]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/ipv4/tcp.c
KVM: SVM: Move spec control call after restore of GS
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / tcp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248 #define pr_fmt(fmt) "TCP: " fmt
249
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279
280 #include <linux/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <net/busy_poll.h>
283
284 int sysctl_tcp_min_tso_segs __read_mostly = 2;
285
286 int sysctl_tcp_autocorking __read_mostly = 1;
287
288 struct percpu_counter tcp_orphan_count;
289 EXPORT_SYMBOL_GPL(tcp_orphan_count);
290
291 long sysctl_tcp_mem[3] __read_mostly;
292 int sysctl_tcp_wmem[3] __read_mostly;
293 int sysctl_tcp_rmem[3] __read_mostly;
294
295 EXPORT_SYMBOL(sysctl_tcp_mem);
296 EXPORT_SYMBOL(sysctl_tcp_rmem);
297 EXPORT_SYMBOL(sysctl_tcp_wmem);
298
299 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
300 EXPORT_SYMBOL(tcp_memory_allocated);
301
302 /*
303 * Current number of TCP sockets.
304 */
305 struct percpu_counter tcp_sockets_allocated;
306 EXPORT_SYMBOL(tcp_sockets_allocated);
307
308 /*
309 * TCP splice context
310 */
311 struct tcp_splice_state {
312 struct pipe_inode_info *pipe;
313 size_t len;
314 unsigned int flags;
315 };
316
317 /*
318 * Pressure flag: try to collapse.
319 * Technical note: it is used by multiple contexts non atomically.
320 * All the __sk_mem_schedule() is of this nature: accounting
321 * is strict, actions are advisory and have some latency.
322 */
323 unsigned long tcp_memory_pressure __read_mostly;
324 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
325
326 void tcp_enter_memory_pressure(struct sock *sk)
327 {
328 unsigned long val;
329
330 if (tcp_memory_pressure)
331 return;
332 val = jiffies;
333
334 if (!val)
335 val--;
336 if (!cmpxchg(&tcp_memory_pressure, 0, val))
337 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
338 }
339 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
340
341 void tcp_leave_memory_pressure(struct sock *sk)
342 {
343 unsigned long val;
344
345 if (!tcp_memory_pressure)
346 return;
347 val = xchg(&tcp_memory_pressure, 0);
348 if (val)
349 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
350 jiffies_to_msecs(jiffies - val));
351 }
352 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
353
354 /* Convert seconds to retransmits based on initial and max timeout */
355 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
356 {
357 u8 res = 0;
358
359 if (seconds > 0) {
360 int period = timeout;
361
362 res = 1;
363 while (seconds > period && res < 255) {
364 res++;
365 timeout <<= 1;
366 if (timeout > rto_max)
367 timeout = rto_max;
368 period += timeout;
369 }
370 }
371 return res;
372 }
373
374 /* Convert retransmits to seconds based on initial and max timeout */
375 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
376 {
377 int period = 0;
378
379 if (retrans > 0) {
380 period = timeout;
381 while (--retrans) {
382 timeout <<= 1;
383 if (timeout > rto_max)
384 timeout = rto_max;
385 period += timeout;
386 }
387 }
388 return period;
389 }
390
391 /* Address-family independent initialization for a tcp_sock.
392 *
393 * NOTE: A lot of things set to zero explicitly by call to
394 * sk_alloc() so need not be done here.
395 */
396 void tcp_init_sock(struct sock *sk)
397 {
398 struct inet_connection_sock *icsk = inet_csk(sk);
399 struct tcp_sock *tp = tcp_sk(sk);
400
401 tp->out_of_order_queue = RB_ROOT;
402 tcp_init_xmit_timers(sk);
403 tcp_prequeue_init(tp);
404 INIT_LIST_HEAD(&tp->tsq_node);
405
406 icsk->icsk_rto = TCP_TIMEOUT_INIT;
407 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
408 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
409
410 /* So many TCP implementations out there (incorrectly) count the
411 * initial SYN frame in their delayed-ACK and congestion control
412 * algorithms that we must have the following bandaid to talk
413 * efficiently to them. -DaveM
414 */
415 tp->snd_cwnd = TCP_INIT_CWND;
416
417 /* There's a bubble in the pipe until at least the first ACK. */
418 tp->app_limited = ~0U;
419
420 /* See draft-stevens-tcpca-spec-01 for discussion of the
421 * initialization of these values.
422 */
423 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
424 tp->snd_cwnd_clamp = ~0;
425 tp->mss_cache = TCP_MSS_DEFAULT;
426
427 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
428 tcp_assign_congestion_control(sk);
429
430 tp->tsoffset = 0;
431
432 sk->sk_state = TCP_CLOSE;
433
434 sk->sk_write_space = sk_stream_write_space;
435 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
436
437 icsk->icsk_sync_mss = tcp_sync_mss;
438
439 sk->sk_sndbuf = sysctl_tcp_wmem[1];
440 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
441
442 sk_sockets_allocated_inc(sk);
443 }
444 EXPORT_SYMBOL(tcp_init_sock);
445
446 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags, struct sk_buff *skb)
447 {
448 if (tsflags && skb) {
449 struct skb_shared_info *shinfo = skb_shinfo(skb);
450 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
451
452 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
453 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
454 tcb->txstamp_ack = 1;
455 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
456 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
457 }
458 }
459
460 /*
461 * Wait for a TCP event.
462 *
463 * Note that we don't need to lock the socket, as the upper poll layers
464 * take care of normal races (between the test and the event) and we don't
465 * go look at any of the socket buffers directly.
466 */
467 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
468 {
469 unsigned int mask;
470 struct sock *sk = sock->sk;
471 const struct tcp_sock *tp = tcp_sk(sk);
472 int state;
473
474 sock_rps_record_flow(sk);
475
476 sock_poll_wait(file, sk_sleep(sk), wait);
477
478 state = sk_state_load(sk);
479 if (state == TCP_LISTEN)
480 return inet_csk_listen_poll(sk);
481
482 /* Socket is not locked. We are protected from async events
483 * by poll logic and correct handling of state changes
484 * made by other threads is impossible in any case.
485 */
486
487 mask = 0;
488
489 /*
490 * POLLHUP is certainly not done right. But poll() doesn't
491 * have a notion of HUP in just one direction, and for a
492 * socket the read side is more interesting.
493 *
494 * Some poll() documentation says that POLLHUP is incompatible
495 * with the POLLOUT/POLLWR flags, so somebody should check this
496 * all. But careful, it tends to be safer to return too many
497 * bits than too few, and you can easily break real applications
498 * if you don't tell them that something has hung up!
499 *
500 * Check-me.
501 *
502 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
503 * our fs/select.c). It means that after we received EOF,
504 * poll always returns immediately, making impossible poll() on write()
505 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
506 * if and only if shutdown has been made in both directions.
507 * Actually, it is interesting to look how Solaris and DUX
508 * solve this dilemma. I would prefer, if POLLHUP were maskable,
509 * then we could set it on SND_SHUTDOWN. BTW examples given
510 * in Stevens' books assume exactly this behaviour, it explains
511 * why POLLHUP is incompatible with POLLOUT. --ANK
512 *
513 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
514 * blocking on fresh not-connected or disconnected socket. --ANK
515 */
516 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
517 mask |= POLLHUP;
518 if (sk->sk_shutdown & RCV_SHUTDOWN)
519 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
520
521 /* Connected or passive Fast Open socket? */
522 if (state != TCP_SYN_SENT &&
523 (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
524 int target = sock_rcvlowat(sk, 0, INT_MAX);
525
526 if (tp->urg_seq == tp->copied_seq &&
527 !sock_flag(sk, SOCK_URGINLINE) &&
528 tp->urg_data)
529 target++;
530
531 if (tp->rcv_nxt - tp->copied_seq >= target)
532 mask |= POLLIN | POLLRDNORM;
533
534 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
535 if (sk_stream_is_writeable(sk)) {
536 mask |= POLLOUT | POLLWRNORM;
537 } else { /* send SIGIO later */
538 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
539 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
540
541 /* Race breaker. If space is freed after
542 * wspace test but before the flags are set,
543 * IO signal will be lost. Memory barrier
544 * pairs with the input side.
545 */
546 smp_mb__after_atomic();
547 if (sk_stream_is_writeable(sk))
548 mask |= POLLOUT | POLLWRNORM;
549 }
550 } else
551 mask |= POLLOUT | POLLWRNORM;
552
553 if (tp->urg_data & TCP_URG_VALID)
554 mask |= POLLPRI;
555 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
556 /* Active TCP fastopen socket with defer_connect
557 * Return POLLOUT so application can call write()
558 * in order for kernel to generate SYN+data
559 */
560 mask |= POLLOUT | POLLWRNORM;
561 }
562 /* This barrier is coupled with smp_wmb() in tcp_reset() */
563 smp_rmb();
564 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
565 mask |= POLLERR;
566
567 return mask;
568 }
569 EXPORT_SYMBOL(tcp_poll);
570
571 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
572 {
573 struct tcp_sock *tp = tcp_sk(sk);
574 int answ;
575 bool slow;
576
577 switch (cmd) {
578 case SIOCINQ:
579 if (sk->sk_state == TCP_LISTEN)
580 return -EINVAL;
581
582 slow = lock_sock_fast(sk);
583 answ = tcp_inq(sk);
584 unlock_sock_fast(sk, slow);
585 break;
586 case SIOCATMARK:
587 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
588 break;
589 case SIOCOUTQ:
590 if (sk->sk_state == TCP_LISTEN)
591 return -EINVAL;
592
593 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
594 answ = 0;
595 else
596 answ = tp->write_seq - tp->snd_una;
597 break;
598 case SIOCOUTQNSD:
599 if (sk->sk_state == TCP_LISTEN)
600 return -EINVAL;
601
602 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
603 answ = 0;
604 else
605 answ = tp->write_seq - tp->snd_nxt;
606 break;
607 default:
608 return -ENOIOCTLCMD;
609 }
610
611 return put_user(answ, (int __user *)arg);
612 }
613 EXPORT_SYMBOL(tcp_ioctl);
614
615 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
616 {
617 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
618 tp->pushed_seq = tp->write_seq;
619 }
620
621 static inline bool forced_push(const struct tcp_sock *tp)
622 {
623 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
624 }
625
626 static void skb_entail(struct sock *sk, struct sk_buff *skb)
627 {
628 struct tcp_sock *tp = tcp_sk(sk);
629 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
630
631 skb->csum = 0;
632 tcb->seq = tcb->end_seq = tp->write_seq;
633 tcb->tcp_flags = TCPHDR_ACK;
634 tcb->sacked = 0;
635 __skb_header_release(skb);
636 tcp_add_write_queue_tail(sk, skb);
637 sk->sk_wmem_queued += skb->truesize;
638 sk_mem_charge(sk, skb->truesize);
639 if (tp->nonagle & TCP_NAGLE_PUSH)
640 tp->nonagle &= ~TCP_NAGLE_PUSH;
641
642 tcp_slow_start_after_idle_check(sk);
643 }
644
645 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
646 {
647 if (flags & MSG_OOB)
648 tp->snd_up = tp->write_seq;
649 }
650
651 /* If a not yet filled skb is pushed, do not send it if
652 * we have data packets in Qdisc or NIC queues :
653 * Because TX completion will happen shortly, it gives a chance
654 * to coalesce future sendmsg() payload into this skb, without
655 * need for a timer, and with no latency trade off.
656 * As packets containing data payload have a bigger truesize
657 * than pure acks (dataless) packets, the last checks prevent
658 * autocorking if we only have an ACK in Qdisc/NIC queues,
659 * or if TX completion was delayed after we processed ACK packet.
660 */
661 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
662 int size_goal)
663 {
664 return skb->len < size_goal &&
665 sysctl_tcp_autocorking &&
666 skb != tcp_write_queue_head(sk) &&
667 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
668 }
669
670 static void tcp_push(struct sock *sk, int flags, int mss_now,
671 int nonagle, int size_goal)
672 {
673 struct tcp_sock *tp = tcp_sk(sk);
674 struct sk_buff *skb;
675
676 if (!tcp_send_head(sk))
677 return;
678
679 skb = tcp_write_queue_tail(sk);
680 if (!(flags & MSG_MORE) || forced_push(tp))
681 tcp_mark_push(tp, skb);
682
683 tcp_mark_urg(tp, flags);
684
685 if (tcp_should_autocork(sk, skb, size_goal)) {
686
687 /* avoid atomic op if TSQ_THROTTLED bit is already set */
688 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
689 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
690 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
691 }
692 /* It is possible TX completion already happened
693 * before we set TSQ_THROTTLED.
