]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - net/ipv4/route.c
ipv4: Generalize ip_do_redirect() and hook into new dst_ops->redirect.
[mirror_ubuntu-focal-kernel.git] / net / ipv4 / route.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * ROUTE - implementation of the IP router.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Alan Cox, <gw4pts@gw4pts.ampr.org>
11 * Linus Torvalds, <Linus.Torvalds@helsinki.fi>
12 * Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
13 *
14 * Fixes:
15 * Alan Cox : Verify area fixes.
16 * Alan Cox : cli() protects routing changes
17 * Rui Oliveira : ICMP routing table updates
18 * (rco@di.uminho.pt) Routing table insertion and update
19 * Linus Torvalds : Rewrote bits to be sensible
20 * Alan Cox : Added BSD route gw semantics
21 * Alan Cox : Super /proc >4K
22 * Alan Cox : MTU in route table
23 * Alan Cox : MSS actually. Also added the window
24 * clamper.
25 * Sam Lantinga : Fixed route matching in rt_del()
26 * Alan Cox : Routing cache support.
27 * Alan Cox : Removed compatibility cruft.
28 * Alan Cox : RTF_REJECT support.
29 * Alan Cox : TCP irtt support.
30 * Jonathan Naylor : Added Metric support.
31 * Miquel van Smoorenburg : BSD API fixes.
32 * Miquel van Smoorenburg : Metrics.
33 * Alan Cox : Use __u32 properly
34 * Alan Cox : Aligned routing errors more closely with BSD
35 * our system is still very different.
36 * Alan Cox : Faster /proc handling
37 * Alexey Kuznetsov : Massive rework to support tree based routing,
38 * routing caches and better behaviour.
39 *
40 * Olaf Erb : irtt wasn't being copied right.
41 * Bjorn Ekwall : Kerneld route support.
42 * Alan Cox : Multicast fixed (I hope)
43 * Pavel Krauz : Limited broadcast fixed
44 * Mike McLagan : Routing by source
45 * Alexey Kuznetsov : End of old history. Split to fib.c and
46 * route.c and rewritten from scratch.
47 * Andi Kleen : Load-limit warning messages.
48 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
49 * Vitaly E. Lavrov : Race condition in ip_route_input_slow.
50 * Tobias Ringstrom : Uninitialized res.type in ip_route_output_slow.
51 * Vladimir V. Ivanov : IP rule info (flowid) is really useful.
52 * Marc Boucher : routing by fwmark
53 * Robert Olsson : Added rt_cache statistics
54 * Arnaldo C. Melo : Convert proc stuff to seq_file
55 * Eric Dumazet : hashed spinlocks and rt_check_expire() fixes.
56 * Ilia Sotnikov : Ignore TOS on PMTUD and Redirect
57 * Ilia Sotnikov : Removed TOS from hash calculations
58 *
59 * This program is free software; you can redistribute it and/or
60 * modify it under the terms of the GNU General Public License
61 * as published by the Free Software Foundation; either version
62 * 2 of the License, or (at your option) any later version.
63 */
64
65 #define pr_fmt(fmt) "IPv4: " fmt
66
67 #include <linux/module.h>
68 #include <asm/uaccess.h>
69 #include <linux/bitops.h>
70 #include <linux/types.h>
71 #include <linux/kernel.h>
72 #include <linux/mm.h>
73 #include <linux/bootmem.h>
74 #include <linux/string.h>
75 #include <linux/socket.h>
76 #include <linux/sockios.h>
77 #include <linux/errno.h>
78 #include <linux/in.h>
79 #include <linux/inet.h>
80 #include <linux/netdevice.h>
81 #include <linux/proc_fs.h>
82 #include <linux/init.h>
83 #include <linux/workqueue.h>
84 #include <linux/skbuff.h>
85 #include <linux/inetdevice.h>
86 #include <linux/igmp.h>
87 #include <linux/pkt_sched.h>
88 #include <linux/mroute.h>
89 #include <linux/netfilter_ipv4.h>
90 #include <linux/random.h>
91 #include <linux/jhash.h>
92 #include <linux/rcupdate.h>
93 #include <linux/times.h>
94 #include <linux/slab.h>
95 #include <linux/prefetch.h>
96 #include <net/dst.h>
97 #include <net/net_namespace.h>
98 #include <net/protocol.h>
99 #include <net/ip.h>
100 #include <net/route.h>
101 #include <net/inetpeer.h>
102 #include <net/sock.h>
103 #include <net/ip_fib.h>
104 #include <net/arp.h>
105 #include <net/tcp.h>
106 #include <net/icmp.h>
107 #include <net/xfrm.h>
108 #include <net/netevent.h>
109 #include <net/rtnetlink.h>
110 #ifdef CONFIG_SYSCTL
111 #include <linux/sysctl.h>
112 #include <linux/kmemleak.h>
113 #endif
114 #include <net/secure_seq.h>
115
116 #define RT_FL_TOS(oldflp4) \
117 ((oldflp4)->flowi4_tos & (IPTOS_RT_MASK | RTO_ONLINK))
118
119 #define IP_MAX_MTU 0xFFF0
120
121 #define RT_GC_TIMEOUT (300*HZ)
122
123 static int ip_rt_max_size;
124 static int ip_rt_gc_timeout __read_mostly = RT_GC_TIMEOUT;
125 static int ip_rt_gc_interval __read_mostly = 60 * HZ;
126 static int ip_rt_gc_min_interval __read_mostly = HZ / 2;
127 static int ip_rt_redirect_number __read_mostly = 9;
128 static int ip_rt_redirect_load __read_mostly = HZ / 50;
129 static int ip_rt_redirect_silence __read_mostly = ((HZ / 50) << (9 + 1));
130 static int ip_rt_error_cost __read_mostly = HZ;
131 static int ip_rt_error_burst __read_mostly = 5 * HZ;
132 static int ip_rt_gc_elasticity __read_mostly = 8;
133 static int ip_rt_mtu_expires __read_mostly = 10 * 60 * HZ;
134 static int ip_rt_min_pmtu __read_mostly = 512 + 20 + 20;
135 static int ip_rt_min_advmss __read_mostly = 256;
136 static int rt_chain_length_max __read_mostly = 20;
137
138 static struct delayed_work expires_work;
139 static unsigned long expires_ljiffies;
140
141 /*
142 * Interface to generic destination cache.
143 */
144
145 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie);
146 static unsigned int ipv4_default_advmss(const struct dst_entry *dst);
147 static unsigned int ipv4_mtu(const struct dst_entry *dst);
148 static void ipv4_dst_destroy(struct dst_entry *dst);
149 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst);
150 static void ipv4_link_failure(struct sk_buff *skb);
151 static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu);
152 static void ip_do_redirect(struct dst_entry *dst, struct sk_buff *skb);
153 static int rt_garbage_collect(struct dst_ops *ops);
154
155 static void ipv4_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
156 int how)
157 {
158 }
159
160 static u32 *ipv4_cow_metrics(struct dst_entry *dst, unsigned long old)
161 {
162 WARN_ON(1);
163 return NULL;
164 }
165
166 static struct neighbour *ipv4_neigh_lookup(const struct dst_entry *dst,
167 struct sk_buff *skb,
168 const void *daddr);
169
170 static struct dst_ops ipv4_dst_ops = {
171 .family = AF_INET,
172 .protocol = cpu_to_be16(ETH_P_IP),
173 .gc = rt_garbage_collect,
174 .check = ipv4_dst_check,
175 .default_advmss = ipv4_default_advmss,
176 .mtu = ipv4_mtu,
177 .cow_metrics = ipv4_cow_metrics,
178 .destroy = ipv4_dst_destroy,
179 .ifdown = ipv4_dst_ifdown,
180 .negative_advice = ipv4_negative_advice,
181 .link_failure = ipv4_link_failure,
182 .update_pmtu = ip_rt_update_pmtu,
183 .redirect = ip_do_redirect,
184 .local_out = __ip_local_out,
185 .neigh_lookup = ipv4_neigh_lookup,
186 };
187
188 #define ECN_OR_COST(class) TC_PRIO_##class
189
190 const __u8 ip_tos2prio[16] = {
191 TC_PRIO_BESTEFFORT,
192 ECN_OR_COST(BESTEFFORT),
193 TC_PRIO_BESTEFFORT,
194 ECN_OR_COST(BESTEFFORT),
195 TC_PRIO_BULK,
196 ECN_OR_COST(BULK),
197 TC_PRIO_BULK,
198 ECN_OR_COST(BULK),
199 TC_PRIO_INTERACTIVE,
200 ECN_OR_COST(INTERACTIVE),
201 TC_PRIO_INTERACTIVE,
202 ECN_OR_COST(INTERACTIVE),
203 TC_PRIO_INTERACTIVE_BULK,
204 ECN_OR_COST(INTERACTIVE_BULK),
205 TC_PRIO_INTERACTIVE_BULK,
206 ECN_OR_COST(INTERACTIVE_BULK)
207 };
208 EXPORT_SYMBOL(ip_tos2prio);
209
210 /*
211 * Route cache.
212 */
213
214 /* The locking scheme is rather straight forward:
215 *
216 * 1) Read-Copy Update protects the buckets of the central route hash.
217 * 2) Only writers remove entries, and they hold the lock
218 * as they look at rtable reference counts.
219 * 3) Only readers acquire references to rtable entries,
220 * they do so with atomic increments and with the
221 * lock held.
222 */
223
224 struct rt_hash_bucket {
225 struct rtable __rcu *chain;
226 };
227
228 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) || \
229 defined(CONFIG_PROVE_LOCKING)
230 /*
231 * Instead of using one spinlock for each rt_hash_bucket, we use a table of spinlocks
232 * The size of this table is a power of two and depends on the number of CPUS.
233 * (on lockdep we have a quite big spinlock_t, so keep the size down there)
234 */
235 #ifdef CONFIG_LOCKDEP
236 # define RT_HASH_LOCK_SZ 256
237 #else
238 # if NR_CPUS >= 32
239 # define RT_HASH_LOCK_SZ 4096
240 # elif NR_CPUS >= 16
241 # define RT_HASH_LOCK_SZ 2048
242 # elif NR_CPUS >= 8
243 # define RT_HASH_LOCK_SZ 1024
244 # elif NR_CPUS >= 4
245 # define RT_HASH_LOCK_SZ 512
246 # else
247 # define RT_HASH_LOCK_SZ 256
248 # endif
249 #endif
250
251 static spinlock_t *rt_hash_locks;
252 # define rt_hash_lock_addr(slot) &rt_hash_locks[(slot) & (RT_HASH_LOCK_SZ - 1)]
253
254 static __init void rt_hash_lock_init(void)
255 {
256 int i;
257
258 rt_hash_locks = kmalloc(sizeof(spinlock_t) * RT_HASH_LOCK_SZ,
259 GFP_KERNEL);
260 if (!rt_hash_locks)
261 panic("IP: failed to allocate rt_hash_locks\n");
262
263 for (i = 0; i < RT_HASH_LOCK_SZ; i++)
264 spin_lock_init(&rt_hash_locks[i]);
265 }
266 #else
267 # define rt_hash_lock_addr(slot) NULL
268
269 static inline void rt_hash_lock_init(void)
270 {
271 }
272 #endif
273
274 static struct rt_hash_bucket *rt_hash_table __read_mostly;
275 static unsigned int rt_hash_mask __read_mostly;
276 static unsigned int rt_hash_log __read_mostly;
277
278 static DEFINE_PER_CPU(struct rt_cache_stat, rt_cache_stat);
279 #define RT_CACHE_STAT_INC(field) __this_cpu_inc(rt_cache_stat.field)
280
281 static inline unsigned int rt_hash(__be32 daddr, __be32 saddr, int idx,
282 int genid)
283 {
284 return jhash_3words((__force u32)daddr, (__force u32)saddr,
285 idx, genid)
286 & rt_hash_mask;
287 }
288
289 static inline int rt_genid(struct net *net)
290 {
291 return atomic_read(&net->ipv4.rt_genid);
292 }
293
294 #ifdef CONFIG_PROC_FS
295 struct rt_cache_iter_state {
296 struct seq_net_private p;
297 int bucket;
298 int genid;
299 };
300
301 static struct rtable *rt_cache_get_first(struct seq_file *seq)
302 {
303 struct rt_cache_iter_state *st = seq->private;
304 struct rtable *r = NULL;
305
306 for (st->bucket = rt_hash_mask; st->bucket >= 0; --st->bucket) {
307 if (!rcu_access_pointer(rt_hash_table[st->bucket].chain))
308 continue;
309 rcu_read_lock_bh();
310 r = rcu_dereference_bh(rt_hash_table[st->bucket].chain);
311 while (r) {
312 if (dev_net(r->dst.dev) == seq_file_net(seq) &&
313 r->rt_genid == st->genid)
314 return r;
315 r = rcu_dereference_bh(r->dst.rt_next);
316 }
317 rcu_read_unlock_bh();
318 }
319 return r;
320 }
321
322 static struct rtable *__rt_cache_get_next(struct seq_file *seq,
323 struct rtable *r)
324 {
325 struct rt_cache_iter_state *st = seq->private;
326
327 r = rcu_dereference_bh(r->dst.rt_next);
328 while (!r) {
329 rcu_read_unlock_bh();
330 do {
331 if (--st->bucket < 0)
332 return NULL;
333 } while (!rcu_access_pointer(rt_hash_table[st->bucket].chain));
334 rcu_read_lock_bh();
335 r = rcu_dereference_bh(rt_hash_table[st->bucket].chain);
336 }
337 return r;
338 }
339
340 static struct rtable *rt_cache_get_next(struct seq_file *seq,
341 struct rtable *r)
342 {
343 struct rt_cache_iter_state *st = seq->private;
344 while ((r = __rt_cache_get_next(seq, r)) != NULL) {
345 if (dev_net(r->dst.dev) != seq_file_net(seq))
346 continue;
347 if (r->rt_genid == st->genid)
348 break;
349 }
350 return r;
351 }
352
353 static struct rtable *rt_cache_get_idx(struct seq_file *seq, loff_t pos)
354 {
355 struct rtable *r = rt_cache_get_first(seq);
356
357 if (r)
358 while (pos && (r = rt_cache_get_next(seq, r)))
359 --pos;
360 return pos ? NULL : r;
361 }
362
363 static void *rt_cache_seq_start(struct seq_file *seq, loff_t *pos)
364 {
365 struct rt_cache_iter_state *st = seq->private;
366 if (*pos)
367 return rt_cache_get_idx(seq, *pos - 1);
368 st->genid = rt_genid(seq_file_net(seq));
369 return SEQ_START_TOKEN;
370 }
371
372 static void *rt_cache_seq_next(struct seq_file *seq, void *v, loff_t *pos)
373 {
374 struct rtable *r;
375
376 if (v == SEQ_START_TOKEN)
377 r = rt_cache_get_first(seq);
378 else
379 r = rt_cache_get_next(seq, v);
380 ++*pos;
381 return r;
382 }
383
384 static void rt_cache_seq_stop(struct seq_file *seq, void *v)
385 {
386 if (v && v != SEQ_START_TOKEN)
387 rcu_read_unlock_bh();
388 }
389
390 static int rt_cache_seq_show(struct seq_file *seq, void *v)
391 {
392 if (v == SEQ_START_TOKEN)
393 seq_printf(seq, "%-127s\n",
394 "Iface\tDestination\tGateway \tFlags\t\tRefCnt\tUse\t"
395 "Metric\tSource\t\tMTU\tWindow\tIRTT\tTOS\tHHRef\t"
396 "HHUptod\tSpecDst");
397 else {
398 struct rtable *r = v;
