]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/ipv4/tcp.c
Merge tag 'iio-for-4.13b' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / tcp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248 #define pr_fmt(fmt) "TCP: " fmt
249
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279
280 #include <linux/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <net/busy_poll.h>
283
284 int sysctl_tcp_min_tso_segs __read_mostly = 2;
285
286 int sysctl_tcp_autocorking __read_mostly = 1;
287
288 struct percpu_counter tcp_orphan_count;
289 EXPORT_SYMBOL_GPL(tcp_orphan_count);
290
291 long sysctl_tcp_mem[3] __read_mostly;
292 int sysctl_tcp_wmem[3] __read_mostly;
293 int sysctl_tcp_rmem[3] __read_mostly;
294
295 EXPORT_SYMBOL(sysctl_tcp_mem);
296 EXPORT_SYMBOL(sysctl_tcp_rmem);
297 EXPORT_SYMBOL(sysctl_tcp_wmem);
298
299 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
300 EXPORT_SYMBOL(tcp_memory_allocated);
301
302 /*
303 * Current number of TCP sockets.
304 */
305 struct percpu_counter tcp_sockets_allocated;
306 EXPORT_SYMBOL(tcp_sockets_allocated);
307
308 /*
309 * TCP splice context
310 */
311 struct tcp_splice_state {
312 struct pipe_inode_info *pipe;
313 size_t len;
314 unsigned int flags;
315 };
316
317 /*
318 * Pressure flag: try to collapse.
319 * Technical note: it is used by multiple contexts non atomically.
320 * All the __sk_mem_schedule() is of this nature: accounting
321 * is strict, actions are advisory and have some latency.
322 */
323 int tcp_memory_pressure __read_mostly;
324 EXPORT_SYMBOL(tcp_memory_pressure);
325
326 void tcp_enter_memory_pressure(struct sock *sk)
327 {
328 if (!tcp_memory_pressure) {
329 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
330 tcp_memory_pressure = 1;
331 }
332 }
333 EXPORT_SYMBOL(tcp_enter_memory_pressure);
334
335 /* Convert seconds to retransmits based on initial and max timeout */
336 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
337 {
338 u8 res = 0;
339
340 if (seconds > 0) {
341 int period = timeout;
342
343 res = 1;
344 while (seconds > period && res < 255) {
345 res++;
346 timeout <<= 1;
347 if (timeout > rto_max)
348 timeout = rto_max;
349 period += timeout;
350 }
351 }
352 return res;
353 }
354
355 /* Convert retransmits to seconds based on initial and max timeout */
356 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
357 {
358 int period = 0;
359
360 if (retrans > 0) {
361 period = timeout;
362 while (--retrans) {
363 timeout <<= 1;
364 if (timeout > rto_max)
365 timeout = rto_max;
366 period += timeout;
367 }
368 }
369 return period;
370 }
371
372 /* Address-family independent initialization for a tcp_sock.
373 *
374 * NOTE: A lot of things set to zero explicitly by call to
375 * sk_alloc() so need not be done here.
376 */
377 void tcp_init_sock(struct sock *sk)
378 {
379 struct inet_connection_sock *icsk = inet_csk(sk);
380 struct tcp_sock *tp = tcp_sk(sk);
381
382 tp->out_of_order_queue = RB_ROOT;
383 tcp_init_xmit_timers(sk);
384 tcp_prequeue_init(tp);
385 INIT_LIST_HEAD(&tp->tsq_node);
386
387 icsk->icsk_rto = TCP_TIMEOUT_INIT;
388 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
389 minmax_reset(&tp->rtt_min, tcp_time_stamp, ~0U);
390
391 /* So many TCP implementations out there (incorrectly) count the
392 * initial SYN frame in their delayed-ACK and congestion control
393 * algorithms that we must have the following bandaid to talk
394 * efficiently to them. -DaveM
395 */
396 tp->snd_cwnd = TCP_INIT_CWND;
397
398 /* There's a bubble in the pipe until at least the first ACK. */
399 tp->app_limited = ~0U;
400
401 /* See draft-stevens-tcpca-spec-01 for discussion of the
402 * initialization of these values.
403 */
404 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
405 tp->snd_cwnd_clamp = ~0;
406 tp->mss_cache = TCP_MSS_DEFAULT;
407
408 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
409 tcp_assign_congestion_control(sk);
410
411 tp->tsoffset = 0;
412
413 sk->sk_state = TCP_CLOSE;
414
415 sk->sk_write_space = sk_stream_write_space;
416 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
417
418 icsk->icsk_sync_mss = tcp_sync_mss;
419
420 sk->sk_sndbuf = sysctl_tcp_wmem[1];
421 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
422
423 sk_sockets_allocated_inc(sk);
424 }
425 EXPORT_SYMBOL(tcp_init_sock);
426
427 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags, struct sk_buff *skb)
428 {
429 if (tsflags && skb) {
430 struct skb_shared_info *shinfo = skb_shinfo(skb);
431 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
432
433 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
434 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
435 tcb->txstamp_ack = 1;
436 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
437 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
438 }
439 }
440
441 /*
442 * Wait for a TCP event.
443 *
444 * Note that we don't need to lock the socket, as the upper poll layers
445 * take care of normal races (between the test and the event) and we don't
446 * go look at any of the socket buffers directly.
447 */
448 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
449 {
450 unsigned int mask;
451 struct sock *sk = sock->sk;
452 const struct tcp_sock *tp = tcp_sk(sk);
453 int state;
454
455 sock_rps_record_flow(sk);
456
457 sock_poll_wait(file, sk_sleep(sk), wait);
458
459 state = sk_state_load(sk);
460 if (state == TCP_LISTEN)
461 return inet_csk_listen_poll(sk);
462
463 /* Socket is not locked. We are protected from async events
464 * by poll logic and correct handling of state changes
465 * made by other threads is impossible in any case.
466 */
467
468 mask = 0;
469
470 /*
471 * POLLHUP is certainly not done right. But poll() doesn't
472 * have a notion of HUP in just one direction, and for a
473 * socket the read side is more interesting.
474 *
475 * Some poll() documentation says that POLLHUP is incompatible
476 * with the POLLOUT/POLLWR flags, so somebody should check this
477 * all. But careful, it tends to be safer to return too many
478 * bits than too few, and you can easily break real applications
479 * if you don't tell them that something has hung up!
480 *
481 * Check-me.
482 *
483 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
484 * our fs/select.c). It means that after we received EOF,
485 * poll always returns immediately, making impossible poll() on write()
486 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
487 * if and only if shutdown has been made in both directions.
488 * Actually, it is interesting to look how Solaris and DUX
489 * solve this dilemma. I would prefer, if POLLHUP were maskable,
490 * then we could set it on SND_SHUTDOWN. BTW examples given
491 * in Stevens' books assume exactly this behaviour, it explains
492 * why POLLHUP is incompatible with POLLOUT. --ANK
493 *
494 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
495 * blocking on fresh not-connected or disconnected socket. --ANK
496 */
497 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
498 mask |= POLLHUP;
499 if (sk->sk_shutdown & RCV_SHUTDOWN)
500 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
501
502 /* Connected or passive Fast Open socket? */
503 if (state != TCP_SYN_SENT &&
504 (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
505 int target = sock_rcvlowat(sk, 0, INT_MAX);
506
507 if (tp->urg_seq == tp->copied_seq &&
508 !sock_flag(sk, SOCK_URGINLINE) &&
509 tp->urg_data)
510 target++;
511
512 if (tp->rcv_nxt - tp->copied_seq >= target)
513 mask |= POLLIN | POLLRDNORM;
514
515 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
516 if (sk_stream_is_writeable(sk)) {
517 mask |= POLLOUT | POLLWRNORM;
518 } else { /* send SIGIO later */
519 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
520 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
521
522 /* Race breaker. If space is freed after
523 * wspace test but before the flags are set,
524 * IO signal will be lost. Memory barrier
525 * pairs with the input side.
526 */
527 smp_mb__after_atomic();
528 if (sk_stream_is_writeable(sk))
529 mask |= POLLOUT | POLLWRNORM;
530 }
531 } else
532 mask |= POLLOUT | POLLWRNORM;
533
534 if (tp->urg_data & TCP_URG_VALID)
535 mask |= POLLPRI;
536 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
537 /* Active TCP fastopen socket with defer_connect
538 * Return POLLOUT so application can call write()
539 * in order for kernel to generate SYN+data
540 */
541 mask |= POLLOUT | POLLWRNORM;
542 }
543 /* This barrier is coupled with smp_wmb() in tcp_reset() */
544 smp_rmb();
545 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
546 mask |= POLLERR;
547
548 return mask;
549 }
550 EXPORT_SYMBOL(tcp_poll);
551
552 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
553 {
554 struct tcp_sock *tp = tcp_sk(sk);
555 int answ;
556 bool slow;
557
558 switch (cmd) {
559 case SIOCINQ:
560 if (sk->sk_state == TCP_LISTEN)
561 return -EINVAL;
562
563 slow = lock_sock_fast(sk);
564 answ = tcp_inq(sk);
565 unlock_sock_fast(sk, slow);
566 break;
567 case SIOCATMARK:
568 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
569 break;
570 case SIOCOUTQ:
571 if (sk->sk_state == TCP_LISTEN)
572 return -EINVAL;
573
574 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
575 answ = 0;
576 else
577 answ = tp->write_seq - tp->snd_una;
578 break;
579 case SIOCOUTQNSD:
580 if (sk->sk_state == TCP_LISTEN)
581 return -EINVAL;
582
583 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
584 answ = 0;
585 else
586 answ = tp->write_seq - tp->snd_nxt;
587 break;
588 default:
589 return -ENOIOCTLCMD;
590 }
591
592 return put_user(answ, (int __user *)arg);
593 }
594 EXPORT_SYMBOL(tcp_ioctl);
595
596 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
597 {
598 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
599 tp->pushed_seq = tp->write_seq;
600 }
601
602 static inline bool forced_push(const struct tcp_sock *tp)
603 {
604 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
605 }
606
607 static void skb_entail(struct sock *sk, struct sk_buff *skb)
608 {
609 struct tcp_sock *tp = tcp_sk(sk);
610 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
611
612 skb->csum = 0;
613 tcb->seq = tcb->end_seq = tp->write_seq;
614 tcb->tcp_flags = TCPHDR_ACK;
615 tcb->sacked = 0;
616 __skb_header_release(skb);
617 tcp_add_write_queue_tail(sk, skb);
618 sk->sk_wmem_queued += skb->truesize;
619 sk_mem_charge(sk, skb->truesize);
620 if (tp->nonagle & TCP_NAGLE_PUSH)
621 tp->nonagle &= ~TCP_NAGLE_PUSH;
622
623 tcp_slow_start_after_idle_check(sk);
624 }
625
626 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
627 {
628 if (flags & MSG_OOB)
629 tp->snd_up = tp->write_seq;
630 }
631
632 /* If a not yet filled skb is pushed, do not send it if
633 * we have data packets in Qdisc or NIC queues :
634 * Because TX completion will happen shortly, it gives a chance
635 * to coalesce future sendmsg() payload into this skb, without
636 * need for a timer, and with no latency trade off.
637 * As packets containing data payload have a bigger truesize
638 * than pure acks (dataless) packets, the last checks prevent
639 * autocorking if we only have an ACK in Qdisc/NIC queues,
640 * or if TX completion was delayed after we processed ACK packet.
641 */
642 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
643 int size_goal)
644 {
645 return skb->len < size_goal &&
646 sysctl_tcp_autocorking &&
647 skb != tcp_write_queue_head(sk) &&
648 atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
649 }
650
651 static void tcp_push(struct sock *sk, int flags, int mss_now,
652 int nonagle, int size_goal)
653 {
654 struct tcp_sock *tp = tcp_sk(sk);
655 struct sk_buff *skb;
656
657 if (!tcp_send_head(sk))
658 return;
659
660 skb = tcp_write_queue_tail(sk);
661 if (!(flags & MSG_MORE) || forced_push(tp))
662 tcp_mark_push(tp, skb);
663
664 tcp_mark_urg(tp, flags);
665
666 if (tcp_should_autocork(sk, skb, size_goal)) {
667
668 /* avoid atomic op if TSQ_THROTTLED bit is already set */
669 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
670 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
671 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
672 }
673 /* It is possible TX completion already happened
674 * before we set TSQ_THROTTLED.