694 */
695 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
696 return;
697 }
698
699 if (flags & MSG_MORE)
700 nonagle = TCP_NAGLE_CORK;
701
702 __tcp_push_pending_frames(sk, mss_now, nonagle);
703 }
704
705 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
706 unsigned int offset, size_t len)
707 {
708 struct tcp_splice_state *tss = rd_desc->arg.data;
709 int ret;
710
711 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
712 min(rd_desc->count, len), tss->flags);
713 if (ret > 0)
714 rd_desc->count -= ret;
715 return ret;
716 }
717
718 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
719 {
720 /* Store TCP splice context information in read_descriptor_t. */
721 read_descriptor_t rd_desc = {
722 .arg.data = tss,
723 .count = tss->len,
724 };
725
726 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
727 }
728
729 /**
730 * tcp_splice_read - splice data from TCP socket to a pipe
731 * @sock: socket to splice from
732 * @ppos: position (not valid)
733 * @pipe: pipe to splice to
734 * @len: number of bytes to splice
735 * @flags: splice modifier flags
736 *
737 * Description:
738 * Will read pages from given socket and fill them into a pipe.
739 *
740 **/
741 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
742 struct pipe_inode_info *pipe, size_t len,
743 unsigned int flags)
744 {
745 struct sock *sk = sock->sk;
746 struct tcp_splice_state tss = {
747 .pipe = pipe,
748 .len = len,
749 .flags = flags,
750 };
751 long timeo;
752 ssize_t spliced;
753 int ret;
754
755 sock_rps_record_flow(sk);
756 /*
757 * We can't seek on a socket input
758 */
759 if (unlikely(*ppos))
760 return -ESPIPE;
761
762 ret = spliced = 0;
763
764 lock_sock(sk);
765
766 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
767 while (tss.len) {
768 ret = __tcp_splice_read(sk, &tss);
769 if (ret < 0)
770 break;
771 else if (!ret) {
772 if (spliced)
773 break;
774 if (sock_flag(sk, SOCK_DONE))
775 break;
776 if (sk->sk_err) {
777 ret = sock_error(sk);
778 break;
779 }
780 if (sk->sk_shutdown & RCV_SHUTDOWN)
781 break;
782 if (sk->sk_state == TCP_CLOSE) {
783 /*
784 * This occurs when user tries to read
785 * from never connected socket.
786 */
787 if (!sock_flag(sk, SOCK_DONE))
788 ret = -ENOTCONN;
789 break;
790 }
791 if (!timeo) {
792 ret = -EAGAIN;
793 break;
794 }
795 /* if __tcp_splice_read() got nothing while we have
796 * an skb in receive queue, we do not want to loop.
797 * This might happen with URG data.
798 */
799 if (!skb_queue_empty(&sk->sk_receive_queue))
800 break;
801 sk_wait_data(sk, &timeo, NULL);
802 if (signal_pending(current)) {
803 ret = sock_intr_errno(timeo);
804 break;
805 }
806 continue;
807 }
808 tss.len -= ret;
809 spliced += ret;
810
811 if (!timeo)
812 break;
813 release_sock(sk);
814 lock_sock(sk);
815
816 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
817 (sk->sk_shutdown & RCV_SHUTDOWN) ||
818 signal_pending(current))
819 break;
820 }
821
822 release_sock(sk);
823
824 if (spliced)
825 return spliced;
826
827 return ret;
828 }
829 EXPORT_SYMBOL(tcp_splice_read);
830
831 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
832 bool force_schedule)
833 {
834 struct sk_buff *skb;
835
836 /* The TCP header must be at least 32-bit aligned. */
837 size = ALIGN(size, 4);
838
839 if (unlikely(tcp_under_memory_pressure(sk)))
840 sk_mem_reclaim_partial(sk);
841
842 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
843 if (likely(skb)) {
844 bool mem_scheduled;
845
846 if (force_schedule) {
847 mem_scheduled = true;
848 sk_forced_mem_schedule(sk, skb->truesize);
849 } else {
850 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
851 }
852 if (likely(mem_scheduled)) {
853 skb_reserve(skb, sk->sk_prot->max_header);
854 /*
855 * Make sure that we have exactly size bytes
856 * available to the caller, no more, no less.
857 */
858 skb->reserved_tailroom = skb->end - skb->tail - size;
859 return skb;
860 }
861 __kfree_skb(skb);
862 } else {
863 sk->sk_prot->enter_memory_pressure(sk);
864 sk_stream_moderate_sndbuf(sk);
865 }
866 return NULL;
867 }
868
869 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
870 int large_allowed)
871 {
872 struct tcp_sock *tp = tcp_sk(sk);
873 u32 new_size_goal, size_goal;
874
875 if (!large_allowed || !sk_can_gso(sk))
876 return mss_now;
877
878 /* Note : tcp_tso_autosize() will eventually split this later */
879 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
880 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
881
882 /* We try hard to avoid divides here */
883 size_goal = tp->gso_segs * mss_now;
884 if (unlikely(new_size_goal < size_goal ||
885 new_size_goal >= size_goal + mss_now)) {
886 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
887 sk->sk_gso_max_segs);
888 size_goal = tp->gso_segs * mss_now;
889 }
890
891 return max(size_goal, mss_now);
892 }
893
894 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
895 {
896 int mss_now;
897
898 mss_now = tcp_current_mss(sk);
899 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
900
901 return mss_now;
902 }
903
904 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
905 size_t size, int flags)
906 {
907 struct tcp_sock *tp = tcp_sk(sk);
908 int mss_now, size_goal;
909 int err;
910 ssize_t copied;
911 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
912
913 /* Wait for a connection to finish. One exception is TCP Fast Open
914 * (passive side) where data is allowed to be sent before a connection
915 * is fully established.
916 */
917 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
918 !tcp_passive_fastopen(sk)) {
919 err = sk_stream_wait_connect(sk, &timeo);
920 if (err != 0)
921 goto out_err;
922 }
923
924 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
925
926 mss_now = tcp_send_mss(sk, &size_goal, flags);
927 copied = 0;
928
929 err = -EPIPE;
930 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
931 goto out_err;
932
933 while (size > 0) {
934 struct sk_buff *skb = tcp_write_queue_tail(sk);
935 int copy, i;
936 bool can_coalesce;
937
938 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0 ||
939 !tcp_skb_can_collapse_to(skb)) {
940 new_segment:
941 if (!sk_stream_memory_free(sk))
942 goto wait_for_sndbuf;
943
944 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
945 skb_queue_empty(&sk->sk_write_queue));
946 if (!skb)
947 goto wait_for_memory;
948
949 skb_entail(sk, skb);
950 copy = size_goal;
951 }
952
953 if (copy > size)
954 copy = size;
955
956 i = skb_shinfo(skb)->nr_frags;
957 can_coalesce = skb_can_coalesce(skb, i, page, offset);
958 if (!can_coalesce && i >= sysctl_max_skb_frags) {
959 tcp_mark_push(tp, skb);
960 goto new_segment;
961 }
962 if (!sk_wmem_schedule(sk, copy))
963 goto wait_for_memory;
964
965 if (can_coalesce) {
966 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
967 } else {
968 get_page(page);
969 skb_fill_page_desc(skb, i, page, offset, copy);
970 }
971 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
972
973 skb->len += copy;
974 skb->data_len += copy;
975 skb->truesize += copy;
976 sk->sk_wmem_queued += copy;
977 sk_mem_charge(sk, copy);
978 skb->ip_summed = CHECKSUM_PARTIAL;
979 tp->write_seq += copy;
980 TCP_SKB_CB(skb)->end_seq += copy;
981 tcp_skb_pcount_set(skb, 0);
982
983 if (!copied)
984 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
985
986 copied += copy;
987 offset += copy;
988 size -= copy;
989 if (!size)
990 goto out;
991
992 if (skb->len < size_goal || (flags & MSG_OOB))
993 continue;
994
995 if (forced_push(tp)) {
996 tcp_mark_push(tp, skb);
997 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
998 } else if (skb == tcp_send_head(sk))
999 tcp_push_one(sk, mss_now);
1000 continue;
1001
1002 wait_for_sndbuf:
1003 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1004 wait_for_memory:
1005 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1006 TCP_NAGLE_PUSH, size_goal);
1007
1008 err = sk_stream_wait_memory(sk, &timeo);
1009 if (err != 0)
1010 goto do_error;
1011
1012 mss_now = tcp_send_mss(sk, &size_goal, flags);
1013 }
1014
1015 out:
1016 if (copied) {
1017 tcp_tx_timestamp(sk, sk->sk_tsflags, tcp_write_queue_tail(sk));
1018 if (!(flags & MSG_SENDPAGE_NOTLAST))
1019 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1020 }
1021 return copied;
1022
1023 do_error:
1024 if (copied)
1025 goto out;
1026 out_err:
1027 /* make sure we wake any epoll edge trigger waiter */
1028 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1029 err == -EAGAIN)) {
1030 sk->sk_write_space(sk);
1031 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1032 }
1033 return sk_stream_error(sk, flags, err);
1034 }
1035 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1036
1037 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1038 size_t size, int flags)
1039 {
1040 ssize_t res;
1041
1042 if (!(sk->sk_route_caps & NETIF_F_SG) ||
1043 !sk_check_csum_caps(sk))
1044 return sock_no_sendpage(sk->sk_socket, page, offset, size,
1045 flags);
1046
1047 lock_sock(sk);
1048
1049 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1050
1051 res = do_tcp_sendpages(sk, page, offset, size, flags);
1052 release_sock(sk);
1053 return res;
1054 }
1055 EXPORT_SYMBOL(tcp_sendpage);
1056
1057 /* Do not bother using a page frag for very small frames.
1058 * But use this heuristic only for the first skb in write queue.
1059 *
1060 * Having no payload in skb->head allows better SACK shifting
1061 * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1062 * write queue has less skbs.
1063 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1064 * This also speeds up tso_fragment(), since it wont fallback
1065 * to tcp_fragment().
1066 */
1067 static int linear_payload_sz(bool first_skb)
1068 {
1069 if (first_skb)
1070 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1071 return 0;
1072 }
1073
1074 static int select_size(const struct sock *sk, bool sg, bool first_skb)
1075 {
1076 const struct tcp_sock *tp = tcp_sk(sk);
1077 int tmp = tp->mss_cache;
1078
1079 if (sg) {
1080 if (sk_can_gso(sk)) {
1081 tmp = linear_payload_sz(first_skb);
1082 } else {
1083 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1084
1085 if (tmp >= pgbreak &&
1086 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1087 tmp = pgbreak;
1088 }
1089 }
1090
1091 return tmp;
1092 }
1093
1094 void tcp_free_fastopen_req(struct tcp_sock *tp)
1095 {
1096 if (tp->fastopen_req) {
1097 kfree(tp->fastopen_req);
1098 tp->fastopen_req = NULL;
1099 }
1100 }
1101
1102 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1103 int *copied, size_t size)
1104 {
1105 struct tcp_sock *tp = tcp_sk(sk);
1106 struct inet_sock *inet = inet_sk(sk);
1107 struct sockaddr *uaddr = msg->msg_name;
1108 int err, flags;
1109
1110 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1111 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1112 uaddr->sa_family == AF_UNSPEC))
1113 return -EOPNOTSUPP;
1114 if (tp->fastopen_req)
1115 return -EALREADY; /* Another Fast Open is in progress */
1116
1117 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1118 sk->sk_allocation);
1119 if (unlikely(!tp->fastopen_req))
1120 return -ENOBUFS;
1121 tp->fastopen_req->data = msg;
1122 tp->fastopen_req->size = size;
1123
1124 if (inet->defer_connect) {
1125 err = tcp_connect(sk);
1126 /* Same failure procedure as in tcp_v4/6_connect */
1127 if (err) {
1128 tcp_set_state(sk, TCP_CLOSE);
1129 inet->inet_dport = 0;
1130 sk->sk_route_caps = 0;
1131 }
1132 }
1133 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1134 err = __inet_stream_connect(sk->sk_socket, uaddr,
1135 msg->msg_namelen, flags, 1);
1136 /* fastopen_req could already be freed in __inet_stream_connect
1137 * if the connection times out or gets rst
1138 */
1139 if (tp->fastopen_req) {
1140 *copied = tp->fastopen_req->copied;
1141 tcp_free_fastopen_req(tp);
1142 inet->defer_connect = 0;
1143 }
1144 return err;
1145 }
1146
1147 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1148 {
1149 struct tcp_sock *tp = tcp_sk(sk);
1150 struct sk_buff *skb;
1151 struct sockcm_cookie sockc;
1152 int flags, err, copied = 0;
1153 int mss_now = 0, size_goal, copied_syn = 0;
1154 bool process_backlog = false;
1155 bool sg;
1156 long timeo;
1157
1158 lock_sock(sk);
1159
1160 flags = msg->msg_flags;
1161 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect)) {
1162 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1163 if (err == -EINPROGRESS && copied_syn > 0)
1164 goto out;
1165 else if (err)
1166 goto out_err;
1167 }
1168
1169 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1170
1171 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1172
1173 /* Wait for a connection to finish. One exception is TCP Fast Open
1174 * (passive side) where data is allowed to be sent before a connection
1175 * is fully established.
