]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/ipv4/tcp.c
Add clock changes and mute gpios (#1938)
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / tcp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248 #define pr_fmt(fmt) "TCP: " fmt
249
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279
280 #include <linux/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <net/busy_poll.h>
283
284 int sysctl_tcp_min_tso_segs __read_mostly = 2;
285
286 int sysctl_tcp_autocorking __read_mostly = 1;
287
288 struct percpu_counter tcp_orphan_count;
289 EXPORT_SYMBOL_GPL(tcp_orphan_count);
290
291 long sysctl_tcp_mem[3] __read_mostly;
292 int sysctl_tcp_wmem[3] __read_mostly;
293 int sysctl_tcp_rmem[3] __read_mostly;
294
295 EXPORT_SYMBOL(sysctl_tcp_mem);
296 EXPORT_SYMBOL(sysctl_tcp_rmem);
297 EXPORT_SYMBOL(sysctl_tcp_wmem);
298
299 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
300 EXPORT_SYMBOL(tcp_memory_allocated);
301
302 /*
303 * Current number of TCP sockets.
304 */
305 struct percpu_counter tcp_sockets_allocated;
306 EXPORT_SYMBOL(tcp_sockets_allocated);
307
308 /*
309 * TCP splice context
310 */
311 struct tcp_splice_state {
312 struct pipe_inode_info *pipe;
313 size_t len;
314 unsigned int flags;
315 };
316
317 /*
318 * Pressure flag: try to collapse.
319 * Technical note: it is used by multiple contexts non atomically.
320 * All the __sk_mem_schedule() is of this nature: accounting
321 * is strict, actions are advisory and have some latency.
322 */
323 int tcp_memory_pressure __read_mostly;
324 EXPORT_SYMBOL(tcp_memory_pressure);
325
326 void tcp_enter_memory_pressure(struct sock *sk)
327 {
328 if (!tcp_memory_pressure) {
329 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
330 tcp_memory_pressure = 1;
331 }
332 }
333 EXPORT_SYMBOL(tcp_enter_memory_pressure);
334
335 /* Convert seconds to retransmits based on initial and max timeout */
336 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
337 {
338 u8 res = 0;
339
340 if (seconds > 0) {
341 int period = timeout;
342
343 res = 1;
344 while (seconds > period && res < 255) {
345 res++;
346 timeout <<= 1;
347 if (timeout > rto_max)
348 timeout = rto_max;
349 period += timeout;
350 }
351 }
352 return res;
353 }
354
355 /* Convert retransmits to seconds based on initial and max timeout */
356 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
357 {
358 int period = 0;
359
360 if (retrans > 0) {
361 period = timeout;
362 while (--retrans) {
363 timeout <<= 1;
364 if (timeout > rto_max)
365 timeout = rto_max;
366 period += timeout;
367 }
368 }
369 return period;
370 }
371
372 /* Address-family independent initialization for a tcp_sock.
373 *
374 * NOTE: A lot of things set to zero explicitly by call to
375 * sk_alloc() so need not be done here.
376 */
377 void tcp_init_sock(struct sock *sk)
378 {
379 struct inet_connection_sock *icsk = inet_csk(sk);
380 struct tcp_sock *tp = tcp_sk(sk);
381
382 tp->out_of_order_queue = RB_ROOT;
383 tcp_init_xmit_timers(sk);
384 tcp_prequeue_init(tp);
385 INIT_LIST_HEAD(&tp->tsq_node);
386
387 icsk->icsk_rto = TCP_TIMEOUT_INIT;
388 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
389 minmax_reset(&tp->rtt_min, tcp_time_stamp, ~0U);
390
391 /* So many TCP implementations out there (incorrectly) count the
392 * initial SYN frame in their delayed-ACK and congestion control
393 * algorithms that we must have the following bandaid to talk
394 * efficiently to them. -DaveM
395 */
396 tp->snd_cwnd = TCP_INIT_CWND;
397
398 /* There's a bubble in the pipe until at least the first ACK. */
399 tp->app_limited = ~0U;
400
401 /* See draft-stevens-tcpca-spec-01 for discussion of the
402 * initialization of these values.
403 */
404 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
405 tp->snd_cwnd_clamp = ~0;
406 tp->mss_cache = TCP_MSS_DEFAULT;
407
408 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
409 tcp_enable_early_retrans(tp);
410 tcp_assign_congestion_control(sk);
411
412 tp->tsoffset = 0;
413
414 sk->sk_state = TCP_CLOSE;
415
416 sk->sk_write_space = sk_stream_write_space;
417 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
418
419 icsk->icsk_sync_mss = tcp_sync_mss;
420
421 sk->sk_sndbuf = sysctl_tcp_wmem[1];
422 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
423
424 local_bh_disable();
425 sk_sockets_allocated_inc(sk);
426 local_bh_enable();
427 }
428 EXPORT_SYMBOL(tcp_init_sock);
429
430 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags, struct sk_buff *skb)
431 {
432 if (tsflags) {
433 struct skb_shared_info *shinfo = skb_shinfo(skb);
434 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
435
436 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
437 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
438 tcb->txstamp_ack = 1;
439 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
440 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
441 }
442 }
443
444 /*
445 * Wait for a TCP event.
446 *
447 * Note that we don't need to lock the socket, as the upper poll layers
448 * take care of normal races (between the test and the event) and we don't
449 * go look at any of the socket buffers directly.
450 */
451 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
452 {
453 unsigned int mask;
454 struct sock *sk = sock->sk;
455 const struct tcp_sock *tp = tcp_sk(sk);
456 int state;
457
458 sock_rps_record_flow(sk);
459
460 sock_poll_wait(file, sk_sleep(sk), wait);
461
462 state = sk_state_load(sk);
463 if (state == TCP_LISTEN)
464 return inet_csk_listen_poll(sk);
465
466 /* Socket is not locked. We are protected from async events
467 * by poll logic and correct handling of state changes
468 * made by other threads is impossible in any case.
469 */
470
471 mask = 0;
472
473 /*
474 * POLLHUP is certainly not done right. But poll() doesn't
475 * have a notion of HUP in just one direction, and for a
476 * socket the read side is more interesting.
477 *
478 * Some poll() documentation says that POLLHUP is incompatible
479 * with the POLLOUT/POLLWR flags, so somebody should check this
480 * all. But careful, it tends to be safer to return too many
481 * bits than too few, and you can easily break real applications
482 * if you don't tell them that something has hung up!
483 *
484 * Check-me.
485 *
486 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
487 * our fs/select.c). It means that after we received EOF,
488 * poll always returns immediately, making impossible poll() on write()
489 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
490 * if and only if shutdown has been made in both directions.
491 * Actually, it is interesting to look how Solaris and DUX
492 * solve this dilemma. I would prefer, if POLLHUP were maskable,
493 * then we could set it on SND_SHUTDOWN. BTW examples given
494 * in Stevens' books assume exactly this behaviour, it explains
495 * why POLLHUP is incompatible with POLLOUT. --ANK
496 *
497 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
498 * blocking on fresh not-connected or disconnected socket. --ANK
499 */
500 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
501 mask |= POLLHUP;
502 if (sk->sk_shutdown & RCV_SHUTDOWN)
503 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
504
505 /* Connected or passive Fast Open socket? */
506 if (state != TCP_SYN_SENT &&
507 (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
508 int target = sock_rcvlowat(sk, 0, INT_MAX);
509
510 if (tp->urg_seq == tp->copied_seq &&
511 !sock_flag(sk, SOCK_URGINLINE) &&
512 tp->urg_data)
513 target++;
514
515 if (tp->rcv_nxt - tp->copied_seq >= target)
516 mask |= POLLIN | POLLRDNORM;
517
518 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
519 if (sk_stream_is_writeable(sk)) {
520 mask |= POLLOUT | POLLWRNORM;
521 } else { /* send SIGIO later */
522 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
523 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
524
525 /* Race breaker. If space is freed after
526 * wspace test but before the flags are set,
527 * IO signal will be lost. Memory barrier
528 * pairs with the input side.
529 */
530 smp_mb__after_atomic();
531 if (sk_stream_is_writeable(sk))
532 mask |= POLLOUT | POLLWRNORM;
533 }
534 } else
535 mask |= POLLOUT | POLLWRNORM;
536
537 if (tp->urg_data & TCP_URG_VALID)
538 mask |= POLLPRI;
539 }
540 /* This barrier is coupled with smp_wmb() in tcp_reset() */
541 smp_rmb();
542 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
543 mask |= POLLERR;
544
545 return mask;
546 }
547 EXPORT_SYMBOL(tcp_poll);
548
549 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
550 {
551 struct tcp_sock *tp = tcp_sk(sk);
552 int answ;
553 bool slow;
554
555 switch (cmd) {
556 case SIOCINQ:
557 if (sk->sk_state == TCP_LISTEN)
558 return -EINVAL;
559
560 slow = lock_sock_fast(sk);
561 answ = tcp_inq(sk);
562 unlock_sock_fast(sk, slow);
563 break;
564 case SIOCATMARK:
565 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
566 break;
567 case SIOCOUTQ:
568 if (sk->sk_state == TCP_LISTEN)
569 return -EINVAL;
570
571 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
572 answ = 0;
573 else
574 answ = tp->write_seq - tp->snd_una;
575 break;
576 case SIOCOUTQNSD:
577 if (sk->sk_state == TCP_LISTEN)
578 return -EINVAL;
579
580 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
581 answ = 0;
582 else
583 answ = tp->write_seq - tp->snd_nxt;
584 break;
585 default:
586 return -ENOIOCTLCMD;
587 }
588
589 return put_user(answ, (int __user *)arg);
590 }
591 EXPORT_SYMBOL(tcp_ioctl);
592
593 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
594 {
595 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
596 tp->pushed_seq = tp->write_seq;
597 }
598
599 static inline bool forced_push(const struct tcp_sock *tp)
600 {
601 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
602 }
603
604 static void skb_entail(struct sock *sk, struct sk_buff *skb)
605 {
606 struct tcp_sock *tp = tcp_sk(sk);
607 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
608
609 skb->csum = 0;
610 tcb->seq = tcb->end_seq = tp->write_seq;
611 tcb->tcp_flags = TCPHDR_ACK;
612 tcb->sacked = 0;
613 __skb_header_release(skb);
614 tcp_add_write_queue_tail(sk, skb);
615 sk->sk_wmem_queued += skb->truesize;
616 sk_mem_charge(sk, skb->truesize);
617 if (tp->nonagle & TCP_NAGLE_PUSH)
618 tp->nonagle &= ~TCP_NAGLE_PUSH;
619
620 tcp_slow_start_after_idle_check(sk);
621 }
622
623 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
624 {
625 if (flags & MSG_OOB)
626 tp->snd_up = tp->write_seq;
627 }
628
629 /* If a not yet filled skb is pushed, do not send it if
630 * we have data packets in Qdisc or NIC queues :
631 * Because TX completion will happen shortly, it gives a chance
632 * to coalesce future sendmsg() payload into this skb, without
633 * need for a timer, and with no latency trade off.
634 * As packets containing data payload have a bigger truesize
635 * than pure acks (dataless) packets, the last checks prevent
636 * autocorking if we only have an ACK in Qdisc/NIC queues,
637 * or if TX completion was delayed after we processed ACK packet.
638 */
639 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
640 int size_goal)
641 {
642 return skb->len < size_goal &&
643 sysctl_tcp_autocorking &&
644 skb != tcp_write_queue_head(sk) &&
645 atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
646 }
647
648 static void tcp_push(struct sock *sk, int flags, int mss_now,
649 int nonagle, int size_goal)
650 {
651 struct tcp_sock *tp = tcp_sk(sk);
652 struct sk_buff *skb;
653
654 if (!tcp_send_head(sk))
655 return;
656
657 skb = tcp_write_queue_tail(sk);
658 if (!(flags & MSG_MORE) || forced_push(tp))
659 tcp_mark_push(tp, skb);
660
661 tcp_mark_urg(tp, flags);
662
663 if (tcp_should_autocork(sk, skb, size_goal)) {
664
665 /* avoid atomic op if TSQ_THROTTLED bit is already set */
666 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
667 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
668 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
669 }
670 /* It is possible TX completion already happened
671 * before we set TSQ_THROTTLED.
