]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/tcp.c
tcp: Add missing braces to do_tcp_setsockopt
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248 #define pr_fmt(fmt) "TCP: " fmt
249
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
271
272 #include <net/icmp.h>
273 #include <net/inet_common.h>
274 #include <net/tcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/netdma.h>
278 #include <net/sock.h>
279
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <net/busy_poll.h>
283
284 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
285
286 struct percpu_counter tcp_orphan_count;
287 EXPORT_SYMBOL_GPL(tcp_orphan_count);
288
289 int sysctl_tcp_wmem[3] __read_mostly;
290 int sysctl_tcp_rmem[3] __read_mostly;
291
292 EXPORT_SYMBOL(sysctl_tcp_rmem);
293 EXPORT_SYMBOL(sysctl_tcp_wmem);
294
295 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297
298 /*
299 * Current number of TCP sockets.
300 */
301 struct percpu_counter tcp_sockets_allocated;
302 EXPORT_SYMBOL(tcp_sockets_allocated);
303
304 /*
305 * TCP splice context
306 */
307 struct tcp_splice_state {
308 struct pipe_inode_info *pipe;
309 size_t len;
310 unsigned int flags;
311 };
312
313 /*
314 * Pressure flag: try to collapse.
315 * Technical note: it is used by multiple contexts non atomically.
316 * All the __sk_mem_schedule() is of this nature: accounting
317 * is strict, actions are advisory and have some latency.
318 */
319 int tcp_memory_pressure __read_mostly;
320 EXPORT_SYMBOL(tcp_memory_pressure);
321
322 void tcp_enter_memory_pressure(struct sock *sk)
323 {
324 if (!tcp_memory_pressure) {
325 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
326 tcp_memory_pressure = 1;
327 }
328 }
329 EXPORT_SYMBOL(tcp_enter_memory_pressure);
330
331 /* Convert seconds to retransmits based on initial and max timeout */
332 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
333 {
334 u8 res = 0;
335
336 if (seconds > 0) {
337 int period = timeout;
338
339 res = 1;
340 while (seconds > period && res < 255) {
341 res++;
342 timeout <<= 1;
343 if (timeout > rto_max)
344 timeout = rto_max;
345 period += timeout;
346 }
347 }
348 return res;
349 }
350
351 /* Convert retransmits to seconds based on initial and max timeout */
352 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
353 {
354 int period = 0;
355
356 if (retrans > 0) {
357 period = timeout;
358 while (--retrans) {
359 timeout <<= 1;
360 if (timeout > rto_max)
361 timeout = rto_max;
362 period += timeout;
363 }
364 }
365 return period;
366 }
367
368 /* Address-family independent initialization for a tcp_sock.
369 *
370 * NOTE: A lot of things set to zero explicitly by call to
371 * sk_alloc() so need not be done here.
372 */
373 void tcp_init_sock(struct sock *sk)
374 {
375 struct inet_connection_sock *icsk = inet_csk(sk);
376 struct tcp_sock *tp = tcp_sk(sk);
377
378 skb_queue_head_init(&tp->out_of_order_queue);
379 tcp_init_xmit_timers(sk);
380 tcp_prequeue_init(tp);
381 INIT_LIST_HEAD(&tp->tsq_node);
382
383 icsk->icsk_rto = TCP_TIMEOUT_INIT;
384 tp->mdev = TCP_TIMEOUT_INIT;
385
386 /* So many TCP implementations out there (incorrectly) count the
387 * initial SYN frame in their delayed-ACK and congestion control
388 * algorithms that we must have the following bandaid to talk
389 * efficiently to them. -DaveM
390 */
391 tp->snd_cwnd = TCP_INIT_CWND;
392
393 /* See draft-stevens-tcpca-spec-01 for discussion of the
394 * initialization of these values.
395 */
396 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
397 tp->snd_cwnd_clamp = ~0;
398 tp->mss_cache = TCP_MSS_DEFAULT;
399
400 tp->reordering = sysctl_tcp_reordering;
401 tcp_enable_early_retrans(tp);
402 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
403
404 tp->tsoffset = 0;
405
406 sk->sk_state = TCP_CLOSE;
407
408 sk->sk_write_space = sk_stream_write_space;
409 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
410
411 icsk->icsk_sync_mss = tcp_sync_mss;
412
413 /* Presumed zeroed, in order of appearance:
414 * cookie_in_always, cookie_out_never,
415 * s_data_constant, s_data_in, s_data_out
416 */
417 sk->sk_sndbuf = sysctl_tcp_wmem[1];
418 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
419
420 local_bh_disable();
421 sock_update_memcg(sk);
422 sk_sockets_allocated_inc(sk);
423 local_bh_enable();
424 }
425 EXPORT_SYMBOL(tcp_init_sock);
426
427 /*
428 * Wait for a TCP event.
429 *
430 * Note that we don't need to lock the socket, as the upper poll layers
431 * take care of normal races (between the test and the event) and we don't
432 * go look at any of the socket buffers directly.
433 */
434 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
435 {
436 unsigned int mask;
437 struct sock *sk = sock->sk;
438 const struct tcp_sock *tp = tcp_sk(sk);
439
440 sock_rps_record_flow(sk);
441
442 sock_poll_wait(file, sk_sleep(sk), wait);
443 if (sk->sk_state == TCP_LISTEN)
444 return inet_csk_listen_poll(sk);
445
446 /* Socket is not locked. We are protected from async events
447 * by poll logic and correct handling of state changes
448 * made by other threads is impossible in any case.
449 */
450
451 mask = 0;
452
453 /*
454 * POLLHUP is certainly not done right. But poll() doesn't
455 * have a notion of HUP in just one direction, and for a
456 * socket the read side is more interesting.
457 *
458 * Some poll() documentation says that POLLHUP is incompatible
459 * with the POLLOUT/POLLWR flags, so somebody should check this
460 * all. But careful, it tends to be safer to return too many
461 * bits than too few, and you can easily break real applications
462 * if you don't tell them that something has hung up!
463 *
464 * Check-me.
465 *
466 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
467 * our fs/select.c). It means that after we received EOF,
468 * poll always returns immediately, making impossible poll() on write()
469 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
470 * if and only if shutdown has been made in both directions.
471 * Actually, it is interesting to look how Solaris and DUX
472 * solve this dilemma. I would prefer, if POLLHUP were maskable,
473 * then we could set it on SND_SHUTDOWN. BTW examples given
474 * in Stevens' books assume exactly this behaviour, it explains
475 * why POLLHUP is incompatible with POLLOUT. --ANK
476 *
477 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
478 * blocking on fresh not-connected or disconnected socket. --ANK
479 */
480 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
481 mask |= POLLHUP;
482 if (sk->sk_shutdown & RCV_SHUTDOWN)
483 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
484
485 /* Connected or passive Fast Open socket? */
486 if (sk->sk_state != TCP_SYN_SENT &&
487 (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) {
488 int target = sock_rcvlowat(sk, 0, INT_MAX);
489
490 if (tp->urg_seq == tp->copied_seq &&
491 !sock_flag(sk, SOCK_URGINLINE) &&
492 tp->urg_data)
493 target++;
494
495 /* Potential race condition. If read of tp below will
496 * escape above sk->sk_state, we can be illegally awaken
497 * in SYN_* states. */
498 if (tp->rcv_nxt - tp->copied_seq >= target)
499 mask |= POLLIN | POLLRDNORM;
500
501 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
502 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
503 mask |= POLLOUT | POLLWRNORM;
504 } else { /* send SIGIO later */
505 set_bit(SOCK_ASYNC_NOSPACE,
506 &sk->sk_socket->flags);
507 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
508
509 /* Race breaker. If space is freed after
510 * wspace test but before the flags are set,
511 * IO signal will be lost.
512 */
513 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
514 mask |= POLLOUT | POLLWRNORM;
515 }
516 } else
517 mask |= POLLOUT | POLLWRNORM;
518
519 if (tp->urg_data & TCP_URG_VALID)
520 mask |= POLLPRI;
521 }
522 /* This barrier is coupled with smp_wmb() in tcp_reset() */
523 smp_rmb();
524 if (sk->sk_err)
525 mask |= POLLERR;
526
527 return mask;
528 }
529 EXPORT_SYMBOL(tcp_poll);
530
531 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
532 {
533 struct tcp_sock *tp = tcp_sk(sk);
534 int answ;
535 bool slow;
536
537 switch (cmd) {
538 case SIOCINQ:
539 if (sk->sk_state == TCP_LISTEN)
540 return -EINVAL;
541
542 slow = lock_sock_fast(sk);
543 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
544 answ = 0;
545 else if (sock_flag(sk, SOCK_URGINLINE) ||
546 !tp->urg_data ||
547 before(tp->urg_seq, tp->copied_seq) ||
548 !before(tp->urg_seq, tp->rcv_nxt)) {
549
550 answ = tp->rcv_nxt - tp->copied_seq;
551
552 /* Subtract 1, if FIN was received */
553 if (answ && sock_flag(sk, SOCK_DONE))
554 answ--;
555 } else
556 answ = tp->urg_seq - tp->copied_seq;
557 unlock_sock_fast(sk, slow);
558 break;
559 case SIOCATMARK:
560 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
561 break;
562 case SIOCOUTQ:
563 if (sk->sk_state == TCP_LISTEN)
564 return -EINVAL;
565
566 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
567 answ = 0;
568 else
569 answ = tp->write_seq - tp->snd_una;
570 break;
571 case SIOCOUTQNSD:
572 if (sk->sk_state == TCP_LISTEN)
573 return -EINVAL;
574
575 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
576 answ = 0;
577 else
578 answ = tp->write_seq - tp->snd_nxt;
579 break;
580 default:
581 return -ENOIOCTLCMD;
582 }
583
584 return put_user(answ, (int __user *)arg);
585 }
586 EXPORT_SYMBOL(tcp_ioctl);
587
588 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
589 {
590 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
591 tp->pushed_seq = tp->write_seq;
592 }
593
594 static inline bool forced_push(const struct tcp_sock *tp)
595 {
596 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
597 }
598
599 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
600 {
601 struct tcp_sock *tp = tcp_sk(sk);
602 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
603
604 skb->csum = 0;
605 tcb->seq = tcb->end_seq = tp->write_seq;
606 tcb->tcp_flags = TCPHDR_ACK;
607 tcb->sacked = 0;
608 skb_header_release(skb);
609 tcp_add_write_queue_tail(sk, skb);
610 sk->sk_wmem_queued += skb->truesize;
611 sk_mem_charge(sk, skb->truesize);
612 if (tp->nonagle & TCP_NAGLE_PUSH)
613 tp->nonagle &= ~TCP_NAGLE_PUSH;
614 }
615
616 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
617 {
618 if (flags & MSG_OOB)
619 tp->snd_up = tp->write_seq;
620 }
621
622 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
623 int nonagle)
624 {
625 if (tcp_send_head(sk)) {
626 struct tcp_sock *tp = tcp_sk(sk);
627
628 if (!(flags & MSG_MORE) || forced_push(tp))
629 tcp_mark_push(tp, tcp_write_queue_tail(sk));
630
631 tcp_mark_urg(tp, flags);
632 __tcp_push_pending_frames(sk, mss_now,
633 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
634 }
635 }
636
637 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
638 unsigned int offset, size_t len)
639 {
640 struct tcp_splice_state *tss = rd_desc->arg.data;
641 int ret;
642
643 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
644 tss->flags);
645 if (ret > 0)
646 rd_desc->count -= ret;
647 return ret;
648 }
649
650 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
651 {
652 /* Store TCP splice context information in read_descriptor_t. */
653 read_descriptor_t rd_desc = {
654 .arg.data = tss,
655 .count = tss->len,
656 };
657
658 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
659 }
660
661 /**
662 * tcp_splice_read - splice data from TCP socket to a pipe
663 * @sock: socket to splice from
664 * @ppos: position (not valid)
665 * @pipe: pipe to splice to
666 * @len: number of bytes to splice
667 * @flags: splice modifier flags
668 *
669 * Description:
670 * Will read pages from given socket and fill them into a pipe.
