]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - net/ipv4/tcp.c
HID: logitech-dj: fix spelling in printk
[mirror_ubuntu-kernels.git] / net / ipv4 / tcp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248 #define pr_fmt(fmt) "TCP: " fmt
249
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/memblock.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 #include <linux/errqueue.h>
273 #include <linux/static_key.h>
274
275 #include <net/icmp.h>
276 #include <net/inet_common.h>
277 #include <net/tcp.h>
278 #include <net/xfrm.h>
279 #include <net/ip.h>
280 #include <net/sock.h>
281
282 #include <linux/uaccess.h>
283 #include <asm/ioctls.h>
284 #include <net/busy_poll.h>
285
286 struct percpu_counter tcp_orphan_count;
287 EXPORT_SYMBOL_GPL(tcp_orphan_count);
288
289 long sysctl_tcp_mem[3] __read_mostly;
290 EXPORT_SYMBOL(sysctl_tcp_mem);
291
292 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
293 EXPORT_SYMBOL(tcp_memory_allocated);
294
295 #if IS_ENABLED(CONFIG_SMC)
296 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
297 EXPORT_SYMBOL(tcp_have_smc);
298 #endif
299
300 /*
301 * Current number of TCP sockets.
302 */
303 struct percpu_counter tcp_sockets_allocated;
304 EXPORT_SYMBOL(tcp_sockets_allocated);
305
306 /*
307 * TCP splice context
308 */
309 struct tcp_splice_state {
310 struct pipe_inode_info *pipe;
311 size_t len;
312 unsigned int flags;
313 };
314
315 /*
316 * Pressure flag: try to collapse.
317 * Technical note: it is used by multiple contexts non atomically.
318 * All the __sk_mem_schedule() is of this nature: accounting
319 * is strict, actions are advisory and have some latency.
320 */
321 unsigned long tcp_memory_pressure __read_mostly;
322 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
323
324 void tcp_enter_memory_pressure(struct sock *sk)
325 {
326 unsigned long val;
327
328 if (tcp_memory_pressure)
329 return;
330 val = jiffies;
331
332 if (!val)
333 val--;
334 if (!cmpxchg(&tcp_memory_pressure, 0, val))
335 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
336 }
337 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
338
339 void tcp_leave_memory_pressure(struct sock *sk)
340 {
341 unsigned long val;
342
343 if (!tcp_memory_pressure)
344 return;
345 val = xchg(&tcp_memory_pressure, 0);
346 if (val)
347 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
348 jiffies_to_msecs(jiffies - val));
349 }
350 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
351
352 /* Convert seconds to retransmits based on initial and max timeout */
353 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
354 {
355 u8 res = 0;
356
357 if (seconds > 0) {
358 int period = timeout;
359
360 res = 1;
361 while (seconds > period && res < 255) {
362 res++;
363 timeout <<= 1;
364 if (timeout > rto_max)
365 timeout = rto_max;
366 period += timeout;
367 }
368 }
369 return res;
370 }
371
372 /* Convert retransmits to seconds based on initial and max timeout */
373 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
374 {
375 int period = 0;
376
377 if (retrans > 0) {
378 period = timeout;
379 while (--retrans) {
380 timeout <<= 1;
381 if (timeout > rto_max)
382 timeout = rto_max;
383 period += timeout;
384 }
385 }
386 return period;
387 }
388
389 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
390 {
391 u32 rate = READ_ONCE(tp->rate_delivered);
392 u32 intv = READ_ONCE(tp->rate_interval_us);
393 u64 rate64 = 0;
394
395 if (rate && intv) {
396 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
397 do_div(rate64, intv);
398 }
399 return rate64;
400 }
401
402 /* Address-family independent initialization for a tcp_sock.
403 *
404 * NOTE: A lot of things set to zero explicitly by call to
405 * sk_alloc() so need not be done here.
406 */
407 void tcp_init_sock(struct sock *sk)
408 {
409 struct inet_connection_sock *icsk = inet_csk(sk);
410 struct tcp_sock *tp = tcp_sk(sk);
411
412 tp->out_of_order_queue = RB_ROOT;
413 sk->tcp_rtx_queue = RB_ROOT;
414 tcp_init_xmit_timers(sk);
415 INIT_LIST_HEAD(&tp->tsq_node);
416 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
417
418 icsk->icsk_rto = TCP_TIMEOUT_INIT;
419 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
420 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
421
422 /* So many TCP implementations out there (incorrectly) count the
423 * initial SYN frame in their delayed-ACK and congestion control
424 * algorithms that we must have the following bandaid to talk
425 * efficiently to them. -DaveM
426 */
427 tp->snd_cwnd = TCP_INIT_CWND;
428
429 /* There's a bubble in the pipe until at least the first ACK. */
430 tp->app_limited = ~0U;
431
432 /* See draft-stevens-tcpca-spec-01 for discussion of the
433 * initialization of these values.
434 */
435 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
436 tp->snd_cwnd_clamp = ~0;
437 tp->mss_cache = TCP_MSS_DEFAULT;
438
439 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
440 tcp_assign_congestion_control(sk);
441
442 tp->tsoffset = 0;
443 tp->rack.reo_wnd_steps = 1;
444
445 sk->sk_state = TCP_CLOSE;
446
447 sk->sk_write_space = sk_stream_write_space;
448 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
449
450 icsk->icsk_sync_mss = tcp_sync_mss;
451
452 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
453 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
454
455 sk_sockets_allocated_inc(sk);
456 sk->sk_route_forced_caps = NETIF_F_GSO;
457 }
458 EXPORT_SYMBOL(tcp_init_sock);
459
460 void tcp_init_transfer(struct sock *sk, int bpf_op)
461 {
462 struct inet_connection_sock *icsk = inet_csk(sk);
463
464 tcp_mtup_init(sk);
465 icsk->icsk_af_ops->rebuild_header(sk);
466 tcp_init_metrics(sk);
467 tcp_call_bpf(sk, bpf_op, 0, NULL);
468 tcp_init_congestion_control(sk);
469 tcp_init_buffer_space(sk);
470 }
471
472 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
473 {
474 struct sk_buff *skb = tcp_write_queue_tail(sk);
475
476 if (tsflags && skb) {
477 struct skb_shared_info *shinfo = skb_shinfo(skb);
478 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
479
480 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
481 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
482 tcb->txstamp_ack = 1;
483 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
484 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
485 }
486 }
487
488 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
489 int target, struct sock *sk)
490 {
491 return (tp->rcv_nxt - tp->copied_seq >= target) ||
492 (sk->sk_prot->stream_memory_read ?
493 sk->sk_prot->stream_memory_read(sk) : false);
494 }
495
496 /*
497 * Wait for a TCP event.
498 *
499 * Note that we don't need to lock the socket, as the upper poll layers
500 * take care of normal races (between the test and the event) and we don't
501 * go look at any of the socket buffers directly.
502 */
503 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
504 {
505 __poll_t mask;
506 struct sock *sk = sock->sk;
507 const struct tcp_sock *tp = tcp_sk(sk);
508 int state;
509
510 sock_poll_wait(file, sock, wait);
511
512 state = inet_sk_state_load(sk);
513 if (state == TCP_LISTEN)
514 return inet_csk_listen_poll(sk);
515
516 /* Socket is not locked. We are protected from async events
517 * by poll logic and correct handling of state changes
518 * made by other threads is impossible in any case.
519 */
520
521 mask = 0;
522
523 /*
524 * EPOLLHUP is certainly not done right. But poll() doesn't
525 * have a notion of HUP in just one direction, and for a
526 * socket the read side is more interesting.
527 *
528 * Some poll() documentation says that EPOLLHUP is incompatible
529 * with the EPOLLOUT/POLLWR flags, so somebody should check this
530 * all. But careful, it tends to be safer to return too many
531 * bits than too few, and you can easily break real applications
532 * if you don't tell them that something has hung up!
533 *
534 * Check-me.
535 *
536 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
537 * our fs/select.c). It means that after we received EOF,
538 * poll always returns immediately, making impossible poll() on write()
539 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
540 * if and only if shutdown has been made in both directions.
541 * Actually, it is interesting to look how Solaris and DUX
542 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
543 * then we could set it on SND_SHUTDOWN. BTW examples given
544 * in Stevens' books assume exactly this behaviour, it explains
545 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
546 *
547 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
548 * blocking on fresh not-connected or disconnected socket. --ANK
549 */
550 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
551 mask |= EPOLLHUP;
552 if (sk->sk_shutdown & RCV_SHUTDOWN)
553 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
554
555 /* Connected or passive Fast Open socket? */
556 if (state != TCP_SYN_SENT &&
557 (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
558 int target = sock_rcvlowat(sk, 0, INT_MAX);
559
560 if (tp->urg_seq == tp->copied_seq &&
561 !sock_flag(sk, SOCK_URGINLINE) &&
562 tp->urg_data)
563 target++;
564
565 if (tcp_stream_is_readable(tp, target, sk))
566 mask |= EPOLLIN | EPOLLRDNORM;
567
568 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
569 if (sk_stream_is_writeable(sk)) {
570 mask |= EPOLLOUT | EPOLLWRNORM;
571 } else { /* send SIGIO later */
572 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
573 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
574
575 /* Race breaker. If space is freed after
576 * wspace test but before the flags are set,
577 * IO signal will be lost. Memory barrier
578 * pairs with the input side.
579 */
580 smp_mb__after_atomic();
581 if (sk_stream_is_writeable(sk))
582 mask |= EPOLLOUT | EPOLLWRNORM;
583 }
584 } else
585 mask |= EPOLLOUT | EPOLLWRNORM;
586
587 if (tp->urg_data & TCP_URG_VALID)
588 mask |= EPOLLPRI;
589 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
590 /* Active TCP fastopen socket with defer_connect
591 * Return EPOLLOUT so application can call write()
592 * in order for kernel to generate SYN+data
593 */
594 mask |= EPOLLOUT | EPOLLWRNORM;
595 }
596 /* This barrier is coupled with smp_wmb() in tcp_reset() */
597 smp_rmb();
598 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
599 mask |= EPOLLERR;
600
601 return mask;
602 }
603 EXPORT_SYMBOL(tcp_poll);
604
605 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
606 {
607 struct tcp_sock *tp = tcp_sk(sk);
608 int answ;
609 bool slow;
610
611 switch (cmd) {
612 case SIOCINQ:
613 if (sk->sk_state == TCP_LISTEN)
614 return -EINVAL;
615
616 slow = lock_sock_fast(sk);
617 answ = tcp_inq(sk);
618 unlock_sock_fast(sk, slow);
619 break;
620 case SIOCATMARK:
621 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
622 break;
623 case SIOCOUTQ:
624 if (sk->sk_state == TCP_LISTEN)
625 return -EINVAL;
626
627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
628 answ = 0;
629 else
630 answ = tp->write_seq - tp->snd_una;
631 break;
632 case SIOCOUTQNSD:
633 if (sk->sk_state == TCP_LISTEN)
634 return -EINVAL;
635
636 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
637 answ = 0;
638 else
639 answ = tp->write_seq - tp->snd_nxt;
640 break;
641 default:
642 return -ENOIOCTLCMD;
643 }
644
645 return put_user(answ, (int __user *)arg);
646 }
647 EXPORT_SYMBOL(tcp_ioctl);
648
649 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
650 {
651 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
652 tp->pushed_seq = tp->write_seq;
653 }
654
655 static inline bool forced_push(const struct tcp_sock *tp)
656 {
657 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
658 }
659
660 static void skb_entail(struct sock *sk, struct sk_buff *skb)
661 {
662 struct tcp_sock *tp = tcp_sk(sk);
663 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
664
665 skb->csum = 0;
666 tcb->seq = tcb->end_seq = tp->write_seq;
667 tcb->tcp_flags = TCPHDR_ACK;
668 tcb->sacked = 0;
669 __skb_header_release(skb);
670 tcp_add_write_queue_tail(sk, skb);
671 sk->sk_wmem_queued += skb->truesize;
672 sk_mem_charge(sk, skb->truesize);
673 if (tp->nonagle & TCP_NAGLE_PUSH)
674 tp->nonagle &= ~TCP_NAGLE_PUSH;
675
676 tcp_slow_start_after_idle_check(sk);
677 }
678
679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
680 {
681 if (flags & MSG_OOB)
682 tp->snd_up = tp->write_seq;
683 }
684
685 /* If a not yet filled skb is pushed, do not send it if
686 * we have data packets in Qdisc or NIC queues :
687 * Because TX completion will happen shortly, it gives a chance
688 * to coalesce future sendmsg() payload into this skb, without
689 * need for a timer, and with no latency trade off.
690 * As packets containing data payload have a bigger truesize
691 * than pure acks (dataless) packets, the last checks prevent
692 * autocorking if we only have an ACK in Qdisc/NIC queues,
693 * or if TX completion was delayed after we processed ACK packet.
694 */
695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
696 int size_goal)
697 {
698 return skb->len < size_goal &&
699 sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
700 !tcp_rtx_queue_empty(sk) &&
701 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
702 }
703
704 static void tcp_push(struct sock *sk, int flags, int mss_now,
705 int nonagle, int size_goal)
706 {
707 struct tcp_sock *tp = tcp_sk(sk);
708 struct sk_buff *skb;
709
710 skb = tcp_write_queue_tail(sk);
711 if (!skb)
712 return;
713 if (!(flags & MSG_MORE) || forced_push(tp))
714 tcp_mark_push(tp, skb);
715
716 tcp_mark_urg(tp, flags);
717
718 if (tcp_should_autocork(sk, skb, size_goal)) {
719
720 /* avoid atomic op if TSQ_THROTTLED bit is already set */
721 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
722 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
723 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
724 }
725 /* It is possible TX completion already happened
726 * before we set TSQ_THROTTLED.
