
1404 {32000, 17914, 8166, 4352, 2002, 1492, 576, 296, 216, 128 };
1405
1406 static __inline__ unsigned short guess_mtu(unsigned short old_mtu)
1407 {
1408 int i;
1409
1410 for (i = 0; i < ARRAY_SIZE(mtu_plateau); i++)
1411 if (old_mtu > mtu_plateau[i])
1412 return mtu_plateau[i];
1413 return 68;
1414 }
1415
1416 unsigned short ip_rt_frag_needed(struct net *net, struct iphdr *iph,
1417 unsigned short new_mtu)
1418 {
1419 int i;
1420 unsigned short old_mtu = ntohs(iph->tot_len);
1421 struct rtable *rth;
1422 __be32 skeys[2] = { iph->saddr, 0, };
1423 __be32 daddr = iph->daddr;
1424 unsigned short est_mtu = 0;
1425
1426 if (ipv4_config.no_pmtu_disc)
1427 return 0;
1428
1429 for (i = 0; i < 2; i++) {
1430 unsigned hash = rt_hash(daddr, skeys[i], 0);
1431
1432 rcu_read_lock();
1433 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
1434 rth = rcu_dereference(rth->u.dst.rt_next)) {
1435 if (rth->fl.fl4_dst == daddr &&
1436 rth->fl.fl4_src == skeys[i] &&
1437 rth->rt_dst == daddr &&
1438 rth->rt_src == iph->saddr &&
1439 rth->fl.iif == 0 &&
1440 !(dst_metric_locked(&rth->u.dst, RTAX_MTU)) &&
1441 rth->u.dst.dev->nd_net == net &&
1442 rth->rt_genid == atomic_read(&rt_genid)) {
1443 unsigned short mtu = new_mtu;
1444
1445 if (new_mtu < 68 || new_mtu >= old_mtu) {
1446
1447 /* BSD 4.2 compatibility hack :-( */
1448 if (mtu == 0 &&
1449 old_mtu >= rth->u.dst.metrics[RTAX_MTU-1] &&
1450 old_mtu >= 68 + (iph->ihl << 2))
1451 old_mtu -= iph->ihl << 2;
1452
1453 mtu = guess_mtu(old_mtu);
1454 }
1455 if (mtu <= rth->u.dst.metrics[RTAX_MTU-1]) {
1456 if (mtu < rth->u.dst.metrics[RTAX_MTU-1]) {
1457 dst_confirm(&rth->u.dst);
1458 if (mtu < ip_rt_min_pmtu) {
1459 mtu = ip_rt_min_pmtu;
1460 rth->u.dst.metrics[RTAX_LOCK-1] |=
1461 (1 << RTAX_MTU);
1462 }
1463 rth->u.dst.metrics[RTAX_MTU-1] = mtu;
1464 dst_set_expires(&rth->u.dst,
1465 ip_rt_mtu_expires);
1466 }
1467 est_mtu = mtu;
1468 }
1469 }
1470 }
1471 rcu_read_unlock();
1472 }
1473 return est_mtu ? : new_mtu;
1474 }
1475
1476 static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu)
1477 {
1478 if (dst->metrics[RTAX_MTU-1] > mtu && mtu >= 68 &&
1479 !(dst_metric_locked(dst, RTAX_MTU))) {
1480 if (mtu < ip_rt_min_pmtu) {
1481 mtu = ip_rt_min_pmtu;
1482 dst->metrics[RTAX_LOCK-1] |= (1 << RTAX_MTU);
1483 }
1484 dst->metrics[RTAX_MTU-1] = mtu;
1485 dst_set_expires(dst, ip_rt_mtu_expires);
1486 call_netevent_notifiers(NETEVENT_PMTU_UPDATE, dst);
1487 }
1488 }
1489
1490 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie)
1491 {
1492 return NULL;
1493 }
1494
1495 static void ipv4_dst_destroy(struct dst_entry *dst)
1496 {
1497 struct rtable *rt = (struct rtable *) dst;
1498 struct inet_peer *peer = rt->peer;
1499 struct in_device *idev = rt->idev;
1500
1501 if (peer) {
1502 rt->peer = NULL;
1503 inet_putpeer(peer);
1504 }
1505
1506 if (idev) {
1507 rt->idev = NULL;
1508 in_dev_put(idev);
1509 }
1510 }
1511
1512 static void ipv4_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
1513 int how)
1514 {
1515 struct rtable *rt = (struct rtable *) dst;
1516 struct in_device *idev = rt->idev;
1517 if (dev != dev->nd_net->loopback_dev && idev && idev->dev == dev) {
1518 struct in_device *loopback_idev =
1519 in_dev_get(dev->nd_net->loopback_dev);
1520 if (loopback_idev) {
1521 rt->idev = loopback_idev;
1522 in_dev_put(idev);
1523 }
1524 }
1525 }
1526
1527 static void ipv4_link_failure(struct sk_buff *skb)
1528 {
1529 struct rtable *rt;
1530
1531 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_HOST_UNREACH, 0);
1532
1533 rt = (struct rtable *) skb->dst;
1534 if (rt)
1535 dst_set_expires(&rt->u.dst, 0);
1536 }
1537
1538 static int ip_rt_bug(struct sk_buff *skb)
1539 {
1540 printk(KERN_DEBUG "ip_rt_bug: %u.%u.%u.%u -> %u.%u.%u.%u, %s\n",
1541 NIPQUAD(ip_hdr(skb)->saddr), NIPQUAD(ip_hdr(skb)->daddr),
1542 skb->dev ? skb->dev->name : "?");
1543 kfree_skb(skb);
1544 return 0;
1545 }
1546
1547 /*
1548 We do not cache source address of outgoing interface,
1549 because it is used only by IP RR, TS and SRR options,
1550 so that it out of fast path.
1551
1552 BTW remember: "addr" is allowed to be not aligned
1553 in IP options!
