]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/tcp.c
Merge tag 'nfs-for-3.8-3' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248 #define pr_fmt(fmt) "TCP: " fmt
249
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
271
272 #include <net/icmp.h>
273 #include <net/inet_common.h>
274 #include <net/tcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/netdma.h>
278 #include <net/sock.h>
279
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282
283 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
284
285 struct percpu_counter tcp_orphan_count;
286 EXPORT_SYMBOL_GPL(tcp_orphan_count);
287
288 int sysctl_tcp_wmem[3] __read_mostly;
289 int sysctl_tcp_rmem[3] __read_mostly;
290
291 EXPORT_SYMBOL(sysctl_tcp_rmem);
292 EXPORT_SYMBOL(sysctl_tcp_wmem);
293
294 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
295 EXPORT_SYMBOL(tcp_memory_allocated);
296
297 /*
298 * Current number of TCP sockets.
299 */
300 struct percpu_counter tcp_sockets_allocated;
301 EXPORT_SYMBOL(tcp_sockets_allocated);
302
303 /*
304 * TCP splice context
305 */
306 struct tcp_splice_state {
307 struct pipe_inode_info *pipe;
308 size_t len;
309 unsigned int flags;
310 };
311
312 /*
313 * Pressure flag: try to collapse.
314 * Technical note: it is used by multiple contexts non atomically.
315 * All the __sk_mem_schedule() is of this nature: accounting
316 * is strict, actions are advisory and have some latency.
317 */
318 int tcp_memory_pressure __read_mostly;
319 EXPORT_SYMBOL(tcp_memory_pressure);
320
321 void tcp_enter_memory_pressure(struct sock *sk)
322 {
323 if (!tcp_memory_pressure) {
324 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
325 tcp_memory_pressure = 1;
326 }
327 }
328 EXPORT_SYMBOL(tcp_enter_memory_pressure);
329
330 /* Convert seconds to retransmits based on initial and max timeout */
331 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
332 {
333 u8 res = 0;
334
335 if (seconds > 0) {
336 int period = timeout;
337
338 res = 1;
339 while (seconds > period && res < 255) {
340 res++;
341 timeout <<= 1;
342 if (timeout > rto_max)
343 timeout = rto_max;
344 period += timeout;
345 }
346 }
347 return res;
348 }
349
350 /* Convert retransmits to seconds based on initial and max timeout */
351 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
352 {
353 int period = 0;
354
355 if (retrans > 0) {
356 period = timeout;
357 while (--retrans) {
358 timeout <<= 1;
359 if (timeout > rto_max)
360 timeout = rto_max;
361 period += timeout;
362 }
363 }
364 return period;
365 }
366
367 /* Address-family independent initialization for a tcp_sock.
368 *
369 * NOTE: A lot of things set to zero explicitly by call to
370 * sk_alloc() so need not be done here.
371 */
372 void tcp_init_sock(struct sock *sk)
373 {
374 struct inet_connection_sock *icsk = inet_csk(sk);
375 struct tcp_sock *tp = tcp_sk(sk);
376
377 skb_queue_head_init(&tp->out_of_order_queue);
378 tcp_init_xmit_timers(sk);
379 tcp_prequeue_init(tp);
380 INIT_LIST_HEAD(&tp->tsq_node);
381
382 icsk->icsk_rto = TCP_TIMEOUT_INIT;
383 tp->mdev = TCP_TIMEOUT_INIT;
384
385 /* So many TCP implementations out there (incorrectly) count the
386 * initial SYN frame in their delayed-ACK and congestion control
387 * algorithms that we must have the following bandaid to talk
388 * efficiently to them. -DaveM
389 */
390 tp->snd_cwnd = TCP_INIT_CWND;
391
392 /* See draft-stevens-tcpca-spec-01 for discussion of the
393 * initialization of these values.
394 */
395 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
396 tp->snd_cwnd_clamp = ~0;
397 tp->mss_cache = TCP_MSS_DEFAULT;
398
399 tp->reordering = sysctl_tcp_reordering;
400 tcp_enable_early_retrans(tp);
401 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
402
403 sk->sk_state = TCP_CLOSE;
404
405 sk->sk_write_space = sk_stream_write_space;
406 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
407
408 icsk->icsk_sync_mss = tcp_sync_mss;
409
410 /* TCP Cookie Transactions */
411 if (sysctl_tcp_cookie_size > 0) {
412 /* Default, cookies without s_data_payload. */
413 tp->cookie_values =
414 kzalloc(sizeof(*tp->cookie_values),
415 sk->sk_allocation);
416 if (tp->cookie_values != NULL)
417 kref_init(&tp->cookie_values->kref);
418 }
419 /* Presumed zeroed, in order of appearance:
420 * cookie_in_always, cookie_out_never,
421 * s_data_constant, s_data_in, s_data_out
422 */
423 sk->sk_sndbuf = sysctl_tcp_wmem[1];
424 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
425
426 local_bh_disable();
427 sock_update_memcg(sk);
428 sk_sockets_allocated_inc(sk);
429 local_bh_enable();
430 }
431 EXPORT_SYMBOL(tcp_init_sock);
432
433 /*
434 * Wait for a TCP event.
435 *
436 * Note that we don't need to lock the socket, as the upper poll layers
437 * take care of normal races (between the test and the event) and we don't
438 * go look at any of the socket buffers directly.
439 */
440 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
441 {
442 unsigned int mask;
443 struct sock *sk = sock->sk;
444 const struct tcp_sock *tp = tcp_sk(sk);
445
446 sock_poll_wait(file, sk_sleep(sk), wait);
447 if (sk->sk_state == TCP_LISTEN)
448 return inet_csk_listen_poll(sk);
449
450 /* Socket is not locked. We are protected from async events
451 * by poll logic and correct handling of state changes
452 * made by other threads is impossible in any case.
453 */
454
455 mask = 0;
456
457 /*
458 * POLLHUP is certainly not done right. But poll() doesn't
459 * have a notion of HUP in just one direction, and for a
460 * socket the read side is more interesting.
461 *
462 * Some poll() documentation says that POLLHUP is incompatible
463 * with the POLLOUT/POLLWR flags, so somebody should check this
464 * all. But careful, it tends to be safer to return too many
465 * bits than too few, and you can easily break real applications
466 * if you don't tell them that something has hung up!
467 *
468 * Check-me.
469 *
470 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
471 * our fs/select.c). It means that after we received EOF,
472 * poll always returns immediately, making impossible poll() on write()
473 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
474 * if and only if shutdown has been made in both directions.
475 * Actually, it is interesting to look how Solaris and DUX
476 * solve this dilemma. I would prefer, if POLLHUP were maskable,
477 * then we could set it on SND_SHUTDOWN. BTW examples given
478 * in Stevens' books assume exactly this behaviour, it explains
479 * why POLLHUP is incompatible with POLLOUT. --ANK
480 *
481 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
482 * blocking on fresh not-connected or disconnected socket. --ANK
483 */
484 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
485 mask |= POLLHUP;
486 if (sk->sk_shutdown & RCV_SHUTDOWN)
487 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
488
489 /* Connected or passive Fast Open socket? */
490 if (sk->sk_state != TCP_SYN_SENT &&
491 (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) {
492 int target = sock_rcvlowat(sk, 0, INT_MAX);
493
494 if (tp->urg_seq == tp->copied_seq &&
495 !sock_flag(sk, SOCK_URGINLINE) &&
496 tp->urg_data)
497 target++;
498
499 /* Potential race condition. If read of tp below will
500 * escape above sk->sk_state, we can be illegally awaken
501 * in SYN_* states. */
502 if (tp->rcv_nxt - tp->copied_seq >= target)
503 mask |= POLLIN | POLLRDNORM;
504
505 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
506 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
507 mask |= POLLOUT | POLLWRNORM;
508 } else { /* send SIGIO later */
509 set_bit(SOCK_ASYNC_NOSPACE,
510 &sk->sk_socket->flags);
511 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
512
513 /* Race breaker. If space is freed after
514 * wspace test but before the flags are set,
515 * IO signal will be lost.
516 */
517 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
518 mask |= POLLOUT | POLLWRNORM;
519 }
520 } else
521 mask |= POLLOUT | POLLWRNORM;
522
523 if (tp->urg_data & TCP_URG_VALID)
524 mask |= POLLPRI;
525 }
526 /* This barrier is coupled with smp_wmb() in tcp_reset() */
527 smp_rmb();
528 if (sk->sk_err)
529 mask |= POLLERR;
530
531 return mask;
532 }
533 EXPORT_SYMBOL(tcp_poll);
534
535 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
536 {
537 struct tcp_sock *tp = tcp_sk(sk);
538 int answ;
539 bool slow;
540
541 switch (cmd) {
542 case SIOCINQ:
543 if (sk->sk_state == TCP_LISTEN)
544 return -EINVAL;
545
546 slow = lock_sock_fast(sk);
547 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
548 answ = 0;
549 else if (sock_flag(sk, SOCK_URGINLINE) ||
550 !tp->urg_data ||
551 before(tp->urg_seq, tp->copied_seq) ||
552 !before(tp->urg_seq, tp->rcv_nxt)) {
553
554 answ = tp->rcv_nxt - tp->copied_seq;
555
556 /* Subtract 1, if FIN was received */
557 if (answ && sock_flag(sk, SOCK_DONE))
558 answ--;
559 } else
560 answ = tp->urg_seq - tp->copied_seq;
561 unlock_sock_fast(sk, slow);
562 break;
563 case SIOCATMARK:
564 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
565 break;
566 case SIOCOUTQ:
567 if (sk->sk_state == TCP_LISTEN)
568 return -EINVAL;
569
570 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
571 answ = 0;
572 else
573 answ = tp->write_seq - tp->snd_una;
574 break;
575 case SIOCOUTQNSD:
576 if (sk->sk_state == TCP_LISTEN)
577 return -EINVAL;
578
579 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
580 answ = 0;
581 else
582 answ = tp->write_seq - tp->snd_nxt;
583 break;
584 default:
585 return -ENOIOCTLCMD;
586 }
587
588 return put_user(answ, (int __user *)arg);
589 }
590 EXPORT_SYMBOL(tcp_ioctl);
591
592 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
593 {
594 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
595 tp->pushed_seq = tp->write_seq;
596 }
597
598 static inline bool forced_push(const struct tcp_sock *tp)
599 {
600 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
601 }
602
603 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
604 {
605 struct tcp_sock *tp = tcp_sk(sk);
606 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
607
608 skb->csum = 0;
609 tcb->seq = tcb->end_seq = tp->write_seq;
610 tcb->tcp_flags = TCPHDR_ACK;
611 tcb->sacked = 0;
612 skb_header_release(skb);
613 tcp_add_write_queue_tail(sk, skb);
614 sk->sk_wmem_queued += skb->truesize;
615 sk_mem_charge(sk, skb->truesize);
616 if (tp->nonagle & TCP_NAGLE_PUSH)
617 tp->nonagle &= ~TCP_NAGLE_PUSH;
618 }
619
620 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
621 {
622 if (flags & MSG_OOB)
623 tp->snd_up = tp->write_seq;
624 }
625
626 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
627 int nonagle)
628 {
629 if (tcp_send_head(sk)) {
630 struct tcp_sock *tp = tcp_sk(sk);
631
632 if (!(flags & MSG_MORE) || forced_push(tp))
633 tcp_mark_push(tp, tcp_write_queue_tail(sk));
634
635 tcp_mark_urg(tp, flags);
636 __tcp_push_pending_frames(sk, mss_now,
637 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
638 }
639 }
640
641 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
642 unsigned int offset, size_t len)
643 {
644 struct tcp_splice_state *tss = rd_desc->arg.data;
645 int ret;
646
647 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
648 tss->flags);
649 if (ret > 0)
650 rd_desc->count -= ret;
651 return ret;
652 }
653
654 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
655 {
656 /* Store TCP splice context information in read_descriptor_t. */
657 read_descriptor_t rd_desc = {
658 .arg.data = tss,
659 .count = tss->len,
660 };
661
662 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
663 }
664
665 /**
666 * tcp_splice_read - splice data from TCP socket to a pipe
667 * @sock: socket to splice from
668 * @ppos: position (not valid)
669 * @pipe: pipe to splice to
670 * @len: number of bytes to splice
671 * @flags: splice modifier flags
672 *
673 * Description:
674 * Will read pages from given socket and fill them into a pipe.
675 *
676 **/
677 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
678 struct pipe_inode_info *pipe, size_t len,
679 unsigned int flags)
680 {
681 struct sock *sk = sock->sk;
682 struct tcp_splice_state tss = {
683 .pipe = pipe,
684 .len = len,
685 .flags = flags,
686 };
687 long timeo;
688 ssize_t spliced;
689 int ret;
690
691 sock_rps_record_flow(sk);
692 /*
693 * We can't seek on a socket input
694 */
695 if (unlikely(*ppos))
696 return -ESPIPE;
697
698 ret = spliced = 0;
699
700 lock_sock(sk);
701
702 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
703 while (tss.len) {
704 ret = __tcp_splice_read(sk, &tss);
705 if (ret < 0)
706 break;
707 else if (!ret) {
708 if (spliced)
709 break;
710 if (sock_flag(sk, SOCK_DONE))
711 break;
712 if (sk->sk_err) {
713 ret = sock_error(sk);
714 break;
715 }
716 if (sk->sk_shutdown & RCV_SHUTDOWN)
717 break;
718 if (sk->sk_state == TCP_CLOSE) {
719 /*
720 * This occurs when user tries to read
721 * from never connected socket.