675 */
676 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
677 return;
678 }
679
680 if (flags & MSG_MORE)
681 nonagle = TCP_NAGLE_CORK;
682
683 __tcp_push_pending_frames(sk, mss_now, nonagle);
684 }
685
686 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
687 unsigned int offset, size_t len)
688 {
689 struct tcp_splice_state *tss = rd_desc->arg.data;
690 int ret;
691
692 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
693 min(rd_desc->count, len), tss->flags);
694 if (ret > 0)
695 rd_desc->count -= ret;
696 return ret;
697 }
698
699 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
700 {
701 /* Store TCP splice context information in read_descriptor_t. */
702 read_descriptor_t rd_desc = {
703 .arg.data = tss,
704 .count = tss->len,
705 };
706
707 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
708 }
709
710 /**
711 * tcp_splice_read - splice data from TCP socket to a pipe
712 * @sock: socket to splice from
713 * @ppos: position (not valid)
714 * @pipe: pipe to splice to
715 * @len: number of bytes to splice
716 * @flags: splice modifier flags
717 *
718 * Description:
719 * Will read pages from given socket and fill them into a pipe.
720 *
721 **/
722 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
723 struct pipe_inode_info *pipe, size_t len,
724 unsigned int flags)
725 {
726 struct sock *sk = sock->sk;
727 struct tcp_splice_state tss = {
728 .pipe = pipe,
729 .len = len,
730 .flags = flags,
731 };
732 long timeo;
733 ssize_t spliced;
734 int ret;
735
736 sock_rps_record_flow(sk);
737 /*
738 * We can't seek on a socket input
739 */
740 if (unlikely(*ppos))
741 return -ESPIPE;
742
743 ret = spliced = 0;
744
745 lock_sock(sk);
746
747 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
748 while (tss.len) {
749 ret = __tcp_splice_read(sk, &tss);
750 if (ret < 0)
751 break;
752 else if (!ret) {
753 if (spliced)
754 break;
755 if (sock_flag(sk, SOCK_DONE))
756 break;
757 if (sk->sk_err) {
758 ret = sock_error(sk);
759 break;
760 }
761 if (sk->sk_shutdown & RCV_SHUTDOWN)
762 break;
763 if (sk->sk_state == TCP_CLOSE) {
764 /*
765 * This occurs when user tries to read
766 * from never connected socket.
767 */
768 if (!sock_flag(sk, SOCK_DONE))
769 ret = -ENOTCONN;
770 break;
771 }
772 if (!timeo) {
773 ret = -EAGAIN;
774 break;
775 }
776 /* if __tcp_splice_read() got nothing while we have
777 * an skb in receive queue, we do not want to loop.
778 * This might happen with URG data.
779 */
780 if (!skb_queue_empty(&sk->sk_receive_queue))
781 break;
782 sk_wait_data(sk, &timeo, NULL);
783 if (signal_pending(current)) {
784 ret = sock_intr_errno(timeo);
785 break;
786 }
787 continue;
788 }
789 tss.len -= ret;
790 spliced += ret;
791
792 if (!timeo)
793 break;
794 release_sock(sk);
795 lock_sock(sk);
796
797 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
798 (sk->sk_shutdown & RCV_SHUTDOWN) ||
799 signal_pending(current))
800 break;
801 }
802
803 release_sock(sk);
804
805 if (spliced)
806 return spliced;
807
808 return ret;
809 }
810 EXPORT_SYMBOL(tcp_splice_read);
811
812 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
813 bool force_schedule)
814 {
815 struct sk_buff *skb;
816
817 /* The TCP header must be at least 32-bit aligned. */
818 size = ALIGN(size, 4);
819
820 if (unlikely(tcp_under_memory_pressure(sk)))
821 sk_mem_reclaim_partial(sk);
822
823 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
824 if (likely(skb)) {
825 bool mem_scheduled;
826
827 if (force_schedule) {
828 mem_scheduled = true;
829 sk_forced_mem_schedule(sk, skb->truesize);
830 } else {
831 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
832 }
833 if (likely(mem_scheduled)) {
834 skb_reserve(skb, sk->sk_prot->max_header);
835 /*
836 * Make sure that we have exactly size bytes
837 * available to the caller, no more, no less.
838 */
839 skb->reserved_tailroom = skb->end - skb->tail - size;
840 return skb;
841 }
842 __kfree_skb(skb);
843 } else {
844 sk->sk_prot->enter_memory_pressure(sk);
845 sk_stream_moderate_sndbuf(sk);
846 }
847 return NULL;
848 }
849
850 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
851 int large_allowed)
852 {
853 struct tcp_sock *tp = tcp_sk(sk);
854 u32 new_size_goal, size_goal;
855
856 if (!large_allowed || !sk_can_gso(sk))
857 return mss_now;
858
859 /* Note : tcp_tso_autosize() will eventually split this later */
860 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
861 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
862
863 /* We try hard to avoid divides here */
864 size_goal = tp->gso_segs * mss_now;
865 if (unlikely(new_size_goal < size_goal ||
866 new_size_goal >= size_goal + mss_now)) {
867 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
868 sk->sk_gso_max_segs);
869 size_goal = tp->gso_segs * mss_now;
870 }
871
872 return max(size_goal, mss_now);
873 }
874
875 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
876 {
877 int mss_now;
878
879 mss_now = tcp_current_mss(sk);
880 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
881
882 return mss_now;
883 }
884
885 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
886 size_t size, int flags)
887 {
888 struct tcp_sock *tp = tcp_sk(sk);
889 int mss_now, size_goal;
890 int err;
891 ssize_t copied;
892 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
893
894 /* Wait for a connection to finish. One exception is TCP Fast Open
895 * (passive side) where data is allowed to be sent before a connection
896 * is fully established.
897 */
898 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
899 !tcp_passive_fastopen(sk)) {
900 err = sk_stream_wait_connect(sk, &timeo);
901 if (err != 0)
902 goto out_err;
903 }
904
905 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
906
907 mss_now = tcp_send_mss(sk, &size_goal, flags);
908 copied = 0;
909
910 err = -EPIPE;
911 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
912 goto out_err;
913
914 while (size > 0) {
915 struct sk_buff *skb = tcp_write_queue_tail(sk);
916 int copy, i;
917 bool can_coalesce;
918
919 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0 ||
920 !tcp_skb_can_collapse_to(skb)) {
921 new_segment:
922 if (!sk_stream_memory_free(sk))
923 goto wait_for_sndbuf;
924
925 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
926 skb_queue_empty(&sk->sk_write_queue));
927 if (!skb)
928 goto wait_for_memory;
929
930 skb_entail(sk, skb);
931 copy = size_goal;
932 }
933
934 if (copy > size)
935 copy = size;
936
937 i = skb_shinfo(skb)->nr_frags;
938 can_coalesce = skb_can_coalesce(skb, i, page, offset);
939 if (!can_coalesce && i >= sysctl_max_skb_frags) {
940 tcp_mark_push(tp, skb);
941 goto new_segment;
942 }
943 if (!sk_wmem_schedule(sk, copy))
944 goto wait_for_memory;
945
946 if (can_coalesce) {
947 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
948 } else {
949 get_page(page);
950 skb_fill_page_desc(skb, i, page, offset, copy);
951 }
952 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
953
954 skb->len += copy;
955 skb->data_len += copy;
956 skb->truesize += copy;
957 sk->sk_wmem_queued += copy;
958 sk_mem_charge(sk, copy);
959 skb->ip_summed = CHECKSUM_PARTIAL;
960 tp->write_seq += copy;
961 TCP_SKB_CB(skb)->end_seq += copy;
962 tcp_skb_pcount_set(skb, 0);
963
964 if (!copied)
965 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
966
967 copied += copy;
968 offset += copy;
969 size -= copy;
970 if (!size)
971 goto out;
972
973 if (skb->len < size_goal || (flags & MSG_OOB))
974 continue;
975
976 if (forced_push(tp)) {
977 tcp_mark_push(tp, skb);
978 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
979 } else if (skb == tcp_send_head(sk))
980 tcp_push_one(sk, mss_now);
981 continue;
982
983 wait_for_sndbuf:
984 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
985 wait_for_memory:
986 tcp_push(sk, flags & ~MSG_MORE, mss_now,
987 TCP_NAGLE_PUSH, size_goal);
988
989 err = sk_stream_wait_memory(sk, &timeo);
990 if (err != 0)
991 goto do_error;
992
993 mss_now = tcp_send_mss(sk, &size_goal, flags);
994 }
995
996 out:
997 if (copied) {
998 tcp_tx_timestamp(sk, sk->sk_tsflags, tcp_write_queue_tail(sk));
999 if (!(flags & MSG_SENDPAGE_NOTLAST))
1000 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1001 }
1002 return copied;
1003
1004 do_error:
1005 if (copied)
1006 goto out;
1007 out_err:
1008 /* make sure we wake any epoll edge trigger waiter */
1009 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1010 err == -EAGAIN)) {
1011 sk->sk_write_space(sk);
1012 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1013 }
1014 return sk_stream_error(sk, flags, err);
1015 }
1016
1017 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1018 size_t size, int flags)
1019 {
1020 ssize_t res;
1021
1022 if (!(sk->sk_route_caps & NETIF_F_SG) ||
1023 !sk_check_csum_caps(sk))
1024 return sock_no_sendpage(sk->sk_socket, page, offset, size,
1025 flags);
1026
1027 lock_sock(sk);
1028
1029 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1030
1031 res = do_tcp_sendpages(sk, page, offset, size, flags);
1032 release_sock(sk);
1033 return res;
1034 }
1035 EXPORT_SYMBOL(tcp_sendpage);
1036
1037 /* Do not bother using a page frag for very small frames.
1038 * But use this heuristic only for the first skb in write queue.
1039 *
1040 * Having no payload in skb->head allows better SACK shifting
1041 * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1042 * write queue has less skbs.
1043 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1044 * This also speeds up tso_fragment(), since it wont fallback
1045 * to tcp_fragment().
1046 */
1047 static int linear_payload_sz(bool first_skb)
1048 {
1049 if (first_skb)
1050 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1051 return 0;
1052 }
1053
1054 static int select_size(const struct sock *sk, bool sg, bool first_skb)
1055 {
1056 const struct tcp_sock *tp = tcp_sk(sk);
1057 int tmp = tp->mss_cache;
1058
1059 if (sg) {
1060 if (sk_can_gso(sk)) {
1061 tmp = linear_payload_sz(first_skb);
1062 } else {
1063 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1064
1065 if (tmp >= pgbreak &&
1066 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1067 tmp = pgbreak;
1068 }
1069 }
1070
1071 return tmp;
1072 }
1073
1074 void tcp_free_fastopen_req(struct tcp_sock *tp)
1075 {
1076 if (tp->fastopen_req) {
1077 kfree(tp->fastopen_req);
1078 tp->fastopen_req = NULL;
1079 }
1080 }
1081
1082 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1083 int *copied, size_t size)
1084 {
1085 struct tcp_sock *tp = tcp_sk(sk);
1086 struct inet_sock *inet = inet_sk(sk);
1087 struct sockaddr *uaddr = msg->msg_name;
1088 int err, flags;
1089
1090 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1091 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1092 uaddr->sa_family == AF_UNSPEC))
1093 return -EOPNOTSUPP;
1094 if (tp->fastopen_req)
1095 return -EALREADY; /* Another Fast Open is in progress */
1096
1097 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1098 sk->sk_allocation);
1099 if (unlikely(!tp->fastopen_req))
1100 return -ENOBUFS;
1101 tp->fastopen_req->data = msg;
1102 tp->fastopen_req->size = size;
1103
1104 if (inet->defer_connect) {
1105 err = tcp_connect(sk);
1106 /* Same failure procedure as in tcp_v4/6_connect */
1107 if (err) {
1108 tcp_set_state(sk, TCP_CLOSE);
1109 inet->inet_dport = 0;
1110 sk->sk_route_caps = 0;
1111 }
1112 }
1113 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1114 err = __inet_stream_connect(sk->sk_socket, uaddr,
1115 msg->msg_namelen, flags, 1);
1116 /* fastopen_req could already be freed in __inet_stream_connect
1117 * if the connection times out or gets rst
1118 */
1119 if (tp->fastopen_req) {
1120 *copied = tp->fastopen_req->copied;
1121 tcp_free_fastopen_req(tp);
1122 inet->defer_connect = 0;
1123 }
1124 return err;
1125 }
1126
1127 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1128 {
1129 struct tcp_sock *tp = tcp_sk(sk);
1130 struct sk_buff *skb;
1131 struct sockcm_cookie sockc;
1132 int flags, err, copied = 0;
1133 int mss_now = 0, size_goal, copied_syn = 0;
1134 bool process_backlog = false;
1135 bool sg;
1136 long timeo;
1137
1138 lock_sock(sk);
1139
1140 flags = msg->msg_flags;
1141 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect)) {
1142 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1143 if (err == -EINPROGRESS && copied_syn > 0)
1144 goto out;
1145 else if (err)
1146 goto out_err;
1147 }
1148
1149 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1150
1151 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1152
1153 /* Wait for a connection to finish. One exception is TCP Fast Open
1154 * (passive side) where data is allowed to be sent before a connection
1155 * is fully established.