1554 */
1555
1556 void ip_rt_get_source(u8 *addr, struct rtable *rt)
1557 {
1558 __be32 src;
1559 struct fib_result res;
1560
1561 if (rt->fl.iif == 0)
1562 src = rt->rt_src;
1563 else if (fib_lookup(rt->u.dst.dev->nd_net, &rt->fl, &res) == 0) {
1564 src = FIB_RES_PREFSRC(res);
1565 fib_res_put(&res);
1566 } else
1567 src = inet_select_addr(rt->u.dst.dev, rt->rt_gateway,
1568 RT_SCOPE_UNIVERSE);
1569 memcpy(addr, &src, 4);
1570 }
1571
1572 #ifdef CONFIG_NET_CLS_ROUTE
1573 static void set_class_tag(struct rtable *rt, u32 tag)
1574 {
1575 if (!(rt->u.dst.tclassid & 0xFFFF))
1576 rt->u.dst.tclassid |= tag & 0xFFFF;
1577 if (!(rt->u.dst.tclassid & 0xFFFF0000))
1578 rt->u.dst.tclassid |= tag & 0xFFFF0000;
1579 }
1580 #endif
1581
1582 static void rt_set_nexthop(struct rtable *rt, struct fib_result *res, u32 itag)
1583 {
1584 struct fib_info *fi = res->fi;
1585
1586 if (fi) {
1587 if (FIB_RES_GW(*res) &&
1588 FIB_RES_NH(*res).nh_scope == RT_SCOPE_LINK)
1589 rt->rt_gateway = FIB_RES_GW(*res);
1590 memcpy(rt->u.dst.metrics, fi->fib_metrics,
1591 sizeof(rt->u.dst.metrics));
1592 if (fi->fib_mtu == 0) {
1593 rt->u.dst.metrics[RTAX_MTU-1] = rt->u.dst.dev->mtu;
1594 if (rt->u.dst.metrics[RTAX_LOCK-1] & (1 << RTAX_MTU) &&
1595 rt->rt_gateway != rt->rt_dst &&
1596 rt->u.dst.dev->mtu > 576)
1597 rt->u.dst.metrics[RTAX_MTU-1] = 576;
1598 }
1599 #ifdef CONFIG_NET_CLS_ROUTE
1600 rt->u.dst.tclassid = FIB_RES_NH(*res).nh_tclassid;
1601 #endif
1602 } else
1603 rt->u.dst.metrics[RTAX_MTU-1]= rt->u.dst.dev->mtu;
1604
1605 if (rt->u.dst.metrics[RTAX_HOPLIMIT-1] == 0)
1606 rt->u.dst.metrics[RTAX_HOPLIMIT-1] = sysctl_ip_default_ttl;
1607 if (rt->u.dst.metrics[RTAX_MTU-1] > IP_MAX_MTU)
1608 rt->u.dst.metrics[RTAX_MTU-1] = IP_MAX_MTU;
1609 if (rt->u.dst.metrics[RTAX_ADVMSS-1] == 0)
1610 rt->u.dst.metrics[RTAX_ADVMSS-1] = max_t(unsigned int, rt->u.dst.dev->mtu - 40,
1611 ip_rt_min_advmss);
1612 if (rt->u.dst.metrics[RTAX_ADVMSS-1] > 65535 - 40)
1613 rt->u.dst.metrics[RTAX_ADVMSS-1] = 65535 - 40;
1614
1615 #ifdef CONFIG_NET_CLS_ROUTE
1616 #ifdef CONFIG_IP_MULTIPLE_TABLES
1617 set_class_tag(rt, fib_rules_tclass(res));
1618 #endif
1619 set_class_tag(rt, itag);
1620 #endif
1621 rt->rt_type = res->type;
1622 }
1623
1624 static int ip_route_input_mc(struct sk_buff *skb, __be32 daddr, __be32 saddr,
1625 u8 tos, struct net_device *dev, int our)
1626 {
1627 unsigned hash;
1628 struct rtable *rth;
1629 __be32 spec_dst;
1630 struct in_device *in_dev = in_dev_get(dev);
1631 u32 itag = 0;
1632
1633 /* Primary sanity checks. */
1634
1635 if (in_dev == NULL)
1636 return -EINVAL;
1637
1638 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1639 ipv4_is_loopback(saddr) || skb->protocol != htons(ETH_P_IP))
1640 goto e_inval;
1641
1642 if (ipv4_is_zeronet(saddr)) {
1643 if (!ipv4_is_local_multicast(daddr))
1644 goto e_inval;
1645 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
1646 } else if (fib_validate_source(saddr, 0, tos, 0,
1647 dev, &spec_dst, &itag) < 0)
1648 goto e_inval;
1649
1650 rth = dst_alloc(&ipv4_dst_ops);
1651 if (!rth)
1652 goto e_nobufs;
1653
1654 rth->u.dst.output= ip_rt_bug;
1655
1656 atomic_set(&rth->u.dst.__refcnt, 1);
1657 rth->u.dst.flags= DST_HOST;
1658 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
1659 rth->u.dst.flags |= DST_NOPOLICY;
1660 rth->fl.fl4_dst = daddr;
1661 rth->rt_dst = daddr;
1662 rth->fl.fl4_tos = tos;
1663 rth->fl.mark = skb->mark;
1664 rth->fl.fl4_src = saddr;
1665 rth->rt_src = saddr;
1666 #ifdef CONFIG_NET_CLS_ROUTE
1667 rth->u.dst.tclassid = itag;
1668 #endif
1669 rth->rt_iif =
1670 rth->fl.iif = dev->ifindex;
1671 rth->u.dst.dev = init_net.loopback_dev;
1672 dev_hold(rth->u.dst.dev);
1673 rth->idev = in_dev_get(rth->u.dst.dev);
1674 rth->fl.oif = 0;
1675 rth->rt_gateway = daddr;
1676 rth->rt_spec_dst= spec_dst;
1677 rth->rt_genid = atomic_read(&rt_genid);
1678 rth->rt_flags = RTCF_MULTICAST;
1679 rth->rt_type = RTN_MULTICAST;
1680 if (our) {
1681 rth->u.dst.input= ip_local_deliver;
1682 rth->rt_flags |= RTCF_LOCAL;
1683 }
1684
1685 #ifdef CONFIG_IP_MROUTE
1686 if (!ipv4_is_local_multicast(daddr) && IN_DEV_MFORWARD(in_dev))
1687 rth->u.dst.input = ip_mr_input;
1688 #endif
1689 RT_CACHE_STAT_INC(in_slow_mc);
1690
1691 in_dev_put(in_dev);
1692 hash = rt_hash(daddr, saddr, dev->ifindex);
1693 return rt_intern_hash(hash, rth, (struct rtable**) &skb->dst);
1694
1695 e_nobufs:
1696 in_dev_put(in_dev);
1697 return -ENOBUFS;
1698
1699 e_inval:
1700 in_dev_put(in_dev);
1701 return -EINVAL;
1702 }
1703
1704
1705 static void ip_handle_martian_source(struct net_device *dev,
1706 struct in_device *in_dev,
1707 struct sk_buff *skb,
1708 __be32 daddr,
1709 __be32 saddr)
1710 {
1711 RT_CACHE_STAT_INC(in_martian_src);
1712 #ifdef CONFIG_IP_ROUTE_VERBOSE
1713 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit()) {
1714 /*
1715 * RFC1812 recommendation, if source is martian,
1716 * the only hint is MAC header.
1717 */
1718 printk(KERN_WARNING "martian source %u.%u.%u.%u from "
1719 "%u.%u.%u.%u, on dev %s\n",
1720 NIPQUAD(daddr), NIPQUAD(saddr), dev->name);
1721 if (dev->hard_header_len && skb_mac_header_was_set(skb)) {
1722 int i;
1723 const unsigned char *p = skb_mac_header(skb);
1724 printk(KERN_WARNING "ll header: ");
1725 for (i = 0; i < dev->hard_header_len; i++, p++) {
1726 printk("%02x", *p);
1727 if (i < (dev->hard_header_len - 1))
1728 printk(":");
1729 }
1730 printk("\n");
1731 }
1732 }
1733 #endif
1734 }
1735
1736 static inline int __mkroute_input(struct sk_buff *skb,
1737 struct fib_result* res,
1738 struct in_device *in_dev,
1739 __be32 daddr, __be32 saddr, u32 tos,
1740 struct rtable **result)
1741 {
1742
1743 struct rtable *rth;
1744 int err;
1745 struct in_device *out_dev;
1746 unsigned flags = 0;
1747 __be32 spec_dst;
1748 u32 itag;
1749
1750 /* get a working reference to the output device */
1751 out_dev = in_dev_get(FIB_RES_DEV(*res));
1752 if (out_dev == NULL) {
1753 if (net_ratelimit())
1754 printk(KERN_CRIT "Bug in ip_route_input" \
1755 "_slow(). Please, report\n");
1756 return -EINVAL;
1757 }
1758
1759
1760 err = fib_validate_source(saddr, daddr, tos, FIB_RES_OIF(*res),
1761 in_dev->dev, &spec_dst, &itag);
1762 if (err < 0) {
1763 ip_handle_martian_source(in_dev->dev, in_dev, skb, daddr,
1764 saddr);
1765
1766 err = -EINVAL;
1767 goto cleanup;
1768 }
1769
1770 if (err)
1771 flags |= RTCF_DIRECTSRC;
1772
1773 if (out_dev == in_dev && err && !(flags & RTCF_MASQ) &&
1774 (IN_DEV_SHARED_MEDIA(out_dev) ||
1775 inet_addr_onlink(out_dev, saddr, FIB_RES_GW(*res))))
1776 flags |= RTCF_DOREDIRECT;
1777
1778 if (skb->protocol != htons(ETH_P_IP)) {
1779 /* Not IP (i.e. ARP). Do not create route, if it is
1780 * invalid for proxy arp. DNAT routes are always valid.
