]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/tcp.c
tcp: remove empty skb from write queue in error cases
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248 #define pr_fmt(fmt) "TCP: " fmt
249
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 #include <linux/errqueue.h>
273 #include <linux/static_key.h>
274
275 #include <net/icmp.h>
276 #include <net/inet_common.h>
277 #include <net/tcp.h>
278 #include <net/xfrm.h>
279 #include <net/ip.h>
280 #include <net/sock.h>
281
282 #include <linux/uaccess.h>
283 #include <asm/ioctls.h>
284 #include <net/busy_poll.h>
285
286 #include <trace/events/tcp.h>
287
288 struct percpu_counter tcp_orphan_count;
289 EXPORT_SYMBOL_GPL(tcp_orphan_count);
290
291 long sysctl_tcp_mem[3] __read_mostly;
292 EXPORT_SYMBOL(sysctl_tcp_mem);
293
294 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
295 EXPORT_SYMBOL(tcp_memory_allocated);
296
297 #if IS_ENABLED(CONFIG_SMC)
298 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
299 EXPORT_SYMBOL(tcp_have_smc);
300 #endif
301
302 /*
303 * Current number of TCP sockets.
304 */
305 struct percpu_counter tcp_sockets_allocated;
306 EXPORT_SYMBOL(tcp_sockets_allocated);
307
308 /*
309 * TCP splice context
310 */
311 struct tcp_splice_state {
312 struct pipe_inode_info *pipe;
313 size_t len;
314 unsigned int flags;
315 };
316
317 /*
318 * Pressure flag: try to collapse.
319 * Technical note: it is used by multiple contexts non atomically.
320 * All the __sk_mem_schedule() is of this nature: accounting
321 * is strict, actions are advisory and have some latency.
322 */
323 unsigned long tcp_memory_pressure __read_mostly;
324 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
325
326 void tcp_enter_memory_pressure(struct sock *sk)
327 {
328 unsigned long val;
329
330 if (tcp_memory_pressure)
331 return;
332 val = jiffies;
333
334 if (!val)
335 val--;
336 if (!cmpxchg(&tcp_memory_pressure, 0, val))
337 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
338 }
339 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
340
341 void tcp_leave_memory_pressure(struct sock *sk)
342 {
343 unsigned long val;
344
345 if (!tcp_memory_pressure)
346 return;
347 val = xchg(&tcp_memory_pressure, 0);
348 if (val)
349 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
350 jiffies_to_msecs(jiffies - val));
351 }
352 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
353
354 /* Convert seconds to retransmits based on initial and max timeout */
355 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
356 {
357 u8 res = 0;
358
359 if (seconds > 0) {
360 int period = timeout;
361
362 res = 1;
363 while (seconds > period && res < 255) {
364 res++;
365 timeout <<= 1;
366 if (timeout > rto_max)
367 timeout = rto_max;
368 period += timeout;
369 }
370 }
371 return res;
372 }
373
374 /* Convert retransmits to seconds based on initial and max timeout */
375 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
376 {
377 int period = 0;
378
379 if (retrans > 0) {
380 period = timeout;
381 while (--retrans) {
382 timeout <<= 1;
383 if (timeout > rto_max)
384 timeout = rto_max;
385 period += timeout;
386 }
387 }
388 return period;
389 }
390
391 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
392 {
393 u32 rate = READ_ONCE(tp->rate_delivered);
394 u32 intv = READ_ONCE(tp->rate_interval_us);
395 u64 rate64 = 0;
396
397 if (rate && intv) {
398 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
399 do_div(rate64, intv);
400 }
401 return rate64;
402 }
403
404 /* Address-family independent initialization for a tcp_sock.
405 *
406 * NOTE: A lot of things set to zero explicitly by call to
407 * sk_alloc() so need not be done here.
408 */
409 void tcp_init_sock(struct sock *sk)
410 {
411 struct inet_connection_sock *icsk = inet_csk(sk);
412 struct tcp_sock *tp = tcp_sk(sk);
413
414 tp->out_of_order_queue = RB_ROOT;
415 sk->tcp_rtx_queue = RB_ROOT;
416 tcp_init_xmit_timers(sk);
417 INIT_LIST_HEAD(&tp->tsq_node);
418 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
419
420 icsk->icsk_rto = TCP_TIMEOUT_INIT;
421 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
422 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
423
424 /* So many TCP implementations out there (incorrectly) count the
425 * initial SYN frame in their delayed-ACK and congestion control
426 * algorithms that we must have the following bandaid to talk
427 * efficiently to them. -DaveM
428 */
429 tp->snd_cwnd = TCP_INIT_CWND;
430
431 /* There's a bubble in the pipe until at least the first ACK. */
432 tp->app_limited = ~0U;
433
434 /* See draft-stevens-tcpca-spec-01 for discussion of the
435 * initialization of these values.