722 */
723 if (!sock_flag(sk, SOCK_DONE))
724 ret = -ENOTCONN;
725 break;
726 }
727 if (!timeo) {
728 ret = -EAGAIN;
729 break;
730 }
731 sk_wait_data(sk, &timeo);
732 if (signal_pending(current)) {
733 ret = sock_intr_errno(timeo);
734 break;
735 }
736 continue;
737 }
738 tss.len -= ret;
739 spliced += ret;
740
741 if (!timeo)
742 break;
743 release_sock(sk);
744 lock_sock(sk);
745
746 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
747 (sk->sk_shutdown & RCV_SHUTDOWN) ||
748 signal_pending(current))
749 break;
750 }
751
752 release_sock(sk);
753
754 if (spliced)
755 return spliced;
756
757 return ret;
758 }
759 EXPORT_SYMBOL(tcp_splice_read);
760
761 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
762 {
763 struct sk_buff *skb;
764
765 /* The TCP header must be at least 32-bit aligned. */
766 size = ALIGN(size, 4);
767
768 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
769 if (skb) {
770 if (sk_wmem_schedule(sk, skb->truesize)) {
771 skb_reserve(skb, sk->sk_prot->max_header);
772 /*
773 * Make sure that we have exactly size bytes
774 * available to the caller, no more, no less.
775 */
776 skb->avail_size = size;
777 return skb;
778 }
779 __kfree_skb(skb);
780 } else {
781 sk->sk_prot->enter_memory_pressure(sk);
782 sk_stream_moderate_sndbuf(sk);
783 }
784 return NULL;
785 }
786
787 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
788 int large_allowed)
789 {
790 struct tcp_sock *tp = tcp_sk(sk);
791 u32 xmit_size_goal, old_size_goal;
792
793 xmit_size_goal = mss_now;
794
795 if (large_allowed && sk_can_gso(sk)) {
796 xmit_size_goal = ((sk->sk_gso_max_size - 1) -
797 inet_csk(sk)->icsk_af_ops->net_header_len -
798 inet_csk(sk)->icsk_ext_hdr_len -
799 tp->tcp_header_len);
800
801 /* TSQ : try to have two TSO segments in flight */
802 xmit_size_goal = min_t(u32, xmit_size_goal,
803 sysctl_tcp_limit_output_bytes >> 1);
804
805 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
806
807 /* We try hard to avoid divides here */
808 old_size_goal = tp->xmit_size_goal_segs * mss_now;
809
810 if (likely(old_size_goal <= xmit_size_goal &&
811 old_size_goal + mss_now > xmit_size_goal)) {
812 xmit_size_goal = old_size_goal;
813 } else {
814 tp->xmit_size_goal_segs =
815 min_t(u16, xmit_size_goal / mss_now,
816 sk->sk_gso_max_segs);
817 xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
818 }
819 }
820
821 return max(xmit_size_goal, mss_now);
822 }
823
824 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
825 {
826 int mss_now;
827
828 mss_now = tcp_current_mss(sk);
829 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
830
831 return mss_now;
832 }
833
834 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
835 size_t size, int flags)
836 {
837 struct tcp_sock *tp = tcp_sk(sk);
838 int mss_now, size_goal;
839 int err;
840 ssize_t copied;
841 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
842
843 /* Wait for a connection to finish. One exception is TCP Fast Open
844 * (passive side) where data is allowed to be sent before a connection
845 * is fully established.
846 */
847 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
848 !tcp_passive_fastopen(sk)) {
849 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
850 goto out_err;
851 }
852
853 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
854
855 mss_now = tcp_send_mss(sk, &size_goal, flags);
856 copied = 0;
857
858 err = -EPIPE;
859 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
860 goto out_err;
861
862 while (size > 0) {
863 struct sk_buff *skb = tcp_write_queue_tail(sk);
864 int copy, i;
865 bool can_coalesce;
866
867 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
868 new_segment:
869 if (!sk_stream_memory_free(sk))
870 goto wait_for_sndbuf;
871
872 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
873 if (!skb)
874 goto wait_for_memory;
875
876 skb_entail(sk, skb);
877 copy = size_goal;
878 }
879
880 if (copy > size)
881 copy = size;
882
883 i = skb_shinfo(skb)->nr_frags;
884 can_coalesce = skb_can_coalesce(skb, i, page, offset);
885 if (!can_coalesce && i >= MAX_SKB_FRAGS) {
886 tcp_mark_push(tp, skb);
887 goto new_segment;
888 }
889 if (!sk_wmem_schedule(sk, copy))
890 goto wait_for_memory;
891
892 if (can_coalesce) {
893 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
894 } else {
895 get_page(page);
896 skb_fill_page_desc(skb, i, page, offset, copy);
897 }
898
899 skb->len += copy;
900 skb->data_len += copy;
901 skb->truesize += copy;
902 sk->sk_wmem_queued += copy;
903 sk_mem_charge(sk, copy);
904 skb->ip_summed = CHECKSUM_PARTIAL;
905 tp->write_seq += copy;
906 TCP_SKB_CB(skb)->end_seq += copy;
907 skb_shinfo(skb)->gso_segs = 0;
908
909 if (!copied)
910 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
911
912 copied += copy;
913 offset += copy;
914 if (!(size -= copy))
915 goto out;
916
917 if (skb->len < size_goal || (flags & MSG_OOB))
918 continue;
919
920 if (forced_push(tp)) {
921 tcp_mark_push(tp, skb);
922 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
923 } else if (skb == tcp_send_head(sk))
924 tcp_push_one(sk, mss_now);
925 continue;
926
927 wait_for_sndbuf:
928 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
929 wait_for_memory:
930 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
931
932 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
933 goto do_error;
934
935 mss_now = tcp_send_mss(sk, &size_goal, flags);
936 }
937
938 out:
939 if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
940 tcp_push(sk, flags, mss_now, tp->nonagle);
941 return copied;
942
943 do_error:
944 if (copied)
945 goto out;
946 out_err:
947 return sk_stream_error(sk, flags, err);
948 }
949
950 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
951 size_t size, int flags)
952 {
953 ssize_t res;
954
955 if (!(sk->sk_route_caps & NETIF_F_SG) ||
956 !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
957 return sock_no_sendpage(sk->sk_socket, page, offset, size,
958 flags);
959
960 lock_sock(sk);
961 res = do_tcp_sendpages(sk, page, offset, size, flags);
962 release_sock(sk);
963 return res;
964 }
965 EXPORT_SYMBOL(tcp_sendpage);
966
967 static inline int select_size(const struct sock *sk, bool sg)
968 {
969 const struct tcp_sock *tp = tcp_sk(sk);
970 int tmp = tp->mss_cache;
971
972 if (sg) {
973 if (sk_can_gso(sk)) {
974 /* Small frames wont use a full page:
975 * Payload will immediately follow tcp header.
976 */
977 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
978 } else {
979 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
980
981 if (tmp >= pgbreak &&
982 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
983 tmp = pgbreak;
984 }
985 }
986
987 return tmp;
988 }
989
990 void tcp_free_fastopen_req(struct tcp_sock *tp)
991 {
992 if (tp->fastopen_req != NULL) {
993 kfree(tp->fastopen_req);
994 tp->fastopen_req = NULL;
995 }
996 }
997
998 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *size)
999 {
1000 struct tcp_sock *tp = tcp_sk(sk);
1001 int err, flags;
1002
1003 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1004 return -EOPNOTSUPP;
1005 if (tp->fastopen_req != NULL)
1006 return -EALREADY; /* Another Fast Open is in progress */
1007
1008 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1009 sk->sk_allocation);
1010 if (unlikely(tp->fastopen_req == NULL))
1011 return -ENOBUFS;
1012 tp->fastopen_req->data = msg;
1013
1014 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1015 err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1016 msg->msg_namelen, flags);
1017 *size = tp->fastopen_req->copied;
1018 tcp_free_fastopen_req(tp);
1019 return err;
1020 }
1021
1022 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1023 size_t size)
1024 {
1025 struct iovec *iov;
1026 struct tcp_sock *tp = tcp_sk(sk);
1027 struct sk_buff *skb;
1028 int iovlen, flags, err, copied = 0;
1029 int mss_now = 0, size_goal, copied_syn = 0, offset = 0;
1030 bool sg;
1031 long timeo;
1032
1033 lock_sock(sk);
1034
1035 flags = msg->msg_flags;
1036 if (flags & MSG_FASTOPEN) {
1037 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn);
1038 if (err == -EINPROGRESS && copied_syn > 0)
1039 goto out;
1040 else if (err)
1041 goto out_err;
1042 offset = copied_syn;
1043 }
1044
1045 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1046
1047 /* Wait for a connection to finish. One exception is TCP Fast Open
1048 * (passive side) where data is allowed to be sent before a connection
1049 * is fully established.
1050 */
1051 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1052 !tcp_passive_fastopen(sk)) {
1053 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1054 goto do_error;
1055 }
1056
1057 if (unlikely(tp->repair)) {
1058 if (tp->repair_queue == TCP_RECV_QUEUE) {
1059 copied = tcp_send_rcvq(sk, msg, size);
1060 goto out;
1061 }
1062
1063 err = -EINVAL;
1064 if (tp->repair_queue == TCP_NO_QUEUE)
1065 goto out_err;
1066
1067 /* 'common' sending to sendq */
1068 }
1069
1070 /* This should be in poll */
1071 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1072
1073 mss_now = tcp_send_mss(sk, &size_goal, flags);
1074
1075 /* Ok commence sending. */
1076 iovlen = msg->msg_iovlen;
1077 iov = msg->msg_iov;
1078 copied = 0;
1079
1080 err = -EPIPE;
1081 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1082 goto out_err;
1083
1084 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1085
1086 while (--iovlen >= 0) {
1087 size_t seglen = iov->iov_len;
1088 unsigned char __user *from = iov->iov_base;
1089
1090 iov++;
1091 if (unlikely(offset > 0)) { /* Skip bytes copied in SYN */
1092 if (offset >= seglen) {
1093 offset -= seglen;
1094 continue;
1095 }
1096 seglen -= offset;
1097 from += offset;
1098 offset = 0;
1099 }
1100
1101 while (seglen > 0) {
1102 int copy = 0;
1103 int max = size_goal;
1104
1105 skb = tcp_write_queue_tail(sk);
1106 if (tcp_send_head(sk)) {
1107 if (skb->ip_summed == CHECKSUM_NONE)
1108 max = mss_now;
1109 copy = max - skb->len;
1110 }
1111
1112 if (copy <= 0) {
1113 new_segment:
1114 /* Allocate new segment. If the interface is SG,
1115 * allocate skb fitting to single page.
1116 */
1117 if (!sk_stream_memory_free(sk))
1118 goto wait_for_sndbuf;
1119
1120 skb = sk_stream_alloc_skb(sk,
1121 select_size(sk, sg),
1122 sk->sk_allocation);
1123 if (!skb)
1124 goto wait_for_memory;
1125
1126 /*
1127 * Check whether we can use HW checksum.
1128 */
1129 if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1130 skb->ip_summed = CHECKSUM_PARTIAL;
1131
1132 skb_entail(sk, skb);
1133 copy = size_goal;
1134 max = size_goal;
1135 }
1136
1137 /* Try to append data to the end of skb. */
1138 if (copy > seglen)
1139 copy = seglen;
1140
1141 /* Where to copy to? */
1142 if (skb_availroom(skb) > 0) {
1143 /* We have some space in skb head. Superb! */
1144 copy = min_t(int, copy, skb_availroom(skb));
1145 err = skb_add_data_nocache(sk, skb, from, copy);
1146 if (err)
1147 goto do_fault;
1148 } else {
1149 bool merge = true;
1150 int i = skb_shinfo(skb)->nr_frags;
1151 struct page_frag *pfrag = sk_page_frag(sk);
1152
1153 if (!sk_page_frag_refill(sk, pfrag))
1154 goto wait_for_memory;
1155
1156 if (!skb_can_coalesce(skb, i, pfrag->page,
1157 pfrag->offset)) {
1158 if (i == MAX_SKB_FRAGS || !sg) {
1159 tcp_mark_push(tp, skb);
1160 goto new_segment;
1161 }
1162 merge = false;
1163 }
1164
1165 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1166
1167 if (!sk_wmem_schedule(sk, copy))
1168 goto wait_for_memory;
1169
1170 err = skb_copy_to_page_nocache(sk, from, skb,
1171 pfrag->page,
1172 pfrag->offset,
1173 copy);
1174 if (err)
1175 goto do_error;
1176
1177 /* Update the skb. */
1178 if (merge) {
1179 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1180 } else {
1181 skb_fill_page_desc(skb, i, pfrag->page,
1182 pfrag->offset, copy);
1183 get_page(pfrag->page);
1184 }
1185 pfrag->offset += copy;
1186 }
1187
1188 if (!copied)
1189 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1190
1191 tp->write_seq += copy;
1192 TCP_SKB_CB(skb)->end_seq += copy;
1193 skb_shinfo(skb)->gso_segs = 0;
1194
1195 from += copy;
1196 copied += copy;
1197 if ((seglen -= copy) == 0 && iovlen == 0)
1198 goto out;
1199
1200 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1201 continue;
1202
1203 if (forced_push(tp)) {
1204 tcp_mark_push(tp, skb);
1205 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1206 } else if (skb == tcp_send_head(sk))
1207 tcp_push_one(sk, mss_now);
1208 continue;
1209
1210 wait_for_sndbuf:
1211 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1212 wait_for_memory:
1213 if (copied)
1214 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1215
1216 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1217 goto do_error;
1218
1219 mss_now = tcp_send_mss(sk, &size_goal, flags);
1220 }
1221 }
1222
1223 out:
1224 if (copied)
1225 tcp_push(sk, flags, mss_now, tp->nonagle);
1226 release_sock(sk);
1227 return copied + copied_syn;
1228
1229 do_fault:
1230 if (!skb->len) {
1231 tcp_unlink_write_queue(skb, sk);
1232 /* It is the one place in all of TCP, except connection
1233 * reset, where we can be unlinking the send_head.