1781 */
1782 if (out_dev == in_dev) {
1783 err = -EINVAL;
1784 goto cleanup;
1785 }
1786 }
1787
1788
1789 rth = dst_alloc(&ipv4_dst_ops);
1790 if (!rth) {
1791 err = -ENOBUFS;
1792 goto cleanup;
1793 }
1794
1795 atomic_set(&rth->u.dst.__refcnt, 1);
1796 rth->u.dst.flags= DST_HOST;
1797 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
1798 rth->u.dst.flags |= DST_NOPOLICY;
1799 if (IN_DEV_CONF_GET(out_dev, NOXFRM))
1800 rth->u.dst.flags |= DST_NOXFRM;
1801 rth->fl.fl4_dst = daddr;
1802 rth->rt_dst = daddr;
1803 rth->fl.fl4_tos = tos;
1804 rth->fl.mark = skb->mark;
1805 rth->fl.fl4_src = saddr;
1806 rth->rt_src = saddr;
1807 rth->rt_gateway = daddr;
1808 rth->rt_iif =
1809 rth->fl.iif = in_dev->dev->ifindex;
1810 rth->u.dst.dev = (out_dev)->dev;
1811 dev_hold(rth->u.dst.dev);
1812 rth->idev = in_dev_get(rth->u.dst.dev);
1813 rth->fl.oif = 0;
1814 rth->rt_spec_dst= spec_dst;
1815
1816 rth->u.dst.input = ip_forward;
1817 rth->u.dst.output = ip_output;
1818 rth->rt_genid = atomic_read(&rt_genid);
1819
1820 rt_set_nexthop(rth, res, itag);
1821
1822 rth->rt_flags = flags;
1823
1824 *result = rth;
1825 err = 0;
1826 cleanup:
1827 /* release the working reference to the output device */
1828 in_dev_put(out_dev);
1829 return err;
1830 }
1831
1832 static inline int ip_mkroute_input(struct sk_buff *skb,
1833 struct fib_result* res,
1834 const struct flowi *fl,
1835 struct in_device *in_dev,
1836 __be32 daddr, __be32 saddr, u32 tos)
1837 {
1838 struct rtable* rth = NULL;
1839 int err;
1840 unsigned hash;
1841
1842 #ifdef CONFIG_IP_ROUTE_MULTIPATH
1843 if (res->fi && res->fi->fib_nhs > 1 && fl->oif == 0)
1844 fib_select_multipath(fl, res);
1845 #endif
1846
1847 /* create a routing cache entry */
1848 err = __mkroute_input(skb, res, in_dev, daddr, saddr, tos, &rth);
1849 if (err)
1850 return err;
1851
1852 /* put it into the cache */
1853 hash = rt_hash(daddr, saddr, fl->iif);
1854 return rt_intern_hash(hash, rth, (struct rtable**)&skb->dst);
1855 }
1856
1857 /*
1858 * NOTE. We drop all the packets that has local source
1859 * addresses, because every properly looped back packet
1860 * must have correct destination already attached by output routine.
1861 *
1862 * Such approach solves two big problems:
1863 * 1. Not simplex devices are handled properly.
1864 * 2. IP spoofing attempts are filtered with 100% of guarantee.
1865 */
1866
1867 static int ip_route_input_slow(struct sk_buff *skb, __be32 daddr, __be32 saddr,
1868 u8 tos, struct net_device *dev)
1869 {
1870 struct fib_result res;
1871 struct in_device *in_dev = in_dev_get(dev);
1872 struct flowi fl = { .nl_u = { .ip4_u =
1873 { .daddr = daddr,
1874 .saddr = saddr,
1875 .tos = tos,
1876 .scope = RT_SCOPE_UNIVERSE,
1877 } },
1878 .mark = skb->mark,
1879 .iif = dev->ifindex };
1880 unsigned flags = 0;
1881 u32 itag = 0;
1882 struct rtable * rth;
1883 unsigned hash;
1884 __be32 spec_dst;
1885 int err = -EINVAL;
1886 int free_res = 0;
1887 struct net * net = dev->nd_net;
1888
1889 /* IP on this device is disabled. */
1890
1891 if (!in_dev)
1892 goto out;
1893
1894 /* Check for the most weird martians, which can be not detected
1895 by fib_lookup.
1896 */
1897
1898 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1899 ipv4_is_loopback(saddr))
1900 goto martian_source;
1901
1902 if (daddr == htonl(0xFFFFFFFF) || (saddr == 0 && daddr == 0))
1903 goto brd_input;
1904
1905 /* Accept zero addresses only to limited broadcast;
1906 * I even do not know to fix it or not. Waiting for complains :-)
1907 */
1908 if (ipv4_is_zeronet(saddr))
1909 goto martian_source;
1910
1911 if (ipv4_is_lbcast(daddr) || ipv4_is_zeronet(daddr) ||
1912 ipv4_is_loopback(daddr))
1913 goto martian_destination;
1914
1915 /*
1916 * Now we are ready to route packet.
1917 */
1918 if ((err = fib_lookup(net, &fl, &res)) != 0) {
1919 if (!IN_DEV_FORWARD(in_dev))
1920 goto e_hostunreach;
1921 goto no_route;
1922 }
1923 free_res = 1;
1924
1925 RT_CACHE_STAT_INC(in_slow_tot);
1926
1927 if (res.type == RTN_BROADCAST)
1928 goto brd_input;
1929
1930 if (res.type == RTN_LOCAL) {
1931 int result;
1932 result = fib_validate_source(saddr, daddr, tos,
1933 net->loopback_dev->ifindex,
1934 dev, &spec_dst, &itag);
1935 if (result < 0)
1936 goto martian_source;
1937 if (result)
1938 flags |= RTCF_DIRECTSRC;
1939 spec_dst = daddr;
1940 goto local_input;
1941 }
1942
1943 if (!IN_DEV_FORWARD(in_dev))
1944 goto e_hostunreach;
1945 if (res.type != RTN_UNICAST)
1946 goto martian_destination;
1947
1948 err = ip_mkroute_input(skb, &res, &fl, in_dev, daddr, saddr, tos);
1949 done:
1950 in_dev_put(in_dev);
1951 if (free_res)
1952 fib_res_put(&res);
1953 out: return err;
1954
1955 brd_input:
1956 if (skb->protocol != htons(ETH_P_IP))
1957 goto e_inval;
1958
1959 if (ipv4_is_zeronet(saddr))
1960 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
1961 else {
1962 err = fib_validate_source(saddr, 0, tos, 0, dev, &spec_dst,
1963 &itag);
1964 if (err < 0)
1965 goto martian_source;
1966 if (err)
1967 flags |= RTCF_DIRECTSRC;
1968 }
1969 flags |= RTCF_BROADCAST;
1970 res.type = RTN_BROADCAST;
1971 RT_CACHE_STAT_INC(in_brd);
1972
1973 local_input:
1974 rth = dst_alloc(&ipv4_dst_ops);
1975 if (!rth)
1976 goto e_nobufs;
1977
1978 rth->u.dst.output= ip_rt_bug;
1979 rth->rt_genid = atomic_read(&rt_genid);
1980
1981 atomic_set(&rth->u.dst.__refcnt, 1);
1982 rth->u.dst.flags= DST_HOST;
1983 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
1984 rth->u.dst.flags |= DST_NOPOLICY;
1985 rth->fl.fl4_dst = daddr;
1986 rth->rt_dst = daddr;
1987 rth->fl.fl4_tos = tos;
1988 rth->fl.mark = skb->mark;
1989 rth->fl.fl4_src = saddr;
1990 rth->rt_src = saddr;
1991 #ifdef CONFIG_NET_CLS_ROUTE
1992 rth->u.dst.tclassid = itag;
1993 #endif
1994 rth->rt_iif =
1995 rth->fl.iif = dev->ifindex;
1996 rth->u.dst.dev = net->loopback_dev;
1997 dev_hold(rth->u.dst.dev);
1998 rth->idev = in_dev_get(rth->u.dst.dev);
1999 rth->rt_gateway = daddr;
2000 rth->rt_spec_dst= spec_dst;
2001 rth->u.dst.input= ip_local_deliver;
2002 rth->rt_flags = flags|RTCF_LOCAL;
2003 if (res.type == RTN_UNREACHABLE) {
2004 rth->u.dst.input= ip_error;
2005 rth->u.dst.error= -err;
2006 rth->rt_flags &= ~RTCF_LOCAL;
2007 }
2008 rth->rt_type = res.type;
2009 hash = rt_hash(daddr, saddr, fl.iif);
2010 err = rt_intern_hash(hash, rth, (struct rtable**)&skb->dst);
2011 goto done;
2012
2013 no_route:
2014 RT_CACHE_STAT_INC(in_no_route);
2015 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_UNIVERSE);
2016 res.type = RTN_UNREACHABLE;
2017 if (err == -ESRCH)
2018 err = -ENETUNREACH;
2019 goto local_input;
2020
2021 /*
2022 * Do not cache martian addresses: they should be logged (RFC1812)
2023 */
2024 martian_destination:
2025 RT_CACHE_STAT_INC(in_martian_dst);
2026 #ifdef CONFIG_IP_ROUTE_VERBOSE
2027 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
2028 printk(KERN_WARNING "martian destination %u.%u.%u.%u from "
2029 "%u.%u.%u.%u, dev %s\n",
2030 NIPQUAD(daddr), NIPQUAD(saddr), dev->name);
2031 #endif
2032
2033 e_hostunreach:
2034 err = -EHOSTUNREACH;
2035 goto done;
2036
2037 e_inval:
2038 err = -EINVAL;
2039 goto done;
2040
2041 e_nobufs:
2042 err = -ENOBUFS;
2043 goto done;
2044
2045 martian_source:
2046 ip_handle_martian_source(dev, in_dev, skb, daddr, saddr);
2047 goto e_inval;
2048 }
2049
2050 int ip_route_input(struct sk_buff *skb, __be32 daddr, __be32 saddr,
2051 u8 tos, struct net_device *dev)
2052 {
2053 struct rtable * rth;
2054 unsigned hash;
2055 int iif = dev->ifindex;
2056 struct net *net;
2057
2058 net = dev->nd_net;
2059 tos &= IPTOS_RT_MASK;
2060 hash = rt_hash(daddr, saddr, iif);
2061
2062 rcu_read_lock();
2063 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
2064 rth = rcu_dereference(rth->u.dst.rt_next)) {
2065 if (rth->fl.fl4_dst == daddr &&
2066 rth->fl.fl4_src == saddr &&
2067 rth->fl.iif == iif &&
2068 rth->fl.oif == 0 &&
2069 rth->fl.mark == skb->mark &&
2070 rth->fl.fl4_tos == tos &&
2071 rth->u.dst.dev->nd_net == net &&
2072 rth->rt_genid == atomic_read(&rt_genid)) {
2073 dst_use(&rth->u.dst, jiffies);
2074 RT_CACHE_STAT_INC(in_hit);
2075 rcu_read_unlock();
2076 skb->dst = (struct dst_entry*)rth;
2077 return 0;
2078 }
2079 RT_CACHE_STAT_INC(in_hlist_search);
2080 }
2081 rcu_read_unlock();
2082
2083 /* Multicast recognition logic is moved from route cache to here.