399 int len;
400
401 seq_printf(seq, "%s\t%08X\t%08X\t%8X\t%d\t%u\t%d\t"
402 "%08X\t%d\t%u\t%u\t%02X\t%d\t%1d\t%08X%n",
403 r->dst.dev ? r->dst.dev->name : "*",
404 (__force u32)r->rt_dst,
405 (__force u32)r->rt_gateway,
406 r->rt_flags, atomic_read(&r->dst.__refcnt),
407 r->dst.__use, 0, (__force u32)r->rt_src,
408 dst_metric_advmss(&r->dst) + 40,
409 dst_metric(&r->dst, RTAX_WINDOW), 0,
410 r->rt_key_tos,
411 -1, 0, 0, &len);
412
413 seq_printf(seq, "%*s\n", 127 - len, "");
414 }
415 return 0;
416 }
417
418 static const struct seq_operations rt_cache_seq_ops = {
419 .start = rt_cache_seq_start,
420 .next = rt_cache_seq_next,
421 .stop = rt_cache_seq_stop,
422 .show = rt_cache_seq_show,
423 };
424
425 static int rt_cache_seq_open(struct inode *inode, struct file *file)
426 {
427 return seq_open_net(inode, file, &rt_cache_seq_ops,
428 sizeof(struct rt_cache_iter_state));
429 }
430
431 static const struct file_operations rt_cache_seq_fops = {
432 .owner = THIS_MODULE,
433 .open = rt_cache_seq_open,
434 .read = seq_read,
435 .llseek = seq_lseek,
436 .release = seq_release_net,
437 };
438
439
440 static void *rt_cpu_seq_start(struct seq_file *seq, loff_t *pos)
441 {
442 int cpu;
443
444 if (*pos == 0)
445 return SEQ_START_TOKEN;
446
447 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
448 if (!cpu_possible(cpu))
449 continue;
450 *pos = cpu+1;
451 return &per_cpu(rt_cache_stat, cpu);
452 }
453 return NULL;
454 }
455
456 static void *rt_cpu_seq_next(struct seq_file *seq, void *v, loff_t *pos)
457 {
458 int cpu;
459
460 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
461 if (!cpu_possible(cpu))
462 continue;
463 *pos = cpu+1;
464 return &per_cpu(rt_cache_stat, cpu);
465 }
466 return NULL;
467
468 }
469
470 static void rt_cpu_seq_stop(struct seq_file *seq, void *v)
471 {
472
473 }
474
475 static int rt_cpu_seq_show(struct seq_file *seq, void *v)
476 {
477 struct rt_cache_stat *st = v;
478
479 if (v == SEQ_START_TOKEN) {
480 seq_printf(seq, "entries in_hit in_slow_tot in_slow_mc in_no_route in_brd in_martian_dst in_martian_src out_hit out_slow_tot out_slow_mc gc_total gc_ignored gc_goal_miss gc_dst_overflow in_hlist_search out_hlist_search\n");
481 return 0;
482 }
483
484 seq_printf(seq,"%08x %08x %08x %08x %08x %08x %08x %08x "
485 " %08x %08x %08x %08x %08x %08x %08x %08x %08x \n",
486 dst_entries_get_slow(&ipv4_dst_ops),
487 st->in_hit,
488 st->in_slow_tot,
489 st->in_slow_mc,
490 st->in_no_route,
491 st->in_brd,
492 st->in_martian_dst,
493 st->in_martian_src,
494
495 st->out_hit,
496 st->out_slow_tot,
497 st->out_slow_mc,
498
499 st->gc_total,
500 st->gc_ignored,
501 st->gc_goal_miss,
502 st->gc_dst_overflow,
503 st->in_hlist_search,
504 st->out_hlist_search
505 );
506 return 0;
507 }
508
509 static const struct seq_operations rt_cpu_seq_ops = {
510 .start = rt_cpu_seq_start,
511 .next = rt_cpu_seq_next,
512 .stop = rt_cpu_seq_stop,
513 .show = rt_cpu_seq_show,
514 };
515
516
517 static int rt_cpu_seq_open(struct inode *inode, struct file *file)
518 {
519 return seq_open(file, &rt_cpu_seq_ops);
520 }
521
522 static const struct file_operations rt_cpu_seq_fops = {
523 .owner = THIS_MODULE,
524 .open = rt_cpu_seq_open,
525 .read = seq_read,
526 .llseek = seq_lseek,
527 .release = seq_release,
528 };
529
530 #ifdef CONFIG_IP_ROUTE_CLASSID
531 static int rt_acct_proc_show(struct seq_file *m, void *v)
532 {
533 struct ip_rt_acct *dst, *src;
534 unsigned int i, j;
535
536 dst = kcalloc(256, sizeof(struct ip_rt_acct), GFP_KERNEL);
537 if (!dst)
538 return -ENOMEM;
539
540 for_each_possible_cpu(i) {
541 src = (struct ip_rt_acct *)per_cpu_ptr(ip_rt_acct, i);
542 for (j = 0; j < 256; j++) {
543 dst[j].o_bytes += src[j].o_bytes;
544 dst[j].o_packets += src[j].o_packets;
545 dst[j].i_bytes += src[j].i_bytes;
546 dst[j].i_packets += src[j].i_packets;
547 }
548 }
549
550 seq_write(m, dst, 256 * sizeof(struct ip_rt_acct));
551 kfree(dst);
552 return 0;
553 }
554
555 static int rt_acct_proc_open(struct inode *inode, struct file *file)
556 {
557 return single_open(file, rt_acct_proc_show, NULL);
558 }
559
560 static const struct file_operations rt_acct_proc_fops = {
561 .owner = THIS_MODULE,
562 .open = rt_acct_proc_open,
563 .read = seq_read,
564 .llseek = seq_lseek,
565 .release = single_release,
566 };
567 #endif
568
569 static int __net_init ip_rt_do_proc_init(struct net *net)
570 {
571 struct proc_dir_entry *pde;
572
573 pde = proc_net_fops_create(net, "rt_cache", S_IRUGO,
574 &rt_cache_seq_fops);
575 if (!pde)
576 goto err1;
577
578 pde = proc_create("rt_cache", S_IRUGO,
579 net->proc_net_stat, &rt_cpu_seq_fops);
580 if (!pde)
581 goto err2;
582
583 #ifdef CONFIG_IP_ROUTE_CLASSID
584 pde = proc_create("rt_acct", 0, net->proc_net, &rt_acct_proc_fops);
585 if (!pde)
586 goto err3;
587 #endif
588 return 0;
589
590 #ifdef CONFIG_IP_ROUTE_CLASSID
591 err3:
592 remove_proc_entry("rt_cache", net->proc_net_stat);
593 #endif
594 err2:
595 remove_proc_entry("rt_cache", net->proc_net);
596 err1:
597 return -ENOMEM;
598 }
599
600 static void __net_exit ip_rt_do_proc_exit(struct net *net)
601 {
602 remove_proc_entry("rt_cache", net->proc_net_stat);
603 remove_proc_entry("rt_cache", net->proc_net);
604 #ifdef CONFIG_IP_ROUTE_CLASSID
605 remove_proc_entry("rt_acct", net->proc_net);
606 #endif
607 }
608
609 static struct pernet_operations ip_rt_proc_ops __net_initdata = {
610 .init = ip_rt_do_proc_init,
611 .exit = ip_rt_do_proc_exit,
612 };
613
614 static int __init ip_rt_proc_init(void)
615 {
616 return register_pernet_subsys(&ip_rt_proc_ops);
617 }
618
619 #else
620 static inline int ip_rt_proc_init(void)
621 {
622 return 0;
623 }
624 #endif /* CONFIG_PROC_FS */
625
626 static inline void rt_free(struct rtable *rt)
627 {
628 call_rcu_bh(&rt->dst.rcu_head, dst_rcu_free);
629 }
630
631 static inline void rt_drop(struct rtable *rt)
632 {
633 ip_rt_put(rt);
634 call_rcu_bh(&rt->dst.rcu_head, dst_rcu_free);
635 }
636
637 static inline int rt_fast_clean(struct rtable *rth)
638 {
639 /* Kill broadcast/multicast entries very aggresively, if they
640 collide in hash table with more useful entries */
641 return (rth->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) &&
642 rt_is_input_route(rth) && rth->dst.rt_next;
643 }
644
645 static inline int rt_valuable(struct rtable *rth)
646 {
647 return (rth->rt_flags & (RTCF_REDIRECTED | RTCF_NOTIFY)) ||
648 rth->dst.expires;
649 }
650
651 static int rt_may_expire(struct rtable *rth, unsigned long tmo1, unsigned long tmo2)
652 {
653 unsigned long age;
654 int ret = 0;
655
656 if (atomic_read(&rth->dst.__refcnt))
657 goto out;
658
659 age = jiffies - rth->dst.lastuse;
660 if ((age <= tmo1 && !rt_fast_clean(rth)) ||
661 (age <= tmo2 && rt_valuable(rth)))
662 goto out;
663 ret = 1;
664 out: return ret;
665 }
666
667 /* Bits of score are:
668 * 31: very valuable
669 * 30: not quite useless
670 * 29..0: usage counter
671 */
672 static inline u32 rt_score(struct rtable *rt)
673 {
674 u32 score = jiffies - rt->dst.lastuse;
675
676 score = ~score & ~(3<<30);
677
678 if (rt_valuable(rt))
679 score |= (1<<31);
680
681 if (rt_is_output_route(rt) ||
682 !(rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST|RTCF_LOCAL)))
683 score |= (1<<30);
684
685 return score;
686 }
687
688 static inline bool rt_caching(const struct net *net)
689 {
690 return net->ipv4.current_rt_cache_rebuild_count <=
691 net->ipv4.sysctl_rt_cache_rebuild_count;
692 }
693
694 static inline bool compare_hash_inputs(const struct rtable *rt1,
695 const struct rtable *rt2)
696 {
697 return ((((__force u32)rt1->rt_key_dst ^ (__force u32)rt2->rt_key_dst) |
698 ((__force u32)rt1->rt_key_src ^ (__force u32)rt2->rt_key_src) |
699 (rt1->rt_route_iif ^ rt2->rt_route_iif)) == 0);
700 }
701
702 static inline int compare_keys(struct rtable *rt1, struct rtable *rt2)
703 {
704 return (((__force u32)rt1->rt_key_dst ^ (__force u32)rt2->rt_key_dst) |
705 ((__force u32)rt1->rt_key_src ^ (__force u32)rt2->rt_key_src) |
706 (rt1->rt_mark ^ rt2->rt_mark) |
707 (rt1->rt_key_tos ^ rt2->rt_key_tos) |
708 (rt1->rt_route_iif ^ rt2->rt_route_iif) |
709 (rt1->rt_oif ^ rt2->rt_oif)) == 0;
710 }
711
712 static inline int compare_netns(struct rtable *rt1, struct rtable *rt2)
713 {
714 return net_eq(dev_net(rt1->dst.dev), dev_net(rt2->dst.dev));
715 }
716
717 static inline int rt_is_expired(struct rtable *rth)
718 {
719 return rth->rt_genid != rt_genid(dev_net(rth->dst.dev));
720 }
721
722 /*
723 * Perform a full scan of hash table and free all entries.
724 * Can be called by a softirq or a process.
725 * In the later case, we want to be reschedule if necessary
726 */
727 static void rt_do_flush(struct net *net, int process_context)
728 {
729 unsigned int i;
730 struct rtable *rth, *next;
731
732 for (i = 0; i <= rt_hash_mask; i++) {
733 struct rtable __rcu **pprev;
734 struct rtable *list;
735
736 if (process_context && need_resched())
737 cond_resched();
738 rth = rcu_access_pointer(rt_hash_table[i].chain);
739 if (!rth)
740 continue;
741
742 spin_lock_bh(rt_hash_lock_addr(i));
743
744 list = NULL;
745 pprev = &rt_hash_table[i].chain;
746 rth = rcu_dereference_protected(*pprev,
747 lockdep_is_held(rt_hash_lock_addr(i)));
748
749 while (rth) {
750 next = rcu_dereference_protected(rth->dst.rt_next,
751 lockdep_is_held(rt_hash_lock_addr(i)));
752
753 if (!net ||
754 net_eq(dev_net(rth->dst.dev), net)) {
755 rcu_assign_pointer(*pprev, next);
756 rcu_assign_pointer(rth->dst.rt_next, list);
757 list = rth;
758 } else {
759 pprev = &rth->dst.rt_next;
760 }
761 rth = next;
762 }
763
764 spin_unlock_bh(rt_hash_lock_addr(i));
765
766 for (; list; list = next) {
767 next = rcu_dereference_protected(list->dst.rt_next, 1);
768 rt_free(list);
769 }
770 }
771 }
772
773 /*
774 * While freeing expired entries, we compute average chain length
775 * and standard deviation, using fixed-point arithmetic.
776 * This to have an estimation of rt_chain_length_max
777 * rt_chain_length_max = max(elasticity, AVG + 4*SD)
778 * We use 3 bits for frational part, and 29 (or 61) for magnitude.
779 */
780
781 #define FRACT_BITS 3
782 #define ONE (1UL << FRACT_BITS)
783
784 /*
785 * Given a hash chain and an item in this hash chain,
786 * find if a previous entry has the same hash_inputs
787 * (but differs on tos, mark or oif)
788 * Returns 0 if an alias is found.
789 * Returns ONE if rth has no alias before itself.
790 */
791 static int has_noalias(const struct rtable *head, const struct rtable *rth)
792 {
793 const struct rtable *aux = head;
794
795 while (aux != rth) {
796 if (compare_hash_inputs(aux, rth))
797 return 0;
798 aux = rcu_dereference_protected(aux->dst.rt_next, 1);
799 }
800 return ONE;
801 }
802
803 static void rt_check_expire(void)
804 {
805 static unsigned int rover;
806 unsigned int i = rover, goal;
807 struct rtable *rth;
808 struct rtable __rcu **rthp;
809 unsigned long samples = 0;
810 unsigned long sum = 0, sum2 = 0;
811 unsigned long delta;
812 u64 mult;
813
814 delta = jiffies - expires_ljiffies;
815 expires_ljiffies = jiffies;
816 mult = ((u64)delta) << rt_hash_log;
817 if (ip_rt_gc_timeout > 1)
818 do_div(mult, ip_rt_gc_timeout);
819 goal = (unsigned int)mult;
820 if (goal > rt_hash_mask)
821 goal = rt_hash_mask + 1;
822 for (; goal > 0; goal--) {
823 unsigned long tmo = ip_rt_gc_timeout;
824 unsigned long length;
825
826 i = (i + 1) & rt_hash_mask;
827 rthp = &rt_hash_table[i].chain;
828
829 if (need_resched())
830 cond_resched();
831
832 samples++;
833
834 if (rcu_dereference_raw(*rthp) == NULL)
835 continue;
836 length = 0;
837 spin_lock_bh(rt_hash_lock_addr(i));
838 while ((rth = rcu_dereference_protected(*rthp,
839 lockdep_is_held(rt_hash_lock_addr(i)))) != NULL) {
840 prefetch(rth->dst.rt_next);
841 if (rt_is_expired(rth) ||
842 rt_may_expire(rth, tmo, ip_rt_gc_timeout)) {
843 *rthp = rth->dst.rt_next;
844 rt_free(rth);
845 continue;
846 }
847
848 /* We only count entries on a chain with equal
849 * hash inputs once so that entries for
850 * different QOS levels, and other non-hash
851 * input attributes don't unfairly skew the
852 * length computation
853 */
854 tmo >>= 1;
855 rthp = &rth->dst.rt_next;
856 length += has_noalias(rt_hash_table[i].chain, rth);
857 }
858 spin_unlock_bh(rt_hash_lock_addr(i));
859 sum += length;
860 sum2 += length*length;
861 }
862 if (samples) {
863 unsigned long avg = sum / samples;
864 unsigned long sd = int_sqrt(sum2 / samples - avg*avg);
865 rt_chain_length_max = max_t(unsigned long,
866 ip_rt_gc_elasticity,
867 (avg + 4*sd) >> FRACT_BITS);
868 }
869 rover = i;
870 }
871
872 /*
873 * rt_worker_func() is run in process context.