436 */
437 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
438 tp->snd_cwnd_clamp = ~0;
439 tp->mss_cache = TCP_MSS_DEFAULT;
440
441 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
442 tcp_assign_congestion_control(sk);
443
444 tp->tsoffset = 0;
445 tp->rack.reo_wnd_steps = 1;
446
447 sk->sk_state = TCP_CLOSE;
448
449 sk->sk_write_space = sk_stream_write_space;
450 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
451
452 icsk->icsk_sync_mss = tcp_sync_mss;
453
454 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
455 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
456
457 sk_sockets_allocated_inc(sk);
458 }
459 EXPORT_SYMBOL(tcp_init_sock);
460
461 void tcp_init_transfer(struct sock *sk, int bpf_op)
462 {
463 struct inet_connection_sock *icsk = inet_csk(sk);
464
465 tcp_mtup_init(sk);
466 icsk->icsk_af_ops->rebuild_header(sk);
467 tcp_init_metrics(sk);
468 tcp_call_bpf(sk, bpf_op);
469 tcp_init_congestion_control(sk);
470 tcp_init_buffer_space(sk);
471 }
472
473 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
474 {
475 struct sk_buff *skb = tcp_write_queue_tail(sk);
476
477 if (tsflags && skb) {
478 struct skb_shared_info *shinfo = skb_shinfo(skb);
479 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
480
481 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
482 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
483 tcb->txstamp_ack = 1;
484 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
485 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
486 }
487 }
488
489 /*
490 * Wait for a TCP event.
491 *
492 * Note that we don't need to lock the socket, as the upper poll layers
493 * take care of normal races (between the test and the event) and we don't
494 * go look at any of the socket buffers directly.
495 */
496 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
497 {
498 unsigned int mask;
499 struct sock *sk = sock->sk;
500 const struct tcp_sock *tp = tcp_sk(sk);
501 int state;
502
503 sock_rps_record_flow(sk);
504
505 sock_poll_wait(file, sk_sleep(sk), wait);
506
507 state = sk_state_load(sk);
508 if (state == TCP_LISTEN)
509 return inet_csk_listen_poll(sk);
510
511 /* Socket is not locked. We are protected from async events
512 * by poll logic and correct handling of state changes
513 * made by other threads is impossible in any case.
514 */
515
516 mask = 0;
517
518 /*
519 * POLLHUP is certainly not done right. But poll() doesn't
520 * have a notion of HUP in just one direction, and for a
521 * socket the read side is more interesting.
522 *
523 * Some poll() documentation says that POLLHUP is incompatible
524 * with the POLLOUT/POLLWR flags, so somebody should check this
525 * all. But careful, it tends to be safer to return too many
526 * bits than too few, and you can easily break real applications
527 * if you don't tell them that something has hung up!
528 *
529 * Check-me.
530 *
531 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
532 * our fs/select.c). It means that after we received EOF,
533 * poll always returns immediately, making impossible poll() on write()
534 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
535 * if and only if shutdown has been made in both directions.
536 * Actually, it is interesting to look how Solaris and DUX
537 * solve this dilemma. I would prefer, if POLLHUP were maskable,
538 * then we could set it on SND_SHUTDOWN. BTW examples given
539 * in Stevens' books assume exactly this behaviour, it explains
540 * why POLLHUP is incompatible with POLLOUT. --ANK
541 *
542 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
543 * blocking on fresh not-connected or disconnected socket. --ANK
544 */
545 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
546 mask |= POLLHUP;
547 if (sk->sk_shutdown & RCV_SHUTDOWN)
548 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
549
550 /* Connected or passive Fast Open socket? */
551 if (state != TCP_SYN_SENT &&
552 (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
553 int target = sock_rcvlowat(sk, 0, INT_MAX);
554
555 if (tp->urg_seq == tp->copied_seq &&
556 !sock_flag(sk, SOCK_URGINLINE) &&
557 tp->urg_data)
558 target++;
559
560 if (tp->rcv_nxt - tp->copied_seq >= target)
561 mask |= POLLIN | POLLRDNORM;
562
563 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
564 if (sk_stream_is_writeable(sk)) {
565 mask |= POLLOUT | POLLWRNORM;
566 } else { /* send SIGIO later */
567 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
568 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
569
570 /* Race breaker. If space is freed after
571 * wspace test but before the flags are set,
572 * IO signal will be lost. Memory barrier
573 * pairs with the input side.