2084 The problem was that too many Ethernet cards have broken/missing
2085 hardware multicast filters :-( As result the host on multicasting
2086 network acquires a lot of useless route cache entries, sort of
2087 SDR messages from all the world. Now we try to get rid of them.
2088 Really, provided software IP multicast filter is organized
2089 reasonably (at least, hashed), it does not result in a slowdown
2090 comparing with route cache reject entries.
2091 Note, that multicast routers are not affected, because
2092 route cache entry is created eventually.
2093 */
2094 if (ipv4_is_multicast(daddr)) {
2095 struct in_device *in_dev;
2096
2097 rcu_read_lock();
2098 if ((in_dev = __in_dev_get_rcu(dev)) != NULL) {
2099 int our = ip_check_mc(in_dev, daddr, saddr,
2100 ip_hdr(skb)->protocol);
2101 if (our
2102 #ifdef CONFIG_IP_MROUTE
2103 || (!ipv4_is_local_multicast(daddr) &&
2104 IN_DEV_MFORWARD(in_dev))
2105 #endif
2106 ) {
2107 rcu_read_unlock();
2108 return ip_route_input_mc(skb, daddr, saddr,
2109 tos, dev, our);
2110 }
2111 }
2112 rcu_read_unlock();
2113 return -EINVAL;
2114 }
2115 return ip_route_input_slow(skb, daddr, saddr, tos, dev);
2116 }
2117
2118 static inline int __mkroute_output(struct rtable **result,
2119 struct fib_result* res,
2120 const struct flowi *fl,
2121 const struct flowi *oldflp,
2122 struct net_device *dev_out,
2123 unsigned flags)
2124 {
2125 struct rtable *rth;
2126 struct in_device *in_dev;
2127 u32 tos = RT_FL_TOS(oldflp);
2128 int err = 0;
2129
2130 if (ipv4_is_loopback(fl->fl4_src) && !(dev_out->flags&IFF_LOOPBACK))
2131 return -EINVAL;
2132
2133 if (fl->fl4_dst == htonl(0xFFFFFFFF))
2134 res->type = RTN_BROADCAST;
2135 else if (ipv4_is_multicast(fl->fl4_dst))
2136 res->type = RTN_MULTICAST;
2137 else if (ipv4_is_lbcast(fl->fl4_dst) || ipv4_is_zeronet(fl->fl4_dst))
2138 return -EINVAL;
2139
2140 if (dev_out->flags & IFF_LOOPBACK)
2141 flags |= RTCF_LOCAL;
2142
2143 /* get work reference to inet device */
2144 in_dev = in_dev_get(dev_out);
2145 if (!in_dev)
2146 return -EINVAL;
2147
2148 if (res->type == RTN_BROADCAST) {
2149 flags |= RTCF_BROADCAST | RTCF_LOCAL;
2150 if (res->fi) {
2151 fib_info_put(res->fi);
2152 res->fi = NULL;
2153 }
2154 } else if (res->type == RTN_MULTICAST) {
2155 flags |= RTCF_MULTICAST|RTCF_LOCAL;
2156 if (!ip_check_mc(in_dev, oldflp->fl4_dst, oldflp->fl4_src,
2157 oldflp->proto))
2158 flags &= ~RTCF_LOCAL;
2159 /* If multicast route do not exist use
2160 default one, but do not gateway in this case.
2161 Yes, it is hack.
2162 */
2163 if (res->fi && res->prefixlen < 4) {
2164 fib_info_put(res->fi);
2165 res->fi = NULL;
2166 }
2167 }
2168
2169
2170 rth = dst_alloc(&ipv4_dst_ops);
2171 if (!rth) {
2172 err = -ENOBUFS;
2173 goto cleanup;
2174 }
2175
2176 atomic_set(&rth->u.dst.__refcnt, 1);
2177 rth->u.dst.flags= DST_HOST;
2178 if (IN_DEV_CONF_GET(in_dev, NOXFRM))
2179 rth->u.dst.flags |= DST_NOXFRM;
2180 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
2181 rth->u.dst.flags |= DST_NOPOLICY;
2182
2183 rth->fl.fl4_dst = oldflp->fl4_dst;
2184 rth->fl.fl4_tos = tos;
2185 rth->fl.fl4_src = oldflp->fl4_src;
2186 rth->fl.oif = oldflp->oif;
2187 rth->fl.mark = oldflp->mark;
2188 rth->rt_dst = fl->fl4_dst;
2189 rth->rt_src = fl->fl4_src;
2190 rth->rt_iif = oldflp->oif ? : dev_out->ifindex;
2191 /* get references to the devices that are to be hold by the routing
2192 cache entry */
2193 rth->u.dst.dev = dev_out;
2194 dev_hold(dev_out);
2195 rth->idev = in_dev_get(dev_out);
2196 rth->rt_gateway = fl->fl4_dst;
2197 rth->rt_spec_dst= fl->fl4_src;
2198
2199 rth->u.dst.output=ip_output;
2200 rth->rt_genid = atomic_read(&rt_genid);
2201
2202 RT_CACHE_STAT_INC(out_slow_tot);
2203
2204 if (flags & RTCF_LOCAL) {
2205 rth->u.dst.input = ip_local_deliver;
2206 rth->rt_spec_dst = fl->fl4_dst;
2207 }
2208 if (flags & (RTCF_BROADCAST | RTCF_MULTICAST)) {
2209 rth->rt_spec_dst = fl->fl4_src;
2210 if (flags & RTCF_LOCAL &&
2211 !(dev_out->flags & IFF_LOOPBACK)) {
2212 rth->u.dst.output = ip_mc_output;
2213 RT_CACHE_STAT_INC(out_slow_mc);
2214 }
2215 #ifdef CONFIG_IP_MROUTE
2216 if (res->type == RTN_MULTICAST) {
2217 if (IN_DEV_MFORWARD(in_dev) &&
2218 !ipv4_is_local_multicast(oldflp->fl4_dst)) {
2219 rth->u.dst.input = ip_mr_input;
2220 rth->u.dst.output = ip_mc_output;
2221 }
2222 }
2223 #endif
2224 }
2225
2226 rt_set_nexthop(rth, res, 0);
2227
2228 rth->rt_flags = flags;
2229
2230 *result = rth;
2231 cleanup:
2232 /* release work reference to inet device */
2233 in_dev_put(in_dev);
2234
2235 return err;
2236 }
2237
2238 static inline int ip_mkroute_output(struct rtable **rp,
2239 struct fib_result* res,
2240 const struct flowi *fl,
2241 const struct flowi *oldflp,
2242 struct net_device *dev_out,
2243 unsigned flags)
2244 {
2245 struct rtable *rth = NULL;
2246 int err = __mkroute_output(&rth, res, fl, oldflp, dev_out, flags);
2247 unsigned hash;
2248 if (err == 0) {
2249 hash = rt_hash(oldflp->fl4_dst, oldflp->fl4_src, oldflp->oif);
2250 err = rt_intern_hash(hash, rth, rp);
2251 }
2252
2253 return err;
2254 }
2255
2256 /*
2257 * Major route resolver routine.