727 */
728 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
729 return;
730 }
731
732 if (flags & MSG_MORE)
733 nonagle = TCP_NAGLE_CORK;
734
735 __tcp_push_pending_frames(sk, mss_now, nonagle);
736 }
737
738 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
739 unsigned int offset, size_t len)
740 {
741 struct tcp_splice_state *tss = rd_desc->arg.data;
742 int ret;
743
744 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
745 min(rd_desc->count, len), tss->flags);
746 if (ret > 0)
747 rd_desc->count -= ret;
748 return ret;
749 }
750
751 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
752 {
753 /* Store TCP splice context information in read_descriptor_t. */
754 read_descriptor_t rd_desc = {
755 .arg.data = tss,
756 .count = tss->len,
757 };
758
759 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
760 }
761
762 /**
763 * tcp_splice_read - splice data from TCP socket to a pipe
764 * @sock: socket to splice from
765 * @ppos: position (not valid)
766 * @pipe: pipe to splice to
767 * @len: number of bytes to splice
768 * @flags: splice modifier flags
769 *
770 * Description:
771 * Will read pages from given socket and fill them into a pipe.
772 *
773 **/
774 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
775 struct pipe_inode_info *pipe, size_t len,
776 unsigned int flags)
777 {
778 struct sock *sk = sock->sk;
779 struct tcp_splice_state tss = {
780 .pipe = pipe,
781 .len = len,
782 .flags = flags,
783 };
784 long timeo;
785 ssize_t spliced;
786 int ret;
787
788 sock_rps_record_flow(sk);
789 /*
790 * We can't seek on a socket input
791 */
792 if (unlikely(*ppos))
793 return -ESPIPE;
794
795 ret = spliced = 0;
796
797 lock_sock(sk);
798
799 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
800 while (tss.len) {
801 ret = __tcp_splice_read(sk, &tss);
802 if (ret < 0)
803 break;
804 else if (!ret) {
805 if (spliced)
806 break;
807 if (sock_flag(sk, SOCK_DONE))
808 break;
809 if (sk->sk_err) {
810 ret = sock_error(sk);
811 break;
812 }
813 if (sk->sk_shutdown & RCV_SHUTDOWN)
814 break;
815 if (sk->sk_state == TCP_CLOSE) {
816 /*
817 * This occurs when user tries to read
818 * from never connected socket.
819 */
820 ret = -ENOTCONN;
821 break;
822 }
823 if (!timeo) {
824 ret = -EAGAIN;
825 break;
826 }
827 /* if __tcp_splice_read() got nothing while we have
828 * an skb in receive queue, we do not want to loop.
829 * This might happen with URG data.
830 */
831 if (!skb_queue_empty(&sk->sk_receive_queue))
832 break;
833 sk_wait_data(sk, &timeo, NULL);
834 if (signal_pending(current)) {
835 ret = sock_intr_errno(timeo);
836 break;
837 }
838 continue;
839 }
840 tss.len -= ret;
841 spliced += ret;
842
843 if (!timeo)
844 break;
845 release_sock(sk);
846 lock_sock(sk);
847
848 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
849 (sk->sk_shutdown & RCV_SHUTDOWN) ||
850 signal_pending(current))
851 break;
852 }
853
854 release_sock(sk);
855
856 if (spliced)
857 return spliced;
858
859 return ret;
860 }
861 EXPORT_SYMBOL(tcp_splice_read);
862
863 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
864 bool force_schedule)
865 {
866 struct sk_buff *skb;
867
868 /* The TCP header must be at least 32-bit aligned. */
869 size = ALIGN(size, 4);
870
871 if (unlikely(tcp_under_memory_pressure(sk)))
872 sk_mem_reclaim_partial(sk);
873
874 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
875 if (likely(skb)) {
876 bool mem_scheduled;
877
878 if (force_schedule) {
879 mem_scheduled = true;
880 sk_forced_mem_schedule(sk, skb->truesize);
881 } else {
882 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
883 }
884 if (likely(mem_scheduled)) {
885 skb_reserve(skb, sk->sk_prot->max_header);
886 /*
887 * Make sure that we have exactly size bytes
888 * available to the caller, no more, no less.
889 */
890 skb->reserved_tailroom = skb->end - skb->tail - size;
891 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
892 return skb;
893 }
894 __kfree_skb(skb);
895 } else {
896 sk->sk_prot->enter_memory_pressure(sk);
897 sk_stream_moderate_sndbuf(sk);
898 }
899 return NULL;
900 }
901
902 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
903 int large_allowed)
904 {
905 struct tcp_sock *tp = tcp_sk(sk);
906 u32 new_size_goal, size_goal;
907
908 if (!large_allowed)
909 return mss_now;
910
911 /* Note : tcp_tso_autosize() will eventually split this later */
912 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
913 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
914
915 /* We try hard to avoid divides here */
916 size_goal = tp->gso_segs * mss_now;
917 if (unlikely(new_size_goal < size_goal ||
918 new_size_goal >= size_goal + mss_now)) {
919 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
920 sk->sk_gso_max_segs);
921 size_goal = tp->gso_segs * mss_now;
922 }
923
924 return max(size_goal, mss_now);
925 }
926
927 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
928 {
929 int mss_now;
930
931 mss_now = tcp_current_mss(sk);
932 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
933
934 return mss_now;
935 }
936
937 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
938 size_t size, int flags)
939 {
940 struct tcp_sock *tp = tcp_sk(sk);
941 int mss_now, size_goal;
942 int err;
943 ssize_t copied;
944 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
945
946 /* Wait for a connection to finish. One exception is TCP Fast Open
947 * (passive side) where data is allowed to be sent before a connection
948 * is fully established.
949 */
950 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
951 !tcp_passive_fastopen(sk)) {
952 err = sk_stream_wait_connect(sk, &timeo);
953 if (err != 0)
954 goto out_err;
955 }
956
957 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
958
959 mss_now = tcp_send_mss(sk, &size_goal, flags);
960 copied = 0;
961
962 err = -EPIPE;
963 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
964 goto out_err;
965
966 while (size > 0) {
967 struct sk_buff *skb = tcp_write_queue_tail(sk);
968 int copy, i;
969 bool can_coalesce;
970
971 if (!skb || (copy = size_goal - skb->len) <= 0 ||
972 !tcp_skb_can_collapse_to(skb)) {
973 new_segment:
974 if (!sk_stream_memory_free(sk))
975 goto wait_for_sndbuf;
976
977 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
978 tcp_rtx_and_write_queues_empty(sk));
979 if (!skb)
980 goto wait_for_memory;
981
982 skb_entail(sk, skb);
983 copy = size_goal;
984 }
985
986 if (copy > size)
987 copy = size;
988
989 i = skb_shinfo(skb)->nr_frags;
990 can_coalesce = skb_can_coalesce(skb, i, page, offset);
991 if (!can_coalesce && i >= sysctl_max_skb_frags) {
992 tcp_mark_push(tp, skb);
993 goto new_segment;
994 }
995 if (!sk_wmem_schedule(sk, copy))
996 goto wait_for_memory;
997
998 if (can_coalesce) {
999 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1000 } else {
1001 get_page(page);
1002 skb_fill_page_desc(skb, i, page, offset, copy);
1003 }
1004
1005 if (!(flags & MSG_NO_SHARED_FRAGS))
1006 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1007
1008 skb->len += copy;
1009 skb->data_len += copy;
1010 skb->truesize += copy;
1011 sk->sk_wmem_queued += copy;
1012 sk_mem_charge(sk, copy);
1013 skb->ip_summed = CHECKSUM_PARTIAL;
1014 tp->write_seq += copy;
1015 TCP_SKB_CB(skb)->end_seq += copy;
1016 tcp_skb_pcount_set(skb, 0);
1017
1018 if (!copied)
1019 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1020
1021 copied += copy;
1022 offset += copy;
1023 size -= copy;
1024 if (!size)
1025 goto out;
1026
1027 if (skb->len < size_goal || (flags & MSG_OOB))
1028 continue;
1029
1030 if (forced_push(tp)) {
1031 tcp_mark_push(tp, skb);
1032 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1033 } else if (skb == tcp_send_head(sk))
1034 tcp_push_one(sk, mss_now);
1035 continue;
1036
1037 wait_for_sndbuf:
1038 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1039 wait_for_memory:
1040 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1041 TCP_NAGLE_PUSH, size_goal);
1042
1043 err = sk_stream_wait_memory(sk, &timeo);
1044 if (err != 0)
1045 goto do_error;
1046
1047 mss_now = tcp_send_mss(sk, &size_goal, flags);
1048 }
1049
1050 out:
1051 if (copied) {
1052 tcp_tx_timestamp(sk, sk->sk_tsflags);
1053 if (!(flags & MSG_SENDPAGE_NOTLAST))
1054 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1055 }
1056 return copied;
1057
1058 do_error:
1059 if (copied)
1060 goto out;
1061 out_err:
1062 /* make sure we wake any epoll edge trigger waiter */
1063 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1064 err == -EAGAIN)) {
1065 sk->sk_write_space(sk);
1066 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1067 }
1068 return sk_stream_error(sk, flags, err);
1069 }
1070 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1071
1072 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1073 size_t size, int flags)
1074 {
1075 if (!(sk->sk_route_caps & NETIF_F_SG))
1076 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1077
1078 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1079
1080 return do_tcp_sendpages(sk, page, offset, size, flags);
1081 }
1082 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1083
1084 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1085 size_t size, int flags)
1086 {
1087 int ret;
1088
1089 lock_sock(sk);
1090 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1091 release_sock(sk);
1092
1093 return ret;
1094 }
1095 EXPORT_SYMBOL(tcp_sendpage);
1096
1097 /* Do not bother using a page frag for very small frames.
1098 * But use this heuristic only for the first skb in write queue.
1099 *
1100 * Having no payload in skb->head allows better SACK shifting
1101 * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1102 * write queue has less skbs.
1103 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1104 * This also speeds up tso_fragment(), since it wont fallback
1105 * to tcp_fragment().
1106 */
1107 static int linear_payload_sz(bool first_skb)
1108 {
1109 if (first_skb)
1110 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1111 return 0;
1112 }
1113
1114 static int select_size(bool first_skb, bool zc)
1115 {
1116 if (zc)
1117 return 0;
1118 return linear_payload_sz(first_skb);
1119 }
1120
1121 void tcp_free_fastopen_req(struct tcp_sock *tp)
1122 {
1123 if (tp->fastopen_req) {
1124 kfree(tp->fastopen_req);
1125 tp->fastopen_req = NULL;
1126 }
1127 }
1128
1129 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1130 int *copied, size_t size,
1131 struct ubuf_info *uarg)
1132 {
1133 struct tcp_sock *tp = tcp_sk(sk);
1134 struct inet_sock *inet = inet_sk(sk);
1135 struct sockaddr *uaddr = msg->msg_name;
1136 int err, flags;
1137
1138 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1139 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1140 uaddr->sa_family == AF_UNSPEC))
1141 return -EOPNOTSUPP;
1142 if (tp->fastopen_req)
1143 return -EALREADY; /* Another Fast Open is in progress */
1144
1145 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1146 sk->sk_allocation);
1147 if (unlikely(!tp->fastopen_req))
1148 return -ENOBUFS;
1149 tp->fastopen_req->data = msg;
1150 tp->fastopen_req->size = size;
1151 tp->fastopen_req->uarg = uarg;
1152
1153 if (inet->defer_connect) {
1154 err = tcp_connect(sk);
1155 /* Same failure procedure as in tcp_v4/6_connect */
1156 if (err) {
1157 tcp_set_state(sk, TCP_CLOSE);
1158 inet->inet_dport = 0;
1159 sk->sk_route_caps = 0;
1160 }
1161 }
1162 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1163 err = __inet_stream_connect(sk->sk_socket, uaddr,
1164 msg->msg_namelen, flags, 1);
1165 /* fastopen_req could already be freed in __inet_stream_connect
1166 * if the connection times out or gets rst
1167 */
1168 if (tp->fastopen_req) {
1169 *copied = tp->fastopen_req->copied;
1170 tcp_free_fastopen_req(tp);
1171 inet->defer_connect = 0;
1172 }
1173 return err;
1174 }
1175
1176 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1177 {
1178 struct tcp_sock *tp = tcp_sk(sk);
1179 struct ubuf_info *uarg = NULL;
1180 struct sk_buff *skb;
1181 struct sockcm_cookie sockc;
1182 int flags, err, copied = 0;
1183 int mss_now = 0, size_goal, copied_syn = 0;
1184 bool process_backlog = false;
1185 bool zc = false;
1186 long timeo;
1187
1188 flags = msg->msg_flags;
1189
1190 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1191 skb = tcp_write_queue_tail(sk);
1192 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1193 if (!uarg) {
1194 err = -ENOBUFS;
1195 goto out_err;
1196 }
1197
1198 zc = sk->sk_route_caps & NETIF_F_SG;
1199 if (!zc)
1200 uarg->zerocopy = 0;
1201 }
1202
1203 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1204 !tp->repair) {
1205 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1206 if (err == -EINPROGRESS && copied_syn > 0)
1207 goto out;
1208 else if (err)
1209 goto out_err;
1210 }
1211
1212 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1213
1214 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1215
1216 /* Wait for a connection to finish. One exception is TCP Fast Open
1217 * (passive side) where data is allowed to be sent before a connection
1218 * is fully established.