671 *
672 **/
673 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
674 struct pipe_inode_info *pipe, size_t len,
675 unsigned int flags)
676 {
677 struct sock *sk = sock->sk;
678 struct tcp_splice_state tss = {
679 .pipe = pipe,
680 .len = len,
681 .flags = flags,
682 };
683 long timeo;
684 ssize_t spliced;
685 int ret;
686
687 sock_rps_record_flow(sk);
688 /*
689 * We can't seek on a socket input
690 */
691 if (unlikely(*ppos))
692 return -ESPIPE;
693
694 ret = spliced = 0;
695
696 lock_sock(sk);
697
698 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
699 while (tss.len) {
700 ret = __tcp_splice_read(sk, &tss);
701 if (ret < 0)
702 break;
703 else if (!ret) {
704 if (spliced)
705 break;
706 if (sock_flag(sk, SOCK_DONE))
707 break;
708 if (sk->sk_err) {
709 ret = sock_error(sk);
710 break;
711 }
712 if (sk->sk_shutdown & RCV_SHUTDOWN)
713 break;
714 if (sk->sk_state == TCP_CLOSE) {
715 /*
716 * This occurs when user tries to read
717 * from never connected socket.
718 */
719 if (!sock_flag(sk, SOCK_DONE))
720 ret = -ENOTCONN;
721 break;
722 }
723 if (!timeo) {
724 ret = -EAGAIN;
725 break;
726 }
727 sk_wait_data(sk, &timeo);
728 if (signal_pending(current)) {
729 ret = sock_intr_errno(timeo);
730 break;
731 }
732 continue;
733 }
734 tss.len -= ret;
735 spliced += ret;
736
737 if (!timeo)
738 break;
739 release_sock(sk);
740 lock_sock(sk);
741
742 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
743 (sk->sk_shutdown & RCV_SHUTDOWN) ||
744 signal_pending(current))
745 break;
746 }
747
748 release_sock(sk);
749
750 if (spliced)
751 return spliced;
752
753 return ret;
754 }
755 EXPORT_SYMBOL(tcp_splice_read);
756
757 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
758 {
759 struct sk_buff *skb;
760
761 /* The TCP header must be at least 32-bit aligned. */
762 size = ALIGN(size, 4);
763
764 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
765 if (skb) {
766 if (sk_wmem_schedule(sk, skb->truesize)) {
767 skb_reserve(skb, sk->sk_prot->max_header);
768 /*
769 * Make sure that we have exactly size bytes
770 * available to the caller, no more, no less.
771 */
772 skb->reserved_tailroom = skb->end - skb->tail - size;
773 return skb;
774 }
775 __kfree_skb(skb);
776 } else {
777 sk->sk_prot->enter_memory_pressure(sk);
778 sk_stream_moderate_sndbuf(sk);
779 }
780 return NULL;
781 }
782
783 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
784 int large_allowed)
785 {
786 struct tcp_sock *tp = tcp_sk(sk);
787 u32 xmit_size_goal, old_size_goal;
788
789 xmit_size_goal = mss_now;
790
791 if (large_allowed && sk_can_gso(sk)) {
792 xmit_size_goal = ((sk->sk_gso_max_size - 1) -
793 inet_csk(sk)->icsk_af_ops->net_header_len -
794 inet_csk(sk)->icsk_ext_hdr_len -
795 tp->tcp_header_len);
796
797 /* TSQ : try to have two TSO segments in flight */
798 xmit_size_goal = min_t(u32, xmit_size_goal,
799 sysctl_tcp_limit_output_bytes >> 1);
800
801 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
802
803 /* We try hard to avoid divides here */
804 old_size_goal = tp->xmit_size_goal_segs * mss_now;
805
806 if (likely(old_size_goal <= xmit_size_goal &&
807 old_size_goal + mss_now > xmit_size_goal)) {
808 xmit_size_goal = old_size_goal;
809 } else {
810 tp->xmit_size_goal_segs =
811 min_t(u16, xmit_size_goal / mss_now,
812 sk->sk_gso_max_segs);
813 xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
814 }
815 }
816
817 return max(xmit_size_goal, mss_now);
818 }
819
820 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
821 {
822 int mss_now;
823
824 mss_now = tcp_current_mss(sk);
825 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
826
827 return mss_now;
828 }
829
830 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
831 size_t size, int flags)
832 {
833 struct tcp_sock *tp = tcp_sk(sk);
834 int mss_now, size_goal;
835 int err;
836 ssize_t copied;
837 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
838
839 /* Wait for a connection to finish. One exception is TCP Fast Open
840 * (passive side) where data is allowed to be sent before a connection
841 * is fully established.
842 */
843 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
844 !tcp_passive_fastopen(sk)) {
845 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
846 goto out_err;
847 }
848
849 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
850
851 mss_now = tcp_send_mss(sk, &size_goal, flags);
852 copied = 0;
853
854 err = -EPIPE;
855 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
856 goto out_err;
857
858 while (size > 0) {
859 struct sk_buff *skb = tcp_write_queue_tail(sk);
860 int copy, i;
861 bool can_coalesce;
862
863 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
864 new_segment:
865 if (!sk_stream_memory_free(sk))
866 goto wait_for_sndbuf;
867
868 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
869 if (!skb)
870 goto wait_for_memory;
871
872 skb_entail(sk, skb);
873 copy = size_goal;
874 }
875
876 if (copy > size)
877 copy = size;
878
879 i = skb_shinfo(skb)->nr_frags;
880 can_coalesce = skb_can_coalesce(skb, i, page, offset);
881 if (!can_coalesce && i >= MAX_SKB_FRAGS) {
882 tcp_mark_push(tp, skb);
883 goto new_segment;
884 }
885 if (!sk_wmem_schedule(sk, copy))
886 goto wait_for_memory;
887
888 if (can_coalesce) {
889 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
890 } else {
891 get_page(page);
892 skb_fill_page_desc(skb, i, page, offset, copy);
893 }
894 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
895
896 skb->len += copy;
897 skb->data_len += copy;
898 skb->truesize += copy;
899 sk->sk_wmem_queued += copy;
900 sk_mem_charge(sk, copy);
901 skb->ip_summed = CHECKSUM_PARTIAL;
902 tp->write_seq += copy;
903 TCP_SKB_CB(skb)->end_seq += copy;
904 skb_shinfo(skb)->gso_segs = 0;
905
906 if (!copied)
907 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
908
909 copied += copy;
910 offset += copy;
911 if (!(size -= copy))
912 goto out;
913
914 if (skb->len < size_goal || (flags & MSG_OOB))
915 continue;
916
917 if (forced_push(tp)) {
918 tcp_mark_push(tp, skb);
919 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
920 } else if (skb == tcp_send_head(sk))
921 tcp_push_one(sk, mss_now);
922 continue;
923
924 wait_for_sndbuf:
925 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
926 wait_for_memory:
927 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
928
929 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
930 goto do_error;
931
932 mss_now = tcp_send_mss(sk, &size_goal, flags);
933 }
934
935 out:
936 if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
937 tcp_push(sk, flags, mss_now, tp->nonagle);
938 return copied;
939
940 do_error:
941 if (copied)
942 goto out;
943 out_err:
944 return sk_stream_error(sk, flags, err);
945 }
946
947 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
948 size_t size, int flags)
949 {
950 ssize_t res;
951
952 if (!(sk->sk_route_caps & NETIF_F_SG) ||
953 !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
954 return sock_no_sendpage(sk->sk_socket, page, offset, size,
955 flags);
956
957 lock_sock(sk);
958 res = do_tcp_sendpages(sk, page, offset, size, flags);
959 release_sock(sk);
960 return res;
961 }
962 EXPORT_SYMBOL(tcp_sendpage);
963
964 static inline int select_size(const struct sock *sk, bool sg)
965 {
966 const struct tcp_sock *tp = tcp_sk(sk);
967 int tmp = tp->mss_cache;
968
969 if (sg) {
970 if (sk_can_gso(sk)) {
971 /* Small frames wont use a full page:
972 * Payload will immediately follow tcp header.
973 */
974 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
975 } else {
976 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
977
978 if (tmp >= pgbreak &&
979 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
980 tmp = pgbreak;
981 }
982 }
983
984 return tmp;
985 }
986
987 void tcp_free_fastopen_req(struct tcp_sock *tp)
988 {
989 if (tp->fastopen_req != NULL) {
990 kfree(tp->fastopen_req);
991 tp->fastopen_req = NULL;
992 }
993 }
994
995 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *size)
996 {
997 struct tcp_sock *tp = tcp_sk(sk);
998 int err, flags;
999
1000 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1001 return -EOPNOTSUPP;
1002 if (tp->fastopen_req != NULL)
1003 return -EALREADY; /* Another Fast Open is in progress */
1004
1005 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1006 sk->sk_allocation);
1007 if (unlikely(tp->fastopen_req == NULL))
1008 return -ENOBUFS;
1009 tp->fastopen_req->data = msg;
1010
1011 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1012 err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1013 msg->msg_namelen, flags);
1014 *size = tp->fastopen_req->copied;
1015 tcp_free_fastopen_req(tp);
1016 return err;
1017 }
1018
1019 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1020 size_t size)
1021 {
1022 struct iovec *iov;
1023 struct tcp_sock *tp = tcp_sk(sk);
1024 struct sk_buff *skb;
1025 int iovlen, flags, err, copied = 0;
1026 int mss_now = 0, size_goal, copied_syn = 0, offset = 0;
1027 bool sg;
1028 long timeo;
1029
1030 lock_sock(sk);
1031
1032 flags = msg->msg_flags;
1033 if (flags & MSG_FASTOPEN) {
1034 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn);
1035 if (err == -EINPROGRESS && copied_syn > 0)
1036 goto out;
1037 else if (err)
1038 goto out_err;
1039 offset = copied_syn;
1040 }
1041
1042 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1043
1044 /* Wait for a connection to finish. One exception is TCP Fast Open
1045 * (passive side) where data is allowed to be sent before a connection
1046 * is fully established.