574 */
575 smp_mb__after_atomic();
576 if (sk_stream_is_writeable(sk))
577 mask |= POLLOUT | POLLWRNORM;
578 }
579 } else
580 mask |= POLLOUT | POLLWRNORM;
581
582 if (tp->urg_data & TCP_URG_VALID)
583 mask |= POLLPRI;
584 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
585 /* Active TCP fastopen socket with defer_connect
586 * Return POLLOUT so application can call write()
587 * in order for kernel to generate SYN+data
588 */
589 mask |= POLLOUT | POLLWRNORM;
590 }
591 /* This barrier is coupled with smp_wmb() in tcp_reset() */
592 smp_rmb();
593 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
594 mask |= POLLERR;
595
596 return mask;
597 }
598 EXPORT_SYMBOL(tcp_poll);
599
600 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
601 {
602 struct tcp_sock *tp = tcp_sk(sk);
603 int answ;
604 bool slow;
605
606 switch (cmd) {
607 case SIOCINQ:
608 if (sk->sk_state == TCP_LISTEN)
609 return -EINVAL;
610
611 slow = lock_sock_fast(sk);
612 answ = tcp_inq(sk);
613 unlock_sock_fast(sk, slow);
614 break;
615 case SIOCATMARK:
616 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
617 break;
618 case SIOCOUTQ:
619 if (sk->sk_state == TCP_LISTEN)
620 return -EINVAL;
621
622 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
623 answ = 0;
624 else
625 answ = tp->write_seq - tp->snd_una;
626 break;
627 case SIOCOUTQNSD:
628 if (sk->sk_state == TCP_LISTEN)
629 return -EINVAL;
630
631 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
632 answ = 0;
633 else
634 answ = tp->write_seq - tp->snd_nxt;
635 break;
636 default:
637 return -ENOIOCTLCMD;
638 }
639
640 return put_user(answ, (int __user *)arg);
641 }
642 EXPORT_SYMBOL(tcp_ioctl);
643
644 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
645 {
646 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
647 tp->pushed_seq = tp->write_seq;
648 }
649
650 static inline bool forced_push(const struct tcp_sock *tp)
651 {
652 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
653 }
654
655 static void skb_entail(struct sock *sk, struct sk_buff *skb)
656 {
657 struct tcp_sock *tp = tcp_sk(sk);
658 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
659
660 skb->csum = 0;
661 tcb->seq = tcb->end_seq = tp->write_seq;
662 tcb->tcp_flags = TCPHDR_ACK;
663 tcb->sacked = 0;
664 __skb_header_release(skb);
665 tcp_add_write_queue_tail(sk, skb);
666 sk->sk_wmem_queued += skb->truesize;
667 sk_mem_charge(sk, skb->truesize);
668 if (tp->nonagle & TCP_NAGLE_PUSH)
669 tp->nonagle &= ~TCP_NAGLE_PUSH;
670
671 tcp_slow_start_after_idle_check(sk);
672 }
673
674 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
675 {
676 if (flags & MSG_OOB)
677 tp->snd_up = tp->write_seq;
678 }
679
680 /* If a not yet filled skb is pushed, do not send it if
681 * we have data packets in Qdisc or NIC queues :
682 * Because TX completion will happen shortly, it gives a chance
683 * to coalesce future sendmsg() payload into this skb, without
684 * need for a timer, and with no latency trade off.
685 * As packets containing data payload have a bigger truesize
686 * than pure acks (dataless) packets, the last checks prevent
687 * autocorking if we only have an ACK in Qdisc/NIC queues,
688 * or if TX completion was delayed after we processed ACK packet.
689 */
690 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
691 int size_goal)
692 {
693 return skb->len < size_goal &&
694 sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
695 !tcp_rtx_queue_empty(sk) &&
696 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
697 }
698
699 static void tcp_push(struct sock *sk, int flags, int mss_now,
700 int nonagle, int size_goal)
701 {
702 struct tcp_sock *tp = tcp_sk(sk);
703 struct sk_buff *skb;
704
705 skb = tcp_write_queue_tail(sk);
706 if (!skb)
707 return;
708 if (!(flags & MSG_MORE) || forced_push(tp))
709 tcp_mark_push(tp, skb);
710
711 tcp_mark_urg(tp, flags);
712
713 if (tcp_should_autocork(sk, skb, size_goal)) {
714
715 /* avoid atomic op if TSQ_THROTTLED bit is already set */
716 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
717 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
718 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
719 }
720 /* It is possible TX completion already happened
721 * before we set TSQ_THROTTLED.