874 * we call rt_check_expire() to scan part of the hash table
875 */
876 static void rt_worker_func(struct work_struct *work)
877 {
878 rt_check_expire();
879 schedule_delayed_work(&expires_work, ip_rt_gc_interval);
880 }
881
882 /*
883 * Perturbation of rt_genid by a small quantity [1..256]
884 * Using 8 bits of shuffling ensure we can call rt_cache_invalidate()
885 * many times (2^24) without giving recent rt_genid.
886 * Jenkins hash is strong enough that litle changes of rt_genid are OK.
887 */
888 static void rt_cache_invalidate(struct net *net)
889 {
890 unsigned char shuffle;
891
892 get_random_bytes(&shuffle, sizeof(shuffle));
893 atomic_add(shuffle + 1U, &net->ipv4.rt_genid);
894 }
895
896 /*
897 * delay < 0 : invalidate cache (fast : entries will be deleted later)
898 * delay >= 0 : invalidate & flush cache (can be long)
899 */
900 void rt_cache_flush(struct net *net, int delay)
901 {
902 rt_cache_invalidate(net);
903 if (delay >= 0)
904 rt_do_flush(net, !in_softirq());
905 }
906
907 /* Flush previous cache invalidated entries from the cache */
908 void rt_cache_flush_batch(struct net *net)
909 {
910 rt_do_flush(net, !in_softirq());
911 }
912
913 static void rt_emergency_hash_rebuild(struct net *net)
914 {
915 net_warn_ratelimited("Route hash chain too long!\n");
916 rt_cache_invalidate(net);
917 }
918
919 /*
920 Short description of GC goals.
921
922 We want to build algorithm, which will keep routing cache
923 at some equilibrium point, when number of aged off entries
924 is kept approximately equal to newly generated ones.
925
926 Current expiration strength is variable "expire".
927 We try to adjust it dynamically, so that if networking
928 is idle expires is large enough to keep enough of warm entries,
929 and when load increases it reduces to limit cache size.
930 */
931
932 static int rt_garbage_collect(struct dst_ops *ops)
933 {
934 static unsigned long expire = RT_GC_TIMEOUT;
935 static unsigned long last_gc;
936 static int rover;
937 static int equilibrium;
938 struct rtable *rth;
939 struct rtable __rcu **rthp;
940 unsigned long now = jiffies;
941 int goal;
942 int entries = dst_entries_get_fast(&ipv4_dst_ops);
943
944 /*
945 * Garbage collection is pretty expensive,
946 * do not make it too frequently.
947 */
948
949 RT_CACHE_STAT_INC(gc_total);
950
951 if (now - last_gc < ip_rt_gc_min_interval &&
952 entries < ip_rt_max_size) {
953 RT_CACHE_STAT_INC(gc_ignored);
954 goto out;
955 }
956
957 entries = dst_entries_get_slow(&ipv4_dst_ops);
958 /* Calculate number of entries, which we want to expire now. */
959 goal = entries - (ip_rt_gc_elasticity << rt_hash_log);
960 if (goal <= 0) {
961 if (equilibrium < ipv4_dst_ops.gc_thresh)
962 equilibrium = ipv4_dst_ops.gc_thresh;
963 goal = entries - equilibrium;
964 if (goal > 0) {
965 equilibrium += min_t(unsigned int, goal >> 1, rt_hash_mask + 1);
966 goal = entries - equilibrium;
967 }
968 } else {
969 /* We are in dangerous area. Try to reduce cache really
970 * aggressively.
971 */
972 goal = max_t(unsigned int, goal >> 1, rt_hash_mask + 1);
973 equilibrium = entries - goal;
974 }
975
976 if (now - last_gc >= ip_rt_gc_min_interval)
977 last_gc = now;
978
979 if (goal <= 0) {
980 equilibrium += goal;
981 goto work_done;
982 }
983
984 do {
985 int i, k;
986
987 for (i = rt_hash_mask, k = rover; i >= 0; i--) {
988 unsigned long tmo = expire;
989
990 k = (k + 1) & rt_hash_mask;
991 rthp = &rt_hash_table[k].chain;
992 spin_lock_bh(rt_hash_lock_addr(k));
993 while ((rth = rcu_dereference_protected(*rthp,
994 lockdep_is_held(rt_hash_lock_addr(k)))) != NULL) {
995 if (!rt_is_expired(rth) &&
996 !rt_may_expire(rth, tmo, expire)) {
997 tmo >>= 1;
998 rthp = &rth->dst.rt_next;
999 continue;
1000 }
1001 *rthp = rth->dst.rt_next;
1002 rt_free(rth);
1003 goal--;
1004 }
1005 spin_unlock_bh(rt_hash_lock_addr(k));
1006 if (goal <= 0)
1007 break;
1008 }
1009 rover = k;
1010
1011 if (goal <= 0)
1012 goto work_done;
1013
1014 /* Goal is not achieved. We stop process if:
1015
1016 - if expire reduced to zero. Otherwise, expire is halfed.
1017 - if table is not full.
1018 - if we are called from interrupt.
1019 - jiffies check is just fallback/debug loop breaker.
1020 We will not spin here for long time in any case.
1021 */
1022
1023 RT_CACHE_STAT_INC(gc_goal_miss);
1024
1025 if (expire == 0)
1026 break;
1027
1028 expire >>= 1;
1029
1030 if (dst_entries_get_fast(&ipv4_dst_ops) < ip_rt_max_size)
1031 goto out;
1032 } while (!in_softirq() && time_before_eq(jiffies, now));
1033
1034 if (dst_entries_get_fast(&ipv4_dst_ops) < ip_rt_max_size)
1035 goto out;
1036 if (dst_entries_get_slow(&ipv4_dst_ops) < ip_rt_max_size)
1037 goto out;
1038 net_warn_ratelimited("dst cache overflow\n");
1039 RT_CACHE_STAT_INC(gc_dst_overflow);
1040 return 1;
1041
1042 work_done:
1043 expire += ip_rt_gc_min_interval;
1044 if (expire > ip_rt_gc_timeout ||
1045 dst_entries_get_fast(&ipv4_dst_ops) < ipv4_dst_ops.gc_thresh ||
1046 dst_entries_get_slow(&ipv4_dst_ops) < ipv4_dst_ops.gc_thresh)
1047 expire = ip_rt_gc_timeout;
1048 out: return 0;
1049 }
1050
1051 /*
1052 * Returns number of entries in a hash chain that have different hash_inputs
1053 */
1054 static int slow_chain_length(const struct rtable *head)
1055 {
1056 int length = 0;
1057 const struct rtable *rth = head;
1058
1059 while (rth) {
1060 length += has_noalias(head, rth);
1061 rth = rcu_dereference_protected(rth->dst.rt_next, 1);
1062 }
1063 return length >> FRACT_BITS;
1064 }
1065
1066 static struct neighbour *ipv4_neigh_lookup(const struct dst_entry *dst,
1067 struct sk_buff *skb,
1068 const void *daddr)
1069 {
1070 struct net_device *dev = dst->dev;
1071 const __be32 *pkey = daddr;
1072 const struct rtable *rt;
1073 struct neighbour *n;
1074
1075 rt = (const struct rtable *) dst;
1076 if (rt->rt_gateway)
1077 pkey = (const __be32 *) &rt->rt_gateway;
1078 else if (skb)
1079 pkey = &ip_hdr(skb)->daddr;
1080
1081 n = __ipv4_neigh_lookup(dev, *(__force u32 *)pkey);
1082 if (n)
1083 return n;
1084 return neigh_create(&arp_tbl, pkey, dev);
1085 }
1086
1087 static struct rtable *rt_intern_hash(unsigned int hash, struct rtable *rt,
1088 struct sk_buff *skb, int ifindex)
1089 {
1090 struct rtable *rth, *cand;
1091 struct rtable __rcu **rthp, **candp;
1092 unsigned long now;
1093 u32 min_score;
1094 int chain_length;
1095
1096 restart:
1097 chain_length = 0;
1098 min_score = ~(u32)0;
1099 cand = NULL;
1100 candp = NULL;
1101 now = jiffies;
1102
1103 if (!rt_caching(dev_net(rt->dst.dev)) || (rt->dst.flags & DST_NOCACHE)) {
1104 /*
1105 * If we're not caching, just tell the caller we
1106 * were successful and don't touch the route. The
1107 * caller hold the sole reference to the cache entry, and
1108 * it will be released when the caller is done with it.
1109 * If we drop it here, the callers have no way to resolve routes
1110 * when we're not caching. Instead, just point *rp at rt, so
1111 * the caller gets a single use out of the route
1112 * Note that we do rt_free on this new route entry, so that
1113 * once its refcount hits zero, we are still able to reap it
1114 * (Thanks Alexey)
1115 * Note: To avoid expensive rcu stuff for this uncached dst,
1116 * we set DST_NOCACHE so that dst_release() can free dst without
1117 * waiting a grace period.
1118 */
1119
1120 rt->dst.flags |= DST_NOCACHE;
1121 goto skip_hashing;
1122 }
1123
1124 rthp = &rt_hash_table[hash].chain;
1125
1126 spin_lock_bh(rt_hash_lock_addr(hash));
1127 while ((rth = rcu_dereference_protected(*rthp,
1128 lockdep_is_held(rt_hash_lock_addr(hash)))) != NULL) {
1129 if (rt_is_expired(rth)) {
1130 *rthp = rth->dst.rt_next;
1131 rt_free(rth);
1132 continue;
1133 }
1134 if (compare_keys(rth, rt) && compare_netns(rth, rt)) {
1135 /* Put it first */
1136 *rthp = rth->dst.rt_next;
1137 /*
1138 * Since lookup is lockfree, the deletion
1139 * must be visible to another weakly ordered CPU before
1140 * the insertion at the start of the hash chain.
1141 */
1142 rcu_assign_pointer(rth->dst.rt_next,
1143 rt_hash_table[hash].chain);
1144 /*
1145 * Since lookup is lockfree, the update writes
1146 * must be ordered for consistency on SMP.
1147 */
1148 rcu_assign_pointer(rt_hash_table[hash].chain, rth);
1149
1150 dst_use(&rth->dst, now);
1151 spin_unlock_bh(rt_hash_lock_addr(hash));
1152
1153 rt_drop(rt);
1154 if (skb)
1155 skb_dst_set(skb, &rth->dst);
1156 return rth;
1157 }
1158
1159 if (!atomic_read(&rth->dst.__refcnt)) {
1160 u32 score = rt_score(rth);
1161
1162 if (score <= min_score) {
1163 cand = rth;
1164 candp = rthp;
1165 min_score = score;
1166 }
1167 }
1168
1169 chain_length++;
1170
1171 rthp = &rth->dst.rt_next;
1172 }
1173
1174 if (cand) {
1175 /* ip_rt_gc_elasticity used to be average length of chain
1176 * length, when exceeded gc becomes really aggressive.
1177 *
1178 * The second limit is less certain. At the moment it allows
1179 * only 2 entries per bucket. We will see.
1180 */
1181 if (chain_length > ip_rt_gc_elasticity) {
1182 *candp = cand->dst.rt_next;
1183 rt_free(cand);
1184 }
1185 } else {
1186 if (chain_length > rt_chain_length_max &&
1187 slow_chain_length(rt_hash_table[hash].chain) > rt_chain_length_max) {
1188 struct net *net = dev_net(rt->dst.dev);
1189 int num = ++net->ipv4.current_rt_cache_rebuild_count;
1190 if (!rt_caching(net)) {
1191 pr_warn("%s: %d rebuilds is over limit, route caching disabled\n",
1192 rt->dst.dev->name, num);
1193 }
1194 rt_emergency_hash_rebuild(net);
1195 spin_unlock_bh(rt_hash_lock_addr(hash));
1196
1197 hash = rt_hash(rt->rt_key_dst, rt->rt_key_src,
1198 ifindex, rt_genid(net));
1199 goto restart;
1200 }
1201 }
1202
1203 rt->dst.rt_next = rt_hash_table[hash].chain;
1204
1205 /*
1206 * Since lookup is lockfree, we must make sure
1207 * previous writes to rt are committed to memory
1208 * before making rt visible to other CPUS.
1209 */
1210 rcu_assign_pointer(rt_hash_table[hash].chain, rt);
1211
1212 spin_unlock_bh(rt_hash_lock_addr(hash));
1213
1214 skip_hashing:
1215 if (skb)
1216 skb_dst_set(skb, &rt->dst);
1217 return rt;
1218 }
1219
1220 /*
1221 * Peer allocation may fail only in serious out-of-memory conditions. However
1222 * we still can generate some output.
1223 * Random ID selection looks a bit dangerous because we have no chances to
1224 * select ID being unique in a reasonable period of time.
1225 * But broken packet identifier may be better than no packet at all.