1176 */
1177 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1178 !tcp_passive_fastopen(sk)) {
1179 err = sk_stream_wait_connect(sk, &timeo);
1180 if (err != 0)
1181 goto do_error;
1182 }
1183
1184 if (unlikely(tp->repair)) {
1185 if (tp->repair_queue == TCP_RECV_QUEUE) {
1186 copied = tcp_send_rcvq(sk, msg, size);
1187 goto out_nopush;
1188 }
1189
1190 err = -EINVAL;
1191 if (tp->repair_queue == TCP_NO_QUEUE)
1192 goto out_err;
1193
1194 /* 'common' sending to sendq */
1195 }
1196
1197 sockc.tsflags = sk->sk_tsflags;
1198 if (msg->msg_controllen) {
1199 err = sock_cmsg_send(sk, msg, &sockc);
1200 if (unlikely(err)) {
1201 err = -EINVAL;
1202 goto out_err;
1203 }
1204 }
1205
1206 /* This should be in poll */
1207 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1208
1209 /* Ok commence sending. */
1210 copied = 0;
1211
1212 restart:
1213 mss_now = tcp_send_mss(sk, &size_goal, flags);
1214
1215 err = -EPIPE;
1216 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1217 goto do_error;
1218
1219 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1220
1221 while (msg_data_left(msg)) {
1222 int copy = 0;
1223 int max = size_goal;
1224
1225 skb = tcp_write_queue_tail(sk);
1226 if (tcp_send_head(sk)) {
1227 if (skb->ip_summed == CHECKSUM_NONE)
1228 max = mss_now;
1229 copy = max - skb->len;
1230 }
1231
1232 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1233 bool first_skb;
1234
1235 new_segment:
1236 /* Allocate new segment. If the interface is SG,
1237 * allocate skb fitting to single page.
1238 */
1239 if (!sk_stream_memory_free(sk))
1240 goto wait_for_sndbuf;
1241
1242 if (process_backlog && sk_flush_backlog(sk)) {
1243 process_backlog = false;
1244 goto restart;
1245 }
1246 first_skb = skb_queue_empty(&sk->sk_write_queue);
1247 skb = sk_stream_alloc_skb(sk,
1248 select_size(sk, sg, first_skb),
1249 sk->sk_allocation,
1250 first_skb);
1251 if (!skb)
1252 goto wait_for_memory;
1253
1254 process_backlog = true;
1255 /*
1256 * Check whether we can use HW checksum.
1257 */
1258 if (sk_check_csum_caps(sk))
1259 skb->ip_summed = CHECKSUM_PARTIAL;
1260
1261 skb_entail(sk, skb);
1262 copy = size_goal;
1263 max = size_goal;
1264
1265 /* All packets are restored as if they have
1266 * already been sent. skb_mstamp isn't set to
1267 * avoid wrong rtt estimation.
1268 */
1269 if (tp->repair)
1270 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1271 }
1272
1273 /* Try to append data to the end of skb. */
1274 if (copy > msg_data_left(msg))
1275 copy = msg_data_left(msg);
1276
1277 /* Where to copy to? */
1278 if (skb_availroom(skb) > 0) {
1279 /* We have some space in skb head. Superb! */
1280 copy = min_t(int, copy, skb_availroom(skb));
1281 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1282 if (err)
1283 goto do_fault;
1284 } else {
1285 bool merge = true;
1286 int i = skb_shinfo(skb)->nr_frags;
1287 struct page_frag *pfrag = sk_page_frag(sk);
1288
1289 if (!sk_page_frag_refill(sk, pfrag))
1290 goto wait_for_memory;
1291
1292 if (!skb_can_coalesce(skb, i, pfrag->page,
1293 pfrag->offset)) {
1294 if (i >= sysctl_max_skb_frags || !sg) {
1295 tcp_mark_push(tp, skb);
1296 goto new_segment;
1297 }
1298 merge = false;
1299 }
1300
1301 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1302
1303 if (!sk_wmem_schedule(sk, copy))
1304 goto wait_for_memory;
1305
1306 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1307 pfrag->page,
1308 pfrag->offset,
1309 copy);
1310 if (err)
1311 goto do_error;
1312
1313 /* Update the skb. */
1314 if (merge) {
1315 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1316 } else {
1317 skb_fill_page_desc(skb, i, pfrag->page,
1318 pfrag->offset, copy);
1319 page_ref_inc(pfrag->page);
1320 }
1321 pfrag->offset += copy;
1322 }
1323
1324 if (!copied)
1325 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1326
1327 tp->write_seq += copy;
1328 TCP_SKB_CB(skb)->end_seq += copy;
1329 tcp_skb_pcount_set(skb, 0);
1330
1331 copied += copy;
1332 if (!msg_data_left(msg)) {
1333 if (unlikely(flags & MSG_EOR))
1334 TCP_SKB_CB(skb)->eor = 1;
1335 goto out;
1336 }
1337
1338 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1339 continue;
1340
1341 if (forced_push(tp)) {
1342 tcp_mark_push(tp, skb);
1343 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1344 } else if (skb == tcp_send_head(sk))
1345 tcp_push_one(sk, mss_now);
1346 continue;
1347
1348 wait_for_sndbuf:
1349 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1350 wait_for_memory:
1351 if (copied)
1352 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1353 TCP_NAGLE_PUSH, size_goal);
1354
1355 err = sk_stream_wait_memory(sk, &timeo);
1356 if (err != 0)
1357 goto do_error;
1358
1359 mss_now = tcp_send_mss(sk, &size_goal, flags);
1360 }
1361
1362 out:
1363 if (copied) {
1364 tcp_tx_timestamp(sk, sockc.tsflags, tcp_write_queue_tail(sk));
1365 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1366 }
1367 out_nopush:
1368 release_sock(sk);
1369 return copied + copied_syn;
1370
1371 do_fault:
1372 if (!skb->len) {
1373 tcp_unlink_write_queue(skb, sk);
1374 /* It is the one place in all of TCP, except connection
1375 * reset, where we can be unlinking the send_head.
1376 */
1377 tcp_check_send_head(sk, skb);
1378 sk_wmem_free_skb(sk, skb);
1379 }
1380
1381 do_error:
1382 if (copied + copied_syn)
1383 goto out;
1384 out_err:
1385 err = sk_stream_error(sk, flags, err);
1386 /* make sure we wake any epoll edge trigger waiter */
1387 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1388 err == -EAGAIN)) {
1389 sk->sk_write_space(sk);
1390 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1391 }
1392 release_sock(sk);
1393 return err;
1394 }
1395 EXPORT_SYMBOL(tcp_sendmsg);
1396
1397 /*
1398 * Handle reading urgent data. BSD has very simple semantics for
1399 * this, no blocking and very strange errors 8)
1400 */
1401
1402 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1403 {
1404 struct tcp_sock *tp = tcp_sk(sk);
1405
1406 /* No URG data to read. */
1407 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1408 tp->urg_data == TCP_URG_READ)
1409 return -EINVAL; /* Yes this is right ! */
1410
1411 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1412 return -ENOTCONN;
1413
1414 if (tp->urg_data & TCP_URG_VALID) {
1415 int err = 0;
1416 char c = tp->urg_data;
1417
1418 if (!(flags & MSG_PEEK))
1419 tp->urg_data = TCP_URG_READ;
1420
1421 /* Read urgent data. */
1422 msg->msg_flags |= MSG_OOB;
1423
1424 if (len > 0) {
1425 if (!(flags & MSG_TRUNC))
1426 err = memcpy_to_msg(msg, &c, 1);
1427 len = 1;
1428 } else
1429 msg->msg_flags |= MSG_TRUNC;
1430
1431 return err ? -EFAULT : len;
1432 }
1433
1434 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1435 return 0;
1436
1437 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1438 * the available implementations agree in this case:
1439 * this call should never block, independent of the
1440 * blocking state of the socket.
1441 * Mike <pall@rz.uni-karlsruhe.de>
1442 */
1443 return -EAGAIN;
1444 }
1445
1446 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1447 {
1448 struct sk_buff *skb;
1449 int copied = 0, err = 0;
1450
1451 /* XXX -- need to support SO_PEEK_OFF */
1452
1453 skb_queue_walk(&sk->sk_write_queue, skb) {
1454 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1455 if (err)
1456 break;
1457
1458 copied += skb->len;
1459 }
1460
1461 return err ?: copied;
1462 }
1463
1464 /* Clean up the receive buffer for full frames taken by the user,
1465 * then send an ACK if necessary. COPIED is the number of bytes
1466 * tcp_recvmsg has given to the user so far, it speeds up the
1467 * calculation of whether or not we must ACK for the sake of
1468 * a window update.
1469 */
1470 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1471 {
1472 struct tcp_sock *tp = tcp_sk(sk);
1473 bool time_to_ack = false;
1474
1475 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1476
1477 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1478 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1479 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1480
1481 if (inet_csk_ack_scheduled(sk)) {
1482 const struct inet_connection_sock *icsk = inet_csk(sk);
1483 /* Delayed ACKs frequently hit locked sockets during bulk
1484 * receive. */
1485 if (icsk->icsk_ack.blocked ||
1486 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1487 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1488 /*
1489 * If this read emptied read buffer, we send ACK, if
1490 * connection is not bidirectional, user drained
1491 * receive buffer and there was a small segment
1492 * in queue.
1493 */
1494 (copied > 0 &&
1495 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1496 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1497 !icsk->icsk_ack.pingpong)) &&
1498 !atomic_read(&sk->sk_rmem_alloc)))
1499 time_to_ack = true;
1500 }
1501
1502 /* We send an ACK if we can now advertise a non-zero window
1503 * which has been raised "significantly".
1504 *
1505 * Even if window raised up to infinity, do not send window open ACK
1506 * in states, where we will not receive more. It is useless.
1507 */
1508 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1509 __u32 rcv_window_now = tcp_receive_window(tp);
1510
1511 /* Optimize, __tcp_select_window() is not cheap. */
1512 if (2*rcv_window_now <= tp->window_clamp) {
1513 __u32 new_window = __tcp_select_window(sk);
1514
1515 /* Send ACK now, if this read freed lots of space
1516 * in our buffer. Certainly, new_window is new window.
1517 * We can advertise it now, if it is not less than current one.
1518 * "Lots" means "at least twice" here.