672 */
673 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
674 return;
675 }
676
677 if (flags & MSG_MORE)
678 nonagle = TCP_NAGLE_CORK;
679
680 __tcp_push_pending_frames(sk, mss_now, nonagle);
681 }
682
683 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
684 unsigned int offset, size_t len)
685 {
686 struct tcp_splice_state *tss = rd_desc->arg.data;
687 int ret;
688
689 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
690 min(rd_desc->count, len), tss->flags);
691 if (ret > 0)
692 rd_desc->count -= ret;
693 return ret;
694 }
695
696 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
697 {
698 /* Store TCP splice context information in read_descriptor_t. */
699 read_descriptor_t rd_desc = {
700 .arg.data = tss,
701 .count = tss->len,
702 };
703
704 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
705 }
706
707 /**
708 * tcp_splice_read - splice data from TCP socket to a pipe
709 * @sock: socket to splice from
710 * @ppos: position (not valid)
711 * @pipe: pipe to splice to
712 * @len: number of bytes to splice
713 * @flags: splice modifier flags
714 *
715 * Description:
716 * Will read pages from given socket and fill them into a pipe.
717 *
718 **/
719 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
720 struct pipe_inode_info *pipe, size_t len,
721 unsigned int flags)
722 {
723 struct sock *sk = sock->sk;
724 struct tcp_splice_state tss = {
725 .pipe = pipe,
726 .len = len,
727 .flags = flags,
728 };
729 long timeo;
730 ssize_t spliced;
731 int ret;
732
733 sock_rps_record_flow(sk);
734 /*
735 * We can't seek on a socket input
736 */
737 if (unlikely(*ppos))
738 return -ESPIPE;
739
740 ret = spliced = 0;
741
742 lock_sock(sk);
743
744 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
745 while (tss.len) {
746 ret = __tcp_splice_read(sk, &tss);
747 if (ret < 0)
748 break;
749 else if (!ret) {
750 if (spliced)
751 break;
752 if (sock_flag(sk, SOCK_DONE))
753 break;
754 if (sk->sk_err) {
755 ret = sock_error(sk);
756 break;
757 }
758 if (sk->sk_shutdown & RCV_SHUTDOWN)
759 break;
760 if (sk->sk_state == TCP_CLOSE) {
761 /*
762 * This occurs when user tries to read
763 * from never connected socket.
764 */
765 if (!sock_flag(sk, SOCK_DONE))
766 ret = -ENOTCONN;
767 break;
768 }
769 if (!timeo) {
770 ret = -EAGAIN;
771 break;
772 }
773 /* if __tcp_splice_read() got nothing while we have
774 * an skb in receive queue, we do not want to loop.
775 * This might happen with URG data.
776 */
777 if (!skb_queue_empty(&sk->sk_receive_queue))
778 break;
779 sk_wait_data(sk, &timeo, NULL);
780 if (signal_pending(current)) {
781 ret = sock_intr_errno(timeo);
782 break;
783 }
784 continue;
785 }
786 tss.len -= ret;
787 spliced += ret;
788
789 if (!timeo)
790 break;
791 release_sock(sk);
792 lock_sock(sk);
793
794 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
795 (sk->sk_shutdown & RCV_SHUTDOWN) ||
796 signal_pending(current))
797 break;
798 }
799
800 release_sock(sk);
801
802 if (spliced)
803 return spliced;
804
805 return ret;
806 }
807 EXPORT_SYMBOL(tcp_splice_read);
808
809 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
810 bool force_schedule)
811 {
812 struct sk_buff *skb;
813
814 /* The TCP header must be at least 32-bit aligned. */
815 size = ALIGN(size, 4);
816
817 if (unlikely(tcp_under_memory_pressure(sk)))
818 sk_mem_reclaim_partial(sk);
819
820 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
821 if (likely(skb)) {
822 bool mem_scheduled;
823
824 if (force_schedule) {
825 mem_scheduled = true;
826 sk_forced_mem_schedule(sk, skb->truesize);
827 } else {
828 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
829 }
830 if (likely(mem_scheduled)) {
831 skb_reserve(skb, sk->sk_prot->max_header);
832 /*
833 * Make sure that we have exactly size bytes
834 * available to the caller, no more, no less.
835 */
836 skb->reserved_tailroom = skb->end - skb->tail - size;
837 return skb;
838 }
839 __kfree_skb(skb);
840 } else {
841 sk->sk_prot->enter_memory_pressure(sk);
842 sk_stream_moderate_sndbuf(sk);
843 }
844 return NULL;
845 }
846
847 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
848 int large_allowed)
849 {
850 struct tcp_sock *tp = tcp_sk(sk);
851 u32 new_size_goal, size_goal;
852
853 if (!large_allowed || !sk_can_gso(sk))
854 return mss_now;
855
856 /* Note : tcp_tso_autosize() will eventually split this later */
857 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
858 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
859
860 /* We try hard to avoid divides here */
861 size_goal = tp->gso_segs * mss_now;
862 if (unlikely(new_size_goal < size_goal ||
863 new_size_goal >= size_goal + mss_now)) {
864 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
865 sk->sk_gso_max_segs);
866 size_goal = tp->gso_segs * mss_now;
867 }
868
869 return max(size_goal, mss_now);
870 }
871
872 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
873 {
874 int mss_now;
875
876 mss_now = tcp_current_mss(sk);
877 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
878
879 return mss_now;
880 }
881
882 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
883 size_t size, int flags)
884 {
885 struct tcp_sock *tp = tcp_sk(sk);
886 int mss_now, size_goal;
887 int err;
888 ssize_t copied;
889 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
890
891 /* Wait for a connection to finish. One exception is TCP Fast Open
892 * (passive side) where data is allowed to be sent before a connection
893 * is fully established.
894 */
895 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
896 !tcp_passive_fastopen(sk)) {
897 err = sk_stream_wait_connect(sk, &timeo);
898 if (err != 0)
899 goto out_err;
900 }
901
902 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
903
904 mss_now = tcp_send_mss(sk, &size_goal, flags);
905 copied = 0;
906
907 err = -EPIPE;
908 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
909 goto out_err;
910
911 while (size > 0) {
912 struct sk_buff *skb = tcp_write_queue_tail(sk);
913 int copy, i;
914 bool can_coalesce;
915
916 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0 ||
917 !tcp_skb_can_collapse_to(skb)) {
918 new_segment:
919 if (!sk_stream_memory_free(sk))
920 goto wait_for_sndbuf;
921
922 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
923 skb_queue_empty(&sk->sk_write_queue));
924 if (!skb)
925 goto wait_for_memory;
926
927 skb_entail(sk, skb);
928 copy = size_goal;
929 }
930
931 if (copy > size)
932 copy = size;
933
934 i = skb_shinfo(skb)->nr_frags;
935 can_coalesce = skb_can_coalesce(skb, i, page, offset);
936 if (!can_coalesce && i >= sysctl_max_skb_frags) {
937 tcp_mark_push(tp, skb);
938 goto new_segment;
939 }
940 if (!sk_wmem_schedule(sk, copy))
941 goto wait_for_memory;
942
943 if (can_coalesce) {
944 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
945 } else {
946 get_page(page);
947 skb_fill_page_desc(skb, i, page, offset, copy);
948 }
949 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
950
951 skb->len += copy;
952 skb->data_len += copy;
953 skb->truesize += copy;
954 sk->sk_wmem_queued += copy;
955 sk_mem_charge(sk, copy);
956 skb->ip_summed = CHECKSUM_PARTIAL;
957 tp->write_seq += copy;
958 TCP_SKB_CB(skb)->end_seq += copy;
959 tcp_skb_pcount_set(skb, 0);
960
961 if (!copied)
962 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
963
964 copied += copy;
965 offset += copy;
966 size -= copy;
967 if (!size) {
968 tcp_tx_timestamp(sk, sk->sk_tsflags, skb);
969 goto out;
970 }
971
972 if (skb->len < size_goal || (flags & MSG_OOB))
973 continue;
974
975 if (forced_push(tp)) {
976 tcp_mark_push(tp, skb);
977 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
978 } else if (skb == tcp_send_head(sk))
979 tcp_push_one(sk, mss_now);
980 continue;
981
982 wait_for_sndbuf:
983 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
984 wait_for_memory:
985 tcp_push(sk, flags & ~MSG_MORE, mss_now,
986 TCP_NAGLE_PUSH, size_goal);
987
988 err = sk_stream_wait_memory(sk, &timeo);
989 if (err != 0)
990 goto do_error;
991
992 mss_now = tcp_send_mss(sk, &size_goal, flags);
993 }
994
995 out:
996 if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
997 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
998 return copied;
999
1000 do_error:
1001 if (copied)
1002 goto out;
1003 out_err:
1004 /* make sure we wake any epoll edge trigger waiter */
1005 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1006 err == -EAGAIN)) {
1007 sk->sk_write_space(sk);
1008 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1009 }
1010 return sk_stream_error(sk, flags, err);
1011 }
1012
1013 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1014 size_t size, int flags)
1015 {
1016 ssize_t res;
1017
1018 if (!(sk->sk_route_caps & NETIF_F_SG) ||
1019 !sk_check_csum_caps(sk))
1020 return sock_no_sendpage(sk->sk_socket, page, offset, size,
1021 flags);
1022
1023 lock_sock(sk);
1024
1025 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1026
1027 res = do_tcp_sendpages(sk, page, offset, size, flags);
1028 release_sock(sk);
1029 return res;
1030 }
1031 EXPORT_SYMBOL(tcp_sendpage);
1032
1033 /* Do not bother using a page frag for very small frames.
1034 * But use this heuristic only for the first skb in write queue.
1035 *
1036 * Having no payload in skb->head allows better SACK shifting
1037 * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1038 * write queue has less skbs.
1039 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1040 * This also speeds up tso_fragment(), since it wont fallback
1041 * to tcp_fragment().
1042 */
1043 static int linear_payload_sz(bool first_skb)
1044 {
1045 if (first_skb)
1046 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1047 return 0;
1048 }
1049
1050 static int select_size(const struct sock *sk, bool sg, bool first_skb)
1051 {
1052 const struct tcp_sock *tp = tcp_sk(sk);
1053 int tmp = tp->mss_cache;
1054
1055 if (sg) {
1056 if (sk_can_gso(sk)) {
1057 tmp = linear_payload_sz(first_skb);
1058 } else {
1059 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1060
1061 if (tmp >= pgbreak &&
1062 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1063 tmp = pgbreak;
1064 }
1065 }
1066
1067 return tmp;
1068 }
1069
1070 void tcp_free_fastopen_req(struct tcp_sock *tp)
1071 {
1072 if (tp->fastopen_req) {
1073 kfree(tp->fastopen_req);
1074 tp->fastopen_req = NULL;
1075 }
1076 }
1077
1078 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1079 int *copied, size_t size)
1080 {
1081 struct tcp_sock *tp = tcp_sk(sk);
1082 int err, flags;
1083
1084 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1085 return -EOPNOTSUPP;
1086 if (tp->fastopen_req)
1087 return -EALREADY; /* Another Fast Open is in progress */
1088
1089 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1090 sk->sk_allocation);
1091 if (unlikely(!tp->fastopen_req))
1092 return -ENOBUFS;
1093 tp->fastopen_req->data = msg;
1094 tp->fastopen_req->size = size;
1095
1096 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1097 err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1098 msg->msg_namelen, flags);
1099 *copied = tp->fastopen_req->copied;
1100 tcp_free_fastopen_req(tp);
1101 return err;
1102 }
1103
1104 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1105 {
1106 struct tcp_sock *tp = tcp_sk(sk);
1107 struct sk_buff *skb;
1108 struct sockcm_cookie sockc;
1109 int flags, err, copied = 0;
1110 int mss_now = 0, size_goal, copied_syn = 0;
1111 bool process_backlog = false;
1112 bool sg;
1113 long timeo;
1114
1115 lock_sock(sk);
1116
1117 flags = msg->msg_flags;
1118 if (flags & MSG_FASTOPEN) {
1119 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1120 if (err == -EINPROGRESS && copied_syn > 0)
1121 goto out;
1122 else if (err)
1123 goto out_err;
1124 }
1125
1126 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1127
1128 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1129
1130 /* Wait for a connection to finish. One exception is TCP Fast Open
1131 * (passive side) where data is allowed to be sent before a connection
1132 * is fully established.