722 */
723 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
724 return;
725 }
726
727 if (flags & MSG_MORE)
728 nonagle = TCP_NAGLE_CORK;
729
730 __tcp_push_pending_frames(sk, mss_now, nonagle);
731 }
732
733 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
734 unsigned int offset, size_t len)
735 {
736 struct tcp_splice_state *tss = rd_desc->arg.data;
737 int ret;
738
739 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
740 min(rd_desc->count, len), tss->flags);
741 if (ret > 0)
742 rd_desc->count -= ret;
743 return ret;
744 }
745
746 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
747 {
748 /* Store TCP splice context information in read_descriptor_t. */
749 read_descriptor_t rd_desc = {
750 .arg.data = tss,
751 .count = tss->len,
752 };
753
754 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
755 }
756
757 /**
758 * tcp_splice_read - splice data from TCP socket to a pipe
759 * @sock: socket to splice from
760 * @ppos: position (not valid)
761 * @pipe: pipe to splice to
762 * @len: number of bytes to splice
763 * @flags: splice modifier flags
764 *
765 * Description:
766 * Will read pages from given socket and fill them into a pipe.
767 *
768 **/
769 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
770 struct pipe_inode_info *pipe, size_t len,
771 unsigned int flags)
772 {
773 struct sock *sk = sock->sk;
774 struct tcp_splice_state tss = {
775 .pipe = pipe,
776 .len = len,
777 .flags = flags,
778 };
779 long timeo;
780 ssize_t spliced;
781 int ret;
782
783 sock_rps_record_flow(sk);
784 /*
785 * We can't seek on a socket input
786 */
787 if (unlikely(*ppos))
788 return -ESPIPE;
789
790 ret = spliced = 0;
791
792 lock_sock(sk);
793
794 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
795 while (tss.len) {
796 ret = __tcp_splice_read(sk, &tss);
797 if (ret < 0)
798 break;
799 else if (!ret) {
800 if (spliced)
801 break;
802 if (sock_flag(sk, SOCK_DONE))
803 break;
804 if (sk->sk_err) {
805 ret = sock_error(sk);
806 break;
807 }
808 if (sk->sk_shutdown & RCV_SHUTDOWN)
809 break;
810 if (sk->sk_state == TCP_CLOSE) {
811 /*
812 * This occurs when user tries to read
813 * from never connected socket.
814 */
815 if (!sock_flag(sk, SOCK_DONE))
816 ret = -ENOTCONN;
817 break;
818 }
819 if (!timeo) {
820 ret = -EAGAIN;
821 break;
822 }
823 /* if __tcp_splice_read() got nothing while we have
824 * an skb in receive queue, we do not want to loop.
825 * This might happen with URG data.
826 */
827 if (!skb_queue_empty(&sk->sk_receive_queue))
828 break;
829 sk_wait_data(sk, &timeo, NULL);
830 if (signal_pending(current)) {
831 ret = sock_intr_errno(timeo);
832 break;
833 }
834 continue;
835 }
836 tss.len -= ret;
837 spliced += ret;
838
839 if (!timeo)
840 break;
841 release_sock(sk);
842 lock_sock(sk);
843
844 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
845 (sk->sk_shutdown & RCV_SHUTDOWN) ||
846 signal_pending(current))
847 break;
848 }
849
850 release_sock(sk);
851
852 if (spliced)
853 return spliced;
854
855 return ret;
856 }
857 EXPORT_SYMBOL(tcp_splice_read);
858
859 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
860 bool force_schedule)
861 {
862 struct sk_buff *skb;
863
864 /* The TCP header must be at least 32-bit aligned. */
865 size = ALIGN(size, 4);
866
867 if (unlikely(tcp_under_memory_pressure(sk)))
868 sk_mem_reclaim_partial(sk);
869
870 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
871 if (likely(skb)) {
872 bool mem_scheduled;
873
874 if (force_schedule) {
875 mem_scheduled = true;
876 sk_forced_mem_schedule(sk, skb->truesize);
877 } else {
878 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
879 }
880 if (likely(mem_scheduled)) {
881 skb_reserve(skb, sk->sk_prot->max_header);
882 /*
883 * Make sure that we have exactly size bytes
884 * available to the caller, no more, no less.
885 */
886 skb->reserved_tailroom = skb->end - skb->tail - size;
887 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
888 return skb;
889 }
890 __kfree_skb(skb);
891 } else {
892 sk->sk_prot->enter_memory_pressure(sk);
893 sk_stream_moderate_sndbuf(sk);
894 }
895 return NULL;
896 }
897
898 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
899 int large_allowed)
900 {
901 struct tcp_sock *tp = tcp_sk(sk);
902 u32 new_size_goal, size_goal;
903
904 if (!large_allowed || !sk_can_gso(sk))
905 return mss_now;
906
907 /* Note : tcp_tso_autosize() will eventually split this later */
908 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
909 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
910
911 /* We try hard to avoid divides here */
912 size_goal = tp->gso_segs * mss_now;
913 if (unlikely(new_size_goal < size_goal ||
914 new_size_goal >= size_goal + mss_now)) {
915 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
916 sk->sk_gso_max_segs);
917 size_goal = tp->gso_segs * mss_now;
918 }
919
920 return max(size_goal, mss_now);
921 }
922
923 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
924 {
925 int mss_now;
926
927 mss_now = tcp_current_mss(sk);
928 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
929
930 return mss_now;
931 }
932
933 /* In some cases, both sendpage() and sendmsg() could have added
934 * an skb to the write queue, but failed adding payload on it.