2258 */
2259
2260 static int ip_route_output_slow(struct net *net, struct rtable **rp,
2261 const struct flowi *oldflp)
2262 {
2263 u32 tos = RT_FL_TOS(oldflp);
2264 struct flowi fl = { .nl_u = { .ip4_u =
2265 { .daddr = oldflp->fl4_dst,
2266 .saddr = oldflp->fl4_src,
2267 .tos = tos & IPTOS_RT_MASK,
2268 .scope = ((tos & RTO_ONLINK) ?
2269 RT_SCOPE_LINK :
2270 RT_SCOPE_UNIVERSE),
2271 } },
2272 .mark = oldflp->mark,
2273 .iif = net->loopback_dev->ifindex,
2274 .oif = oldflp->oif };
2275 struct fib_result res;
2276 unsigned flags = 0;
2277 struct net_device *dev_out = NULL;
2278 int free_res = 0;
2279 int err;
2280
2281
2282 res.fi = NULL;
2283 #ifdef CONFIG_IP_MULTIPLE_TABLES
2284 res.r = NULL;
2285 #endif
2286
2287 if (oldflp->fl4_src) {
2288 err = -EINVAL;
2289 if (ipv4_is_multicast(oldflp->fl4_src) ||
2290 ipv4_is_lbcast(oldflp->fl4_src) ||
2291 ipv4_is_zeronet(oldflp->fl4_src))
2292 goto out;
2293
2294 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2295 dev_out = ip_dev_find(net, oldflp->fl4_src);
2296 if (dev_out == NULL)
2297 goto out;
2298
2299 /* I removed check for oif == dev_out->oif here.
2300 It was wrong for two reasons:
2301 1. ip_dev_find(net, saddr) can return wrong iface, if saddr
2302 is assigned to multiple interfaces.
2303 2. Moreover, we are allowed to send packets with saddr
2304 of another iface. --ANK
2305 */
2306
2307 if (oldflp->oif == 0
2308 && (ipv4_is_multicast(oldflp->fl4_dst) ||
2309 oldflp->fl4_dst == htonl(0xFFFFFFFF))) {
2310 /* Special hack: user can direct multicasts
2311 and limited broadcast via necessary interface
2312 without fiddling with IP_MULTICAST_IF or IP_PKTINFO.
2313 This hack is not just for fun, it allows
2314 vic,vat and friends to work.
2315 They bind socket to loopback, set ttl to zero
2316 and expect that it will work.
2317 From the viewpoint of routing cache they are broken,
2318 because we are not allowed to build multicast path
2319 with loopback source addr (look, routing cache
2320 cannot know, that ttl is zero, so that packet
2321 will not leave this host and route is valid).
2322 Luckily, this hack is good workaround.
2323 */
2324
2325 fl.oif = dev_out->ifindex;
2326 goto make_route;
2327 }
2328 if (dev_out)
2329 dev_put(dev_out);
2330 dev_out = NULL;
2331 }
2332
2333
2334 if (oldflp->oif) {
2335 dev_out = dev_get_by_index(net, oldflp->oif);
2336 err = -ENODEV;
2337 if (dev_out == NULL)
2338 goto out;
2339
2340 /* RACE: Check return value of inet_select_addr instead. */
2341 if (__in_dev_get_rtnl(dev_out) == NULL) {
2342 dev_put(dev_out);
2343 goto out; /* Wrong error code */
2344 }
2345
2346 if (ipv4_is_local_multicast(oldflp->fl4_dst) ||
2347 oldflp->fl4_dst == htonl(0xFFFFFFFF)) {
2348 if (!fl.fl4_src)
2349 fl.fl4_src = inet_select_addr(dev_out, 0,
2350 RT_SCOPE_LINK);
2351 goto make_route;
2352 }
2353 if (!fl.fl4_src) {
2354 if (ipv4_is_multicast(oldflp->fl4_dst))
2355 fl.fl4_src = inet_select_addr(dev_out, 0,
2356 fl.fl4_scope);
2357 else if (!oldflp->fl4_dst)
2358 fl.fl4_src = inet_select_addr(dev_out, 0,
2359 RT_SCOPE_HOST);
2360 }
2361 }
2362
2363 if (!fl.fl4_dst) {
2364 fl.fl4_dst = fl.fl4_src;
2365 if (!fl.fl4_dst)
2366 fl.fl4_dst = fl.fl4_src = htonl(INADDR_LOOPBACK);
2367 if (dev_out)
2368 dev_put(dev_out);
2369 dev_out = net->loopback_dev;
2370 dev_hold(dev_out);
2371 fl.oif = net->loopback_dev->ifindex;
2372 res.type = RTN_LOCAL;
2373 flags |= RTCF_LOCAL;
2374 goto make_route;
2375 }
2376
2377 if (fib_lookup(net, &fl, &res)) {
2378 res.fi = NULL;
2379 if (oldflp->oif) {
2380 /* Apparently, routing tables are wrong. Assume,
2381 that the destination is on link.
2382
2383 WHY? DW.
2384 Because we are allowed to send to iface
2385 even if it has NO routes and NO assigned
2386 addresses. When oif is specified, routing
2387 tables are looked up with only one purpose:
2388 to catch if destination is gatewayed, rather than
2389 direct. Moreover, if MSG_DONTROUTE is set,
2390 we send packet, ignoring both routing tables
2391 and ifaddr state. --ANK
2392
2393
2394 We could make it even if oif is unknown,
2395 likely IPv6, but we do not.