1047 */
1048 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1049 !tcp_passive_fastopen(sk)) {
1050 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1051 goto do_error;
1052 }
1053
1054 if (unlikely(tp->repair)) {
1055 if (tp->repair_queue == TCP_RECV_QUEUE) {
1056 copied = tcp_send_rcvq(sk, msg, size);
1057 goto out;
1058 }
1059
1060 err = -EINVAL;
1061 if (tp->repair_queue == TCP_NO_QUEUE)
1062 goto out_err;
1063
1064 /* 'common' sending to sendq */
1065 }
1066
1067 /* This should be in poll */
1068 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1069
1070 mss_now = tcp_send_mss(sk, &size_goal, flags);
1071
1072 /* Ok commence sending. */
1073 iovlen = msg->msg_iovlen;
1074 iov = msg->msg_iov;
1075 copied = 0;
1076
1077 err = -EPIPE;
1078 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1079 goto out_err;
1080
1081 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1082
1083 while (--iovlen >= 0) {
1084 size_t seglen = iov->iov_len;
1085 unsigned char __user *from = iov->iov_base;
1086
1087 iov++;
1088 if (unlikely(offset > 0)) { /* Skip bytes copied in SYN */
1089 if (offset >= seglen) {
1090 offset -= seglen;
1091 continue;
1092 }
1093 seglen -= offset;
1094 from += offset;
1095 offset = 0;
1096 }
1097
1098 while (seglen > 0) {
1099 int copy = 0;
1100 int max = size_goal;
1101
1102 skb = tcp_write_queue_tail(sk);
1103 if (tcp_send_head(sk)) {
1104 if (skb->ip_summed == CHECKSUM_NONE)
1105 max = mss_now;
1106 copy = max - skb->len;
1107 }
1108
1109 if (copy <= 0) {
1110 new_segment:
1111 /* Allocate new segment. If the interface is SG,
1112 * allocate skb fitting to single page.
1113 */
1114 if (!sk_stream_memory_free(sk))
1115 goto wait_for_sndbuf;
1116
1117 skb = sk_stream_alloc_skb(sk,
1118 select_size(sk, sg),
1119 sk->sk_allocation);
1120 if (!skb)
1121 goto wait_for_memory;
1122
1123 /*
1124 * All packets are restored as if they have
1125 * already been sent.
1126 */
1127 if (tp->repair)
1128 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1129
1130 /*
1131 * Check whether we can use HW checksum.
1132 */
1133 if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1134 skb->ip_summed = CHECKSUM_PARTIAL;
1135
1136 skb_entail(sk, skb);
1137 copy = size_goal;
1138 max = size_goal;
1139 }
1140
1141 /* Try to append data to the end of skb. */
1142 if (copy > seglen)
1143 copy = seglen;
1144
1145 /* Where to copy to? */
1146 if (skb_availroom(skb) > 0) {
1147 /* We have some space in skb head. Superb! */
1148 copy = min_t(int, copy, skb_availroom(skb));
1149 err = skb_add_data_nocache(sk, skb, from, copy);
1150 if (err)
1151 goto do_fault;
1152 } else {
1153 bool merge = true;
1154 int i = skb_shinfo(skb)->nr_frags;
1155 struct page_frag *pfrag = sk_page_frag(sk);
1156
1157 if (!sk_page_frag_refill(sk, pfrag))
1158 goto wait_for_memory;
1159
1160 if (!skb_can_coalesce(skb, i, pfrag->page,
1161 pfrag->offset)) {
1162 if (i == MAX_SKB_FRAGS || !sg) {
1163 tcp_mark_push(tp, skb);
1164 goto new_segment;
1165 }
1166 merge = false;
1167 }
1168
1169 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1170
1171 if (!sk_wmem_schedule(sk, copy))
1172 goto wait_for_memory;
1173
1174 err = skb_copy_to_page_nocache(sk, from, skb,
1175 pfrag->page,
1176 pfrag->offset,
1177 copy);
1178 if (err)
1179 goto do_error;
1180
1181 /* Update the skb. */
1182 if (merge) {
1183 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1184 } else {
1185 skb_fill_page_desc(skb, i, pfrag->page,
1186 pfrag->offset, copy);
1187 get_page(pfrag->page);
1188 }
1189 pfrag->offset += copy;
1190 }
1191
1192 if (!copied)
1193 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1194
1195 tp->write_seq += copy;
1196 TCP_SKB_CB(skb)->end_seq += copy;
1197 skb_shinfo(skb)->gso_segs = 0;
1198
1199 from += copy;
1200 copied += copy;
1201 if ((seglen -= copy) == 0 && iovlen == 0)
1202 goto out;
1203
1204 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1205 continue;
1206
1207 if (forced_push(tp)) {
1208 tcp_mark_push(tp, skb);
1209 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1210 } else if (skb == tcp_send_head(sk))
1211 tcp_push_one(sk, mss_now);
1212 continue;
1213
1214 wait_for_sndbuf:
1215 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1216 wait_for_memory:
1217 if (copied)
1218 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1219
1220 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1221 goto do_error;
1222
1223 mss_now = tcp_send_mss(sk, &size_goal, flags);
1224 }
1225 }
1226
1227 out:
1228 if (copied)
1229 tcp_push(sk, flags, mss_now, tp->nonagle);
1230 release_sock(sk);
1231 return copied + copied_syn;
1232
1233 do_fault:
1234 if (!skb->len) {
1235 tcp_unlink_write_queue(skb, sk);
1236 /* It is the one place in all of TCP, except connection
1237 * reset, where we can be unlinking the send_head.
1238 */
1239 tcp_check_send_head(sk, skb);
1240 sk_wmem_free_skb(sk, skb);
1241 }
1242
1243 do_error:
1244 if (copied + copied_syn)
1245 goto out;
1246 out_err:
1247 err = sk_stream_error(sk, flags, err);
1248 release_sock(sk);
1249 return err;
1250 }
1251 EXPORT_SYMBOL(tcp_sendmsg);
1252
1253 /*
1254 * Handle reading urgent data. BSD has very simple semantics for
1255 * this, no blocking and very strange errors 8)
1256 */
1257
1258 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1259 {
1260 struct tcp_sock *tp = tcp_sk(sk);
1261
1262 /* No URG data to read. */
1263 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1264 tp->urg_data == TCP_URG_READ)
1265 return -EINVAL; /* Yes this is right ! */
1266
1267 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1268 return -ENOTCONN;
1269
1270 if (tp->urg_data & TCP_URG_VALID) {
1271 int err = 0;
1272 char c = tp->urg_data;
1273
1274 if (!(flags & MSG_PEEK))
1275 tp->urg_data = TCP_URG_READ;
1276
1277 /* Read urgent data. */
1278 msg->msg_flags |= MSG_OOB;
1279
1280 if (len > 0) {
1281 if (!(flags & MSG_TRUNC))
1282 err = memcpy_toiovec(msg->msg_iov, &c, 1);
1283 len = 1;
1284 } else
1285 msg->msg_flags |= MSG_TRUNC;
1286
1287 return err ? -EFAULT : len;
1288 }
1289
1290 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1291 return 0;
1292
1293 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1294 * the available implementations agree in this case:
1295 * this call should never block, independent of the
1296 * blocking state of the socket.
1297 * Mike <pall@rz.uni-karlsruhe.de>
1298 */
1299 return -EAGAIN;
1300 }
1301
1302 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1303 {
1304 struct sk_buff *skb;
1305 int copied = 0, err = 0;
1306
1307 /* XXX -- need to support SO_PEEK_OFF */
1308
1309 skb_queue_walk(&sk->sk_write_queue, skb) {
1310 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1311 if (err)
1312 break;
1313
1314 copied += skb->len;
1315 }
1316
1317 return err ?: copied;
1318 }
1319
1320 /* Clean up the receive buffer for full frames taken by the user,
1321 * then send an ACK if necessary. COPIED is the number of bytes
1322 * tcp_recvmsg has given to the user so far, it speeds up the
1323 * calculation of whether or not we must ACK for the sake of
1324 * a window update.
1325 */
1326 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1327 {
1328 struct tcp_sock *tp = tcp_sk(sk);
1329 bool time_to_ack = false;
1330
1331 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1332
1333 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1334 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1335 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1336
1337 if (inet_csk_ack_scheduled(sk)) {
1338 const struct inet_connection_sock *icsk = inet_csk(sk);
1339 /* Delayed ACKs frequently hit locked sockets during bulk
1340 * receive. */
1341 if (icsk->icsk_ack.blocked ||
1342 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1343 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1344 /*
1345 * If this read emptied read buffer, we send ACK, if
1346 * connection is not bidirectional, user drained
1347 * receive buffer and there was a small segment
1348 * in queue.
1349 */
1350 (copied > 0 &&
1351 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1352 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1353 !icsk->icsk_ack.pingpong)) &&
1354 !atomic_read(&sk->sk_rmem_alloc)))
1355 time_to_ack = true;
1356 }
1357
1358 /* We send an ACK if we can now advertise a non-zero window
1359 * which has been raised "significantly".
1360 *
1361 * Even if window raised up to infinity, do not send window open ACK
1362 * in states, where we will not receive more. It is useless.
1363 */
1364 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1365 __u32 rcv_window_now = tcp_receive_window(tp);
1366
1367 /* Optimize, __tcp_select_window() is not cheap. */
1368 if (2*rcv_window_now <= tp->window_clamp) {
1369 __u32 new_window = __tcp_select_window(sk);
1370
1371 /* Send ACK now, if this read freed lots of space
1372 * in our buffer. Certainly, new_window is new window.
1373 * We can advertise it now, if it is not less than current one.
1374 * "Lots" means "at least twice" here.
1375 */
1376 if (new_window && new_window >= 2 * rcv_window_now)
1377 time_to_ack = true;
1378 }
1379 }
1380 if (time_to_ack)
1381 tcp_send_ack(sk);
1382 }
1383
1384 static void tcp_prequeue_process(struct sock *sk)
1385 {
1386 struct sk_buff *skb;
1387 struct tcp_sock *tp = tcp_sk(sk);
1388
1389 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1390
1391 /* RX process wants to run with disabled BHs, though it is not
1392 * necessary */
1393 local_bh_disable();
1394 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1395 sk_backlog_rcv(sk, skb);
1396 local_bh_enable();
1397
1398 /* Clear memory counter. */
1399 tp->ucopy.memory = 0;
1400 }
1401
1402 #ifdef CONFIG_NET_DMA
1403 static void tcp_service_net_dma(struct sock *sk, bool wait)
1404 {
1405 dma_cookie_t done, used;
1406 dma_cookie_t last_issued;
1407 struct tcp_sock *tp = tcp_sk(sk);
1408
1409 if (!tp->ucopy.dma_chan)
1410 return;
1411
1412 last_issued = tp->ucopy.dma_cookie;
1413 dma_async_issue_pending(tp->ucopy.dma_chan);
1414
1415 do {
1416 if (dma_async_is_tx_complete(tp->ucopy.dma_chan,
1417 last_issued, &done,
1418 &used) == DMA_SUCCESS) {
1419 /* Safe to free early-copied skbs now */
1420 __skb_queue_purge(&sk->sk_async_wait_queue);
1421 break;
1422 } else {
1423 struct sk_buff *skb;
1424 while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1425 (dma_async_is_complete(skb->dma_cookie, done,
1426 used) == DMA_SUCCESS)) {
1427 __skb_dequeue(&sk->sk_async_wait_queue);
1428 kfree_skb(skb);
1429 }
1430 }
1431 } while (wait);
1432 }
1433 #endif
1434
1435 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1436 {
1437 struct sk_buff *skb;
1438 u32 offset;
1439
1440 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1441 offset = seq - TCP_SKB_CB(skb)->seq;
1442 if (tcp_hdr(skb)->syn)
1443 offset--;
1444 if (offset < skb->len || tcp_hdr(skb)->fin) {
1445 *off = offset;
1446 return skb;
1447 }
1448 /* This looks weird, but this can happen if TCP collapsing
1449 * splitted a fat GRO packet, while we released socket lock
1450 * in skb_splice_bits()
1451 */
1452 sk_eat_skb(sk, skb, false);
1453 }
1454 return NULL;
1455 }
1456
1457 /*
1458 * This routine provides an alternative to tcp_recvmsg() for routines
1459 * that would like to handle copying from skbuffs directly in 'sendfile'
1460 * fashion.