1234 */
1235 tcp_check_send_head(sk, skb);
1236 sk_wmem_free_skb(sk, skb);
1237 }
1238
1239 do_error:
1240 if (copied + copied_syn)
1241 goto out;
1242 out_err:
1243 err = sk_stream_error(sk, flags, err);
1244 release_sock(sk);
1245 return err;
1246 }
1247 EXPORT_SYMBOL(tcp_sendmsg);
1248
1249 /*
1250 * Handle reading urgent data. BSD has very simple semantics for
1251 * this, no blocking and very strange errors 8)
1252 */
1253
1254 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1255 {
1256 struct tcp_sock *tp = tcp_sk(sk);
1257
1258 /* No URG data to read. */
1259 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1260 tp->urg_data == TCP_URG_READ)
1261 return -EINVAL; /* Yes this is right ! */
1262
1263 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1264 return -ENOTCONN;
1265
1266 if (tp->urg_data & TCP_URG_VALID) {
1267 int err = 0;
1268 char c = tp->urg_data;
1269
1270 if (!(flags & MSG_PEEK))
1271 tp->urg_data = TCP_URG_READ;
1272
1273 /* Read urgent data. */
1274 msg->msg_flags |= MSG_OOB;
1275
1276 if (len > 0) {
1277 if (!(flags & MSG_TRUNC))
1278 err = memcpy_toiovec(msg->msg_iov, &c, 1);
1279 len = 1;
1280 } else
1281 msg->msg_flags |= MSG_TRUNC;
1282
1283 return err ? -EFAULT : len;
1284 }
1285
1286 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1287 return 0;
1288
1289 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1290 * the available implementations agree in this case:
1291 * this call should never block, independent of the
1292 * blocking state of the socket.
1293 * Mike <pall@rz.uni-karlsruhe.de>
1294 */
1295 return -EAGAIN;
1296 }
1297
1298 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1299 {
1300 struct sk_buff *skb;
1301 int copied = 0, err = 0;
1302
1303 /* XXX -- need to support SO_PEEK_OFF */
1304
1305 skb_queue_walk(&sk->sk_write_queue, skb) {
1306 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1307 if (err)
1308 break;
1309
1310 copied += skb->len;
1311 }
1312
1313 return err ?: copied;
1314 }
1315
1316 /* Clean up the receive buffer for full frames taken by the user,
1317 * then send an ACK if necessary. COPIED is the number of bytes
1318 * tcp_recvmsg has given to the user so far, it speeds up the
1319 * calculation of whether or not we must ACK for the sake of
1320 * a window update.
1321 */
1322 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1323 {
1324 struct tcp_sock *tp = tcp_sk(sk);
1325 bool time_to_ack = false;
1326
1327 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1328
1329 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1330 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1331 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1332
1333 if (inet_csk_ack_scheduled(sk)) {
1334 const struct inet_connection_sock *icsk = inet_csk(sk);
1335 /* Delayed ACKs frequently hit locked sockets during bulk
1336 * receive. */
1337 if (icsk->icsk_ack.blocked ||
1338 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1339 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1340 /*
1341 * If this read emptied read buffer, we send ACK, if
1342 * connection is not bidirectional, user drained
1343 * receive buffer and there was a small segment
1344 * in queue.
1345 */
1346 (copied > 0 &&
1347 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1348 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1349 !icsk->icsk_ack.pingpong)) &&
1350 !atomic_read(&sk->sk_rmem_alloc)))
1351 time_to_ack = true;
1352 }
1353
1354 /* We send an ACK if we can now advertise a non-zero window
1355 * which has been raised "significantly".
1356 *
1357 * Even if window raised up to infinity, do not send window open ACK
1358 * in states, where we will not receive more. It is useless.
1359 */
1360 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1361 __u32 rcv_window_now = tcp_receive_window(tp);
1362
1363 /* Optimize, __tcp_select_window() is not cheap. */
1364 if (2*rcv_window_now <= tp->window_clamp) {
1365 __u32 new_window = __tcp_select_window(sk);
1366
1367 /* Send ACK now, if this read freed lots of space
1368 * in our buffer. Certainly, new_window is new window.
1369 * We can advertise it now, if it is not less than current one.
1370 * "Lots" means "at least twice" here.
1371 */
1372 if (new_window && new_window >= 2 * rcv_window_now)
1373 time_to_ack = true;
1374 }
1375 }
1376 if (time_to_ack)
1377 tcp_send_ack(sk);
1378 }
1379
1380 static void tcp_prequeue_process(struct sock *sk)
1381 {
1382 struct sk_buff *skb;
1383 struct tcp_sock *tp = tcp_sk(sk);
1384
1385 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1386
1387 /* RX process wants to run with disabled BHs, though it is not
1388 * necessary */
1389 local_bh_disable();
1390 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1391 sk_backlog_rcv(sk, skb);
1392 local_bh_enable();
1393
1394 /* Clear memory counter. */
1395 tp->ucopy.memory = 0;
1396 }
1397
1398 #ifdef CONFIG_NET_DMA
1399 static void tcp_service_net_dma(struct sock *sk, bool wait)
1400 {
1401 dma_cookie_t done, used;
1402 dma_cookie_t last_issued;
1403 struct tcp_sock *tp = tcp_sk(sk);
1404
1405 if (!tp->ucopy.dma_chan)
1406 return;
1407
1408 last_issued = tp->ucopy.dma_cookie;
1409 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1410
1411 do {
1412 if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1413 last_issued, &done,
1414 &used) == DMA_SUCCESS) {
1415 /* Safe to free early-copied skbs now */
1416 __skb_queue_purge(&sk->sk_async_wait_queue);
1417 break;
1418 } else {
1419 struct sk_buff *skb;
1420 while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1421 (dma_async_is_complete(skb->dma_cookie, done,
1422 used) == DMA_SUCCESS)) {
1423 __skb_dequeue(&sk->sk_async_wait_queue);
1424 kfree_skb(skb);
1425 }
1426 }
1427 } while (wait);
1428 }
1429 #endif
1430
1431 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1432 {
1433 struct sk_buff *skb;
1434 u32 offset;
1435
1436 skb_queue_walk(&sk->sk_receive_queue, skb) {
1437 offset = seq - TCP_SKB_CB(skb)->seq;
1438 if (tcp_hdr(skb)->syn)
1439 offset--;
1440 if (offset < skb->len || tcp_hdr(skb)->fin) {
1441 *off = offset;
1442 return skb;
1443 }
1444 }
1445 return NULL;
1446 }
1447
1448 /*
1449 * This routine provides an alternative to tcp_recvmsg() for routines
1450 * that would like to handle copying from skbuffs directly in 'sendfile'
1451 * fashion.
1452 * Note:
1453 * - It is assumed that the socket was locked by the caller.
1454 * - The routine does not block.
1455 * - At present, there is no support for reading OOB data
1456 * or for 'peeking' the socket using this routine
1457 * (although both would be easy to implement).
1458 */
1459 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1460 sk_read_actor_t recv_actor)
1461 {
1462 struct sk_buff *skb;
1463 struct tcp_sock *tp = tcp_sk(sk);
1464 u32 seq = tp->copied_seq;
1465 u32 offset;
1466 int copied = 0;
1467
1468 if (sk->sk_state == TCP_LISTEN)
1469 return -ENOTCONN;
1470 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1471 if (offset < skb->len) {
1472 int used;
1473 size_t len;
1474
1475 len = skb->len - offset;
1476 /* Stop reading if we hit a patch of urgent data */
1477 if (tp->urg_data) {
1478 u32 urg_offset = tp->urg_seq - seq;
1479 if (urg_offset < len)
1480 len = urg_offset;
1481 if (!len)
1482 break;
1483 }
1484 used = recv_actor(desc, skb, offset, len);
1485 if (used < 0) {
1486 if (!copied)
1487 copied = used;
1488 break;
1489 } else if (used <= len) {
1490 seq += used;
1491 copied += used;
1492 offset += used;
1493 }
1494 /* If recv_actor drops the lock (e.g. TCP splice
1495 * receive) the skb pointer might be invalid when
1496 * getting here: tcp_collapse might have deleted it
1497 * while aggregating skbs from the socket queue.
1498 */
1499 skb = tcp_recv_skb(sk, seq - 1, &offset);
1500 if (!skb)
1501 break;
1502 /* TCP coalescing might have appended data to the skb.
1503 * Try to splice more frags
1504 */
1505 if (offset + 1 != skb->len)
1506 continue;
1507 }
1508 if (tcp_hdr(skb)->fin) {
1509 sk_eat_skb(sk, skb, false);
1510 ++seq;
1511 break;
1512 }
1513 sk_eat_skb(sk, skb, false);
1514 if (!desc->count)
1515 break;
1516 tp->copied_seq = seq;
1517 }
1518 tp->copied_seq = seq;
1519
1520 tcp_rcv_space_adjust(sk);
1521
1522 /* Clean up data we have read: This will do ACK frames. */
1523 if (copied > 0)
1524 tcp_cleanup_rbuf(sk, copied);
1525 return copied;
1526 }
1527 EXPORT_SYMBOL(tcp_read_sock);
1528
1529 /*
1530 * This routine copies from a sock struct into the user buffer.
1531 *
1532 * Technical note: in 2.3 we work on _locked_ socket, so that
1533 * tricks with *seq access order and skb->users are not required.
1534 * Probably, code can be easily improved even more.
1535 */
1536
1537 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1538 size_t len, int nonblock, int flags, int *addr_len)
1539 {
1540 struct tcp_sock *tp = tcp_sk(sk);
1541 int copied = 0;
1542 u32 peek_seq;
1543 u32 *seq;
1544 unsigned long used;
1545 int err;
1546 int target; /* Read at least this many bytes */
1547 long timeo;
1548 struct task_struct *user_recv = NULL;
1549 bool copied_early = false;
1550 struct sk_buff *skb;
1551 u32 urg_hole = 0;
1552
1553 lock_sock(sk);
1554
1555 err = -ENOTCONN;
1556 if (sk->sk_state == TCP_LISTEN)
1557 goto out;
1558
1559 timeo = sock_rcvtimeo(sk, nonblock);
1560
1561 /* Urgent data needs to be handled specially. */
1562 if (flags & MSG_OOB)
1563 goto recv_urg;
1564
1565 if (unlikely(tp->repair)) {
1566 err = -EPERM;
1567 if (!(flags & MSG_PEEK))
1568 goto out;
1569
1570 if (tp->repair_queue == TCP_SEND_QUEUE)
1571 goto recv_sndq;
1572
1573 err = -EINVAL;
1574 if (tp->repair_queue == TCP_NO_QUEUE)
1575 goto out;
1576
1577 /* 'common' recv queue MSG_PEEK-ing */
1578 }
1579
1580 seq = &tp->copied_seq;
1581 if (flags & MSG_PEEK) {
1582 peek_seq = tp->copied_seq;
1583 seq = &peek_seq;
1584 }
1585
1586 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1587
1588 #ifdef CONFIG_NET_DMA
1589 tp->ucopy.dma_chan = NULL;
1590 preempt_disable();
1591 skb = skb_peek_tail(&sk->sk_receive_queue);
1592 {
1593 int available = 0;
1594
1595 if (skb)
1596 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1597 if ((available < target) &&
1598 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1599 !sysctl_tcp_low_latency &&
1600 net_dma_find_channel()) {
1601 preempt_enable_no_resched();
1602 tp->ucopy.pinned_list =
1603 dma_pin_iovec_pages(msg->msg_iov, len);
1604 } else {
1605 preempt_enable_no_resched();
1606 }
1607 }
1608 #endif
1609
1610 do {
1611 u32 offset;
1612
1613 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1614 if (tp->urg_data && tp->urg_seq == *seq) {
1615 if (copied)
1616 break;
1617 if (signal_pending(current)) {
1618 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1619 break;
1620 }
1621 }
1622
1623 /* Next get a buffer. */
1624
1625 skb_queue_walk(&sk->sk_receive_queue, skb) {
1626 /* Now that we have two receive queues this
1627 * shouldn't happen.