2396 */
2397
2398 if (fl.fl4_src == 0)
2399 fl.fl4_src = inet_select_addr(dev_out, 0,
2400 RT_SCOPE_LINK);
2401 res.type = RTN_UNICAST;
2402 goto make_route;
2403 }
2404 if (dev_out)
2405 dev_put(dev_out);
2406 err = -ENETUNREACH;
2407 goto out;
2408 }
2409 free_res = 1;
2410
2411 if (res.type == RTN_LOCAL) {
2412 if (!fl.fl4_src)
2413 fl.fl4_src = fl.fl4_dst;
2414 if (dev_out)
2415 dev_put(dev_out);
2416 dev_out = net->loopback_dev;
2417 dev_hold(dev_out);
2418 fl.oif = dev_out->ifindex;
2419 if (res.fi)
2420 fib_info_put(res.fi);
2421 res.fi = NULL;
2422 flags |= RTCF_LOCAL;
2423 goto make_route;
2424 }
2425
2426 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2427 if (res.fi->fib_nhs > 1 && fl.oif == 0)
2428 fib_select_multipath(&fl, &res);
2429 else
2430 #endif
2431 if (!res.prefixlen && res.type == RTN_UNICAST && !fl.oif)
2432 fib_select_default(net, &fl, &res);
2433
2434 if (!fl.fl4_src)
2435 fl.fl4_src = FIB_RES_PREFSRC(res);
2436
2437 if (dev_out)
2438 dev_put(dev_out);
2439 dev_out = FIB_RES_DEV(res);
2440 dev_hold(dev_out);
2441 fl.oif = dev_out->ifindex;
2442
2443
2444 make_route:
2445 err = ip_mkroute_output(rp, &res, &fl, oldflp, dev_out, flags);
2446
2447
2448 if (free_res)
2449 fib_res_put(&res);
2450 if (dev_out)
2451 dev_put(dev_out);
2452 out: return err;
2453 }
2454
2455 int __ip_route_output_key(struct net *net, struct rtable **rp,
2456 const struct flowi *flp)
2457 {
2458 unsigned hash;
2459 struct rtable *rth;
2460
2461 hash = rt_hash(flp->fl4_dst, flp->fl4_src, flp->oif);
2462
2463 rcu_read_lock_bh();
2464 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
2465 rth = rcu_dereference(rth->u.dst.rt_next)) {
2466 if (rth->fl.fl4_dst == flp->fl4_dst &&
2467 rth->fl.fl4_src == flp->fl4_src &&
2468 rth->fl.iif == 0 &&
2469 rth->fl.oif == flp->oif &&
2470 rth->fl.mark == flp->mark &&
2471 !((rth->fl.fl4_tos ^ flp->fl4_tos) &
2472 (IPTOS_RT_MASK | RTO_ONLINK)) &&
2473 rth->u.dst.dev->nd_net == net &&
2474 rth->rt_genid == atomic_read(&rt_genid)) {
2475 dst_use(&rth->u.dst, jiffies);
2476 RT_CACHE_STAT_INC(out_hit);
2477 rcu_read_unlock_bh();
2478 *rp = rth;
2479 return 0;
2480 }
2481 RT_CACHE_STAT_INC(out_hlist_search);
2482 }
2483 rcu_read_unlock_bh();
2484
2485 return ip_route_output_slow(net, rp, flp);
2486 }
2487
2488 EXPORT_SYMBOL_GPL(__ip_route_output_key);
2489
2490 static void ipv4_rt_blackhole_update_pmtu(struct dst_entry *dst, u32 mtu)
2491 {
2492 }
2493
2494 static struct dst_ops ipv4_dst_blackhole_ops = {
2495 .family = AF_INET,
2496 .protocol = __constant_htons(ETH_P_IP),
2497 .destroy = ipv4_dst_destroy,
2498 .check = ipv4_dst_check,
2499 .update_pmtu = ipv4_rt_blackhole_update_pmtu,
2500 .entry_size = sizeof(struct rtable),
2501 .entries = ATOMIC_INIT(0),
2502 };
2503
2504
2505 static int ipv4_dst_blackhole(struct rtable **rp, struct flowi *flp, struct sock *sk)
2506 {
2507 struct rtable *ort = *rp;
2508 struct rtable *rt = (struct rtable *)
2509 dst_alloc(&ipv4_dst_blackhole_ops);
2510
2511 if (rt) {
2512 struct dst_entry *new = &rt->u.dst;
2513
2514 atomic_set(&new->__refcnt, 1);
2515 new->__use = 1;
2516 new->input = dst_discard;
2517 new->output = dst_discard;
2518 memcpy(new->metrics, ort->u.dst.metrics, RTAX_MAX*sizeof(u32));
2519
2520 new->dev = ort->u.dst.dev;
2521 if (new->dev)
2522 dev_hold(new->dev);
2523
2524 rt->fl = ort->fl;
2525
2526 rt->idev = ort->idev;
2527 if (rt->idev)
2528 in_dev_hold(rt->idev);
2529 rt->rt_genid = atomic_read(&rt_genid);
2530 rt->rt_flags = ort->rt_flags;
2531 rt->rt_type = ort->rt_type;
2532 rt->rt_dst = ort->rt_dst;
2533 rt->rt_src = ort->rt_src;
2534 rt->rt_iif = ort->rt_iif;
2535 rt->rt_gateway = ort->rt_gateway;
2536 rt->rt_spec_dst = ort->rt_spec_dst;
2537 rt->peer = ort->peer;
2538 if (rt->peer)
2539 atomic_inc(&rt->peer->refcnt);
2540
2541 dst_free(new);
2542 }
2543
2544 dst_release(&(*rp)->u.dst);
2545 *rp = rt;
2546 return (rt ? 0 : -ENOMEM);
2547 }
2548
2549 int ip_route_output_flow(struct net *net, struct rtable **rp, struct flowi *flp,
2550 struct sock *sk, int flags)
2551 {
2552 int err;
2553
2554 if ((err = __ip_route_output_key(net, rp, flp)) != 0)
2555 return err;
2556
2557 if (flp->proto) {
2558 if (!flp->fl4_src)
2559 flp->fl4_src = (*rp)->rt_src;
2560 if (!flp->fl4_dst)
2561 flp->fl4_dst = (*rp)->rt_dst;
2562 err = __xfrm_lookup((struct dst_entry **)rp, flp, sk,
2563 flags ? XFRM_LOOKUP_WAIT : 0);
2564 if (err == -EREMOTE)
2565 err = ipv4_dst_blackhole(rp, flp, sk);
2566
2567 return err;
2568 }
2569
2570 return 0;
2571 }
2572
2573 EXPORT_SYMBOL_GPL(ip_route_output_flow);
2574
2575 int ip_route_output_key(struct net *net, struct rtable **rp, struct flowi *flp)
2576 {
2577 return ip_route_output_flow(net, rp, flp, NULL, 0);
2578 }
2579
2580 static int rt_fill_info(struct sk_buff *skb, u32 pid, u32 seq, int event,
2581 int nowait, unsigned int flags)
2582 {
2583 struct rtable *rt = (struct rtable*)skb->dst;
2584 struct rtmsg *r;
2585 struct nlmsghdr *nlh;
2586 long expires;
2587 u32 id = 0, ts = 0, tsage = 0, error;
2588
2589 nlh = nlmsg_put(skb, pid, seq, event, sizeof(*r), flags);
2590 if (nlh == NULL)
2591 return -EMSGSIZE;
2592
2593 r = nlmsg_data(nlh);
2594 r->rtm_family = AF_INET;
2595 r->rtm_dst_len = 32;
2596 r->rtm_src_len = 0;
2597 r->rtm_tos = rt->fl.fl4_tos;
2598 r->rtm_table = RT_TABLE_MAIN;
2599 NLA_PUT_U32(skb, RTA_TABLE, RT_TABLE_MAIN);
2600 r->rtm_type = rt->rt_type;
2601 r->rtm_scope = RT_SCOPE_UNIVERSE;
2602 r->rtm_protocol = RTPROT_UNSPEC;
2603 r->rtm_flags = (rt->rt_flags & ~0xFFFF) | RTM_F_CLONED;
2604 if (rt->rt_flags & RTCF_NOTIFY)
2605 r->rtm_flags |= RTM_F_NOTIFY;
2606
2607 NLA_PUT_BE32(skb, RTA_DST, rt->rt_dst);
2608
2609 if (rt->fl.fl4_src) {
2610 r->rtm_src_len = 32;
2611 NLA_PUT_BE32(skb, RTA_SRC, rt->fl.fl4_src);
2612 }
2613 if (rt->u.dst.dev)
2614 NLA_PUT_U32(skb, RTA_OIF, rt->u.dst.dev->ifindex);
2615 #ifdef CONFIG_NET_CLS_ROUTE
2616 if (rt->u.dst.tclassid)
2617 NLA_PUT_U32(skb, RTA_FLOW, rt->u.dst.tclassid);
2618 #endif
2619 if (rt->fl.iif)
2620 NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_spec_dst);
2621 else if (rt->rt_src != rt->fl.fl4_src)
2622 NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_src);
2623
2624 if (rt->rt_dst != rt->rt_gateway)
2625 NLA_PUT_BE32(skb, RTA_GATEWAY, rt->rt_gateway);
2626
2627 if (rtnetlink_put_metrics(skb, rt->u.dst.metrics) < 0)
2628 goto nla_put_failure;
2629
2630 error = rt->u.dst.error;
2631 expires = rt->u.dst.expires ? rt->u.dst.expires - jiffies : 0;
2632 if (rt->peer) {
2633 id = rt->peer->ip_id_count;
2634 if (rt->peer->tcp_ts_stamp) {
2635 ts = rt->peer->tcp_ts;
2636 tsage = get_seconds() - rt->peer->tcp_ts_stamp;
2637 }
2638 }
2639
2640 if (rt->fl.iif) {
2641 #ifdef CONFIG_IP_MROUTE
2642 __be32 dst = rt->rt_dst;
2643
2644 if (ipv4_is_multicast(dst) && !ipv4_is_local_multicast(dst) &&
2645 IPV4_DEVCONF_ALL(&init_net, MC_FORWARDING)) {
2646 int err = ipmr_get_route(skb, r, nowait);
2647 if (err <= 0) {
2648 if (!nowait) {
2649 if (err == 0)
2650 return 0;
2651 goto nla_put_failure;
2652 } else {
2653 if (err == -EMSGSIZE)
2654 goto nla_put_failure;
2655 error = err;
2656 }
2657 }
2658 } else
2659 #endif
2660 NLA_PUT_U32(skb, RTA_IIF, rt->fl.iif);
2661 }
2662
2663 if (rtnl_put_cacheinfo(skb, &rt->u.dst, id, ts, tsage,
2664 expires, error) < 0)
2665 goto nla_put_failure;
2666
2667 return nlmsg_end(skb, nlh);
2668
2669 nla_put_failure:
2670 nlmsg_cancel(skb, nlh);
2671 return -EMSGSIZE;
2672 }
2673
2674 static int inet_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr* nlh, void *arg)
2675 {
2676 struct net *net = in_skb->sk->sk_net;
2677 struct rtmsg *rtm;
2678 struct nlattr *tb[RTA_MAX+1];
2679 struct rtable *rt = NULL;
2680 __be32 dst = 0;
2681 __be32 src = 0;
2682 u32 iif;
2683 int err;
2684 struct sk_buff *skb;
2685
2686 if (net != &init_net)
2687 return -EINVAL;
2688
2689 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv4_policy);
2690 if (err < 0)
2691 goto errout;
2692
2693 rtm = nlmsg_data(nlh);
2694
2695 skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
2696 if (skb == NULL) {
2697 err = -ENOBUFS;
2698 goto errout;
2699 }
2700
2701 /* Reserve room for dummy headers, this skb can pass
2702 through good chunk of routing engine.