1461 * Note:
1462 * - It is assumed that the socket was locked by the caller.
1463 * - The routine does not block.
1464 * - At present, there is no support for reading OOB data
1465 * or for 'peeking' the socket using this routine
1466 * (although both would be easy to implement).
1467 */
1468 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1469 sk_read_actor_t recv_actor)
1470 {
1471 struct sk_buff *skb;
1472 struct tcp_sock *tp = tcp_sk(sk);
1473 u32 seq = tp->copied_seq;
1474 u32 offset;
1475 int copied = 0;
1476
1477 if (sk->sk_state == TCP_LISTEN)
1478 return -ENOTCONN;
1479 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1480 if (offset < skb->len) {
1481 int used;
1482 size_t len;
1483
1484 len = skb->len - offset;
1485 /* Stop reading if we hit a patch of urgent data */
1486 if (tp->urg_data) {
1487 u32 urg_offset = tp->urg_seq - seq;
1488 if (urg_offset < len)
1489 len = urg_offset;
1490 if (!len)
1491 break;
1492 }
1493 used = recv_actor(desc, skb, offset, len);
1494 if (used <= 0) {
1495 if (!copied)
1496 copied = used;
1497 break;
1498 } else if (used <= len) {
1499 seq += used;
1500 copied += used;
1501 offset += used;
1502 }
1503 /* If recv_actor drops the lock (e.g. TCP splice
1504 * receive) the skb pointer might be invalid when
1505 * getting here: tcp_collapse might have deleted it
1506 * while aggregating skbs from the socket queue.
1507 */
1508 skb = tcp_recv_skb(sk, seq - 1, &offset);
1509 if (!skb)
1510 break;
1511 /* TCP coalescing might have appended data to the skb.
1512 * Try to splice more frags
1513 */
1514 if (offset + 1 != skb->len)
1515 continue;
1516 }
1517 if (tcp_hdr(skb)->fin) {
1518 sk_eat_skb(sk, skb, false);
1519 ++seq;
1520 break;
1521 }
1522 sk_eat_skb(sk, skb, false);
1523 if (!desc->count)
1524 break;
1525 tp->copied_seq = seq;
1526 }
1527 tp->copied_seq = seq;
1528
1529 tcp_rcv_space_adjust(sk);
1530
1531 /* Clean up data we have read: This will do ACK frames. */
1532 if (copied > 0) {
1533 tcp_recv_skb(sk, seq, &offset);
1534 tcp_cleanup_rbuf(sk, copied);
1535 }
1536 return copied;
1537 }
1538 EXPORT_SYMBOL(tcp_read_sock);
1539
1540 /*
1541 * This routine copies from a sock struct into the user buffer.
1542 *
1543 * Technical note: in 2.3 we work on _locked_ socket, so that
1544 * tricks with *seq access order and skb->users are not required.
1545 * Probably, code can be easily improved even more.
1546 */
1547
1548 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1549 size_t len, int nonblock, int flags, int *addr_len)
1550 {
1551 struct tcp_sock *tp = tcp_sk(sk);
1552 int copied = 0;
1553 u32 peek_seq;
1554 u32 *seq;
1555 unsigned long used;
1556 int err;
1557 int target; /* Read at least this many bytes */
1558 long timeo;
1559 struct task_struct *user_recv = NULL;
1560 bool copied_early = false;
1561 struct sk_buff *skb;
1562 u32 urg_hole = 0;
1563
1564 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1565 (sk->sk_state == TCP_ESTABLISHED))
1566 sk_busy_loop(sk, nonblock);
1567
1568 lock_sock(sk);
1569
1570 err = -ENOTCONN;
1571 if (sk->sk_state == TCP_LISTEN)
1572 goto out;
1573
1574 timeo = sock_rcvtimeo(sk, nonblock);
1575
1576 /* Urgent data needs to be handled specially. */
1577 if (flags & MSG_OOB)
1578 goto recv_urg;
1579
1580 if (unlikely(tp->repair)) {
1581 err = -EPERM;
1582 if (!(flags & MSG_PEEK))
1583 goto out;
1584
1585 if (tp->repair_queue == TCP_SEND_QUEUE)
1586 goto recv_sndq;
1587
1588 err = -EINVAL;
1589 if (tp->repair_queue == TCP_NO_QUEUE)
1590 goto out;
1591
1592 /* 'common' recv queue MSG_PEEK-ing */
1593 }
1594
1595 seq = &tp->copied_seq;
1596 if (flags & MSG_PEEK) {
1597 peek_seq = tp->copied_seq;
1598 seq = &peek_seq;
1599 }
1600
1601 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1602
1603 #ifdef CONFIG_NET_DMA
1604 tp->ucopy.dma_chan = NULL;
1605 preempt_disable();
1606 skb = skb_peek_tail(&sk->sk_receive_queue);
1607 {
1608 int available = 0;
1609
1610 if (skb)
1611 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1612 if ((available < target) &&
1613 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1614 !sysctl_tcp_low_latency &&
1615 net_dma_find_channel()) {
1616 preempt_enable_no_resched();
1617 tp->ucopy.pinned_list =
1618 dma_pin_iovec_pages(msg->msg_iov, len);
1619 } else {
1620 preempt_enable_no_resched();
1621 }
1622 }
1623 #endif
1624
1625 do {
1626 u32 offset;
1627
1628 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1629 if (tp->urg_data && tp->urg_seq == *seq) {
1630 if (copied)
1631 break;
1632 if (signal_pending(current)) {
1633 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1634 break;
1635 }
1636 }
1637
1638 /* Next get a buffer. */
1639
1640 skb_queue_walk(&sk->sk_receive_queue, skb) {
1641 /* Now that we have two receive queues this
1642 * shouldn't happen.
1643 */
1644 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1645 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1646 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1647 flags))
1648 break;
1649
1650 offset = *seq - TCP_SKB_CB(skb)->seq;
1651 if (tcp_hdr(skb)->syn)
1652 offset--;
1653 if (offset < skb->len)
1654 goto found_ok_skb;
1655 if (tcp_hdr(skb)->fin)
1656 goto found_fin_ok;
1657 WARN(!(flags & MSG_PEEK),
1658 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1659 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1660 }
1661
1662 /* Well, if we have backlog, try to process it now yet. */
1663
1664 if (copied >= target && !sk->sk_backlog.tail)
1665 break;
1666
1667 if (copied) {
1668 if (sk->sk_err ||
1669 sk->sk_state == TCP_CLOSE ||
1670 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1671 !timeo ||
1672 signal_pending(current))
1673 break;
1674 } else {
1675 if (sock_flag(sk, SOCK_DONE))
1676 break;
1677
1678 if (sk->sk_err) {
1679 copied = sock_error(sk);
1680 break;
1681 }
1682
1683 if (sk->sk_shutdown & RCV_SHUTDOWN)
1684 break;
1685
1686 if (sk->sk_state == TCP_CLOSE) {
1687 if (!sock_flag(sk, SOCK_DONE)) {
1688 /* This occurs when user tries to read
1689 * from never connected socket.
1690 */
1691 copied = -ENOTCONN;
1692 break;
1693 }
1694 break;
1695 }
1696
1697 if (!timeo) {
1698 copied = -EAGAIN;
1699 break;
1700 }
1701
1702 if (signal_pending(current)) {
1703 copied = sock_intr_errno(timeo);
1704 break;
1705 }
1706 }
1707
1708 tcp_cleanup_rbuf(sk, copied);
1709
1710 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1711 /* Install new reader */
1712 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1713 user_recv = current;
1714 tp->ucopy.task = user_recv;
1715 tp->ucopy.iov = msg->msg_iov;
1716 }
1717
1718 tp->ucopy.len = len;
1719
1720 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1721 !(flags & (MSG_PEEK | MSG_TRUNC)));
1722
1723 /* Ugly... If prequeue is not empty, we have to
1724 * process it before releasing socket, otherwise
1725 * order will be broken at second iteration.
1726 * More elegant solution is required!!!
1727 *
1728 * Look: we have the following (pseudo)queues:
1729 *
1730 * 1. packets in flight
1731 * 2. backlog
1732 * 3. prequeue
1733 * 4. receive_queue
1734 *
1735 * Each queue can be processed only if the next ones
1736 * are empty. At this point we have empty receive_queue.
1737 * But prequeue _can_ be not empty after 2nd iteration,
1738 * when we jumped to start of loop because backlog
1739 * processing added something to receive_queue.
1740 * We cannot release_sock(), because backlog contains
1741 * packets arrived _after_ prequeued ones.
1742 *
1743 * Shortly, algorithm is clear --- to process all
1744 * the queues in order. We could make it more directly,
1745 * requeueing packets from backlog to prequeue, if
1746 * is not empty. It is more elegant, but eats cycles,
1747 * unfortunately.