1133 */
1134 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1135 !tcp_passive_fastopen(sk)) {
1136 err = sk_stream_wait_connect(sk, &timeo);
1137 if (err != 0)
1138 goto do_error;
1139 }
1140
1141 if (unlikely(tp->repair)) {
1142 if (tp->repair_queue == TCP_RECV_QUEUE) {
1143 copied = tcp_send_rcvq(sk, msg, size);
1144 goto out_nopush;
1145 }
1146
1147 err = -EINVAL;
1148 if (tp->repair_queue == TCP_NO_QUEUE)
1149 goto out_err;
1150
1151 /* 'common' sending to sendq */
1152 }
1153
1154 sockc.tsflags = sk->sk_tsflags;
1155 if (msg->msg_controllen) {
1156 err = sock_cmsg_send(sk, msg, &sockc);
1157 if (unlikely(err)) {
1158 err = -EINVAL;
1159 goto out_err;
1160 }
1161 }
1162
1163 /* This should be in poll */
1164 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1165
1166 /* Ok commence sending. */
1167 copied = 0;
1168
1169 restart:
1170 mss_now = tcp_send_mss(sk, &size_goal, flags);
1171
1172 err = -EPIPE;
1173 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1174 goto do_error;
1175
1176 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1177
1178 while (msg_data_left(msg)) {
1179 int copy = 0;
1180 int max = size_goal;
1181
1182 skb = tcp_write_queue_tail(sk);
1183 if (tcp_send_head(sk)) {
1184 if (skb->ip_summed == CHECKSUM_NONE)
1185 max = mss_now;
1186 copy = max - skb->len;
1187 }
1188
1189 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1190 bool first_skb;
1191
1192 new_segment:
1193 /* Allocate new segment. If the interface is SG,
1194 * allocate skb fitting to single page.
1195 */
1196 if (!sk_stream_memory_free(sk))
1197 goto wait_for_sndbuf;
1198
1199 if (process_backlog && sk_flush_backlog(sk)) {
1200 process_backlog = false;
1201 goto restart;
1202 }
1203 first_skb = skb_queue_empty(&sk->sk_write_queue);
1204 skb = sk_stream_alloc_skb(sk,
1205 select_size(sk, sg, first_skb),
1206 sk->sk_allocation,
1207 first_skb);
1208 if (!skb)
1209 goto wait_for_memory;
1210
1211 process_backlog = true;
1212 /*
1213 * Check whether we can use HW checksum.
1214 */
1215 if (sk_check_csum_caps(sk))
1216 skb->ip_summed = CHECKSUM_PARTIAL;
1217
1218 skb_entail(sk, skb);
1219 copy = size_goal;
1220 max = size_goal;
1221
1222 /* All packets are restored as if they have
1223 * already been sent. skb_mstamp isn't set to
1224 * avoid wrong rtt estimation.
1225 */
1226 if (tp->repair)
1227 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1228 }
1229
1230 /* Try to append data to the end of skb. */
1231 if (copy > msg_data_left(msg))
1232 copy = msg_data_left(msg);
1233
1234 /* Where to copy to? */
1235 if (skb_availroom(skb) > 0) {
1236 /* We have some space in skb head. Superb! */
1237 copy = min_t(int, copy, skb_availroom(skb));
1238 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1239 if (err)
1240 goto do_fault;
1241 } else {
1242 bool merge = true;
1243 int i = skb_shinfo(skb)->nr_frags;
1244 struct page_frag *pfrag = sk_page_frag(sk);
1245
1246 if (!sk_page_frag_refill(sk, pfrag))
1247 goto wait_for_memory;
1248
1249 if (!skb_can_coalesce(skb, i, pfrag->page,
1250 pfrag->offset)) {
1251 if (i >= sysctl_max_skb_frags || !sg) {
1252 tcp_mark_push(tp, skb);
1253 goto new_segment;
1254 }
1255 merge = false;
1256 }
1257
1258 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1259
1260 if (!sk_wmem_schedule(sk, copy))
1261 goto wait_for_memory;
1262
1263 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1264 pfrag->page,
1265 pfrag->offset,
1266 copy);
1267 if (err)
1268 goto do_error;
1269
1270 /* Update the skb. */
1271 if (merge) {
1272 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1273 } else {
1274 skb_fill_page_desc(skb, i, pfrag->page,
1275 pfrag->offset, copy);
1276 get_page(pfrag->page);
1277 }
1278 pfrag->offset += copy;
1279 }
1280
1281 if (!copied)
1282 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1283
1284 tp->write_seq += copy;
1285 TCP_SKB_CB(skb)->end_seq += copy;
1286 tcp_skb_pcount_set(skb, 0);
1287
1288 copied += copy;
1289 if (!msg_data_left(msg)) {
1290 tcp_tx_timestamp(sk, sockc.tsflags, skb);
1291 if (unlikely(flags & MSG_EOR))
1292 TCP_SKB_CB(skb)->eor = 1;
1293 goto out;
1294 }
1295
1296 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1297 continue;
1298
1299 if (forced_push(tp)) {
1300 tcp_mark_push(tp, skb);
1301 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1302 } else if (skb == tcp_send_head(sk))
1303 tcp_push_one(sk, mss_now);
1304 continue;
1305
1306 wait_for_sndbuf:
1307 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1308 wait_for_memory:
1309 if (copied)
1310 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1311 TCP_NAGLE_PUSH, size_goal);
1312
1313 err = sk_stream_wait_memory(sk, &timeo);
1314 if (err != 0)
1315 goto do_error;
1316
1317 mss_now = tcp_send_mss(sk, &size_goal, flags);
1318 }
1319
1320 out:
1321 if (copied)
1322 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1323 out_nopush:
1324 release_sock(sk);
1325 return copied + copied_syn;
1326
1327 do_fault:
1328 if (!skb->len) {
1329 tcp_unlink_write_queue(skb, sk);
1330 /* It is the one place in all of TCP, except connection
1331 * reset, where we can be unlinking the send_head.
1332 */
1333 tcp_check_send_head(sk, skb);
1334 sk_wmem_free_skb(sk, skb);
1335 }
1336
1337 do_error:
1338 if (copied + copied_syn)
1339 goto out;
1340 out_err:
1341 err = sk_stream_error(sk, flags, err);
1342 /* make sure we wake any epoll edge trigger waiter */
1343 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1344 err == -EAGAIN)) {
1345 sk->sk_write_space(sk);
1346 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1347 }
1348 release_sock(sk);
1349 return err;
1350 }
1351 EXPORT_SYMBOL(tcp_sendmsg);
1352
1353 /*
1354 * Handle reading urgent data. BSD has very simple semantics for
1355 * this, no blocking and very strange errors 8)
1356 */
1357
1358 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1359 {
1360 struct tcp_sock *tp = tcp_sk(sk);
1361
1362 /* No URG data to read. */
1363 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1364 tp->urg_data == TCP_URG_READ)
1365 return -EINVAL; /* Yes this is right ! */
1366
1367 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1368 return -ENOTCONN;
1369
1370 if (tp->urg_data & TCP_URG_VALID) {
1371 int err = 0;
1372 char c = tp->urg_data;
1373
1374 if (!(flags & MSG_PEEK))
1375 tp->urg_data = TCP_URG_READ;
1376
1377 /* Read urgent data. */
1378 msg->msg_flags |= MSG_OOB;
1379
1380 if (len > 0) {
1381 if (!(flags & MSG_TRUNC))
1382 err = memcpy_to_msg(msg, &c, 1);
1383 len = 1;
1384 } else
1385 msg->msg_flags |= MSG_TRUNC;
1386
1387 return err ? -EFAULT : len;
1388 }
1389
1390 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1391 return 0;
1392
1393 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1394 * the available implementations agree in this case:
1395 * this call should never block, independent of the
1396 * blocking state of the socket.
1397 * Mike <pall@rz.uni-karlsruhe.de>
1398 */
1399 return -EAGAIN;
1400 }
1401
1402 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1403 {
1404 struct sk_buff *skb;
1405 int copied = 0, err = 0;
1406
1407 /* XXX -- need to support SO_PEEK_OFF */
1408
1409 skb_queue_walk(&sk->sk_write_queue, skb) {
1410 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1411 if (err)
1412 break;
1413
1414 copied += skb->len;
1415 }
1416
1417 return err ?: copied;
1418 }
1419
1420 /* Clean up the receive buffer for full frames taken by the user,
1421 * then send an ACK if necessary. COPIED is the number of bytes
1422 * tcp_recvmsg has given to the user so far, it speeds up the
1423 * calculation of whether or not we must ACK for the sake of
1424 * a window update.
1425 */
1426 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1427 {
1428 struct tcp_sock *tp = tcp_sk(sk);
1429 bool time_to_ack = false;
1430
1431 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1432
1433 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1434 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1435 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1436
1437 if (inet_csk_ack_scheduled(sk)) {
1438 const struct inet_connection_sock *icsk = inet_csk(sk);
1439 /* Delayed ACKs frequently hit locked sockets during bulk
1440 * receive. */
1441 if (icsk->icsk_ack.blocked ||
1442 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1443 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1444 /*
1445 * If this read emptied read buffer, we send ACK, if
1446 * connection is not bidirectional, user drained
1447 * receive buffer and there was a small segment
1448 * in queue.
1449 */
1450 (copied > 0 &&
1451 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1452 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1453 !icsk->icsk_ack.pingpong)) &&
1454 !atomic_read(&sk->sk_rmem_alloc)))
1455 time_to_ack = true;
1456 }
1457
1458 /* We send an ACK if we can now advertise a non-zero window
1459 * which has been raised "significantly".
1460 *
1461 * Even if window raised up to infinity, do not send window open ACK
1462 * in states, where we will not receive more. It is useless.
1463 */
1464 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1465 __u32 rcv_window_now = tcp_receive_window(tp);
1466
1467 /* Optimize, __tcp_select_window() is not cheap. */
1468 if (2*rcv_window_now <= tp->window_clamp) {
1469 __u32 new_window = __tcp_select_window(sk);
1470
1471 /* Send ACK now, if this read freed lots of space
1472 * in our buffer. Certainly, new_window is new window.
1473 * We can advertise it now, if it is not less than current one.
1474 * "Lots" means "at least twice" here.
1475 */
1476 if (new_window && new_window >= 2 * rcv_window_now)
1477 time_to_ack = true;
1478 }
1479 }
1480 if (time_to_ack)
1481 tcp_send_ack(sk);
1482 }
1483
1484 static void tcp_prequeue_process(struct sock *sk)
1485 {
1486 struct sk_buff *skb;
1487 struct tcp_sock *tp = tcp_sk(sk);
1488
1489 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1490
1491 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1492 sk_backlog_rcv(sk, skb);
1493
1494 /* Clear memory counter. */
1495 tp->ucopy.memory = 0;
1496 }
1497
1498 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1499 {
1500 struct sk_buff *skb;
1501 u32 offset;
1502
1503 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1504 offset = seq - TCP_SKB_CB(skb)->seq;
1505 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1506 pr_err_once("%s: found a SYN, please report !\n", __func__);
1507 offset--;
1508 }
1509 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1510 *off = offset;
1511 return skb;
1512 }
1513 /* This looks weird, but this can happen if TCP collapsing
1514 * splitted a fat GRO packet, while we released socket lock
1515 * in skb_splice_bits()
1516 */
1517 sk_eat_skb(sk, skb);
1518 }
1519 return NULL;
1520 }
1521
1522 /*
1523 * This routine provides an alternative to tcp_recvmsg() for routines
1524 * that would like to handle copying from skbuffs directly in 'sendfile'
1525 * fashion.