935 * We need to remove it to consume less memory, but more
936 * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
937 * users.
938 */
939 static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)
940 {
941 if (skb && !skb->len) {
942 tcp_unlink_write_queue(skb, sk);
943 if (tcp_write_queue_empty(sk))
944 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
945 sk_wmem_free_skb(sk, skb);
946 }
947 }
948
949 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
950 size_t size, int flags)
951 {
952 struct tcp_sock *tp = tcp_sk(sk);
953 int mss_now, size_goal;
954 int err;
955 ssize_t copied;
956 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
957
958 /* Wait for a connection to finish. One exception is TCP Fast Open
959 * (passive side) where data is allowed to be sent before a connection
960 * is fully established.
961 */
962 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
963 !tcp_passive_fastopen(sk)) {
964 err = sk_stream_wait_connect(sk, &timeo);
965 if (err != 0)
966 goto out_err;
967 }
968
969 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
970
971 mss_now = tcp_send_mss(sk, &size_goal, flags);
972 copied = 0;
973
974 err = -EPIPE;
975 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
976 goto out_err;
977
978 while (size > 0) {
979 struct sk_buff *skb = tcp_write_queue_tail(sk);
980 int copy, i;
981 bool can_coalesce;
982
983 if (!skb || (copy = size_goal - skb->len) <= 0 ||
984 !tcp_skb_can_collapse_to(skb)) {
985 new_segment:
986 if (!sk_stream_memory_free(sk))
987 goto wait_for_sndbuf;
988
989 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
990 tcp_rtx_and_write_queues_empty(sk));
991 if (!skb)
992 goto wait_for_memory;
993
994 skb_entail(sk, skb);
995 copy = size_goal;
996 }
997
998 if (copy > size)
999 copy = size;
1000
1001 i = skb_shinfo(skb)->nr_frags;
1002 can_coalesce = skb_can_coalesce(skb, i, page, offset);
1003 if (!can_coalesce && i >= sysctl_max_skb_frags) {
1004 tcp_mark_push(tp, skb);
1005 goto new_segment;
1006 }
1007 if (!sk_wmem_schedule(sk, copy))
1008 goto wait_for_memory;
1009
1010 if (can_coalesce) {
1011 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1012 } else {
1013 get_page(page);
1014 skb_fill_page_desc(skb, i, page, offset, copy);
1015 }
1016 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1017
1018 skb->len += copy;
1019 skb->data_len += copy;
1020 skb->truesize += copy;
1021 sk->sk_wmem_queued += copy;
1022 sk_mem_charge(sk, copy);
1023 skb->ip_summed = CHECKSUM_PARTIAL;
1024 tp->write_seq += copy;
1025 TCP_SKB_CB(skb)->end_seq += copy;
1026 tcp_skb_pcount_set(skb, 0);
1027
1028 if (!copied)
1029 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1030
1031 copied += copy;
1032 offset += copy;
1033 size -= copy;
1034 if (!size)
1035 goto out;
1036
1037 if (skb->len < size_goal || (flags & MSG_OOB))
1038 continue;
1039
1040 if (forced_push(tp)) {
1041 tcp_mark_push(tp, skb);
1042 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1043 } else if (skb == tcp_send_head(sk))
1044 tcp_push_one(sk, mss_now);
1045 continue;
1046
1047 wait_for_sndbuf:
1048 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1049 wait_for_memory:
1050 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1051 TCP_NAGLE_PUSH, size_goal);
1052
1053 err = sk_stream_wait_memory(sk, &timeo);
1054 if (err != 0)
1055 goto do_error;
1056
1057 mss_now = tcp_send_mss(sk, &size_goal, flags);
1058 }
1059
1060 out:
1061 if (copied) {
1062 tcp_tx_timestamp(sk, sk->sk_tsflags);
1063 if (!(flags & MSG_SENDPAGE_NOTLAST))
1064 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1065 }
1066 return copied;
1067
1068 do_error:
1069 tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk));
1070 if (copied)
1071 goto out;
1072 out_err:
1073 /* make sure we wake any epoll edge trigger waiter */
1074 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1075 err == -EAGAIN)) {
1076 sk->sk_write_space(sk);
1077 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1078 }
1079 return sk_stream_error(sk, flags, err);
1080 }
1081 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1082
1083 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1084 size_t size, int flags)
1085 {
1086 if (!(sk->sk_route_caps & NETIF_F_SG) ||
1087 !sk_check_csum_caps(sk))
1088 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1089
1090 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1091
1092 return do_tcp_sendpages(sk, page, offset, size, flags);
1093 }
1094 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1095
1096 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1097 size_t size, int flags)
1098 {
1099 int ret;
1100
1101 lock_sock(sk);
1102 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1103 release_sock(sk);
1104
1105 return ret;
1106 }
1107 EXPORT_SYMBOL(tcp_sendpage);
1108
1109 /* Do not bother using a page frag for very small frames.