1226 */
1227 static void ip_select_fb_ident(struct iphdr *iph)
1228 {
1229 static DEFINE_SPINLOCK(ip_fb_id_lock);
1230 static u32 ip_fallback_id;
1231 u32 salt;
1232
1233 spin_lock_bh(&ip_fb_id_lock);
1234 salt = secure_ip_id((__force __be32)ip_fallback_id ^ iph->daddr);
1235 iph->id = htons(salt & 0xFFFF);
1236 ip_fallback_id = salt;
1237 spin_unlock_bh(&ip_fb_id_lock);
1238 }
1239
1240 void __ip_select_ident(struct iphdr *iph, struct dst_entry *dst, int more)
1241 {
1242 struct net *net = dev_net(dst->dev);
1243 struct inet_peer *peer;
1244
1245 peer = inet_getpeer_v4(net->ipv4.peers, iph->daddr, 1);
1246 if (peer) {
1247 iph->id = htons(inet_getid(peer, more));
1248 inet_putpeer(peer);
1249 return;
1250 }
1251
1252 ip_select_fb_ident(iph);
1253 }
1254 EXPORT_SYMBOL(__ip_select_ident);
1255
1256 static void rt_del(unsigned int hash, struct rtable *rt)
1257 {
1258 struct rtable __rcu **rthp;
1259 struct rtable *aux;
1260
1261 rthp = &rt_hash_table[hash].chain;
1262 spin_lock_bh(rt_hash_lock_addr(hash));
1263 ip_rt_put(rt);
1264 while ((aux = rcu_dereference_protected(*rthp,
1265 lockdep_is_held(rt_hash_lock_addr(hash)))) != NULL) {
1266 if (aux == rt || rt_is_expired(aux)) {
1267 *rthp = aux->dst.rt_next;
1268 rt_free(aux);
1269 continue;
1270 }
1271 rthp = &aux->dst.rt_next;
1272 }
1273 spin_unlock_bh(rt_hash_lock_addr(hash));
1274 }
1275
1276 static void ip_do_redirect(struct dst_entry *dst, struct sk_buff *skb)
1277 {
1278 const struct iphdr *iph = (const struct iphdr *) skb->data;
1279 __be32 new_gw = icmp_hdr(skb)->un.gateway;
1280 __be32 old_gw = ip_hdr(skb)->saddr;
1281 struct net_device *dev = skb->dev;
1282 __be32 daddr = iph->daddr;
1283 __be32 saddr = iph->saddr;
1284 struct in_device *in_dev;
1285 struct neighbour *n;
1286 struct rtable *rt;
1287 struct net *net;
1288
1289 switch (icmp_hdr(skb)->code & 7) {
1290 case ICMP_REDIR_NET:
1291 case ICMP_REDIR_NETTOS:
1292 case ICMP_REDIR_HOST:
1293 case ICMP_REDIR_HOSTTOS:
1294 break;
1295
1296 default:
1297 return;
1298 }
1299
1300 rt = (struct rtable *) dst;
1301 if (rt->rt_gateway != old_gw)
1302 return;
1303
1304 in_dev = __in_dev_get_rcu(dev);
1305 if (!in_dev)
1306 return;
1307
1308 net = dev_net(dev);
1309 if (new_gw == old_gw || !IN_DEV_RX_REDIRECTS(in_dev) ||
1310 ipv4_is_multicast(new_gw) || ipv4_is_lbcast(new_gw) ||
1311 ipv4_is_zeronet(new_gw))
1312 goto reject_redirect;
1313
1314 if (!IN_DEV_SHARED_MEDIA(in_dev)) {
1315 if (!inet_addr_onlink(in_dev, new_gw, old_gw))
1316 goto reject_redirect;
1317 if (IN_DEV_SEC_REDIRECTS(in_dev) && ip_fib_check_default(new_gw, dev))
1318 goto reject_redirect;
1319 } else {
1320 if (inet_addr_type(net, new_gw) != RTN_UNICAST)
1321 goto reject_redirect;
1322 }
1323
1324 n = ipv4_neigh_lookup(dst, NULL, &new_gw);
1325 if (n) {
1326 if (!(n->nud_state & NUD_VALID)) {
1327 neigh_event_send(n, NULL);
1328 } else {
1329 rt->rt_gateway = new_gw;
1330 rt->rt_flags |= RTCF_REDIRECTED;
1331 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, n);
1332 }
1333 neigh_release(n);
1334 }
1335 return;
1336
1337 reject_redirect:
1338 #ifdef CONFIG_IP_ROUTE_VERBOSE
1339 if (IN_DEV_LOG_MARTIANS(in_dev))
1340 net_info_ratelimited("Redirect from %pI4 on %s about %pI4 ignored\n"
1341 " Advised path = %pI4 -> %pI4\n",
1342 &old_gw, dev->name, &new_gw,
1343 &saddr, &daddr);
1344 #endif
1345 ;
1346 }
1347
1348 /* called in rcu_read_lock() section */
1349 void ip_rt_redirect(struct sk_buff *skb, __be32 new_gw)
1350 {
1351 const struct iphdr *iph = (const struct iphdr *) skb->data;
1352 __be32 daddr = iph->daddr;
1353 __be32 saddr = iph->saddr;
1354 struct net_device *dev = skb->dev;
1355 int ikeys[2] = { dev->ifindex, 0 };
1356 __be32 skeys[2] = { saddr, 0 };
1357 struct net *net;
1358 int s, i;
1359
1360 net = dev_net(dev);
1361 for (s = 0; s < 2; s++) {
1362 for (i = 0; i < 2; i++) {
1363 unsigned int hash;
1364 struct rtable __rcu **rthp;
1365 struct rtable *rt;
1366
1367 hash = rt_hash(daddr, skeys[s], ikeys[i], rt_genid(net));
1368
1369 rthp = &rt_hash_table[hash].chain;
1370
1371 while ((rt = rcu_dereference(*rthp)) != NULL) {
1372 rthp = &rt->dst.rt_next;
1373
1374 if (rt->rt_key_dst != daddr ||
1375 rt->rt_key_src != skeys[s] ||
1376 rt->rt_oif != ikeys[i] ||
1377 rt_is_input_route(rt) ||
1378 rt_is_expired(rt) ||
1379 !net_eq(dev_net(rt->dst.dev), net) ||
1380 rt->dst.error ||
1381 rt->dst.dev != dev)
1382 continue;
1383
1384 ip_do_redirect(&rt->dst, skb);
1385 }
1386 }
1387 }
1388 return;
1389
1390 }
1391
1392 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst)
1393 {
1394 struct rtable *rt = (struct rtable *)dst;
1395 struct dst_entry *ret = dst;
1396
1397 if (rt) {
1398 if (dst->obsolete > 0) {
1399 ip_rt_put(rt);
1400 ret = NULL;
1401 } else if ((rt->rt_flags & RTCF_REDIRECTED) ||
1402 rt->dst.expires) {
1403 unsigned int hash = rt_hash(rt->rt_key_dst, rt->rt_key_src,
1404 rt->rt_oif,
1405 rt_genid(dev_net(dst->dev)));
1406 rt_del(hash, rt);
1407 ret = NULL;
1408 }
1409 }
1410 return ret;
1411 }
1412
1413 /*
1414 * Algorithm:
1415 * 1. The first ip_rt_redirect_number redirects are sent
1416 * with exponential backoff, then we stop sending them at all,
1417 * assuming that the host ignores our redirects.
1418 * 2. If we did not see packets requiring redirects
1419 * during ip_rt_redirect_silence, we assume that the host
1420 * forgot redirected route and start to send redirects again.
1421 *
1422 * This algorithm is much cheaper and more intelligent than dumb load limiting
1423 * in icmp.c.
1424 *
1425 * NOTE. Do not forget to inhibit load limiting for redirects (redundant)
1426 * and "frag. need" (breaks PMTU discovery) in icmp.c.
1427 */
1428
1429 void ip_rt_send_redirect(struct sk_buff *skb)
1430 {
1431 struct rtable *rt = skb_rtable(skb);
1432 struct in_device *in_dev;
1433 struct inet_peer *peer;
1434 struct net *net;
1435 int log_martians;
1436
1437 rcu_read_lock();
1438 in_dev = __in_dev_get_rcu(rt->dst.dev);
1439 if (!in_dev || !IN_DEV_TX_REDIRECTS(in_dev)) {
1440 rcu_read_unlock();
1441 return;
1442 }
1443 log_martians = IN_DEV_LOG_MARTIANS(in_dev);
1444 rcu_read_unlock();
1445
1446 net = dev_net(rt->dst.dev);
1447 peer = inet_getpeer_v4(net->ipv4.peers, ip_hdr(skb)->saddr, 1);
1448 if (!peer) {
1449 icmp_send(skb, ICMP_REDIRECT, ICMP_REDIR_HOST, rt->rt_gateway);
1450 return;
1451 }
1452
1453 /* No redirected packets during ip_rt_redirect_silence;
1454 * reset the algorithm.
1455 */
1456 if (time_after(jiffies, peer->rate_last + ip_rt_redirect_silence))
1457 peer->rate_tokens = 0;
1458
1459 /* Too many ignored redirects; do not send anything
1460 * set dst.rate_last to the last seen redirected packet.
1461 */
1462 if (peer->rate_tokens >= ip_rt_redirect_number) {
1463 peer->rate_last = jiffies;
1464 goto out_put_peer;
1465 }
1466
1467 /* Check for load limit; set rate_last to the latest sent
1468 * redirect.
1469 */
1470 if (peer->rate_tokens == 0 ||
1471 time_after(jiffies,
1472 (peer->rate_last +
1473 (ip_rt_redirect_load << peer->rate_tokens)))) {
1474 icmp_send(skb, ICMP_REDIRECT, ICMP_REDIR_HOST, rt->rt_gateway);
1475 peer->rate_last = jiffies;
1476 ++peer->rate_tokens;
1477 #ifdef CONFIG_IP_ROUTE_VERBOSE
1478 if (log_martians &&
1479 peer->rate_tokens == ip_rt_redirect_number)
1480 net_warn_ratelimited("host %pI4/if%d ignores redirects for %pI4 to %pI4\n",
1481 &ip_hdr(skb)->saddr, rt->rt_iif,
1482 &rt->rt_dst, &rt->rt_gateway);
1483 #endif
1484 }
1485 out_put_peer:
1486 inet_putpeer(peer);
1487 }
1488
1489 static int ip_error(struct sk_buff *skb)
1490 {
1491 struct in_device *in_dev = __in_dev_get_rcu(skb->dev);
1492 struct rtable *rt = skb_rtable(skb);
1493 struct inet_peer *peer;
1494 unsigned long now;
1495 struct net *net;
1496 bool send;
1497 int code;
1498
1499 net = dev_net(rt->dst.dev);
1500 if (!IN_DEV_FORWARD(in_dev)) {
1501 switch (rt->dst.error) {
1502 case EHOSTUNREACH:
1503 IP_INC_STATS_BH(net, IPSTATS_MIB_INADDRERRORS);
1504 break;
1505
1506 case ENETUNREACH:
1507 IP_INC_STATS_BH(net, IPSTATS_MIB_INNOROUTES);
1508 break;
1509 }
1510 goto out;
1511 }
1512
1513 switch (rt->dst.error) {
1514 case EINVAL:
1515 default:
1516 goto out;
1517 case EHOSTUNREACH:
1518 code = ICMP_HOST_UNREACH;
1519 break;
1520 case ENETUNREACH:
1521 code = ICMP_NET_UNREACH;
1522 IP_INC_STATS_BH(net, IPSTATS_MIB_INNOROUTES);
1523 break;
1524 case EACCES:
1525 code = ICMP_PKT_FILTERED;
1526 break;
1527 }
1528
1529 peer = inet_getpeer_v4(net->ipv4.peers, ip_hdr(skb)->saddr, 1);
1530
1531 send = true;
1532 if (peer) {
1533 now = jiffies;
1534 peer->rate_tokens += now - peer->rate_last;
1535 if (peer->rate_tokens > ip_rt_error_burst)
1536 peer->rate_tokens = ip_rt_error_burst;
1537 peer->rate_last = now;
1538 if (peer->rate_tokens >= ip_rt_error_cost)
1539 peer->rate_tokens -= ip_rt_error_cost;
1540 else
1541 send = false;
1542 inet_putpeer(peer);
1543 }
1544 if (send)
1545 icmp_send(skb, ICMP_DEST_UNREACH, code, 0);
1546
1547 out: kfree_skb(skb);
1548 return 0;
1549 }
1550
1551 static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu)
1552 {
1553 struct rtable *rt = (struct rtable *) dst;
1554
1555 dst_confirm(dst);
1556
1557 if (mtu < ip_rt_min_pmtu)
1558 mtu = ip_rt_min_pmtu;
1559
1560 rt->rt_pmtu = mtu;
1561 dst_set_expires(&rt->dst, ip_rt_mtu_expires);
1562 }
1563
1564 void ipv4_update_pmtu(struct sk_buff *skb, struct net *net, u32 mtu,
1565 int oif, u32 mark, u8 protocol, int flow_flags)
1566 {
1567 const struct iphdr *iph = (const struct iphdr *)skb->data;
1568 struct flowi4 fl4;
1569 struct rtable *rt;
1570
1571 flowi4_init_output(&fl4, oif, mark, RT_TOS(iph->tos), RT_SCOPE_UNIVERSE,
1572 protocol, flow_flags,
1573 iph->daddr, iph->saddr, 0, 0);
1574 rt = __ip_route_output_key(net, &fl4);
1575 if (!IS_ERR(rt)) {
1576 ip_rt_update_pmtu(&rt->dst, mtu);
1577 ip_rt_put(rt);
1578 }
1579 }
1580 EXPORT_SYMBOL_GPL(ipv4_update_pmtu);
1581
1582 void ipv4_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, u32 mtu)
1583 {
1584 const struct inet_sock *inet = inet_sk(sk);
1585
1586 return ipv4_update_pmtu(skb, sock_net(sk), mtu,
1587 sk->sk_bound_dev_if, sk->sk_mark,
1588 inet->hdrincl ? IPPROTO_RAW : sk->sk_protocol,
1589 inet_sk_flowi_flags(sk));
1590 }
1591 EXPORT_SYMBOL_GPL(ipv4_sk_update_pmtu);
1592
1593 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie)
1594 {
1595 struct rtable *rt = (struct rtable *) dst;
1596
1597 if (rt_is_expired(rt))
1598 return NULL;
1599 return dst;
1600 }
1601
1602 static void ipv4_dst_destroy(struct dst_entry *dst)
1603 {
1604 struct rtable *rt = (struct rtable *) dst;
1605
1606 if (rt->fi) {
1607 fib_info_put(rt->fi);
1608 rt->fi = NULL;
1609 }
1610 }
1611
1612
1613 static void ipv4_link_failure(struct sk_buff *skb)
1614 {
1615 struct rtable *rt;
1616
1617 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_HOST_UNREACH, 0);
1618
1619 rt = skb_rtable(skb);
1620 if (rt)
1621 dst_set_expires(&rt->dst, 0);
1622 }
1623
1624 static int ip_rt_bug(struct sk_buff *skb)
1625 {
1626 pr_debug("%s: %pI4 -> %pI4, %s\n",
1627 __func__, &ip_hdr(skb)->saddr, &ip_hdr(skb)->daddr,
1628 skb->dev ? skb->dev->name : "?");
1629 kfree_skb(skb);
1630 WARN_ON(1);
1631 return 0;
1632 }
1633
1634 /*
1635 We do not cache source address of outgoing interface,
1636 because it is used only by IP RR, TS and SRR options,
1637 so that it out of fast path.
1638
1639 BTW remember: "addr" is allowed to be not aligned
1640 in IP options!