1156 */
1157 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1158 !tcp_passive_fastopen(sk)) {
1159 err = sk_stream_wait_connect(sk, &timeo);
1160 if (err != 0)
1161 goto do_error;
1162 }
1163
1164 if (unlikely(tp->repair)) {
1165 if (tp->repair_queue == TCP_RECV_QUEUE) {
1166 copied = tcp_send_rcvq(sk, msg, size);
1167 goto out_nopush;
1168 }
1169
1170 err = -EINVAL;
1171 if (tp->repair_queue == TCP_NO_QUEUE)
1172 goto out_err;
1173
1174 /* 'common' sending to sendq */
1175 }
1176
1177 sockc.tsflags = sk->sk_tsflags;
1178 if (msg->msg_controllen) {
1179 err = sock_cmsg_send(sk, msg, &sockc);
1180 if (unlikely(err)) {
1181 err = -EINVAL;
1182 goto out_err;
1183 }
1184 }
1185
1186 /* This should be in poll */
1187 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1188
1189 /* Ok commence sending. */
1190 copied = 0;
1191
1192 restart:
1193 mss_now = tcp_send_mss(sk, &size_goal, flags);
1194
1195 err = -EPIPE;
1196 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1197 goto do_error;
1198
1199 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1200
1201 while (msg_data_left(msg)) {
1202 int copy = 0;
1203 int max = size_goal;
1204
1205 skb = tcp_write_queue_tail(sk);
1206 if (tcp_send_head(sk)) {
1207 if (skb->ip_summed == CHECKSUM_NONE)
1208 max = mss_now;
1209 copy = max - skb->len;
1210 }
1211
1212 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1213 bool first_skb;
1214
1215 new_segment:
1216 /* Allocate new segment. If the interface is SG,
1217 * allocate skb fitting to single page.
1218 */
1219 if (!sk_stream_memory_free(sk))
1220 goto wait_for_sndbuf;
1221
1222 if (process_backlog && sk_flush_backlog(sk)) {
1223 process_backlog = false;
1224 goto restart;
1225 }
1226 first_skb = skb_queue_empty(&sk->sk_write_queue);
1227 skb = sk_stream_alloc_skb(sk,
1228 select_size(sk, sg, first_skb),
1229 sk->sk_allocation,
1230 first_skb);
1231 if (!skb)
1232 goto wait_for_memory;
1233
1234 process_backlog = true;
1235 /*
1236 * Check whether we can use HW checksum.
1237 */
1238 if (sk_check_csum_caps(sk))
1239 skb->ip_summed = CHECKSUM_PARTIAL;
1240
1241 skb_entail(sk, skb);
1242 copy = size_goal;
1243 max = size_goal;
1244
1245 /* All packets are restored as if they have
1246 * already been sent. skb_mstamp isn't set to
1247 * avoid wrong rtt estimation.
1248 */
1249 if (tp->repair)
1250 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1251 }
1252
1253 /* Try to append data to the end of skb. */
1254 if (copy > msg_data_left(msg))
1255 copy = msg_data_left(msg);
1256
1257 /* Where to copy to? */
1258 if (skb_availroom(skb) > 0) {
1259 /* We have some space in skb head. Superb! */
1260 copy = min_t(int, copy, skb_availroom(skb));
1261 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1262 if (err)
1263 goto do_fault;
1264 } else {
1265 bool merge = true;
1266 int i = skb_shinfo(skb)->nr_frags;
1267 struct page_frag *pfrag = sk_page_frag(sk);
1268
1269 if (!sk_page_frag_refill(sk, pfrag))
1270 goto wait_for_memory;
1271
1272 if (!skb_can_coalesce(skb, i, pfrag->page,
1273 pfrag->offset)) {
1274 if (i >= sysctl_max_skb_frags || !sg) {
1275 tcp_mark_push(tp, skb);
1276 goto new_segment;
1277 }
1278 merge = false;
1279 }
1280
1281 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1282
1283 if (!sk_wmem_schedule(sk, copy))
1284 goto wait_for_memory;
1285
1286 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1287 pfrag->page,
1288 pfrag->offset,
1289 copy);
1290 if (err)
1291 goto do_error;
1292
1293 /* Update the skb. */
1294 if (merge) {
1295 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1296 } else {
1297 skb_fill_page_desc(skb, i, pfrag->page,
1298 pfrag->offset, copy);
1299 page_ref_inc(pfrag->page);
1300 }
1301 pfrag->offset += copy;
1302 }
1303
1304 if (!copied)
1305 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1306
1307 tp->write_seq += copy;
1308 TCP_SKB_CB(skb)->end_seq += copy;
1309 tcp_skb_pcount_set(skb, 0);
1310
1311 copied += copy;
1312 if (!msg_data_left(msg)) {
1313 if (unlikely(flags & MSG_EOR))
1314 TCP_SKB_CB(skb)->eor = 1;
1315 goto out;
1316 }
1317
1318 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1319 continue;
1320
1321 if (forced_push(tp)) {
1322 tcp_mark_push(tp, skb);
1323 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1324 } else if (skb == tcp_send_head(sk))
1325 tcp_push_one(sk, mss_now);
1326 continue;
1327
1328 wait_for_sndbuf:
1329 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1330 wait_for_memory:
1331 if (copied)
1332 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1333 TCP_NAGLE_PUSH, size_goal);
1334
1335 err = sk_stream_wait_memory(sk, &timeo);
1336 if (err != 0)
1337 goto do_error;
1338
1339 mss_now = tcp_send_mss(sk, &size_goal, flags);
1340 }
1341
1342 out:
1343 if (copied) {
1344 tcp_tx_timestamp(sk, sockc.tsflags, tcp_write_queue_tail(sk));
1345 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1346 }
1347 out_nopush:
1348 release_sock(sk);
1349 return copied + copied_syn;
1350
1351 do_fault:
1352 if (!skb->len) {
1353 tcp_unlink_write_queue(skb, sk);
1354 /* It is the one place in all of TCP, except connection
1355 * reset, where we can be unlinking the send_head.
1356 */
1357 tcp_check_send_head(sk, skb);
1358 sk_wmem_free_skb(sk, skb);
1359 }
1360
1361 do_error:
1362 if (copied + copied_syn)
1363 goto out;
1364 out_err:
1365 err = sk_stream_error(sk, flags, err);
1366 /* make sure we wake any epoll edge trigger waiter */
1367 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1368 err == -EAGAIN)) {
1369 sk->sk_write_space(sk);
1370 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1371 }
1372 release_sock(sk);
1373 return err;
1374 }
1375 EXPORT_SYMBOL(tcp_sendmsg);
1376
1377 /*
1378 * Handle reading urgent data. BSD has very simple semantics for
1379 * this, no blocking and very strange errors 8)
1380 */
1381
1382 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1383 {
1384 struct tcp_sock *tp = tcp_sk(sk);
1385
1386 /* No URG data to read. */
1387 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1388 tp->urg_data == TCP_URG_READ)
1389 return -EINVAL; /* Yes this is right ! */
1390
1391 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1392 return -ENOTCONN;
1393
1394 if (tp->urg_data & TCP_URG_VALID) {
1395 int err = 0;
1396 char c = tp->urg_data;
1397
1398 if (!(flags & MSG_PEEK))
1399 tp->urg_data = TCP_URG_READ;
1400
1401 /* Read urgent data. */
1402 msg->msg_flags |= MSG_OOB;
1403
1404 if (len > 0) {
1405 if (!(flags & MSG_TRUNC))
1406 err = memcpy_to_msg(msg, &c, 1);
1407 len = 1;
1408 } else
1409 msg->msg_flags |= MSG_TRUNC;
1410
1411 return err ? -EFAULT : len;
1412 }
1413
1414 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1415 return 0;
1416
1417 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1418 * the available implementations agree in this case:
1419 * this call should never block, independent of the
1420 * blocking state of the socket.
1421 * Mike <pall@rz.uni-karlsruhe.de>
1422 */
1423 return -EAGAIN;
1424 }
1425
1426 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1427 {
1428 struct sk_buff *skb;
1429 int copied = 0, err = 0;
1430
1431 /* XXX -- need to support SO_PEEK_OFF */
1432
1433 skb_queue_walk(&sk->sk_write_queue, skb) {
1434 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1435 if (err)
1436 break;
1437
1438 copied += skb->len;
1439 }
1440
1441 return err ?: copied;
1442 }
1443
1444 /* Clean up the receive buffer for full frames taken by the user,
1445 * then send an ACK if necessary. COPIED is the number of bytes
1446 * tcp_recvmsg has given to the user so far, it speeds up the
1447 * calculation of whether or not we must ACK for the sake of
1448 * a window update.
1449 */
1450 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1451 {
1452 struct tcp_sock *tp = tcp_sk(sk);
1453 bool time_to_ack = false;
1454
1455 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1456
1457 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1458 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1459 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1460
1461 if (inet_csk_ack_scheduled(sk)) {
1462 const struct inet_connection_sock *icsk = inet_csk(sk);
1463 /* Delayed ACKs frequently hit locked sockets during bulk
1464 * receive. */
1465 if (icsk->icsk_ack.blocked ||
1466 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1467 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1468 /*
1469 * If this read emptied read buffer, we send ACK, if
1470 * connection is not bidirectional, user drained
1471 * receive buffer and there was a small segment
1472 * in queue.
1473 */
1474 (copied > 0 &&
1475 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1476 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1477 !icsk->icsk_ack.pingpong)) &&
1478 !atomic_read(&sk->sk_rmem_alloc)))
1479 time_to_ack = true;
1480 }
1481
1482 /* We send an ACK if we can now advertise a non-zero window
1483 * which has been raised "significantly".
1484 *
1485 * Even if window raised up to infinity, do not send window open ACK
1486 * in states, where we will not receive more. It is useless.
1487 */
1488 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1489 __u32 rcv_window_now = tcp_receive_window(tp);
1490
1491 /* Optimize, __tcp_select_window() is not cheap. */
1492 if (2*rcv_window_now <= tp->window_clamp) {
1493 __u32 new_window = __tcp_select_window(sk);
1494
1495 /* Send ACK now, if this read freed lots of space
1496 * in our buffer. Certainly, new_window is new window.
1497 * We can advertise it now, if it is not less than current one.
1498 * "Lots" means "at least twice" here.