1110 * But use this heuristic only for the first skb in write queue.
1111 *
1112 * Having no payload in skb->head allows better SACK shifting
1113 * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1114 * write queue has less skbs.
1115 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1116 * This also speeds up tso_fragment(), since it wont fallback
1117 * to tcp_fragment().
1118 */
1119 static int linear_payload_sz(bool first_skb)
1120 {
1121 if (first_skb)
1122 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1123 return 0;
1124 }
1125
1126 static int select_size(const struct sock *sk, bool sg, bool first_skb)
1127 {
1128 const struct tcp_sock *tp = tcp_sk(sk);
1129 int tmp = tp->mss_cache;
1130
1131 if (sg) {
1132 if (sk_can_gso(sk)) {
1133 tmp = linear_payload_sz(first_skb);
1134 } else {
1135 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1136
1137 if (tmp >= pgbreak &&
1138 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1139 tmp = pgbreak;
1140 }
1141 }
1142
1143 return tmp;
1144 }
1145
1146 void tcp_free_fastopen_req(struct tcp_sock *tp)
1147 {
1148 if (tp->fastopen_req) {
1149 kfree(tp->fastopen_req);
1150 tp->fastopen_req = NULL;
1151 }
1152 }
1153
1154 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1155 int *copied, size_t size)
1156 {
1157 struct tcp_sock *tp = tcp_sk(sk);
1158 struct inet_sock *inet = inet_sk(sk);
1159 struct sockaddr *uaddr = msg->msg_name;
1160 int err, flags;
1161
1162 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1163 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1164 uaddr->sa_family == AF_UNSPEC))
1165 return -EOPNOTSUPP;
1166 if (tp->fastopen_req)
1167 return -EALREADY; /* Another Fast Open is in progress */
1168
1169 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1170 sk->sk_allocation);
1171 if (unlikely(!tp->fastopen_req))
1172 return -ENOBUFS;
1173 tp->fastopen_req->data = msg;
1174 tp->fastopen_req->size = size;
1175
1176 if (inet->defer_connect) {
1177 err = tcp_connect(sk);
1178 /* Same failure procedure as in tcp_v4/6_connect */
1179 if (err) {
1180 tcp_set_state(sk, TCP_CLOSE);
1181 inet->inet_dport = 0;
1182 sk->sk_route_caps = 0;
1183 }
1184 }
1185 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1186 err = __inet_stream_connect(sk->sk_socket, uaddr,
1187 msg->msg_namelen, flags, 1);
1188 /* fastopen_req could already be freed in __inet_stream_connect
1189 * if the connection times out or gets rst
1190 */
1191 if (tp->fastopen_req) {
1192 *copied = tp->fastopen_req->copied;
1193 tcp_free_fastopen_req(tp);
1194 inet->defer_connect = 0;
1195 }
1196 return err;
1197 }
1198
1199 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1200 {
1201 struct tcp_sock *tp = tcp_sk(sk);
1202 struct ubuf_info *uarg = NULL;
1203 struct sk_buff *skb;
1204 struct sockcm_cookie sockc;
1205 int flags, err, copied = 0;
1206 int mss_now = 0, size_goal, copied_syn = 0;
1207 bool process_backlog = false;
1208 bool sg;
1209 long timeo;
1210
1211 flags = msg->msg_flags;
1212
1213 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1214 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1215 err = -EINVAL;
1216 goto out_err;
1217 }
1218
1219 skb = tcp_write_queue_tail(sk);
1220 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1221 if (!uarg) {
1222 err = -ENOBUFS;
1223 goto out_err;
1224 }
1225
1226 if (!(sk_check_csum_caps(sk) && sk->sk_route_caps & NETIF_F_SG))
1227 uarg->zerocopy = 0;
1228 }
1229
1230 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1231 !tp->repair) {
1232 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1233 if (err == -EINPROGRESS && copied_syn > 0)
1234 goto out;
1235 else if (err)
1236 goto out_err;
1237 }
1238
1239 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1240
1241 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1242
1243 /* Wait for a connection to finish. One exception is TCP Fast Open
1244 * (passive side) where data is allowed to be sent before a connection
1245 * is fully established.