1641 */
1642
1643 void ip_rt_get_source(u8 *addr, struct sk_buff *skb, struct rtable *rt)
1644 {
1645 __be32 src;
1646
1647 if (rt_is_output_route(rt))
1648 src = ip_hdr(skb)->saddr;
1649 else {
1650 struct fib_result res;
1651 struct flowi4 fl4;
1652 struct iphdr *iph;
1653
1654 iph = ip_hdr(skb);
1655
1656 memset(&fl4, 0, sizeof(fl4));
1657 fl4.daddr = iph->daddr;
1658 fl4.saddr = iph->saddr;
1659 fl4.flowi4_tos = RT_TOS(iph->tos);
1660 fl4.flowi4_oif = rt->dst.dev->ifindex;
1661 fl4.flowi4_iif = skb->dev->ifindex;
1662 fl4.flowi4_mark = skb->mark;
1663
1664 rcu_read_lock();
1665 if (fib_lookup(dev_net(rt->dst.dev), &fl4, &res) == 0)
1666 src = FIB_RES_PREFSRC(dev_net(rt->dst.dev), res);
1667 else
1668 src = inet_select_addr(rt->dst.dev, rt->rt_gateway,
1669 RT_SCOPE_UNIVERSE);
1670 rcu_read_unlock();
1671 }
1672 memcpy(addr, &src, 4);
1673 }
1674
1675 #ifdef CONFIG_IP_ROUTE_CLASSID
1676 static void set_class_tag(struct rtable *rt, u32 tag)
1677 {
1678 if (!(rt->dst.tclassid & 0xFFFF))
1679 rt->dst.tclassid |= tag & 0xFFFF;
1680 if (!(rt->dst.tclassid & 0xFFFF0000))
1681 rt->dst.tclassid |= tag & 0xFFFF0000;
1682 }
1683 #endif
1684
1685 static unsigned int ipv4_default_advmss(const struct dst_entry *dst)
1686 {
1687 unsigned int advmss = dst_metric_raw(dst, RTAX_ADVMSS);
1688
1689 if (advmss == 0) {
1690 advmss = max_t(unsigned int, dst->dev->mtu - 40,
1691 ip_rt_min_advmss);
1692 if (advmss > 65535 - 40)
1693 advmss = 65535 - 40;
1694 }
1695 return advmss;
1696 }
1697
1698 static unsigned int ipv4_mtu(const struct dst_entry *dst)
1699 {
1700 const struct rtable *rt = (const struct rtable *) dst;
1701 unsigned int mtu = rt->rt_pmtu;
1702
1703 if (mtu && time_after_eq(jiffies, rt->dst.expires))
1704 mtu = 0;
1705
1706 if (!mtu)
1707 mtu = dst_metric_raw(dst, RTAX_MTU);
1708
1709 if (mtu && rt_is_output_route(rt))
1710 return mtu;
1711
1712 mtu = dst->dev->mtu;
1713
1714 if (unlikely(dst_metric_locked(dst, RTAX_MTU))) {
1715
1716 if (rt->rt_gateway != rt->rt_dst && mtu > 576)
1717 mtu = 576;
1718 }
1719
1720 if (mtu > IP_MAX_MTU)
1721 mtu = IP_MAX_MTU;
1722
1723 return mtu;
1724 }
1725
1726 static void rt_init_metrics(struct rtable *rt, const struct flowi4 *fl4,
1727 struct fib_info *fi)
1728 {
1729 if (fi->fib_metrics != (u32 *) dst_default_metrics) {
1730 rt->fi = fi;
1731 atomic_inc(&fi->fib_clntref);
1732 }
1733 dst_init_metrics(&rt->dst, fi->fib_metrics, true);
1734 }
1735
1736 static void rt_set_nexthop(struct rtable *rt, const struct flowi4 *fl4,
1737 const struct fib_result *res,
1738 struct fib_info *fi, u16 type, u32 itag)
1739 {
1740 if (fi) {
1741 if (FIB_RES_GW(*res) &&
1742 FIB_RES_NH(*res).nh_scope == RT_SCOPE_LINK)
1743 rt->rt_gateway = FIB_RES_GW(*res);
1744 rt_init_metrics(rt, fl4, fi);
1745 #ifdef CONFIG_IP_ROUTE_CLASSID
1746 rt->dst.tclassid = FIB_RES_NH(*res).nh_tclassid;
1747 #endif
1748 }
1749
1750 #ifdef CONFIG_IP_ROUTE_CLASSID
1751 #ifdef CONFIG_IP_MULTIPLE_TABLES
1752 set_class_tag(rt, fib_rules_tclass(res));
1753 #endif
1754 set_class_tag(rt, itag);
1755 #endif
1756 }
1757
1758 static struct rtable *rt_dst_alloc(struct net_device *dev,
1759 bool nopolicy, bool noxfrm)
1760 {
1761 return dst_alloc(&ipv4_dst_ops, dev, 1, -1,
1762 DST_HOST |
1763 (nopolicy ? DST_NOPOLICY : 0) |
1764 (noxfrm ? DST_NOXFRM : 0));
1765 }
1766
1767 /* called in rcu_read_lock() section */
1768 static int ip_route_input_mc(struct sk_buff *skb, __be32 daddr, __be32 saddr,
1769 u8 tos, struct net_device *dev, int our)
1770 {
1771 unsigned int hash;
1772 struct rtable *rth;
1773 struct in_device *in_dev = __in_dev_get_rcu(dev);
1774 u32 itag = 0;
1775 int err;
1776
1777 /* Primary sanity checks. */
1778
1779 if (in_dev == NULL)
1780 return -EINVAL;
1781
1782 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1783 skb->protocol != htons(ETH_P_IP))
1784 goto e_inval;
1785
1786 if (likely(!IN_DEV_ROUTE_LOCALNET(in_dev)))
1787 if (ipv4_is_loopback(saddr))
1788 goto e_inval;
1789
1790 if (ipv4_is_zeronet(saddr)) {
1791 if (!ipv4_is_local_multicast(daddr))
1792 goto e_inval;
1793 } else {
1794 err = fib_validate_source(skb, saddr, 0, tos, 0, dev,
1795 in_dev, &itag);
1796 if (err < 0)
1797 goto e_err;
1798 }
1799 rth = rt_dst_alloc(dev_net(dev)->loopback_dev,
1800 IN_DEV_CONF_GET(in_dev, NOPOLICY), false);
1801 if (!rth)
1802 goto e_nobufs;
1803
1804 #ifdef CONFIG_IP_ROUTE_CLASSID
1805 rth->dst.tclassid = itag;
1806 #endif
1807 rth->dst.output = ip_rt_bug;
1808
1809 rth->rt_key_dst = daddr;
1810 rth->rt_key_src = saddr;
1811 rth->rt_genid = rt_genid(dev_net(dev));
1812 rth->rt_flags = RTCF_MULTICAST;
1813 rth->rt_type = RTN_MULTICAST;
1814 rth->rt_key_tos = tos;
1815 rth->rt_dst = daddr;
1816 rth->rt_src = saddr;
1817 rth->rt_route_iif = dev->ifindex;
1818 rth->rt_iif = dev->ifindex;
1819 rth->rt_oif = 0;
1820 rth->rt_mark = skb->mark;
1821 rth->rt_pmtu = 0;
1822 rth->rt_gateway = daddr;
1823 rth->fi = NULL;
1824 if (our) {
1825 rth->dst.input= ip_local_deliver;
1826 rth->rt_flags |= RTCF_LOCAL;
1827 }
1828
1829 #ifdef CONFIG_IP_MROUTE
1830 if (!ipv4_is_local_multicast(daddr) && IN_DEV_MFORWARD(in_dev))
1831 rth->dst.input = ip_mr_input;
1832 #endif
1833 RT_CACHE_STAT_INC(in_slow_mc);
1834
1835 hash = rt_hash(daddr, saddr, dev->ifindex, rt_genid(dev_net(dev)));
1836 rth = rt_intern_hash(hash, rth, skb, dev->ifindex);
1837 return IS_ERR(rth) ? PTR_ERR(rth) : 0;
1838
1839 e_nobufs:
1840 return -ENOBUFS;
1841 e_inval:
1842 return -EINVAL;
1843 e_err:
1844 return err;
1845 }
1846
1847
1848 static void ip_handle_martian_source(struct net_device *dev,
1849 struct in_device *in_dev,
1850 struct sk_buff *skb,
1851 __be32 daddr,
1852 __be32 saddr)
1853 {
1854 RT_CACHE_STAT_INC(in_martian_src);
1855 #ifdef CONFIG_IP_ROUTE_VERBOSE
1856 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit()) {
1857 /*
1858 * RFC1812 recommendation, if source is martian,
1859 * the only hint is MAC header.
1860 */
1861 pr_warn("martian source %pI4 from %pI4, on dev %s\n",
1862 &daddr, &saddr, dev->name);
1863 if (dev->hard_header_len && skb_mac_header_was_set(skb)) {
1864 print_hex_dump(KERN_WARNING, "ll header: ",
1865 DUMP_PREFIX_OFFSET, 16, 1,
1866 skb_mac_header(skb),
1867 dev->hard_header_len, true);
1868 }
1869 }
1870 #endif
1871 }
1872
1873 /* called in rcu_read_lock() section */
1874 static int __mkroute_input(struct sk_buff *skb,
1875 const struct fib_result *res,
1876 struct in_device *in_dev,
1877 __be32 daddr, __be32 saddr, u32 tos,
1878 struct rtable **result)
1879 {
1880 struct rtable *rth;
1881 int err;
1882 struct in_device *out_dev;
1883 unsigned int flags = 0;
1884 u32 itag;
1885
1886 /* get a working reference to the output device */
1887 out_dev = __in_dev_get_rcu(FIB_RES_DEV(*res));
1888 if (out_dev == NULL) {
1889 net_crit_ratelimited("Bug in ip_route_input_slow(). Please report.\n");
1890 return -EINVAL;
1891 }
1892
1893
1894 err = fib_validate_source(skb, saddr, daddr, tos, FIB_RES_OIF(*res),
1895 in_dev->dev, in_dev, &itag);
1896 if (err < 0) {
1897 ip_handle_martian_source(in_dev->dev, in_dev, skb, daddr,
1898 saddr);
1899
1900 goto cleanup;
1901 }
1902
1903 if (err)
1904 flags |= RTCF_DIRECTSRC;
1905
1906 if (out_dev == in_dev && err &&
1907 (IN_DEV_SHARED_MEDIA(out_dev) ||
1908 inet_addr_onlink(out_dev, saddr, FIB_RES_GW(*res))))
1909 flags |= RTCF_DOREDIRECT;
1910
1911 if (skb->protocol != htons(ETH_P_IP)) {
1912 /* Not IP (i.e. ARP). Do not create route, if it is
1913 * invalid for proxy arp. DNAT routes are always valid.
1914 *
1915 * Proxy arp feature have been extended to allow, ARP
1916 * replies back to the same interface, to support
1917 * Private VLAN switch technologies. See arp.c.
1918 */
1919 if (out_dev == in_dev &&
1920 IN_DEV_PROXY_ARP_PVLAN(in_dev) == 0) {
1921 err = -EINVAL;
1922 goto cleanup;
1923 }
1924 }
1925
1926 rth = rt_dst_alloc(out_dev->dev,
1927 IN_DEV_CONF_GET(in_dev, NOPOLICY),
1928 IN_DEV_CONF_GET(out_dev, NOXFRM));
1929 if (!rth) {
1930 err = -ENOBUFS;
1931 goto cleanup;
1932 }
1933
1934 rth->rt_key_dst = daddr;
1935 rth->rt_key_src = saddr;
1936 rth->rt_genid = rt_genid(dev_net(rth->dst.dev));
1937 rth->rt_flags = flags;
1938 rth->rt_type = res->type;
1939 rth->rt_key_tos = tos;
1940 rth->rt_dst = daddr;
1941 rth->rt_src = saddr;
1942 rth->rt_route_iif = in_dev->dev->ifindex;
1943 rth->rt_iif = in_dev->dev->ifindex;
1944 rth->rt_oif = 0;
1945 rth->rt_mark = skb->mark;
1946 rth->rt_pmtu = 0;
1947 rth->rt_gateway = daddr;
1948 rth->fi = NULL;
1949
1950 rth->dst.input = ip_forward;
1951 rth->dst.output = ip_output;
1952
1953 rt_set_nexthop(rth, NULL, res, res->fi, res->type, itag);
1954
1955 *result = rth;
1956 err = 0;
1957 cleanup:
1958 return err;
1959 }
1960
1961 static int ip_mkroute_input(struct sk_buff *skb,
1962 struct fib_result *res,
1963 const struct flowi4 *fl4,
1964 struct in_device *in_dev,
1965 __be32 daddr, __be32 saddr, u32 tos)
1966 {
1967 struct rtable *rth = NULL;
1968 int err;
1969 unsigned int hash;
1970
1971 #ifdef CONFIG_IP_ROUTE_MULTIPATH
1972 if (res->fi && res->fi->fib_nhs > 1)
1973 fib_select_multipath(res);
1974 #endif
1975
1976 /* create a routing cache entry */
1977 err = __mkroute_input(skb, res, in_dev, daddr, saddr, tos, &rth);
1978 if (err)
1979 return err;
1980
1981 /* put it into the cache */
1982 hash = rt_hash(daddr, saddr, fl4->flowi4_iif,
1983 rt_genid(dev_net(rth->dst.dev)));
1984 rth = rt_intern_hash(hash, rth, skb, fl4->flowi4_iif);
1985 if (IS_ERR(rth))
1986 return PTR_ERR(rth);
1987 return 0;
1988 }
1989
1990 /*
1991 * NOTE. We drop all the packets that has local source
1992 * addresses, because every properly looped back packet
1993 * must have correct destination already attached by output routine.
1994 *
1995 * Such approach solves two big problems:
1996 * 1. Not simplex devices are handled properly.
1997 * 2. IP spoofing attempts are filtered with 100% of guarantee.
1998 * called with rcu_read_lock()
1999 */
2000
2001 static int ip_route_input_slow(struct sk_buff *skb, __be32 daddr, __be32 saddr,
2002 u8 tos, struct net_device *dev)
2003 {
2004 struct fib_result res;
2005 struct in_device *in_dev = __in_dev_get_rcu(dev);
2006 struct flowi4 fl4;
2007 unsigned int flags = 0;
2008 u32 itag = 0;
2009 struct rtable *rth;
2010 unsigned int hash;
2011 int err = -EINVAL;
2012 struct net *net = dev_net(dev);
2013
2014 /* IP on this device is disabled. */
2015
2016 if (!in_dev)
2017 goto out;
2018
2019 /* Check for the most weird martians, which can be not detected
2020 by fib_lookup.
2021 */
2022
2023 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr))
2024 goto martian_source;
2025
2026 if (ipv4_is_lbcast(daddr) || (saddr == 0 && daddr == 0))
2027 goto brd_input;
2028
2029 /* Accept zero addresses only to limited broadcast;
2030 * I even do not know to fix it or not. Waiting for complains :-)
2031 */
2032 if (ipv4_is_zeronet(saddr))
2033 goto martian_source;
2034
2035 if (ipv4_is_zeronet(daddr))
2036 goto martian_destination;
2037
2038 if (likely(!IN_DEV_ROUTE_LOCALNET(in_dev))) {
2039 if (ipv4_is_loopback(daddr))
2040 goto martian_destination;
2041
2042 if (ipv4_is_loopback(saddr))
2043 goto martian_source;
2044 }
2045
2046 /*
2047 * Now we are ready to route packet.