1519 */
1520 if (new_window && new_window >= 2 * rcv_window_now)
1521 time_to_ack = true;
1522 }
1523 }
1524 if (time_to_ack)
1525 tcp_send_ack(sk);
1526 }
1527
1528 static void tcp_prequeue_process(struct sock *sk)
1529 {
1530 struct sk_buff *skb;
1531 struct tcp_sock *tp = tcp_sk(sk);
1532
1533 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1534
1535 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1536 sk_backlog_rcv(sk, skb);
1537
1538 /* Clear memory counter. */
1539 tp->ucopy.memory = 0;
1540 }
1541
1542 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1543 {
1544 struct sk_buff *skb;
1545 u32 offset;
1546
1547 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1548 offset = seq - TCP_SKB_CB(skb)->seq;
1549 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1550 pr_err_once("%s: found a SYN, please report !\n", __func__);
1551 offset--;
1552 }
1553 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1554 *off = offset;
1555 return skb;
1556 }
1557 /* This looks weird, but this can happen if TCP collapsing
1558 * splitted a fat GRO packet, while we released socket lock
1559 * in skb_splice_bits()
1560 */
1561 sk_eat_skb(sk, skb);
1562 }
1563 return NULL;
1564 }
1565
1566 /*
1567 * This routine provides an alternative to tcp_recvmsg() for routines
1568 * that would like to handle copying from skbuffs directly in 'sendfile'
1569 * fashion.
1570 * Note:
1571 * - It is assumed that the socket was locked by the caller.
1572 * - The routine does not block.
1573 * - At present, there is no support for reading OOB data
1574 * or for 'peeking' the socket using this routine
1575 * (although both would be easy to implement).
1576 */
1577 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1578 sk_read_actor_t recv_actor)
1579 {
1580 struct sk_buff *skb;
1581 struct tcp_sock *tp = tcp_sk(sk);
1582 u32 seq = tp->copied_seq;
1583 u32 offset;
1584 int copied = 0;
1585
1586 if (sk->sk_state == TCP_LISTEN)
1587 return -ENOTCONN;
1588 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1589 if (offset < skb->len) {
1590 int used;
1591 size_t len;
1592
1593 len = skb->len - offset;
1594 /* Stop reading if we hit a patch of urgent data */
1595 if (tp->urg_data) {
1596 u32 urg_offset = tp->urg_seq - seq;
1597 if (urg_offset < len)
1598 len = urg_offset;
1599 if (!len)
1600 break;
1601 }
1602 used = recv_actor(desc, skb, offset, len);
1603 if (used <= 0) {
1604 if (!copied)
1605 copied = used;
1606 break;
1607 } else if (used <= len) {
1608 seq += used;
1609 copied += used;
1610 offset += used;
1611 }
1612 /* If recv_actor drops the lock (e.g. TCP splice
1613 * receive) the skb pointer might be invalid when
1614 * getting here: tcp_collapse might have deleted it
1615 * while aggregating skbs from the socket queue.
1616 */
1617 skb = tcp_recv_skb(sk, seq - 1, &offset);
1618 if (!skb)
1619 break;
1620 /* TCP coalescing might have appended data to the skb.
1621 * Try to splice more frags
1622 */
1623 if (offset + 1 != skb->len)
1624 continue;
1625 }
1626 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1627 sk_eat_skb(sk, skb);
1628 ++seq;
1629 break;
1630 }
1631 sk_eat_skb(sk, skb);
1632 if (!desc->count)
1633 break;
1634 tp->copied_seq = seq;
1635 }
1636 tp->copied_seq = seq;
1637
1638 tcp_rcv_space_adjust(sk);
1639
1640 /* Clean up data we have read: This will do ACK frames. */
1641 if (copied > 0) {
1642 tcp_recv_skb(sk, seq, &offset);
1643 tcp_cleanup_rbuf(sk, copied);
1644 }
1645 return copied;
1646 }
1647 EXPORT_SYMBOL(tcp_read_sock);
1648
1649 int tcp_peek_len(struct socket *sock)
1650 {
1651 return tcp_inq(sock->sk);
1652 }
1653 EXPORT_SYMBOL(tcp_peek_len);
1654
1655 /*
1656 * This routine copies from a sock struct into the user buffer.
1657 *
1658 * Technical note: in 2.3 we work on _locked_ socket, so that
1659 * tricks with *seq access order and skb->users are not required.
1660 * Probably, code can be easily improved even more.
1661 */
1662
1663 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1664 int flags, int *addr_len)
1665 {
1666 struct tcp_sock *tp = tcp_sk(sk);
1667 int copied = 0;
1668 u32 peek_seq;
1669 u32 *seq;
1670 unsigned long used;
1671 int err;
1672 int target; /* Read at least this many bytes */
1673 long timeo;
1674 struct task_struct *user_recv = NULL;
1675 struct sk_buff *skb, *last;
1676 u32 urg_hole = 0;
1677
1678 if (unlikely(flags & MSG_ERRQUEUE))
1679 return inet_recv_error(sk, msg, len, addr_len);
1680
1681 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1682 (sk->sk_state == TCP_ESTABLISHED))
1683 sk_busy_loop(sk, nonblock);
1684
1685 lock_sock(sk);
1686
1687 err = -ENOTCONN;
1688 if (sk->sk_state == TCP_LISTEN)
1689 goto out;
1690
1691 timeo = sock_rcvtimeo(sk, nonblock);
1692
1693 /* Urgent data needs to be handled specially. */
1694 if (flags & MSG_OOB)
1695 goto recv_urg;
1696
1697 if (unlikely(tp->repair)) {
1698 err = -EPERM;
1699 if (!(flags & MSG_PEEK))
1700 goto out;
1701
1702 if (tp->repair_queue == TCP_SEND_QUEUE)
1703 goto recv_sndq;
1704
1705 err = -EINVAL;
1706 if (tp->repair_queue == TCP_NO_QUEUE)
1707 goto out;
1708
1709 /* 'common' recv queue MSG_PEEK-ing */
1710 }
1711
1712 seq = &tp->copied_seq;
1713 if (flags & MSG_PEEK) {
1714 peek_seq = tp->copied_seq;
1715 seq = &peek_seq;
1716 }
1717
1718 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1719
1720 do {
1721 u32 offset;
1722
1723 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1724 if (tp->urg_data && tp->urg_seq == *seq) {
1725 if (copied)
1726 break;
1727 if (signal_pending(current)) {
1728 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1729 break;
1730 }
1731 }
1732
1733 /* Next get a buffer. */
1734
1735 last = skb_peek_tail(&sk->sk_receive_queue);
1736 skb_queue_walk(&sk->sk_receive_queue, skb) {
1737 last = skb;
1738 /* Now that we have two receive queues this
1739 * shouldn't happen.
1740 */
1741 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1742 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1743 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1744 flags))
1745 break;
1746
1747 offset = *seq - TCP_SKB_CB(skb)->seq;
1748 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1749 pr_err_once("%s: found a SYN, please report !\n", __func__);
1750 offset--;
1751 }
1752 if (offset < skb->len)
1753 goto found_ok_skb;
1754 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1755 goto found_fin_ok;
1756 WARN(!(flags & MSG_PEEK),
1757 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1758 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1759 }
1760
1761 /* Well, if we have backlog, try to process it now yet. */
1762
1763 if (copied >= target && !sk->sk_backlog.tail)
1764 break;
1765
1766 if (copied) {
1767 if (sk->sk_err ||
1768 sk->sk_state == TCP_CLOSE ||
1769 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1770 !timeo ||
1771 signal_pending(current))
1772 break;
1773 } else {
1774 if (sock_flag(sk, SOCK_DONE))
1775 break;
1776
1777 if (sk->sk_err) {
1778 copied = sock_error(sk);
1779 break;
1780 }
1781
1782 if (sk->sk_shutdown & RCV_SHUTDOWN)
1783 break;
1784
1785 if (sk->sk_state == TCP_CLOSE) {
1786 if (!sock_flag(sk, SOCK_DONE)) {
1787 /* This occurs when user tries to read
1788 * from never connected socket.
1789 */
1790 copied = -ENOTCONN;
1791 break;
1792 }
1793 break;
1794 }
1795
1796 if (!timeo) {
1797 copied = -EAGAIN;
1798 break;
1799 }
1800
1801 if (signal_pending(current)) {
1802 copied = sock_intr_errno(timeo);
1803 break;
1804 }
1805 }
1806
1807 tcp_cleanup_rbuf(sk, copied);
1808
1809 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1810 /* Install new reader */
1811 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1812 user_recv = current;
1813 tp->ucopy.task = user_recv;
1814 tp->ucopy.msg = msg;
1815 }
1816
1817 tp->ucopy.len = len;
1818
1819 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1820 !(flags & (MSG_PEEK | MSG_TRUNC)));
1821
1822 /* Ugly... If prequeue is not empty, we have to
1823 * process it before releasing socket, otherwise
1824 * order will be broken at second iteration.
1825 * More elegant solution is required!!!
1826 *
1827 * Look: we have the following (pseudo)queues:
1828 *
1829 * 1. packets in flight
1830 * 2. backlog
1831 * 3. prequeue
1832 * 4. receive_queue
1833 *
1834 * Each queue can be processed only if the next ones
1835 * are empty. At this point we have empty receive_queue.
1836 * But prequeue _can_ be not empty after 2nd iteration,
1837 * when we jumped to start of loop because backlog
1838 * processing added something to receive_queue.
1839 * We cannot release_sock(), because backlog contains
1840 * packets arrived _after_ prequeued ones.
1841 *
1842 * Shortly, algorithm is clear --- to process all
1843 * the queues in order. We could make it more directly,
1844 * requeueing packets from backlog to prequeue, if
1845 * is not empty. It is more elegant, but eats cycles,
1846 * unfortunately.
1847 */
1848 if (!skb_queue_empty(&tp->ucopy.prequeue))
1849 goto do_prequeue;
1850
1851 /* __ Set realtime policy in scheduler __ */
1852 }
1853
1854 if (copied >= target) {
1855 /* Do not sleep, just process backlog. */
1856 release_sock(sk);
1857 lock_sock(sk);
1858 } else {
1859 sk_wait_data(sk, &timeo, last);
1860 }
1861
1862 if (user_recv) {
1863 int chunk;
1864
1865 /* __ Restore normal policy in scheduler __ */
1866
1867 chunk = len - tp->ucopy.len;
1868 if (chunk != 0) {
1869 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1870 len -= chunk;
1871 copied += chunk;
1872 }
1873
1874 if (tp->rcv_nxt == tp->copied_seq &&
1875 !skb_queue_empty(&tp->ucopy.prequeue)) {
1876 do_prequeue:
1877 tcp_prequeue_process(sk);
1878
1879 chunk = len - tp->ucopy.len;
1880 if (chunk != 0) {
1881 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1882 len -= chunk;
1883 copied += chunk;
1884 }
1885 }
1886 }
1887 if ((flags & MSG_PEEK) &&
1888 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1889 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1890 current->comm,
1891 task_pid_nr(current));
1892 peek_seq = tp->copied_seq;
1893 }
1894 continue;
1895
1896 found_ok_skb:
1897 /* Ok so how much can we use? */
1898 used = skb->len - offset;
1899 if (len < used)
1900 used = len;
1901
1902 /* Do we have urgent data here? */
1903 if (tp->urg_data) {
1904 u32 urg_offset = tp->urg_seq - *seq;
1905 if (urg_offset < used) {
1906 if (!urg_offset) {
1907 if (!sock_flag(sk, SOCK_URGINLINE)) {
1908 ++*seq;
1909 urg_hole++;
1910 offset++;
1911 used--;
1912 if (!used)
1913 goto skip_copy;
1914 }
1915 } else
1916 used = urg_offset;
1917 }
1918 }
1919
1920 if (!(flags & MSG_TRUNC)) {
1921 err = skb_copy_datagram_msg(skb, offset, msg, used);
1922 if (err) {
1923 /* Exception. Bailout! */
1924 if (!copied)
1925 copied = -EFAULT;
1926 break;
1927 }
1928 }
1929
1930 *seq += used;
1931 copied += used;
1932 len -= used;
1933
1934 tcp_rcv_space_adjust(sk);
1935
1936 skip_copy:
1937 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1938 tp->urg_data = 0;
1939 tcp_fast_path_check(sk);
1940 }
1941 if (used + offset < skb->len)
1942 continue;
1943
1944 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1945 goto found_fin_ok;
1946 if (!(flags & MSG_PEEK))
1947 sk_eat_skb(sk, skb);
1948 continue;
1949
1950 found_fin_ok:
1951 /* Process the FIN. */
1952 ++*seq;
1953 if (!(flags & MSG_PEEK))
1954 sk_eat_skb(sk, skb);
1955 break;
1956 } while (len > 0);
1957
1958 if (user_recv) {
1959 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1960 int chunk;
1961
1962 tp->ucopy.len = copied > 0 ? len : 0;
1963
1964 tcp_prequeue_process(sk);
1965
1966 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1967 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1968 len -= chunk;
1969 copied += chunk;
1970 }
1971 }
1972
1973 tp->ucopy.task = NULL;
1974 tp->ucopy.len = 0;
1975 }
1976
1977 /* According to UNIX98, msg_name/msg_namelen are ignored
1978 * on connected socket. I was just happy when found this 8) --ANK
1979 */
1980
1981 /* Clean up data we have read: This will do ACK frames. */
1982 tcp_cleanup_rbuf(sk, copied);
1983
1984 release_sock(sk);
1985 return copied;
1986
1987 out:
1988 release_sock(sk);
1989 return err;
1990
1991 recv_urg:
1992 err = tcp_recv_urg(sk, msg, len, flags);
1993 goto out;
1994
1995 recv_sndq:
1996 err = tcp_peek_sndq(sk, msg, len);
1997 goto out;
1998 }
1999 EXPORT_SYMBOL(tcp_recvmsg);
2000
2001 void tcp_set_state(struct sock *sk, int state)
2002 {
2003 int oldstate = sk->sk_state;
2004
2005 switch (state) {
2006 case TCP_ESTABLISHED:
2007 if (oldstate != TCP_ESTABLISHED)
2008 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2009 break;
2010
2011 case TCP_CLOSE:
2012 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2013 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2014
2015 sk->sk_prot->unhash(sk);
2016 if (inet_csk(sk)->icsk_bind_hash &&
2017 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2018 inet_put_port(sk);
2019 /* fall through */
2020 default:
2021 if (oldstate == TCP_ESTABLISHED)
2022 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2023 }
2024
2025 /* Change state AFTER socket is unhashed to avoid closed
2026 * socket sitting in hash tables.