1748 */
1749 if (!skb_queue_empty(&tp->ucopy.prequeue))
1750 goto do_prequeue;
1751
1752 /* __ Set realtime policy in scheduler __ */
1753 }
1754
1755 #ifdef CONFIG_NET_DMA
1756 if (tp->ucopy.dma_chan) {
1757 if (tp->rcv_wnd == 0 &&
1758 !skb_queue_empty(&sk->sk_async_wait_queue)) {
1759 tcp_service_net_dma(sk, true);
1760 tcp_cleanup_rbuf(sk, copied);
1761 } else
1762 dma_async_issue_pending(tp->ucopy.dma_chan);
1763 }
1764 #endif
1765 if (copied >= target) {
1766 /* Do not sleep, just process backlog. */
1767 release_sock(sk);
1768 lock_sock(sk);
1769 } else
1770 sk_wait_data(sk, &timeo);
1771
1772 #ifdef CONFIG_NET_DMA
1773 tcp_service_net_dma(sk, false); /* Don't block */
1774 tp->ucopy.wakeup = 0;
1775 #endif
1776
1777 if (user_recv) {
1778 int chunk;
1779
1780 /* __ Restore normal policy in scheduler __ */
1781
1782 if ((chunk = len - tp->ucopy.len) != 0) {
1783 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1784 len -= chunk;
1785 copied += chunk;
1786 }
1787
1788 if (tp->rcv_nxt == tp->copied_seq &&
1789 !skb_queue_empty(&tp->ucopy.prequeue)) {
1790 do_prequeue:
1791 tcp_prequeue_process(sk);
1792
1793 if ((chunk = len - tp->ucopy.len) != 0) {
1794 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1795 len -= chunk;
1796 copied += chunk;
1797 }
1798 }
1799 }
1800 if ((flags & MSG_PEEK) &&
1801 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1802 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1803 current->comm,
1804 task_pid_nr(current));
1805 peek_seq = tp->copied_seq;
1806 }
1807 continue;
1808
1809 found_ok_skb:
1810 /* Ok so how much can we use? */
1811 used = skb->len - offset;
1812 if (len < used)
1813 used = len;
1814
1815 /* Do we have urgent data here? */
1816 if (tp->urg_data) {
1817 u32 urg_offset = tp->urg_seq - *seq;
1818 if (urg_offset < used) {
1819 if (!urg_offset) {
1820 if (!sock_flag(sk, SOCK_URGINLINE)) {
1821 ++*seq;
1822 urg_hole++;
1823 offset++;
1824 used--;
1825 if (!used)
1826 goto skip_copy;
1827 }
1828 } else
1829 used = urg_offset;
1830 }
1831 }
1832
1833 if (!(flags & MSG_TRUNC)) {
1834 #ifdef CONFIG_NET_DMA
1835 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1836 tp->ucopy.dma_chan = net_dma_find_channel();
1837
1838 if (tp->ucopy.dma_chan) {
1839 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1840 tp->ucopy.dma_chan, skb, offset,
1841 msg->msg_iov, used,
1842 tp->ucopy.pinned_list);
1843
1844 if (tp->ucopy.dma_cookie < 0) {
1845
1846 pr_alert("%s: dma_cookie < 0\n",
1847 __func__);
1848
1849 /* Exception. Bailout! */
1850 if (!copied)
1851 copied = -EFAULT;
1852 break;
1853 }
1854
1855 dma_async_issue_pending(tp->ucopy.dma_chan);
1856
1857 if ((offset + used) == skb->len)
1858 copied_early = true;
1859
1860 } else
1861 #endif
1862 {
1863 err = skb_copy_datagram_iovec(skb, offset,
1864 msg->msg_iov, used);
1865 if (err) {
1866 /* Exception. Bailout! */
1867 if (!copied)
1868 copied = -EFAULT;
1869 break;
1870 }
1871 }
1872 }
1873
1874 *seq += used;
1875 copied += used;
1876 len -= used;
1877
1878 tcp_rcv_space_adjust(sk);
1879
1880 skip_copy:
1881 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1882 tp->urg_data = 0;
1883 tcp_fast_path_check(sk);
1884 }
1885 if (used + offset < skb->len)
1886 continue;
1887
1888 if (tcp_hdr(skb)->fin)
1889 goto found_fin_ok;
1890 if (!(flags & MSG_PEEK)) {
1891 sk_eat_skb(sk, skb, copied_early);
1892 copied_early = false;
1893 }
1894 continue;
1895
1896 found_fin_ok:
1897 /* Process the FIN. */
1898 ++*seq;
1899 if (!(flags & MSG_PEEK)) {
1900 sk_eat_skb(sk, skb, copied_early);
1901 copied_early = false;
1902 }
1903 break;
1904 } while (len > 0);
1905
1906 if (user_recv) {
1907 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1908 int chunk;
1909
1910 tp->ucopy.len = copied > 0 ? len : 0;
1911
1912 tcp_prequeue_process(sk);
1913
1914 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1915 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1916 len -= chunk;
1917 copied += chunk;
1918 }
1919 }
1920
1921 tp->ucopy.task = NULL;
1922 tp->ucopy.len = 0;
1923 }
1924
1925 #ifdef CONFIG_NET_DMA
1926 tcp_service_net_dma(sk, true); /* Wait for queue to drain */
1927 tp->ucopy.dma_chan = NULL;
1928
1929 if (tp->ucopy.pinned_list) {
1930 dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1931 tp->ucopy.pinned_list = NULL;
1932 }
1933 #endif
1934
1935 /* According to UNIX98, msg_name/msg_namelen are ignored
1936 * on connected socket. I was just happy when found this 8) --ANK
1937 */
1938
1939 /* Clean up data we have read: This will do ACK frames. */
1940 tcp_cleanup_rbuf(sk, copied);
1941
1942 release_sock(sk);
1943 return copied;
1944
1945 out:
1946 release_sock(sk);
1947 return err;
1948
1949 recv_urg:
1950 err = tcp_recv_urg(sk, msg, len, flags);
1951 goto out;
1952
1953 recv_sndq:
1954 err = tcp_peek_sndq(sk, msg, len);
1955 goto out;
1956 }
1957 EXPORT_SYMBOL(tcp_recvmsg);
1958
1959 void tcp_set_state(struct sock *sk, int state)
1960 {
1961 int oldstate = sk->sk_state;
1962
1963 switch (state) {
1964 case TCP_ESTABLISHED:
1965 if (oldstate != TCP_ESTABLISHED)
1966 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1967 break;
1968
1969 case TCP_CLOSE:
1970 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1971 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1972
1973 sk->sk_prot->unhash(sk);
1974 if (inet_csk(sk)->icsk_bind_hash &&
1975 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1976 inet_put_port(sk);
1977 /* fall through */
1978 default:
1979 if (oldstate == TCP_ESTABLISHED)
1980 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1981 }
1982
1983 /* Change state AFTER socket is unhashed to avoid closed
1984 * socket sitting in hash tables.
1985 */
1986 sk->sk_state = state;
1987
1988 #ifdef STATE_TRACE
1989 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1990 #endif
1991 }
1992 EXPORT_SYMBOL_GPL(tcp_set_state);
1993
1994 /*
1995 * State processing on a close. This implements the state shift for
1996 * sending our FIN frame. Note that we only send a FIN for some
1997 * states. A shutdown() may have already sent the FIN, or we may be
1998 * closed.
1999 */
2000
2001 static const unsigned char new_state[16] = {
2002 /* current state: new state: action: */
2003 /* (Invalid) */ TCP_CLOSE,
2004 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2005 /* TCP_SYN_SENT */ TCP_CLOSE,
2006 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2007 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
2008 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
2009 /* TCP_TIME_WAIT */ TCP_CLOSE,
2010 /* TCP_CLOSE */ TCP_CLOSE,
2011 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
2012 /* TCP_LAST_ACK */ TCP_LAST_ACK,
2013 /* TCP_LISTEN */ TCP_CLOSE,
2014 /* TCP_CLOSING */ TCP_CLOSING,
2015 };
2016
2017 static int tcp_close_state(struct sock *sk)
2018 {
2019 int next = (int)new_state[sk->sk_state];
2020 int ns = next & TCP_STATE_MASK;
2021
2022 tcp_set_state(sk, ns);
2023
2024 return next & TCP_ACTION_FIN;
2025 }
2026
2027 /*
2028 * Shutdown the sending side of a connection. Much like close except
2029 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2030 */
2031
2032 void tcp_shutdown(struct sock *sk, int how)
2033 {
2034 /* We need to grab some memory, and put together a FIN,
2035 * and then put it into the queue to be sent.
2036 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2037 */
2038 if (!(how & SEND_SHUTDOWN))
2039 return;
2040
2041 /* If we've already sent a FIN, or it's a closed state, skip this. */
2042 if ((1 << sk->sk_state) &
2043 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2044 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2045 /* Clear out any half completed packets. FIN if needed. */
2046 if (tcp_close_state(sk))
2047 tcp_send_fin(sk);
2048 }
2049 }
2050 EXPORT_SYMBOL(tcp_shutdown);
2051
2052 bool tcp_check_oom(struct sock *sk, int shift)
2053 {
2054 bool too_many_orphans, out_of_socket_memory;
2055
2056 too_many_orphans = tcp_too_many_orphans(sk, shift);
2057 out_of_socket_memory = tcp_out_of_memory(sk);
2058
2059 if (too_many_orphans)
2060 net_info_ratelimited("too many orphaned sockets\n");
2061 if (out_of_socket_memory)
2062 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2063 return too_many_orphans || out_of_socket_memory;
2064 }
2065
2066 void tcp_close(struct sock *sk, long timeout)
2067 {
2068 struct sk_buff *skb;
2069 int data_was_unread = 0;
2070 int state;
2071
2072 lock_sock(sk);
2073 sk->sk_shutdown = SHUTDOWN_MASK;
2074
2075 if (sk->sk_state == TCP_LISTEN) {
2076 tcp_set_state(sk, TCP_CLOSE);
2077
2078 /* Special case. */
2079 inet_csk_listen_stop(sk);
2080
2081 goto adjudge_to_death;
2082 }
2083
2084 /* We need to flush the recv. buffs. We do this only on the
2085 * descriptor close, not protocol-sourced closes, because the
2086 * reader process may not have drained the data yet!
2087 */
2088 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2089 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2090 tcp_hdr(skb)->fin;
2091 data_was_unread += len;
2092 __kfree_skb(skb);
2093 }
2094
2095 sk_mem_reclaim(sk);
2096
2097 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2098 if (sk->sk_state == TCP_CLOSE)
2099 goto adjudge_to_death;
2100
2101 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2102 * data was lost. To witness the awful effects of the old behavior of
2103 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2104 * GET in an FTP client, suspend the process, wait for the client to
2105 * advertise a zero window, then kill -9 the FTP client, wheee...
2106 * Note: timeout is always zero in such a case.
2107 */
2108 if (unlikely(tcp_sk(sk)->repair)) {
2109 sk->sk_prot->disconnect(sk, 0);
2110 } else if (data_was_unread) {
2111 /* Unread data was tossed, zap the connection. */
2112 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2113 tcp_set_state(sk, TCP_CLOSE);
2114 tcp_send_active_reset(sk, sk->sk_allocation);
2115 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2116 /* Check zero linger _after_ checking for unread data. */
2117 sk->sk_prot->disconnect(sk, 0);
2118 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2119 } else if (tcp_close_state(sk)) {
2120 /* We FIN if the application ate all the data before
2121 * zapping the connection.
2122 */
2123
2124 /* RED-PEN. Formally speaking, we have broken TCP state
2125 * machine. State transitions:
2126 *
2127 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2128 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2129 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2130 *
2131 * are legal only when FIN has been sent (i.e. in window),
2132 * rather than queued out of window. Purists blame.
2133 *
2134 * F.e. "RFC state" is ESTABLISHED,
2135 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2136 *
2137 * The visible declinations are that sometimes
2138 * we enter time-wait state, when it is not required really
2139 * (harmless), do not send active resets, when they are
2140 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2141 * they look as CLOSING or LAST_ACK for Linux)
2142 * Probably, I missed some more holelets.