1219 */
1220 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1221 !tcp_passive_fastopen(sk)) {
1222 err = sk_stream_wait_connect(sk, &timeo);
1223 if (err != 0)
1224 goto do_error;
1225 }
1226
1227 if (unlikely(tp->repair)) {
1228 if (tp->repair_queue == TCP_RECV_QUEUE) {
1229 copied = tcp_send_rcvq(sk, msg, size);
1230 goto out_nopush;
1231 }
1232
1233 err = -EINVAL;
1234 if (tp->repair_queue == TCP_NO_QUEUE)
1235 goto out_err;
1236
1237 /* 'common' sending to sendq */
1238 }
1239
1240 sockcm_init(&sockc, sk);
1241 if (msg->msg_controllen) {
1242 err = sock_cmsg_send(sk, msg, &sockc);
1243 if (unlikely(err)) {
1244 err = -EINVAL;
1245 goto out_err;
1246 }
1247 }
1248
1249 /* This should be in poll */
1250 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1251
1252 /* Ok commence sending. */
1253 copied = 0;
1254
1255 restart:
1256 mss_now = tcp_send_mss(sk, &size_goal, flags);
1257
1258 err = -EPIPE;
1259 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1260 goto do_error;
1261
1262 while (msg_data_left(msg)) {
1263 int copy = 0;
1264
1265 skb = tcp_write_queue_tail(sk);
1266 if (skb)
1267 copy = size_goal - skb->len;
1268
1269 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1270 bool first_skb;
1271 int linear;
1272
1273 new_segment:
1274 if (!sk_stream_memory_free(sk))
1275 goto wait_for_sndbuf;
1276
1277 if (process_backlog && sk_flush_backlog(sk)) {
1278 process_backlog = false;
1279 goto restart;
1280 }
1281 first_skb = tcp_rtx_and_write_queues_empty(sk);
1282 linear = select_size(first_skb, zc);
1283 skb = sk_stream_alloc_skb(sk, linear, sk->sk_allocation,
1284 first_skb);
1285 if (!skb)
1286 goto wait_for_memory;
1287
1288 process_backlog = true;
1289 skb->ip_summed = CHECKSUM_PARTIAL;
1290
1291 skb_entail(sk, skb);
1292 copy = size_goal;
1293
1294 /* All packets are restored as if they have
1295 * already been sent. skb_mstamp_ns isn't set to
1296 * avoid wrong rtt estimation.
1297 */
1298 if (tp->repair)
1299 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1300 }
1301
1302 /* Try to append data to the end of skb. */
1303 if (copy > msg_data_left(msg))
1304 copy = msg_data_left(msg);
1305
1306 /* Where to copy to? */
1307 if (skb_availroom(skb) > 0 && !zc) {
1308 /* We have some space in skb head. Superb! */
1309 copy = min_t(int, copy, skb_availroom(skb));
1310 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1311 if (err)
1312 goto do_fault;
1313 } else if (!zc) {
1314 bool merge = true;
1315 int i = skb_shinfo(skb)->nr_frags;
1316 struct page_frag *pfrag = sk_page_frag(sk);
1317
1318 if (!sk_page_frag_refill(sk, pfrag))
1319 goto wait_for_memory;
1320
1321 if (!skb_can_coalesce(skb, i, pfrag->page,
1322 pfrag->offset)) {
1323 if (i >= sysctl_max_skb_frags) {
1324 tcp_mark_push(tp, skb);
1325 goto new_segment;
1326 }
1327 merge = false;
1328 }
1329
1330 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1331
1332 if (!sk_wmem_schedule(sk, copy))
1333 goto wait_for_memory;
1334
1335 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1336 pfrag->page,
1337 pfrag->offset,
1338 copy);
1339 if (err)
1340 goto do_error;
1341
1342 /* Update the skb. */
1343 if (merge) {
1344 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1345 } else {
1346 skb_fill_page_desc(skb, i, pfrag->page,
1347 pfrag->offset, copy);
1348 page_ref_inc(pfrag->page);
1349 }
1350 pfrag->offset += copy;
1351 } else {
1352 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1353 if (err == -EMSGSIZE || err == -EEXIST) {
1354 tcp_mark_push(tp, skb);
1355 goto new_segment;
1356 }
1357 if (err < 0)
1358 goto do_error;
1359 copy = err;
1360 }
1361
1362 if (!copied)
1363 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1364
1365 tp->write_seq += copy;
1366 TCP_SKB_CB(skb)->end_seq += copy;
1367 tcp_skb_pcount_set(skb, 0);
1368
1369 copied += copy;
1370 if (!msg_data_left(msg)) {
1371 if (unlikely(flags & MSG_EOR))
1372 TCP_SKB_CB(skb)->eor = 1;
1373 goto out;
1374 }
1375
1376 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1377 continue;
1378
1379 if (forced_push(tp)) {
1380 tcp_mark_push(tp, skb);
1381 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1382 } else if (skb == tcp_send_head(sk))
1383 tcp_push_one(sk, mss_now);
1384 continue;
1385
1386 wait_for_sndbuf:
1387 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1388 wait_for_memory:
1389 if (copied)
1390 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1391 TCP_NAGLE_PUSH, size_goal);
1392
1393 err = sk_stream_wait_memory(sk, &timeo);
1394 if (err != 0)
1395 goto do_error;
1396
1397 mss_now = tcp_send_mss(sk, &size_goal, flags);
1398 }
1399
1400 out:
1401 if (copied) {
1402 tcp_tx_timestamp(sk, sockc.tsflags);
1403 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1404 }
1405 out_nopush:
1406 sock_zerocopy_put(uarg);
1407 return copied + copied_syn;
1408
1409 do_fault:
1410 if (!skb->len) {
1411 tcp_unlink_write_queue(skb, sk);
1412 /* It is the one place in all of TCP, except connection
1413 * reset, where we can be unlinking the send_head.
1414 */
1415 if (tcp_write_queue_empty(sk))
1416 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1417 sk_wmem_free_skb(sk, skb);
1418 }
1419
1420 do_error:
1421 if (copied + copied_syn)
1422 goto out;
1423 out_err:
1424 sock_zerocopy_put_abort(uarg, true);
1425 err = sk_stream_error(sk, flags, err);
1426 /* make sure we wake any epoll edge trigger waiter */
1427 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1428 err == -EAGAIN)) {
1429 sk->sk_write_space(sk);
1430 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1431 }
1432 return err;
1433 }
1434 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1435
1436 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1437 {
1438 int ret;
1439
1440 lock_sock(sk);
1441 ret = tcp_sendmsg_locked(sk, msg, size);
1442 release_sock(sk);
1443
1444 return ret;
1445 }
1446 EXPORT_SYMBOL(tcp_sendmsg);
1447
1448 /*
1449 * Handle reading urgent data. BSD has very simple semantics for
1450 * this, no blocking and very strange errors 8)
1451 */
1452
1453 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1454 {
1455 struct tcp_sock *tp = tcp_sk(sk);
1456
1457 /* No URG data to read. */
1458 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1459 tp->urg_data == TCP_URG_READ)
1460 return -EINVAL; /* Yes this is right ! */
1461
1462 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1463 return -ENOTCONN;
1464
1465 if (tp->urg_data & TCP_URG_VALID) {
1466 int err = 0;
1467 char c = tp->urg_data;
1468
1469 if (!(flags & MSG_PEEK))
1470 tp->urg_data = TCP_URG_READ;
1471
1472 /* Read urgent data. */
1473 msg->msg_flags |= MSG_OOB;
1474
1475 if (len > 0) {
1476 if (!(flags & MSG_TRUNC))
1477 err = memcpy_to_msg(msg, &c, 1);
1478 len = 1;
1479 } else
1480 msg->msg_flags |= MSG_TRUNC;
1481
1482 return err ? -EFAULT : len;
1483 }
1484
1485 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1486 return 0;
1487
1488 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1489 * the available implementations agree in this case:
1490 * this call should never block, independent of the
1491 * blocking state of the socket.
1492 * Mike <pall@rz.uni-karlsruhe.de>
1493 */
1494 return -EAGAIN;
1495 }
1496
1497 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1498 {
1499 struct sk_buff *skb;
1500 int copied = 0, err = 0;
1501
1502 /* XXX -- need to support SO_PEEK_OFF */
1503
1504 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1505 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1506 if (err)
1507 return err;
1508 copied += skb->len;
1509 }
1510
1511 skb_queue_walk(&sk->sk_write_queue, skb) {
1512 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1513 if (err)
1514 break;
1515
1516 copied += skb->len;
1517 }
1518
1519 return err ?: copied;
1520 }
1521
1522 /* Clean up the receive buffer for full frames taken by the user,
1523 * then send an ACK if necessary. COPIED is the number of bytes
1524 * tcp_recvmsg has given to the user so far, it speeds up the
1525 * calculation of whether or not we must ACK for the sake of
1526 * a window update.
1527 */
1528 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1529 {
1530 struct tcp_sock *tp = tcp_sk(sk);
1531 bool time_to_ack = false;
1532
1533 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1534
1535 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1536 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1537 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1538
1539 if (inet_csk_ack_scheduled(sk)) {
1540 const struct inet_connection_sock *icsk = inet_csk(sk);
1541 /* Delayed ACKs frequently hit locked sockets during bulk
1542 * receive. */
1543 if (icsk->icsk_ack.blocked ||
1544 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1545 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1546 /*
1547 * If this read emptied read buffer, we send ACK, if
1548 * connection is not bidirectional, user drained
1549 * receive buffer and there was a small segment
1550 * in queue.
1551 */
1552 (copied > 0 &&
1553 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1554 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1555 !inet_csk_in_pingpong_mode(sk))) &&
1556 !atomic_read(&sk->sk_rmem_alloc)))
1557 time_to_ack = true;
1558 }
1559
1560 /* We send an ACK if we can now advertise a non-zero window
1561 * which has been raised "significantly".
1562 *
1563 * Even if window raised up to infinity, do not send window open ACK
1564 * in states, where we will not receive more. It is useless.
1565 */
1566 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1567 __u32 rcv_window_now = tcp_receive_window(tp);
1568
1569 /* Optimize, __tcp_select_window() is not cheap. */
1570 if (2*rcv_window_now <= tp->window_clamp) {
1571 __u32 new_window = __tcp_select_window(sk);
1572
1573 /* Send ACK now, if this read freed lots of space
1574 * in our buffer. Certainly, new_window is new window.
1575 * We can advertise it now, if it is not less than current one.
1576 * "Lots" means "at least twice" here.
1577 */
1578 if (new_window && new_window >= 2 * rcv_window_now)
1579 time_to_ack = true;
1580 }
1581 }
1582 if (time_to_ack)
1583 tcp_send_ack(sk);
1584 }
1585
1586 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1587 {
1588 struct sk_buff *skb;
1589 u32 offset;
1590
1591 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1592 offset = seq - TCP_SKB_CB(skb)->seq;
1593 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1594 pr_err_once("%s: found a SYN, please report !\n", __func__);
1595 offset--;
1596 }
1597 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1598 *off = offset;
1599 return skb;
1600 }
1601 /* This looks weird, but this can happen if TCP collapsing
1602 * splitted a fat GRO packet, while we released socket lock
1603 * in skb_splice_bits()
1604 */
1605 sk_eat_skb(sk, skb);
1606 }
1607 return NULL;
1608 }
1609
1610 /*
1611 * This routine provides an alternative to tcp_recvmsg() for routines
1612 * that would like to handle copying from skbuffs directly in 'sendfile'
1613 * fashion.
1614 * Note:
1615 * - It is assumed that the socket was locked by the caller.
1616 * - The routine does not block.
1617 * - At present, there is no support for reading OOB data
1618 * or for 'peeking' the socket using this routine
1619 * (although both would be easy to implement).
1620 */
1621 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1622 sk_read_actor_t recv_actor)
1623 {
1624 struct sk_buff *skb;
1625 struct tcp_sock *tp = tcp_sk(sk);
1626 u32 seq = tp->copied_seq;
1627 u32 offset;
1628 int copied = 0;
1629
1630 if (sk->sk_state == TCP_LISTEN)
1631 return -ENOTCONN;
1632 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1633 if (offset < skb->len) {
1634 int used;
1635 size_t len;
1636
1637 len = skb->len - offset;
1638 /* Stop reading if we hit a patch of urgent data */
1639 if (tp->urg_data) {
1640 u32 urg_offset = tp->urg_seq - seq;
1641 if (urg_offset < len)
1642 len = urg_offset;
1643 if (!len)
1644 break;
1645 }
1646 used = recv_actor(desc, skb, offset, len);
1647 if (used <= 0) {
1648 if (!copied)
1649 copied = used;
1650 break;
1651 } else if (used <= len) {
1652 seq += used;
1653 copied += used;
1654 offset += used;
1655 }
1656 /* If recv_actor drops the lock (e.g. TCP splice
1657 * receive) the skb pointer might be invalid when
1658 * getting here: tcp_collapse might have deleted it
1659 * while aggregating skbs from the socket queue.
1660 */
1661 skb = tcp_recv_skb(sk, seq - 1, &offset);
1662 if (!skb)
1663 break;
1664 /* TCP coalescing might have appended data to the skb.