2048 */
2049 fl4.flowi4_oif = 0;
2050 fl4.flowi4_iif = dev->ifindex;
2051 fl4.flowi4_mark = skb->mark;
2052 fl4.flowi4_tos = tos;
2053 fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
2054 fl4.daddr = daddr;
2055 fl4.saddr = saddr;
2056 err = fib_lookup(net, &fl4, &res);
2057 if (err != 0)
2058 goto no_route;
2059
2060 RT_CACHE_STAT_INC(in_slow_tot);
2061
2062 if (res.type == RTN_BROADCAST)
2063 goto brd_input;
2064
2065 if (res.type == RTN_LOCAL) {
2066 err = fib_validate_source(skb, saddr, daddr, tos,
2067 net->loopback_dev->ifindex,
2068 dev, in_dev, &itag);
2069 if (err < 0)
2070 goto martian_source_keep_err;
2071 if (err)
2072 flags |= RTCF_DIRECTSRC;
2073 goto local_input;
2074 }
2075
2076 if (!IN_DEV_FORWARD(in_dev))
2077 goto no_route;
2078 if (res.type != RTN_UNICAST)
2079 goto martian_destination;
2080
2081 err = ip_mkroute_input(skb, &res, &fl4, in_dev, daddr, saddr, tos);
2082 out: return err;
2083
2084 brd_input:
2085 if (skb->protocol != htons(ETH_P_IP))
2086 goto e_inval;
2087
2088 if (!ipv4_is_zeronet(saddr)) {
2089 err = fib_validate_source(skb, saddr, 0, tos, 0, dev,
2090 in_dev, &itag);
2091 if (err < 0)
2092 goto martian_source_keep_err;
2093 if (err)
2094 flags |= RTCF_DIRECTSRC;
2095 }
2096 flags |= RTCF_BROADCAST;
2097 res.type = RTN_BROADCAST;
2098 RT_CACHE_STAT_INC(in_brd);
2099
2100 local_input:
2101 rth = rt_dst_alloc(net->loopback_dev,
2102 IN_DEV_CONF_GET(in_dev, NOPOLICY), false);
2103 if (!rth)
2104 goto e_nobufs;
2105
2106 rth->dst.input= ip_local_deliver;
2107 rth->dst.output= ip_rt_bug;
2108 #ifdef CONFIG_IP_ROUTE_CLASSID
2109 rth->dst.tclassid = itag;
2110 #endif
2111
2112 rth->rt_key_dst = daddr;
2113 rth->rt_key_src = saddr;
2114 rth->rt_genid = rt_genid(net);
2115 rth->rt_flags = flags|RTCF_LOCAL;
2116 rth->rt_type = res.type;
2117 rth->rt_key_tos = tos;
2118 rth->rt_dst = daddr;
2119 rth->rt_src = saddr;
2120 rth->rt_route_iif = dev->ifindex;
2121 rth->rt_iif = dev->ifindex;
2122 rth->rt_oif = 0;
2123 rth->rt_mark = skb->mark;
2124 rth->rt_pmtu = 0;
2125 rth->rt_gateway = daddr;
2126 rth->fi = NULL;
2127 if (res.type == RTN_UNREACHABLE) {
2128 rth->dst.input= ip_error;
2129 rth->dst.error= -err;
2130 rth->rt_flags &= ~RTCF_LOCAL;
2131 }
2132 hash = rt_hash(daddr, saddr, fl4.flowi4_iif, rt_genid(net));
2133 rth = rt_intern_hash(hash, rth, skb, fl4.flowi4_iif);
2134 err = 0;
2135 if (IS_ERR(rth))
2136 err = PTR_ERR(rth);
2137 goto out;
2138
2139 no_route:
2140 RT_CACHE_STAT_INC(in_no_route);
2141 res.type = RTN_UNREACHABLE;
2142 if (err == -ESRCH)
2143 err = -ENETUNREACH;
2144 goto local_input;
2145
2146 /*
2147 * Do not cache martian addresses: they should be logged (RFC1812)
2148 */
2149 martian_destination:
2150 RT_CACHE_STAT_INC(in_martian_dst);
2151 #ifdef CONFIG_IP_ROUTE_VERBOSE
2152 if (IN_DEV_LOG_MARTIANS(in_dev))
2153 net_warn_ratelimited("martian destination %pI4 from %pI4, dev %s\n",
2154 &daddr, &saddr, dev->name);
2155 #endif
2156
2157 e_inval:
2158 err = -EINVAL;
2159 goto out;
2160
2161 e_nobufs:
2162 err = -ENOBUFS;
2163 goto out;
2164
2165 martian_source:
2166 err = -EINVAL;
2167 martian_source_keep_err:
2168 ip_handle_martian_source(dev, in_dev, skb, daddr, saddr);
2169 goto out;
2170 }
2171
2172 int ip_route_input_common(struct sk_buff *skb, __be32 daddr, __be32 saddr,
2173 u8 tos, struct net_device *dev, bool noref)
2174 {
2175 struct rtable *rth;
2176 unsigned int hash;
2177 int iif = dev->ifindex;
2178 struct net *net;
2179 int res;
2180
2181 net = dev_net(dev);
2182
2183 rcu_read_lock();
2184
2185 if (!rt_caching(net))
2186 goto skip_cache;
2187
2188 tos &= IPTOS_RT_MASK;
2189 hash = rt_hash(daddr, saddr, iif, rt_genid(net));
2190
2191 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
2192 rth = rcu_dereference(rth->dst.rt_next)) {
2193 if ((((__force u32)rth->rt_key_dst ^ (__force u32)daddr) |
2194 ((__force u32)rth->rt_key_src ^ (__force u32)saddr) |
2195 (rth->rt_route_iif ^ iif) |
2196 (rth->rt_key_tos ^ tos)) == 0 &&
2197 rth->rt_mark == skb->mark &&
2198 net_eq(dev_net(rth->dst.dev), net) &&
2199 !rt_is_expired(rth)) {
2200 if (noref) {
2201 dst_use_noref(&rth->dst, jiffies);
2202 skb_dst_set_noref(skb, &rth->dst);
2203 } else {
2204 dst_use(&rth->dst, jiffies);
2205 skb_dst_set(skb, &rth->dst);
2206 }
2207 RT_CACHE_STAT_INC(in_hit);
2208 rcu_read_unlock();
2209 return 0;
2210 }
2211 RT_CACHE_STAT_INC(in_hlist_search);
2212 }
2213
2214 skip_cache:
2215 /* Multicast recognition logic is moved from route cache to here.
2216 The problem was that too many Ethernet cards have broken/missing
2217 hardware multicast filters :-( As result the host on multicasting
2218 network acquires a lot of useless route cache entries, sort of
2219 SDR messages from all the world. Now we try to get rid of them.
2220 Really, provided software IP multicast filter is organized
2221 reasonably (at least, hashed), it does not result in a slowdown
2222 comparing with route cache reject entries.
2223 Note, that multicast routers are not affected, because
2224 route cache entry is created eventually.
2225 */
2226 if (ipv4_is_multicast(daddr)) {
2227 struct in_device *in_dev = __in_dev_get_rcu(dev);
2228
2229 if (in_dev) {
2230 int our = ip_check_mc_rcu(in_dev, daddr, saddr,
2231 ip_hdr(skb)->protocol);
2232 if (our
2233 #ifdef CONFIG_IP_MROUTE
2234 ||
2235 (!ipv4_is_local_multicast(daddr) &&
2236 IN_DEV_MFORWARD(in_dev))
2237 #endif
2238 ) {
2239 int res = ip_route_input_mc(skb, daddr, saddr,
2240 tos, dev, our);
2241 rcu_read_unlock();
2242 return res;
2243 }
2244 }
2245 rcu_read_unlock();
2246 return -EINVAL;
2247 }
2248 res = ip_route_input_slow(skb, daddr, saddr, tos, dev);
2249 rcu_read_unlock();
2250 return res;
2251 }
2252 EXPORT_SYMBOL(ip_route_input_common);
2253
2254 /* called with rcu_read_lock() */
2255 static struct rtable *__mkroute_output(const struct fib_result *res,
2256 const struct flowi4 *fl4,
2257 __be32 orig_daddr, __be32 orig_saddr,
2258 int orig_oif, __u8 orig_rtos,
2259 struct net_device *dev_out,
2260 unsigned int flags)
2261 {
2262 struct fib_info *fi = res->fi;
2263 struct in_device *in_dev;
2264 u16 type = res->type;
2265 struct rtable *rth;
2266
2267 in_dev = __in_dev_get_rcu(dev_out);
2268 if (!in_dev)
2269 return ERR_PTR(-EINVAL);
2270
2271 if (likely(!IN_DEV_ROUTE_LOCALNET(in_dev)))
2272 if (ipv4_is_loopback(fl4->saddr) && !(dev_out->flags & IFF_LOOPBACK))
2273 return ERR_PTR(-EINVAL);
2274
2275 if (ipv4_is_lbcast(fl4->daddr))
2276 type = RTN_BROADCAST;
2277 else if (ipv4_is_multicast(fl4->daddr))
2278 type = RTN_MULTICAST;
2279 else if (ipv4_is_zeronet(fl4->daddr))
2280 return ERR_PTR(-EINVAL);
2281
2282 if (dev_out->flags & IFF_LOOPBACK)
2283 flags |= RTCF_LOCAL;
2284
2285 if (type == RTN_BROADCAST) {
2286 flags |= RTCF_BROADCAST | RTCF_LOCAL;
2287 fi = NULL;
2288 } else if (type == RTN_MULTICAST) {
2289 flags |= RTCF_MULTICAST | RTCF_LOCAL;
2290 if (!ip_check_mc_rcu(in_dev, fl4->daddr, fl4->saddr,
2291 fl4->flowi4_proto))
2292 flags &= ~RTCF_LOCAL;
2293 /* If multicast route do not exist use
2294 * default one, but do not gateway in this case.
2295 * Yes, it is hack.
2296 */
2297 if (fi && res->prefixlen < 4)
2298 fi = NULL;
2299 }
2300
2301 rth = rt_dst_alloc(dev_out,
2302 IN_DEV_CONF_GET(in_dev, NOPOLICY),
2303 IN_DEV_CONF_GET(in_dev, NOXFRM));
2304 if (!rth)
2305 return ERR_PTR(-ENOBUFS);
2306
2307 rth->dst.output = ip_output;
2308
2309 rth->rt_key_dst = orig_daddr;
2310 rth->rt_key_src = orig_saddr;
2311 rth->rt_genid = rt_genid(dev_net(dev_out));
2312 rth->rt_flags = flags;
2313 rth->rt_type = type;
2314 rth->rt_key_tos = orig_rtos;
2315 rth->rt_dst = fl4->daddr;
2316 rth->rt_src = fl4->saddr;
2317 rth->rt_route_iif = 0;
2318 rth->rt_iif = orig_oif ? : dev_out->ifindex;
2319 rth->rt_oif = orig_oif;
2320 rth->rt_mark = fl4->flowi4_mark;
2321 rth->rt_pmtu = 0;
2322 rth->rt_gateway = fl4->daddr;
2323 rth->fi = NULL;
2324
2325 RT_CACHE_STAT_INC(out_slow_tot);
2326
2327 if (flags & RTCF_LOCAL)
2328 rth->dst.input = ip_local_deliver;
2329 if (flags & (RTCF_BROADCAST | RTCF_MULTICAST)) {
2330 if (flags & RTCF_LOCAL &&
2331 !(dev_out->flags & IFF_LOOPBACK)) {
2332 rth->dst.output = ip_mc_output;
2333 RT_CACHE_STAT_INC(out_slow_mc);
2334 }
2335 #ifdef CONFIG_IP_MROUTE
2336 if (type == RTN_MULTICAST) {
2337 if (IN_DEV_MFORWARD(in_dev) &&
2338 !ipv4_is_local_multicast(fl4->daddr)) {
2339 rth->dst.input = ip_mr_input;
2340 rth->dst.output = ip_mc_output;
2341 }
2342 }
2343 #endif
2344 }
2345
2346 rt_set_nexthop(rth, fl4, res, fi, type, 0);
2347
2348 if (fl4->flowi4_flags & FLOWI_FLAG_RT_NOCACHE)
2349 rth->dst.flags |= DST_NOCACHE;
2350
2351 return rth;
2352 }
2353
2354 /*
2355 * Major route resolver routine.
2356 * called with rcu_read_lock();
2357 */
2358
2359 static struct rtable *ip_route_output_slow(struct net *net, struct flowi4 *fl4)
2360 {
2361 struct net_device *dev_out = NULL;
2362 __u8 tos = RT_FL_TOS(fl4);
2363 unsigned int flags = 0;
2364 struct fib_result res;
2365 struct rtable *rth;
2366 __be32 orig_daddr;
2367 __be32 orig_saddr;
2368 int orig_oif;
2369
2370 res.fi = NULL;
2371 res.table = NULL;
2372 #ifdef CONFIG_IP_MULTIPLE_TABLES
2373 res.r = NULL;
2374 #endif
2375
2376 orig_daddr = fl4->daddr;
2377 orig_saddr = fl4->saddr;
2378 orig_oif = fl4->flowi4_oif;
2379
2380 fl4->flowi4_iif = net->loopback_dev->ifindex;
2381 fl4->flowi4_tos = tos & IPTOS_RT_MASK;
2382 fl4->flowi4_scope = ((tos & RTO_ONLINK) ?
2383 RT_SCOPE_LINK : RT_SCOPE_UNIVERSE);
2384
2385 rcu_read_lock();
2386 if (fl4->saddr) {
2387 rth = ERR_PTR(-EINVAL);
2388 if (ipv4_is_multicast(fl4->saddr) ||
2389 ipv4_is_lbcast(fl4->saddr) ||
2390 ipv4_is_zeronet(fl4->saddr))
2391 goto out;
2392
2393 /* I removed check for oif == dev_out->oif here.
2394 It was wrong for two reasons:
2395 1. ip_dev_find(net, saddr) can return wrong iface, if saddr
2396 is assigned to multiple interfaces.
2397 2. Moreover, we are allowed to send packets with saddr
2398 of another iface. --ANK
2399 */
2400
2401 if (fl4->flowi4_oif == 0 &&
2402 (ipv4_is_multicast(fl4->daddr) ||
2403 ipv4_is_lbcast(fl4->daddr))) {
2404 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2405 dev_out = __ip_dev_find(net, fl4->saddr, false);
2406 if (dev_out == NULL)
2407 goto out;
2408
2409 /* Special hack: user can direct multicasts
2410 and limited broadcast via necessary interface
2411 without fiddling with IP_MULTICAST_IF or IP_PKTINFO.
2412 This hack is not just for fun, it allows
2413 vic,vat and friends to work.
2414 They bind socket to loopback, set ttl to zero
2415 and expect that it will work.
2416 From the viewpoint of routing cache they are broken,
2417 because we are not allowed to build multicast path
2418 with loopback source addr (look, routing cache
2419 cannot know, that ttl is zero, so that packet
2420 will not leave this host and route is valid).