1526 * Note:
1527 * - It is assumed that the socket was locked by the caller.
1528 * - The routine does not block.
1529 * - At present, there is no support for reading OOB data
1530 * or for 'peeking' the socket using this routine
1531 * (although both would be easy to implement).
1532 */
1533 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1534 sk_read_actor_t recv_actor)
1535 {
1536 struct sk_buff *skb;
1537 struct tcp_sock *tp = tcp_sk(sk);
1538 u32 seq = tp->copied_seq;
1539 u32 offset;
1540 int copied = 0;
1541
1542 if (sk->sk_state == TCP_LISTEN)
1543 return -ENOTCONN;
1544 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1545 if (offset < skb->len) {
1546 int used;
1547 size_t len;
1548
1549 len = skb->len - offset;
1550 /* Stop reading if we hit a patch of urgent data */
1551 if (tp->urg_data) {
1552 u32 urg_offset = tp->urg_seq - seq;
1553 if (urg_offset < len)
1554 len = urg_offset;
1555 if (!len)
1556 break;
1557 }
1558 used = recv_actor(desc, skb, offset, len);
1559 if (used <= 0) {
1560 if (!copied)
1561 copied = used;
1562 break;
1563 } else if (used <= len) {
1564 seq += used;
1565 copied += used;
1566 offset += used;
1567 }
1568 /* If recv_actor drops the lock (e.g. TCP splice
1569 * receive) the skb pointer might be invalid when
1570 * getting here: tcp_collapse might have deleted it
1571 * while aggregating skbs from the socket queue.
1572 */
1573 skb = tcp_recv_skb(sk, seq - 1, &offset);
1574 if (!skb)
1575 break;
1576 /* TCP coalescing might have appended data to the skb.
1577 * Try to splice more frags
1578 */
1579 if (offset + 1 != skb->len)
1580 continue;
1581 }
1582 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1583 sk_eat_skb(sk, skb);
1584 ++seq;
1585 break;
1586 }
1587 sk_eat_skb(sk, skb);
1588 if (!desc->count)
1589 break;
1590 tp->copied_seq = seq;
1591 }
1592 tp->copied_seq = seq;
1593
1594 tcp_rcv_space_adjust(sk);
1595
1596 /* Clean up data we have read: This will do ACK frames. */
1597 if (copied > 0) {
1598 tcp_recv_skb(sk, seq, &offset);
1599 tcp_cleanup_rbuf(sk, copied);
1600 }
1601 return copied;
1602 }
1603 EXPORT_SYMBOL(tcp_read_sock);
1604
1605 int tcp_peek_len(struct socket *sock)
1606 {
1607 return tcp_inq(sock->sk);
1608 }
1609 EXPORT_SYMBOL(tcp_peek_len);
1610
1611 /*
1612 * This routine copies from a sock struct into the user buffer.
1613 *
1614 * Technical note: in 2.3 we work on _locked_ socket, so that
1615 * tricks with *seq access order and skb->users are not required.
1616 * Probably, code can be easily improved even more.
1617 */
1618
1619 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1620 int flags, int *addr_len)
1621 {
1622 struct tcp_sock *tp = tcp_sk(sk);
1623 int copied = 0;
1624 u32 peek_seq;
1625 u32 *seq;
1626 unsigned long used;
1627 int err;
1628 int target; /* Read at least this many bytes */
1629 long timeo;
1630 struct task_struct *user_recv = NULL;
1631 struct sk_buff *skb, *last;
1632 u32 urg_hole = 0;
1633
1634 if (unlikely(flags & MSG_ERRQUEUE))
1635 return inet_recv_error(sk, msg, len, addr_len);
1636
1637 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1638 (sk->sk_state == TCP_ESTABLISHED))
1639 sk_busy_loop(sk, nonblock);
1640
1641 lock_sock(sk);
1642
1643 err = -ENOTCONN;
1644 if (sk->sk_state == TCP_LISTEN)
1645 goto out;
1646
1647 timeo = sock_rcvtimeo(sk, nonblock);
1648
1649 /* Urgent data needs to be handled specially. */
1650 if (flags & MSG_OOB)
1651 goto recv_urg;
1652
1653 if (unlikely(tp->repair)) {
1654 err = -EPERM;
1655 if (!(flags & MSG_PEEK))
1656 goto out;
1657
1658 if (tp->repair_queue == TCP_SEND_QUEUE)
1659 goto recv_sndq;
1660
1661 err = -EINVAL;
1662 if (tp->repair_queue == TCP_NO_QUEUE)
1663 goto out;
1664
1665 /* 'common' recv queue MSG_PEEK-ing */
1666 }
1667
1668 seq = &tp->copied_seq;
1669 if (flags & MSG_PEEK) {
1670 peek_seq = tp->copied_seq;
1671 seq = &peek_seq;
1672 }
1673
1674 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1675
1676 do {
1677 u32 offset;
1678
1679 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1680 if (tp->urg_data && tp->urg_seq == *seq) {
1681 if (copied)
1682 break;
1683 if (signal_pending(current)) {
1684 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1685 break;
1686 }
1687 }
1688
1689 /* Next get a buffer. */
1690
1691 last = skb_peek_tail(&sk->sk_receive_queue);
1692 skb_queue_walk(&sk->sk_receive_queue, skb) {
1693 last = skb;
1694 /* Now that we have two receive queues this
1695 * shouldn't happen.
1696 */
1697 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1698 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1699 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1700 flags))
1701 break;
1702
1703 offset = *seq - TCP_SKB_CB(skb)->seq;
1704 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1705 pr_err_once("%s: found a SYN, please report !\n", __func__);
1706 offset--;
1707 }
1708 if (offset < skb->len)
1709 goto found_ok_skb;
1710 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1711 goto found_fin_ok;
1712 WARN(!(flags & MSG_PEEK),
1713 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1714 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1715 }
1716
1717 /* Well, if we have backlog, try to process it now yet. */
1718
1719 if (copied >= target && !sk->sk_backlog.tail)
1720 break;
1721
1722 if (copied) {
1723 if (sk->sk_err ||
1724 sk->sk_state == TCP_CLOSE ||
1725 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1726 !timeo ||
1727 signal_pending(current))
1728 break;
1729 } else {
1730 if (sock_flag(sk, SOCK_DONE))
1731 break;
1732
1733 if (sk->sk_err) {
1734 copied = sock_error(sk);
1735 break;
1736 }
1737
1738 if (sk->sk_shutdown & RCV_SHUTDOWN)
1739 break;
1740
1741 if (sk->sk_state == TCP_CLOSE) {
1742 if (!sock_flag(sk, SOCK_DONE)) {
1743 /* This occurs when user tries to read
1744 * from never connected socket.
1745 */
1746 copied = -ENOTCONN;
1747 break;
1748 }
1749 break;
1750 }
1751
1752 if (!timeo) {
1753 copied = -EAGAIN;
1754 break;
1755 }
1756
1757 if (signal_pending(current)) {
1758 copied = sock_intr_errno(timeo);
1759 break;
1760 }
1761 }
1762
1763 tcp_cleanup_rbuf(sk, copied);
1764
1765 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1766 /* Install new reader */
1767 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1768 user_recv = current;
1769 tp->ucopy.task = user_recv;
1770 tp->ucopy.msg = msg;
1771 }
1772
1773 tp->ucopy.len = len;
1774
1775 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1776 !(flags & (MSG_PEEK | MSG_TRUNC)));
1777
1778 /* Ugly... If prequeue is not empty, we have to
1779 * process it before releasing socket, otherwise
1780 * order will be broken at second iteration.
1781 * More elegant solution is required!!!
1782 *
1783 * Look: we have the following (pseudo)queues:
1784 *
1785 * 1. packets in flight
1786 * 2. backlog
1787 * 3. prequeue
1788 * 4. receive_queue
1789 *
1790 * Each queue can be processed only if the next ones
1791 * are empty. At this point we have empty receive_queue.
1792 * But prequeue _can_ be not empty after 2nd iteration,
1793 * when we jumped to start of loop because backlog
1794 * processing added something to receive_queue.
1795 * We cannot release_sock(), because backlog contains
1796 * packets arrived _after_ prequeued ones.
1797 *
1798 * Shortly, algorithm is clear --- to process all
1799 * the queues in order. We could make it more directly,
1800 * requeueing packets from backlog to prequeue, if
1801 * is not empty. It is more elegant, but eats cycles,
1802 * unfortunately.
1803 */
1804 if (!skb_queue_empty(&tp->ucopy.prequeue))
1805 goto do_prequeue;
1806
1807 /* __ Set realtime policy in scheduler __ */
1808 }
1809
1810 if (copied >= target) {
1811 /* Do not sleep, just process backlog. */
1812 release_sock(sk);
1813 lock_sock(sk);
1814 } else {
1815 sk_wait_data(sk, &timeo, last);
1816 }
1817
1818 if (user_recv) {
1819 int chunk;
1820
1821 /* __ Restore normal policy in scheduler __ */
1822
1823 chunk = len - tp->ucopy.len;
1824 if (chunk != 0) {
1825 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1826 len -= chunk;
1827 copied += chunk;
1828 }
1829
1830 if (tp->rcv_nxt == tp->copied_seq &&
1831 !skb_queue_empty(&tp->ucopy.prequeue)) {
1832 do_prequeue:
1833 tcp_prequeue_process(sk);
1834
1835 chunk = len - tp->ucopy.len;
1836 if (chunk != 0) {
1837 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1838 len -= chunk;
1839 copied += chunk;
1840 }
1841 }
1842 }
1843 if ((flags & MSG_PEEK) &&
1844 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1845 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1846 current->comm,
1847 task_pid_nr(current));
1848 peek_seq = tp->copied_seq;
1849 }
1850 continue;
1851
1852 found_ok_skb:
1853 /* Ok so how much can we use? */
1854 used = skb->len - offset;
1855 if (len < used)
1856 used = len;
1857
1858 /* Do we have urgent data here? */
1859 if (tp->urg_data) {
1860 u32 urg_offset = tp->urg_seq - *seq;
1861 if (urg_offset < used) {
1862 if (!urg_offset) {
1863 if (!sock_flag(sk, SOCK_URGINLINE)) {
1864 ++*seq;
1865 urg_hole++;
1866 offset++;
1867 used--;
1868 if (!used)
1869 goto skip_copy;
1870 }
1871 } else
1872 used = urg_offset;
1873 }
1874 }
1875
1876 if (!(flags & MSG_TRUNC)) {
1877 err = skb_copy_datagram_msg(skb, offset, msg, used);
1878 if (err) {
1879 /* Exception. Bailout! */
1880 if (!copied)
1881 copied = -EFAULT;
1882 break;
1883 }
1884 }
1885
1886 *seq += used;
1887 copied += used;
1888 len -= used;
1889
1890 tcp_rcv_space_adjust(sk);
1891
1892 skip_copy:
1893 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1894 tp->urg_data = 0;
1895 tcp_fast_path_check(sk);
1896 }
1897 if (used + offset < skb->len)
1898 continue;
1899
1900 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1901 goto found_fin_ok;
1902 if (!(flags & MSG_PEEK))
1903 sk_eat_skb(sk, skb);
1904 continue;
1905
1906 found_fin_ok:
1907 /* Process the FIN. */
1908 ++*seq;
1909 if (!(flags & MSG_PEEK))
1910 sk_eat_skb(sk, skb);
1911 break;
1912 } while (len > 0);
1913
1914 if (user_recv) {
1915 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1916 int chunk;
1917
1918 tp->ucopy.len = copied > 0 ? len : 0;
1919
1920 tcp_prequeue_process(sk);
1921
1922 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1923 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1924 len -= chunk;
1925 copied += chunk;
1926 }
1927 }
1928
1929 tp->ucopy.task = NULL;
1930 tp->ucopy.len = 0;
1931 }
1932
1933 /* According to UNIX98, msg_name/msg_namelen are ignored
1934 * on connected socket. I was just happy when found this 8) --ANK
1935 */
1936
1937 /* Clean up data we have read: This will do ACK frames. */
1938 tcp_cleanup_rbuf(sk, copied);
1939
1940 release_sock(sk);
1941 return copied;
1942
1943 out:
1944 release_sock(sk);
1945 return err;
1946
1947 recv_urg:
1948 err = tcp_recv_urg(sk, msg, len, flags);
1949 goto out;
1950
1951 recv_sndq:
1952 err = tcp_peek_sndq(sk, msg, len);
1953 goto out;
1954 }
1955 EXPORT_SYMBOL(tcp_recvmsg);
1956
1957 void tcp_set_state(struct sock *sk, int state)
1958 {
1959 int oldstate = sk->sk_state;
1960
1961 switch (state) {
1962 case TCP_ESTABLISHED:
1963 if (oldstate != TCP_ESTABLISHED)
1964 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1965 break;
1966
1967 case TCP_CLOSE:
1968 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1969 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1970
1971 sk->sk_prot->unhash(sk);
1972 if (inet_csk(sk)->icsk_bind_hash &&
1973 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1974 inet_put_port(sk);
1975 /* fall through */
1976 default:
1977 if (oldstate == TCP_ESTABLISHED)
1978 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1979 }
1980
1981 /* Change state AFTER socket is unhashed to avoid closed
1982 * socket sitting in hash tables.