1499 */
1500 if (new_window && new_window >= 2 * rcv_window_now)
1501 time_to_ack = true;
1502 }
1503 }
1504 if (time_to_ack)
1505 tcp_send_ack(sk);
1506 }
1507
1508 static void tcp_prequeue_process(struct sock *sk)
1509 {
1510 struct sk_buff *skb;
1511 struct tcp_sock *tp = tcp_sk(sk);
1512
1513 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1514
1515 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1516 sk_backlog_rcv(sk, skb);
1517
1518 /* Clear memory counter. */
1519 tp->ucopy.memory = 0;
1520 }
1521
1522 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1523 {
1524 struct sk_buff *skb;
1525 u32 offset;
1526
1527 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1528 offset = seq - TCP_SKB_CB(skb)->seq;
1529 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1530 pr_err_once("%s: found a SYN, please report !\n", __func__);
1531 offset--;
1532 }
1533 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1534 *off = offset;
1535 return skb;
1536 }
1537 /* This looks weird, but this can happen if TCP collapsing
1538 * splitted a fat GRO packet, while we released socket lock
1539 * in skb_splice_bits()
1540 */
1541 sk_eat_skb(sk, skb);
1542 }
1543 return NULL;
1544 }
1545
1546 /*
1547 * This routine provides an alternative to tcp_recvmsg() for routines
1548 * that would like to handle copying from skbuffs directly in 'sendfile'
1549 * fashion.
1550 * Note:
1551 * - It is assumed that the socket was locked by the caller.
1552 * - The routine does not block.
1553 * - At present, there is no support for reading OOB data
1554 * or for 'peeking' the socket using this routine
1555 * (although both would be easy to implement).
1556 */
1557 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1558 sk_read_actor_t recv_actor)
1559 {
1560 struct sk_buff *skb;
1561 struct tcp_sock *tp = tcp_sk(sk);
1562 u32 seq = tp->copied_seq;
1563 u32 offset;
1564 int copied = 0;
1565
1566 if (sk->sk_state == TCP_LISTEN)
1567 return -ENOTCONN;
1568 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1569 if (offset < skb->len) {
1570 int used;
1571 size_t len;
1572
1573 len = skb->len - offset;
1574 /* Stop reading if we hit a patch of urgent data */
1575 if (tp->urg_data) {
1576 u32 urg_offset = tp->urg_seq - seq;
1577 if (urg_offset < len)
1578 len = urg_offset;
1579 if (!len)
1580 break;
1581 }
1582 used = recv_actor(desc, skb, offset, len);
1583 if (used <= 0) {
1584 if (!copied)
1585 copied = used;
1586 break;
1587 } else if (used <= len) {
1588 seq += used;
1589 copied += used;
1590 offset += used;
1591 }
1592 /* If recv_actor drops the lock (e.g. TCP splice
1593 * receive) the skb pointer might be invalid when
1594 * getting here: tcp_collapse might have deleted it
1595 * while aggregating skbs from the socket queue.
1596 */
1597 skb = tcp_recv_skb(sk, seq - 1, &offset);
1598 if (!skb)
1599 break;
1600 /* TCP coalescing might have appended data to the skb.
1601 * Try to splice more frags
1602 */
1603 if (offset + 1 != skb->len)
1604 continue;
1605 }
1606 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1607 sk_eat_skb(sk, skb);
1608 ++seq;
1609 break;
1610 }
1611 sk_eat_skb(sk, skb);
1612 if (!desc->count)
1613 break;
1614 tp->copied_seq = seq;
1615 }
1616 tp->copied_seq = seq;
1617
1618 tcp_rcv_space_adjust(sk);
1619
1620 /* Clean up data we have read: This will do ACK frames. */
1621 if (copied > 0) {
1622 tcp_recv_skb(sk, seq, &offset);
1623 tcp_cleanup_rbuf(sk, copied);
1624 }
1625 return copied;
1626 }
1627 EXPORT_SYMBOL(tcp_read_sock);
1628
1629 int tcp_peek_len(struct socket *sock)
1630 {
1631 return tcp_inq(sock->sk);
1632 }
1633 EXPORT_SYMBOL(tcp_peek_len);
1634
1635 /*
1636 * This routine copies from a sock struct into the user buffer.
1637 *
1638 * Technical note: in 2.3 we work on _locked_ socket, so that
1639 * tricks with *seq access order and skb->users are not required.
1640 * Probably, code can be easily improved even more.
1641 */
1642
1643 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1644 int flags, int *addr_len)
1645 {
1646 struct tcp_sock *tp = tcp_sk(sk);
1647 int copied = 0;
1648 u32 peek_seq;
1649 u32 *seq;
1650 unsigned long used;
1651 int err;
1652 int target; /* Read at least this many bytes */
1653 long timeo;
1654 struct task_struct *user_recv = NULL;
1655 struct sk_buff *skb, *last;
1656 u32 urg_hole = 0;
1657
1658 if (unlikely(flags & MSG_ERRQUEUE))
1659 return inet_recv_error(sk, msg, len, addr_len);
1660
1661 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1662 (sk->sk_state == TCP_ESTABLISHED))
1663 sk_busy_loop(sk, nonblock);
1664
1665 lock_sock(sk);
1666
1667 err = -ENOTCONN;
1668 if (sk->sk_state == TCP_LISTEN)
1669 goto out;
1670
1671 timeo = sock_rcvtimeo(sk, nonblock);
1672
1673 /* Urgent data needs to be handled specially. */
1674 if (flags & MSG_OOB)
1675 goto recv_urg;
1676
1677 if (unlikely(tp->repair)) {
1678 err = -EPERM;
1679 if (!(flags & MSG_PEEK))
1680 goto out;
1681
1682 if (tp->repair_queue == TCP_SEND_QUEUE)
1683 goto recv_sndq;
1684
1685 err = -EINVAL;
1686 if (tp->repair_queue == TCP_NO_QUEUE)
1687 goto out;
1688
1689 /* 'common' recv queue MSG_PEEK-ing */
1690 }
1691
1692 seq = &tp->copied_seq;
1693 if (flags & MSG_PEEK) {
1694 peek_seq = tp->copied_seq;
1695 seq = &peek_seq;
1696 }
1697
1698 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1699
1700 do {
1701 u32 offset;
1702
1703 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1704 if (tp->urg_data && tp->urg_seq == *seq) {
1705 if (copied)
1706 break;
1707 if (signal_pending(current)) {
1708 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1709 break;
1710 }
1711 }
1712
1713 /* Next get a buffer. */
1714
1715 last = skb_peek_tail(&sk->sk_receive_queue);
1716 skb_queue_walk(&sk->sk_receive_queue, skb) {
1717 last = skb;
1718 /* Now that we have two receive queues this
1719 * shouldn't happen.
1720 */
1721 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1722 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1723 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1724 flags))
1725 break;
1726
1727 offset = *seq - TCP_SKB_CB(skb)->seq;
1728 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1729 pr_err_once("%s: found a SYN, please report !\n", __func__);
1730 offset--;
1731 }
1732 if (offset < skb->len)
1733 goto found_ok_skb;
1734 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1735 goto found_fin_ok;
1736 WARN(!(flags & MSG_PEEK),
1737 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1738 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1739 }
1740
1741 /* Well, if we have backlog, try to process it now yet. */
1742
1743 if (copied >= target && !sk->sk_backlog.tail)
1744 break;
1745
1746 if (copied) {
1747 if (sk->sk_err ||
1748 sk->sk_state == TCP_CLOSE ||
1749 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1750 !timeo ||
1751 signal_pending(current))
1752 break;
1753 } else {
1754 if (sock_flag(sk, SOCK_DONE))
1755 break;
1756
1757 if (sk->sk_err) {
1758 copied = sock_error(sk);
1759 break;
1760 }
1761
1762 if (sk->sk_shutdown & RCV_SHUTDOWN)
1763 break;
1764
1765 if (sk->sk_state == TCP_CLOSE) {
1766 if (!sock_flag(sk, SOCK_DONE)) {
1767 /* This occurs when user tries to read
1768 * from never connected socket.
1769 */
1770 copied = -ENOTCONN;
1771 break;
1772 }
1773 break;
1774 }
1775
1776 if (!timeo) {
1777 copied = -EAGAIN;
1778 break;
1779 }
1780
1781 if (signal_pending(current)) {
1782 copied = sock_intr_errno(timeo);
1783 break;
1784 }
1785 }
1786
1787 tcp_cleanup_rbuf(sk, copied);
1788
1789 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1790 /* Install new reader */
1791 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1792 user_recv = current;
1793 tp->ucopy.task = user_recv;
1794 tp->ucopy.msg = msg;
1795 }
1796
1797 tp->ucopy.len = len;
1798
1799 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1800 !(flags & (MSG_PEEK | MSG_TRUNC)));
1801
1802 /* Ugly... If prequeue is not empty, we have to
1803 * process it before releasing socket, otherwise
1804 * order will be broken at second iteration.
1805 * More elegant solution is required!!!
1806 *
1807 * Look: we have the following (pseudo)queues:
1808 *
1809 * 1. packets in flight
1810 * 2. backlog
1811 * 3. prequeue
1812 * 4. receive_queue
1813 *
1814 * Each queue can be processed only if the next ones
1815 * are empty. At this point we have empty receive_queue.
1816 * But prequeue _can_ be not empty after 2nd iteration,
1817 * when we jumped to start of loop because backlog
1818 * processing added something to receive_queue.
1819 * We cannot release_sock(), because backlog contains
1820 * packets arrived _after_ prequeued ones.
1821 *
1822 * Shortly, algorithm is clear --- to process all
1823 * the queues in order. We could make it more directly,
1824 * requeueing packets from backlog to prequeue, if
1825 * is not empty. It is more elegant, but eats cycles,
1826 * unfortunately.
1827 */
1828 if (!skb_queue_empty(&tp->ucopy.prequeue))
1829 goto do_prequeue;
1830
1831 /* __ Set realtime policy in scheduler __ */
1832 }
1833
1834 if (copied >= target) {
1835 /* Do not sleep, just process backlog. */
1836 release_sock(sk);
1837 lock_sock(sk);
1838 } else {
1839 sk_wait_data(sk, &timeo, last);
1840 }
1841
1842 if (user_recv) {
1843 int chunk;
1844
1845 /* __ Restore normal policy in scheduler __ */
1846
1847 chunk = len - tp->ucopy.len;
1848 if (chunk != 0) {
1849 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1850 len -= chunk;
1851 copied += chunk;
1852 }
1853
1854 if (tp->rcv_nxt == tp->copied_seq &&
1855 !skb_queue_empty(&tp->ucopy.prequeue)) {
1856 do_prequeue:
1857 tcp_prequeue_process(sk);
1858
1859 chunk = len - tp->ucopy.len;
1860 if (chunk != 0) {
1861 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1862 len -= chunk;
1863 copied += chunk;
1864 }
1865 }
1866 }
1867 if ((flags & MSG_PEEK) &&
1868 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1869 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1870 current->comm,
1871 task_pid_nr(current));
1872 peek_seq = tp->copied_seq;
1873 }
1874 continue;
1875
1876 found_ok_skb:
1877 /* Ok so how much can we use? */
1878 used = skb->len - offset;
1879 if (len < used)
1880 used = len;
1881
1882 /* Do we have urgent data here? */
1883 if (tp->urg_data) {
1884 u32 urg_offset = tp->urg_seq - *seq;
1885 if (urg_offset < used) {
1886 if (!urg_offset) {
1887 if (!sock_flag(sk, SOCK_URGINLINE)) {
1888 ++*seq;
1889 urg_hole++;
1890 offset++;
1891 used--;
1892 if (!used)
1893 goto skip_copy;
1894 }
1895 } else
1896 used = urg_offset;
1897 }
1898 }
1899
1900 if (!(flags & MSG_TRUNC)) {
1901 err = skb_copy_datagram_msg(skb, offset, msg, used);
1902 if (err) {
1903 /* Exception. Bailout! */
1904 if (!copied)
1905 copied = -EFAULT;
1906 break;
1907 }
1908 }
1909
1910 *seq += used;
1911 copied += used;
1912 len -= used;
1913
1914 tcp_rcv_space_adjust(sk);
1915
1916 skip_copy:
1917 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1918 tp->urg_data = 0;
1919 tcp_fast_path_check(sk);
1920 }
1921 if (used + offset < skb->len)
1922 continue;
1923
1924 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1925 goto found_fin_ok;
1926 if (!(flags & MSG_PEEK))
1927 sk_eat_skb(sk, skb);
1928 continue;
1929
1930 found_fin_ok:
1931 /* Process the FIN. */
1932 ++*seq;
1933 if (!(flags & MSG_PEEK))
1934 sk_eat_skb(sk, skb);
1935 break;
1936 } while (len > 0);
1937
1938 if (user_recv) {
1939 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1940 int chunk;
1941
1942 tp->ucopy.len = copied > 0 ? len : 0;
1943
1944 tcp_prequeue_process(sk);
1945
1946 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1947 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1948 len -= chunk;
1949 copied += chunk;
1950 }
1951 }
1952
1953 tp->ucopy.task = NULL;
1954 tp->ucopy.len = 0;
1955 }
1956
1957 /* According to UNIX98, msg_name/msg_namelen are ignored
1958 * on connected socket. I was just happy when found this 8) --ANK
1959 */
1960
1961 /* Clean up data we have read: This will do ACK frames. */
1962 tcp_cleanup_rbuf(sk, copied);
1963
1964 release_sock(sk);
1965 return copied;
1966
1967 out:
1968 release_sock(sk);
1969 return err;
1970
1971 recv_urg:
1972 err = tcp_recv_urg(sk, msg, len, flags);
1973 goto out;
1974
1975 recv_sndq:
1976 err = tcp_peek_sndq(sk, msg, len);
1977 goto out;
1978 }
1979 EXPORT_SYMBOL(tcp_recvmsg);
1980
1981 void tcp_set_state(struct sock *sk, int state)
1982 {
1983 int oldstate = sk->sk_state;
1984
1985 switch (state) {
1986 case TCP_ESTABLISHED:
1987 if (oldstate != TCP_ESTABLISHED)
1988 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1989 break;
1990
1991 case TCP_CLOSE:
1992 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1993 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1994
1995 sk->sk_prot->unhash(sk);
1996 if (inet_csk(sk)->icsk_bind_hash &&
1997 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1998 inet_put_port(sk);
1999 /* fall through */
2000 default:
2001 if (oldstate == TCP_ESTABLISHED)
2002 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2003 }
2004
2005 /* Change state AFTER socket is unhashed to avoid closed
2006 * socket sitting in hash tables.