2027 */
2028 sk_state_store(sk, state);
2029
2030 #ifdef STATE_TRACE
2031 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2032 #endif
2033 }
2034 EXPORT_SYMBOL_GPL(tcp_set_state);
2035
2036 /*
2037 * State processing on a close. This implements the state shift for
2038 * sending our FIN frame. Note that we only send a FIN for some
2039 * states. A shutdown() may have already sent the FIN, or we may be
2040 * closed.
2041 */
2042
2043 static const unsigned char new_state[16] = {
2044 /* current state: new state: action: */
2045 [0 /* (Invalid) */] = TCP_CLOSE,
2046 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2047 [TCP_SYN_SENT] = TCP_CLOSE,
2048 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2049 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2050 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2051 [TCP_TIME_WAIT] = TCP_CLOSE,
2052 [TCP_CLOSE] = TCP_CLOSE,
2053 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2054 [TCP_LAST_ACK] = TCP_LAST_ACK,
2055 [TCP_LISTEN] = TCP_CLOSE,
2056 [TCP_CLOSING] = TCP_CLOSING,
2057 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2058 };
2059
2060 static int tcp_close_state(struct sock *sk)
2061 {
2062 int next = (int)new_state[sk->sk_state];
2063 int ns = next & TCP_STATE_MASK;
2064
2065 tcp_set_state(sk, ns);
2066
2067 return next & TCP_ACTION_FIN;
2068 }
2069
2070 /*
2071 * Shutdown the sending side of a connection. Much like close except
2072 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2073 */
2074
2075 void tcp_shutdown(struct sock *sk, int how)
2076 {
2077 /* We need to grab some memory, and put together a FIN,
2078 * and then put it into the queue to be sent.
2079 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2080 */
2081 if (!(how & SEND_SHUTDOWN))
2082 return;
2083
2084 /* If we've already sent a FIN, or it's a closed state, skip this. */
2085 if ((1 << sk->sk_state) &
2086 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2087 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2088 /* Clear out any half completed packets. FIN if needed. */
2089 if (tcp_close_state(sk))
2090 tcp_send_fin(sk);
2091 }
2092 }
2093 EXPORT_SYMBOL(tcp_shutdown);
2094
2095 bool tcp_check_oom(struct sock *sk, int shift)
2096 {
2097 bool too_many_orphans, out_of_socket_memory;
2098
2099 too_many_orphans = tcp_too_many_orphans(sk, shift);
2100 out_of_socket_memory = tcp_out_of_memory(sk);
2101
2102 if (too_many_orphans)
2103 net_info_ratelimited("too many orphaned sockets\n");
2104 if (out_of_socket_memory)
2105 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2106 return too_many_orphans || out_of_socket_memory;
2107 }
2108
2109 void tcp_close(struct sock *sk, long timeout)
2110 {
2111 struct sk_buff *skb;
2112 int data_was_unread = 0;
2113 int state;
2114
2115 lock_sock(sk);
2116 sk->sk_shutdown = SHUTDOWN_MASK;
2117
2118 if (sk->sk_state == TCP_LISTEN) {
2119 tcp_set_state(sk, TCP_CLOSE);
2120
2121 /* Special case. */
2122 inet_csk_listen_stop(sk);
2123
2124 goto adjudge_to_death;
2125 }
2126
2127 /* We need to flush the recv. buffs. We do this only on the
2128 * descriptor close, not protocol-sourced closes, because the
2129 * reader process may not have drained the data yet!
2130 */
2131 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2132 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2133
2134 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2135 len--;
2136 data_was_unread += len;
2137 __kfree_skb(skb);
2138 }
2139
2140 sk_mem_reclaim(sk);
2141
2142 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2143 if (sk->sk_state == TCP_CLOSE)
2144 goto adjudge_to_death;
2145
2146 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2147 * data was lost. To witness the awful effects of the old behavior of
2148 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2149 * GET in an FTP client, suspend the process, wait for the client to
2150 * advertise a zero window, then kill -9 the FTP client, wheee...
2151 * Note: timeout is always zero in such a case.
2152 */
2153 if (unlikely(tcp_sk(sk)->repair)) {
2154 sk->sk_prot->disconnect(sk, 0);
2155 } else if (data_was_unread) {
2156 /* Unread data was tossed, zap the connection. */
2157 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2158 tcp_set_state(sk, TCP_CLOSE);
2159 tcp_send_active_reset(sk, sk->sk_allocation);
2160 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2161 /* Check zero linger _after_ checking for unread data. */
2162 sk->sk_prot->disconnect(sk, 0);
2163 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2164 } else if (tcp_close_state(sk)) {
2165 /* We FIN if the application ate all the data before
2166 * zapping the connection.
2167 */
2168
2169 /* RED-PEN. Formally speaking, we have broken TCP state
2170 * machine. State transitions:
2171 *
2172 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2173 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2174 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2175 *
2176 * are legal only when FIN has been sent (i.e. in window),
2177 * rather than queued out of window. Purists blame.
2178 *
2179 * F.e. "RFC state" is ESTABLISHED,
2180 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2181 *
2182 * The visible declinations are that sometimes
2183 * we enter time-wait state, when it is not required really
2184 * (harmless), do not send active resets, when they are
2185 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2186 * they look as CLOSING or LAST_ACK for Linux)
2187 * Probably, I missed some more holelets.
2188 * --ANK
2189 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2190 * in a single packet! (May consider it later but will
2191 * probably need API support or TCP_CORK SYN-ACK until
2192 * data is written and socket is closed.)
2193 */
2194 tcp_send_fin(sk);
2195 }
2196
2197 sk_stream_wait_close(sk, timeout);
2198
2199 adjudge_to_death:
2200 state = sk->sk_state;
2201 sock_hold(sk);
2202 sock_orphan(sk);
2203
2204 /* It is the last release_sock in its life. It will remove backlog. */
2205 release_sock(sk);
2206
2207
2208 /* Now socket is owned by kernel and we acquire BH lock
2209 * to finish close. No need to check for user refs.
2210 */
2211 local_bh_disable();
2212 bh_lock_sock(sk);
2213 WARN_ON(sock_owned_by_user(sk));
2214
2215 percpu_counter_inc(sk->sk_prot->orphan_count);
2216
2217 /* Have we already been destroyed by a softirq or backlog? */
2218 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2219 goto out;
2220
2221 /* This is a (useful) BSD violating of the RFC. There is a
2222 * problem with TCP as specified in that the other end could
2223 * keep a socket open forever with no application left this end.
2224 * We use a 1 minute timeout (about the same as BSD) then kill
2225 * our end. If they send after that then tough - BUT: long enough
2226 * that we won't make the old 4*rto = almost no time - whoops
2227 * reset mistake.
2228 *
2229 * Nope, it was not mistake. It is really desired behaviour
2230 * f.e. on http servers, when such sockets are useless, but
2231 * consume significant resources. Let's do it with special
2232 * linger2 option. --ANK
2233 */
2234
2235 if (sk->sk_state == TCP_FIN_WAIT2) {
2236 struct tcp_sock *tp = tcp_sk(sk);
2237 if (tp->linger2 < 0) {
2238 tcp_set_state(sk, TCP_CLOSE);
2239 tcp_send_active_reset(sk, GFP_ATOMIC);
2240 __NET_INC_STATS(sock_net(sk),
2241 LINUX_MIB_TCPABORTONLINGER);
2242 } else {
2243 const int tmo = tcp_fin_time(sk);
2244
2245 if (tmo > TCP_TIMEWAIT_LEN) {
2246 inet_csk_reset_keepalive_timer(sk,
2247 tmo - TCP_TIMEWAIT_LEN);
2248 } else {
2249 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2250 goto out;
2251 }
2252 }
2253 }
2254 if (sk->sk_state != TCP_CLOSE) {
2255 sk_mem_reclaim(sk);
2256 if (tcp_check_oom(sk, 0)) {
2257 tcp_set_state(sk, TCP_CLOSE);
2258 tcp_send_active_reset(sk, GFP_ATOMIC);
2259 __NET_INC_STATS(sock_net(sk),
2260 LINUX_MIB_TCPABORTONMEMORY);
2261 }
2262 }
2263
2264 if (sk->sk_state == TCP_CLOSE) {
2265 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2266 /* We could get here with a non-NULL req if the socket is
2267 * aborted (e.g., closed with unread data) before 3WHS
2268 * finishes.