2421 Luckily, this hack is good workaround.
2422 */
2423
2424 fl4->flowi4_oif = dev_out->ifindex;
2425 goto make_route;
2426 }
2427
2428 if (!(fl4->flowi4_flags & FLOWI_FLAG_ANYSRC)) {
2429 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2430 if (!__ip_dev_find(net, fl4->saddr, false))
2431 goto out;
2432 }
2433 }
2434
2435
2436 if (fl4->flowi4_oif) {
2437 dev_out = dev_get_by_index_rcu(net, fl4->flowi4_oif);
2438 rth = ERR_PTR(-ENODEV);
2439 if (dev_out == NULL)
2440 goto out;
2441
2442 /* RACE: Check return value of inet_select_addr instead. */
2443 if (!(dev_out->flags & IFF_UP) || !__in_dev_get_rcu(dev_out)) {
2444 rth = ERR_PTR(-ENETUNREACH);
2445 goto out;
2446 }
2447 if (ipv4_is_local_multicast(fl4->daddr) ||
2448 ipv4_is_lbcast(fl4->daddr)) {
2449 if (!fl4->saddr)
2450 fl4->saddr = inet_select_addr(dev_out, 0,
2451 RT_SCOPE_LINK);
2452 goto make_route;
2453 }
2454 if (fl4->saddr) {
2455 if (ipv4_is_multicast(fl4->daddr))
2456 fl4->saddr = inet_select_addr(dev_out, 0,
2457 fl4->flowi4_scope);
2458 else if (!fl4->daddr)
2459 fl4->saddr = inet_select_addr(dev_out, 0,
2460 RT_SCOPE_HOST);
2461 }
2462 }
2463
2464 if (!fl4->daddr) {
2465 fl4->daddr = fl4->saddr;
2466 if (!fl4->daddr)
2467 fl4->daddr = fl4->saddr = htonl(INADDR_LOOPBACK);
2468 dev_out = net->loopback_dev;
2469 fl4->flowi4_oif = net->loopback_dev->ifindex;
2470 res.type = RTN_LOCAL;
2471 flags |= RTCF_LOCAL;
2472 goto make_route;
2473 }
2474
2475 if (fib_lookup(net, fl4, &res)) {
2476 res.fi = NULL;
2477 res.table = NULL;
2478 if (fl4->flowi4_oif) {
2479 /* Apparently, routing tables are wrong. Assume,
2480 that the destination is on link.
2481
2482 WHY? DW.
2483 Because we are allowed to send to iface
2484 even if it has NO routes and NO assigned
2485 addresses. When oif is specified, routing
2486 tables are looked up with only one purpose:
2487 to catch if destination is gatewayed, rather than
2488 direct. Moreover, if MSG_DONTROUTE is set,
2489 we send packet, ignoring both routing tables
2490 and ifaddr state. --ANK
2491
2492
2493 We could make it even if oif is unknown,
2494 likely IPv6, but we do not.
2495 */
2496
2497 if (fl4->saddr == 0)
2498 fl4->saddr = inet_select_addr(dev_out, 0,
2499 RT_SCOPE_LINK);
2500 res.type = RTN_UNICAST;
2501 goto make_route;
2502 }
2503 rth = ERR_PTR(-ENETUNREACH);
2504 goto out;
2505 }
2506
2507 if (res.type == RTN_LOCAL) {
2508 if (!fl4->saddr) {
2509 if (res.fi->fib_prefsrc)
2510 fl4->saddr = res.fi->fib_prefsrc;
2511 else
2512 fl4->saddr = fl4->daddr;
2513 }
2514 dev_out = net->loopback_dev;
2515 fl4->flowi4_oif = dev_out->ifindex;
2516 res.fi = NULL;
2517 flags |= RTCF_LOCAL;
2518 goto make_route;
2519 }
2520
2521 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2522 if (res.fi->fib_nhs > 1 && fl4->flowi4_oif == 0)
2523 fib_select_multipath(&res);
2524 else
2525 #endif
2526 if (!res.prefixlen &&
2527 res.table->tb_num_default > 1 &&
2528 res.type == RTN_UNICAST && !fl4->flowi4_oif)
2529 fib_select_default(&res);
2530
2531 if (!fl4->saddr)
2532 fl4->saddr = FIB_RES_PREFSRC(net, res);
2533
2534 dev_out = FIB_RES_DEV(res);
2535 fl4->flowi4_oif = dev_out->ifindex;
2536
2537
2538 make_route:
2539 rth = __mkroute_output(&res, fl4, orig_daddr, orig_saddr, orig_oif,
2540 tos, dev_out, flags);
2541 if (!IS_ERR(rth)) {
2542 unsigned int hash;
2543
2544 hash = rt_hash(orig_daddr, orig_saddr, orig_oif,
2545 rt_genid(dev_net(dev_out)));
2546 rth = rt_intern_hash(hash, rth, NULL, orig_oif);
2547 }
2548
2549 out:
2550 rcu_read_unlock();
2551 return rth;
2552 }
2553
2554 struct rtable *__ip_route_output_key(struct net *net, struct flowi4 *flp4)
2555 {
2556 struct rtable *rth;
2557 unsigned int hash;
2558
2559 if (!rt_caching(net))
2560 goto slow_output;
2561
2562 hash = rt_hash(flp4->daddr, flp4->saddr, flp4->flowi4_oif, rt_genid(net));
2563
2564 rcu_read_lock_bh();
2565 for (rth = rcu_dereference_bh(rt_hash_table[hash].chain); rth;
2566 rth = rcu_dereference_bh(rth->dst.rt_next)) {
2567 if (rth->rt_key_dst == flp4->daddr &&
2568 rth->rt_key_src == flp4->saddr &&
2569 rt_is_output_route(rth) &&
2570 rth->rt_oif == flp4->flowi4_oif &&
2571 rth->rt_mark == flp4->flowi4_mark &&
2572 !((rth->rt_key_tos ^ flp4->flowi4_tos) &
2573 (IPTOS_RT_MASK | RTO_ONLINK)) &&
2574 net_eq(dev_net(rth->dst.dev), net) &&
2575 !rt_is_expired(rth)) {
2576 dst_use(&rth->dst, jiffies);
2577 RT_CACHE_STAT_INC(out_hit);
2578 rcu_read_unlock_bh();
2579 if (!flp4->saddr)
2580 flp4->saddr = rth->rt_src;
2581 if (!flp4->daddr)
2582 flp4->daddr = rth->rt_dst;
2583 return rth;
2584 }
2585 RT_CACHE_STAT_INC(out_hlist_search);
2586 }
2587 rcu_read_unlock_bh();
2588
2589 slow_output:
2590 return ip_route_output_slow(net, flp4);
2591 }
2592 EXPORT_SYMBOL_GPL(__ip_route_output_key);
2593
2594 static struct dst_entry *ipv4_blackhole_dst_check(struct dst_entry *dst, u32 cookie)
2595 {
2596 return NULL;
2597 }
2598
2599 static unsigned int ipv4_blackhole_mtu(const struct dst_entry *dst)
2600 {
2601 unsigned int mtu = dst_metric_raw(dst, RTAX_MTU);
2602
2603 return mtu ? : dst->dev->mtu;
2604 }
2605
2606 static void ipv4_rt_blackhole_update_pmtu(struct dst_entry *dst, u32 mtu)
2607 {
2608 }
2609
2610 static u32 *ipv4_rt_blackhole_cow_metrics(struct dst_entry *dst,
2611 unsigned long old)
2612 {
2613 return NULL;
2614 }
2615
2616 static struct dst_ops ipv4_dst_blackhole_ops = {
2617 .family = AF_INET,
2618 .protocol = cpu_to_be16(ETH_P_IP),
2619 .destroy = ipv4_dst_destroy,
2620 .check = ipv4_blackhole_dst_check,
2621 .mtu = ipv4_blackhole_mtu,
2622 .default_advmss = ipv4_default_advmss,
2623 .update_pmtu = ipv4_rt_blackhole_update_pmtu,
2624 .cow_metrics = ipv4_rt_blackhole_cow_metrics,
2625 .neigh_lookup = ipv4_neigh_lookup,
2626 };
2627
2628 struct dst_entry *ipv4_blackhole_route(struct net *net, struct dst_entry *dst_orig)
2629 {
2630 struct rtable *rt = dst_alloc(&ipv4_dst_blackhole_ops, NULL, 1, 0, 0);
2631 struct rtable *ort = (struct rtable *) dst_orig;
2632
2633 if (rt) {
2634 struct dst_entry *new = &rt->dst;
2635
2636 new->__use = 1;
2637 new->input = dst_discard;
2638 new->output = dst_discard;
2639
2640 new->dev = ort->dst.dev;
2641 if (new->dev)
2642 dev_hold(new->dev);
2643
2644 rt->rt_key_dst = ort->rt_key_dst;
2645 rt->rt_key_src = ort->rt_key_src;
2646 rt->rt_key_tos = ort->rt_key_tos;
2647 rt->rt_route_iif = ort->rt_route_iif;
2648 rt->rt_iif = ort->rt_iif;
2649 rt->rt_oif = ort->rt_oif;
2650 rt->rt_mark = ort->rt_mark;
2651 rt->rt_pmtu = ort->rt_pmtu;
2652
2653 rt->rt_genid = rt_genid(net);
2654 rt->rt_flags = ort->rt_flags;
2655 rt->rt_type = ort->rt_type;
2656 rt->rt_dst = ort->rt_dst;
2657 rt->rt_src = ort->rt_src;
2658 rt->rt_gateway = ort->rt_gateway;
2659 rt->fi = ort->fi;
2660 if (rt->fi)
2661 atomic_inc(&rt->fi->fib_clntref);
2662
2663 dst_free(new);
2664 }
2665
2666 dst_release(dst_orig);
2667
2668 return rt ? &rt->dst : ERR_PTR(-ENOMEM);
2669 }
2670
2671 struct rtable *ip_route_output_flow(struct net *net, struct flowi4 *flp4,
2672 struct sock *sk)
2673 {
2674 struct rtable *rt = __ip_route_output_key(net, flp4);
2675
2676 if (IS_ERR(rt))
2677 return rt;
2678
2679 if (flp4->flowi4_proto)
2680 rt = (struct rtable *) xfrm_lookup(net, &rt->dst,
2681 flowi4_to_flowi(flp4),
2682 sk, 0);
2683
2684 return rt;
2685 }
2686 EXPORT_SYMBOL_GPL(ip_route_output_flow);
2687
2688 static int rt_fill_info(struct net *net,
2689 struct sk_buff *skb, u32 pid, u32 seq, int event,
2690 int nowait, unsigned int flags)
2691 {
2692 struct rtable *rt = skb_rtable(skb);
2693 struct rtmsg *r;
2694 struct nlmsghdr *nlh;
2695 unsigned long expires = 0;
2696 u32 error;
2697
2698 nlh = nlmsg_put(skb, pid, seq, event, sizeof(*r), flags);
2699 if (nlh == NULL)
2700 return -EMSGSIZE;
2701
2702 r = nlmsg_data(nlh);
2703 r->rtm_family = AF_INET;
2704 r->rtm_dst_len = 32;
2705 r->rtm_src_len = 0;
2706 r->rtm_tos = rt->rt_key_tos;
2707 r->rtm_table = RT_TABLE_MAIN;
2708 if (nla_put_u32(skb, RTA_TABLE, RT_TABLE_MAIN))
2709 goto nla_put_failure;
2710 r->rtm_type = rt->rt_type;
2711 r->rtm_scope = RT_SCOPE_UNIVERSE;
2712 r->rtm_protocol = RTPROT_UNSPEC;
2713 r->rtm_flags = (rt->rt_flags & ~0xFFFF) | RTM_F_CLONED;
2714 if (rt->rt_flags & RTCF_NOTIFY)
2715 r->rtm_flags |= RTM_F_NOTIFY;
2716
2717 if (nla_put_be32(skb, RTA_DST, rt->rt_dst))
2718 goto nla_put_failure;
2719 if (rt->rt_key_src) {
2720 r->rtm_src_len = 32;
2721 if (nla_put_be32(skb, RTA_SRC, rt->rt_key_src))
2722 goto nla_put_failure;
2723 }
2724 if (rt->dst.dev &&
2725 nla_put_u32(skb, RTA_OIF, rt->dst.dev->ifindex))
2726 goto nla_put_failure;
2727 #ifdef CONFIG_IP_ROUTE_CLASSID
2728 if (rt->dst.tclassid &&
2729 nla_put_u32(skb, RTA_FLOW, rt->dst.tclassid))
2730 goto nla_put_failure;
2731 #endif
2732 if (!rt_is_input_route(rt) &&
2733 rt->rt_src != rt->rt_key_src) {
2734 if (nla_put_be32(skb, RTA_PREFSRC, rt->rt_src))
2735 goto nla_put_failure;
2736 }
2737 if (rt->rt_dst != rt->rt_gateway &&
2738 nla_put_be32(skb, RTA_GATEWAY, rt->rt_gateway))
2739 goto nla_put_failure;
2740
2741 if (rtnetlink_put_metrics(skb, dst_metrics_ptr(&rt->dst)) < 0)
2742 goto nla_put_failure;
2743
2744 if (rt->rt_mark &&
2745 nla_put_be32(skb, RTA_MARK, rt->rt_mark))
2746 goto nla_put_failure;
2747
2748 error = rt->dst.error;
2749 expires = rt->dst.expires;
2750 if (expires) {
2751 if (time_before(jiffies, expires))
2752 expires -= jiffies;
2753 else
2754 expires = 0;
2755 }
2756
2757 if (rt_is_input_route(rt)) {
2758 #ifdef CONFIG_IP_MROUTE
2759 __be32 dst = rt->rt_dst;
2760
2761 if (ipv4_is_multicast(dst) && !ipv4_is_local_multicast(dst) &&
2762 IPV4_DEVCONF_ALL(net, MC_FORWARDING)) {
2763 int err = ipmr_get_route(net, skb,
2764 rt->rt_src, rt->rt_dst,
2765 r, nowait);
2766 if (err <= 0) {
2767 if (!nowait) {
2768 if (err == 0)
2769 return 0;
2770 goto nla_put_failure;
2771 } else {
2772 if (err == -EMSGSIZE)
2773 goto nla_put_failure;
2774 error = err;
2775 }
2776 }
2777 } else
2778 #endif
2779 if (nla_put_u32(skb, RTA_IIF, rt->rt_iif))
2780 goto nla_put_failure;
2781 }
2782
2783 if (rtnl_put_cacheinfo(skb, &rt->dst, 0, expires, error) < 0)
2784 goto nla_put_failure;
2785
2786 return nlmsg_end(skb, nlh);
2787
2788 nla_put_failure:
2789 nlmsg_cancel(skb, nlh);
2790 return -EMSGSIZE;
2791 }
2792
2793 static int inet_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh, void *arg)
2794 {
2795 struct net *net = sock_net(in_skb->sk);
2796 struct rtmsg *rtm;
2797 struct nlattr *tb[RTA_MAX+1];
2798 struct rtable *rt = NULL;
2799 __be32 dst = 0;
2800 __be32 src = 0;
2801 u32 iif;
2802 int err;
2803 int mark;
2804 struct sk_buff *skb;
2805
2806 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv4_policy);
2807 if (err < 0)
2808 goto errout;
2809
2810 rtm = nlmsg_data(nlh);
2811
2812 skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
2813 if (skb == NULL) {
2814 err = -ENOBUFS;
2815 goto errout;
2816 }
2817
2818 /* Reserve room for dummy headers, this skb can pass
2819 through good chunk of routing engine.