1246 */
1247 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1248 !tcp_passive_fastopen(sk)) {
1249 err = sk_stream_wait_connect(sk, &timeo);
1250 if (err != 0)
1251 goto do_error;
1252 }
1253
1254 if (unlikely(tp->repair)) {
1255 if (tp->repair_queue == TCP_RECV_QUEUE) {
1256 copied = tcp_send_rcvq(sk, msg, size);
1257 goto out_nopush;
1258 }
1259
1260 err = -EINVAL;
1261 if (tp->repair_queue == TCP_NO_QUEUE)
1262 goto out_err;
1263
1264 /* 'common' sending to sendq */
1265 }
1266
1267 sockc.tsflags = sk->sk_tsflags;
1268 if (msg->msg_controllen) {
1269 err = sock_cmsg_send(sk, msg, &sockc);
1270 if (unlikely(err)) {
1271 err = -EINVAL;
1272 goto out_err;
1273 }
1274 }
1275
1276 /* This should be in poll */
1277 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1278
1279 /* Ok commence sending. */
1280 copied = 0;
1281
1282 restart:
1283 mss_now = tcp_send_mss(sk, &size_goal, flags);
1284
1285 err = -EPIPE;
1286 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1287 goto do_error;
1288
1289 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1290
1291 while (msg_data_left(msg)) {
1292 int copy = 0;
1293 int max = size_goal;
1294
1295 skb = tcp_write_queue_tail(sk);
1296 if (skb) {
1297 if (skb->ip_summed == CHECKSUM_NONE)
1298 max = mss_now;
1299 copy = max - skb->len;
1300 }
1301
1302 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1303 bool first_skb;
1304
1305 new_segment:
1306 /* Allocate new segment. If the interface is SG,
1307 * allocate skb fitting to single page.
1308 */
1309 if (!sk_stream_memory_free(sk))
1310 goto wait_for_sndbuf;
1311
1312 if (process_backlog && sk_flush_backlog(sk)) {
1313 process_backlog = false;
1314 goto restart;
1315 }
1316 first_skb = tcp_rtx_and_write_queues_empty(sk);
1317 skb = sk_stream_alloc_skb(sk,
1318 select_size(sk, sg, first_skb),
1319 sk->sk_allocation,
1320 first_skb);
1321 if (!skb)
1322 goto wait_for_memory;
1323
1324 process_backlog = true;
1325 /*
1326 * Check whether we can use HW checksum.
1327 */
1328 if (sk_check_csum_caps(sk))
1329 skb->ip_summed = CHECKSUM_PARTIAL;
1330
1331 skb_entail(sk, skb);
1332 copy = size_goal;
1333 max = size_goal;
1334
1335 /* All packets are restored as if they have
1336 * already been sent. skb_mstamp isn't set to
1337 * avoid wrong rtt estimation.
1338 */
1339 if (tp->repair)
1340 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1341 }
1342
1343 /* Try to append data to the end of skb. */
1344 if (copy > msg_data_left(msg))
1345 copy = msg_data_left(msg);
1346
1347 /* Where to copy to? */
1348 if (skb_availroom(skb) > 0) {
1349 /* We have some space in skb head. Superb! */
1350 copy = min_t(int, copy, skb_availroom(skb));
1351 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1352 if (err)
1353 goto do_fault;
1354 } else if (!uarg || !uarg->zerocopy) {
1355 bool merge = true;
1356 int i = skb_shinfo(skb)->nr_frags;
1357 struct page_frag *pfrag = sk_page_frag(sk);
1358
1359 if (!sk_page_frag_refill(sk, pfrag))
1360 goto wait_for_memory;
1361
1362 if (!skb_can_coalesce(skb, i, pfrag->page,
1363 pfrag->offset)) {
1364 if (i >= sysctl_max_skb_frags || !sg) {
1365 tcp_mark_push(tp, skb);
1366 goto new_segment;
1367 }
1368 merge = false;
1369 }
1370
1371 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1372
1373 if (!sk_wmem_schedule(sk, copy))
1374 goto wait_for_memory;
1375
1376 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1377 pfrag->page,
1378 pfrag->offset,
1379 copy);
1380 if (err)
1381 goto do_error;
1382
1383 /* Update the skb. */
1384 if (merge) {
1385 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1386 } else {
1387 skb_fill_page_desc(skb, i, pfrag->page,
1388 pfrag->offset, copy);
1389 page_ref_inc(pfrag->page);
1390 }
1391 pfrag->offset += copy;
1392 } else {
1393 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1394 if (err == -EMSGSIZE || err == -EEXIST)
1395 goto new_segment;
1396 if (err < 0)
1397 goto do_error;
1398 copy = err;
1399 }
1400
1401 if (!copied)