2143 * --ANK
2144 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2145 * in a single packet! (May consider it later but will
2146 * probably need API support or TCP_CORK SYN-ACK until
2147 * data is written and socket is closed.)
2148 */
2149 tcp_send_fin(sk);
2150 }
2151
2152 sk_stream_wait_close(sk, timeout);
2153
2154 adjudge_to_death:
2155 state = sk->sk_state;
2156 sock_hold(sk);
2157 sock_orphan(sk);
2158
2159 /* It is the last release_sock in its life. It will remove backlog. */
2160 release_sock(sk);
2161
2162
2163 /* Now socket is owned by kernel and we acquire BH lock
2164 to finish close. No need to check for user refs.
2165 */
2166 local_bh_disable();
2167 bh_lock_sock(sk);
2168 WARN_ON(sock_owned_by_user(sk));
2169
2170 percpu_counter_inc(sk->sk_prot->orphan_count);
2171
2172 /* Have we already been destroyed by a softirq or backlog? */
2173 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2174 goto out;
2175
2176 /* This is a (useful) BSD violating of the RFC. There is a
2177 * problem with TCP as specified in that the other end could
2178 * keep a socket open forever with no application left this end.
2179 * We use a 3 minute timeout (about the same as BSD) then kill
2180 * our end. If they send after that then tough - BUT: long enough
2181 * that we won't make the old 4*rto = almost no time - whoops
2182 * reset mistake.
2183 *
2184 * Nope, it was not mistake. It is really desired behaviour
2185 * f.e. on http servers, when such sockets are useless, but
2186 * consume significant resources. Let's do it with special
2187 * linger2 option. --ANK
2188 */
2189
2190 if (sk->sk_state == TCP_FIN_WAIT2) {
2191 struct tcp_sock *tp = tcp_sk(sk);
2192 if (tp->linger2 < 0) {
2193 tcp_set_state(sk, TCP_CLOSE);
2194 tcp_send_active_reset(sk, GFP_ATOMIC);
2195 NET_INC_STATS_BH(sock_net(sk),
2196 LINUX_MIB_TCPABORTONLINGER);
2197 } else {
2198 const int tmo = tcp_fin_time(sk);
2199
2200 if (tmo > TCP_TIMEWAIT_LEN) {
2201 inet_csk_reset_keepalive_timer(sk,
2202 tmo - TCP_TIMEWAIT_LEN);
2203 } else {
2204 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2205 goto out;
2206 }
2207 }
2208 }
2209 if (sk->sk_state != TCP_CLOSE) {
2210 sk_mem_reclaim(sk);
2211 if (tcp_check_oom(sk, 0)) {
2212 tcp_set_state(sk, TCP_CLOSE);
2213 tcp_send_active_reset(sk, GFP_ATOMIC);
2214 NET_INC_STATS_BH(sock_net(sk),
2215 LINUX_MIB_TCPABORTONMEMORY);
2216 }
2217 }
2218
2219 if (sk->sk_state == TCP_CLOSE) {
2220 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2221 /* We could get here with a non-NULL req if the socket is
2222 * aborted (e.g., closed with unread data) before 3WHS
2223 * finishes.
2224 */
2225 if (req != NULL)
2226 reqsk_fastopen_remove(sk, req, false);
2227 inet_csk_destroy_sock(sk);
2228 }
2229 /* Otherwise, socket is reprieved until protocol close. */
2230
2231 out:
2232 bh_unlock_sock(sk);
2233 local_bh_enable();
2234 sock_put(sk);
2235 }
2236 EXPORT_SYMBOL(tcp_close);
2237
2238 /* These states need RST on ABORT according to RFC793 */
2239
2240 static inline bool tcp_need_reset(int state)
2241 {
2242 return (1 << state) &
2243 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2244 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2245 }
2246
2247 int tcp_disconnect(struct sock *sk, int flags)
2248 {
2249 struct inet_sock *inet = inet_sk(sk);
2250 struct inet_connection_sock *icsk = inet_csk(sk);
2251 struct tcp_sock *tp = tcp_sk(sk);
2252 int err = 0;
2253 int old_state = sk->sk_state;
2254
2255 if (old_state != TCP_CLOSE)
2256 tcp_set_state(sk, TCP_CLOSE);
2257
2258 /* ABORT function of RFC793 */
2259 if (old_state == TCP_LISTEN) {
2260 inet_csk_listen_stop(sk);
2261 } else if (unlikely(tp->repair)) {
2262 sk->sk_err = ECONNABORTED;
2263 } else if (tcp_need_reset(old_state) ||
2264 (tp->snd_nxt != tp->write_seq &&
2265 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2266 /* The last check adjusts for discrepancy of Linux wrt. RFC
2267 * states
2268 */
2269 tcp_send_active_reset(sk, gfp_any());
2270 sk->sk_err = ECONNRESET;
2271 } else if (old_state == TCP_SYN_SENT)
2272 sk->sk_err = ECONNRESET;
2273
2274 tcp_clear_xmit_timers(sk);
2275 __skb_queue_purge(&sk->sk_receive_queue);
2276 tcp_write_queue_purge(sk);
2277 __skb_queue_purge(&tp->out_of_order_queue);
2278 #ifdef CONFIG_NET_DMA
2279 __skb_queue_purge(&sk->sk_async_wait_queue);
2280 #endif
2281
2282 inet->inet_dport = 0;
2283
2284 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2285 inet_reset_saddr(sk);
2286
2287 sk->sk_shutdown = 0;
2288 sock_reset_flag(sk, SOCK_DONE);
2289 tp->srtt = 0;
2290 if ((tp->write_seq += tp->max_window + 2) == 0)
2291 tp->write_seq = 1;
2292 icsk->icsk_backoff = 0;
2293 tp->snd_cwnd = 2;
2294 icsk->icsk_probes_out = 0;
2295 tp->packets_out = 0;
2296 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2297 tp->snd_cwnd_cnt = 0;
2298 tp->window_clamp = 0;
2299 tcp_set_ca_state(sk, TCP_CA_Open);
2300 tcp_clear_retrans(tp);
2301 inet_csk_delack_init(sk);
2302 tcp_init_send_head(sk);
2303 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2304 __sk_dst_reset(sk);
2305
2306 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2307
2308 sk->sk_error_report(sk);
2309 return err;
2310 }
2311 EXPORT_SYMBOL(tcp_disconnect);
2312
2313 void tcp_sock_destruct(struct sock *sk)
2314 {
2315 inet_sock_destruct(sk);
2316
2317 kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2318 }
2319
2320 static inline bool tcp_can_repair_sock(const struct sock *sk)
2321 {
2322 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2323 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2324 }
2325
2326 static int tcp_repair_options_est(struct tcp_sock *tp,
2327 struct tcp_repair_opt __user *optbuf, unsigned int len)
2328 {
2329 struct tcp_repair_opt opt;
2330
2331 while (len >= sizeof(opt)) {
2332 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2333 return -EFAULT;
2334
2335 optbuf++;
2336 len -= sizeof(opt);
2337
2338 switch (opt.opt_code) {
2339 case TCPOPT_MSS:
2340 tp->rx_opt.mss_clamp = opt.opt_val;
2341 break;
2342 case TCPOPT_WINDOW:
2343 {
2344 u16 snd_wscale = opt.opt_val & 0xFFFF;
2345 u16 rcv_wscale = opt.opt_val >> 16;
2346
2347 if (snd_wscale > 14 || rcv_wscale > 14)
2348 return -EFBIG;
2349
2350 tp->rx_opt.snd_wscale = snd_wscale;
2351 tp->rx_opt.rcv_wscale = rcv_wscale;
2352 tp->rx_opt.wscale_ok = 1;
2353 }
2354 break;
2355 case TCPOPT_SACK_PERM:
2356 if (opt.opt_val != 0)
2357 return -EINVAL;
2358
2359 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2360 if (sysctl_tcp_fack)
2361 tcp_enable_fack(tp);
2362 break;
2363 case TCPOPT_TIMESTAMP:
2364 if (opt.opt_val != 0)
2365 return -EINVAL;
2366
2367 tp->rx_opt.tstamp_ok = 1;
2368 break;
2369 }
2370 }
2371
2372 return 0;
2373 }
2374
2375 /*
2376 * Socket option code for TCP.
2377 */
2378 static int do_tcp_setsockopt(struct sock *sk, int level,
2379 int optname, char __user *optval, unsigned int optlen)
2380 {
2381 struct tcp_sock *tp = tcp_sk(sk);
2382 struct inet_connection_sock *icsk = inet_csk(sk);
2383 int val;
2384 int err = 0;
2385
2386 /* These are data/string values, all the others are ints */
2387 switch (optname) {
2388 case TCP_CONGESTION: {
2389 char name[TCP_CA_NAME_MAX];
2390
2391 if (optlen < 1)
2392 return -EINVAL;
2393
2394 val = strncpy_from_user(name, optval,
2395 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2396 if (val < 0)
2397 return -EFAULT;
2398 name[val] = 0;
2399
2400 lock_sock(sk);
2401 err = tcp_set_congestion_control(sk, name);
2402 release_sock(sk);
2403 return err;
2404 }
2405 default:
2406 /* fallthru */
2407 break;
2408 }
2409
2410 if (optlen < sizeof(int))
2411 return -EINVAL;
2412
2413 if (get_user(val, (int __user *)optval))
2414 return -EFAULT;
2415
2416 lock_sock(sk);
2417
2418 switch (optname) {
2419 case TCP_MAXSEG:
2420 /* Values greater than interface MTU won't take effect. However
2421 * at the point when this call is done we typically don't yet
2422 * know which interface is going to be used */
2423 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2424 err = -EINVAL;
2425 break;
2426 }
2427 tp->rx_opt.user_mss = val;
2428 break;
2429
2430 case TCP_NODELAY:
2431 if (val) {
2432 /* TCP_NODELAY is weaker than TCP_CORK, so that
2433 * this option on corked socket is remembered, but
2434 * it is not activated until cork is cleared.
2435 *
2436 * However, when TCP_NODELAY is set we make
2437 * an explicit push, which overrides even TCP_CORK
2438 * for currently queued segments.