1983 */
1984 sk_state_store(sk, state);
1985
1986 #ifdef STATE_TRACE
1987 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1988 #endif
1989 }
1990 EXPORT_SYMBOL_GPL(tcp_set_state);
1991
1992 /*
1993 * State processing on a close. This implements the state shift for
1994 * sending our FIN frame. Note that we only send a FIN for some
1995 * states. A shutdown() may have already sent the FIN, or we may be
1996 * closed.
1997 */
1998
1999 static const unsigned char new_state[16] = {
2000 /* current state: new state: action: */
2001 [0 /* (Invalid) */] = TCP_CLOSE,
2002 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2003 [TCP_SYN_SENT] = TCP_CLOSE,
2004 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2005 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2006 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2007 [TCP_TIME_WAIT] = TCP_CLOSE,
2008 [TCP_CLOSE] = TCP_CLOSE,
2009 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2010 [TCP_LAST_ACK] = TCP_LAST_ACK,
2011 [TCP_LISTEN] = TCP_CLOSE,
2012 [TCP_CLOSING] = TCP_CLOSING,
2013 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2014 };
2015
2016 static int tcp_close_state(struct sock *sk)
2017 {
2018 int next = (int)new_state[sk->sk_state];
2019 int ns = next & TCP_STATE_MASK;
2020
2021 tcp_set_state(sk, ns);
2022
2023 return next & TCP_ACTION_FIN;
2024 }
2025
2026 /*
2027 * Shutdown the sending side of a connection. Much like close except
2028 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2029 */
2030
2031 void tcp_shutdown(struct sock *sk, int how)
2032 {
2033 /* We need to grab some memory, and put together a FIN,
2034 * and then put it into the queue to be sent.
2035 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2036 */
2037 if (!(how & SEND_SHUTDOWN))
2038 return;
2039
2040 /* If we've already sent a FIN, or it's a closed state, skip this. */
2041 if ((1 << sk->sk_state) &
2042 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2043 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2044 /* Clear out any half completed packets. FIN if needed. */
2045 if (tcp_close_state(sk))
2046 tcp_send_fin(sk);
2047 }
2048 }
2049 EXPORT_SYMBOL(tcp_shutdown);
2050
2051 bool tcp_check_oom(struct sock *sk, int shift)
2052 {
2053 bool too_many_orphans, out_of_socket_memory;
2054
2055 too_many_orphans = tcp_too_many_orphans(sk, shift);
2056 out_of_socket_memory = tcp_out_of_memory(sk);
2057
2058 if (too_many_orphans)
2059 net_info_ratelimited("too many orphaned sockets\n");
2060 if (out_of_socket_memory)
2061 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2062 return too_many_orphans || out_of_socket_memory;
2063 }
2064
2065 void tcp_close(struct sock *sk, long timeout)
2066 {
2067 struct sk_buff *skb;
2068 int data_was_unread = 0;
2069 int state;
2070
2071 lock_sock(sk);
2072 sk->sk_shutdown = SHUTDOWN_MASK;
2073
2074 if (sk->sk_state == TCP_LISTEN) {
2075 tcp_set_state(sk, TCP_CLOSE);
2076
2077 /* Special case. */
2078 inet_csk_listen_stop(sk);
2079
2080 goto adjudge_to_death;
2081 }
2082
2083 /* We need to flush the recv. buffs. We do this only on the
2084 * descriptor close, not protocol-sourced closes, because the
2085 * reader process may not have drained the data yet!
2086 */
2087 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2088 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2089
2090 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2091 len--;
2092 data_was_unread += len;
2093 __kfree_skb(skb);
2094 }
2095
2096 sk_mem_reclaim(sk);
2097
2098 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2099 if (sk->sk_state == TCP_CLOSE)
2100 goto adjudge_to_death;
2101
2102 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2103 * data was lost. To witness the awful effects of the old behavior of
2104 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2105 * GET in an FTP client, suspend the process, wait for the client to
2106 * advertise a zero window, then kill -9 the FTP client, wheee...
2107 * Note: timeout is always zero in such a case.
2108 */
2109 if (unlikely(tcp_sk(sk)->repair)) {
2110 sk->sk_prot->disconnect(sk, 0);
2111 } else if (data_was_unread) {
2112 /* Unread data was tossed, zap the connection. */
2113 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2114 tcp_set_state(sk, TCP_CLOSE);
2115 tcp_send_active_reset(sk, sk->sk_allocation);
2116 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2117 /* Check zero linger _after_ checking for unread data. */
2118 sk->sk_prot->disconnect(sk, 0);
2119 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2120 } else if (tcp_close_state(sk)) {
2121 /* We FIN if the application ate all the data before
2122 * zapping the connection.
2123 */
2124
2125 /* RED-PEN. Formally speaking, we have broken TCP state
2126 * machine. State transitions:
2127 *
2128 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2129 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2130 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2131 *
2132 * are legal only when FIN has been sent (i.e. in window),
2133 * rather than queued out of window. Purists blame.
2134 *
2135 * F.e. "RFC state" is ESTABLISHED,
2136 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2137 *
2138 * The visible declinations are that sometimes
2139 * we enter time-wait state, when it is not required really
2140 * (harmless), do not send active resets, when they are
2141 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2142 * they look as CLOSING or LAST_ACK for Linux)
2143 * Probably, I missed some more holelets.
2144 * --ANK
2145 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2146 * in a single packet! (May consider it later but will
2147 * probably need API support or TCP_CORK SYN-ACK until
2148 * data is written and socket is closed.)
2149 */
2150 tcp_send_fin(sk);
2151 }
2152
2153 sk_stream_wait_close(sk, timeout);
2154
2155 adjudge_to_death:
2156 state = sk->sk_state;
2157 sock_hold(sk);
2158 sock_orphan(sk);
2159
2160 /* It is the last release_sock in its life. It will remove backlog. */
2161 release_sock(sk);
2162
2163
2164 /* Now socket is owned by kernel and we acquire BH lock
2165 to finish close. No need to check for user refs.
2166 */
2167 local_bh_disable();
2168 bh_lock_sock(sk);
2169 WARN_ON(sock_owned_by_user(sk));
2170
2171 percpu_counter_inc(sk->sk_prot->orphan_count);
2172
2173 /* Have we already been destroyed by a softirq or backlog? */
2174 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2175 goto out;
2176
2177 /* This is a (useful) BSD violating of the RFC. There is a
2178 * problem with TCP as specified in that the other end could
2179 * keep a socket open forever with no application left this end.
2180 * We use a 1 minute timeout (about the same as BSD) then kill
2181 * our end. If they send after that then tough - BUT: long enough
2182 * that we won't make the old 4*rto = almost no time - whoops
2183 * reset mistake.
2184 *
2185 * Nope, it was not mistake. It is really desired behaviour
2186 * f.e. on http servers, when such sockets are useless, but
2187 * consume significant resources. Let's do it with special
2188 * linger2 option. --ANK
2189 */
2190
2191 if (sk->sk_state == TCP_FIN_WAIT2) {
2192 struct tcp_sock *tp = tcp_sk(sk);
2193 if (tp->linger2 < 0) {
2194 tcp_set_state(sk, TCP_CLOSE);
2195 tcp_send_active_reset(sk, GFP_ATOMIC);
2196 __NET_INC_STATS(sock_net(sk),
2197 LINUX_MIB_TCPABORTONLINGER);
2198 } else {
2199 const int tmo = tcp_fin_time(sk);
2200
2201 if (tmo > TCP_TIMEWAIT_LEN) {
2202 inet_csk_reset_keepalive_timer(sk,
2203 tmo - TCP_TIMEWAIT_LEN);
2204 } else {
2205 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2206 goto out;
2207 }
2208 }
2209 }
2210 if (sk->sk_state != TCP_CLOSE) {
2211 sk_mem_reclaim(sk);
2212 if (tcp_check_oom(sk, 0)) {
2213 tcp_set_state(sk, TCP_CLOSE);
2214 tcp_send_active_reset(sk, GFP_ATOMIC);
2215 __NET_INC_STATS(sock_net(sk),
2216 LINUX_MIB_TCPABORTONMEMORY);
2217 }
2218 }
2219
2220 if (sk->sk_state == TCP_CLOSE) {
2221 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2222 /* We could get here with a non-NULL req if the socket is
2223 * aborted (e.g., closed with unread data) before 3WHS
2224 * finishes.