1628 */
1629 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1630 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1631 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1632 flags))
1633 break;
1634
1635 offset = *seq - TCP_SKB_CB(skb)->seq;
1636 if (tcp_hdr(skb)->syn)
1637 offset--;
1638 if (offset < skb->len)
1639 goto found_ok_skb;
1640 if (tcp_hdr(skb)->fin)
1641 goto found_fin_ok;
1642 WARN(!(flags & MSG_PEEK),
1643 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1644 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1645 }
1646
1647 /* Well, if we have backlog, try to process it now yet. */
1648
1649 if (copied >= target && !sk->sk_backlog.tail)
1650 break;
1651
1652 if (copied) {
1653 if (sk->sk_err ||
1654 sk->sk_state == TCP_CLOSE ||
1655 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1656 !timeo ||
1657 signal_pending(current))
1658 break;
1659 } else {
1660 if (sock_flag(sk, SOCK_DONE))
1661 break;
1662
1663 if (sk->sk_err) {
1664 copied = sock_error(sk);
1665 break;
1666 }
1667
1668 if (sk->sk_shutdown & RCV_SHUTDOWN)
1669 break;
1670
1671 if (sk->sk_state == TCP_CLOSE) {
1672 if (!sock_flag(sk, SOCK_DONE)) {
1673 /* This occurs when user tries to read
1674 * from never connected socket.
1675 */
1676 copied = -ENOTCONN;
1677 break;
1678 }
1679 break;
1680 }
1681
1682 if (!timeo) {
1683 copied = -EAGAIN;
1684 break;
1685 }
1686
1687 if (signal_pending(current)) {
1688 copied = sock_intr_errno(timeo);
1689 break;
1690 }
1691 }
1692
1693 tcp_cleanup_rbuf(sk, copied);
1694
1695 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1696 /* Install new reader */
1697 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1698 user_recv = current;
1699 tp->ucopy.task = user_recv;
1700 tp->ucopy.iov = msg->msg_iov;
1701 }
1702
1703 tp->ucopy.len = len;
1704
1705 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1706 !(flags & (MSG_PEEK | MSG_TRUNC)));
1707
1708 /* Ugly... If prequeue is not empty, we have to
1709 * process it before releasing socket, otherwise
1710 * order will be broken at second iteration.
1711 * More elegant solution is required!!!
1712 *
1713 * Look: we have the following (pseudo)queues:
1714 *
1715 * 1. packets in flight
1716 * 2. backlog
1717 * 3. prequeue
1718 * 4. receive_queue
1719 *
1720 * Each queue can be processed only if the next ones
1721 * are empty. At this point we have empty receive_queue.
1722 * But prequeue _can_ be not empty after 2nd iteration,
1723 * when we jumped to start of loop because backlog
1724 * processing added something to receive_queue.
1725 * We cannot release_sock(), because backlog contains
1726 * packets arrived _after_ prequeued ones.
1727 *
1728 * Shortly, algorithm is clear --- to process all
1729 * the queues in order. We could make it more directly,
1730 * requeueing packets from backlog to prequeue, if
1731 * is not empty. It is more elegant, but eats cycles,
1732 * unfortunately.
1733 */
1734 if (!skb_queue_empty(&tp->ucopy.prequeue))
1735 goto do_prequeue;
1736
1737 /* __ Set realtime policy in scheduler __ */
1738 }
1739
1740 #ifdef CONFIG_NET_DMA
1741 if (tp->ucopy.dma_chan) {
1742 if (tp->rcv_wnd == 0 &&
1743 !skb_queue_empty(&sk->sk_async_wait_queue)) {
1744 tcp_service_net_dma(sk, true);
1745 tcp_cleanup_rbuf(sk, copied);
1746 } else
1747 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1748 }
1749 #endif
1750 if (copied >= target) {
1751 /* Do not sleep, just process backlog. */
1752 release_sock(sk);
1753 lock_sock(sk);
1754 } else
1755 sk_wait_data(sk, &timeo);
1756
1757 #ifdef CONFIG_NET_DMA
1758 tcp_service_net_dma(sk, false); /* Don't block */
1759 tp->ucopy.wakeup = 0;
1760 #endif
1761
1762 if (user_recv) {
1763 int chunk;
1764
1765 /* __ Restore normal policy in scheduler __ */
1766
1767 if ((chunk = len - tp->ucopy.len) != 0) {
1768 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1769 len -= chunk;
1770 copied += chunk;
1771 }
1772
1773 if (tp->rcv_nxt == tp->copied_seq &&
1774 !skb_queue_empty(&tp->ucopy.prequeue)) {
1775 do_prequeue:
1776 tcp_prequeue_process(sk);
1777
1778 if ((chunk = len - tp->ucopy.len) != 0) {
1779 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1780 len -= chunk;
1781 copied += chunk;
1782 }
1783 }
1784 }
1785 if ((flags & MSG_PEEK) &&
1786 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1787 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1788 current->comm,
1789 task_pid_nr(current));
1790 peek_seq = tp->copied_seq;
1791 }
1792 continue;
1793
1794 found_ok_skb:
1795 /* Ok so how much can we use? */
1796 used = skb->len - offset;
1797 if (len < used)
1798 used = len;
1799
1800 /* Do we have urgent data here? */
1801 if (tp->urg_data) {
1802 u32 urg_offset = tp->urg_seq - *seq;
1803 if (urg_offset < used) {
1804 if (!urg_offset) {
1805 if (!sock_flag(sk, SOCK_URGINLINE)) {
1806 ++*seq;
1807 urg_hole++;
1808 offset++;
1809 used--;
1810 if (!used)
1811 goto skip_copy;
1812 }
1813 } else
1814 used = urg_offset;
1815 }
1816 }
1817
1818 if (!(flags & MSG_TRUNC)) {
1819 #ifdef CONFIG_NET_DMA
1820 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1821 tp->ucopy.dma_chan = net_dma_find_channel();
1822
1823 if (tp->ucopy.dma_chan) {
1824 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1825 tp->ucopy.dma_chan, skb, offset,
1826 msg->msg_iov, used,
1827 tp->ucopy.pinned_list);
1828
1829 if (tp->ucopy.dma_cookie < 0) {
1830
1831 pr_alert("%s: dma_cookie < 0\n",
1832 __func__);
1833
1834 /* Exception. Bailout! */
1835 if (!copied)
1836 copied = -EFAULT;
1837 break;
1838 }
1839
1840 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1841
1842 if ((offset + used) == skb->len)
1843 copied_early = true;
1844
1845 } else
1846 #endif
1847 {
1848 err = skb_copy_datagram_iovec(skb, offset,
1849 msg->msg_iov, used);
1850 if (err) {
1851 /* Exception. Bailout! */
1852 if (!copied)
1853 copied = -EFAULT;
1854 break;
1855 }
1856 }
1857 }
1858
1859 *seq += used;
1860 copied += used;
1861 len -= used;
1862
1863 tcp_rcv_space_adjust(sk);
1864
1865 skip_copy:
1866 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1867 tp->urg_data = 0;
1868 tcp_fast_path_check(sk);
1869 }
1870 if (used + offset < skb->len)
1871 continue;
1872
1873 if (tcp_hdr(skb)->fin)
1874 goto found_fin_ok;
1875 if (!(flags & MSG_PEEK)) {
1876 sk_eat_skb(sk, skb, copied_early);
1877 copied_early = false;
1878 }
1879 continue;
1880
1881 found_fin_ok:
1882 /* Process the FIN. */
1883 ++*seq;
1884 if (!(flags & MSG_PEEK)) {
1885 sk_eat_skb(sk, skb, copied_early);
1886 copied_early = false;
1887 }
1888 break;
1889 } while (len > 0);
1890
1891 if (user_recv) {
1892 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1893 int chunk;
1894
1895 tp->ucopy.len = copied > 0 ? len : 0;
1896
1897 tcp_prequeue_process(sk);
1898
1899 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1900 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1901 len -= chunk;
1902 copied += chunk;
1903 }
1904 }
1905
1906 tp->ucopy.task = NULL;
1907 tp->ucopy.len = 0;
1908 }
1909
1910 #ifdef CONFIG_NET_DMA
1911 tcp_service_net_dma(sk, true); /* Wait for queue to drain */
1912 tp->ucopy.dma_chan = NULL;
1913
1914 if (tp->ucopy.pinned_list) {
1915 dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1916 tp->ucopy.pinned_list = NULL;
1917 }
1918 #endif
1919
1920 /* According to UNIX98, msg_name/msg_namelen are ignored
1921 * on connected socket. I was just happy when found this 8) --ANK
1922 */
1923
1924 /* Clean up data we have read: This will do ACK frames. */
1925 tcp_cleanup_rbuf(sk, copied);
1926
1927 release_sock(sk);
1928 return copied;
1929
1930 out:
1931 release_sock(sk);
1932 return err;
1933
1934 recv_urg:
1935 err = tcp_recv_urg(sk, msg, len, flags);
1936 goto out;
1937
1938 recv_sndq:
1939 err = tcp_peek_sndq(sk, msg, len);
1940 goto out;
1941 }
1942 EXPORT_SYMBOL(tcp_recvmsg);
1943
1944 void tcp_set_state(struct sock *sk, int state)
1945 {
1946 int oldstate = sk->sk_state;
1947
1948 switch (state) {
1949 case TCP_ESTABLISHED:
1950 if (oldstate != TCP_ESTABLISHED)
1951 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1952 break;
1953
1954 case TCP_CLOSE:
1955 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1956 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1957
1958 sk->sk_prot->unhash(sk);
1959 if (inet_csk(sk)->icsk_bind_hash &&
1960 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1961 inet_put_port(sk);
1962 /* fall through */
1963 default:
1964 if (oldstate == TCP_ESTABLISHED)
1965 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1966 }
1967
1968 /* Change state AFTER socket is unhashed to avoid closed
1969 * socket sitting in hash tables.
1970 */
1971 sk->sk_state = state;
1972
1973 #ifdef STATE_TRACE
1974 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1975 #endif
1976 }
1977 EXPORT_SYMBOL_GPL(tcp_set_state);
1978
1979 /*
1980 * State processing on a close. This implements the state shift for
1981 * sending our FIN frame. Note that we only send a FIN for some
1982 * states. A shutdown() may have already sent the FIN, or we may be
1983 * closed.
1984 */
1985
1986 static const unsigned char new_state[16] = {
1987 /* current state: new state: action: */
1988 /* (Invalid) */ TCP_CLOSE,
1989 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1990 /* TCP_SYN_SENT */ TCP_CLOSE,
1991 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1992 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
1993 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
1994 /* TCP_TIME_WAIT */ TCP_CLOSE,
1995 /* TCP_CLOSE */ TCP_CLOSE,
1996 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
1997 /* TCP_LAST_ACK */ TCP_LAST_ACK,
1998 /* TCP_LISTEN */ TCP_CLOSE,
1999 /* TCP_CLOSING */ TCP_CLOSING,
2000 };
2001
2002 static int tcp_close_state(struct sock *sk)
2003 {
2004 int next = (int)new_state[sk->sk_state];
2005 int ns = next & TCP_STATE_MASK;
2006
2007 tcp_set_state(sk, ns);
2008
2009 return next & TCP_ACTION_FIN;
2010 }
2011
2012 /*
2013 * Shutdown the sending side of a connection. Much like close except
2014 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2015 */
2016
2017 void tcp_shutdown(struct sock *sk, int how)
2018 {
2019 /* We need to grab some memory, and put together a FIN,
2020 * and then put it into the queue to be sent.
2021 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2022 */
2023 if (!(how & SEND_SHUTDOWN))
2024 return;
2025
2026 /* If we've already sent a FIN, or it's a closed state, skip this. */
2027 if ((1 << sk->sk_state) &
2028 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2029 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2030 /* Clear out any half completed packets. FIN if needed. */
2031 if (tcp_close_state(sk))
2032 tcp_send_fin(sk);
2033 }
2034 }
2035 EXPORT_SYMBOL(tcp_shutdown);
2036
2037 bool tcp_check_oom(struct sock *sk, int shift)
2038 {
2039 bool too_many_orphans, out_of_socket_memory;
2040
2041 too_many_orphans = tcp_too_many_orphans(sk, shift);
2042 out_of_socket_memory = tcp_out_of_memory(sk);
2043
2044 if (too_many_orphans)
2045 net_info_ratelimited("too many orphaned sockets\n");
2046 if (out_of_socket_memory)
2047 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2048 return too_many_orphans || out_of_socket_memory;
2049 }
2050
2051 void tcp_close(struct sock *sk, long timeout)
2052 {
2053 struct sk_buff *skb;
2054 int data_was_unread = 0;
2055 int state;
2056
2057 lock_sock(sk);
2058 sk->sk_shutdown = SHUTDOWN_MASK;
2059
2060 if (sk->sk_state == TCP_LISTEN) {
2061 tcp_set_state(sk, TCP_CLOSE);
2062
2063 /* Special case. */
2064 inet_csk_listen_stop(sk);
2065
2066 goto adjudge_to_death;
2067 }
2068
2069 /* We need to flush the recv. buffs. We do this only on the
2070 * descriptor close, not protocol-sourced closes, because the
2071 * reader process may not have drained the data yet!