1665 * Try to splice more frags
1666 */
1667 if (offset + 1 != skb->len)
1668 continue;
1669 }
1670 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1671 sk_eat_skb(sk, skb);
1672 ++seq;
1673 break;
1674 }
1675 sk_eat_skb(sk, skb);
1676 if (!desc->count)
1677 break;
1678 tp->copied_seq = seq;
1679 }
1680 tp->copied_seq = seq;
1681
1682 tcp_rcv_space_adjust(sk);
1683
1684 /* Clean up data we have read: This will do ACK frames. */
1685 if (copied > 0) {
1686 tcp_recv_skb(sk, seq, &offset);
1687 tcp_cleanup_rbuf(sk, copied);
1688 }
1689 return copied;
1690 }
1691 EXPORT_SYMBOL(tcp_read_sock);
1692
1693 int tcp_peek_len(struct socket *sock)
1694 {
1695 return tcp_inq(sock->sk);
1696 }
1697 EXPORT_SYMBOL(tcp_peek_len);
1698
1699 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1700 int tcp_set_rcvlowat(struct sock *sk, int val)
1701 {
1702 int cap;
1703
1704 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1705 cap = sk->sk_rcvbuf >> 1;
1706 else
1707 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1708 val = min(val, cap);
1709 sk->sk_rcvlowat = val ? : 1;
1710
1711 /* Check if we need to signal EPOLLIN right now */
1712 tcp_data_ready(sk);
1713
1714 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1715 return 0;
1716
1717 val <<= 1;
1718 if (val > sk->sk_rcvbuf) {
1719 sk->sk_rcvbuf = val;
1720 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1721 }
1722 return 0;
1723 }
1724 EXPORT_SYMBOL(tcp_set_rcvlowat);
1725
1726 #ifdef CONFIG_MMU
1727 static const struct vm_operations_struct tcp_vm_ops = {
1728 };
1729
1730 int tcp_mmap(struct file *file, struct socket *sock,
1731 struct vm_area_struct *vma)
1732 {
1733 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1734 return -EPERM;
1735 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1736
1737 /* Instruct vm_insert_page() to not down_read(mmap_sem) */
1738 vma->vm_flags |= VM_MIXEDMAP;
1739
1740 vma->vm_ops = &tcp_vm_ops;
1741 return 0;
1742 }
1743 EXPORT_SYMBOL(tcp_mmap);
1744
1745 static int tcp_zerocopy_receive(struct sock *sk,
1746 struct tcp_zerocopy_receive *zc)
1747 {
1748 unsigned long address = (unsigned long)zc->address;
1749 const skb_frag_t *frags = NULL;
1750 u32 length = 0, seq, offset;
1751 struct vm_area_struct *vma;
1752 struct sk_buff *skb = NULL;
1753 struct tcp_sock *tp;
1754 int inq;
1755 int ret;
1756
1757 if (address & (PAGE_SIZE - 1) || address != zc->address)
1758 return -EINVAL;
1759
1760 if (sk->sk_state == TCP_LISTEN)
1761 return -ENOTCONN;
1762
1763 sock_rps_record_flow(sk);
1764
1765 down_read(&current->mm->mmap_sem);
1766
1767 ret = -EINVAL;
1768 vma = find_vma(current->mm, address);
1769 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops)
1770 goto out;
1771 zc->length = min_t(unsigned long, zc->length, vma->vm_end - address);
1772
1773 tp = tcp_sk(sk);
1774 seq = tp->copied_seq;
1775 inq = tcp_inq(sk);
1776 zc->length = min_t(u32, zc->length, inq);
1777 zc->length &= ~(PAGE_SIZE - 1);
1778 if (zc->length) {
1779 zap_page_range(vma, address, zc->length);
1780 zc->recv_skip_hint = 0;
1781 } else {
1782 zc->recv_skip_hint = inq;
1783 }
1784 ret = 0;
1785 while (length + PAGE_SIZE <= zc->length) {
1786 if (zc->recv_skip_hint < PAGE_SIZE) {
1787 if (skb) {
1788 skb = skb->next;
1789 offset = seq - TCP_SKB_CB(skb)->seq;
1790 } else {
1791 skb = tcp_recv_skb(sk, seq, &offset);
1792 }
1793
1794 zc->recv_skip_hint = skb->len - offset;
1795 offset -= skb_headlen(skb);
1796 if ((int)offset < 0 || skb_has_frag_list(skb))
1797 break;
1798 frags = skb_shinfo(skb)->frags;
1799 while (offset) {
1800 if (frags->size > offset)
1801 goto out;
1802 offset -= frags->size;
1803 frags++;
1804 }
1805 }
1806 if (frags->size != PAGE_SIZE || frags->page_offset) {
1807 int remaining = zc->recv_skip_hint;
1808
1809 while (remaining && (frags->size != PAGE_SIZE ||
1810 frags->page_offset)) {
1811 remaining -= frags->size;
1812 frags++;
1813 }
1814 zc->recv_skip_hint -= remaining;
1815 break;
1816 }
1817 ret = vm_insert_page(vma, address + length,
1818 skb_frag_page(frags));
1819 if (ret)
1820 break;
1821 length += PAGE_SIZE;
1822 seq += PAGE_SIZE;
1823 zc->recv_skip_hint -= PAGE_SIZE;
1824 frags++;
1825 }
1826 out:
1827 up_read(&current->mm->mmap_sem);
1828 if (length) {
1829 tp->copied_seq = seq;
1830 tcp_rcv_space_adjust(sk);
1831
1832 /* Clean up data we have read: This will do ACK frames. */
1833 tcp_recv_skb(sk, seq, &offset);
1834 tcp_cleanup_rbuf(sk, length);
1835 ret = 0;
1836 if (length == zc->length)
1837 zc->recv_skip_hint = 0;
1838 } else {
1839 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
1840 ret = -EIO;
1841 }
1842 zc->length = length;
1843 return ret;
1844 }
1845 #endif
1846
1847 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1848 struct scm_timestamping_internal *tss)
1849 {
1850 if (skb->tstamp)
1851 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1852 else
1853 tss->ts[0] = (struct timespec64) {0};
1854
1855 if (skb_hwtstamps(skb)->hwtstamp)
1856 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1857 else
1858 tss->ts[2] = (struct timespec64) {0};
1859 }
1860
1861 /* Similar to __sock_recv_timestamp, but does not require an skb */
1862 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1863 struct scm_timestamping_internal *tss)
1864 {
1865 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
1866 bool has_timestamping = false;
1867
1868 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1869 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1870 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1871 if (new_tstamp) {
1872 struct __kernel_timespec kts = {tss->ts[0].tv_sec, tss->ts[0].tv_nsec};
1873
1874 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
1875 sizeof(kts), &kts);
1876 } else {
1877 struct timespec ts_old = timespec64_to_timespec(tss->ts[0]);
1878
1879 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
1880 sizeof(ts_old), &ts_old);
1881 }
1882 } else {
1883 if (new_tstamp) {
1884 struct __kernel_sock_timeval stv;
1885
1886 stv.tv_sec = tss->ts[0].tv_sec;
1887 stv.tv_usec = tss->ts[0].tv_nsec / 1000;
1888 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
1889 sizeof(stv), &stv);
1890 } else {
1891 struct __kernel_old_timeval tv;
1892
1893 tv.tv_sec = tss->ts[0].tv_sec;
1894 tv.tv_usec = tss->ts[0].tv_nsec / 1000;
1895 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
1896 sizeof(tv), &tv);
1897 }
1898 }
1899 }
1900
1901 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1902 has_timestamping = true;
1903 else
1904 tss->ts[0] = (struct timespec64) {0};
1905 }
1906
1907 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1908 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1909 has_timestamping = true;
1910 else
1911 tss->ts[2] = (struct timespec64) {0};
1912 }
1913
1914 if (has_timestamping) {
1915 tss->ts[1] = (struct timespec64) {0};
1916 if (sock_flag(sk, SOCK_TSTAMP_NEW))
1917 put_cmsg_scm_timestamping64(msg, tss);
1918 else
1919 put_cmsg_scm_timestamping(msg, tss);
1920 }
1921 }
1922
1923 static int tcp_inq_hint(struct sock *sk)
1924 {
1925 const struct tcp_sock *tp = tcp_sk(sk);
1926 u32 copied_seq = READ_ONCE(tp->copied_seq);
1927 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
1928 int inq;
1929
1930 inq = rcv_nxt - copied_seq;
1931 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
1932 lock_sock(sk);
1933 inq = tp->rcv_nxt - tp->copied_seq;
1934 release_sock(sk);
1935 }
1936 return inq;
1937 }
1938
1939 /*
1940 * This routine copies from a sock struct into the user buffer.
1941 *
1942 * Technical note: in 2.3 we work on _locked_ socket, so that
1943 * tricks with *seq access order and skb->users are not required.
1944 * Probably, code can be easily improved even more.
1945 */
1946
1947 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1948 int flags, int *addr_len)
1949 {
1950 struct tcp_sock *tp = tcp_sk(sk);
1951 int copied = 0;
1952 u32 peek_seq;
1953 u32 *seq;
1954 unsigned long used;
1955 int err, inq;
1956 int target; /* Read at least this many bytes */
1957 long timeo;
1958 struct sk_buff *skb, *last;
1959 u32 urg_hole = 0;
1960 struct scm_timestamping_internal tss;
1961 bool has_tss = false;
1962 bool has_cmsg;
1963
1964 if (unlikely(flags & MSG_ERRQUEUE))
1965 return inet_recv_error(sk, msg, len, addr_len);
1966
1967 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1968 (sk->sk_state == TCP_ESTABLISHED))
1969 sk_busy_loop(sk, nonblock);
1970
1971 lock_sock(sk);
1972
1973 err = -ENOTCONN;
1974 if (sk->sk_state == TCP_LISTEN)
1975 goto out;
1976
1977 has_cmsg = tp->recvmsg_inq;
1978 timeo = sock_rcvtimeo(sk, nonblock);
1979
1980 /* Urgent data needs to be handled specially. */
1981 if (flags & MSG_OOB)
1982 goto recv_urg;
1983
1984 if (unlikely(tp->repair)) {
1985 err = -EPERM;
1986 if (!(flags & MSG_PEEK))
1987 goto out;
1988
1989 if (tp->repair_queue == TCP_SEND_QUEUE)
1990 goto recv_sndq;
1991
1992 err = -EINVAL;
1993 if (tp->repair_queue == TCP_NO_QUEUE)
1994 goto out;
1995
1996 /* 'common' recv queue MSG_PEEK-ing */
1997 }
1998
1999 seq = &tp->copied_seq;
2000 if (flags & MSG_PEEK) {
2001 peek_seq = tp->copied_seq;
2002 seq = &peek_seq;
2003 }
2004
2005 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2006
2007 do {
2008 u32 offset;
2009
2010 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2011 if (tp->urg_data && tp->urg_seq == *seq) {
2012 if (copied)
2013 break;
2014 if (signal_pending(current)) {
2015 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2016 break;
2017 }
2018 }
2019
2020 /* Next get a buffer. */
2021
2022 last = skb_peek_tail(&sk->sk_receive_queue);
2023 skb_queue_walk(&sk->sk_receive_queue, skb) {
2024 last = skb;
2025 /* Now that we have two receive queues this
2026 * shouldn't happen.
2027 */
2028 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2029 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2030 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2031 flags))
2032 break;
2033
2034 offset = *seq - TCP_SKB_CB(skb)->seq;
2035 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2036 pr_err_once("%s: found a SYN, please report !\n", __func__);
2037 offset--;
2038 }
2039 if (offset < skb->len)
2040 goto found_ok_skb;
2041 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2042 goto found_fin_ok;
2043 WARN(!(flags & MSG_PEEK),
2044 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2045 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2046 }
2047
2048 /* Well, if we have backlog, try to process it now yet. */
2049
2050 if (copied >= target && !sk->sk_backlog.tail)
2051 break;
2052
2053 if (copied) {
2054 if (sk->sk_err ||
2055 sk->sk_state == TCP_CLOSE ||
2056 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2057 !timeo ||
2058 signal_pending(current))
2059 break;
2060 } else {
2061 if (sock_flag(sk, SOCK_DONE))
2062 break;
2063
2064 if (sk->sk_err) {
2065 copied = sock_error(sk);
2066 break;
2067 }
2068
2069 if (sk->sk_shutdown & RCV_SHUTDOWN)
2070 break;
2071
2072 if (sk->sk_state == TCP_CLOSE) {
2073 /* This occurs when user tries to read
2074 * from never connected socket.
2075 */
2076 copied = -ENOTCONN;
2077 break;
2078 }
2079
2080 if (!timeo) {
2081 copied = -EAGAIN;
2082 break;
2083 }
2084
2085 if (signal_pending(current)) {
2086 copied = sock_intr_errno(timeo);
2087 break;
2088 }
2089 }
2090
2091 tcp_cleanup_rbuf(sk, copied);
2092
2093 if (copied >= target) {
2094 /* Do not sleep, just process backlog. */
2095 release_sock(sk);
2096 lock_sock(sk);
2097 } else {
2098 sk_wait_data(sk, &timeo, last);
2099 }
2100
2101 if ((flags & MSG_PEEK) &&
2102 (peek_seq - copied - urg_hole != tp->copied_seq)) {
2103 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2104 current->comm,
2105 task_pid_nr(current));
2106 peek_seq = tp->copied_seq;
2107 }
2108 continue;
2109
2110 found_ok_skb:
2111 /* Ok so how much can we use? */
2112 used = skb->len - offset;
2113 if (len < used)
2114 used = len;
2115
2116 /* Do we have urgent data here? */
2117 if (tp->urg_data) {
2118 u32 urg_offset = tp->urg_seq - *seq;
2119 if (urg_offset < used) {
2120 if (!urg_offset) {
2121 if (!sock_flag(sk, SOCK_URGINLINE)) {
2122 ++*seq;
2123 urg_hole++;
2124 offset++;
2125 used--;
2126 if (!used)
2127 goto skip_copy;
2128 }
2129 } else
2130 used = urg_offset;
2131 }
2132 }
2133
2134 if (!(flags & MSG_TRUNC)) {
2135 err = skb_copy_datagram_msg(skb, offset, msg, used);
2136 if (err) {
2137 /* Exception. Bailout! */
2138 if (!copied)
2139 copied = -EFAULT;
2140 break;
2141 }
2142 }
2143
2144 *seq += used;
2145 copied += used;
2146 len -= used;
2147
2148 tcp_rcv_space_adjust(sk);
2149
2150 skip_copy:
2151 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2152 tp->urg_data = 0;
2153 tcp_fast_path_check(sk);
2154 }
2155 if (used + offset < skb->len)
2156 continue;
2157
2158 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2159 tcp_update_recv_tstamps(skb, &tss);
2160 has_tss = true;
2161 has_cmsg = true;
2162 }
2163 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2164 goto found_fin_ok;
2165 if (!(flags & MSG_PEEK))
2166 sk_eat_skb(sk, skb);
2167 continue;
2168
2169 found_fin_ok:
2170 /* Process the FIN. */
2171 ++*seq;
2172 if (!(flags & MSG_PEEK))
2173 sk_eat_skb(sk, skb);
2174 break;
2175 } while (len > 0);
2176
2177 /* According to UNIX98, msg_name/msg_namelen are ignored
2178 * on connected socket. I was just happy when found this 8) --ANK
2179 */
2180
2181 /* Clean up data we have read: This will do ACK frames. */
2182 tcp_cleanup_rbuf(sk, copied);
2183
2184 release_sock(sk);
2185
2186 if (has_cmsg) {
2187 if (has_tss)
2188 tcp_recv_timestamp(msg, sk, &tss);
2189 if (tp->recvmsg_inq) {
2190 inq = tcp_inq_hint(sk);
2191 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2192 }
2193 }
2194
2195 return copied;
2196
2197 out:
2198 release_sock(sk);
2199 return err;
2200
2201 recv_urg:
2202 err = tcp_recv_urg(sk, msg, len, flags);
2203 goto out;
2204
2205 recv_sndq:
2206 err = tcp_peek_sndq(sk, msg, len);
2207 goto out;
2208 }
2209 EXPORT_SYMBOL(tcp_recvmsg);
2210
2211 void tcp_set_state(struct sock *sk, int state)
2212 {
2213 int oldstate = sk->sk_state;
2214
2215 /* We defined a new enum for TCP states that are exported in BPF
2216 * so as not force the internal TCP states to be frozen. The
2217 * following checks will detect if an internal state value ever
2218 * differs from the BPF value. If this ever happens, then we will
2219 * need to remap the internal value to the BPF value before calling
2220 * tcp_call_bpf_2arg.