2225 */
2226 if (req)
2227 reqsk_fastopen_remove(sk, req, false);
2228 inet_csk_destroy_sock(sk);
2229 }
2230 /* Otherwise, socket is reprieved until protocol close. */
2231
2232 out:
2233 bh_unlock_sock(sk);
2234 local_bh_enable();
2235 sock_put(sk);
2236 }
2237 EXPORT_SYMBOL(tcp_close);
2238
2239 /* These states need RST on ABORT according to RFC793 */
2240
2241 static inline bool tcp_need_reset(int state)
2242 {
2243 return (1 << state) &
2244 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2245 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2246 }
2247
2248 int tcp_disconnect(struct sock *sk, int flags)
2249 {
2250 struct inet_sock *inet = inet_sk(sk);
2251 struct inet_connection_sock *icsk = inet_csk(sk);
2252 struct tcp_sock *tp = tcp_sk(sk);
2253 int err = 0;
2254 int old_state = sk->sk_state;
2255
2256 if (old_state != TCP_CLOSE)
2257 tcp_set_state(sk, TCP_CLOSE);
2258
2259 /* ABORT function of RFC793 */
2260 if (old_state == TCP_LISTEN) {
2261 inet_csk_listen_stop(sk);
2262 } else if (unlikely(tp->repair)) {
2263 sk->sk_err = ECONNABORTED;
2264 } else if (tcp_need_reset(old_state) ||
2265 (tp->snd_nxt != tp->write_seq &&
2266 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2267 /* The last check adjusts for discrepancy of Linux wrt. RFC
2268 * states
2269 */
2270 tcp_send_active_reset(sk, gfp_any());
2271 sk->sk_err = ECONNRESET;
2272 } else if (old_state == TCP_SYN_SENT)
2273 sk->sk_err = ECONNRESET;
2274
2275 tcp_clear_xmit_timers(sk);
2276 __skb_queue_purge(&sk->sk_receive_queue);
2277 tcp_write_queue_purge(sk);
2278 skb_rbtree_purge(&tp->out_of_order_queue);
2279
2280 inet->inet_dport = 0;
2281
2282 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2283 inet_reset_saddr(sk);
2284
2285 sk->sk_shutdown = 0;
2286 sock_reset_flag(sk, SOCK_DONE);
2287 tp->srtt_us = 0;
2288 tp->write_seq += tp->max_window + 2;
2289 if (tp->write_seq == 0)
2290 tp->write_seq = 1;
2291 icsk->icsk_backoff = 0;
2292 tp->snd_cwnd = 2;
2293 icsk->icsk_probes_out = 0;
2294 tp->packets_out = 0;
2295 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2296 tp->snd_cwnd_cnt = 0;
2297 tp->window_clamp = 0;
2298 tcp_set_ca_state(sk, TCP_CA_Open);
2299 tcp_clear_retrans(tp);
2300 inet_csk_delack_init(sk);
2301 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2302 * issue in __tcp_select_window()
2303 */
2304 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2305 tcp_init_send_head(sk);
2306 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2307 __sk_dst_reset(sk);
2308 tcp_saved_syn_free(tp);
2309
2310 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2311
2312 sk->sk_error_report(sk);
2313 return err;
2314 }
2315 EXPORT_SYMBOL(tcp_disconnect);
2316
2317 static inline bool tcp_can_repair_sock(const struct sock *sk)
2318 {
2319 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2320 (sk->sk_state != TCP_LISTEN);
2321 }
2322
2323 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2324 {
2325 struct tcp_repair_window opt;
2326
2327 if (!tp->repair)
2328 return -EPERM;
2329
2330 if (len != sizeof(opt))
2331 return -EINVAL;
2332
2333 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2334 return -EFAULT;
2335
2336 if (opt.max_window < opt.snd_wnd)
2337 return -EINVAL;
2338
2339 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2340 return -EINVAL;
2341
2342 if (after(opt.rcv_wup, tp->rcv_nxt))
2343 return -EINVAL;
2344
2345 tp->snd_wl1 = opt.snd_wl1;
2346 tp->snd_wnd = opt.snd_wnd;
2347 tp->max_window = opt.max_window;
2348
2349 tp->rcv_wnd = opt.rcv_wnd;
2350 tp->rcv_wup = opt.rcv_wup;
2351
2352 return 0;
2353 }
2354
2355 static int tcp_repair_options_est(struct tcp_sock *tp,
2356 struct tcp_repair_opt __user *optbuf, unsigned int len)
2357 {
2358 struct tcp_repair_opt opt;
2359
2360 while (len >= sizeof(opt)) {
2361 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2362 return -EFAULT;
2363
2364 optbuf++;
2365 len -= sizeof(opt);
2366
2367 switch (opt.opt_code) {
2368 case TCPOPT_MSS:
2369 tp->rx_opt.mss_clamp = opt.opt_val;
2370 break;
2371 case TCPOPT_WINDOW:
2372 {
2373 u16 snd_wscale = opt.opt_val & 0xFFFF;
2374 u16 rcv_wscale = opt.opt_val >> 16;
2375
2376 if (snd_wscale > 14 || rcv_wscale > 14)
2377 return -EFBIG;
2378
2379 tp->rx_opt.snd_wscale = snd_wscale;
2380 tp->rx_opt.rcv_wscale = rcv_wscale;
2381 tp->rx_opt.wscale_ok = 1;
2382 }
2383 break;
2384 case TCPOPT_SACK_PERM:
2385 if (opt.opt_val != 0)
2386 return -EINVAL;
2387
2388 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2389 if (sysctl_tcp_fack)
2390 tcp_enable_fack(tp);
2391 break;
2392 case TCPOPT_TIMESTAMP:
2393 if (opt.opt_val != 0)
2394 return -EINVAL;
2395
2396 tp->rx_opt.tstamp_ok = 1;
2397 break;
2398 }
2399 }
2400
2401 return 0;
2402 }
2403
2404 /*
2405 * Socket option code for TCP.
2406 */
2407 static int do_tcp_setsockopt(struct sock *sk, int level,
2408 int optname, char __user *optval, unsigned int optlen)
2409 {
2410 struct tcp_sock *tp = tcp_sk(sk);
2411 struct inet_connection_sock *icsk = inet_csk(sk);
2412 struct net *net = sock_net(sk);
2413 int val;
2414 int err = 0;
2415
2416 /* These are data/string values, all the others are ints */
2417 switch (optname) {
2418 case TCP_CONGESTION: {
2419 char name[TCP_CA_NAME_MAX];
2420
2421 if (optlen < 1)
2422 return -EINVAL;
2423
2424 val = strncpy_from_user(name, optval,
2425 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2426 if (val < 0)
2427 return -EFAULT;
2428 name[val] = 0;
2429
2430 lock_sock(sk);
2431 err = tcp_set_congestion_control(sk, name);
2432 release_sock(sk);
2433 return err;
2434 }
2435 default:
2436 /* fallthru */
2437 break;
2438 }
2439
2440 if (optlen < sizeof(int))
2441 return -EINVAL;
2442
2443 if (get_user(val, (int __user *)optval))
2444 return -EFAULT;
2445
2446 lock_sock(sk);
2447
2448 switch (optname) {
2449 case TCP_MAXSEG:
2450 /* Values greater than interface MTU won't take effect. However
2451 * at the point when this call is done we typically don't yet
2452 * know which interface is going to be used */
2453 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2454 err = -EINVAL;
2455 break;
2456 }
2457 tp->rx_opt.user_mss = val;
2458 break;
2459
2460 case TCP_NODELAY:
2461 if (val) {
2462 /* TCP_NODELAY is weaker than TCP_CORK, so that
2463 * this option on corked socket is remembered, but
2464 * it is not activated until cork is cleared.
2465 *
2466 * However, when TCP_NODELAY is set we make
2467 * an explicit push, which overrides even TCP_CORK
2468 * for currently queued segments.
2469 */
2470 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2471 tcp_push_pending_frames(sk);
2472 } else {
2473 tp->nonagle &= ~TCP_NAGLE_OFF;
2474 }
2475 break;
2476
2477 case TCP_THIN_LINEAR_TIMEOUTS:
2478 if (val < 0 || val > 1)
2479 err = -EINVAL;
2480 else
2481 tp->thin_lto = val;
2482 break;
2483
2484 case TCP_THIN_DUPACK:
2485 if (val < 0 || val > 1)
2486 err = -EINVAL;
2487 else {
2488 tp->thin_dupack = val;
2489 if (tp->thin_dupack)
2490 tcp_disable_early_retrans(tp);
2491 }
2492 break;
2493
2494 case TCP_REPAIR:
2495 if (!tcp_can_repair_sock(sk))
2496 err = -EPERM;
2497 else if (val == 1) {
2498 tp->repair = 1;
2499 sk->sk_reuse = SK_FORCE_REUSE;
2500 tp->repair_queue = TCP_NO_QUEUE;
2501 } else if (val == 0) {
2502 tp->repair = 0;
2503 sk->sk_reuse = SK_NO_REUSE;
2504 tcp_send_window_probe(sk);
2505 } else
2506 err = -EINVAL;
2507
2508 break;
2509
2510 case TCP_REPAIR_QUEUE:
2511 if (!tp->repair)
2512 err = -EPERM;
2513 else if (val < TCP_QUEUES_NR)
2514 tp->repair_queue = val;
2515 else
2516 err = -EINVAL;
2517 break;
2518
2519 case TCP_QUEUE_SEQ:
2520 if (sk->sk_state != TCP_CLOSE)
2521 err = -EPERM;
2522 else if (tp->repair_queue == TCP_SEND_QUEUE)
2523 tp->write_seq = val;
2524 else if (tp->repair_queue == TCP_RECV_QUEUE)
2525 tp->rcv_nxt = val;
2526 else
2527 err = -EINVAL;
2528 break;
2529
2530 case TCP_REPAIR_OPTIONS:
2531 if (!tp->repair)
2532 err = -EINVAL;
2533 else if (sk->sk_state == TCP_ESTABLISHED)
2534 err = tcp_repair_options_est(tp,
2535 (struct tcp_repair_opt __user *)optval,
2536 optlen);
2537 else
2538 err = -EPERM;
2539 break;
2540
2541 case TCP_CORK:
2542 /* When set indicates to always queue non-full frames.
2543 * Later the user clears this option and we transmit
2544 * any pending partial frames in the queue. This is
2545 * meant to be used alongside sendfile() to get properly
2546 * filled frames when the user (for example) must write
2547 * out headers with a write() call first and then use
2548 * sendfile to send out the data parts.
2549 *
2550 * TCP_CORK can be set together with TCP_NODELAY and it is
2551 * stronger than TCP_NODELAY.
2552 */
2553 if (val) {
2554 tp->nonagle |= TCP_NAGLE_CORK;
2555 } else {
2556 tp->nonagle &= ~TCP_NAGLE_CORK;
2557 if (tp->nonagle&TCP_NAGLE_OFF)
2558 tp->nonagle |= TCP_NAGLE_PUSH;
2559 tcp_push_pending_frames(sk);
2560 }
2561 break;
2562
2563 case TCP_KEEPIDLE:
2564 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2565 err = -EINVAL;
2566 else {
2567 tp->keepalive_time = val * HZ;
2568 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2569 !((1 << sk->sk_state) &
2570 (TCPF_CLOSE | TCPF_LISTEN))) {
2571 u32 elapsed = keepalive_time_elapsed(tp);
2572 if (tp->keepalive_time > elapsed)
2573 elapsed = tp->keepalive_time - elapsed;
2574 else
2575 elapsed = 0;
2576 inet_csk_reset_keepalive_timer(sk, elapsed);
2577 }
2578 }
2579 break;
2580 case TCP_KEEPINTVL:
2581 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2582 err = -EINVAL;
2583 else
2584 tp->keepalive_intvl = val * HZ;
2585 break;
2586 case TCP_KEEPCNT:
2587 if (val < 1 || val > MAX_TCP_KEEPCNT)
2588 err = -EINVAL;
2589 else
2590 tp->keepalive_probes = val;
2591 break;
2592 case TCP_SYNCNT:
2593 if (val < 1 || val > MAX_TCP_SYNCNT)
2594 err = -EINVAL;
2595 else
2596 icsk->icsk_syn_retries = val;
2597 break;
2598
2599 case TCP_SAVE_SYN:
2600 if (val < 0 || val > 1)
2601 err = -EINVAL;
2602 else
2603 tp->save_syn = val;
2604 break;
2605
2606 case TCP_LINGER2:
2607 if (val < 0)
2608 tp->linger2 = -1;
2609 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2610 tp->linger2 = 0;
2611 else
2612 tp->linger2 = val * HZ;
2613 break;
2614
2615 case TCP_DEFER_ACCEPT:
2616 /* Translate value in seconds to number of retransmits */
2617 icsk->icsk_accept_queue.rskq_defer_accept =
2618 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2619 TCP_RTO_MAX / HZ);
2620 break;
2621
2622 case TCP_WINDOW_CLAMP:
2623 if (!val) {
2624 if (sk->sk_state != TCP_CLOSE) {
2625 err = -EINVAL;
2626 break;
2627 }
2628 tp->window_clamp = 0;
2629 } else
2630 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2631 SOCK_MIN_RCVBUF / 2 : val;
2632 break;
2633
2634 case TCP_QUICKACK:
2635 if (!val) {
2636 icsk->icsk_ack.pingpong = 1;
2637 } else {
2638 icsk->icsk_ack.pingpong = 0;
2639 if ((1 << sk->sk_state) &
2640 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2641 inet_csk_ack_scheduled(sk)) {
2642 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2643 tcp_cleanup_rbuf(sk, 1);
2644 if (!(val & 1))
2645 icsk->icsk_ack.pingpong = 1;
2646 }
2647 }
2648 break;
2649
2650 #ifdef CONFIG_TCP_MD5SIG
2651 case TCP_MD5SIG:
2652 /* Read the IP->Key mappings from userspace */
2653 err = tp->af_specific->md5_parse(sk, optval, optlen);
2654 break;
2655 #endif
2656 case TCP_USER_TIMEOUT:
2657 /* Cap the max time in ms TCP will retry or probe the window
2658 * before giving up and aborting (ETIMEDOUT) a connection.