2007 */
2008 sk_state_store(sk, state);
2009
2010 #ifdef STATE_TRACE
2011 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2012 #endif
2013 }
2014 EXPORT_SYMBOL_GPL(tcp_set_state);
2015
2016 /*
2017 * State processing on a close. This implements the state shift for
2018 * sending our FIN frame. Note that we only send a FIN for some
2019 * states. A shutdown() may have already sent the FIN, or we may be
2020 * closed.
2021 */
2022
2023 static const unsigned char new_state[16] = {
2024 /* current state: new state: action: */
2025 [0 /* (Invalid) */] = TCP_CLOSE,
2026 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2027 [TCP_SYN_SENT] = TCP_CLOSE,
2028 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2029 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2030 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2031 [TCP_TIME_WAIT] = TCP_CLOSE,
2032 [TCP_CLOSE] = TCP_CLOSE,
2033 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2034 [TCP_LAST_ACK] = TCP_LAST_ACK,
2035 [TCP_LISTEN] = TCP_CLOSE,
2036 [TCP_CLOSING] = TCP_CLOSING,
2037 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2038 };
2039
2040 static int tcp_close_state(struct sock *sk)
2041 {
2042 int next = (int)new_state[sk->sk_state];
2043 int ns = next & TCP_STATE_MASK;
2044
2045 tcp_set_state(sk, ns);
2046
2047 return next & TCP_ACTION_FIN;
2048 }
2049
2050 /*
2051 * Shutdown the sending side of a connection. Much like close except
2052 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2053 */
2054
2055 void tcp_shutdown(struct sock *sk, int how)
2056 {
2057 /* We need to grab some memory, and put together a FIN,
2058 * and then put it into the queue to be sent.
2059 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2060 */
2061 if (!(how & SEND_SHUTDOWN))
2062 return;
2063
2064 /* If we've already sent a FIN, or it's a closed state, skip this. */
2065 if ((1 << sk->sk_state) &
2066 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2067 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2068 /* Clear out any half completed packets. FIN if needed. */
2069 if (tcp_close_state(sk))
2070 tcp_send_fin(sk);
2071 }
2072 }
2073 EXPORT_SYMBOL(tcp_shutdown);
2074
2075 bool tcp_check_oom(struct sock *sk, int shift)
2076 {
2077 bool too_many_orphans, out_of_socket_memory;
2078
2079 too_many_orphans = tcp_too_many_orphans(sk, shift);
2080 out_of_socket_memory = tcp_out_of_memory(sk);
2081
2082 if (too_many_orphans)
2083 net_info_ratelimited("too many orphaned sockets\n");
2084 if (out_of_socket_memory)
2085 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2086 return too_many_orphans || out_of_socket_memory;
2087 }
2088
2089 void tcp_close(struct sock *sk, long timeout)
2090 {
2091 struct sk_buff *skb;
2092 int data_was_unread = 0;
2093 int state;
2094
2095 lock_sock(sk);
2096 sk->sk_shutdown = SHUTDOWN_MASK;
2097
2098 if (sk->sk_state == TCP_LISTEN) {
2099 tcp_set_state(sk, TCP_CLOSE);
2100
2101 /* Special case. */
2102 inet_csk_listen_stop(sk);
2103
2104 goto adjudge_to_death;
2105 }
2106
2107 /* We need to flush the recv. buffs. We do this only on the
2108 * descriptor close, not protocol-sourced closes, because the
2109 * reader process may not have drained the data yet!
2110 */
2111 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2112 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2113
2114 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2115 len--;
2116 data_was_unread += len;
2117 __kfree_skb(skb);
2118 }
2119
2120 sk_mem_reclaim(sk);
2121
2122 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2123 if (sk->sk_state == TCP_CLOSE)
2124 goto adjudge_to_death;
2125
2126 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2127 * data was lost. To witness the awful effects of the old behavior of
2128 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2129 * GET in an FTP client, suspend the process, wait for the client to
2130 * advertise a zero window, then kill -9 the FTP client, wheee...
2131 * Note: timeout is always zero in such a case.
2132 */
2133 if (unlikely(tcp_sk(sk)->repair)) {
2134 sk->sk_prot->disconnect(sk, 0);
2135 } else if (data_was_unread) {
2136 /* Unread data was tossed, zap the connection. */
2137 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2138 tcp_set_state(sk, TCP_CLOSE);
2139 tcp_send_active_reset(sk, sk->sk_allocation);
2140 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2141 /* Check zero linger _after_ checking for unread data. */
2142 sk->sk_prot->disconnect(sk, 0);
2143 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2144 } else if (tcp_close_state(sk)) {
2145 /* We FIN if the application ate all the data before
2146 * zapping the connection.
2147 */
2148
2149 /* RED-PEN. Formally speaking, we have broken TCP state
2150 * machine. State transitions:
2151 *
2152 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2153 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2154 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2155 *
2156 * are legal only when FIN has been sent (i.e. in window),
2157 * rather than queued out of window. Purists blame.
2158 *
2159 * F.e. "RFC state" is ESTABLISHED,
2160 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2161 *
2162 * The visible declinations are that sometimes
2163 * we enter time-wait state, when it is not required really
2164 * (harmless), do not send active resets, when they are
2165 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2166 * they look as CLOSING or LAST_ACK for Linux)
2167 * Probably, I missed some more holelets.
2168 * --ANK
2169 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2170 * in a single packet! (May consider it later but will
2171 * probably need API support or TCP_CORK SYN-ACK until
2172 * data is written and socket is closed.)
2173 */
2174 tcp_send_fin(sk);
2175 }
2176
2177 sk_stream_wait_close(sk, timeout);
2178
2179 adjudge_to_death:
2180 state = sk->sk_state;
2181 sock_hold(sk);
2182 sock_orphan(sk);
2183
2184 /* It is the last release_sock in its life. It will remove backlog. */
2185 release_sock(sk);
2186
2187
2188 /* Now socket is owned by kernel and we acquire BH lock
2189 to finish close. No need to check for user refs.
2190 */
2191 local_bh_disable();
2192 bh_lock_sock(sk);
2193 WARN_ON(sock_owned_by_user(sk));
2194
2195 percpu_counter_inc(sk->sk_prot->orphan_count);
2196
2197 /* Have we already been destroyed by a softirq or backlog? */
2198 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2199 goto out;
2200
2201 /* This is a (useful) BSD violating of the RFC. There is a
2202 * problem with TCP as specified in that the other end could
2203 * keep a socket open forever with no application left this end.
2204 * We use a 1 minute timeout (about the same as BSD) then kill
2205 * our end. If they send after that then tough - BUT: long enough
2206 * that we won't make the old 4*rto = almost no time - whoops
2207 * reset mistake.
2208 *
2209 * Nope, it was not mistake. It is really desired behaviour
2210 * f.e. on http servers, when such sockets are useless, but
2211 * consume significant resources. Let's do it with special
2212 * linger2 option. --ANK
2213 */
2214
2215 if (sk->sk_state == TCP_FIN_WAIT2) {
2216 struct tcp_sock *tp = tcp_sk(sk);
2217 if (tp->linger2 < 0) {
2218 tcp_set_state(sk, TCP_CLOSE);
2219 tcp_send_active_reset(sk, GFP_ATOMIC);
2220 __NET_INC_STATS(sock_net(sk),
2221 LINUX_MIB_TCPABORTONLINGER);
2222 } else {
2223 const int tmo = tcp_fin_time(sk);
2224
2225 if (tmo > TCP_TIMEWAIT_LEN) {
2226 inet_csk_reset_keepalive_timer(sk,
2227 tmo - TCP_TIMEWAIT_LEN);
2228 } else {
2229 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2230 goto out;
2231 }
2232 }
2233 }
2234 if (sk->sk_state != TCP_CLOSE) {
2235 sk_mem_reclaim(sk);
2236 if (tcp_check_oom(sk, 0)) {
2237 tcp_set_state(sk, TCP_CLOSE);
2238 tcp_send_active_reset(sk, GFP_ATOMIC);
2239 __NET_INC_STATS(sock_net(sk),
2240 LINUX_MIB_TCPABORTONMEMORY);
2241 }
2242 }
2243
2244 if (sk->sk_state == TCP_CLOSE) {
2245 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2246 /* We could get here with a non-NULL req if the socket is
2247 * aborted (e.g., closed with unread data) before 3WHS
2248 * finishes.