2221 */
2222 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2223 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2224 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2225 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2226 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2227 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2228 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2229 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2230 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2231 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2232 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2233 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2234 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2235
2236 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2237 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2238
2239 switch (state) {
2240 case TCP_ESTABLISHED:
2241 if (oldstate != TCP_ESTABLISHED)
2242 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2243 break;
2244
2245 case TCP_CLOSE:
2246 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2247 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2248
2249 sk->sk_prot->unhash(sk);
2250 if (inet_csk(sk)->icsk_bind_hash &&
2251 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2252 inet_put_port(sk);
2253 /* fall through */
2254 default:
2255 if (oldstate == TCP_ESTABLISHED)
2256 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2257 }
2258
2259 /* Change state AFTER socket is unhashed to avoid closed
2260 * socket sitting in hash tables.
2261 */
2262 inet_sk_state_store(sk, state);
2263 }
2264 EXPORT_SYMBOL_GPL(tcp_set_state);
2265
2266 /*
2267 * State processing on a close. This implements the state shift for
2268 * sending our FIN frame. Note that we only send a FIN for some
2269 * states. A shutdown() may have already sent the FIN, or we may be
2270 * closed.
2271 */
2272
2273 static const unsigned char new_state[16] = {
2274 /* current state: new state: action: */
2275 [0 /* (Invalid) */] = TCP_CLOSE,
2276 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2277 [TCP_SYN_SENT] = TCP_CLOSE,
2278 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2279 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2280 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2281 [TCP_TIME_WAIT] = TCP_CLOSE,
2282 [TCP_CLOSE] = TCP_CLOSE,
2283 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2284 [TCP_LAST_ACK] = TCP_LAST_ACK,
2285 [TCP_LISTEN] = TCP_CLOSE,
2286 [TCP_CLOSING] = TCP_CLOSING,
2287 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2288 };
2289
2290 static int tcp_close_state(struct sock *sk)
2291 {
2292 int next = (int)new_state[sk->sk_state];
2293 int ns = next & TCP_STATE_MASK;
2294
2295 tcp_set_state(sk, ns);
2296
2297 return next & TCP_ACTION_FIN;
2298 }
2299
2300 /*
2301 * Shutdown the sending side of a connection. Much like close except
2302 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2303 */
2304
2305 void tcp_shutdown(struct sock *sk, int how)
2306 {
2307 /* We need to grab some memory, and put together a FIN,
2308 * and then put it into the queue to be sent.
2309 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2310 */
2311 if (!(how & SEND_SHUTDOWN))
2312 return;
2313
2314 /* If we've already sent a FIN, or it's a closed state, skip this. */
2315 if ((1 << sk->sk_state) &
2316 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2317 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2318 /* Clear out any half completed packets. FIN if needed. */
2319 if (tcp_close_state(sk))
2320 tcp_send_fin(sk);
2321 }
2322 }
2323 EXPORT_SYMBOL(tcp_shutdown);
2324
2325 bool tcp_check_oom(struct sock *sk, int shift)
2326 {
2327 bool too_many_orphans, out_of_socket_memory;
2328
2329 too_many_orphans = tcp_too_many_orphans(sk, shift);
2330 out_of_socket_memory = tcp_out_of_memory(sk);
2331
2332 if (too_many_orphans)
2333 net_info_ratelimited("too many orphaned sockets\n");
2334 if (out_of_socket_memory)
2335 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2336 return too_many_orphans || out_of_socket_memory;
2337 }
2338
2339 void tcp_close(struct sock *sk, long timeout)
2340 {
2341 struct sk_buff *skb;
2342 int data_was_unread = 0;
2343 int state;
2344
2345 lock_sock(sk);
2346 sk->sk_shutdown = SHUTDOWN_MASK;
2347
2348 if (sk->sk_state == TCP_LISTEN) {
2349 tcp_set_state(sk, TCP_CLOSE);
2350
2351 /* Special case. */
2352 inet_csk_listen_stop(sk);
2353
2354 goto adjudge_to_death;
2355 }
2356
2357 /* We need to flush the recv. buffs. We do this only on the
2358 * descriptor close, not protocol-sourced closes, because the
2359 * reader process may not have drained the data yet!
2360 */
2361 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2362 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2363
2364 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2365 len--;
2366 data_was_unread += len;
2367 __kfree_skb(skb);
2368 }
2369
2370 sk_mem_reclaim(sk);
2371
2372 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2373 if (sk->sk_state == TCP_CLOSE)
2374 goto adjudge_to_death;
2375
2376 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2377 * data was lost. To witness the awful effects of the old behavior of
2378 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2379 * GET in an FTP client, suspend the process, wait for the client to
2380 * advertise a zero window, then kill -9 the FTP client, wheee...
2381 * Note: timeout is always zero in such a case.
2382 */
2383 if (unlikely(tcp_sk(sk)->repair)) {
2384 sk->sk_prot->disconnect(sk, 0);
2385 } else if (data_was_unread) {
2386 /* Unread data was tossed, zap the connection. */
2387 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2388 tcp_set_state(sk, TCP_CLOSE);
2389 tcp_send_active_reset(sk, sk->sk_allocation);
2390 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2391 /* Check zero linger _after_ checking for unread data. */
2392 sk->sk_prot->disconnect(sk, 0);
2393 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2394 } else if (tcp_close_state(sk)) {
2395 /* We FIN if the application ate all the data before
2396 * zapping the connection.
2397 */
2398
2399 /* RED-PEN. Formally speaking, we have broken TCP state
2400 * machine. State transitions:
2401 *
2402 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2403 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2404 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2405 *
2406 * are legal only when FIN has been sent (i.e. in window),
2407 * rather than queued out of window. Purists blame.
2408 *
2409 * F.e. "RFC state" is ESTABLISHED,
2410 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2411 *
2412 * The visible declinations are that sometimes
2413 * we enter time-wait state, when it is not required really
2414 * (harmless), do not send active resets, when they are
2415 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2416 * they look as CLOSING or LAST_ACK for Linux)
2417 * Probably, I missed some more holelets.
2418 * --ANK
2419 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2420 * in a single packet! (May consider it later but will
2421 * probably need API support or TCP_CORK SYN-ACK until
2422 * data is written and socket is closed.)
2423 */
2424 tcp_send_fin(sk);
2425 }
2426
2427 sk_stream_wait_close(sk, timeout);
2428
2429 adjudge_to_death:
2430 state = sk->sk_state;
2431 sock_hold(sk);
2432 sock_orphan(sk);
2433
2434 local_bh_disable();
2435 bh_lock_sock(sk);
2436 /* remove backlog if any, without releasing ownership. */
2437 __release_sock(sk);
2438
2439 percpu_counter_inc(sk->sk_prot->orphan_count);
2440
2441 /* Have we already been destroyed by a softirq or backlog? */
2442 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2443 goto out;
2444
2445 /* This is a (useful) BSD violating of the RFC. There is a
2446 * problem with TCP as specified in that the other end could
2447 * keep a socket open forever with no application left this end.
2448 * We use a 1 minute timeout (about the same as BSD) then kill
2449 * our end. If they send after that then tough - BUT: long enough
2450 * that we won't make the old 4*rto = almost no time - whoops
2451 * reset mistake.
2452 *
2453 * Nope, it was not mistake. It is really desired behaviour
2454 * f.e. on http servers, when such sockets are useless, but
2455 * consume significant resources. Let's do it with special
2456 * linger2 option. --ANK
2457 */
2458
2459 if (sk->sk_state == TCP_FIN_WAIT2) {
2460 struct tcp_sock *tp = tcp_sk(sk);
2461 if (tp->linger2 < 0) {
2462 tcp_set_state(sk, TCP_CLOSE);
2463 tcp_send_active_reset(sk, GFP_ATOMIC);
2464 __NET_INC_STATS(sock_net(sk),
2465 LINUX_MIB_TCPABORTONLINGER);
2466 } else {
2467 const int tmo = tcp_fin_time(sk);
2468
2469 if (tmo > TCP_TIMEWAIT_LEN) {
2470 inet_csk_reset_keepalive_timer(sk,
2471 tmo - TCP_TIMEWAIT_LEN);
2472 } else {
2473 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2474 goto out;
2475 }
2476 }
2477 }
2478 if (sk->sk_state != TCP_CLOSE) {
2479 sk_mem_reclaim(sk);
2480 if (tcp_check_oom(sk, 0)) {
2481 tcp_set_state(sk, TCP_CLOSE);
2482 tcp_send_active_reset(sk, GFP_ATOMIC);
2483 __NET_INC_STATS(sock_net(sk),
2484 LINUX_MIB_TCPABORTONMEMORY);
2485 } else if (!check_net(sock_net(sk))) {
2486 /* Not possible to send reset; just close */
2487 tcp_set_state(sk, TCP_CLOSE);
2488 }
2489 }
2490
2491 if (sk->sk_state == TCP_CLOSE) {
2492 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2493 /* We could get here with a non-NULL req if the socket is
2494 * aborted (e.g., closed with unread data) before 3WHS
2495 * finishes.