2072 */
2073 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2074 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2075 tcp_hdr(skb)->fin;
2076 data_was_unread += len;
2077 __kfree_skb(skb);
2078 }
2079
2080 sk_mem_reclaim(sk);
2081
2082 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2083 if (sk->sk_state == TCP_CLOSE)
2084 goto adjudge_to_death;
2085
2086 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2087 * data was lost. To witness the awful effects of the old behavior of
2088 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2089 * GET in an FTP client, suspend the process, wait for the client to
2090 * advertise a zero window, then kill -9 the FTP client, wheee...
2091 * Note: timeout is always zero in such a case.
2092 */
2093 if (unlikely(tcp_sk(sk)->repair)) {
2094 sk->sk_prot->disconnect(sk, 0);
2095 } else if (data_was_unread) {
2096 /* Unread data was tossed, zap the connection. */
2097 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2098 tcp_set_state(sk, TCP_CLOSE);
2099 tcp_send_active_reset(sk, sk->sk_allocation);
2100 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2101 /* Check zero linger _after_ checking for unread data. */
2102 sk->sk_prot->disconnect(sk, 0);
2103 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2104 } else if (tcp_close_state(sk)) {
2105 /* We FIN if the application ate all the data before
2106 * zapping the connection.
2107 */
2108
2109 /* RED-PEN. Formally speaking, we have broken TCP state
2110 * machine. State transitions:
2111 *
2112 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2113 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2114 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2115 *
2116 * are legal only when FIN has been sent (i.e. in window),
2117 * rather than queued out of window. Purists blame.
2118 *
2119 * F.e. "RFC state" is ESTABLISHED,
2120 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2121 *
2122 * The visible declinations are that sometimes
2123 * we enter time-wait state, when it is not required really
2124 * (harmless), do not send active resets, when they are
2125 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2126 * they look as CLOSING or LAST_ACK for Linux)
2127 * Probably, I missed some more holelets.
2128 * --ANK
2129 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2130 * in a single packet! (May consider it later but will
2131 * probably need API support or TCP_CORK SYN-ACK until
2132 * data is written and socket is closed.)
2133 */
2134 tcp_send_fin(sk);
2135 }
2136
2137 sk_stream_wait_close(sk, timeout);
2138
2139 adjudge_to_death:
2140 state = sk->sk_state;
2141 sock_hold(sk);
2142 sock_orphan(sk);
2143
2144 /* It is the last release_sock in its life. It will remove backlog. */
2145 release_sock(sk);
2146
2147
2148 /* Now socket is owned by kernel and we acquire BH lock
2149 to finish close. No need to check for user refs.
2150 */
2151 local_bh_disable();
2152 bh_lock_sock(sk);
2153 WARN_ON(sock_owned_by_user(sk));
2154
2155 percpu_counter_inc(sk->sk_prot->orphan_count);
2156
2157 /* Have we already been destroyed by a softirq or backlog? */
2158 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2159 goto out;
2160
2161 /* This is a (useful) BSD violating of the RFC. There is a
2162 * problem with TCP as specified in that the other end could
2163 * keep a socket open forever with no application left this end.
2164 * We use a 3 minute timeout (about the same as BSD) then kill
2165 * our end. If they send after that then tough - BUT: long enough
2166 * that we won't make the old 4*rto = almost no time - whoops
2167 * reset mistake.
2168 *
2169 * Nope, it was not mistake. It is really desired behaviour
2170 * f.e. on http servers, when such sockets are useless, but
2171 * consume significant resources. Let's do it with special
2172 * linger2 option. --ANK
2173 */
2174
2175 if (sk->sk_state == TCP_FIN_WAIT2) {
2176 struct tcp_sock *tp = tcp_sk(sk);
2177 if (tp->linger2 < 0) {
2178 tcp_set_state(sk, TCP_CLOSE);
2179 tcp_send_active_reset(sk, GFP_ATOMIC);
2180 NET_INC_STATS_BH(sock_net(sk),
2181 LINUX_MIB_TCPABORTONLINGER);
2182 } else {
2183 const int tmo = tcp_fin_time(sk);
2184
2185 if (tmo > TCP_TIMEWAIT_LEN) {
2186 inet_csk_reset_keepalive_timer(sk,
2187 tmo - TCP_TIMEWAIT_LEN);
2188 } else {
2189 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2190 goto out;
2191 }
2192 }
2193 }
2194 if (sk->sk_state != TCP_CLOSE) {
2195 sk_mem_reclaim(sk);
2196 if (tcp_check_oom(sk, 0)) {
2197 tcp_set_state(sk, TCP_CLOSE);
2198 tcp_send_active_reset(sk, GFP_ATOMIC);
2199 NET_INC_STATS_BH(sock_net(sk),
2200 LINUX_MIB_TCPABORTONMEMORY);
2201 }
2202 }
2203
2204 if (sk->sk_state == TCP_CLOSE) {
2205 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2206 /* We could get here with a non-NULL req if the socket is
2207 * aborted (e.g., closed with unread data) before 3WHS
2208 * finishes.
2209 */
2210 if (req != NULL)
2211 reqsk_fastopen_remove(sk, req, false);
2212 inet_csk_destroy_sock(sk);
2213 }
2214 /* Otherwise, socket is reprieved until protocol close. */
2215
2216 out:
2217 bh_unlock_sock(sk);
2218 local_bh_enable();
2219 sock_put(sk);
2220 }
2221 EXPORT_SYMBOL(tcp_close);
2222
2223 /* These states need RST on ABORT according to RFC793 */
2224
2225 static inline bool tcp_need_reset(int state)
2226 {
2227 return (1 << state) &
2228 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2229 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2230 }
2231
2232 int tcp_disconnect(struct sock *sk, int flags)
2233 {
2234 struct inet_sock *inet = inet_sk(sk);
2235 struct inet_connection_sock *icsk = inet_csk(sk);
2236 struct tcp_sock *tp = tcp_sk(sk);
2237 int err = 0;
2238 int old_state = sk->sk_state;
2239
2240 if (old_state != TCP_CLOSE)
2241 tcp_set_state(sk, TCP_CLOSE);
2242
2243 /* ABORT function of RFC793 */
2244 if (old_state == TCP_LISTEN) {
2245 inet_csk_listen_stop(sk);
2246 } else if (unlikely(tp->repair)) {
2247 sk->sk_err = ECONNABORTED;
2248 } else if (tcp_need_reset(old_state) ||
2249 (tp->snd_nxt != tp->write_seq &&
2250 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2251 /* The last check adjusts for discrepancy of Linux wrt. RFC
2252 * states
2253 */
2254 tcp_send_active_reset(sk, gfp_any());
2255 sk->sk_err = ECONNRESET;
2256 } else if (old_state == TCP_SYN_SENT)
2257 sk->sk_err = ECONNRESET;
2258
2259 tcp_clear_xmit_timers(sk);
2260 __skb_queue_purge(&sk->sk_receive_queue);
2261 tcp_write_queue_purge(sk);
2262 __skb_queue_purge(&tp->out_of_order_queue);
2263 #ifdef CONFIG_NET_DMA
2264 __skb_queue_purge(&sk->sk_async_wait_queue);
2265 #endif
2266
2267 inet->inet_dport = 0;
2268
2269 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2270 inet_reset_saddr(sk);
2271
2272 sk->sk_shutdown = 0;
2273 sock_reset_flag(sk, SOCK_DONE);
2274 tp->srtt = 0;
2275 if ((tp->write_seq += tp->max_window + 2) == 0)
2276 tp->write_seq = 1;
2277 icsk->icsk_backoff = 0;
2278 tp->snd_cwnd = 2;
2279 icsk->icsk_probes_out = 0;
2280 tp->packets_out = 0;
2281 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2282 tp->snd_cwnd_cnt = 0;
2283 tp->bytes_acked = 0;
2284 tp->window_clamp = 0;
2285 tcp_set_ca_state(sk, TCP_CA_Open);
2286 tcp_clear_retrans(tp);
2287 inet_csk_delack_init(sk);
2288 tcp_init_send_head(sk);
2289 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2290 __sk_dst_reset(sk);
2291
2292 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2293
2294 sk->sk_error_report(sk);
2295 return err;
2296 }
2297 EXPORT_SYMBOL(tcp_disconnect);
2298
2299 void tcp_sock_destruct(struct sock *sk)
2300 {
2301 inet_sock_destruct(sk);
2302
2303 kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2304 }
2305
2306 static inline bool tcp_can_repair_sock(const struct sock *sk)
2307 {
2308 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2309 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2310 }
2311
2312 static int tcp_repair_options_est(struct tcp_sock *tp,
2313 struct tcp_repair_opt __user *optbuf, unsigned int len)
2314 {
2315 struct tcp_repair_opt opt;
2316
2317 while (len >= sizeof(opt)) {
2318 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2319 return -EFAULT;
2320
2321 optbuf++;
2322 len -= sizeof(opt);
2323
2324 switch (opt.opt_code) {
2325 case TCPOPT_MSS:
2326 tp->rx_opt.mss_clamp = opt.opt_val;
2327 break;
2328 case TCPOPT_WINDOW:
2329 {
2330 u16 snd_wscale = opt.opt_val & 0xFFFF;
2331 u16 rcv_wscale = opt.opt_val >> 16;
2332
2333 if (snd_wscale > 14 || rcv_wscale > 14)
2334 return -EFBIG;
2335
2336 tp->rx_opt.snd_wscale = snd_wscale;
2337 tp->rx_opt.rcv_wscale = rcv_wscale;
2338 tp->rx_opt.wscale_ok = 1;
2339 }
2340 break;
2341 case TCPOPT_SACK_PERM:
2342 if (opt.opt_val != 0)
2343 return -EINVAL;
2344
2345 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2346 if (sysctl_tcp_fack)
2347 tcp_enable_fack(tp);
2348 break;
2349 case TCPOPT_TIMESTAMP:
2350 if (opt.opt_val != 0)
2351 return -EINVAL;
2352
2353 tp->rx_opt.tstamp_ok = 1;
2354 break;
2355 }
2356 }
2357
2358 return 0;
2359 }
2360
2361 /*
2362 * Socket option code for TCP.
2363 */
2364 static int do_tcp_setsockopt(struct sock *sk, int level,
2365 int optname, char __user *optval, unsigned int optlen)
2366 {
2367 struct tcp_sock *tp = tcp_sk(sk);
2368 struct inet_connection_sock *icsk = inet_csk(sk);
2369 int val;
2370 int err = 0;
2371
2372 /* These are data/string values, all the others are ints */
2373 switch (optname) {
2374 case TCP_CONGESTION: {
2375 char name[TCP_CA_NAME_MAX];
2376
2377 if (optlen < 1)
2378 return -EINVAL;
2379
2380 val = strncpy_from_user(name, optval,
2381 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2382 if (val < 0)
2383 return -EFAULT;
2384 name[val] = 0;
2385
2386 lock_sock(sk);
2387 err = tcp_set_congestion_control(sk, name);
2388 release_sock(sk);
2389 return err;
2390 }
2391 case TCP_COOKIE_TRANSACTIONS: {
2392 struct tcp_cookie_transactions ctd;
2393 struct tcp_cookie_values *cvp = NULL;
2394
2395 if (sizeof(ctd) > optlen)
2396 return -EINVAL;
2397 if (copy_from_user(&ctd, optval, sizeof(ctd)))
2398 return -EFAULT;
2399
2400 if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2401 ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2402 return -EINVAL;
2403
2404 if (ctd.tcpct_cookie_desired == 0) {
2405 /* default to global value */
2406 } else if ((0x1 & ctd.tcpct_cookie_desired) ||
2407 ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2408 ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2409 return -EINVAL;
2410 }
2411
2412 if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2413 /* Supercedes all other values */
2414 lock_sock(sk);
2415 if (tp->cookie_values != NULL) {
2416 kref_put(&tp->cookie_values->kref,
2417 tcp_cookie_values_release);
2418 tp->cookie_values = NULL;
2419 }
2420 tp->rx_opt.cookie_in_always = 0; /* false */
2421 tp->rx_opt.cookie_out_never = 1; /* true */
2422 release_sock(sk);
2423 return err;
2424 }
2425
2426 /* Allocate ancillary memory before locking.
2427 */
2428 if (ctd.tcpct_used > 0 ||
2429 (tp->cookie_values == NULL &&
2430 (sysctl_tcp_cookie_size > 0 ||
2431 ctd.tcpct_cookie_desired > 0 ||
2432 ctd.tcpct_s_data_desired > 0))) {
2433 cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2434 GFP_KERNEL);
2435 if (cvp == NULL)
2436 return -ENOMEM;
2437
2438 kref_init(&cvp->kref);
2439 }
2440 lock_sock(sk);
2441 tp->rx_opt.cookie_in_always =
2442 (TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2443 tp->rx_opt.cookie_out_never = 0; /* false */
2444
2445 if (tp->cookie_values != NULL) {
2446 if (cvp != NULL) {
2447 /* Changed values are recorded by a changed
2448 * pointer, ensuring the cookie will differ,
2449 * without separately hashing each value later.