2703 */
2704 skb_reset_mac_header(skb);
2705 skb_reset_network_header(skb);
2706
2707 /* Bugfix: need to give ip_route_input enough of an IP header to not gag. */
2708 ip_hdr(skb)->protocol = IPPROTO_ICMP;
2709 skb_reserve(skb, MAX_HEADER + sizeof(struct iphdr));
2710
2711 src = tb[RTA_SRC] ? nla_get_be32(tb[RTA_SRC]) : 0;
2712 dst = tb[RTA_DST] ? nla_get_be32(tb[RTA_DST]) : 0;
2713 iif = tb[RTA_IIF] ? nla_get_u32(tb[RTA_IIF]) : 0;
2714
2715 if (iif) {
2716 struct net_device *dev;
2717
2718 dev = __dev_get_by_index(&init_net, iif);
2719 if (dev == NULL) {
2720 err = -ENODEV;
2721 goto errout_free;
2722 }
2723
2724 skb->protocol = htons(ETH_P_IP);
2725 skb->dev = dev;
2726 local_bh_disable();
2727 err = ip_route_input(skb, dst, src, rtm->rtm_tos, dev);
2728 local_bh_enable();
2729
2730 rt = (struct rtable*) skb->dst;
2731 if (err == 0 && rt->u.dst.error)
2732 err = -rt->u.dst.error;
2733 } else {
2734 struct flowi fl = {
2735 .nl_u = {
2736 .ip4_u = {
2737 .daddr = dst,
2738 .saddr = src,
2739 .tos = rtm->rtm_tos,
2740 },
2741 },
2742 .oif = tb[RTA_OIF] ? nla_get_u32(tb[RTA_OIF]) : 0,
2743 };
2744 err = ip_route_output_key(&init_net, &rt, &fl);
2745 }
2746
2747 if (err)
2748 goto errout_free;
2749
2750 skb->dst = &rt->u.dst;
2751 if (rtm->rtm_flags & RTM_F_NOTIFY)
2752 rt->rt_flags |= RTCF_NOTIFY;
2753
2754 err = rt_fill_info(skb, NETLINK_CB(in_skb).pid, nlh->nlmsg_seq,
2755 RTM_NEWROUTE, 0, 0);
2756 if (err <= 0)
2757 goto errout_free;
2758
2759 err = rtnl_unicast(skb, &init_net, NETLINK_CB(in_skb).pid);
2760 errout:
2761 return err;
2762
2763 errout_free:
2764 kfree_skb(skb);
2765 goto errout;
2766 }
2767
2768 int ip_rt_dump(struct sk_buff *skb, struct netlink_callback *cb)
2769 {
2770 struct rtable *rt;
2771 int h, s_h;
2772 int idx, s_idx;
2773
2774 s_h = cb->args[0];
2775 if (s_h < 0)
2776 s_h = 0;
2777 s_idx = idx = cb->args[1];
2778 for (h = s_h; h <= rt_hash_mask; h++) {
2779 rcu_read_lock_bh();
2780 for (rt = rcu_dereference(rt_hash_table[h].chain), idx = 0; rt;
2781 rt = rcu_dereference(rt->u.dst.rt_next), idx++) {
2782 if (idx < s_idx)
2783 continue;
2784 if (rt->rt_genid != atomic_read(&rt_genid))
2785 continue;
2786 skb->dst = dst_clone(&rt->u.dst);
2787 if (rt_fill_info(skb, NETLINK_CB(cb->skb).pid,
2788 cb->nlh->nlmsg_seq, RTM_NEWROUTE,
2789 1, NLM_F_MULTI) <= 0) {
2790 dst_release(xchg(&skb->dst, NULL));
2791 rcu_read_unlock_bh();
2792 goto done;
2793 }
2794 dst_release(xchg(&skb->dst, NULL));
2795 }
2796 rcu_read_unlock_bh();
2797 s_idx = 0;
2798 }
2799
2800 done:
2801 cb->args[0] = h;
2802 cb->args[1] = idx;
2803 return skb->len;
2804 }
2805
2806 void ip_rt_multicast_event(struct in_device *in_dev)
2807 {
2808 rt_cache_flush(0);
2809 }
2810
2811 #ifdef CONFIG_SYSCTL
2812 static int flush_delay;
2813
2814 static int ipv4_sysctl_rtcache_flush(ctl_table *ctl, int write,
2815 struct file *filp, void __user *buffer,
2816 size_t *lenp, loff_t *ppos)
2817 {
2818 if (write) {
2819 proc_dointvec(ctl, write, filp, buffer, lenp, ppos);
2820 rt_cache_flush(flush_delay);
2821 return 0;
2822 }
2823
2824 return -EINVAL;
2825 }
2826
2827 static int ipv4_sysctl_rtcache_flush_strategy(ctl_table *table,
2828 int __user *name,
2829 int nlen,
2830 void __user *oldval,
2831 size_t __user *oldlenp,
2832 void __user *newval,
2833 size_t newlen)
2834 {
2835 int delay;
2836 if (newlen != sizeof(int))
2837 return -EINVAL;
2838 if (get_user(delay, (int __user *)newval))
2839 return -EFAULT;
2840 rt_cache_flush(delay);
2841 return 0;
2842 }
2843
2844 ctl_table ipv4_route_table[] = {
2845 {
2846 .ctl_name = NET_IPV4_ROUTE_FLUSH,
2847 .procname = "flush",
2848 .data = &flush_delay,
2849 .maxlen = sizeof(int),
2850 .mode = 0200,
2851 .proc_handler = &ipv4_sysctl_rtcache_flush,
2852 .strategy = &ipv4_sysctl_rtcache_flush_strategy,
2853 },
2854 {
2855 .ctl_name = NET_IPV4_ROUTE_GC_THRESH,
2856 .procname = "gc_thresh",
2857 .data = &ipv4_dst_ops.gc_thresh,
2858 .maxlen = sizeof(int),
2859 .mode = 0644,
2860 .proc_handler = &proc_dointvec,
2861 },
2862 {
2863 .ctl_name = NET_IPV4_ROUTE_MAX_SIZE,
2864 .procname = "max_size",
2865 .data = &ip_rt_max_size,
2866 .maxlen = sizeof(int),
2867 .mode = 0644,
2868 .proc_handler = &proc_dointvec,
2869 },
2870 {
2871 /* Deprecated. Use gc_min_interval_ms */
2872
2873 .ctl_name = NET_IPV4_ROUTE_GC_MIN_INTERVAL,
2874 .procname = "gc_min_interval",
2875 .data = &ip_rt_gc_min_interval,
2876 .maxlen = sizeof(int),
2877 .mode = 0644,
2878 .proc_handler = &proc_dointvec_jiffies,
2879 .strategy = &sysctl_jiffies,
2880 },
2881 {
2882 .ctl_name = NET_IPV4_ROUTE_GC_MIN_INTERVAL_MS,
2883 .procname = "gc_min_interval_ms",
2884 .data = &ip_rt_gc_min_interval,
2885 .maxlen = sizeof(int),
2886 .mode = 0644,
2887 .proc_handler = &proc_dointvec_ms_jiffies,
2888 .strategy = &sysctl_ms_jiffies,
2889 },
2890 {
2891 .ctl_name = NET_IPV4_ROUTE_GC_TIMEOUT,
2892 .procname = "gc_timeout",
2893 .data = &ip_rt_gc_timeout,
2894 .maxlen = sizeof(int),