2496 */
2497 if (req)
2498 reqsk_fastopen_remove(sk, req, false);
2499 inet_csk_destroy_sock(sk);
2500 }
2501 /* Otherwise, socket is reprieved until protocol close. */
2502
2503 out:
2504 bh_unlock_sock(sk);
2505 local_bh_enable();
2506 release_sock(sk);
2507 sock_put(sk);
2508 }
2509 EXPORT_SYMBOL(tcp_close);
2510
2511 /* These states need RST on ABORT according to RFC793 */
2512
2513 static inline bool tcp_need_reset(int state)
2514 {
2515 return (1 << state) &
2516 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2517 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2518 }
2519
2520 static void tcp_rtx_queue_purge(struct sock *sk)
2521 {
2522 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2523
2524 while (p) {
2525 struct sk_buff *skb = rb_to_skb(p);
2526
2527 p = rb_next(p);
2528 /* Since we are deleting whole queue, no need to
2529 * list_del(&skb->tcp_tsorted_anchor)
2530 */
2531 tcp_rtx_queue_unlink(skb, sk);
2532 sk_wmem_free_skb(sk, skb);
2533 }
2534 }
2535
2536 void tcp_write_queue_purge(struct sock *sk)
2537 {
2538 struct sk_buff *skb;
2539
2540 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2541 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2542 tcp_skb_tsorted_anchor_cleanup(skb);
2543 sk_wmem_free_skb(sk, skb);
2544 }
2545 tcp_rtx_queue_purge(sk);
2546 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2547 sk_mem_reclaim(sk);
2548 tcp_clear_all_retrans_hints(tcp_sk(sk));
2549 tcp_sk(sk)->packets_out = 0;
2550 inet_csk(sk)->icsk_backoff = 0;
2551 }
2552
2553 int tcp_disconnect(struct sock *sk, int flags)
2554 {
2555 struct inet_sock *inet = inet_sk(sk);
2556 struct inet_connection_sock *icsk = inet_csk(sk);
2557 struct tcp_sock *tp = tcp_sk(sk);
2558 int old_state = sk->sk_state;
2559
2560 if (old_state != TCP_CLOSE)
2561 tcp_set_state(sk, TCP_CLOSE);
2562
2563 /* ABORT function of RFC793 */
2564 if (old_state == TCP_LISTEN) {
2565 inet_csk_listen_stop(sk);
2566 } else if (unlikely(tp->repair)) {
2567 sk->sk_err = ECONNABORTED;
2568 } else if (tcp_need_reset(old_state) ||
2569 (tp->snd_nxt != tp->write_seq &&
2570 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2571 /* The last check adjusts for discrepancy of Linux wrt. RFC
2572 * states
2573 */
2574 tcp_send_active_reset(sk, gfp_any());
2575 sk->sk_err = ECONNRESET;
2576 } else if (old_state == TCP_SYN_SENT)
2577 sk->sk_err = ECONNRESET;
2578
2579 tcp_clear_xmit_timers(sk);
2580 __skb_queue_purge(&sk->sk_receive_queue);
2581 tp->copied_seq = tp->rcv_nxt;
2582 tp->urg_data = 0;
2583 tcp_write_queue_purge(sk);
2584 tcp_fastopen_active_disable_ofo_check(sk);
2585 skb_rbtree_purge(&tp->out_of_order_queue);
2586
2587 inet->inet_dport = 0;
2588
2589 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2590 inet_reset_saddr(sk);
2591
2592 sk->sk_shutdown = 0;
2593 sock_reset_flag(sk, SOCK_DONE);
2594 tp->srtt_us = 0;
2595 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2596 tp->rcv_rtt_last_tsecr = 0;
2597 tp->write_seq += tp->max_window + 2;
2598 if (tp->write_seq == 0)
2599 tp->write_seq = 1;
2600 icsk->icsk_backoff = 0;
2601 tp->snd_cwnd = 2;
2602 icsk->icsk_probes_out = 0;
2603 icsk->icsk_rto = TCP_TIMEOUT_INIT;
2604 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2605 tp->snd_cwnd = TCP_INIT_CWND;
2606 tp->snd_cwnd_cnt = 0;
2607 tp->window_clamp = 0;
2608 tp->delivered_ce = 0;
2609 tcp_set_ca_state(sk, TCP_CA_Open);
2610 tp->is_sack_reneg = 0;
2611 tcp_clear_retrans(tp);
2612 inet_csk_delack_init(sk);
2613 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2614 * issue in __tcp_select_window()
2615 */
2616 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2617 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2618 __sk_dst_reset(sk);
2619 dst_release(sk->sk_rx_dst);
2620 sk->sk_rx_dst = NULL;
2621 tcp_saved_syn_free(tp);
2622 tp->compressed_ack = 0;
2623 tp->bytes_sent = 0;
2624 tp->bytes_retrans = 0;
2625 tp->duplicate_sack[0].start_seq = 0;
2626 tp->duplicate_sack[0].end_seq = 0;
2627 tp->dsack_dups = 0;
2628 tp->reord_seen = 0;
2629 tp->retrans_out = 0;
2630 tp->sacked_out = 0;
2631 tp->tlp_high_seq = 0;
2632 tp->last_oow_ack_time = 0;
2633 /* There's a bubble in the pipe until at least the first ACK. */
2634 tp->app_limited = ~0U;
2635 tp->rack.mstamp = 0;
2636 tp->rack.advanced = 0;
2637 tp->rack.reo_wnd_steps = 1;
2638 tp->rack.last_delivered = 0;
2639 tp->rack.reo_wnd_persist = 0;
2640 tp->rack.dsack_seen = 0;
2641 tp->syn_data_acked = 0;
2642 tp->rx_opt.saw_tstamp = 0;
2643 tp->rx_opt.dsack = 0;
2644 tp->rx_opt.num_sacks = 0;
2645
2646
2647 /* Clean up fastopen related fields */
2648 tcp_free_fastopen_req(tp);
2649 inet->defer_connect = 0;
2650
2651 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2652
2653 if (sk->sk_frag.page) {
2654 put_page(sk->sk_frag.page);
2655 sk->sk_frag.page = NULL;
2656 sk->sk_frag.offset = 0;
2657 }
2658
2659 sk->sk_error_report(sk);
2660 return 0;
2661 }
2662 EXPORT_SYMBOL(tcp_disconnect);
2663
2664 static inline bool tcp_can_repair_sock(const struct sock *sk)
2665 {
2666 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2667 (sk->sk_state != TCP_LISTEN);
2668 }
2669
2670 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2671 {
2672 struct tcp_repair_window opt;
2673
2674 if (!tp->repair)
2675 return -EPERM;
2676
2677 if (len != sizeof(opt))
2678 return -EINVAL;
2679
2680 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2681 return -EFAULT;
2682
2683 if (opt.max_window < opt.snd_wnd)
2684 return -EINVAL;
2685
2686 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2687 return -EINVAL;
2688
2689 if (after(opt.rcv_wup, tp->rcv_nxt))
2690 return -EINVAL;
2691
2692 tp->snd_wl1 = opt.snd_wl1;
2693 tp->snd_wnd = opt.snd_wnd;
2694 tp->max_window = opt.max_window;
2695
2696 tp->rcv_wnd = opt.rcv_wnd;
2697 tp->rcv_wup = opt.rcv_wup;
2698
2699 return 0;
2700 }
2701
2702 static int tcp_repair_options_est(struct sock *sk,
2703 struct tcp_repair_opt __user *optbuf, unsigned int len)
2704 {
2705 struct tcp_sock *tp = tcp_sk(sk);
2706 struct tcp_repair_opt opt;
2707
2708 while (len >= sizeof(opt)) {
2709 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2710 return -EFAULT;
2711
2712 optbuf++;
2713 len -= sizeof(opt);
2714
2715 switch (opt.opt_code) {
2716 case TCPOPT_MSS:
2717 tp->rx_opt.mss_clamp = opt.opt_val;
2718 tcp_mtup_init(sk);
2719 break;
2720 case TCPOPT_WINDOW:
2721 {
2722 u16 snd_wscale = opt.opt_val & 0xFFFF;
2723 u16 rcv_wscale = opt.opt_val >> 16;
2724
2725 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2726 return -EFBIG;
2727
2728 tp->rx_opt.snd_wscale = snd_wscale;
2729 tp->rx_opt.rcv_wscale = rcv_wscale;
2730 tp->rx_opt.wscale_ok = 1;
2731 }
2732 break;
2733 case TCPOPT_SACK_PERM:
2734 if (opt.opt_val != 0)
2735 return -EINVAL;
2736
2737 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2738 break;
2739 case TCPOPT_TIMESTAMP:
2740 if (opt.opt_val != 0)
2741 return -EINVAL;
2742
2743 tp->rx_opt.tstamp_ok = 1;
2744 break;
2745 }
2746 }
2747
2748 return 0;
2749 }
2750
2751 /*
2752 * Socket option code for TCP.
2753 */
2754 static int do_tcp_setsockopt(struct sock *sk, int level,
2755 int optname, char __user *optval, unsigned int optlen)
2756 {
2757 struct tcp_sock *tp = tcp_sk(sk);
2758 struct inet_connection_sock *icsk = inet_csk(sk);
2759 struct net *net = sock_net(sk);
2760 int val;
2761 int err = 0;
2762
2763 /* These are data/string values, all the others are ints */
2764 switch (optname) {
2765 case TCP_CONGESTION: {
2766 char name[TCP_CA_NAME_MAX];
2767
2768 if (optlen < 1)
2769 return -EINVAL;
2770
2771 val = strncpy_from_user(name, optval,
2772 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2773 if (val < 0)
2774 return -EFAULT;
2775 name[val] = 0;
2776
2777 lock_sock(sk);
2778 err = tcp_set_congestion_control(sk, name, true, true);
2779 release_sock(sk);
2780 return err;
2781 }
2782 case TCP_ULP: {
2783 char name[TCP_ULP_NAME_MAX];
2784
2785 if (optlen < 1)
2786 return -EINVAL;
2787
2788 val = strncpy_from_user(name, optval,
2789 min_t(long, TCP_ULP_NAME_MAX - 1,
2790 optlen));
2791 if (val < 0)
2792 return -EFAULT;
2793 name[val] = 0;
2794
2795 lock_sock(sk);
2796 err = tcp_set_ulp(sk, name);
2797 release_sock(sk);
2798 return err;
2799 }
2800 case TCP_FASTOPEN_KEY: {
2801 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
2802
2803 if (optlen != sizeof(key))
2804 return -EINVAL;
2805
2806 if (copy_from_user(key, optval, optlen))
2807 return -EFAULT;
2808
2809 return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key));
2810 }
2811 default:
2812 /* fallthru */
2813 break;
2814 }
2815
2816 if (optlen < sizeof(int))
2817 return -EINVAL;
2818
2819 if (get_user(val, (int __user *)optval))
2820 return -EFAULT;
2821
2822 lock_sock(sk);
2823
2824 switch (optname) {
2825 case TCP_MAXSEG:
2826 /* Values greater than interface MTU won't take effect. However
2827 * at the point when this call is done we typically don't yet
2828 * know which interface is going to be used
2829 */
2830 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2831 err = -EINVAL;
2832 break;
2833 }
2834 tp->rx_opt.user_mss = val;
2835 break;
2836
2837 case TCP_NODELAY:
2838 if (val) {
2839 /* TCP_NODELAY is weaker than TCP_CORK, so that
2840 * this option on corked socket is remembered, but
2841 * it is not activated until cork is cleared.
2842 *
2843 * However, when TCP_NODELAY is set we make
2844 * an explicit push, which overrides even TCP_CORK
2845 * for currently queued segments.
2846 */
2847 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2848 tcp_push_pending_frames(sk);
2849 } else {
2850 tp->nonagle &= ~TCP_NAGLE_OFF;
2851 }
2852 break;
2853
2854 case TCP_THIN_LINEAR_TIMEOUTS:
2855 if (val < 0 || val > 1)
2856 err = -EINVAL;
2857 else
2858 tp->thin_lto = val;
2859 break;
2860
2861 case TCP_THIN_DUPACK:
2862 if (val < 0 || val > 1)
2863 err = -EINVAL;
2864 break;
2865
2866 case TCP_REPAIR:
2867 if (!tcp_can_repair_sock(sk))
2868 err = -EPERM;
2869 else if (val == TCP_REPAIR_ON) {
2870 tp->repair = 1;
2871 sk->sk_reuse = SK_FORCE_REUSE;
2872 tp->repair_queue = TCP_NO_QUEUE;
2873 } else if (val == TCP_REPAIR_OFF) {
2874 tp->repair = 0;
2875 sk->sk_reuse = SK_NO_REUSE;
2876 tcp_send_window_probe(sk);
2877 } else if (val == TCP_REPAIR_OFF_NO_WP) {
2878 tp->repair = 0;
2879 sk->sk_reuse = SK_NO_REUSE;
2880 } else
2881 err = -EINVAL;
2882
2883 break;
2884
2885 case TCP_REPAIR_QUEUE:
2886 if (!tp->repair)
2887 err = -EPERM;
2888 else if ((unsigned int)val < TCP_QUEUES_NR)
2889 tp->repair_queue = val;
2890 else
2891 err = -EINVAL;
2892 break;
2893
2894 case TCP_QUEUE_SEQ:
2895 if (sk->sk_state != TCP_CLOSE)
2896 err = -EPERM;
2897 else if (tp->repair_queue == TCP_SEND_QUEUE)
2898 tp->write_seq = val;
2899 else if (tp->repair_queue == TCP_RECV_QUEUE)
2900 tp->rcv_nxt = val;
2901 else
2902 err = -EINVAL;
2903 break;
2904
2905 case TCP_REPAIR_OPTIONS:
2906 if (!tp->repair)
2907 err = -EINVAL;
2908 else if (sk->sk_state == TCP_ESTABLISHED)
2909 err = tcp_repair_options_est(sk,
2910 (struct tcp_repair_opt __user *)optval,
2911 optlen);
2912 else
2913 err = -EPERM;
2914 break;
2915
2916 case TCP_CORK:
2917 /* When set indicates to always queue non-full frames.
2918 * Later the user clears this option and we transmit
2919 * any pending partial frames in the queue. This is
2920 * meant to be used alongside sendfile() to get properly
2921 * filled frames when the user (for example) must write
2922 * out headers with a write() call first and then use
2923 * sendfile to send out the data parts.
2924 *
2925 * TCP_CORK can be set together with TCP_NODELAY and it is
2926 * stronger than TCP_NODELAY.
2927 */
2928 if (val) {
2929 tp->nonagle |= TCP_NAGLE_CORK;
2930 } else {
2931 tp->nonagle &= ~TCP_NAGLE_CORK;
2932 if (tp->nonagle&TCP_NAGLE_OFF)
2933 tp->nonagle |= TCP_NAGLE_PUSH;
2934 tcp_push_pending_frames(sk);
2935 }
2936 break;
2937
2938 case TCP_KEEPIDLE:
2939 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2940 err = -EINVAL;
2941 else {
2942 tp->keepalive_time = val * HZ;
2943 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2944 !((1 << sk->sk_state) &
2945 (TCPF_CLOSE | TCPF_LISTEN))) {
2946 u32 elapsed = keepalive_time_elapsed(tp);
2947 if (tp->keepalive_time > elapsed)
2948 elapsed = tp->keepalive_time - elapsed;
2949 else
2950 elapsed = 0;
2951 inet_csk_reset_keepalive_timer(sk, elapsed);
2952 }
2953 }
2954 break;
2955 case TCP_KEEPINTVL:
2956 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2957 err = -EINVAL;
2958 else
2959 tp->keepalive_intvl = val * HZ;
2960 break;
2961 case TCP_KEEPCNT:
2962 if (val < 1 || val > MAX_TCP_KEEPCNT)
2963 err = -EINVAL;
2964 else
2965 tp->keepalive_probes = val;
2966 break;
2967 case TCP_SYNCNT:
2968 if (val < 1 || val > MAX_TCP_SYNCNT)
2969 err = -EINVAL;
2970 else
2971 icsk->icsk_syn_retries = val;
2972 break;
2973
2974 case TCP_SAVE_SYN:
2975 if (val < 0 || val > 1)
2976 err = -EINVAL;
2977 else
2978 tp->save_syn = val;
2979 break;
2980
2981 case TCP_LINGER2:
2982 if (val < 0)
2983 tp->linger2 = -1;
2984 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2985 tp->linger2 = 0;
2986 else
2987 tp->linger2 = val * HZ;
2988 break;
2989
2990 case TCP_DEFER_ACCEPT:
2991 /* Translate value in seconds to number of retransmits */
2992 icsk->icsk_accept_queue.rskq_defer_accept =
2993 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2994 TCP_RTO_MAX / HZ);
2995 break;
2996
2997 case TCP_WINDOW_CLAMP:
2998 if (!val) {
2999 if (sk->sk_state != TCP_CLOSE) {
3000 err = -EINVAL;
3001 break;
3002 }
3003 tp->window_clamp = 0;
3004 } else
3005 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3006 SOCK_MIN_RCVBUF / 2 : val;
3007 break;
3008
3009 case TCP_QUICKACK:
3010 if (!val) {
3011 inet_csk_enter_pingpong_mode(sk);
3012 } else {
3013 inet_csk_exit_pingpong_mode(sk);
3014 if ((1 << sk->sk_state) &
3015 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3016 inet_csk_ack_scheduled(sk)) {
3017 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
3018 tcp_cleanup_rbuf(sk, 1);
3019 if (!(val & 1))
3020 inet_csk_enter_pingpong_mode(sk);
3021 }
3022 }
3023 break;
3024
3025 #ifdef CONFIG_TCP_MD5SIG
3026 case TCP_MD5SIG:
3027 case TCP_MD5SIG_EXT:
3028 if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))
3029 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3030 else
3031 err = -EINVAL;
3032 break;
3033 #endif
3034 case TCP_USER_TIMEOUT:
3035 /* Cap the max time in ms TCP will retry or probe the window
3036 * before giving up and aborting (ETIMEDOUT) a connection.