2659 */
2660 if (val < 0)
2661 err = -EINVAL;
2662 else
2663 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2664 break;
2665
2666 case TCP_FASTOPEN:
2667 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2668 TCPF_LISTEN))) {
2669 tcp_fastopen_init_key_once(true);
2670
2671 fastopen_queue_tune(sk, val);
2672 } else {
2673 err = -EINVAL;
2674 }
2675 break;
2676 case TCP_TIMESTAMP:
2677 if (!tp->repair)
2678 err = -EPERM;
2679 else
2680 tp->tsoffset = val - tcp_time_stamp;
2681 break;
2682 case TCP_REPAIR_WINDOW:
2683 err = tcp_repair_set_window(tp, optval, optlen);
2684 break;
2685 case TCP_NOTSENT_LOWAT:
2686 tp->notsent_lowat = val;
2687 sk->sk_write_space(sk);
2688 break;
2689 default:
2690 err = -ENOPROTOOPT;
2691 break;
2692 }
2693
2694 release_sock(sk);
2695 return err;
2696 }
2697
2698 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2699 unsigned int optlen)
2700 {
2701 const struct inet_connection_sock *icsk = inet_csk(sk);
2702
2703 if (level != SOL_TCP)
2704 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2705 optval, optlen);
2706 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2707 }
2708 EXPORT_SYMBOL(tcp_setsockopt);
2709
2710 #ifdef CONFIG_COMPAT
2711 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2712 char __user *optval, unsigned int optlen)
2713 {
2714 if (level != SOL_TCP)
2715 return inet_csk_compat_setsockopt(sk, level, optname,
2716 optval, optlen);
2717 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2718 }
2719 EXPORT_SYMBOL(compat_tcp_setsockopt);
2720 #endif
2721
2722 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
2723 struct tcp_info *info)
2724 {
2725 u64 stats[__TCP_CHRONO_MAX], total = 0;
2726 enum tcp_chrono i;
2727
2728 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
2729 stats[i] = tp->chrono_stat[i - 1];
2730 if (i == tp->chrono_type)
2731 stats[i] += tcp_time_stamp - tp->chrono_start;
2732 stats[i] *= USEC_PER_SEC / HZ;
2733 total += stats[i];
2734 }
2735
2736 info->tcpi_busy_time = total;
2737 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
2738 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
2739 }
2740
2741 /* Return information about state of tcp endpoint in API format. */
2742 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2743 {
2744 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2745 const struct inet_connection_sock *icsk = inet_csk(sk);
2746 u32 now = tcp_time_stamp, intv;
2747 u64 rate64;
2748 bool slow;
2749 u32 rate;
2750
2751 memset(info, 0, sizeof(*info));
2752 if (sk->sk_type != SOCK_STREAM)
2753 return;
2754
2755 info->tcpi_state = sk_state_load(sk);
2756
2757 /* Report meaningful fields for all TCP states, including listeners */
2758 rate = READ_ONCE(sk->sk_pacing_rate);
2759 rate64 = rate != ~0U ? rate : ~0ULL;
2760 info->tcpi_pacing_rate = rate64;
2761
2762 rate = READ_ONCE(sk->sk_max_pacing_rate);
2763 rate64 = rate != ~0U ? rate : ~0ULL;
2764 info->tcpi_max_pacing_rate = rate64;
2765
2766 info->tcpi_reordering = tp->reordering;
2767 info->tcpi_snd_cwnd = tp->snd_cwnd;
2768
2769 if (info->tcpi_state == TCP_LISTEN) {
2770 /* listeners aliased fields :
2771 * tcpi_unacked -> Number of children ready for accept()
2772 * tcpi_sacked -> max backlog
2773 */
2774 info->tcpi_unacked = sk->sk_ack_backlog;
2775 info->tcpi_sacked = sk->sk_max_ack_backlog;
2776 return;
2777 }
2778 info->tcpi_ca_state = icsk->icsk_ca_state;
2779 info->tcpi_retransmits = icsk->icsk_retransmits;
2780 info->tcpi_probes = icsk->icsk_probes_out;
2781 info->tcpi_backoff = icsk->icsk_backoff;
2782
2783 if (tp->rx_opt.tstamp_ok)
2784 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2785 if (tcp_is_sack(tp))
2786 info->tcpi_options |= TCPI_OPT_SACK;
2787 if (tp->rx_opt.wscale_ok) {
2788 info->tcpi_options |= TCPI_OPT_WSCALE;
2789 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2790 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2791 }
2792
2793 if (tp->ecn_flags & TCP_ECN_OK)
2794 info->tcpi_options |= TCPI_OPT_ECN;
2795 if (tp->ecn_flags & TCP_ECN_SEEN)
2796 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2797 if (tp->syn_data_acked)
2798 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2799
2800 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2801 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2802 info->tcpi_snd_mss = tp->mss_cache;
2803 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2804
2805 info->tcpi_unacked = tp->packets_out;
2806 info->tcpi_sacked = tp->sacked_out;
2807
2808 info->tcpi_lost = tp->lost_out;
2809 info->tcpi_retrans = tp->retrans_out;
2810 info->tcpi_fackets = tp->fackets_out;
2811
2812 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2813 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2814 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2815
2816 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2817 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2818 info->tcpi_rtt = tp->srtt_us >> 3;
2819 info->tcpi_rttvar = tp->mdev_us >> 2;
2820 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2821 info->tcpi_advmss = tp->advmss;
2822
2823 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2824 info->tcpi_rcv_space = tp->rcvq_space.space;
2825
2826 info->tcpi_total_retrans = tp->total_retrans;
2827
2828 slow = lock_sock_fast(sk);
2829
2830 info->tcpi_bytes_acked = tp->bytes_acked;
2831 info->tcpi_bytes_received = tp->bytes_received;
2832 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
2833 tcp_get_info_chrono_stats(tp, info);
2834
2835 unlock_sock_fast(sk, slow);
2836
2837 info->tcpi_segs_out = tp->segs_out;
2838 info->tcpi_segs_in = tp->segs_in;
2839
2840 info->tcpi_min_rtt = tcp_min_rtt(tp);
2841 info->tcpi_data_segs_in = tp->data_segs_in;
2842 info->tcpi_data_segs_out = tp->data_segs_out;
2843
2844 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
2845 rate = READ_ONCE(tp->rate_delivered);
2846 intv = READ_ONCE(tp->rate_interval_us);
2847 if (rate && intv) {
2848 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
2849 do_div(rate64, intv);
2850 info->tcpi_delivery_rate = rate64;
2851 }
2852 }
2853 EXPORT_SYMBOL_GPL(tcp_get_info);
2854
2855 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
2856 {
2857 const struct tcp_sock *tp = tcp_sk(sk);
2858 struct sk_buff *stats;
2859 struct tcp_info info;
2860
2861 stats = alloc_skb(3 * nla_total_size_64bit(sizeof(u64)), GFP_ATOMIC);
2862 if (!stats)
2863 return NULL;
2864
2865 tcp_get_info_chrono_stats(tp, &info);
2866 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
2867 info.tcpi_busy_time, TCP_NLA_PAD);
2868 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
2869 info.tcpi_rwnd_limited, TCP_NLA_PAD);
2870 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
2871 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
2872 return stats;
2873 }
2874
2875 static int do_tcp_getsockopt(struct sock *sk, int level,
2876 int optname, char __user *optval, int __user *optlen)
2877 {
2878 struct inet_connection_sock *icsk = inet_csk(sk);
2879 struct tcp_sock *tp = tcp_sk(sk);
2880 struct net *net = sock_net(sk);
2881 int val, len;
2882
2883 if (get_user(len, optlen))
2884 return -EFAULT;
2885
2886 len = min_t(unsigned int, len, sizeof(int));
2887
2888 if (len < 0)
2889 return -EINVAL;
2890
2891 switch (optname) {
2892 case TCP_MAXSEG:
2893 val = tp->mss_cache;
2894 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2895 val = tp->rx_opt.user_mss;
2896 if (tp->repair)
2897 val = tp->rx_opt.mss_clamp;
2898 break;
2899 case TCP_NODELAY:
2900 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2901 break;
2902 case TCP_CORK:
2903 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2904 break;
2905 case TCP_KEEPIDLE:
2906 val = keepalive_time_when(tp) / HZ;
2907 break;
2908 case TCP_KEEPINTVL:
2909 val = keepalive_intvl_when(tp) / HZ;
2910 break;
2911 case TCP_KEEPCNT:
2912 val = keepalive_probes(tp);
2913 break;
2914 case TCP_SYNCNT:
2915 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
2916 break;
2917 case TCP_LINGER2:
2918 val = tp->linger2;
2919 if (val >= 0)
2920 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
2921 break;
2922 case TCP_DEFER_ACCEPT:
2923 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2924 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2925 break;
2926 case TCP_WINDOW_CLAMP:
2927 val = tp->window_clamp;
2928 break;
2929 case TCP_INFO: {
2930 struct tcp_info info;
2931
2932 if (get_user(len, optlen))
2933 return -EFAULT;
2934
2935 tcp_get_info(sk, &info);
2936
2937 len = min_t(unsigned int, len, sizeof(info));
2938 if (put_user(len, optlen))
2939 return -EFAULT;
2940 if (copy_to_user(optval, &info, len))
2941 return -EFAULT;
2942 return 0;
2943 }
2944 case TCP_CC_INFO: {
2945 const struct tcp_congestion_ops *ca_ops;
2946 union tcp_cc_info info;
2947 size_t sz = 0;
2948 int attr;
2949
2950 if (get_user(len, optlen))
2951 return -EFAULT;
2952
2953 ca_ops = icsk->icsk_ca_ops;
2954 if (ca_ops && ca_ops->get_info)
2955 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
2956
2957 len = min_t(unsigned int, len, sz);
2958 if (put_user(len, optlen))
2959 return -EFAULT;
2960 if (copy_to_user(optval, &info, len))
2961 return -EFAULT;
2962 return 0;
2963 }
2964 case TCP_QUICKACK:
2965 val = !icsk->icsk_ack.pingpong;
2966 break;
2967
2968 case TCP_CONGESTION:
2969 if (get_user(len, optlen))
2970 return -EFAULT;
2971 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2972 if (put_user(len, optlen))
2973 return -EFAULT;
2974 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2975 return -EFAULT;
2976 return 0;
2977
2978 case TCP_THIN_LINEAR_TIMEOUTS:
2979 val = tp->thin_lto;
2980 break;
2981 case TCP_THIN_DUPACK:
2982 val = tp->thin_dupack;
2983 break;
2984
2985 case TCP_REPAIR:
2986 val = tp->repair;
2987 break;
2988
2989 case TCP_REPAIR_QUEUE:
2990 if (tp->repair)
2991 val = tp->repair_queue;
2992 else
2993 return -EINVAL;
2994 break;
2995
2996 case TCP_REPAIR_WINDOW: {
2997 struct tcp_repair_window opt;
2998
2999 if (get_user(len, optlen))
3000 return -EFAULT;
3001
3002 if (len != sizeof(opt))
3003 return -EINVAL;
3004
3005 if (!tp->repair)
3006 return -EPERM;
3007
3008 opt.snd_wl1 = tp->snd_wl1;
3009 opt.snd_wnd = tp->snd_wnd;
3010 opt.max_window = tp->max_window;
3011 opt.rcv_wnd = tp->rcv_wnd;
3012 opt.rcv_wup = tp->rcv_wup;
3013
3014 if (copy_to_user(optval, &opt, len))
3015 return -EFAULT;
3016 return 0;
3017 }
3018 case TCP_QUEUE_SEQ:
3019 if (tp->repair_queue == TCP_SEND_QUEUE)
3020 val = tp->write_seq;
3021 else if (tp->repair_queue == TCP_RECV_QUEUE)
3022 val = tp->rcv_nxt;
3023 else
3024 return -EINVAL;
3025 break;
3026
3027 case TCP_USER_TIMEOUT:
3028 val = jiffies_to_msecs(icsk->icsk_user_timeout);
3029 break;
3030
3031 case TCP_FASTOPEN:
3032 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3033 break;