2820 */
2821 skb_reset_mac_header(skb);
2822 skb_reset_network_header(skb);
2823
2824 /* Bugfix: need to give ip_route_input enough of an IP header to not gag. */
2825 ip_hdr(skb)->protocol = IPPROTO_ICMP;
2826 skb_reserve(skb, MAX_HEADER + sizeof(struct iphdr));
2827
2828 src = tb[RTA_SRC] ? nla_get_be32(tb[RTA_SRC]) : 0;
2829 dst = tb[RTA_DST] ? nla_get_be32(tb[RTA_DST]) : 0;
2830 iif = tb[RTA_IIF] ? nla_get_u32(tb[RTA_IIF]) : 0;
2831 mark = tb[RTA_MARK] ? nla_get_u32(tb[RTA_MARK]) : 0;
2832
2833 if (iif) {
2834 struct net_device *dev;
2835
2836 dev = __dev_get_by_index(net, iif);
2837 if (dev == NULL) {
2838 err = -ENODEV;
2839 goto errout_free;
2840 }
2841
2842 skb->protocol = htons(ETH_P_IP);
2843 skb->dev = dev;
2844 skb->mark = mark;
2845 local_bh_disable();
2846 err = ip_route_input(skb, dst, src, rtm->rtm_tos, dev);
2847 local_bh_enable();
2848
2849 rt = skb_rtable(skb);
2850 if (err == 0 && rt->dst.error)
2851 err = -rt->dst.error;
2852 } else {
2853 struct flowi4 fl4 = {
2854 .daddr = dst,
2855 .saddr = src,
2856 .flowi4_tos = rtm->rtm_tos,
2857 .flowi4_oif = tb[RTA_OIF] ? nla_get_u32(tb[RTA_OIF]) : 0,
2858 .flowi4_mark = mark,
2859 };
2860 rt = ip_route_output_key(net, &fl4);
2861
2862 err = 0;
2863 if (IS_ERR(rt))
2864 err = PTR_ERR(rt);
2865 }
2866
2867 if (err)
2868 goto errout_free;
2869
2870 skb_dst_set(skb, &rt->dst);
2871 if (rtm->rtm_flags & RTM_F_NOTIFY)
2872 rt->rt_flags |= RTCF_NOTIFY;
2873
2874 err = rt_fill_info(net, skb, NETLINK_CB(in_skb).pid, nlh->nlmsg_seq,
2875 RTM_NEWROUTE, 0, 0);
2876 if (err <= 0)
2877 goto errout_free;
2878
2879 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).pid);
2880 errout:
2881 return err;
2882
2883 errout_free:
2884 kfree_skb(skb);
2885 goto errout;
2886 }
2887
2888 int ip_rt_dump(struct sk_buff *skb, struct netlink_callback *cb)
2889 {
2890 struct rtable *rt;
2891 int h, s_h;
2892 int idx, s_idx;
2893 struct net *net;
2894
2895 net = sock_net(skb->sk);
2896
2897 s_h = cb->args[0];
2898 if (s_h < 0)
2899 s_h = 0;
2900 s_idx = idx = cb->args[1];
2901 for (h = s_h; h <= rt_hash_mask; h++, s_idx = 0) {
2902 if (!rt_hash_table[h].chain)
2903 continue;
2904 rcu_read_lock_bh();
2905 for (rt = rcu_dereference_bh(rt_hash_table[h].chain), idx = 0; rt;
2906 rt = rcu_dereference_bh(rt->dst.rt_next), idx++) {
2907 if (!net_eq(dev_net(rt->dst.dev), net) || idx < s_idx)
2908 continue;
2909 if (rt_is_expired(rt))
2910 continue;
2911 skb_dst_set_noref(skb, &rt->dst);
2912 if (rt_fill_info(net, skb, NETLINK_CB(cb->skb).pid,
2913 cb->nlh->nlmsg_seq, RTM_NEWROUTE,
2914 1, NLM_F_MULTI) <= 0) {
2915 skb_dst_drop(skb);
2916 rcu_read_unlock_bh();
2917 goto done;
2918 }
2919 skb_dst_drop(skb);
2920 }
2921 rcu_read_unlock_bh();
2922 }
2923
2924 done:
2925 cb->args[0] = h;
2926 cb->args[1] = idx;
2927 return skb->len;
2928 }
2929
2930 void ip_rt_multicast_event(struct in_device *in_dev)
2931 {
2932 rt_cache_flush(dev_net(in_dev->dev), 0);
2933 }
2934
2935 #ifdef CONFIG_SYSCTL
2936 static int ipv4_sysctl_rtcache_flush(ctl_table *__ctl, int write,
2937 void __user *buffer,
2938 size_t *lenp, loff_t *ppos)
2939 {
2940 if (write) {
2941 int flush_delay;
2942 ctl_table ctl;
2943 struct net *net;
2944
2945 memcpy(&ctl, __ctl, sizeof(ctl));
2946 ctl.data = &flush_delay;
2947 proc_dointvec(&ctl, write, buffer, lenp, ppos);
2948
2949 net = (struct net *)__ctl->extra1;
2950 rt_cache_flush(net, flush_delay);
2951 return 0;
2952 }
2953
2954 return -EINVAL;
2955 }
2956
2957 static ctl_table ipv4_route_table[] = {
2958 {
2959 .procname = "gc_thresh",
2960 .data = &ipv4_dst_ops.gc_thresh,
2961 .maxlen = sizeof(int),
2962 .mode = 0644,
2963 .proc_handler = proc_dointvec,
2964 },
2965 {
2966 .procname = "max_size",
2967 .data = &ip_rt_max_size,
2968 .maxlen = sizeof(int),
2969 .mode = 0644,
2970 .proc_handler = proc_dointvec,
2971 },
2972 {
2973 /* Deprecated. Use gc_min_interval_ms */
2974
2975 .procname = "gc_min_interval",
2976 .data = &ip_rt_gc_min_interval,
2977 .maxlen = sizeof(int),
2978 .mode = 0644,
2979 .proc_handler = proc_dointvec_jiffies,
2980 },
2981 {
2982 .procname = "gc_min_interval_ms",
2983 .data = &ip_rt_gc_min_interval,
2984 .maxlen = sizeof(int),
2985 .mode = 0644,
2986 .proc_handler = proc_dointvec_ms_jiffies,
2987 },
2988 {
2989 .procname = "gc_timeout",
2990 .data = &ip_rt_gc_timeout,
2991 .maxlen = sizeof(int),
2992 .mode = 0644,
2993 .proc_handler = proc_dointvec_jiffies,
2994 },
2995 {
2996 .procname = "gc_interval",
2997 .data = &ip_rt_gc_interval,
2998 .maxlen = sizeof(int),
2999 .mode = 0644,
3000 .proc_handler = proc_dointvec_jiffies,
3001 },
3002 {
3003 .procname = "redirect_load",
3004 .data = &ip_rt_redirect_load,
3005 .maxlen = sizeof(int),
3006 .mode = 0644,
3007 .proc_handler = proc_dointvec,
3008 },
3009 {
3010 .procname = "redirect_number",
3011 .data = &ip_rt_redirect_number,
3012 .maxlen = sizeof(int),
3013 .mode = 0644,
3014 .proc_handler = proc_dointvec,
3015 },
3016 {
3017 .procname = "redirect_silence",
3018 .data = &ip_rt_redirect_silence,
3019 .maxlen = sizeof(int),
3020 .mode = 0644,
3021 .proc_handler = proc_dointvec,
3022 },
3023 {
3024 .procname = "error_cost",
3025 .data = &ip_rt_error_cost,
3026 .maxlen = sizeof(int),
3027 .mode = 0644,
3028 .proc_handler = proc_dointvec,
3029 },
3030 {
3031 .procname = "error_burst",
3032 .data = &ip_rt_error_burst,
3033 .maxlen = sizeof(int),
3034 .mode = 0644,
3035 .proc_handler = proc_dointvec,
3036 },
3037 {
3038 .procname = "gc_elasticity",
3039 .data = &ip_rt_gc_elasticity,
3040 .maxlen = sizeof(int),
3041 .mode = 0644,
3042 .proc_handler = proc_dointvec,
3043 },
3044 {
3045 .procname = "mtu_expires",
3046 .data = &ip_rt_mtu_expires,
3047 .maxlen = sizeof(int),
3048 .mode = 0644,
3049 .proc_handler = proc_dointvec_jiffies,
3050 },
3051 {
3052 .procname = "min_pmtu",
3053 .data = &ip_rt_min_pmtu,
3054 .maxlen = sizeof(int),
3055 .mode = 0644,
3056 .proc_handler = proc_dointvec,
3057 },
3058 {
3059 .procname = "min_adv_mss",
3060 .data = &ip_rt_min_advmss,
3061 .maxlen = sizeof(int),
3062 .mode = 0644,
3063 .proc_handler = proc_dointvec,
3064 },
3065 { }
3066 };
3067
3068 static struct ctl_table ipv4_route_flush_table[] = {
3069 {
3070 .procname = "flush",
3071 .maxlen = sizeof(int),
3072 .mode = 0200,
3073 .proc_handler = ipv4_sysctl_rtcache_flush,
3074 },
3075 { },
3076 };
3077
3078 static __net_init int sysctl_route_net_init(struct net *net)
3079 {
3080 struct ctl_table *tbl;
3081
3082 tbl = ipv4_route_flush_table;
3083 if (!net_eq(net, &init_net)) {
3084 tbl = kmemdup(tbl, sizeof(ipv4_route_flush_table), GFP_KERNEL);
3085 if (tbl == NULL)
3086 goto err_dup;
3087 }
3088 tbl[0].extra1 = net;
3089
3090 net->ipv4.route_hdr = register_net_sysctl(net, "net/ipv4/route", tbl);
3091 if (net->ipv4.route_hdr == NULL)
3092 goto err_reg;
3093 return 0;
3094
3095 err_reg:
3096 if (tbl != ipv4_route_flush_table)
3097 kfree(tbl);
3098 err_dup:
3099 return -ENOMEM;
3100 }
3101
3102 static __net_exit void sysctl_route_net_exit(struct net *net)
3103 {
3104 struct ctl_table *tbl;
3105
3106 tbl = net->ipv4.route_hdr->ctl_table_arg;
3107 unregister_net_sysctl_table(net->ipv4.route_hdr);
3108 BUG_ON(tbl == ipv4_route_flush_table);
3109 kfree(tbl);
3110 }
3111
3112 static __net_initdata struct pernet_operations sysctl_route_ops = {
3113 .init = sysctl_route_net_init,
3114 .exit = sysctl_route_net_exit,
3115 };
3116 #endif
3117
3118 static __net_init int rt_genid_init(struct net *net)
3119 {
3120 get_random_bytes(&net->ipv4.rt_genid,
3121 sizeof(net->ipv4.rt_genid));
3122 get_random_bytes(&net->ipv4.dev_addr_genid,
3123 sizeof(net->ipv4.dev_addr_genid));
3124 return 0;
3125 }
3126
3127 static __net_initdata struct pernet_operations rt_genid_ops = {
3128 .init = rt_genid_init,
3129 };
3130
3131 static int __net_init ipv4_inetpeer_init(struct net *net)
3132 {
3133 struct inet_peer_base *bp = kmalloc(sizeof(*bp), GFP_KERNEL);
3134
3135 if (!bp)
3136 return -ENOMEM;
3137 inet_peer_base_init(bp);
3138 net->ipv4.peers = bp;
3139 return 0;
3140 }
3141
3142 static void __net_exit ipv4_inetpeer_exit(struct net *net)
3143 {
3144 struct inet_peer_base *bp = net->ipv4.peers;
3145
3146 net->ipv4.peers = NULL;
3147 inetpeer_invalidate_tree(bp);
3148 kfree(bp);
3149 }
3150
3151 static __net_initdata struct pernet_operations ipv4_inetpeer_ops = {
3152 .init = ipv4_inetpeer_init,
3153 .exit = ipv4_inetpeer_exit,
3154 };
3155
3156 #ifdef CONFIG_IP_ROUTE_CLASSID
3157 struct ip_rt_acct __percpu *ip_rt_acct __read_mostly;
3158 #endif /* CONFIG_IP_ROUTE_CLASSID */
3159
3160 static __initdata unsigned long rhash_entries;
3161 static int __init set_rhash_entries(char *str)
3162 {
3163 ssize_t ret;
3164
3165 if (!str)
3166 return 0;
3167
3168 ret = kstrtoul(str, 0, &rhash_entries);
3169 if (ret)
3170 return 0;
3171
3172 return 1;
3173 }
3174 __setup("rhash_entries=", set_rhash_entries);
3175
3176 int __init ip_rt_init(void)
3177 {
3178 int rc = 0;
3179
3180 #ifdef CONFIG_IP_ROUTE_CLASSID
3181 ip_rt_acct = __alloc_percpu(256 * sizeof(struct ip_rt_acct), __alignof__(struct ip_rt_acct));
3182 if (!ip_rt_acct)
3183 panic("IP: failed to allocate ip_rt_acct\n");
3184 #endif
3185
3186 ipv4_dst_ops.kmem_cachep =
3187 kmem_cache_create("ip_dst_cache", sizeof(struct rtable), 0,
3188 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3189
3190 ipv4_dst_blackhole_ops.kmem_cachep = ipv4_dst_ops.kmem_cachep;
3191
3192 if (dst_entries_init(&ipv4_dst_ops) < 0)
3193 panic("IP: failed to allocate ipv4_dst_ops counter\n");
3194
3195 if (dst_entries_init(&ipv4_dst_blackhole_ops) < 0)
3196 panic("IP: failed to allocate ipv4_dst_blackhole_ops counter\n");
3197
3198 rt_hash_table = (struct rt_hash_bucket *)
3199 alloc_large_system_hash("IP route cache",
3200 sizeof(struct rt_hash_bucket),
3201 rhash_entries,
3202 (totalram_pages >= 128 * 1024) ?
3203 15 : 17,
3204 0,
3205 &rt_hash_log,
3206 &rt_hash_mask,
3207 0,
3208 rhash_entries ? 0 : 512 * 1024);
3209 memset(rt_hash_table, 0, (rt_hash_mask + 1) * sizeof(struct rt_hash_bucket));
3210 rt_hash_lock_init();
3211
3212 ipv4_dst_ops.gc_thresh = (rt_hash_mask + 1);
3213 ip_rt_max_size = (rt_hash_mask + 1) * 16;
3214
3215 devinet_init();
3216 ip_fib_init();
3217
3218 INIT_DELAYED_WORK_DEFERRABLE(&expires_work, rt_worker_func);
3219 expires_ljiffies = jiffies;
3220 schedule_delayed_work(&expires_work,
3221 net_random() % ip_rt_gc_interval + ip_rt_gc_interval);
3222
3223 if (ip_rt_proc_init())
3224 pr_err("Unable to create route proc files\n");
3225 #ifdef CONFIG_XFRM
3226 xfrm_init();
3227 xfrm4_init(ip_rt_max_size);
3228 #endif
3229 rtnl_register(PF_INET, RTM_GETROUTE, inet_rtm_getroute, NULL, NULL);
3230
3231 #ifdef CONFIG_SYSCTL
3232 register_pernet_subsys(&sysctl_route_ops);
3233 #endif
3234 register_pernet_subsys(&rt_genid_ops);
3235 register_pernet_subsys(&ipv4_inetpeer_ops);
3236 return rc;
3237 }
3238
3239 #ifdef CONFIG_SYSCTL
3240 /*
3241 * We really need to sanitize the damn ipv4 init order, then all
3242 * this nonsense will go away.
3243 */
3244 void __init ip_static_sysctl_init(void)
3245 {
3246 register_net_sysctl(&init_net, "net/ipv4/route", ipv4_route_table);
3247 }
3248 #endif