2450 */
2451 kref_put(&tp->cookie_values->kref,
2452 tcp_cookie_values_release);
2453 } else {
2454 cvp = tp->cookie_values;
2455 }
2456 }
2457
2458 if (cvp != NULL) {
2459 cvp->cookie_desired = ctd.tcpct_cookie_desired;
2460
2461 if (ctd.tcpct_used > 0) {
2462 memcpy(cvp->s_data_payload, ctd.tcpct_value,
2463 ctd.tcpct_used);
2464 cvp->s_data_desired = ctd.tcpct_used;
2465 cvp->s_data_constant = 1; /* true */
2466 } else {
2467 /* No constant payload data. */
2468 cvp->s_data_desired = ctd.tcpct_s_data_desired;
2469 cvp->s_data_constant = 0; /* false */
2470 }
2471
2472 tp->cookie_values = cvp;
2473 }
2474 release_sock(sk);
2475 return err;
2476 }
2477 default:
2478 /* fallthru */
2479 break;
2480 }
2481
2482 if (optlen < sizeof(int))
2483 return -EINVAL;
2484
2485 if (get_user(val, (int __user *)optval))
2486 return -EFAULT;
2487
2488 lock_sock(sk);
2489
2490 switch (optname) {
2491 case TCP_MAXSEG:
2492 /* Values greater than interface MTU won't take effect. However
2493 * at the point when this call is done we typically don't yet
2494 * know which interface is going to be used */
2495 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2496 err = -EINVAL;
2497 break;
2498 }
2499 tp->rx_opt.user_mss = val;
2500 break;
2501
2502 case TCP_NODELAY:
2503 if (val) {
2504 /* TCP_NODELAY is weaker than TCP_CORK, so that
2505 * this option on corked socket is remembered, but
2506 * it is not activated until cork is cleared.
2507 *
2508 * However, when TCP_NODELAY is set we make
2509 * an explicit push, which overrides even TCP_CORK
2510 * for currently queued segments.
2511 */
2512 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2513 tcp_push_pending_frames(sk);
2514 } else {
2515 tp->nonagle &= ~TCP_NAGLE_OFF;
2516 }
2517 break;
2518
2519 case TCP_THIN_LINEAR_TIMEOUTS:
2520 if (val < 0 || val > 1)
2521 err = -EINVAL;
2522 else
2523 tp->thin_lto = val;
2524 break;
2525
2526 case TCP_THIN_DUPACK:
2527 if (val < 0 || val > 1)
2528 err = -EINVAL;
2529 else
2530 tp->thin_dupack = val;
2531 if (tp->thin_dupack)
2532 tcp_disable_early_retrans(tp);
2533 break;
2534
2535 case TCP_REPAIR:
2536 if (!tcp_can_repair_sock(sk))
2537 err = -EPERM;
2538 else if (val == 1) {
2539 tp->repair = 1;
2540 sk->sk_reuse = SK_FORCE_REUSE;
2541 tp->repair_queue = TCP_NO_QUEUE;
2542 } else if (val == 0) {
2543 tp->repair = 0;
2544 sk->sk_reuse = SK_NO_REUSE;
2545 tcp_send_window_probe(sk);
2546 } else
2547 err = -EINVAL;
2548
2549 break;
2550
2551 case TCP_REPAIR_QUEUE:
2552 if (!tp->repair)
2553 err = -EPERM;
2554 else if (val < TCP_QUEUES_NR)
2555 tp->repair_queue = val;
2556 else
2557 err = -EINVAL;
2558 break;
2559
2560 case TCP_QUEUE_SEQ:
2561 if (sk->sk_state != TCP_CLOSE)
2562 err = -EPERM;
2563 else if (tp->repair_queue == TCP_SEND_QUEUE)
2564 tp->write_seq = val;
2565 else if (tp->repair_queue == TCP_RECV_QUEUE)
2566 tp->rcv_nxt = val;
2567 else
2568 err = -EINVAL;
2569 break;
2570
2571 case TCP_REPAIR_OPTIONS:
2572 if (!tp->repair)
2573 err = -EINVAL;
2574 else if (sk->sk_state == TCP_ESTABLISHED)
2575 err = tcp_repair_options_est(tp,
2576 (struct tcp_repair_opt __user *)optval,
2577 optlen);
2578 else
2579 err = -EPERM;
2580 break;
2581
2582 case TCP_CORK:
2583 /* When set indicates to always queue non-full frames.
2584 * Later the user clears this option and we transmit
2585 * any pending partial frames in the queue. This is
2586 * meant to be used alongside sendfile() to get properly
2587 * filled frames when the user (for example) must write
2588 * out headers with a write() call first and then use
2589 * sendfile to send out the data parts.
2590 *
2591 * TCP_CORK can be set together with TCP_NODELAY and it is
2592 * stronger than TCP_NODELAY.
2593 */
2594 if (val) {
2595 tp->nonagle |= TCP_NAGLE_CORK;
2596 } else {
2597 tp->nonagle &= ~TCP_NAGLE_CORK;
2598 if (tp->nonagle&TCP_NAGLE_OFF)
2599 tp->nonagle |= TCP_NAGLE_PUSH;
2600 tcp_push_pending_frames(sk);
2601 }
2602 break;
2603
2604 case TCP_KEEPIDLE:
2605 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2606 err = -EINVAL;
2607 else {
2608 tp->keepalive_time = val * HZ;
2609 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2610 !((1 << sk->sk_state) &
2611 (TCPF_CLOSE | TCPF_LISTEN))) {
2612 u32 elapsed = keepalive_time_elapsed(tp);
2613 if (tp->keepalive_time > elapsed)
2614 elapsed = tp->keepalive_time - elapsed;
2615 else
2616 elapsed = 0;
2617 inet_csk_reset_keepalive_timer(sk, elapsed);
2618 }
2619 }
2620 break;
2621 case TCP_KEEPINTVL:
2622 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2623 err = -EINVAL;
2624 else
2625 tp->keepalive_intvl = val * HZ;
2626 break;
2627 case TCP_KEEPCNT:
2628 if (val < 1 || val > MAX_TCP_KEEPCNT)
2629 err = -EINVAL;
2630 else
2631 tp->keepalive_probes = val;
2632 break;
2633 case TCP_SYNCNT:
2634 if (val < 1 || val > MAX_TCP_SYNCNT)
2635 err = -EINVAL;
2636 else
2637 icsk->icsk_syn_retries = val;
2638 break;
2639
2640 case TCP_LINGER2:
2641 if (val < 0)
2642 tp->linger2 = -1;
2643 else if (val > sysctl_tcp_fin_timeout / HZ)
2644 tp->linger2 = 0;
2645 else
2646 tp->linger2 = val * HZ;
2647 break;
2648
2649 case TCP_DEFER_ACCEPT:
2650 /* Translate value in seconds to number of retransmits */
2651 icsk->icsk_accept_queue.rskq_defer_accept =
2652 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2653 TCP_RTO_MAX / HZ);
2654 break;
2655
2656 case TCP_WINDOW_CLAMP:
2657 if (!val) {
2658 if (sk->sk_state != TCP_CLOSE) {
2659 err = -EINVAL;
2660 break;
2661 }
2662 tp->window_clamp = 0;
2663 } else
2664 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2665 SOCK_MIN_RCVBUF / 2 : val;
2666 break;
2667
2668 case TCP_QUICKACK:
2669 if (!val) {
2670 icsk->icsk_ack.pingpong = 1;
2671 } else {
2672 icsk->icsk_ack.pingpong = 0;
2673 if ((1 << sk->sk_state) &
2674 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2675 inet_csk_ack_scheduled(sk)) {
2676 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2677 tcp_cleanup_rbuf(sk, 1);
2678 if (!(val & 1))
2679 icsk->icsk_ack.pingpong = 1;
2680 }
2681 }
2682 break;
2683
2684 #ifdef CONFIG_TCP_MD5SIG
2685 case TCP_MD5SIG:
2686 /* Read the IP->Key mappings from userspace */
2687 err = tp->af_specific->md5_parse(sk, optval, optlen);
2688 break;
2689 #endif
2690 case TCP_USER_TIMEOUT:
2691 /* Cap the max timeout in ms TCP will retry/retrans
2692 * before giving up and aborting (ETIMEDOUT) a connection.
2693 */
2694 if (val < 0)
2695 err = -EINVAL;
2696 else
2697 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2698 break;
2699
2700 case TCP_FASTOPEN:
2701 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2702 TCPF_LISTEN)))
2703 err = fastopen_init_queue(sk, val);
2704 else
2705 err = -EINVAL;
2706 break;
2707 default:
2708 err = -ENOPROTOOPT;
2709 break;
2710 }
2711
2712 release_sock(sk);
2713 return err;
2714 }
2715
2716 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2717 unsigned int optlen)
2718 {
2719 const struct inet_connection_sock *icsk = inet_csk(sk);
2720
2721 if (level != SOL_TCP)
2722 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2723 optval, optlen);
2724 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2725 }
2726 EXPORT_SYMBOL(tcp_setsockopt);
2727
2728 #ifdef CONFIG_COMPAT
2729 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2730 char __user *optval, unsigned int optlen)
2731 {
2732 if (level != SOL_TCP)
2733 return inet_csk_compat_setsockopt(sk, level, optname,
2734 optval, optlen);
2735 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2736 }
2737 EXPORT_SYMBOL(compat_tcp_setsockopt);
2738 #endif
2739
2740 /* Return information about state of tcp endpoint in API format. */
2741 void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2742 {
2743 const struct tcp_sock *tp = tcp_sk(sk);
2744 const struct inet_connection_sock *icsk = inet_csk(sk);
2745 u32 now = tcp_time_stamp;
2746
2747 memset(info, 0, sizeof(*info));
2748
2749 info->tcpi_state = sk->sk_state;
2750 info->tcpi_ca_state = icsk->icsk_ca_state;
2751 info->tcpi_retransmits = icsk->icsk_retransmits;
2752 info->tcpi_probes = icsk->icsk_probes_out;
2753 info->tcpi_backoff = icsk->icsk_backoff;
2754
2755 if (tp->rx_opt.tstamp_ok)
2756 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2757 if (tcp_is_sack(tp))
2758 info->tcpi_options |= TCPI_OPT_SACK;
2759 if (tp->rx_opt.wscale_ok) {
2760 info->tcpi_options |= TCPI_OPT_WSCALE;
2761 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2762 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2763 }
2764
2765 if (tp->ecn_flags & TCP_ECN_OK)
2766 info->tcpi_options |= TCPI_OPT_ECN;
2767 if (tp->ecn_flags & TCP_ECN_SEEN)
2768 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2769 if (tp->syn_data_acked)
2770 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2771
2772 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2773 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2774 info->tcpi_snd_mss = tp->mss_cache;
2775 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2776
2777 if (sk->sk_state == TCP_LISTEN) {
2778 info->tcpi_unacked = sk->sk_ack_backlog;
2779 info->tcpi_sacked = sk->sk_max_ack_backlog;
2780 } else {
2781 info->tcpi_unacked = tp->packets_out;
2782 info->tcpi_sacked = tp->sacked_out;
2783 }
2784 info->tcpi_lost = tp->lost_out;
2785 info->tcpi_retrans = tp->retrans_out;
2786 info->tcpi_fackets = tp->fackets_out;
2787
2788 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2789 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2790 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2791
2792 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2793 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2794 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2795 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2796 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2797 info->tcpi_snd_cwnd = tp->snd_cwnd;
2798 info->tcpi_advmss = tp->advmss;
2799 info->tcpi_reordering = tp->reordering;
2800
2801 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2802 info->tcpi_rcv_space = tp->rcvq_space.space;
2803
2804 info->tcpi_total_retrans = tp->total_retrans;
2805 }
2806 EXPORT_SYMBOL_GPL(tcp_get_info);
2807
2808 static int do_tcp_getsockopt(struct sock *sk, int level,
2809 int optname, char __user *optval, int __user *optlen)
2810 {
2811 struct inet_connection_sock *icsk = inet_csk(sk);
2812 struct tcp_sock *tp = tcp_sk(sk);
2813 int val, len;
2814
2815 if (get_user(len, optlen))
2816 return -EFAULT;
2817
2818 len = min_t(unsigned int, len, sizeof(int));
2819
2820 if (len < 0)
2821 return -EINVAL;
2822
2823 switch (optname) {
2824 case TCP_MAXSEG:
2825 val = tp->mss_cache;
2826 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2827 val = tp->rx_opt.user_mss;
2828 if (tp->repair)
2829 val = tp->rx_opt.mss_clamp;
2830 break;
2831 case TCP_NODELAY:
2832 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2833 break;
2834 case TCP_CORK:
2835 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2836 break;
2837 case TCP_KEEPIDLE:
2838 val = keepalive_time_when(tp) / HZ;
2839 break;
2840 case TCP_KEEPINTVL:
2841 val = keepalive_intvl_when(tp) / HZ;
2842 break;
2843 case TCP_KEEPCNT:
2844 val = keepalive_probes(tp);
2845 break;
2846 case TCP_SYNCNT:
2847 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2848 break;
2849 case TCP_LINGER2:
2850 val = tp->linger2;
2851 if (val >= 0)
2852 val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2853 break;
2854 case TCP_DEFER_ACCEPT:
2855 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2856 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2857 break;
2858 case TCP_WINDOW_CLAMP:
2859 val = tp->window_clamp;
2860 break;
2861 case TCP_INFO: {
2862 struct tcp_info info;
2863
2864 if (get_user(len, optlen))
2865 return -EFAULT;
2866
2867 tcp_get_info(sk, &info);
2868
2869 len = min_t(unsigned int, len, sizeof(info));
2870 if (put_user(len, optlen))
2871 return -EFAULT;
2872 if (copy_to_user(optval, &info, len))
2873 return -EFAULT;
2874 return 0;
2875 }
2876 case TCP_QUICKACK:
2877 val = !icsk->icsk_ack.pingpong;
2878 break;
2879
2880 case TCP_CONGESTION:
2881 if (get_user(len, optlen))
2882 return -EFAULT;
2883 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2884 if (put_user(len, optlen))
2885 return -EFAULT;
2886 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2887 return -EFAULT;
2888 return 0;
2889
2890 case TCP_COOKIE_TRANSACTIONS: {
2891 struct tcp_cookie_transactions ctd;
2892 struct tcp_cookie_values *cvp = tp->cookie_values;
2893
2894 if (get_user(len, optlen))
2895 return -EFAULT;
2896 if (len < sizeof(ctd))
2897 return -EINVAL;
2898
2899 memset(&ctd, 0, sizeof(ctd));
2900 ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2901 TCP_COOKIE_IN_ALWAYS : 0)
2902 | (tp->rx_opt.cookie_out_never ?