3034
3035 case TCP_TIMESTAMP:
3036 val = tcp_time_stamp + tp->tsoffset;
3037 break;
3038 case TCP_NOTSENT_LOWAT:
3039 val = tp->notsent_lowat;
3040 break;
3041 case TCP_SAVE_SYN:
3042 val = tp->save_syn;
3043 break;
3044 case TCP_SAVED_SYN: {
3045 if (get_user(len, optlen))
3046 return -EFAULT;
3047
3048 lock_sock(sk);
3049 if (tp->saved_syn) {
3050 if (len < tp->saved_syn[0]) {
3051 if (put_user(tp->saved_syn[0], optlen)) {
3052 release_sock(sk);
3053 return -EFAULT;
3054 }
3055 release_sock(sk);
3056 return -EINVAL;
3057 }
3058 len = tp->saved_syn[0];
3059 if (put_user(len, optlen)) {
3060 release_sock(sk);
3061 return -EFAULT;
3062 }
3063 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3064 release_sock(sk);
3065 return -EFAULT;
3066 }
3067 tcp_saved_syn_free(tp);
3068 release_sock(sk);
3069 } else {
3070 release_sock(sk);
3071 len = 0;
3072 if (put_user(len, optlen))
3073 return -EFAULT;
3074 }
3075 return 0;
3076 }
3077 default:
3078 return -ENOPROTOOPT;
3079 }
3080
3081 if (put_user(len, optlen))
3082 return -EFAULT;
3083 if (copy_to_user(optval, &val, len))
3084 return -EFAULT;
3085 return 0;
3086 }
3087
3088 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3089 int __user *optlen)
3090 {
3091 struct inet_connection_sock *icsk = inet_csk(sk);
3092
3093 if (level != SOL_TCP)
3094 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3095 optval, optlen);
3096 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3097 }
3098 EXPORT_SYMBOL(tcp_getsockopt);
3099
3100 #ifdef CONFIG_COMPAT
3101 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3102 char __user *optval, int __user *optlen)
3103 {
3104 if (level != SOL_TCP)
3105 return inet_csk_compat_getsockopt(sk, level, optname,
3106 optval, optlen);
3107 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3108 }
3109 EXPORT_SYMBOL(compat_tcp_getsockopt);
3110 #endif
3111
3112 #ifdef CONFIG_TCP_MD5SIG
3113 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3114 static DEFINE_MUTEX(tcp_md5sig_mutex);
3115 static bool tcp_md5sig_pool_populated = false;
3116
3117 static void __tcp_alloc_md5sig_pool(void)
3118 {
3119 struct crypto_ahash *hash;
3120 int cpu;
3121
3122 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3123 if (IS_ERR(hash))
3124 return;
3125
3126 for_each_possible_cpu(cpu) {
3127 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3128 struct ahash_request *req;
3129
3130 if (!scratch) {
3131 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3132 sizeof(struct tcphdr),
3133 GFP_KERNEL,
3134 cpu_to_node(cpu));
3135 if (!scratch)
3136 return;
3137 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3138 }
3139 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3140 continue;
3141
3142 req = ahash_request_alloc(hash, GFP_KERNEL);
3143 if (!req)
3144 return;
3145
3146 ahash_request_set_callback(req, 0, NULL, NULL);
3147
3148 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3149 }
3150 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3151 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3152 */
3153 smp_wmb();
3154 tcp_md5sig_pool_populated = true;
3155 }
3156
3157 bool tcp_alloc_md5sig_pool(void)
3158 {
3159 if (unlikely(!tcp_md5sig_pool_populated)) {
3160 mutex_lock(&tcp_md5sig_mutex);
3161
3162 if (!tcp_md5sig_pool_populated)
3163 __tcp_alloc_md5sig_pool();
3164
3165 mutex_unlock(&tcp_md5sig_mutex);
3166 }
3167 return tcp_md5sig_pool_populated;
3168 }
3169 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3170
3171
3172 /**
3173 * tcp_get_md5sig_pool - get md5sig_pool for this user
3174 *
3175 * We use percpu structure, so if we succeed, we exit with preemption
3176 * and BH disabled, to make sure another thread or softirq handling
3177 * wont try to get same context.
3178 */
3179 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3180 {
3181 local_bh_disable();
3182
3183 if (tcp_md5sig_pool_populated) {
3184 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3185 smp_rmb();
3186 return this_cpu_ptr(&tcp_md5sig_pool);
3187 }
3188 local_bh_enable();
3189 return NULL;
3190 }
3191 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3192
3193 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3194 const struct sk_buff *skb, unsigned int header_len)
3195 {
3196 struct scatterlist sg;
3197 const struct tcphdr *tp = tcp_hdr(skb);
3198 struct ahash_request *req = hp->md5_req;
3199 unsigned int i;
3200 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3201 skb_headlen(skb) - header_len : 0;
3202 const struct skb_shared_info *shi = skb_shinfo(skb);
3203 struct sk_buff *frag_iter;
3204
3205 sg_init_table(&sg, 1);
3206
3207 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3208 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3209 if (crypto_ahash_update(req))
3210 return 1;
3211
3212 for (i = 0; i < shi->nr_frags; ++i) {
3213 const struct skb_frag_struct *f = &shi->frags[i];
3214 unsigned int offset = f->page_offset;
3215 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3216
3217 sg_set_page(&sg, page, skb_frag_size(f),
3218 offset_in_page(offset));
3219 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3220 if (crypto_ahash_update(req))
3221 return 1;
3222 }
3223
3224 skb_walk_frags(skb, frag_iter)
3225 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3226 return 1;
3227
3228 return 0;
3229 }
3230 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3231
3232 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3233 {
3234 struct scatterlist sg;
3235
3236 sg_init_one(&sg, key->key, key->keylen);
3237 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3238 return crypto_ahash_update(hp->md5_req);
3239 }
3240 EXPORT_SYMBOL(tcp_md5_hash_key);
3241
3242 #endif
3243
3244 void tcp_done(struct sock *sk)
3245 {
3246 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3247
3248 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3249 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3250
3251 tcp_set_state(sk, TCP_CLOSE);
3252 tcp_clear_xmit_timers(sk);
3253 if (req)
3254 reqsk_fastopen_remove(sk, req, false);
3255
3256 sk->sk_shutdown = SHUTDOWN_MASK;
3257
3258 if (!sock_flag(sk, SOCK_DEAD))
3259 sk->sk_state_change(sk);
3260 else
3261 inet_csk_destroy_sock(sk);
3262 }
3263 EXPORT_SYMBOL_GPL(tcp_done);
3264
3265 int tcp_abort(struct sock *sk, int err)
3266 {
3267 if (!sk_fullsock(sk)) {
3268 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3269 struct request_sock *req = inet_reqsk(sk);
3270
3271 local_bh_disable();
3272 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3273 req);
3274 local_bh_enable();
3275 return 0;
3276 }
3277 return -EOPNOTSUPP;
3278 }
3279
3280 /* Don't race with userspace socket closes such as tcp_close. */
3281 lock_sock(sk);
3282
3283 if (sk->sk_state == TCP_LISTEN) {
3284 tcp_set_state(sk, TCP_CLOSE);
3285 inet_csk_listen_stop(sk);
3286 }
3287
3288 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3289 local_bh_disable();
3290 bh_lock_sock(sk);
3291
3292 if (!sock_flag(sk, SOCK_DEAD)) {
3293 sk->sk_err = err;
3294 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3295 smp_wmb();
3296 sk->sk_error_report(sk);
3297 if (tcp_need_reset(sk->sk_state))
3298 tcp_send_active_reset(sk, GFP_ATOMIC);
3299 tcp_done(sk);
3300 }
3301
3302 bh_unlock_sock(sk);
3303 local_bh_enable();
3304 release_sock(sk);
3305 return 0;
3306 }
3307 EXPORT_SYMBOL_GPL(tcp_abort);
3308
3309 extern struct tcp_congestion_ops tcp_reno;
3310
3311 static __initdata unsigned long thash_entries;
3312 static int __init set_thash_entries(char *str)
3313 {
3314 ssize_t ret;
3315
3316 if (!str)
3317 return 0;
3318
3319 ret = kstrtoul(str, 0, &thash_entries);
3320 if (ret)
3321 return 0;
3322
3323 return 1;
3324 }
3325 __setup("thash_entries=", set_thash_entries);
3326
3327 static void __init tcp_init_mem(void)
3328 {
3329 unsigned long limit = nr_free_buffer_pages() / 16;
3330
3331 limit = max(limit, 128UL);
3332 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3333 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3334 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3335 }
3336
3337 void __init tcp_init(void)
3338 {
3339 int max_rshare, max_wshare, cnt;
3340 unsigned long limit;
3341 unsigned int i;
3342
3343 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3344 FIELD_SIZEOF(struct sk_buff, cb));
3345
3346 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3347 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3348 tcp_hashinfo.bind_bucket_cachep =
3349 kmem_cache_create("tcp_bind_bucket",
3350 sizeof(struct inet_bind_bucket), 0,
3351 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3352
3353 /* Size and allocate the main established and bind bucket
3354 * hash tables.
3355 *
3356 * The methodology is similar to that of the buffer cache.
3357 */
3358 tcp_hashinfo.ehash =
3359 alloc_large_system_hash("TCP established",
3360 sizeof(struct inet_ehash_bucket),
3361 thash_entries,
3362 17, /* one slot per 128 KB of memory */
3363 0,
3364 NULL,
3365 &tcp_hashinfo.ehash_mask,
3366 0,
3367 thash_entries ? 0 : 512 * 1024);
3368 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3369 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3370
3371 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3372 panic("TCP: failed to alloc ehash_locks");
3373 tcp_hashinfo.bhash =
3374 alloc_large_system_hash("TCP bind",
3375 sizeof(struct inet_bind_hashbucket),
3376 tcp_hashinfo.ehash_mask + 1,
3377 17, /* one slot per 128 KB of memory */
3378 0,
3379 &tcp_hashinfo.bhash_size,
3380 NULL,
3381 0,
3382 64 * 1024);
3383 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3384 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3385 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3386 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3387 }
3388
3389
3390 cnt = tcp_hashinfo.ehash_mask + 1;
3391
3392 tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3393 sysctl_tcp_max_orphans = cnt / 2;
3394 sysctl_max_syn_backlog = max(128, cnt / 256);
3395
3396 tcp_init_mem();
3397 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3398 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3399 max_wshare = min(4UL*1024*1024, limit);
3400 max_rshare = min(6UL*1024*1024, limit);
3401
3402 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3403 sysctl_tcp_wmem[1] = 16*1024;
3404 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3405
3406 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3407 sysctl_tcp_rmem[1] = 87380;
3408 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3409
3410 pr_info("Hash tables configured (established %u bind %u)\n",
3411 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3412
3413 tcp_metrics_init();
3414 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3415 tcp_tasklet_init();
3416 }