3037 */
3038 if (val < 0)
3039 err = -EINVAL;
3040 else
3041 icsk->icsk_user_timeout = val;
3042 break;
3043
3044 case TCP_FASTOPEN:
3045 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3046 TCPF_LISTEN))) {
3047 tcp_fastopen_init_key_once(net);
3048
3049 fastopen_queue_tune(sk, val);
3050 } else {
3051 err = -EINVAL;
3052 }
3053 break;
3054 case TCP_FASTOPEN_CONNECT:
3055 if (val > 1 || val < 0) {
3056 err = -EINVAL;
3057 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
3058 if (sk->sk_state == TCP_CLOSE)
3059 tp->fastopen_connect = val;
3060 else
3061 err = -EINVAL;
3062 } else {
3063 err = -EOPNOTSUPP;
3064 }
3065 break;
3066 case TCP_FASTOPEN_NO_COOKIE:
3067 if (val > 1 || val < 0)
3068 err = -EINVAL;
3069 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3070 err = -EINVAL;
3071 else
3072 tp->fastopen_no_cookie = val;
3073 break;
3074 case TCP_TIMESTAMP:
3075 if (!tp->repair)
3076 err = -EPERM;
3077 else
3078 tp->tsoffset = val - tcp_time_stamp_raw();
3079 break;
3080 case TCP_REPAIR_WINDOW:
3081 err = tcp_repair_set_window(tp, optval, optlen);
3082 break;
3083 case TCP_NOTSENT_LOWAT:
3084 tp->notsent_lowat = val;
3085 sk->sk_write_space(sk);
3086 break;
3087 case TCP_INQ:
3088 if (val > 1 || val < 0)
3089 err = -EINVAL;
3090 else
3091 tp->recvmsg_inq = val;
3092 break;
3093 default:
3094 err = -ENOPROTOOPT;
3095 break;
3096 }
3097
3098 release_sock(sk);
3099 return err;
3100 }
3101
3102 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
3103 unsigned int optlen)
3104 {
3105 const struct inet_connection_sock *icsk = inet_csk(sk);
3106
3107 if (level != SOL_TCP)
3108 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3109 optval, optlen);
3110 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3111 }
3112 EXPORT_SYMBOL(tcp_setsockopt);
3113
3114 #ifdef CONFIG_COMPAT
3115 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
3116 char __user *optval, unsigned int optlen)
3117 {
3118 if (level != SOL_TCP)
3119 return inet_csk_compat_setsockopt(sk, level, optname,
3120 optval, optlen);
3121 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3122 }
3123 EXPORT_SYMBOL(compat_tcp_setsockopt);
3124 #endif
3125
3126 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3127 struct tcp_info *info)
3128 {
3129 u64 stats[__TCP_CHRONO_MAX], total = 0;
3130 enum tcp_chrono i;
3131
3132 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3133 stats[i] = tp->chrono_stat[i - 1];
3134 if (i == tp->chrono_type)
3135 stats[i] += tcp_jiffies32 - tp->chrono_start;
3136 stats[i] *= USEC_PER_SEC / HZ;
3137 total += stats[i];
3138 }
3139
3140 info->tcpi_busy_time = total;
3141 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3142 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3143 }
3144
3145 /* Return information about state of tcp endpoint in API format. */
3146 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3147 {
3148 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3149 const struct inet_connection_sock *icsk = inet_csk(sk);
3150 unsigned long rate;
3151 u32 now;
3152 u64 rate64;
3153 bool slow;
3154
3155 memset(info, 0, sizeof(*info));
3156 if (sk->sk_type != SOCK_STREAM)
3157 return;
3158
3159 info->tcpi_state = inet_sk_state_load(sk);
3160
3161 /* Report meaningful fields for all TCP states, including listeners */
3162 rate = READ_ONCE(sk->sk_pacing_rate);
3163 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3164 info->tcpi_pacing_rate = rate64;
3165
3166 rate = READ_ONCE(sk->sk_max_pacing_rate);
3167 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3168 info->tcpi_max_pacing_rate = rate64;
3169
3170 info->tcpi_reordering = tp->reordering;
3171 info->tcpi_snd_cwnd = tp->snd_cwnd;
3172
3173 if (info->tcpi_state == TCP_LISTEN) {
3174 /* listeners aliased fields :
3175 * tcpi_unacked -> Number of children ready for accept()
3176 * tcpi_sacked -> max backlog
3177 */
3178 info->tcpi_unacked = sk->sk_ack_backlog;
3179 info->tcpi_sacked = sk->sk_max_ack_backlog;
3180 return;
3181 }
3182
3183 slow = lock_sock_fast(sk);
3184
3185 info->tcpi_ca_state = icsk->icsk_ca_state;
3186 info->tcpi_retransmits = icsk->icsk_retransmits;
3187 info->tcpi_probes = icsk->icsk_probes_out;
3188 info->tcpi_backoff = icsk->icsk_backoff;
3189
3190 if (tp->rx_opt.tstamp_ok)
3191 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3192 if (tcp_is_sack(tp))
3193 info->tcpi_options |= TCPI_OPT_SACK;
3194 if (tp->rx_opt.wscale_ok) {
3195 info->tcpi_options |= TCPI_OPT_WSCALE;
3196 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3197 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3198 }
3199
3200 if (tp->ecn_flags & TCP_ECN_OK)
3201 info->tcpi_options |= TCPI_OPT_ECN;
3202 if (tp->ecn_flags & TCP_ECN_SEEN)
3203 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3204 if (tp->syn_data_acked)
3205 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3206
3207 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3208 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3209 info->tcpi_snd_mss = tp->mss_cache;
3210 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3211
3212 info->tcpi_unacked = tp->packets_out;
3213 info->tcpi_sacked = tp->sacked_out;
3214
3215 info->tcpi_lost = tp->lost_out;
3216 info->tcpi_retrans = tp->retrans_out;
3217
3218 now = tcp_jiffies32;
3219 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3220 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3221 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3222
3223 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3224 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3225 info->tcpi_rtt = tp->srtt_us >> 3;
3226 info->tcpi_rttvar = tp->mdev_us >> 2;
3227 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3228 info->tcpi_advmss = tp->advmss;
3229
3230 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3231 info->tcpi_rcv_space = tp->rcvq_space.space;
3232
3233 info->tcpi_total_retrans = tp->total_retrans;
3234
3235 info->tcpi_bytes_acked = tp->bytes_acked;
3236 info->tcpi_bytes_received = tp->bytes_received;
3237 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3238 tcp_get_info_chrono_stats(tp, info);
3239
3240 info->tcpi_segs_out = tp->segs_out;
3241 info->tcpi_segs_in = tp->segs_in;
3242
3243 info->tcpi_min_rtt = tcp_min_rtt(tp);
3244 info->tcpi_data_segs_in = tp->data_segs_in;
3245 info->tcpi_data_segs_out = tp->data_segs_out;
3246
3247 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3248 rate64 = tcp_compute_delivery_rate(tp);
3249 if (rate64)
3250 info->tcpi_delivery_rate = rate64;
3251 info->tcpi_delivered = tp->delivered;
3252 info->tcpi_delivered_ce = tp->delivered_ce;
3253 info->tcpi_bytes_sent = tp->bytes_sent;
3254 info->tcpi_bytes_retrans = tp->bytes_retrans;
3255 info->tcpi_dsack_dups = tp->dsack_dups;
3256 info->tcpi_reord_seen = tp->reord_seen;
3257 unlock_sock_fast(sk, slow);
3258 }
3259 EXPORT_SYMBOL_GPL(tcp_get_info);
3260
3261 static size_t tcp_opt_stats_get_size(void)
3262 {
3263 return
3264 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3265 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3266 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3267 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3268 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3269 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3270 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3271 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3272 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3273 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3274 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3275 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3276 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3277 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3278 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3279 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3280 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3281 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3282 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3283 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3284 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3285 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3286 0;
3287 }
3288
3289 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
3290 {
3291 const struct tcp_sock *tp = tcp_sk(sk);
3292 struct sk_buff *stats;
3293 struct tcp_info info;
3294 unsigned long rate;
3295 u64 rate64;
3296
3297 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3298 if (!stats)
3299 return NULL;
3300
3301 tcp_get_info_chrono_stats(tp, &info);
3302 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3303 info.tcpi_busy_time, TCP_NLA_PAD);
3304 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3305 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3306 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3307 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3308 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3309 tp->data_segs_out, TCP_NLA_PAD);
3310 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3311 tp->total_retrans, TCP_NLA_PAD);
3312
3313 rate = READ_ONCE(sk->sk_pacing_rate);
3314 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3315 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3316
3317 rate64 = tcp_compute_delivery_rate(tp);
3318 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3319
3320 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3321 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3322 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3323
3324 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3325 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3326 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3327 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3328 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3329
3330 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3331 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3332
3333 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3334 TCP_NLA_PAD);
3335 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3336 TCP_NLA_PAD);
3337 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3338 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3339 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3340
3341 return stats;
3342 }
3343
3344 static int do_tcp_getsockopt(struct sock *sk, int level,
3345 int optname, char __user *optval, int __user *optlen)
3346 {
3347 struct inet_connection_sock *icsk = inet_csk(sk);
3348 struct tcp_sock *tp = tcp_sk(sk);
3349 struct net *net = sock_net(sk);
3350 int val, len;
3351
3352 if (get_user(len, optlen))
3353 return -EFAULT;
3354
3355 len = min_t(unsigned int, len, sizeof(int));
3356
3357 if (len < 0)
3358 return -EINVAL;
3359
3360 switch (optname) {
3361 case TCP_MAXSEG:
3362 val = tp->mss_cache;
3363 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3364 val = tp->rx_opt.user_mss;
3365 if (tp->repair)
3366 val = tp->rx_opt.mss_clamp;
3367 break;
3368 case TCP_NODELAY:
3369 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3370 break;
3371 case TCP_CORK:
3372 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3373 break;
3374 case TCP_KEEPIDLE:
3375 val = keepalive_time_when(tp) / HZ;
3376 break;
3377 case TCP_KEEPINTVL:
3378 val = keepalive_intvl_when(tp) / HZ;
3379 break;
3380 case TCP_KEEPCNT:
3381 val = keepalive_probes(tp);
3382 break;
3383 case TCP_SYNCNT:
3384 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3385 break;
3386 case TCP_LINGER2:
3387 val = tp->linger2;
3388 if (val >= 0)
3389 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3390 break;
3391 case TCP_DEFER_ACCEPT:
3392 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3393 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3394 break;
3395 case TCP_WINDOW_CLAMP:
3396 val = tp->window_clamp;
3397 break;
3398 case TCP_INFO: {
3399 struct tcp_info info;
3400
3401 if (get_user(len, optlen))
3402 return -EFAULT;
3403
3404 tcp_get_info(sk, &info);
3405
3406 len = min_t(unsigned int, len, sizeof(info));
3407 if (put_user(len, optlen))
3408 return -EFAULT;
3409 if (copy_to_user(optval, &info, len))
3410 return -EFAULT;
3411 return 0;
3412 }
3413 case TCP_CC_INFO: {
3414 const struct tcp_congestion_ops *ca_ops;
3415 union tcp_cc_info info;
3416 size_t sz = 0;
3417 int attr;
3418
3419 if (get_user(len, optlen))
3420 return -EFAULT;
3421
3422 ca_ops = icsk->icsk_ca_ops;
3423 if (ca_ops && ca_ops->get_info)
3424 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3425
3426 len = min_t(unsigned int, len, sz);
3427 if (put_user(len, optlen))
3428 return -EFAULT;
3429 if (copy_to_user(optval, &info, len))
3430 return -EFAULT;
3431 return 0;
3432 }
3433 case TCP_QUICKACK:
3434 val = !inet_csk_in_pingpong_mode(sk);
3435 break;
3436
3437 case TCP_CONGESTION:
3438 if (get_user(len, optlen))
3439 return -EFAULT;
3440 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3441 if (put_user(len, optlen))
3442 return -EFAULT;
3443 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3444 return -EFAULT;
3445 return 0;
3446
3447 case TCP_ULP:
3448 if (get_user(len, optlen))
3449 return -EFAULT;
3450 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3451 if (!icsk->icsk_ulp_ops) {
3452 if (put_user(0, optlen))
3453 return -EFAULT;
3454 return 0;
3455 }
3456 if (put_user(len, optlen))
3457 return -EFAULT;
3458 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3459 return -EFAULT;