2903 TCP_COOKIE_OUT_NEVER : 0);
2904
2905 if (cvp != NULL) {
2906 ctd.tcpct_flags |= (cvp->s_data_in ?
2907 TCP_S_DATA_IN : 0)
2908 | (cvp->s_data_out ?
2909 TCP_S_DATA_OUT : 0);
2910
2911 ctd.tcpct_cookie_desired = cvp->cookie_desired;
2912 ctd.tcpct_s_data_desired = cvp->s_data_desired;
2913
2914 memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2915 cvp->cookie_pair_size);
2916 ctd.tcpct_used = cvp->cookie_pair_size;
2917 }
2918
2919 if (put_user(sizeof(ctd), optlen))
2920 return -EFAULT;
2921 if (copy_to_user(optval, &ctd, sizeof(ctd)))
2922 return -EFAULT;
2923 return 0;
2924 }
2925 case TCP_THIN_LINEAR_TIMEOUTS:
2926 val = tp->thin_lto;
2927 break;
2928 case TCP_THIN_DUPACK:
2929 val = tp->thin_dupack;
2930 break;
2931
2932 case TCP_REPAIR:
2933 val = tp->repair;
2934 break;
2935
2936 case TCP_REPAIR_QUEUE:
2937 if (tp->repair)
2938 val = tp->repair_queue;
2939 else
2940 return -EINVAL;
2941 break;
2942
2943 case TCP_QUEUE_SEQ:
2944 if (tp->repair_queue == TCP_SEND_QUEUE)
2945 val = tp->write_seq;
2946 else if (tp->repair_queue == TCP_RECV_QUEUE)
2947 val = tp->rcv_nxt;
2948 else
2949 return -EINVAL;
2950 break;
2951
2952 case TCP_USER_TIMEOUT:
2953 val = jiffies_to_msecs(icsk->icsk_user_timeout);
2954 break;
2955 default:
2956 return -ENOPROTOOPT;
2957 }
2958
2959 if (put_user(len, optlen))
2960 return -EFAULT;
2961 if (copy_to_user(optval, &val, len))
2962 return -EFAULT;
2963 return 0;
2964 }
2965
2966 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2967 int __user *optlen)
2968 {
2969 struct inet_connection_sock *icsk = inet_csk(sk);
2970
2971 if (level != SOL_TCP)
2972 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2973 optval, optlen);
2974 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2975 }
2976 EXPORT_SYMBOL(tcp_getsockopt);
2977
2978 #ifdef CONFIG_COMPAT
2979 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2980 char __user *optval, int __user *optlen)
2981 {
2982 if (level != SOL_TCP)
2983 return inet_csk_compat_getsockopt(sk, level, optname,
2984 optval, optlen);
2985 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2986 }
2987 EXPORT_SYMBOL(compat_tcp_getsockopt);
2988 #endif
2989
2990 struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
2991 netdev_features_t features)
2992 {
2993 struct sk_buff *segs = ERR_PTR(-EINVAL);
2994 struct tcphdr *th;
2995 unsigned int thlen;
2996 unsigned int seq;
2997 __be32 delta;
2998 unsigned int oldlen;
2999 unsigned int mss;
3000
3001 if (!pskb_may_pull(skb, sizeof(*th)))
3002 goto out;
3003
3004 th = tcp_hdr(skb);
3005 thlen = th->doff * 4;
3006 if (thlen < sizeof(*th))
3007 goto out;
3008
3009 if (!pskb_may_pull(skb, thlen))
3010 goto out;
3011
3012 oldlen = (u16)~skb->len;
3013 __skb_pull(skb, thlen);
3014
3015 mss = skb_shinfo(skb)->gso_size;
3016 if (unlikely(skb->len <= mss))
3017 goto out;
3018
3019 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
3020 /* Packet is from an untrusted source, reset gso_segs. */
3021 int type = skb_shinfo(skb)->gso_type;
3022
3023 if (unlikely(type &
3024 ~(SKB_GSO_TCPV4 |
3025 SKB_GSO_DODGY |
3026 SKB_GSO_TCP_ECN |
3027 SKB_GSO_TCPV6 |
3028 0) ||
3029 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
3030 goto out;
3031
3032 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
3033
3034 segs = NULL;
3035 goto out;
3036 }
3037
3038 segs = skb_segment(skb, features);
3039 if (IS_ERR(segs))
3040 goto out;
3041
3042 delta = htonl(oldlen + (thlen + mss));
3043
3044 skb = segs;
3045 th = tcp_hdr(skb);
3046 seq = ntohl(th->seq);
3047
3048 do {
3049 th->fin = th->psh = 0;
3050
3051 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3052 (__force u32)delta));
3053 if (skb->ip_summed != CHECKSUM_PARTIAL)
3054 th->check =
3055 csum_fold(csum_partial(skb_transport_header(skb),
3056 thlen, skb->csum));
3057
3058 seq += mss;
3059 skb = skb->next;
3060 th = tcp_hdr(skb);
3061
3062 th->seq = htonl(seq);
3063 th->cwr = 0;
3064 } while (skb->next);
3065
3066 delta = htonl(oldlen + (skb->tail - skb->transport_header) +
3067 skb->data_len);
3068 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3069 (__force u32)delta));
3070 if (skb->ip_summed != CHECKSUM_PARTIAL)
3071 th->check = csum_fold(csum_partial(skb_transport_header(skb),
3072 thlen, skb->csum));
3073
3074 out:
3075 return segs;
3076 }
3077 EXPORT_SYMBOL(tcp_tso_segment);
3078
3079 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3080 {
3081 struct sk_buff **pp = NULL;
3082 struct sk_buff *p;
3083 struct tcphdr *th;
3084 struct tcphdr *th2;
3085 unsigned int len;
3086 unsigned int thlen;
3087 __be32 flags;
3088 unsigned int mss = 1;
3089 unsigned int hlen;
3090 unsigned int off;
3091 int flush = 1;
3092 int i;
3093
3094 off = skb_gro_offset(skb);
3095 hlen = off + sizeof(*th);
3096 th = skb_gro_header_fast(skb, off);
3097 if (skb_gro_header_hard(skb, hlen)) {
3098 th = skb_gro_header_slow(skb, hlen, off);
3099 if (unlikely(!th))
3100 goto out;
3101 }
3102
3103 thlen = th->doff * 4;
3104 if (thlen < sizeof(*th))
3105 goto out;
3106
3107 hlen = off + thlen;
3108 if (skb_gro_header_hard(skb, hlen)) {
3109 th = skb_gro_header_slow(skb, hlen, off);
3110 if (unlikely(!th))
3111 goto out;
3112 }
3113
3114 skb_gro_pull(skb, thlen);
3115
3116 len = skb_gro_len(skb);
3117 flags = tcp_flag_word(th);
3118
3119 for (; (p = *head); head = &p->next) {
3120 if (!NAPI_GRO_CB(p)->same_flow)
3121 continue;
3122
3123 th2 = tcp_hdr(p);
3124
3125 if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
3126 NAPI_GRO_CB(p)->same_flow = 0;
3127 continue;
3128 }
3129
3130 goto found;
3131 }
3132
3133 goto out_check_final;
3134
3135 found:
3136 flush = NAPI_GRO_CB(p)->flush;
3137 flush |= (__force int)(flags & TCP_FLAG_CWR);
3138 flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
3139 ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
3140 flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
3141 for (i = sizeof(*th); i < thlen; i += 4)
3142 flush |= *(u32 *)((u8 *)th + i) ^
3143 *(u32 *)((u8 *)th2 + i);
3144
3145 mss = skb_shinfo(p)->gso_size;
3146
3147 flush |= (len - 1) >= mss;
3148 flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
3149
3150 if (flush || skb_gro_receive(head, skb)) {
3151 mss = 1;
3152 goto out_check_final;
3153 }
3154
3155 p = *head;
3156 th2 = tcp_hdr(p);
3157 tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
3158
3159 out_check_final:
3160 flush = len < mss;
3161 flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
3162 TCP_FLAG_RST | TCP_FLAG_SYN |
3163 TCP_FLAG_FIN));
3164
3165 if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
3166 pp = head;
3167
3168 out:
3169 NAPI_GRO_CB(skb)->flush |= flush;
3170
3171 return pp;
3172 }
3173 EXPORT_SYMBOL(tcp_gro_receive);
3174
3175 int tcp_gro_complete(struct sk_buff *skb)
3176 {
3177 struct tcphdr *th = tcp_hdr(skb);
3178
3179 skb->csum_start = skb_transport_header(skb) - skb->head;
3180 skb->csum_offset = offsetof(struct tcphdr, check);
3181 skb->ip_summed = CHECKSUM_PARTIAL;
3182
3183 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3184
3185 if (th->cwr)
3186 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3187
3188 return 0;
3189 }
3190 EXPORT_SYMBOL(tcp_gro_complete);
3191
3192 #ifdef CONFIG_TCP_MD5SIG
3193 static unsigned long tcp_md5sig_users;
3194 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool;
3195 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
3196
3197 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
3198 {
3199 int cpu;
3200
3201 for_each_possible_cpu(cpu) {
3202 struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
3203
3204 if (p->md5_desc.tfm)
3205 crypto_free_hash(p->md5_desc.tfm);
3206 }
3207 free_percpu(pool);
3208 }
3209
3210 void tcp_free_md5sig_pool(void)
3211 {
3212 struct tcp_md5sig_pool __percpu *pool = NULL;
3213
3214 spin_lock_bh(&tcp_md5sig_pool_lock);
3215 if (--tcp_md5sig_users == 0) {
3216 pool = tcp_md5sig_pool;
3217 tcp_md5sig_pool = NULL;
3218 }
3219 spin_unlock_bh(&tcp_md5sig_pool_lock);
3220 if (pool)
3221 __tcp_free_md5sig_pool(pool);
3222 }
3223 EXPORT_SYMBOL(tcp_free_md5sig_pool);
3224
3225 static struct tcp_md5sig_pool __percpu *
3226 __tcp_alloc_md5sig_pool(struct sock *sk)
3227 {
3228 int cpu;
3229 struct tcp_md5sig_pool __percpu *pool;
3230
3231 pool = alloc_percpu(struct tcp_md5sig_pool);
3232 if (!pool)
3233 return NULL;
3234
3235 for_each_possible_cpu(cpu) {
3236 struct crypto_hash *hash;
3237
3238 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
3239 if (!hash || IS_ERR(hash))
3240 goto out_free;
3241
3242 per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
3243 }
3244 return pool;
3245 out_free:
3246 __tcp_free_md5sig_pool(pool);
3247 return NULL;
3248 }
3249
3250 struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
3251 {
3252 struct tcp_md5sig_pool __percpu *pool;
3253 bool alloc = false;
3254
3255 retry:
3256 spin_lock_bh(&tcp_md5sig_pool_lock);
3257 pool = tcp_md5sig_pool;
3258 if (tcp_md5sig_users++ == 0) {
3259 alloc = true;
3260 spin_unlock_bh(&tcp_md5sig_pool_lock);
3261 } else if (!pool) {
3262 tcp_md5sig_users--;
3263 spin_unlock_bh(&tcp_md5sig_pool_lock);
3264 cpu_relax();
3265 goto retry;
3266 } else
3267 spin_unlock_bh(&tcp_md5sig_pool_lock);
3268
3269 if (alloc) {
3270 /* we cannot hold spinlock here because this may sleep. */
3271 struct tcp_md5sig_pool __percpu *p;
3272
3273 p = __tcp_alloc_md5sig_pool(sk);
3274 spin_lock_bh(&tcp_md5sig_pool_lock);
3275 if (!p) {
3276 tcp_md5sig_users--;
3277 spin_unlock_bh(&tcp_md5sig_pool_lock);
3278 return NULL;
3279 }
3280 pool = tcp_md5sig_pool;
3281 if (pool) {
3282 /* oops, it has already been assigned. */
3283 spin_unlock_bh(&tcp_md5sig_pool_lock);
3284 __tcp_free_md5sig_pool(p);
3285 } else {
3286 tcp_md5sig_pool = pool = p;
3287 spin_unlock_bh(&tcp_md5sig_pool_lock);
3288 }
3289 }
3290 return pool;
3291 }
3292 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3293
3294
3295 /**
3296 * tcp_get_md5sig_pool - get md5sig_pool for this user
3297 *
3298 * We use percpu structure, so if we succeed, we exit with preemption
3299 * and BH disabled, to make sure another thread or softirq handling
3300 * wont try to get same context.