2249 */
2250 if (req)
2251 reqsk_fastopen_remove(sk, req, false);
2252 inet_csk_destroy_sock(sk);
2253 }
2254 /* Otherwise, socket is reprieved until protocol close. */
2255
2256 out:
2257 bh_unlock_sock(sk);
2258 local_bh_enable();
2259 sock_put(sk);
2260 }
2261 EXPORT_SYMBOL(tcp_close);
2262
2263 /* These states need RST on ABORT according to RFC793 */
2264
2265 static inline bool tcp_need_reset(int state)
2266 {
2267 return (1 << state) &
2268 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2269 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2270 }
2271
2272 int tcp_disconnect(struct sock *sk, int flags)
2273 {
2274 struct inet_sock *inet = inet_sk(sk);
2275 struct inet_connection_sock *icsk = inet_csk(sk);
2276 struct tcp_sock *tp = tcp_sk(sk);
2277 int err = 0;
2278 int old_state = sk->sk_state;
2279
2280 if (old_state != TCP_CLOSE)
2281 tcp_set_state(sk, TCP_CLOSE);
2282
2283 /* ABORT function of RFC793 */
2284 if (old_state == TCP_LISTEN) {
2285 inet_csk_listen_stop(sk);
2286 } else if (unlikely(tp->repair)) {
2287 sk->sk_err = ECONNABORTED;
2288 } else if (tcp_need_reset(old_state) ||
2289 (tp->snd_nxt != tp->write_seq &&
2290 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2291 /* The last check adjusts for discrepancy of Linux wrt. RFC
2292 * states
2293 */
2294 tcp_send_active_reset(sk, gfp_any());
2295 sk->sk_err = ECONNRESET;
2296 } else if (old_state == TCP_SYN_SENT)
2297 sk->sk_err = ECONNRESET;
2298
2299 tcp_clear_xmit_timers(sk);
2300 __skb_queue_purge(&sk->sk_receive_queue);
2301 tcp_write_queue_purge(sk);
2302 tcp_fastopen_active_disable_ofo_check(sk);
2303 skb_rbtree_purge(&tp->out_of_order_queue);
2304
2305 inet->inet_dport = 0;
2306
2307 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2308 inet_reset_saddr(sk);
2309
2310 sk->sk_shutdown = 0;
2311 sock_reset_flag(sk, SOCK_DONE);
2312 tp->srtt_us = 0;
2313 tp->write_seq += tp->max_window + 2;
2314 if (tp->write_seq == 0)
2315 tp->write_seq = 1;
2316 icsk->icsk_backoff = 0;
2317 tp->snd_cwnd = 2;
2318 icsk->icsk_probes_out = 0;
2319 tp->packets_out = 0;
2320 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2321 tp->snd_cwnd_cnt = 0;
2322 tp->window_clamp = 0;
2323 tcp_set_ca_state(sk, TCP_CA_Open);
2324 tcp_clear_retrans(tp);
2325 inet_csk_delack_init(sk);
2326 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2327 * issue in __tcp_select_window()
2328 */
2329 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2330 tcp_init_send_head(sk);
2331 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2332 __sk_dst_reset(sk);
2333 tcp_saved_syn_free(tp);
2334
2335 /* Clean up fastopen related fields */
2336 tcp_free_fastopen_req(tp);
2337 inet->defer_connect = 0;
2338
2339 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2340
2341 sk->sk_error_report(sk);
2342 return err;
2343 }
2344 EXPORT_SYMBOL(tcp_disconnect);
2345
2346 static inline bool tcp_can_repair_sock(const struct sock *sk)
2347 {
2348 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2349 (sk->sk_state != TCP_LISTEN);
2350 }
2351
2352 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2353 {
2354 struct tcp_repair_window opt;
2355
2356 if (!tp->repair)
2357 return -EPERM;
2358
2359 if (len != sizeof(opt))
2360 return -EINVAL;
2361
2362 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2363 return -EFAULT;
2364
2365 if (opt.max_window < opt.snd_wnd)
2366 return -EINVAL;
2367
2368 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2369 return -EINVAL;
2370
2371 if (after(opt.rcv_wup, tp->rcv_nxt))
2372 return -EINVAL;
2373
2374 tp->snd_wl1 = opt.snd_wl1;
2375 tp->snd_wnd = opt.snd_wnd;
2376 tp->max_window = opt.max_window;
2377
2378 tp->rcv_wnd = opt.rcv_wnd;
2379 tp->rcv_wup = opt.rcv_wup;
2380
2381 return 0;
2382 }
2383
2384 static int tcp_repair_options_est(struct sock *sk,
2385 struct tcp_repair_opt __user *optbuf, unsigned int len)
2386 {
2387 struct tcp_sock *tp = tcp_sk(sk);
2388 struct tcp_repair_opt opt;
2389
2390 while (len >= sizeof(opt)) {
2391 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2392 return -EFAULT;
2393
2394 optbuf++;
2395 len -= sizeof(opt);
2396
2397 switch (opt.opt_code) {
2398 case TCPOPT_MSS:
2399 tp->rx_opt.mss_clamp = opt.opt_val;
2400 tcp_mtup_init(sk);
2401 break;
2402 case TCPOPT_WINDOW:
2403 {
2404 u16 snd_wscale = opt.opt_val & 0xFFFF;
2405 u16 rcv_wscale = opt.opt_val >> 16;
2406
2407 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2408 return -EFBIG;
2409
2410 tp->rx_opt.snd_wscale = snd_wscale;
2411 tp->rx_opt.rcv_wscale = rcv_wscale;
2412 tp->rx_opt.wscale_ok = 1;
2413 }
2414 break;
2415 case TCPOPT_SACK_PERM:
2416 if (opt.opt_val != 0)
2417 return -EINVAL;
2418
2419 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2420 if (sysctl_tcp_fack)
2421 tcp_enable_fack(tp);
2422 break;
2423 case TCPOPT_TIMESTAMP:
2424 if (opt.opt_val != 0)
2425 return -EINVAL;
2426
2427 tp->rx_opt.tstamp_ok = 1;
2428 break;
2429 }
2430 }
2431
2432 return 0;
2433 }
2434
2435 /*
2436 * Socket option code for TCP.
2437 */
2438 static int do_tcp_setsockopt(struct sock *sk, int level,
2439 int optname, char __user *optval, unsigned int optlen)
2440 {
2441 struct tcp_sock *tp = tcp_sk(sk);
2442 struct inet_connection_sock *icsk = inet_csk(sk);
2443 struct net *net = sock_net(sk);
2444 int val;
2445 int err = 0;
2446
2447 /* These are data/string values, all the others are ints */
2448 switch (optname) {
2449 case TCP_CONGESTION: {
2450 char name[TCP_CA_NAME_MAX];
2451
2452 if (optlen < 1)
2453 return -EINVAL;
2454
2455 val = strncpy_from_user(name, optval,
2456 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2457 if (val < 0)
2458 return -EFAULT;
2459 name[val] = 0;
2460
2461 lock_sock(sk);
2462 err = tcp_set_congestion_control(sk, name);
2463 release_sock(sk);
2464 return err;
2465 }
2466 default:
2467 /* fallthru */
2468 break;
2469 }
2470
2471 if (optlen < sizeof(int))
2472 return -EINVAL;
2473
2474 if (get_user(val, (int __user *)optval))
2475 return -EFAULT;
2476
2477 lock_sock(sk);
2478
2479 switch (optname) {
2480 case TCP_MAXSEG:
2481 /* Values greater than interface MTU won't take effect. However
2482 * at the point when this call is done we typically don't yet
2483 * know which interface is going to be used */
2484 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2485 err = -EINVAL;
2486 break;
2487 }
2488 tp->rx_opt.user_mss = val;
2489 break;
2490
2491 case TCP_NODELAY:
2492 if (val) {
2493 /* TCP_NODELAY is weaker than TCP_CORK, so that
2494 * this option on corked socket is remembered, but
2495 * it is not activated until cork is cleared.
2496 *
2497 * However, when TCP_NODELAY is set we make
2498 * an explicit push, which overrides even TCP_CORK
2499 * for currently queued segments.
2500 */
2501 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2502 tcp_push_pending_frames(sk);
2503 } else {
2504 tp->nonagle &= ~TCP_NAGLE_OFF;
2505 }
2506 break;
2507
2508 case TCP_THIN_LINEAR_TIMEOUTS:
2509 if (val < 0 || val > 1)
2510 err = -EINVAL;
2511 else
2512 tp->thin_lto = val;
2513 break;
2514
2515 case TCP_THIN_DUPACK:
2516 if (val < 0 || val > 1)
2517 err = -EINVAL;
2518 break;
2519
2520 case TCP_REPAIR:
2521 if (!tcp_can_repair_sock(sk))
2522 err = -EPERM;
2523 else if (val == 1) {
2524 tp->repair = 1;
2525 sk->sk_reuse = SK_FORCE_REUSE;
2526 tp->repair_queue = TCP_NO_QUEUE;
2527 } else if (val == 0) {
2528 tp->repair = 0;
2529 sk->sk_reuse = SK_NO_REUSE;
2530 tcp_send_window_probe(sk);
2531 } else
2532 err = -EINVAL;
2533
2534 break;
2535
2536 case TCP_REPAIR_QUEUE:
2537 if (!tp->repair)
2538 err = -EPERM;
2539 else if (val < TCP_QUEUES_NR)
2540 tp->repair_queue = val;
2541 else
2542 err = -EINVAL;
2543 break;
2544
2545 case TCP_QUEUE_SEQ:
2546 if (sk->sk_state != TCP_CLOSE)
2547 err = -EPERM;
2548 else if (tp->repair_queue == TCP_SEND_QUEUE)
2549 tp->write_seq = val;
2550 else if (tp->repair_queue == TCP_RECV_QUEUE)
2551 tp->rcv_nxt = val;
2552 else
2553 err = -EINVAL;
2554 break;
2555
2556 case TCP_REPAIR_OPTIONS:
2557 if (!tp->repair)
2558 err = -EINVAL;
2559 else if (sk->sk_state == TCP_ESTABLISHED)
2560 err = tcp_repair_options_est(sk,
2561 (struct tcp_repair_opt __user *)optval,
2562 optlen);
2563 else
2564 err = -EPERM;
2565 break;
2566
2567 case TCP_CORK:
2568 /* When set indicates to always queue non-full frames.
2569 * Later the user clears this option and we transmit
2570 * any pending partial frames in the queue. This is
2571 * meant to be used alongside sendfile() to get properly
2572 * filled frames when the user (for example) must write
2573 * out headers with a write() call first and then use
2574 * sendfile to send out the data parts.
2575 *
2576 * TCP_CORK can be set together with TCP_NODELAY and it is
2577 * stronger than TCP_NODELAY.
2578 */
2579 if (val) {
2580 tp->nonagle |= TCP_NAGLE_CORK;
2581 } else {
2582 tp->nonagle &= ~TCP_NAGLE_CORK;
2583 if (tp->nonagle&TCP_NAGLE_OFF)
2584 tp->nonagle |= TCP_NAGLE_PUSH;
2585 tcp_push_pending_frames(sk);
2586 }
2587 break;
2588
2589 case TCP_KEEPIDLE:
2590 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2591 err = -EINVAL;
2592 else {
2593 tp->keepalive_time = val * HZ;
2594 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2595 !((1 << sk->sk_state) &
2596 (TCPF_CLOSE | TCPF_LISTEN))) {
2597 u32 elapsed = keepalive_time_elapsed(tp);
2598 if (tp->keepalive_time > elapsed)
2599 elapsed = tp->keepalive_time - elapsed;
2600 else
2601 elapsed = 0;
2602 inet_csk_reset_keepalive_timer(sk, elapsed);
2603 }
2604 }
2605 break;
2606 case TCP_KEEPINTVL:
2607 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2608 err = -EINVAL;
2609 else
2610 tp->keepalive_intvl = val * HZ;
2611 break;
2612 case TCP_KEEPCNT:
2613 if (val < 1 || val > MAX_TCP_KEEPCNT)
2614 err = -EINVAL;
2615 else
2616 tp->keepalive_probes = val;
2617 break;
2618 case TCP_SYNCNT:
2619 if (val < 1 || val > MAX_TCP_SYNCNT)
2620 err = -EINVAL;
2621 else
2622 icsk->icsk_syn_retries = val;
2623 break;
2624
2625 case TCP_SAVE_SYN:
2626 if (val < 0 || val > 1)
2627 err = -EINVAL;
2628 else
2629 tp->save_syn = val;
2630 break;
2631
2632 case TCP_LINGER2:
2633 if (val < 0)
2634 tp->linger2 = -1;
2635 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2636 tp->linger2 = 0;
2637 else
2638 tp->linger2 = val * HZ;
2639 break;
2640
2641 case TCP_DEFER_ACCEPT:
2642 /* Translate value in seconds to number of retransmits */
2643 icsk->icsk_accept_queue.rskq_defer_accept =
2644 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2645 TCP_RTO_MAX / HZ);
2646 break;
2647
2648 case TCP_WINDOW_CLAMP:
2649 if (!val) {
2650 if (sk->sk_state != TCP_CLOSE) {
2651 err = -EINVAL;
2652 break;
2653 }
2654 tp->window_clamp = 0;
2655 } else
2656 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2657 SOCK_MIN_RCVBUF / 2 : val;
2658 break;
2659
2660 case TCP_QUICKACK:
2661 if (!val) {
2662 icsk->icsk_ack.pingpong = 1;
2663 } else {
2664 icsk->icsk_ack.pingpong = 0;
2665 if ((1 << sk->sk_state) &
2666 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2667 inet_csk_ack_scheduled(sk)) {
2668 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2669 tcp_cleanup_rbuf(sk, 1);
2670 if (!(val & 1))
2671 icsk->icsk_ack.pingpong = 1;
2672 }
2673 }
2674 break;
2675
2676 #ifdef CONFIG_TCP_MD5SIG
2677 case TCP_MD5SIG:
2678 /* Read the IP->Key mappings from userspace */
2679 err = tp->af_specific->md5_parse(sk, optval, optlen);
2680 break;
2681 #endif
2682 case TCP_USER_TIMEOUT:
2683 /* Cap the max time in ms TCP will retry or probe the window
2684 * before giving up and aborting (ETIMEDOUT) a connection.