3460 return 0;
3461
3462 case TCP_FASTOPEN_KEY: {
3463 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
3464 struct tcp_fastopen_context *ctx;
3465
3466 if (get_user(len, optlen))
3467 return -EFAULT;
3468
3469 rcu_read_lock();
3470 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
3471 if (ctx)
3472 memcpy(key, ctx->key, sizeof(key));
3473 else
3474 len = 0;
3475 rcu_read_unlock();
3476
3477 len = min_t(unsigned int, len, sizeof(key));
3478 if (put_user(len, optlen))
3479 return -EFAULT;
3480 if (copy_to_user(optval, key, len))
3481 return -EFAULT;
3482 return 0;
3483 }
3484 case TCP_THIN_LINEAR_TIMEOUTS:
3485 val = tp->thin_lto;
3486 break;
3487
3488 case TCP_THIN_DUPACK:
3489 val = 0;
3490 break;
3491
3492 case TCP_REPAIR:
3493 val = tp->repair;
3494 break;
3495
3496 case TCP_REPAIR_QUEUE:
3497 if (tp->repair)
3498 val = tp->repair_queue;
3499 else
3500 return -EINVAL;
3501 break;
3502
3503 case TCP_REPAIR_WINDOW: {
3504 struct tcp_repair_window opt;
3505
3506 if (get_user(len, optlen))
3507 return -EFAULT;
3508
3509 if (len != sizeof(opt))
3510 return -EINVAL;
3511
3512 if (!tp->repair)
3513 return -EPERM;
3514
3515 opt.snd_wl1 = tp->snd_wl1;
3516 opt.snd_wnd = tp->snd_wnd;
3517 opt.max_window = tp->max_window;
3518 opt.rcv_wnd = tp->rcv_wnd;
3519 opt.rcv_wup = tp->rcv_wup;
3520
3521 if (copy_to_user(optval, &opt, len))
3522 return -EFAULT;
3523 return 0;
3524 }
3525 case TCP_QUEUE_SEQ:
3526 if (tp->repair_queue == TCP_SEND_QUEUE)
3527 val = tp->write_seq;
3528 else if (tp->repair_queue == TCP_RECV_QUEUE)
3529 val = tp->rcv_nxt;
3530 else
3531 return -EINVAL;
3532 break;
3533
3534 case TCP_USER_TIMEOUT:
3535 val = icsk->icsk_user_timeout;
3536 break;
3537
3538 case TCP_FASTOPEN:
3539 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3540 break;
3541
3542 case TCP_FASTOPEN_CONNECT:
3543 val = tp->fastopen_connect;
3544 break;
3545
3546 case TCP_FASTOPEN_NO_COOKIE:
3547 val = tp->fastopen_no_cookie;
3548 break;
3549
3550 case TCP_TIMESTAMP:
3551 val = tcp_time_stamp_raw() + tp->tsoffset;
3552 break;
3553 case TCP_NOTSENT_LOWAT:
3554 val = tp->notsent_lowat;
3555 break;
3556 case TCP_INQ:
3557 val = tp->recvmsg_inq;
3558 break;
3559 case TCP_SAVE_SYN:
3560 val = tp->save_syn;
3561 break;
3562 case TCP_SAVED_SYN: {
3563 if (get_user(len, optlen))
3564 return -EFAULT;
3565
3566 lock_sock(sk);
3567 if (tp->saved_syn) {
3568 if (len < tp->saved_syn[0]) {
3569 if (put_user(tp->saved_syn[0], optlen)) {
3570 release_sock(sk);
3571 return -EFAULT;
3572 }
3573 release_sock(sk);
3574 return -EINVAL;
3575 }
3576 len = tp->saved_syn[0];
3577 if (put_user(len, optlen)) {
3578 release_sock(sk);
3579 return -EFAULT;
3580 }
3581 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3582 release_sock(sk);
3583 return -EFAULT;
3584 }
3585 tcp_saved_syn_free(tp);
3586 release_sock(sk);
3587 } else {
3588 release_sock(sk);
3589 len = 0;
3590 if (put_user(len, optlen))
3591 return -EFAULT;
3592 }
3593 return 0;
3594 }
3595 #ifdef CONFIG_MMU
3596 case TCP_ZEROCOPY_RECEIVE: {
3597 struct tcp_zerocopy_receive zc;
3598 int err;
3599
3600 if (get_user(len, optlen))
3601 return -EFAULT;
3602 if (len != sizeof(zc))
3603 return -EINVAL;
3604 if (copy_from_user(&zc, optval, len))
3605 return -EFAULT;
3606 lock_sock(sk);
3607 err = tcp_zerocopy_receive(sk, &zc);
3608 release_sock(sk);
3609 if (!err && copy_to_user(optval, &zc, len))
3610 err = -EFAULT;
3611 return err;
3612 }
3613 #endif
3614 default:
3615 return -ENOPROTOOPT;
3616 }
3617
3618 if (put_user(len, optlen))
3619 return -EFAULT;
3620 if (copy_to_user(optval, &val, len))
3621 return -EFAULT;
3622 return 0;
3623 }
3624
3625 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3626 int __user *optlen)
3627 {
3628 struct inet_connection_sock *icsk = inet_csk(sk);
3629
3630 if (level != SOL_TCP)
3631 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3632 optval, optlen);
3633 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3634 }
3635 EXPORT_SYMBOL(tcp_getsockopt);
3636
3637 #ifdef CONFIG_COMPAT
3638 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3639 char __user *optval, int __user *optlen)
3640 {
3641 if (level != SOL_TCP)
3642 return inet_csk_compat_getsockopt(sk, level, optname,
3643 optval, optlen);
3644 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3645 }
3646 EXPORT_SYMBOL(compat_tcp_getsockopt);
3647 #endif
3648
3649 #ifdef CONFIG_TCP_MD5SIG
3650 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3651 static DEFINE_MUTEX(tcp_md5sig_mutex);
3652 static bool tcp_md5sig_pool_populated = false;
3653
3654 static void __tcp_alloc_md5sig_pool(void)
3655 {
3656 struct crypto_ahash *hash;
3657 int cpu;
3658
3659 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3660 if (IS_ERR(hash))
3661 return;
3662
3663 for_each_possible_cpu(cpu) {
3664 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3665 struct ahash_request *req;
3666
3667 if (!scratch) {
3668 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3669 sizeof(struct tcphdr),
3670 GFP_KERNEL,
3671 cpu_to_node(cpu));
3672 if (!scratch)
3673 return;
3674 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3675 }
3676 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3677 continue;
3678
3679 req = ahash_request_alloc(hash, GFP_KERNEL);
3680 if (!req)
3681 return;
3682
3683 ahash_request_set_callback(req, 0, NULL, NULL);
3684
3685 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3686 }
3687 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3688 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3689 */
3690 smp_wmb();
3691 tcp_md5sig_pool_populated = true;
3692 }
3693
3694 bool tcp_alloc_md5sig_pool(void)
3695 {
3696 if (unlikely(!tcp_md5sig_pool_populated)) {
3697 mutex_lock(&tcp_md5sig_mutex);
3698
3699 if (!tcp_md5sig_pool_populated) {
3700 __tcp_alloc_md5sig_pool();
3701 if (tcp_md5sig_pool_populated)
3702 static_branch_inc(&tcp_md5_needed);
3703 }
3704
3705 mutex_unlock(&tcp_md5sig_mutex);
3706 }
3707 return tcp_md5sig_pool_populated;
3708 }
3709 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3710
3711
3712 /**
3713 * tcp_get_md5sig_pool - get md5sig_pool for this user
3714 *
3715 * We use percpu structure, so if we succeed, we exit with preemption
3716 * and BH disabled, to make sure another thread or softirq handling
3717 * wont try to get same context.
3718 */
3719 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3720 {
3721 local_bh_disable();
3722
3723 if (tcp_md5sig_pool_populated) {
3724 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3725 smp_rmb();
3726 return this_cpu_ptr(&tcp_md5sig_pool);
3727 }
3728 local_bh_enable();
3729 return NULL;
3730 }
3731 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3732
3733 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3734 const struct sk_buff *skb, unsigned int header_len)
3735 {
3736 struct scatterlist sg;
3737 const struct tcphdr *tp = tcp_hdr(skb);
3738 struct ahash_request *req = hp->md5_req;
3739 unsigned int i;
3740 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3741 skb_headlen(skb) - header_len : 0;
3742 const struct skb_shared_info *shi = skb_shinfo(skb);
3743 struct sk_buff *frag_iter;
3744
3745 sg_init_table(&sg, 1);
3746
3747 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3748 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3749 if (crypto_ahash_update(req))
3750 return 1;
3751
3752 for (i = 0; i < shi->nr_frags; ++i) {
3753 const struct skb_frag_struct *f = &shi->frags[i];
3754 unsigned int offset = f->page_offset;
3755 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3756
3757 sg_set_page(&sg, page, skb_frag_size(f),
3758 offset_in_page(offset));
3759 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3760 if (crypto_ahash_update(req))
3761 return 1;
3762 }
3763
3764 skb_walk_frags(skb, frag_iter)
3765 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3766 return 1;
3767
3768 return 0;
3769 }
3770 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3771
3772 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3773 {
3774 struct scatterlist sg;
3775
3776 sg_init_one(&sg, key->key, key->keylen);
3777 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3778 return crypto_ahash_update(hp->md5_req);
3779 }
3780 EXPORT_SYMBOL(tcp_md5_hash_key);
3781
3782 #endif
3783
3784 void tcp_done(struct sock *sk)
3785 {
3786 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3787
3788 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3789 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3790
3791 tcp_set_state(sk, TCP_CLOSE);
3792 tcp_clear_xmit_timers(sk);
3793 if (req)
3794 reqsk_fastopen_remove(sk, req, false);
3795
3796 sk->sk_shutdown = SHUTDOWN_MASK;
3797
3798 if (!sock_flag(sk, SOCK_DEAD))
3799 sk->sk_state_change(sk);
3800 else
3801 inet_csk_destroy_sock(sk);
3802 }
3803 EXPORT_SYMBOL_GPL(tcp_done);
3804
3805 int tcp_abort(struct sock *sk, int err)
3806 {
3807 if (!sk_fullsock(sk)) {
3808 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3809 struct request_sock *req = inet_reqsk(sk);
3810
3811 local_bh_disable();
3812 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
3813 local_bh_enable();
3814 return 0;
3815 }
3816 return -EOPNOTSUPP;
3817 }
3818
3819 /* Don't race with userspace socket closes such as tcp_close. */
3820 lock_sock(sk);
3821
3822 if (sk->sk_state == TCP_LISTEN) {
3823 tcp_set_state(sk, TCP_CLOSE);
3824 inet_csk_listen_stop(sk);
3825 }
3826
3827 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3828 local_bh_disable();
3829 bh_lock_sock(sk);
3830
3831 if (!sock_flag(sk, SOCK_DEAD)) {
3832 sk->sk_err = err;
3833 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3834 smp_wmb();
3835 sk->sk_error_report(sk);
3836 if (tcp_need_reset(sk->sk_state))
3837 tcp_send_active_reset(sk, GFP_ATOMIC);
3838 tcp_done(sk);
3839 }
3840
3841 bh_unlock_sock(sk);
3842 local_bh_enable();
3843 tcp_write_queue_purge(sk);
3844 release_sock(sk);
3845 return 0;
3846 }
3847 EXPORT_SYMBOL_GPL(tcp_abort);
3848
3849 extern struct tcp_congestion_ops tcp_reno;
3850
3851 static __initdata unsigned long thash_entries;
3852 static int __init set_thash_entries(char *str)
3853 {
3854 ssize_t ret;
3855
3856 if (!str)
3857 return 0;
3858
3859 ret = kstrtoul(str, 0, &thash_entries);
3860 if (ret)
3861 return 0;
3862
3863 return 1;
3864 }
3865 __setup("thash_entries=", set_thash_entries);
3866
3867 static void __init tcp_init_mem(void)
3868 {
3869 unsigned long limit = nr_free_buffer_pages() / 16;
3870
3871 limit = max(limit, 128UL);
3872 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3873 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3874 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3875 }
3876
3877 void __init tcp_init(void)
3878 {
3879 int max_rshare, max_wshare, cnt;
3880 unsigned long limit;
3881 unsigned int i;
3882
3883 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3884 FIELD_SIZEOF(struct sk_buff, cb));
3885
3886 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3887 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3888 inet_hashinfo_init(&tcp_hashinfo);
3889 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
3890 thash_entries, 21, /* one slot per 2 MB*/
3891 0, 64 * 1024);
3892 tcp_hashinfo.bind_bucket_cachep =
3893 kmem_cache_create("tcp_bind_bucket",
3894 sizeof(struct inet_bind_bucket), 0,
3895 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3896
3897 /* Size and allocate the main established and bind bucket
3898 * hash tables.
3899 *
3900 * The methodology is similar to that of the buffer cache.
3901 */
3902 tcp_hashinfo.ehash =
3903 alloc_large_system_hash("TCP established",
3904 sizeof(struct inet_ehash_bucket),
3905 thash_entries,
3906 17, /* one slot per 128 KB of memory */
3907 0,
3908 NULL,
3909 &tcp_hashinfo.ehash_mask,
3910 0,
3911 thash_entries ? 0 : 512 * 1024);
3912 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3913 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3914
3915 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3916 panic("TCP: failed to alloc ehash_locks");
3917 tcp_hashinfo.bhash =
3918 alloc_large_system_hash("TCP bind",
3919 sizeof(struct inet_bind_hashbucket),
3920 tcp_hashinfo.ehash_mask + 1,
3921 17, /* one slot per 128 KB of memory */
3922 0,
3923 &tcp_hashinfo.bhash_size,
3924 NULL,
3925 0,
3926 64 * 1024);
3927 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3928 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3929 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3930 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3931 }
3932
3933
3934 cnt = tcp_hashinfo.ehash_mask + 1;
3935 sysctl_tcp_max_orphans = cnt / 2;
3936
3937 tcp_init_mem();
3938 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3939 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3940 max_wshare = min(4UL*1024*1024, limit);
3941 max_rshare = min(6UL*1024*1024, limit);
3942
3943 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3944 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
3945 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3946
3947 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3948 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
3949 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
3950
3951 pr_info("Hash tables configured (established %u bind %u)\n",
3952 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3953
3954 tcp_v4_init();
3955 tcp_metrics_init();
3956 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3957 tcp_tasklet_init();
3958 }