3301 */
3302 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3303 {
3304 struct tcp_md5sig_pool __percpu *p;
3305
3306 local_bh_disable();
3307
3308 spin_lock(&tcp_md5sig_pool_lock);
3309 p = tcp_md5sig_pool;
3310 if (p)
3311 tcp_md5sig_users++;
3312 spin_unlock(&tcp_md5sig_pool_lock);
3313
3314 if (p)
3315 return this_cpu_ptr(p);
3316
3317 local_bh_enable();
3318 return NULL;
3319 }
3320 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3321
3322 void tcp_put_md5sig_pool(void)
3323 {
3324 local_bh_enable();
3325 tcp_free_md5sig_pool();
3326 }
3327 EXPORT_SYMBOL(tcp_put_md5sig_pool);
3328
3329 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3330 const struct tcphdr *th)
3331 {
3332 struct scatterlist sg;
3333 struct tcphdr hdr;
3334 int err;
3335
3336 /* We are not allowed to change tcphdr, make a local copy */
3337 memcpy(&hdr, th, sizeof(hdr));
3338 hdr.check = 0;
3339
3340 /* options aren't included in the hash */
3341 sg_init_one(&sg, &hdr, sizeof(hdr));
3342 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3343 return err;
3344 }
3345 EXPORT_SYMBOL(tcp_md5_hash_header);
3346
3347 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3348 const struct sk_buff *skb, unsigned int header_len)
3349 {
3350 struct scatterlist sg;
3351 const struct tcphdr *tp = tcp_hdr(skb);
3352 struct hash_desc *desc = &hp->md5_desc;
3353 unsigned int i;
3354 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3355 skb_headlen(skb) - header_len : 0;
3356 const struct skb_shared_info *shi = skb_shinfo(skb);
3357 struct sk_buff *frag_iter;
3358
3359 sg_init_table(&sg, 1);
3360
3361 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3362 if (crypto_hash_update(desc, &sg, head_data_len))
3363 return 1;
3364
3365 for (i = 0; i < shi->nr_frags; ++i) {
3366 const struct skb_frag_struct *f = &shi->frags[i];
3367 struct page *page = skb_frag_page(f);
3368 sg_set_page(&sg, page, skb_frag_size(f), f->page_offset);
3369 if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3370 return 1;
3371 }
3372
3373 skb_walk_frags(skb, frag_iter)
3374 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3375 return 1;
3376
3377 return 0;
3378 }
3379 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3380
3381 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3382 {
3383 struct scatterlist sg;
3384
3385 sg_init_one(&sg, key->key, key->keylen);
3386 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3387 }
3388 EXPORT_SYMBOL(tcp_md5_hash_key);
3389
3390 #endif
3391
3392 /* Each Responder maintains up to two secret values concurrently for
3393 * efficient secret rollover. Each secret value has 4 states:
3394 *
3395 * Generating. (tcp_secret_generating != tcp_secret_primary)
3396 * Generates new Responder-Cookies, but not yet used for primary
3397 * verification. This is a short-term state, typically lasting only
3398 * one round trip time (RTT).
3399 *
3400 * Primary. (tcp_secret_generating == tcp_secret_primary)
3401 * Used both for generation and primary verification.
3402 *
3403 * Retiring. (tcp_secret_retiring != tcp_secret_secondary)
3404 * Used for verification, until the first failure that can be
3405 * verified by the newer Generating secret. At that time, this
3406 * cookie's state is changed to Secondary, and the Generating
3407 * cookie's state is changed to Primary. This is a short-term state,
3408 * typically lasting only one round trip time (RTT).
3409 *
3410 * Secondary. (tcp_secret_retiring == tcp_secret_secondary)
3411 * Used for secondary verification, after primary verification
3412 * failures. This state lasts no more than twice the Maximum Segment
3413 * Lifetime (2MSL). Then, the secret is discarded.
3414 */
3415 struct tcp_cookie_secret {
3416 /* The secret is divided into two parts. The digest part is the
3417 * equivalent of previously hashing a secret and saving the state,
3418 * and serves as an initialization vector (IV). The message part
3419 * serves as the trailing secret.
3420 */
3421 u32 secrets[COOKIE_WORKSPACE_WORDS];
3422 unsigned long expires;
3423 };
3424
3425 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3426 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3427 #define TCP_SECRET_LIFE (HZ * 600)
3428
3429 static struct tcp_cookie_secret tcp_secret_one;
3430 static struct tcp_cookie_secret tcp_secret_two;
3431
3432 /* Essentially a circular list, without dynamic allocation. */
3433 static struct tcp_cookie_secret *tcp_secret_generating;
3434 static struct tcp_cookie_secret *tcp_secret_primary;
3435 static struct tcp_cookie_secret *tcp_secret_retiring;
3436 static struct tcp_cookie_secret *tcp_secret_secondary;
3437
3438 static DEFINE_SPINLOCK(tcp_secret_locker);
3439
3440 /* Select a pseudo-random word in the cookie workspace.
3441 */
3442 static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3443 {
3444 return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3445 }
3446
3447 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3448 * Called in softirq context.
3449 * Returns: 0 for success.
3450 */
3451 int tcp_cookie_generator(u32 *bakery)
3452 {
3453 unsigned long jiffy = jiffies;
3454
3455 if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3456 spin_lock_bh(&tcp_secret_locker);
3457 if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3458 /* refreshed by another */
3459 memcpy(bakery,
3460 &tcp_secret_generating->secrets[0],
3461 COOKIE_WORKSPACE_WORDS);
3462 } else {
3463 /* still needs refreshing */
3464 get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3465
3466 /* The first time, paranoia assumes that the
3467 * randomization function isn't as strong. But,
3468 * this secret initialization is delayed until
3469 * the last possible moment (packet arrival).
3470 * Although that time is observable, it is
3471 * unpredictably variable. Mash in the most
3472 * volatile clock bits available, and expire the
3473 * secret extra quickly.
3474 */
3475 if (unlikely(tcp_secret_primary->expires ==
3476 tcp_secret_secondary->expires)) {
3477 struct timespec tv;
3478
3479 getnstimeofday(&tv);
3480 bakery[COOKIE_DIGEST_WORDS+0] ^=
3481 (u32)tv.tv_nsec;
3482
3483 tcp_secret_secondary->expires = jiffy
3484 + TCP_SECRET_1MSL
3485 + (0x0f & tcp_cookie_work(bakery, 0));
3486 } else {
3487 tcp_secret_secondary->expires = jiffy
3488 + TCP_SECRET_LIFE
3489 + (0xff & tcp_cookie_work(bakery, 1));
3490 tcp_secret_primary->expires = jiffy
3491 + TCP_SECRET_2MSL
3492 + (0x1f & tcp_cookie_work(bakery, 2));
3493 }
3494 memcpy(&tcp_secret_secondary->secrets[0],
3495 bakery, COOKIE_WORKSPACE_WORDS);
3496
3497 rcu_assign_pointer(tcp_secret_generating,
3498 tcp_secret_secondary);
3499 rcu_assign_pointer(tcp_secret_retiring,
3500 tcp_secret_primary);
3501 /*
3502 * Neither call_rcu() nor synchronize_rcu() needed.
3503 * Retiring data is not freed. It is replaced after
3504 * further (locked) pointer updates, and a quiet time
3505 * (minimum 1MSL, maximum LIFE - 2MSL).
3506 */
3507 }
3508 spin_unlock_bh(&tcp_secret_locker);
3509 } else {
3510 rcu_read_lock_bh();
3511 memcpy(bakery,
3512 &rcu_dereference(tcp_secret_generating)->secrets[0],
3513 COOKIE_WORKSPACE_WORDS);
3514 rcu_read_unlock_bh();
3515 }
3516 return 0;
3517 }
3518 EXPORT_SYMBOL(tcp_cookie_generator);
3519
3520 void tcp_done(struct sock *sk)
3521 {
3522 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3523
3524 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3525 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3526
3527 tcp_set_state(sk, TCP_CLOSE);
3528 tcp_clear_xmit_timers(sk);
3529 if (req != NULL)
3530 reqsk_fastopen_remove(sk, req, false);
3531
3532 sk->sk_shutdown = SHUTDOWN_MASK;
3533
3534 if (!sock_flag(sk, SOCK_DEAD))
3535 sk->sk_state_change(sk);
3536 else
3537 inet_csk_destroy_sock(sk);
3538 }
3539 EXPORT_SYMBOL_GPL(tcp_done);
3540
3541 extern struct tcp_congestion_ops tcp_reno;
3542
3543 static __initdata unsigned long thash_entries;
3544 static int __init set_thash_entries(char *str)
3545 {
3546 ssize_t ret;
3547
3548 if (!str)
3549 return 0;
3550
3551 ret = kstrtoul(str, 0, &thash_entries);
3552 if (ret)
3553 return 0;
3554
3555 return 1;
3556 }
3557 __setup("thash_entries=", set_thash_entries);
3558
3559 void tcp_init_mem(struct net *net)
3560 {
3561 unsigned long limit = nr_free_buffer_pages() / 8;
3562 limit = max(limit, 128UL);
3563 net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3564 net->ipv4.sysctl_tcp_mem[1] = limit;
3565 net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3566 }
3567
3568 void __init tcp_init(void)
3569 {
3570 struct sk_buff *skb = NULL;
3571 unsigned long limit;
3572 int max_rshare, max_wshare, cnt;
3573 unsigned int i;
3574 unsigned long jiffy = jiffies;
3575
3576 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3577
3578 percpu_counter_init(&tcp_sockets_allocated, 0);
3579 percpu_counter_init(&tcp_orphan_count, 0);
3580 tcp_hashinfo.bind_bucket_cachep =
3581 kmem_cache_create("tcp_bind_bucket",
3582 sizeof(struct inet_bind_bucket), 0,
3583 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3584
3585 /* Size and allocate the main established and bind bucket
3586 * hash tables.
3587 *
3588 * The methodology is similar to that of the buffer cache.
3589 */
3590 tcp_hashinfo.ehash =
3591 alloc_large_system_hash("TCP established",
3592 sizeof(struct inet_ehash_bucket),
3593 thash_entries,
3594 17, /* one slot per 128 KB of memory */
3595 0,
3596 NULL,
3597 &tcp_hashinfo.ehash_mask,
3598 0,
3599 thash_entries ? 0 : 512 * 1024);
3600 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3601 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3602 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3603 }
3604 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3605 panic("TCP: failed to alloc ehash_locks");
3606 tcp_hashinfo.bhash =
3607 alloc_large_system_hash("TCP bind",
3608 sizeof(struct inet_bind_hashbucket),
3609 tcp_hashinfo.ehash_mask + 1,
3610 17, /* one slot per 128 KB of memory */
3611 0,
3612 &tcp_hashinfo.bhash_size,
3613 NULL,
3614 0,
3615 64 * 1024);
3616 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3617 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3618 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3619 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3620 }
3621
3622
3623 cnt = tcp_hashinfo.ehash_mask + 1;
3624
3625 tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3626 sysctl_tcp_max_orphans = cnt / 2;
3627 sysctl_max_syn_backlog = max(128, cnt / 256);
3628
3629 tcp_init_mem(&init_net);
3630 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3631 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3632 max_wshare = min(4UL*1024*1024, limit);
3633 max_rshare = min(6UL*1024*1024, limit);
3634
3635 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3636 sysctl_tcp_wmem[1] = 16*1024;
3637 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3638
3639 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3640 sysctl_tcp_rmem[1] = 87380;
3641 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3642
3643 pr_info("Hash tables configured (established %u bind %u)\n",
3644 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3645
3646 tcp_metrics_init();
3647
3648 tcp_register_congestion_control(&tcp_reno);
3649
3650 memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3651 memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3652 tcp_secret_one.expires = jiffy; /* past due */
3653 tcp_secret_two.expires = jiffy; /* past due */
3654 tcp_secret_generating = &tcp_secret_one;
3655 tcp_secret_primary = &tcp_secret_one;
3656 tcp_secret_retiring = &tcp_secret_two;
3657 tcp_secret_secondary = &tcp_secret_two;
3658 tcp_tasklet_init();
3659 }