2439 */
2440 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2441 tcp_push_pending_frames(sk);
2442 } else {
2443 tp->nonagle &= ~TCP_NAGLE_OFF;
2444 }
2445 break;
2446
2447 case TCP_THIN_LINEAR_TIMEOUTS:
2448 if (val < 0 || val > 1)
2449 err = -EINVAL;
2450 else
2451 tp->thin_lto = val;
2452 break;
2453
2454 case TCP_THIN_DUPACK:
2455 if (val < 0 || val > 1)
2456 err = -EINVAL;
2457 else {
2458 tp->thin_dupack = val;
2459 if (tp->thin_dupack)
2460 tcp_disable_early_retrans(tp);
2461 }
2462 break;
2463
2464 case TCP_REPAIR:
2465 if (!tcp_can_repair_sock(sk))
2466 err = -EPERM;
2467 else if (val == 1) {
2468 tp->repair = 1;
2469 sk->sk_reuse = SK_FORCE_REUSE;
2470 tp->repair_queue = TCP_NO_QUEUE;
2471 } else if (val == 0) {
2472 tp->repair = 0;
2473 sk->sk_reuse = SK_NO_REUSE;
2474 tcp_send_window_probe(sk);
2475 } else
2476 err = -EINVAL;
2477
2478 break;
2479
2480 case TCP_REPAIR_QUEUE:
2481 if (!tp->repair)
2482 err = -EPERM;
2483 else if (val < TCP_QUEUES_NR)
2484 tp->repair_queue = val;
2485 else
2486 err = -EINVAL;
2487 break;
2488
2489 case TCP_QUEUE_SEQ:
2490 if (sk->sk_state != TCP_CLOSE)
2491 err = -EPERM;
2492 else if (tp->repair_queue == TCP_SEND_QUEUE)
2493 tp->write_seq = val;
2494 else if (tp->repair_queue == TCP_RECV_QUEUE)
2495 tp->rcv_nxt = val;
2496 else
2497 err = -EINVAL;
2498 break;
2499
2500 case TCP_REPAIR_OPTIONS:
2501 if (!tp->repair)
2502 err = -EINVAL;
2503 else if (sk->sk_state == TCP_ESTABLISHED)
2504 err = tcp_repair_options_est(tp,
2505 (struct tcp_repair_opt __user *)optval,
2506 optlen);
2507 else
2508 err = -EPERM;
2509 break;
2510
2511 case TCP_CORK:
2512 /* When set indicates to always queue non-full frames.
2513 * Later the user clears this option and we transmit
2514 * any pending partial frames in the queue. This is
2515 * meant to be used alongside sendfile() to get properly
2516 * filled frames when the user (for example) must write
2517 * out headers with a write() call first and then use
2518 * sendfile to send out the data parts.
2519 *
2520 * TCP_CORK can be set together with TCP_NODELAY and it is
2521 * stronger than TCP_NODELAY.
2522 */
2523 if (val) {
2524 tp->nonagle |= TCP_NAGLE_CORK;
2525 } else {
2526 tp->nonagle &= ~TCP_NAGLE_CORK;
2527 if (tp->nonagle&TCP_NAGLE_OFF)
2528 tp->nonagle |= TCP_NAGLE_PUSH;
2529 tcp_push_pending_frames(sk);
2530 }
2531 break;
2532
2533 case TCP_KEEPIDLE:
2534 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2535 err = -EINVAL;
2536 else {
2537 tp->keepalive_time = val * HZ;
2538 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2539 !((1 << sk->sk_state) &
2540 (TCPF_CLOSE | TCPF_LISTEN))) {
2541 u32 elapsed = keepalive_time_elapsed(tp);
2542 if (tp->keepalive_time > elapsed)
2543 elapsed = tp->keepalive_time - elapsed;
2544 else
2545 elapsed = 0;
2546 inet_csk_reset_keepalive_timer(sk, elapsed);
2547 }
2548 }
2549 break;
2550 case TCP_KEEPINTVL:
2551 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2552 err = -EINVAL;
2553 else
2554 tp->keepalive_intvl = val * HZ;
2555 break;
2556 case TCP_KEEPCNT:
2557 if (val < 1 || val > MAX_TCP_KEEPCNT)
2558 err = -EINVAL;
2559 else
2560 tp->keepalive_probes = val;
2561 break;
2562 case TCP_SYNCNT:
2563 if (val < 1 || val > MAX_TCP_SYNCNT)
2564 err = -EINVAL;
2565 else
2566 icsk->icsk_syn_retries = val;
2567 break;
2568
2569 case TCP_LINGER2:
2570 if (val < 0)
2571 tp->linger2 = -1;
2572 else if (val > sysctl_tcp_fin_timeout / HZ)
2573 tp->linger2 = 0;
2574 else
2575 tp->linger2 = val * HZ;
2576 break;
2577
2578 case TCP_DEFER_ACCEPT:
2579 /* Translate value in seconds to number of retransmits */
2580 icsk->icsk_accept_queue.rskq_defer_accept =
2581 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2582 TCP_RTO_MAX / HZ);
2583 break;
2584
2585 case TCP_WINDOW_CLAMP:
2586 if (!val) {
2587 if (sk->sk_state != TCP_CLOSE) {
2588 err = -EINVAL;
2589 break;
2590 }
2591 tp->window_clamp = 0;
2592 } else
2593 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2594 SOCK_MIN_RCVBUF / 2 : val;
2595 break;
2596
2597 case TCP_QUICKACK:
2598 if (!val) {
2599 icsk->icsk_ack.pingpong = 1;
2600 } else {
2601 icsk->icsk_ack.pingpong = 0;
2602 if ((1 << sk->sk_state) &
2603 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2604 inet_csk_ack_scheduled(sk)) {
2605 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2606 tcp_cleanup_rbuf(sk, 1);
2607 if (!(val & 1))
2608 icsk->icsk_ack.pingpong = 1;
2609 }
2610 }
2611 break;
2612
2613 #ifdef CONFIG_TCP_MD5SIG
2614 case TCP_MD5SIG:
2615 /* Read the IP->Key mappings from userspace */
2616 err = tp->af_specific->md5_parse(sk, optval, optlen);
2617 break;
2618 #endif
2619 case TCP_USER_TIMEOUT:
2620 /* Cap the max timeout in ms TCP will retry/retrans
2621 * before giving up and aborting (ETIMEDOUT) a connection.
2622 */
2623 if (val < 0)
2624 err = -EINVAL;
2625 else
2626 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2627 break;
2628
2629 case TCP_FASTOPEN:
2630 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2631 TCPF_LISTEN)))
2632 err = fastopen_init_queue(sk, val);
2633 else
2634 err = -EINVAL;
2635 break;
2636 case TCP_TIMESTAMP:
2637 if (!tp->repair)
2638 err = -EPERM;
2639 else
2640 tp->tsoffset = val - tcp_time_stamp;
2641 break;
2642 default:
2643 err = -ENOPROTOOPT;
2644 break;
2645 }
2646
2647 release_sock(sk);
2648 return err;
2649 }
2650
2651 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2652 unsigned int optlen)
2653 {
2654 const struct inet_connection_sock *icsk = inet_csk(sk);
2655
2656 if (level != SOL_TCP)
2657 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2658 optval, optlen);
2659 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2660 }
2661 EXPORT_SYMBOL(tcp_setsockopt);
2662
2663 #ifdef CONFIG_COMPAT
2664 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2665 char __user *optval, unsigned int optlen)
2666 {
2667 if (level != SOL_TCP)
2668 return inet_csk_compat_setsockopt(sk, level, optname,
2669 optval, optlen);
2670 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2671 }
2672 EXPORT_SYMBOL(compat_tcp_setsockopt);
2673 #endif
2674
2675 /* Return information about state of tcp endpoint in API format. */
2676 void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2677 {
2678 const struct tcp_sock *tp = tcp_sk(sk);
2679 const struct inet_connection_sock *icsk = inet_csk(sk);
2680 u32 now = tcp_time_stamp;
2681
2682 memset(info, 0, sizeof(*info));
2683
2684 info->tcpi_state = sk->sk_state;
2685 info->tcpi_ca_state = icsk->icsk_ca_state;
2686 info->tcpi_retransmits = icsk->icsk_retransmits;
2687 info->tcpi_probes = icsk->icsk_probes_out;
2688 info->tcpi_backoff = icsk->icsk_backoff;
2689
2690 if (tp->rx_opt.tstamp_ok)
2691 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2692 if (tcp_is_sack(tp))
2693 info->tcpi_options |= TCPI_OPT_SACK;
2694 if (tp->rx_opt.wscale_ok) {
2695 info->tcpi_options |= TCPI_OPT_WSCALE;
2696 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2697 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2698 }
2699
2700 if (tp->ecn_flags & TCP_ECN_OK)
2701 info->tcpi_options |= TCPI_OPT_ECN;
2702 if (tp->ecn_flags & TCP_ECN_SEEN)
2703 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2704 if (tp->syn_data_acked)
2705 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2706
2707 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2708 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2709 info->tcpi_snd_mss = tp->mss_cache;
2710 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2711
2712 if (sk->sk_state == TCP_LISTEN) {
2713 info->tcpi_unacked = sk->sk_ack_backlog;
2714 info->tcpi_sacked = sk->sk_max_ack_backlog;
2715 } else {
2716 info->tcpi_unacked = tp->packets_out;
2717 info->tcpi_sacked = tp->sacked_out;
2718 }
2719 info->tcpi_lost = tp->lost_out;
2720 info->tcpi_retrans = tp->retrans_out;
2721 info->tcpi_fackets = tp->fackets_out;
2722
2723 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2724 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2725 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2726
2727 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2728 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2729 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2730 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2731 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2732 info->tcpi_snd_cwnd = tp->snd_cwnd;
2733 info->tcpi_advmss = tp->advmss;
2734 info->tcpi_reordering = tp->reordering;
2735
2736 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2737 info->tcpi_rcv_space = tp->rcvq_space.space;
2738
2739 info->tcpi_total_retrans = tp->total_retrans;
2740 }
2741 EXPORT_SYMBOL_GPL(tcp_get_info);
2742
2743 static int do_tcp_getsockopt(struct sock *sk, int level,
2744 int optname, char __user *optval, int __user *optlen)
2745 {
2746 struct inet_connection_sock *icsk = inet_csk(sk);
2747 struct tcp_sock *tp = tcp_sk(sk);
2748 int val, len;
2749
2750 if (get_user(len, optlen))
2751 return -EFAULT;
2752
2753 len = min_t(unsigned int, len, sizeof(int));
2754
2755 if (len < 0)
2756 return -EINVAL;
2757
2758 switch (optname) {
2759 case TCP_MAXSEG:
2760 val = tp->mss_cache;
2761 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2762 val = tp->rx_opt.user_mss;
2763 if (tp->repair)
2764 val = tp->rx_opt.mss_clamp;
2765 break;
2766 case TCP_NODELAY:
2767 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2768 break;
2769 case TCP_CORK:
2770 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2771 break;
2772 case TCP_KEEPIDLE:
2773 val = keepalive_time_when(tp) / HZ;
2774 break;
2775 case TCP_KEEPINTVL:
2776 val = keepalive_intvl_when(tp) / HZ;
2777 break;
2778 case TCP_KEEPCNT:
2779 val = keepalive_probes(tp);
2780 break;
2781 case TCP_SYNCNT:
2782 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2783 break;
2784 case TCP_LINGER2:
2785 val = tp->linger2;
2786 if (val >= 0)
2787 val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2788 break;
2789 case TCP_DEFER_ACCEPT:
2790 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2791 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2792 break;
2793 case TCP_WINDOW_CLAMP:
2794 val = tp->window_clamp;
2795 break;
2796 case TCP_INFO: {
2797 struct tcp_info info;
2798
2799 if (get_user(len, optlen))
2800 return -EFAULT;
2801