2685 */
2686 if (val < 0)
2687 err = -EINVAL;
2688 else
2689 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2690 break;
2691
2692 case TCP_FASTOPEN:
2693 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2694 TCPF_LISTEN))) {
2695 tcp_fastopen_init_key_once(true);
2696
2697 fastopen_queue_tune(sk, val);
2698 } else {
2699 err = -EINVAL;
2700 }
2701 break;
2702 case TCP_FASTOPEN_CONNECT:
2703 if (val > 1 || val < 0) {
2704 err = -EINVAL;
2705 } else if (sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
2706 if (sk->sk_state == TCP_CLOSE)
2707 tp->fastopen_connect = val;
2708 else
2709 err = -EINVAL;
2710 } else {
2711 err = -EOPNOTSUPP;
2712 }
2713 break;
2714 case TCP_TIMESTAMP:
2715 if (!tp->repair)
2716 err = -EPERM;
2717 else
2718 tp->tsoffset = val - tcp_time_stamp;
2719 break;
2720 case TCP_REPAIR_WINDOW:
2721 err = tcp_repair_set_window(tp, optval, optlen);
2722 break;
2723 case TCP_NOTSENT_LOWAT:
2724 tp->notsent_lowat = val;
2725 sk->sk_write_space(sk);
2726 break;
2727 default:
2728 err = -ENOPROTOOPT;
2729 break;
2730 }
2731
2732 release_sock(sk);
2733 return err;
2734 }
2735
2736 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2737 unsigned int optlen)
2738 {
2739 const struct inet_connection_sock *icsk = inet_csk(sk);
2740
2741 if (level != SOL_TCP)
2742 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2743 optval, optlen);
2744 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2745 }
2746 EXPORT_SYMBOL(tcp_setsockopt);
2747
2748 #ifdef CONFIG_COMPAT
2749 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2750 char __user *optval, unsigned int optlen)
2751 {
2752 if (level != SOL_TCP)
2753 return inet_csk_compat_setsockopt(sk, level, optname,
2754 optval, optlen);
2755 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2756 }
2757 EXPORT_SYMBOL(compat_tcp_setsockopt);
2758 #endif
2759
2760 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
2761 struct tcp_info *info)
2762 {
2763 u64 stats[__TCP_CHRONO_MAX], total = 0;
2764 enum tcp_chrono i;
2765
2766 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
2767 stats[i] = tp->chrono_stat[i - 1];
2768 if (i == tp->chrono_type)
2769 stats[i] += tcp_time_stamp - tp->chrono_start;
2770 stats[i] *= USEC_PER_SEC / HZ;
2771 total += stats[i];
2772 }
2773
2774 info->tcpi_busy_time = total;
2775 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
2776 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
2777 }
2778
2779 /* Return information about state of tcp endpoint in API format. */
2780 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2781 {
2782 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2783 const struct inet_connection_sock *icsk = inet_csk(sk);
2784 u32 now, intv;
2785 u64 rate64;
2786 bool slow;
2787 u32 rate;
2788
2789 memset(info, 0, sizeof(*info));
2790 if (sk->sk_type != SOCK_STREAM)
2791 return;
2792
2793 info->tcpi_state = sk_state_load(sk);
2794
2795 /* Report meaningful fields for all TCP states, including listeners */
2796 rate = READ_ONCE(sk->sk_pacing_rate);
2797 rate64 = rate != ~0U ? rate : ~0ULL;
2798 info->tcpi_pacing_rate = rate64;
2799
2800 rate = READ_ONCE(sk->sk_max_pacing_rate);
2801 rate64 = rate != ~0U ? rate : ~0ULL;
2802 info->tcpi_max_pacing_rate = rate64;
2803
2804 info->tcpi_reordering = tp->reordering;
2805 info->tcpi_snd_cwnd = tp->snd_cwnd;
2806
2807 if (info->tcpi_state == TCP_LISTEN) {
2808 /* listeners aliased fields :
2809 * tcpi_unacked -> Number of children ready for accept()
2810 * tcpi_sacked -> max backlog
2811 */
2812 info->tcpi_unacked = sk->sk_ack_backlog;
2813 info->tcpi_sacked = sk->sk_max_ack_backlog;
2814 return;
2815 }
2816
2817 slow = lock_sock_fast(sk);
2818
2819 info->tcpi_ca_state = icsk->icsk_ca_state;
2820 info->tcpi_retransmits = icsk->icsk_retransmits;
2821 info->tcpi_probes = icsk->icsk_probes_out;
2822 info->tcpi_backoff = icsk->icsk_backoff;
2823
2824 if (tp->rx_opt.tstamp_ok)
2825 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2826 if (tcp_is_sack(tp))
2827 info->tcpi_options |= TCPI_OPT_SACK;
2828 if (tp->rx_opt.wscale_ok) {
2829 info->tcpi_options |= TCPI_OPT_WSCALE;
2830 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2831 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2832 }
2833
2834 if (tp->ecn_flags & TCP_ECN_OK)
2835 info->tcpi_options |= TCPI_OPT_ECN;
2836 if (tp->ecn_flags & TCP_ECN_SEEN)
2837 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2838 if (tp->syn_data_acked)
2839 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2840
2841 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2842 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2843 info->tcpi_snd_mss = tp->mss_cache;
2844 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2845
2846 info->tcpi_unacked = tp->packets_out;
2847 info->tcpi_sacked = tp->sacked_out;
2848
2849 info->tcpi_lost = tp->lost_out;
2850 info->tcpi_retrans = tp->retrans_out;
2851 info->tcpi_fackets = tp->fackets_out;
2852
2853 now = tcp_time_stamp;
2854 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2855 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2856 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2857
2858 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2859 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2860 info->tcpi_rtt = tp->srtt_us >> 3;
2861 info->tcpi_rttvar = tp->mdev_us >> 2;
2862 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2863 info->tcpi_advmss = tp->advmss;
2864
2865 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
2866 info->tcpi_rcv_space = tp->rcvq_space.space;
2867
2868 info->tcpi_total_retrans = tp->total_retrans;
2869
2870 info->tcpi_bytes_acked = tp->bytes_acked;
2871 info->tcpi_bytes_received = tp->bytes_received;
2872 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
2873 tcp_get_info_chrono_stats(tp, info);
2874
2875 info->tcpi_segs_out = tp->segs_out;
2876 info->tcpi_segs_in = tp->segs_in;
2877
2878 info->tcpi_min_rtt = tcp_min_rtt(tp);
2879 info->tcpi_data_segs_in = tp->data_segs_in;
2880 info->tcpi_data_segs_out = tp->data_segs_out;
2881
2882 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
2883 rate = READ_ONCE(tp->rate_delivered);
2884 intv = READ_ONCE(tp->rate_interval_us);
2885 if (rate && intv) {
2886 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
2887 do_div(rate64, intv);
2888 info->tcpi_delivery_rate = rate64;
2889 }
2890 unlock_sock_fast(sk, slow);
2891 }
2892 EXPORT_SYMBOL_GPL(tcp_get_info);
2893
2894 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
2895 {
2896 const struct tcp_sock *tp = tcp_sk(sk);
2897 struct sk_buff *stats;
2898 struct tcp_info info;
2899
2900 stats = alloc_skb(5 * nla_total_size_64bit(sizeof(u64)), GFP_ATOMIC);
2901 if (!stats)
2902 return NULL;
2903
2904 tcp_get_info_chrono_stats(tp, &info);
2905 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
2906 info.tcpi_busy_time, TCP_NLA_PAD);
2907 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
2908 info.tcpi_rwnd_limited, TCP_NLA_PAD);
2909 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
2910 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
2911 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
2912 tp->data_segs_out, TCP_NLA_PAD);
2913 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
2914 tp->total_retrans, TCP_NLA_PAD);
2915 return stats;
2916 }
2917
2918 static int do_tcp_getsockopt(struct sock *sk, int level,
2919 int optname, char __user *optval, int __user *optlen)
2920 {
2921 struct inet_connection_sock *icsk = inet_csk(sk);
2922 struct tcp_sock *tp = tcp_sk(sk);
2923 struct net *net = sock_net(sk);
2924 int val, len;
2925
2926 if (get_user(len, optlen))
2927 return -EFAULT;
2928
2929 len = min_t(unsigned int, len, sizeof(int));
2930
2931 if (len < 0)
2932 return -EINVAL;
2933
2934 switch (optname) {
2935 case TCP_MAXSEG:
2936 val = tp->mss_cache;
2937 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2938 val = tp->rx_opt.user_mss;
2939 if (tp->repair)
2940 val = tp->rx_opt.mss_clamp;
2941 break;
2942 case TCP_NODELAY:
2943 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2944 break;
2945 case TCP_CORK:
2946 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2947 break;
2948 case TCP_KEEPIDLE:
2949 val = keepalive_time_when(tp) / HZ;
2950 break;
2951 case TCP_KEEPINTVL:
2952 val = keepalive_intvl_when(tp) / HZ;
2953 break;
2954 case TCP_KEEPCNT:
2955 val = keepalive_probes(tp);
2956 break;
2957 case TCP_SYNCNT:
2958 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
2959 break;
2960 case TCP_LINGER2:
2961 val = tp->linger2;
2962 if (val >= 0)
2963 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
2964 break;
2965 case TCP_DEFER_ACCEPT:
2966 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2967 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2968 break;
2969 case TCP_WINDOW_CLAMP:
2970 val = tp->window_clamp;
2971 break;
2972 case TCP_INFO: {
2973 struct tcp_info info;
2974
2975 if (get_user(len, optlen))
2976 return -EFAULT;
2977
2978 tcp_get_info(sk, &info);
2979
2980 len = min_t(unsigned int, len, sizeof(info));
2981 if (put_user(len, optlen))
2982 return -EFAULT;
2983 if (copy_to_user(optval, &info, len))
2984 return -EFAULT;
2985 return 0;
2986 }
2987 case TCP_CC_INFO: {
2988 const struct tcp_congestion_ops *ca_ops;
2989 union tcp_cc_info info;
2990 size_t sz = 0;
2991 int attr;
2992
2993 if (get_user(len, optlen))
2994 return -EFAULT;
2995
2996 ca_ops = icsk->icsk_ca_ops;
2997 if (ca_ops && ca_ops->get_info)
2998 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
2999
3000 len = min_t(unsigned int, len, sz);
3001 if (put_user(len, optlen))
3002 return -EFAULT;
3003 if (copy_to_user(optval, &info, len))
3004 return -EFAULT;
3005 return 0;
3006 }
3007 case TCP_QUICKACK:
3008 val = !icsk->icsk_ack.pingpong;
3009 break;
3010
3011 case TCP_CONGESTION:
3012 if (get_user(len, optlen))
3013 return -EFAULT;
3014 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3015 if (put_user(len, optlen))
3016 return -EFAULT;
3017 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3018 return -EFAULT;
3019 return 0;
3020
3021 case TCP_THIN_LINEAR_TIMEOUTS:
3022 val = tp->thin_lto;
3023 break;
3024
3025 case TCP_THIN_DUPACK:
3026 val = 0;
3027 break;
3028
3029 case TCP_REPAIR:
3030 val = tp->repair;
3031 break;
3032
3033 case TCP_REPAIR_QUEUE:
3034 if (tp->repair)
3035 val = tp->repair_queue;
3036 else
3037 return -EINVAL;
3038 break;
3039
3040 case TCP_REPAIR_WINDOW: {
3041 struct tcp_repair_window opt;
3042
3043 if (get_user(len, optlen))
3044 return -EFAULT;
3045
3046 if (len != sizeof(opt))
3047 return -EINVAL;
3048
3049 if (!tp->repair)
3050 return -EPERM;
3051
3052 opt.snd_wl1 = tp->snd_wl1;
3053 opt.snd_wnd = tp->snd_wnd;
3054 opt.max_window = tp->max_window;
3055 opt.rcv_wnd = tp->rcv_wnd;
3056 opt.rcv_wup = tp->rcv_wup;
3057
3058 if (copy_to_user(optval, &opt, len))
3059 return -EFAULT;
3060 return 0;
3061 }
3062 case TCP_QUEUE_SEQ:
3063 if (tp->repair_queue == TCP_SEND_QUEUE)
3064 val = tp->write_seq;
3065 else if (tp->repair_queue == TCP_RECV_QUEUE)