2269 */
2270 if (req)
2271 reqsk_fastopen_remove(sk, req, false);
2272 inet_csk_destroy_sock(sk);
2273 }
2274 /* Otherwise, socket is reprieved until protocol close. */
2275
2276 out:
2277 bh_unlock_sock(sk);
2278 local_bh_enable();
2279 sock_put(sk);
2280 }
2281 EXPORT_SYMBOL(tcp_close);
2282
2283 /* These states need RST on ABORT according to RFC793 */
2284
2285 static inline bool tcp_need_reset(int state)
2286 {
2287 return (1 << state) &
2288 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2289 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2290 }
2291
2292 int tcp_disconnect(struct sock *sk, int flags)
2293 {
2294 struct inet_sock *inet = inet_sk(sk);
2295 struct inet_connection_sock *icsk = inet_csk(sk);
2296 struct tcp_sock *tp = tcp_sk(sk);
2297 int err = 0;
2298 int old_state = sk->sk_state;
2299
2300 if (old_state != TCP_CLOSE)
2301 tcp_set_state(sk, TCP_CLOSE);
2302
2303 /* ABORT function of RFC793 */
2304 if (old_state == TCP_LISTEN) {
2305 inet_csk_listen_stop(sk);
2306 } else if (unlikely(tp->repair)) {
2307 sk->sk_err = ECONNABORTED;
2308 } else if (tcp_need_reset(old_state) ||
2309 (tp->snd_nxt != tp->write_seq &&
2310 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2311 /* The last check adjusts for discrepancy of Linux wrt. RFC
2312 * states
2313 */
2314 tcp_send_active_reset(sk, gfp_any());
2315 sk->sk_err = ECONNRESET;
2316 } else if (old_state == TCP_SYN_SENT)
2317 sk->sk_err = ECONNRESET;
2318
2319 tcp_clear_xmit_timers(sk);
2320 __skb_queue_purge(&sk->sk_receive_queue);
2321 tcp_write_queue_purge(sk);
2322 tcp_fastopen_active_disable_ofo_check(sk);
2323 skb_rbtree_purge(&tp->out_of_order_queue);
2324
2325 inet->inet_dport = 0;
2326
2327 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2328 inet_reset_saddr(sk);
2329
2330 sk->sk_shutdown = 0;
2331 sock_reset_flag(sk, SOCK_DONE);
2332 tp->srtt_us = 0;
2333 tp->write_seq += tp->max_window + 2;
2334 if (tp->write_seq == 0)
2335 tp->write_seq = 1;
2336 icsk->icsk_backoff = 0;
2337 tp->snd_cwnd = 2;
2338 icsk->icsk_probes_out = 0;
2339 tp->packets_out = 0;
2340 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2341 tp->snd_cwnd_cnt = 0;
2342 tp->window_clamp = 0;
2343 tcp_set_ca_state(sk, TCP_CA_Open);
2344 tcp_clear_retrans(tp);
2345 inet_csk_delack_init(sk);
2346 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2347 * issue in __tcp_select_window()
2348 */
2349 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2350 tcp_init_send_head(sk);
2351 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2352 __sk_dst_reset(sk);
2353 dst_release(sk->sk_rx_dst);
2354 sk->sk_rx_dst = NULL;
2355 tcp_saved_syn_free(tp);
2356
2357 /* Clean up fastopen related fields */
2358 tcp_free_fastopen_req(tp);
2359 inet->defer_connect = 0;
2360
2361 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2362
2363 sk->sk_error_report(sk);
2364 return err;
2365 }
2366 EXPORT_SYMBOL(tcp_disconnect);
2367
2368 static inline bool tcp_can_repair_sock(const struct sock *sk)
2369 {
2370 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2371 (sk->sk_state != TCP_LISTEN);
2372 }
2373
2374 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2375 {
2376 struct tcp_repair_window opt;
2377
2378 if (!tp->repair)
2379 return -EPERM;
2380
2381 if (len != sizeof(opt))
2382 return -EINVAL;
2383
2384 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2385 return -EFAULT;
2386
2387 if (opt.max_window < opt.snd_wnd)
2388 return -EINVAL;
2389
2390 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2391 return -EINVAL;
2392
2393 if (after(opt.rcv_wup, tp->rcv_nxt))
2394 return -EINVAL;
2395
2396 tp->snd_wl1 = opt.snd_wl1;
2397 tp->snd_wnd = opt.snd_wnd;
2398 tp->max_window = opt.max_window;
2399
2400 tp->rcv_wnd = opt.rcv_wnd;
2401 tp->rcv_wup = opt.rcv_wup;
2402
2403 return 0;
2404 }
2405
2406 static int tcp_repair_options_est(struct sock *sk,
2407 struct tcp_repair_opt __user *optbuf, unsigned int len)
2408 {
2409 struct tcp_sock *tp = tcp_sk(sk);
2410 struct tcp_repair_opt opt;
2411
2412 while (len >= sizeof(opt)) {
2413 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2414 return -EFAULT;
2415
2416 optbuf++;
2417 len -= sizeof(opt);
2418
2419 switch (opt.opt_code) {
2420 case TCPOPT_MSS:
2421 tp->rx_opt.mss_clamp = opt.opt_val;
2422 tcp_mtup_init(sk);
2423 break;
2424 case TCPOPT_WINDOW:
2425 {
2426 u16 snd_wscale = opt.opt_val & 0xFFFF;
2427 u16 rcv_wscale = opt.opt_val >> 16;
2428
2429 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2430 return -EFBIG;
2431
2432 tp->rx_opt.snd_wscale = snd_wscale;
2433 tp->rx_opt.rcv_wscale = rcv_wscale;
2434 tp->rx_opt.wscale_ok = 1;
2435 }
2436 break;
2437 case TCPOPT_SACK_PERM:
2438 if (opt.opt_val != 0)
2439 return -EINVAL;
2440
2441 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2442 if (sysctl_tcp_fack)
2443 tcp_enable_fack(tp);
2444 break;
2445 case TCPOPT_TIMESTAMP:
2446 if (opt.opt_val != 0)
2447 return -EINVAL;
2448
2449 tp->rx_opt.tstamp_ok = 1;
2450 break;
2451 }
2452 }
2453
2454 return 0;
2455 }
2456
2457 /*
2458 * Socket option code for TCP.
2459 */
2460 static int do_tcp_setsockopt(struct sock *sk, int level,
2461 int optname, char __user *optval, unsigned int optlen)
2462 {
2463 struct tcp_sock *tp = tcp_sk(sk);
2464 struct inet_connection_sock *icsk = inet_csk(sk);
2465 struct net *net = sock_net(sk);
2466 int val;
2467 int err = 0;
2468
2469 /* These are data/string values, all the others are ints */
2470 switch (optname) {
2471 case TCP_CONGESTION: {
2472 char name[TCP_CA_NAME_MAX];
2473
2474 if (optlen < 1)
2475 return -EINVAL;
2476
2477 val = strncpy_from_user(name, optval,
2478 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2479 if (val < 0)
2480 return -EFAULT;
2481 name[val] = 0;
2482
2483 lock_sock(sk);
2484 err = tcp_set_congestion_control(sk, name, true, true);
2485 release_sock(sk);
2486 return err;
2487 }
2488 case TCP_ULP: {
2489 char name[TCP_ULP_NAME_MAX];
2490
2491 if (optlen < 1)
2492 return -EINVAL;
2493
2494 val = strncpy_from_user(name, optval,
2495 min_t(long, TCP_ULP_NAME_MAX - 1,
2496 optlen));
2497 if (val < 0)
2498 return -EFAULT;
2499 name[val] = 0;
2500
2501 lock_sock(sk);
2502 err = tcp_set_ulp(sk, name);
2503 release_sock(sk);
2504 return err;
2505 }
2506 default:
2507 /* fallthru */
2508 break;
2509 }
2510
2511 if (optlen < sizeof(int))
2512 return -EINVAL;
2513
2514 if (get_user(val, (int __user *)optval))
2515 return -EFAULT;
2516
2517 lock_sock(sk);
2518
2519 switch (optname) {
2520 case TCP_MAXSEG:
2521 /* Values greater than interface MTU won't take effect. However
2522 * at the point when this call is done we typically don't yet
2523 * know which interface is going to be used
2524 */
2525 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2526 err = -EINVAL;
2527 break;
2528 }
2529 tp->rx_opt.user_mss = val;
2530 break;
2531
2532 case TCP_NODELAY:
2533 if (val) {
2534 /* TCP_NODELAY is weaker than TCP_CORK, so that
2535 * this option on corked socket is remembered, but
2536 * it is not activated until cork is cleared.
2537 *
2538 * However, when TCP_NODELAY is set we make
2539 * an explicit push, which overrides even TCP_CORK
2540 * for currently queued segments.
2541 */
2542 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2543 tcp_push_pending_frames(sk);
2544 } else {
2545 tp->nonagle &= ~TCP_NAGLE_OFF;
2546 }
2547 break;
2548
2549 case TCP_THIN_LINEAR_TIMEOUTS:
2550 if (val < 0 || val > 1)
2551 err = -EINVAL;
2552 else
2553 tp->thin_lto = val;
2554 break;
2555
2556 case TCP_THIN_DUPACK:
2557 if (val < 0 || val > 1)
2558 err = -EINVAL;
2559 break;
2560
2561 case TCP_REPAIR:
2562 if (!tcp_can_repair_sock(sk))
2563 err = -EPERM;
2564 else if (val == 1) {
2565 tp->repair = 1;
2566 sk->sk_reuse = SK_FORCE_REUSE;
2567 tp->repair_queue = TCP_NO_QUEUE;
2568 } else if (val == 0) {
2569 tp->repair = 0;
2570 sk->sk_reuse = SK_NO_REUSE;
2571 tcp_send_window_probe(sk);
2572 } else
2573 err = -EINVAL;
2574
2575 break;
2576
2577 case TCP_REPAIR_QUEUE:
2578 if (!tp->repair)
2579 err = -EPERM;
2580 else if (val < TCP_QUEUES_NR)
2581 tp->repair_queue = val;
2582 else
2583 err = -EINVAL;
2584 break;
2585
2586 case TCP_QUEUE_SEQ:
2587 if (sk->sk_state != TCP_CLOSE)
2588 err = -EPERM;
2589 else if (tp->repair_queue == TCP_SEND_QUEUE)
2590 tp->write_seq = val;
2591 else if (tp->repair_queue == TCP_RECV_QUEUE)
2592 tp->rcv_nxt = val;
2593 else
2594 err = -EINVAL;
2595 break;
2596
2597 case TCP_REPAIR_OPTIONS:
2598 if (!tp->repair)
2599 err = -EINVAL;
2600 else if (sk->sk_state == TCP_ESTABLISHED)
2601 err = tcp_repair_options_est(sk,
2602 (struct tcp_repair_opt __user *)optval,
2603 optlen);
2604 else
2605 err = -EPERM;
2606 break;
2607
2608 case TCP_CORK:
2609 /* When set indicates to always queue non-full frames.
2610 * Later the user clears this option and we transmit
2611 * any pending partial frames in the queue. This is
2612 * meant to be used alongside sendfile() to get properly
2613 * filled frames when the user (for example) must write
2614 * out headers with a write() call first and then use
2615 * sendfile to send out the data parts.
2616 *
2617 * TCP_CORK can be set together with TCP_NODELAY and it is
2618 * stronger than TCP_NODELAY.
2619 */
2620 if (val) {
2621 tp->nonagle |= TCP_NAGLE_CORK;
2622 } else {
2623 tp->nonagle &= ~TCP_NAGLE_CORK;
2624 if (tp->nonagle&TCP_NAGLE_OFF)
2625 tp->nonagle |= TCP_NAGLE_PUSH;
2626 tcp_push_pending_frames(sk);
2627 }
2628 break;
2629
2630 case TCP_KEEPIDLE:
2631 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2632 err = -EINVAL;
2633 else {
2634 tp->keepalive_time = val * HZ;
2635 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2636 !((1 << sk->sk_state) &
2637 (TCPF_CLOSE | TCPF_LISTEN))) {
2638 u32 elapsed = keepalive_time_elapsed(tp);
2639 if (tp->keepalive_time > elapsed)
2640 elapsed = tp->keepalive_time - elapsed;
2641 else
2642 elapsed = 0;
2643 inet_csk_reset_keepalive_timer(sk, elapsed);
2644 }
2645 }
2646 break;
2647 case TCP_KEEPINTVL:
2648 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2649 err = -EINVAL;
2650 else
2651 tp->keepalive_intvl = val * HZ;
2652 break;
2653 case TCP_KEEPCNT:
2654 if (val < 1 || val > MAX_TCP_KEEPCNT)
2655 err = -EINVAL;
2656 else
2657 tp->keepalive_probes = val;
2658 break;
2659 case TCP_SYNCNT:
2660 if (val < 1 || val > MAX_TCP_SYNCNT)
2661 err = -EINVAL;
2662 else
2663 icsk->icsk_syn_retries = val;
2664 break;
2665
2666 case TCP_SAVE_SYN:
2667 if (val < 0 || val > 1)
2668 err = -EINVAL;
2669 else
2670 tp->save_syn = val;
2671 break;
2672
2673 case TCP_LINGER2:
2674 if (val < 0)
2675 tp->linger2 = -1;
2676 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2677 tp->linger2 = 0;
2678 else
2679 tp->linger2 = val * HZ;
2680 break;
2681
2682 case TCP_DEFER_ACCEPT:
2683 /* Translate value in seconds to number of retransmits */
2684 icsk->icsk_accept_queue.rskq_defer_accept =
2685 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2686 TCP_RTO_MAX / HZ);
2687 break;
2688
2689 case TCP_WINDOW_CLAMP:
2690 if (!val) {
2691 if (sk->sk_state != TCP_CLOSE) {
2692 err = -EINVAL;
2693 break;
2694 }
2695 tp->window_clamp = 0;
2696 } else
2697 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2698 SOCK_MIN_RCVBUF / 2 : val;
2699 break;
2700
2701 case TCP_QUICKACK:
2702 if (!val) {
2703 icsk->icsk_ack.pingpong = 1;
2704 } else {
2705 icsk->icsk_ack.pingpong = 0;
2706 if ((1 << sk->sk_state) &
2707 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2708 inet_csk_ack_scheduled(sk)) {
2709 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2710 tcp_cleanup_rbuf(sk, 1);
2711 if (!(val & 1))
2712 icsk->icsk_ack.pingpong = 1;
2713 }
2714 }
2715 break;
2716
2717 #ifdef CONFIG_TCP_MD5SIG
2718 case TCP_MD5SIG:
2719 case TCP_MD5SIG_EXT:
2720 /* Read the IP->Key mappings from userspace */
2721 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
2722 break;
2723 #endif
2724 case TCP_USER_TIMEOUT:
2725 /* Cap the max time in ms TCP will retry or probe the window
2726 * before giving up and aborting (ETIMEDOUT) a connection.