2802 tcp_get_info(sk, &info);
2803
2804 len = min_t(unsigned int, len, sizeof(info));
2805 if (put_user(len, optlen))
2806 return -EFAULT;
2807 if (copy_to_user(optval, &info, len))
2808 return -EFAULT;
2809 return 0;
2810 }
2811 case TCP_QUICKACK:
2812 val = !icsk->icsk_ack.pingpong;
2813 break;
2814
2815 case TCP_CONGESTION:
2816 if (get_user(len, optlen))
2817 return -EFAULT;
2818 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2819 if (put_user(len, optlen))
2820 return -EFAULT;
2821 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2822 return -EFAULT;
2823 return 0;
2824
2825 case TCP_THIN_LINEAR_TIMEOUTS:
2826 val = tp->thin_lto;
2827 break;
2828 case TCP_THIN_DUPACK:
2829 val = tp->thin_dupack;
2830 break;
2831
2832 case TCP_REPAIR:
2833 val = tp->repair;
2834 break;
2835
2836 case TCP_REPAIR_QUEUE:
2837 if (tp->repair)
2838 val = tp->repair_queue;
2839 else
2840 return -EINVAL;
2841 break;
2842
2843 case TCP_QUEUE_SEQ:
2844 if (tp->repair_queue == TCP_SEND_QUEUE)
2845 val = tp->write_seq;
2846 else if (tp->repair_queue == TCP_RECV_QUEUE)
2847 val = tp->rcv_nxt;
2848 else
2849 return -EINVAL;
2850 break;
2851
2852 case TCP_USER_TIMEOUT:
2853 val = jiffies_to_msecs(icsk->icsk_user_timeout);
2854 break;
2855 case TCP_TIMESTAMP:
2856 val = tcp_time_stamp + tp->tsoffset;
2857 break;
2858 default:
2859 return -ENOPROTOOPT;
2860 }
2861
2862 if (put_user(len, optlen))
2863 return -EFAULT;
2864 if (copy_to_user(optval, &val, len))
2865 return -EFAULT;
2866 return 0;
2867 }
2868
2869 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2870 int __user *optlen)
2871 {
2872 struct inet_connection_sock *icsk = inet_csk(sk);
2873
2874 if (level != SOL_TCP)
2875 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2876 optval, optlen);
2877 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2878 }
2879 EXPORT_SYMBOL(tcp_getsockopt);
2880
2881 #ifdef CONFIG_COMPAT
2882 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2883 char __user *optval, int __user *optlen)
2884 {
2885 if (level != SOL_TCP)
2886 return inet_csk_compat_getsockopt(sk, level, optname,
2887 optval, optlen);
2888 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2889 }
2890 EXPORT_SYMBOL(compat_tcp_getsockopt);
2891 #endif
2892
2893 #ifdef CONFIG_TCP_MD5SIG
2894 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool __read_mostly;
2895 static DEFINE_MUTEX(tcp_md5sig_mutex);
2896
2897 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
2898 {
2899 int cpu;
2900
2901 for_each_possible_cpu(cpu) {
2902 struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
2903
2904 if (p->md5_desc.tfm)
2905 crypto_free_hash(p->md5_desc.tfm);
2906 }
2907 free_percpu(pool);
2908 }
2909
2910 static void __tcp_alloc_md5sig_pool(void)
2911 {
2912 int cpu;
2913 struct tcp_md5sig_pool __percpu *pool;
2914
2915 pool = alloc_percpu(struct tcp_md5sig_pool);
2916 if (!pool)
2917 return;
2918
2919 for_each_possible_cpu(cpu) {
2920 struct crypto_hash *hash;
2921
2922 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2923 if (IS_ERR_OR_NULL(hash))
2924 goto out_free;
2925
2926 per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
2927 }
2928 /* before setting tcp_md5sig_pool, we must commit all writes
2929 * to memory. See ACCESS_ONCE() in tcp_get_md5sig_pool()
2930 */
2931 smp_wmb();
2932 tcp_md5sig_pool = pool;
2933 return;
2934 out_free:
2935 __tcp_free_md5sig_pool(pool);
2936 }
2937
2938 bool tcp_alloc_md5sig_pool(void)
2939 {
2940 if (unlikely(!tcp_md5sig_pool)) {
2941 mutex_lock(&tcp_md5sig_mutex);
2942
2943 if (!tcp_md5sig_pool)
2944 __tcp_alloc_md5sig_pool();
2945
2946 mutex_unlock(&tcp_md5sig_mutex);
2947 }
2948 return tcp_md5sig_pool != NULL;
2949 }
2950 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2951
2952
2953 /**
2954 * tcp_get_md5sig_pool - get md5sig_pool for this user
2955 *
2956 * We use percpu structure, so if we succeed, we exit with preemption
2957 * and BH disabled, to make sure another thread or softirq handling
2958 * wont try to get same context.
2959 */
2960 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2961 {
2962 struct tcp_md5sig_pool __percpu *p;
2963
2964 local_bh_disable();
2965 p = ACCESS_ONCE(tcp_md5sig_pool);
2966 if (p)
2967 return __this_cpu_ptr(p);
2968
2969 local_bh_enable();
2970 return NULL;
2971 }
2972 EXPORT_SYMBOL(tcp_get_md5sig_pool);
2973
2974 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2975 const struct tcphdr *th)
2976 {
2977 struct scatterlist sg;
2978 struct tcphdr hdr;
2979 int err;
2980
2981 /* We are not allowed to change tcphdr, make a local copy */
2982 memcpy(&hdr, th, sizeof(hdr));
2983 hdr.check = 0;
2984
2985 /* options aren't included in the hash */
2986 sg_init_one(&sg, &hdr, sizeof(hdr));
2987 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
2988 return err;
2989 }
2990 EXPORT_SYMBOL(tcp_md5_hash_header);
2991
2992 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
2993 const struct sk_buff *skb, unsigned int header_len)
2994 {
2995 struct scatterlist sg;
2996 const struct tcphdr *tp = tcp_hdr(skb);
2997 struct hash_desc *desc = &hp->md5_desc;
2998 unsigned int i;
2999 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3000 skb_headlen(skb) - header_len : 0;
3001 const struct skb_shared_info *shi = skb_shinfo(skb);
3002 struct sk_buff *frag_iter;
3003
3004 sg_init_table(&sg, 1);
3005
3006 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3007 if (crypto_hash_update(desc, &sg, head_data_len))
3008 return 1;
3009
3010 for (i = 0; i < shi->nr_frags; ++i) {
3011 const struct skb_frag_struct *f = &shi->frags[i];
3012 unsigned int offset = f->page_offset;
3013 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3014
3015 sg_set_page(&sg, page, skb_frag_size(f),
3016 offset_in_page(offset));
3017 if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3018 return 1;
3019 }
3020
3021 skb_walk_frags(skb, frag_iter)
3022 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3023 return 1;
3024
3025 return 0;
3026 }
3027 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3028
3029 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3030 {
3031 struct scatterlist sg;
3032
3033 sg_init_one(&sg, key->key, key->keylen);
3034 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3035 }
3036 EXPORT_SYMBOL(tcp_md5_hash_key);
3037
3038 #endif
3039
3040 void tcp_done(struct sock *sk)
3041 {
3042 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3043
3044 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3045 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3046
3047 tcp_set_state(sk, TCP_CLOSE);
3048 tcp_clear_xmit_timers(sk);
3049 if (req != NULL)
3050 reqsk_fastopen_remove(sk, req, false);
3051
3052 sk->sk_shutdown = SHUTDOWN_MASK;
3053
3054 if (!sock_flag(sk, SOCK_DEAD))
3055 sk->sk_state_change(sk);
3056 else
3057 inet_csk_destroy_sock(sk);
3058 }
3059 EXPORT_SYMBOL_GPL(tcp_done);
3060
3061 extern struct tcp_congestion_ops tcp_reno;
3062
3063 static __initdata unsigned long thash_entries;
3064 static int __init set_thash_entries(char *str)
3065 {
3066 ssize_t ret;
3067
3068 if (!str)
3069 return 0;
3070
3071 ret = kstrtoul(str, 0, &thash_entries);
3072 if (ret)
3073 return 0;
3074
3075 return 1;
3076 }
3077 __setup("thash_entries=", set_thash_entries);
3078
3079 void tcp_init_mem(struct net *net)
3080 {
3081 unsigned long limit = nr_free_buffer_pages() / 8;
3082 limit = max(limit, 128UL);
3083 net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3084 net->ipv4.sysctl_tcp_mem[1] = limit;
3085 net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3086 }
3087
3088 void __init tcp_init(void)
3089 {
3090 struct sk_buff *skb = NULL;
3091 unsigned long limit;
3092 int max_rshare, max_wshare, cnt;
3093 unsigned int i;
3094
3095 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3096
3097 percpu_counter_init(&tcp_sockets_allocated, 0);
3098 percpu_counter_init(&tcp_orphan_count, 0);
3099 tcp_hashinfo.bind_bucket_cachep =
3100 kmem_cache_create("tcp_bind_bucket",
3101 sizeof(struct inet_bind_bucket), 0,
3102 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3103
3104 /* Size and allocate the main established and bind bucket
3105 * hash tables.
3106 *
3107 * The methodology is similar to that of the buffer cache.
3108 */
3109 tcp_hashinfo.ehash =
3110 alloc_large_system_hash("TCP established",
3111 sizeof(struct inet_ehash_bucket),
3112 thash_entries,
3113 17, /* one slot per 128 KB of memory */
3114 0,
3115 NULL,
3116 &tcp_hashinfo.ehash_mask,
3117 0,
3118 thash_entries ? 0 : 512 * 1024);
3119 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3120 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3121 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3122 }
3123 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3124 panic("TCP: failed to alloc ehash_locks");
3125 tcp_hashinfo.bhash =
3126 alloc_large_system_hash("TCP bind",
3127 sizeof(struct inet_bind_hashbucket),
3128 tcp_hashinfo.ehash_mask + 1,
3129 17, /* one slot per 128 KB of memory */
3130 0,
3131 &tcp_hashinfo.bhash_size,
3132 NULL,
3133 0,
3134 64 * 1024);
3135 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3136 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3137 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3138 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3139 }
3140
3141
3142 cnt = tcp_hashinfo.ehash_mask + 1;
3143
3144 tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3145 sysctl_tcp_max_orphans = cnt / 2;
3146 sysctl_max_syn_backlog = max(128, cnt / 256);
3147
3148 tcp_init_mem(&init_net);
3149 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3150 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3151 max_wshare = min(4UL*1024*1024, limit);
3152 max_rshare = min(6UL*1024*1024, limit);
3153
3154 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3155 sysctl_tcp_wmem[1] = 16*1024;
3156 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3157
3158 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3159 sysctl_tcp_rmem[1] = 87380;
3160 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3161
3162 pr_info("Hash tables configured (established %u bind %u)\n",
3163 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3164
3165 tcp_metrics_init();
3166
3167 tcp_register_congestion_control(&tcp_reno);
3168
3169 tcp_tasklet_init();
3170 }