2895 .mode = 0644,
2896 .proc_handler = &proc_dointvec_jiffies,
2897 .strategy = &sysctl_jiffies,
2898 },
2899 {
2900 .ctl_name = NET_IPV4_ROUTE_GC_INTERVAL,
2901 .procname = "gc_interval",
2902 .data = &ip_rt_gc_interval,
2903 .maxlen = sizeof(int),
2904 .mode = 0644,
2905 .proc_handler = &proc_dointvec_jiffies,
2906 .strategy = &sysctl_jiffies,
2907 },
2908 {
2909 .ctl_name = NET_IPV4_ROUTE_REDIRECT_LOAD,
2910 .procname = "redirect_load",
2911 .data = &ip_rt_redirect_load,
2912 .maxlen = sizeof(int),
2913 .mode = 0644,
2914 .proc_handler = &proc_dointvec,
2915 },
2916 {
2917 .ctl_name = NET_IPV4_ROUTE_REDIRECT_NUMBER,
2918 .procname = "redirect_number",
2919 .data = &ip_rt_redirect_number,
2920 .maxlen = sizeof(int),
2921 .mode = 0644,
2922 .proc_handler = &proc_dointvec,
2923 },
2924 {
2925 .ctl_name = NET_IPV4_ROUTE_REDIRECT_SILENCE,
2926 .procname = "redirect_silence",
2927 .data = &ip_rt_redirect_silence,
2928 .maxlen = sizeof(int),
2929 .mode = 0644,
2930 .proc_handler = &proc_dointvec,
2931 },
2932 {
2933 .ctl_name = NET_IPV4_ROUTE_ERROR_COST,
2934 .procname = "error_cost",
2935 .data = &ip_rt_error_cost,
2936 .maxlen = sizeof(int),
2937 .mode = 0644,
2938 .proc_handler = &proc_dointvec,
2939 },
2940 {
2941 .ctl_name = NET_IPV4_ROUTE_ERROR_BURST,
2942 .procname = "error_burst",
2943 .data = &ip_rt_error_burst,
2944 .maxlen = sizeof(int),
2945 .mode = 0644,
2946 .proc_handler = &proc_dointvec,
2947 },
2948 {
2949 .ctl_name = NET_IPV4_ROUTE_GC_ELASTICITY,
2950 .procname = "gc_elasticity",
2951 .data = &ip_rt_gc_elasticity,
2952 .maxlen = sizeof(int),
2953 .mode = 0644,
2954 .proc_handler = &proc_dointvec,
2955 },
2956 {
2957 .ctl_name = NET_IPV4_ROUTE_MTU_EXPIRES,
2958 .procname = "mtu_expires",
2959 .data = &ip_rt_mtu_expires,
2960 .maxlen = sizeof(int),
2961 .mode = 0644,
2962 .proc_handler = &proc_dointvec_jiffies,
2963 .strategy = &sysctl_jiffies,
2964 },
2965 {
2966 .ctl_name = NET_IPV4_ROUTE_MIN_PMTU,
2967 .procname = "min_pmtu",
2968 .data = &ip_rt_min_pmtu,
2969 .maxlen = sizeof(int),
2970 .mode = 0644,
2971 .proc_handler = &proc_dointvec,
2972 },
2973 {
2974 .ctl_name = NET_IPV4_ROUTE_MIN_ADVMSS,
2975 .procname = "min_adv_mss",
2976 .data = &ip_rt_min_advmss,
2977 .maxlen = sizeof(int),
2978 .mode = 0644,
2979 .proc_handler = &proc_dointvec,
2980 },
2981 {
2982 .ctl_name = NET_IPV4_ROUTE_SECRET_INTERVAL,
2983 .procname = "secret_interval",
2984 .data = &ip_rt_secret_interval,
2985 .maxlen = sizeof(int),
2986 .mode = 0644,
2987 .proc_handler = &proc_dointvec_jiffies,
2988 .strategy = &sysctl_jiffies,
2989 },
2990 { .ctl_name = 0 }
2991 };
2992 #endif
2993
2994 #ifdef CONFIG_NET_CLS_ROUTE
2995 struct ip_rt_acct *ip_rt_acct __read_mostly;
2996 #endif /* CONFIG_NET_CLS_ROUTE */
2997
2998 static __initdata unsigned long rhash_entries;
2999 static int __init set_rhash_entries(char *str)
3000 {
3001 if (!str)
3002 return 0;
3003 rhash_entries = simple_strtoul(str, &str, 0);
3004 return 1;
3005 }
3006 __setup("rhash_entries=", set_rhash_entries);
3007
3008 int __init ip_rt_init(void)
3009 {
3010 int rc = 0;
3011
3012 atomic_set(&rt_genid, (int) ((num_physpages ^ (num_physpages>>8)) ^
3013 (jiffies ^ (jiffies >> 7))));
3014
3015 #ifdef CONFIG_NET_CLS_ROUTE
3016 ip_rt_acct = __alloc_percpu(256 * sizeof(struct ip_rt_acct));
3017 if (!ip_rt_acct)
3018 panic("IP: failed to allocate ip_rt_acct\n");
3019 #endif
3020
3021 ipv4_dst_ops.kmem_cachep =
3022 kmem_cache_create("ip_dst_cache", sizeof(struct rtable), 0,
3023 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3024
3025 ipv4_dst_blackhole_ops.kmem_cachep = ipv4_dst_ops.kmem_cachep;
3026
3027 rt_hash_table = (struct rt_hash_bucket *)
3028 alloc_large_system_hash("IP route cache",
3029 sizeof(struct rt_hash_bucket),
3030 rhash_entries,
3031 (num_physpages >= 128 * 1024) ?
3032 15 : 17,
3033 0,
3034 &rt_hash_log,
3035 &rt_hash_mask,
3036 0);
3037 memset(rt_hash_table, 0, (rt_hash_mask + 1) * sizeof(struct rt_hash_bucket));
3038 rt_hash_lock_init();
3039
3040 ipv4_dst_ops.gc_thresh = (rt_hash_mask + 1);
3041 ip_rt_max_size = (rt_hash_mask + 1) * 16;
3042
3043 devinet_init();
3044 ip_fib_init();
3045
3046 setup_timer(&rt_secret_timer, rt_secret_rebuild, 0);
3047
3048 /* All the timers, started at system startup tend
3049 to synchronize. Perturb it a bit.
3050 */
3051 schedule_delayed_work(&expires_work,
3052 net_random() % ip_rt_gc_interval + ip_rt_gc_interval);
3053
3054 rt_secret_timer.expires = jiffies + net_random() % ip_rt_secret_interval +
3055 ip_rt_secret_interval;
3056 add_timer(&rt_secret_timer);
3057
3058 if (ip_rt_proc_init(&init_net))
3059 printk(KERN_ERR "Unable to create route proc files\n");
3060 #ifdef CONFIG_XFRM
3061 xfrm_init();
3062 xfrm4_init();
3063 #endif
3064 rtnl_register(PF_INET, RTM_GETROUTE, inet_rtm_getroute, NULL);
3065
3066 return rc;
3067 }
3068
3069 EXPORT_SYMBOL(__ip_select_ident);
3070 EXPORT_SYMBOL(ip_route_input);
3071 EXPORT_SYMBOL(ip_route_output_key);