2727 */
2728 if (val < 0)
2729 err = -EINVAL;
2730 else
2731 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2732 break;
2733
2734 case TCP_FASTOPEN:
2735 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2736 TCPF_LISTEN))) {
2737 tcp_fastopen_init_key_once(true);
2738
2739 fastopen_queue_tune(sk, val);
2740 } else {
2741 err = -EINVAL;
2742 }
2743 break;
2744 case TCP_FASTOPEN_CONNECT:
2745 if (val > 1 || val < 0) {
2746 err = -EINVAL;
2747 } else if (sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
2748 if (sk->sk_state == TCP_CLOSE)
2749 tp->fastopen_connect = val;
2750 else
2751 err = -EINVAL;
2752 } else {
2753 err = -EOPNOTSUPP;
2754 }
2755 break;
2756 case TCP_TIMESTAMP:
2757 if (!tp->repair)
2758 err = -EPERM;
2759 else
2760 tp->tsoffset = val - tcp_time_stamp_raw();
2761 break;
2762 case TCP_REPAIR_WINDOW:
2763 err = tcp_repair_set_window(tp, optval, optlen);
2764 break;
2765 case TCP_NOTSENT_LOWAT:
2766 tp->notsent_lowat = val;
2767 sk->sk_write_space(sk);
2768 break;
2769 default:
2770 err = -ENOPROTOOPT;
2771 break;
2772 }
2773
2774 release_sock(sk);
2775 return err;
2776 }
2777
2778 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2779 unsigned int optlen)
2780 {
2781 const struct inet_connection_sock *icsk = inet_csk(sk);
2782
2783 if (level != SOL_TCP)
2784 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2785 optval, optlen);
2786 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2787 }
2788 EXPORT_SYMBOL(tcp_setsockopt);
2789
2790 #ifdef CONFIG_COMPAT
2791 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2792 char __user *optval, unsigned int optlen)
2793 {
2794 if (level != SOL_TCP)
2795 return inet_csk_compat_setsockopt(sk, level, optname,
2796 optval, optlen);
2797 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2798 }
2799 EXPORT_SYMBOL(compat_tcp_setsockopt);
2800 #endif
2801
2802 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
2803 struct tcp_info *info)
2804 {
2805 u64 stats[__TCP_CHRONO_MAX], total = 0;
2806 enum tcp_chrono i;
2807
2808 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
2809 stats[i] = tp->chrono_stat[i - 1];
2810 if (i == tp->chrono_type)
2811 stats[i] += tcp_jiffies32 - tp->chrono_start;
2812 stats[i] *= USEC_PER_SEC / HZ;
2813 total += stats[i];
2814 }
2815
2816 info->tcpi_busy_time = total;
2817 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
2818 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
2819 }
2820
2821 /* Return information about state of tcp endpoint in API format. */
2822 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2823 {
2824 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2825 const struct inet_connection_sock *icsk = inet_csk(sk);
2826 u32 now, intv;
2827 u64 rate64;
2828 bool slow;
2829 u32 rate;
2830
2831 memset(info, 0, sizeof(*info));
2832 if (sk->sk_type != SOCK_STREAM)
2833 return;
2834
2835 info->tcpi_state = sk_state_load(sk);
2836
2837 /* Report meaningful fields for all TCP states, including listeners */
2838 rate = READ_ONCE(sk->sk_pacing_rate);
2839 rate64 = rate != ~0U ? rate : ~0ULL;
2840 info->tcpi_pacing_rate = rate64;
2841
2842 rate = READ_ONCE(sk->sk_max_pacing_rate);
2843 rate64 = rate != ~0U ? rate : ~0ULL;
2844 info->tcpi_max_pacing_rate = rate64;
2845
2846 info->tcpi_reordering = tp->reordering;
2847 info->tcpi_snd_cwnd = tp->snd_cwnd;
2848
2849 if (info->tcpi_state == TCP_LISTEN) {
2850 /* listeners aliased fields :
2851 * tcpi_unacked -> Number of children ready for accept()
2852 * tcpi_sacked -> max backlog
2853 */
2854 info->tcpi_unacked = sk->sk_ack_backlog;
2855 info->tcpi_sacked = sk->sk_max_ack_backlog;
2856 return;
2857 }
2858
2859 slow = lock_sock_fast(sk);
2860
2861 info->tcpi_ca_state = icsk->icsk_ca_state;
2862 info->tcpi_retransmits = icsk->icsk_retransmits;
2863 info->tcpi_probes = icsk->icsk_probes_out;
2864 info->tcpi_backoff = icsk->icsk_backoff;
2865
2866 if (tp->rx_opt.tstamp_ok)
2867 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2868 if (tcp_is_sack(tp))
2869 info->tcpi_options |= TCPI_OPT_SACK;
2870 if (tp->rx_opt.wscale_ok) {
2871 info->tcpi_options |= TCPI_OPT_WSCALE;
2872 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2873 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2874 }
2875
2876 if (tp->ecn_flags & TCP_ECN_OK)
2877 info->tcpi_options |= TCPI_OPT_ECN;
2878 if (tp->ecn_flags & TCP_ECN_SEEN)
2879 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2880 if (tp->syn_data_acked)
2881 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2882
2883 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2884 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2885 info->tcpi_snd_mss = tp->mss_cache;
2886 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2887
2888 info->tcpi_unacked = tp->packets_out;
2889 info->tcpi_sacked = tp->sacked_out;
2890
2891 info->tcpi_lost = tp->lost_out;
2892 info->tcpi_retrans = tp->retrans_out;
2893 info->tcpi_fackets = tp->fackets_out;
2894
2895 now = tcp_jiffies32;
2896 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2897 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2898 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2899
2900 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2901 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2902 info->tcpi_rtt = tp->srtt_us >> 3;
2903 info->tcpi_rttvar = tp->mdev_us >> 2;
2904 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2905 info->tcpi_advmss = tp->advmss;
2906
2907 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
2908 info->tcpi_rcv_space = tp->rcvq_space.space;
2909
2910 info->tcpi_total_retrans = tp->total_retrans;
2911
2912 info->tcpi_bytes_acked = tp->bytes_acked;
2913 info->tcpi_bytes_received = tp->bytes_received;
2914 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
2915 tcp_get_info_chrono_stats(tp, info);
2916
2917 info->tcpi_segs_out = tp->segs_out;
2918 info->tcpi_segs_in = tp->segs_in;
2919
2920 info->tcpi_min_rtt = tcp_min_rtt(tp);
2921 info->tcpi_data_segs_in = tp->data_segs_in;
2922 info->tcpi_data_segs_out = tp->data_segs_out;
2923
2924 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
2925 rate = READ_ONCE(tp->rate_delivered);
2926 intv = READ_ONCE(tp->rate_interval_us);
2927 if (rate && intv) {
2928 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
2929 do_div(rate64, intv);
2930 info->tcpi_delivery_rate = rate64;
2931 }
2932 unlock_sock_fast(sk, slow);
2933 }
2934 EXPORT_SYMBOL_GPL(tcp_get_info);
2935
2936 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
2937 {
2938 const struct tcp_sock *tp = tcp_sk(sk);
2939 struct sk_buff *stats;
2940 struct tcp_info info;
2941
2942 stats = alloc_skb(5 * nla_total_size_64bit(sizeof(u64)), GFP_ATOMIC);
2943 if (!stats)
2944 return NULL;
2945
2946 tcp_get_info_chrono_stats(tp, &info);
2947 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
2948 info.tcpi_busy_time, TCP_NLA_PAD);
2949 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
2950 info.tcpi_rwnd_limited, TCP_NLA_PAD);
2951 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
2952 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
2953 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
2954 tp->data_segs_out, TCP_NLA_PAD);
2955 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
2956 tp->total_retrans, TCP_NLA_PAD);
2957 return stats;
2958 }
2959
2960 static int do_tcp_getsockopt(struct sock *sk, int level,
2961 int optname, char __user *optval, int __user *optlen)
2962 {
2963 struct inet_connection_sock *icsk = inet_csk(sk);
2964 struct tcp_sock *tp = tcp_sk(sk);
2965 struct net *net = sock_net(sk);
2966 int val, len;
2967
2968 if (get_user(len, optlen))
2969 return -EFAULT;
2970
2971 len = min_t(unsigned int, len, sizeof(int));
2972
2973 if (len < 0)
2974 return -EINVAL;
2975
2976 switch (optname) {
2977 case TCP_MAXSEG:
2978 val = tp->mss_cache;
2979 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2980 val = tp->rx_opt.user_mss;
2981 if (tp->repair)
2982 val = tp->rx_opt.mss_clamp;
2983 break;
2984 case TCP_NODELAY:
2985 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2986 break;
2987 case TCP_CORK:
2988 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2989 break;
2990 case TCP_KEEPIDLE:
2991 val = keepalive_time_when(tp) / HZ;
2992 break;
2993 case TCP_KEEPINTVL:
2994 val = keepalive_intvl_when(tp) / HZ;
2995 break;
2996 case TCP_KEEPCNT:
2997 val = keepalive_probes(tp);
2998 break;
2999 case TCP_SYNCNT:
3000 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3001 break;
3002 case TCP_LINGER2:
3003 val = tp->linger2;
3004 if (val >= 0)
3005 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3006 break;
3007 case TCP_DEFER_ACCEPT:
3008 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3009 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3010 break;
3011 case TCP_WINDOW_CLAMP:
3012 val = tp->window_clamp;
3013 break;
3014 case TCP_INFO: {
3015 struct tcp_info info;
3016
3017 if (get_user(len, optlen))
3018 return -EFAULT;
3019
3020 tcp_get_info(sk, &info);
3021
3022 len = min_t(unsigned int, len, sizeof(info));
3023 if (put_user(len, optlen))
3024 return -EFAULT;
3025 if (copy_to_user(optval, &info, len))
3026 return -EFAULT;
3027 return 0;
3028 }
3029 case TCP_CC_INFO: {
3030 const struct tcp_congestion_ops *ca_ops;
3031 union tcp_cc_info info;
3032 size_t sz = 0;
3033 int attr;
3034
3035 if (get_user(len, optlen))
3036 return -EFAULT;
3037
3038 ca_ops = icsk->icsk_ca_ops;
3039 if (ca_ops && ca_ops->get_info)
3040 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3041
3042 len = min_t(unsigned int, len, sz);
3043 if (put_user(len, optlen))
3044 return -EFAULT;
3045 if (copy_to_user(optval, &info, len))
3046 return -EFAULT;
3047 return 0;
3048 }
3049 case TCP_QUICKACK:
3050 val = !icsk->icsk_ack.pingpong;
3051 break;
3052
3053 case TCP_CONGESTION:
3054 if (get_user(len, optlen))
3055 return -EFAULT;
3056 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3057 if (put_user(len, optlen))
3058 return -EFAULT;
3059 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3060 return -EFAULT;
3061 return 0;
3062
3063 case TCP_ULP:
3064 if (get_user(len, optlen))
3065 return -EFAULT;
3066 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3067 if (!icsk->icsk_ulp_ops) {
3068 if (put_user(0, optlen))
3069 return -EFAULT;
3070 return 0;
3071 }
3072 if (put_user(len, optlen))
3073 return -EFAULT;
3074 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3075 return -EFAULT;
3076 return 0;
3077
3078 case TCP_THIN_LINEAR_TIMEOUTS:
3079 val = tp->thin_lto;
3080 break;
3081
3082 case TCP_THIN_DUPACK:
3083 val = 0;
3084 break;
3085
3086 case TCP_REPAIR:
3087 val = tp->repair;
3088 break;
3089
3090 case TCP_REPAIR_QUEUE:
3091 if (tp->repair)
3092 val = tp->repair_queue;
3093 else
3094 return -EINVAL;
3095 break;
3096
3097 case TCP_REPAIR_WINDOW: {
3098 struct tcp_repair_window opt;
3099
3100 if (get_user(len, optlen))
3101 return -EFAULT;
3102
3103 if (len != sizeof(opt))
3104 return -EINVAL;
3105
3106 if (!tp->repair)
3107 return -EPERM;
3108
3109 opt.snd_wl1 = tp->snd_wl1;
3110 opt.snd_wnd = tp->snd_wnd;
3111 opt.max_window = tp->max_window;
3112 opt.rcv_wnd = tp->rcv_wnd;
3113 opt.rcv_wup = tp->rcv_wup;
3114
3115 if (copy_to_user(optval, &opt, len))