3066 val = tp->rcv_nxt;
3067 else
3068 return -EINVAL;
3069 break;
3070
3071 case TCP_USER_TIMEOUT:
3072 val = jiffies_to_msecs(icsk->icsk_user_timeout);
3073 break;
3074
3075 case TCP_FASTOPEN:
3076 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3077 break;
3078
3079 case TCP_FASTOPEN_CONNECT:
3080 val = tp->fastopen_connect;
3081 break;
3082
3083 case TCP_TIMESTAMP:
3084 val = tcp_time_stamp + tp->tsoffset;
3085 break;
3086 case TCP_NOTSENT_LOWAT:
3087 val = tp->notsent_lowat;
3088 break;
3089 case TCP_SAVE_SYN:
3090 val = tp->save_syn;
3091 break;
3092 case TCP_SAVED_SYN: {
3093 if (get_user(len, optlen))
3094 return -EFAULT;
3095
3096 lock_sock(sk);
3097 if (tp->saved_syn) {
3098 if (len < tp->saved_syn[0]) {
3099 if (put_user(tp->saved_syn[0], optlen)) {
3100 release_sock(sk);
3101 return -EFAULT;
3102 }
3103 release_sock(sk);
3104 return -EINVAL;
3105 }
3106 len = tp->saved_syn[0];
3107 if (put_user(len, optlen)) {
3108 release_sock(sk);
3109 return -EFAULT;
3110 }
3111 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3112 release_sock(sk);
3113 return -EFAULT;
3114 }
3115 tcp_saved_syn_free(tp);
3116 release_sock(sk);
3117 } else {
3118 release_sock(sk);
3119 len = 0;
3120 if (put_user(len, optlen))
3121 return -EFAULT;
3122 }
3123 return 0;
3124 }
3125 default:
3126 return -ENOPROTOOPT;
3127 }
3128
3129 if (put_user(len, optlen))
3130 return -EFAULT;
3131 if (copy_to_user(optval, &val, len))
3132 return -EFAULT;
3133 return 0;
3134 }
3135
3136 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3137 int __user *optlen)
3138 {
3139 struct inet_connection_sock *icsk = inet_csk(sk);
3140
3141 if (level != SOL_TCP)
3142 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3143 optval, optlen);
3144 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3145 }
3146 EXPORT_SYMBOL(tcp_getsockopt);
3147
3148 #ifdef CONFIG_COMPAT
3149 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3150 char __user *optval, int __user *optlen)
3151 {
3152 if (level != SOL_TCP)
3153 return inet_csk_compat_getsockopt(sk, level, optname,
3154 optval, optlen);
3155 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3156 }
3157 EXPORT_SYMBOL(compat_tcp_getsockopt);
3158 #endif
3159
3160 #ifdef CONFIG_TCP_MD5SIG
3161 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3162 static DEFINE_MUTEX(tcp_md5sig_mutex);
3163 static bool tcp_md5sig_pool_populated = false;
3164
3165 static void __tcp_alloc_md5sig_pool(void)
3166 {
3167 struct crypto_ahash *hash;
3168 int cpu;
3169
3170 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3171 if (IS_ERR(hash))
3172 return;
3173
3174 for_each_possible_cpu(cpu) {
3175 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3176 struct ahash_request *req;
3177
3178 if (!scratch) {
3179 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3180 sizeof(struct tcphdr),
3181 GFP_KERNEL,
3182 cpu_to_node(cpu));
3183 if (!scratch)
3184 return;
3185 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3186 }
3187 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3188 continue;
3189
3190 req = ahash_request_alloc(hash, GFP_KERNEL);
3191 if (!req)
3192 return;
3193
3194 ahash_request_set_callback(req, 0, NULL, NULL);
3195
3196 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3197 }
3198 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3199 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3200 */
3201 smp_wmb();
3202 tcp_md5sig_pool_populated = true;
3203 }
3204
3205 bool tcp_alloc_md5sig_pool(void)
3206 {
3207 if (unlikely(!tcp_md5sig_pool_populated)) {
3208 mutex_lock(&tcp_md5sig_mutex);
3209
3210 if (!tcp_md5sig_pool_populated)
3211 __tcp_alloc_md5sig_pool();
3212
3213 mutex_unlock(&tcp_md5sig_mutex);
3214 }
3215 return tcp_md5sig_pool_populated;
3216 }
3217 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3218
3219
3220 /**
3221 * tcp_get_md5sig_pool - get md5sig_pool for this user
3222 *
3223 * We use percpu structure, so if we succeed, we exit with preemption
3224 * and BH disabled, to make sure another thread or softirq handling
3225 * wont try to get same context.
3226 */
3227 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3228 {
3229 local_bh_disable();
3230
3231 if (tcp_md5sig_pool_populated) {
3232 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3233 smp_rmb();
3234 return this_cpu_ptr(&tcp_md5sig_pool);
3235 }
3236 local_bh_enable();
3237 return NULL;
3238 }
3239 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3240
3241 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3242 const struct sk_buff *skb, unsigned int header_len)
3243 {
3244 struct scatterlist sg;
3245 const struct tcphdr *tp = tcp_hdr(skb);
3246 struct ahash_request *req = hp->md5_req;
3247 unsigned int i;
3248 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3249 skb_headlen(skb) - header_len : 0;
3250 const struct skb_shared_info *shi = skb_shinfo(skb);
3251 struct sk_buff *frag_iter;
3252
3253 sg_init_table(&sg, 1);
3254
3255 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3256 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3257 if (crypto_ahash_update(req))
3258 return 1;
3259
3260 for (i = 0; i < shi->nr_frags; ++i) {
3261 const struct skb_frag_struct *f = &shi->frags[i];
3262 unsigned int offset = f->page_offset;
3263 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3264
3265 sg_set_page(&sg, page, skb_frag_size(f),
3266 offset_in_page(offset));
3267 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3268 if (crypto_ahash_update(req))
3269 return 1;
3270 }
3271
3272 skb_walk_frags(skb, frag_iter)
3273 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3274 return 1;
3275
3276 return 0;
3277 }
3278 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3279
3280 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3281 {
3282 struct scatterlist sg;
3283
3284 sg_init_one(&sg, key->key, key->keylen);
3285 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3286 return crypto_ahash_update(hp->md5_req);
3287 }
3288 EXPORT_SYMBOL(tcp_md5_hash_key);
3289
3290 #endif
3291
3292 void tcp_done(struct sock *sk)
3293 {
3294 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3295
3296 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3297 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3298
3299 tcp_set_state(sk, TCP_CLOSE);
3300 tcp_clear_xmit_timers(sk);
3301 if (req)
3302 reqsk_fastopen_remove(sk, req, false);
3303
3304 sk->sk_shutdown = SHUTDOWN_MASK;
3305
3306 if (!sock_flag(sk, SOCK_DEAD))
3307 sk->sk_state_change(sk);
3308 else
3309 inet_csk_destroy_sock(sk);
3310 }
3311 EXPORT_SYMBOL_GPL(tcp_done);
3312
3313 int tcp_abort(struct sock *sk, int err)
3314 {
3315 if (!sk_fullsock(sk)) {
3316 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3317 struct request_sock *req = inet_reqsk(sk);
3318
3319 local_bh_disable();
3320 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3321 req);
3322 local_bh_enable();
3323 return 0;
3324 }
3325 return -EOPNOTSUPP;
3326 }
3327
3328 /* Don't race with userspace socket closes such as tcp_close. */
3329 lock_sock(sk);
3330
3331 if (sk->sk_state == TCP_LISTEN) {
3332 tcp_set_state(sk, TCP_CLOSE);
3333 inet_csk_listen_stop(sk);
3334 }
3335
3336 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3337 local_bh_disable();
3338 bh_lock_sock(sk);
3339
3340 if (!sock_flag(sk, SOCK_DEAD)) {
3341 sk->sk_err = err;
3342 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3343 smp_wmb();
3344 sk->sk_error_report(sk);
3345 if (tcp_need_reset(sk->sk_state))
3346 tcp_send_active_reset(sk, GFP_ATOMIC);
3347 tcp_done(sk);
3348 }
3349
3350 bh_unlock_sock(sk);
3351 local_bh_enable();
3352 release_sock(sk);
3353 return 0;
3354 }
3355 EXPORT_SYMBOL_GPL(tcp_abort);
3356
3357 extern struct tcp_congestion_ops tcp_reno;
3358
3359 static __initdata unsigned long thash_entries;
3360 static int __init set_thash_entries(char *str)
3361 {
3362 ssize_t ret;
3363
3364 if (!str)
3365 return 0;
3366
3367 ret = kstrtoul(str, 0, &thash_entries);
3368 if (ret)
3369 return 0;
3370
3371 return 1;
3372 }
3373 __setup("thash_entries=", set_thash_entries);
3374
3375 static void __init tcp_init_mem(void)
3376 {
3377 unsigned long limit = nr_free_buffer_pages() / 16;
3378
3379 limit = max(limit, 128UL);
3380 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3381 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3382 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3383 }
3384
3385 void __init tcp_init(void)
3386 {
3387 int max_rshare, max_wshare, cnt;
3388 unsigned long limit;
3389 unsigned int i;
3390
3391 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3392 FIELD_SIZEOF(struct sk_buff, cb));
3393
3394 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3395 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3396 inet_hashinfo_init(&tcp_hashinfo);
3397 tcp_hashinfo.bind_bucket_cachep =
3398 kmem_cache_create("tcp_bind_bucket",
3399 sizeof(struct inet_bind_bucket), 0,
3400 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3401
3402 /* Size and allocate the main established and bind bucket
3403 * hash tables.
3404 *
3405 * The methodology is similar to that of the buffer cache.
3406 */
3407 tcp_hashinfo.ehash =
3408 alloc_large_system_hash("TCP established",
3409 sizeof(struct inet_ehash_bucket),
3410 thash_entries,
3411 17, /* one slot per 128 KB of memory */
3412 0,
3413 NULL,
3414 &tcp_hashinfo.ehash_mask,
3415 0,
3416 thash_entries ? 0 : 512 * 1024);
3417 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3418 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3419
3420 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3421 panic("TCP: failed to alloc ehash_locks");
3422 tcp_hashinfo.bhash =
3423 alloc_large_system_hash("TCP bind",
3424 sizeof(struct inet_bind_hashbucket),
3425 tcp_hashinfo.ehash_mask + 1,
3426 17, /* one slot per 128 KB of memory */
3427 0,
3428 &tcp_hashinfo.bhash_size,
3429 NULL,
3430 0,
3431 64 * 1024);
3432 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3433 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3434 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3435 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3436 }
3437
3438
3439 cnt = tcp_hashinfo.ehash_mask + 1;
3440 sysctl_tcp_max_orphans = cnt / 2;
3441
3442 tcp_init_mem();
3443 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3444 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3445 max_wshare = min(4UL*1024*1024, limit);
3446 max_rshare = min(6UL*1024*1024, limit);
3447
3448 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3449 sysctl_tcp_wmem[1] = 16*1024;
3450 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3451
3452 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3453 sysctl_tcp_rmem[1] = 87380;
3454 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3455
3456 pr_info("Hash tables configured (established %u bind %u)\n",
3457 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3458
3459 tcp_v4_init();
3460 tcp_metrics_init();
3461 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3462 tcp_tasklet_init();
3463 }