3116 return -EFAULT;
3117 return 0;
3118 }
3119 case TCP_QUEUE_SEQ:
3120 if (tp->repair_queue == TCP_SEND_QUEUE)
3121 val = tp->write_seq;
3122 else if (tp->repair_queue == TCP_RECV_QUEUE)
3123 val = tp->rcv_nxt;
3124 else
3125 return -EINVAL;
3126 break;
3127
3128 case TCP_USER_TIMEOUT:
3129 val = jiffies_to_msecs(icsk->icsk_user_timeout);
3130 break;
3131
3132 case TCP_FASTOPEN:
3133 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3134 break;
3135
3136 case TCP_FASTOPEN_CONNECT:
3137 val = tp->fastopen_connect;
3138 break;
3139
3140 case TCP_TIMESTAMP:
3141 val = tcp_time_stamp_raw() + tp->tsoffset;
3142 break;
3143 case TCP_NOTSENT_LOWAT:
3144 val = tp->notsent_lowat;
3145 break;
3146 case TCP_SAVE_SYN:
3147 val = tp->save_syn;
3148 break;
3149 case TCP_SAVED_SYN: {
3150 if (get_user(len, optlen))
3151 return -EFAULT;
3152
3153 lock_sock(sk);
3154 if (tp->saved_syn) {
3155 if (len < tp->saved_syn[0]) {
3156 if (put_user(tp->saved_syn[0], optlen)) {
3157 release_sock(sk);
3158 return -EFAULT;
3159 }
3160 release_sock(sk);
3161 return -EINVAL;
3162 }
3163 len = tp->saved_syn[0];
3164 if (put_user(len, optlen)) {
3165 release_sock(sk);
3166 return -EFAULT;
3167 }
3168 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3169 release_sock(sk);
3170 return -EFAULT;
3171 }
3172 tcp_saved_syn_free(tp);
3173 release_sock(sk);
3174 } else {
3175 release_sock(sk);
3176 len = 0;
3177 if (put_user(len, optlen))
3178 return -EFAULT;
3179 }
3180 return 0;
3181 }
3182 default:
3183 return -ENOPROTOOPT;
3184 }
3185
3186 if (put_user(len, optlen))
3187 return -EFAULT;
3188 if (copy_to_user(optval, &val, len))
3189 return -EFAULT;
3190 return 0;
3191 }
3192
3193 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3194 int __user *optlen)
3195 {
3196 struct inet_connection_sock *icsk = inet_csk(sk);
3197
3198 if (level != SOL_TCP)
3199 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3200 optval, optlen);
3201 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3202 }
3203 EXPORT_SYMBOL(tcp_getsockopt);
3204
3205 #ifdef CONFIG_COMPAT
3206 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3207 char __user *optval, int __user *optlen)
3208 {
3209 if (level != SOL_TCP)
3210 return inet_csk_compat_getsockopt(sk, level, optname,
3211 optval, optlen);
3212 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3213 }
3214 EXPORT_SYMBOL(compat_tcp_getsockopt);
3215 #endif
3216
3217 #ifdef CONFIG_TCP_MD5SIG
3218 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3219 static DEFINE_MUTEX(tcp_md5sig_mutex);
3220 static bool tcp_md5sig_pool_populated = false;
3221
3222 static void __tcp_alloc_md5sig_pool(void)
3223 {
3224 struct crypto_ahash *hash;
3225 int cpu;
3226
3227 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3228 if (IS_ERR(hash))
3229 return;
3230
3231 for_each_possible_cpu(cpu) {
3232 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3233 struct ahash_request *req;
3234
3235 if (!scratch) {
3236 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3237 sizeof(struct tcphdr),
3238 GFP_KERNEL,
3239 cpu_to_node(cpu));
3240 if (!scratch)
3241 return;
3242 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3243 }
3244 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3245 continue;
3246
3247 req = ahash_request_alloc(hash, GFP_KERNEL);
3248 if (!req)
3249 return;
3250
3251 ahash_request_set_callback(req, 0, NULL, NULL);
3252
3253 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3254 }
3255 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3256 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3257 */
3258 smp_wmb();
3259 tcp_md5sig_pool_populated = true;
3260 }
3261
3262 bool tcp_alloc_md5sig_pool(void)
3263 {
3264 if (unlikely(!tcp_md5sig_pool_populated)) {
3265 mutex_lock(&tcp_md5sig_mutex);
3266
3267 if (!tcp_md5sig_pool_populated)
3268 __tcp_alloc_md5sig_pool();
3269
3270 mutex_unlock(&tcp_md5sig_mutex);
3271 }
3272 return tcp_md5sig_pool_populated;
3273 }
3274 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3275
3276
3277 /**
3278 * tcp_get_md5sig_pool - get md5sig_pool for this user
3279 *
3280 * We use percpu structure, so if we succeed, we exit with preemption
3281 * and BH disabled, to make sure another thread or softirq handling
3282 * wont try to get same context.
3283 */
3284 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3285 {
3286 local_bh_disable();
3287
3288 if (tcp_md5sig_pool_populated) {
3289 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3290 smp_rmb();
3291 return this_cpu_ptr(&tcp_md5sig_pool);
3292 }
3293 local_bh_enable();
3294 return NULL;
3295 }
3296 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3297
3298 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3299 const struct sk_buff *skb, unsigned int header_len)
3300 {
3301 struct scatterlist sg;
3302 const struct tcphdr *tp = tcp_hdr(skb);
3303 struct ahash_request *req = hp->md5_req;
3304 unsigned int i;
3305 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3306 skb_headlen(skb) - header_len : 0;
3307 const struct skb_shared_info *shi = skb_shinfo(skb);
3308 struct sk_buff *frag_iter;
3309
3310 sg_init_table(&sg, 1);
3311
3312 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3313 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3314 if (crypto_ahash_update(req))
3315 return 1;
3316
3317 for (i = 0; i < shi->nr_frags; ++i) {
3318 const struct skb_frag_struct *f = &shi->frags[i];
3319 unsigned int offset = f->page_offset;
3320 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3321
3322 sg_set_page(&sg, page, skb_frag_size(f),
3323 offset_in_page(offset));
3324 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3325 if (crypto_ahash_update(req))
3326 return 1;
3327 }
3328
3329 skb_walk_frags(skb, frag_iter)
3330 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3331 return 1;
3332
3333 return 0;
3334 }
3335 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3336
3337 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3338 {
3339 struct scatterlist sg;
3340
3341 sg_init_one(&sg, key->key, key->keylen);
3342 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3343 return crypto_ahash_update(hp->md5_req);
3344 }
3345 EXPORT_SYMBOL(tcp_md5_hash_key);
3346
3347 #endif
3348
3349 void tcp_done(struct sock *sk)
3350 {
3351 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3352
3353 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3354 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3355
3356 tcp_set_state(sk, TCP_CLOSE);
3357 tcp_clear_xmit_timers(sk);
3358 if (req)
3359 reqsk_fastopen_remove(sk, req, false);
3360
3361 sk->sk_shutdown = SHUTDOWN_MASK;
3362
3363 if (!sock_flag(sk, SOCK_DEAD))
3364 sk->sk_state_change(sk);
3365 else
3366 inet_csk_destroy_sock(sk);
3367 }
3368 EXPORT_SYMBOL_GPL(tcp_done);
3369
3370 int tcp_abort(struct sock *sk, int err)
3371 {
3372 if (!sk_fullsock(sk)) {
3373 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3374 struct request_sock *req = inet_reqsk(sk);
3375
3376 local_bh_disable();
3377 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3378 req);
3379 local_bh_enable();
3380 return 0;
3381 }
3382 return -EOPNOTSUPP;
3383 }
3384
3385 /* Don't race with userspace socket closes such as tcp_close. */
3386 lock_sock(sk);
3387
3388 if (sk->sk_state == TCP_LISTEN) {
3389 tcp_set_state(sk, TCP_CLOSE);
3390 inet_csk_listen_stop(sk);
3391 }
3392
3393 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3394 local_bh_disable();
3395 bh_lock_sock(sk);
3396
3397 if (!sock_flag(sk, SOCK_DEAD)) {
3398 sk->sk_err = err;
3399 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3400 smp_wmb();
3401 sk->sk_error_report(sk);
3402 if (tcp_need_reset(sk->sk_state))
3403 tcp_send_active_reset(sk, GFP_ATOMIC);
3404 tcp_done(sk);
3405 }
3406
3407 bh_unlock_sock(sk);
3408 local_bh_enable();
3409 release_sock(sk);
3410 return 0;
3411 }
3412 EXPORT_SYMBOL_GPL(tcp_abort);
3413
3414 extern struct tcp_congestion_ops tcp_reno;
3415
3416 static __initdata unsigned long thash_entries;
3417 static int __init set_thash_entries(char *str)
3418 {
3419 ssize_t ret;
3420
3421 if (!str)
3422 return 0;
3423
3424 ret = kstrtoul(str, 0, &thash_entries);
3425 if (ret)
3426 return 0;
3427
3428 return 1;
3429 }
3430 __setup("thash_entries=", set_thash_entries);
3431
3432 static void __init tcp_init_mem(void)
3433 {
3434 unsigned long limit = nr_free_buffer_pages() / 16;
3435
3436 limit = max(limit, 128UL);
3437 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3438 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3439 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3440 }
3441
3442 void __init tcp_init(void)
3443 {
3444 int max_rshare, max_wshare, cnt;
3445 unsigned long limit;
3446 unsigned int i;
3447
3448 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3449 FIELD_SIZEOF(struct sk_buff, cb));
3450
3451 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3452 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3453 inet_hashinfo_init(&tcp_hashinfo);
3454 tcp_hashinfo.bind_bucket_cachep =
3455 kmem_cache_create("tcp_bind_bucket",
3456 sizeof(struct inet_bind_bucket), 0,
3457 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3458
3459 /* Size and allocate the main established and bind bucket
3460 * hash tables.
3461 *
3462 * The methodology is similar to that of the buffer cache.
3463 */
3464 tcp_hashinfo.ehash =
3465 alloc_large_system_hash("TCP established",
3466 sizeof(struct inet_ehash_bucket),
3467 thash_entries,
3468 17, /* one slot per 128 KB of memory */
3469 0,
3470 NULL,
3471 &tcp_hashinfo.ehash_mask,
3472 0,
3473 thash_entries ? 0 : 512 * 1024);
3474 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3475 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3476
3477 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3478 panic("TCP: failed to alloc ehash_locks");
3479 tcp_hashinfo.bhash =
3480 alloc_large_system_hash("TCP bind",
3481 sizeof(struct inet_bind_hashbucket),
3482 tcp_hashinfo.ehash_mask + 1,
3483 17, /* one slot per 128 KB of memory */
3484 0,
3485 &tcp_hashinfo.bhash_size,
3486 NULL,
3487 0,
3488 64 * 1024);
3489 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3490 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3491 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3492 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3493 }
3494
3495
3496 cnt = tcp_hashinfo.ehash_mask + 1;
3497 sysctl_tcp_max_orphans = cnt / 2;
3498
3499 tcp_init_mem();
3500 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3501 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3502 max_wshare = min(4UL*1024*1024, limit);
3503 max_rshare = min(6UL*1024*1024, limit);
3504
3505 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3506 sysctl_tcp_wmem[1] = 16*1024;
3507 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3508
3509 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3510 sysctl_tcp_rmem[1] = 87380;
3511 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3512
3513 pr_info("Hash tables configured (established %u bind %u)\n",
3514 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3515
3516 tcp_v4_init();
3517 tcp_metrics_init();
3518 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3519 tcp_tasklet_init();
3520 }