1402 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1403
1404 tp->write_seq += copy;
1405 TCP_SKB_CB(skb)->end_seq += copy;
1406 tcp_skb_pcount_set(skb, 0);
1407
1408 copied += copy;
1409 if (!msg_data_left(msg)) {
1410 if (unlikely(flags & MSG_EOR))
1411 TCP_SKB_CB(skb)->eor = 1;
1412 goto out;
1413 }
1414
1415 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1416 continue;
1417
1418 if (forced_push(tp)) {
1419 tcp_mark_push(tp, skb);
1420 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1421 } else if (skb == tcp_send_head(sk))
1422 tcp_push_one(sk, mss_now);
1423 continue;
1424
1425 wait_for_sndbuf:
1426 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1427 wait_for_memory:
1428 if (copied)
1429 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1430 TCP_NAGLE_PUSH, size_goal);
1431
1432 err = sk_stream_wait_memory(sk, &timeo);
1433 if (err != 0)
1434 goto do_error;
1435
1436 mss_now = tcp_send_mss(sk, &size_goal, flags);
1437 }
1438
1439 out:
1440 if (copied) {
1441 tcp_tx_timestamp(sk, sockc.tsflags);
1442 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1443 }
1444 out_nopush:
1445 sock_zerocopy_put(uarg);
1446 return copied + copied_syn;
1447
1448 do_error:
1449 skb = tcp_write_queue_tail(sk);
1450 do_fault:
1451 tcp_remove_empty_skb(sk, skb);
1452
1453 if (copied + copied_syn)
1454 goto out;
1455 out_err:
1456 sock_zerocopy_put_abort(uarg);
1457 err = sk_stream_error(sk, flags, err);
1458 /* make sure we wake any epoll edge trigger waiter */
1459 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1460 err == -EAGAIN)) {
1461 sk->sk_write_space(sk);
1462 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1463 }
1464 return err;
1465 }
1466 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1467
1468 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1469 {
1470 int ret;
1471
1472 lock_sock(sk);
1473 ret = tcp_sendmsg_locked(sk, msg, size);
1474 release_sock(sk);
1475
1476 return ret;
1477 }
1478 EXPORT_SYMBOL(tcp_sendmsg);
1479
1480 /*
1481 * Handle reading urgent data. BSD has very simple semantics for
1482 * this, no blocking and very strange errors 8)
1483 */
1484
1485 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1486 {
1487 struct tcp_sock *tp = tcp_sk(sk);
1488
1489 /* No URG data to read. */
1490 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1491 tp->urg_data == TCP_URG_READ)
1492 return -EINVAL; /* Yes this is right ! */
1493
1494 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1495 return -ENOTCONN;
1496
1497 if (tp->urg_data & TCP_URG_VALID) {
1498 int err = 0;
1499 char c = tp->urg_data;
1500
1501 if (!(flags & MSG_PEEK))
1502 tp->urg_data = TCP_URG_READ;
1503
1504 /* Read urgent data. */
1505 msg->msg_flags |= MSG_OOB;
1506
1507 if (len > 0) {
1508 if (!(flags & MSG_TRUNC))
1509 err = memcpy_to_msg(msg, &c, 1);
1510 len = 1;
1511 } else
1512 msg->msg_flags |= MSG_TRUNC;
1513
1514 return err ? -EFAULT : len;
1515 }
1516
1517 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1518 return 0;
1519
1520 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1521 * the available implementations agree in this case:
1522 * this call should never block, independent of the
1523 * blocking state of the socket.
1524 * Mike <pall@rz.uni-karlsruhe.de>
1525 */
1526 return -EAGAIN;
1527 }
1528
1529 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1530 {
1531 struct sk_buff *skb;
1532 int copied = 0, err = 0;
1533
1534 /* XXX -- need to support SO_PEEK_OFF */
1535
1536 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1537 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1538 if (err)
1539 return err;
1540 copied += skb->len;
1541 }
1542
1543 skb_queue_walk(&sk->sk_write_queue, skb) {
1544 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1545 if (err)
1546 break;
1547
1548 copied += skb->len;
1549 }
1550
1551 return err ?: copied;
1552 }
1553
1554 /* Clean up the receive buffer for full frames taken by the user,
1555 * then send an ACK if necessary. COPIED is the number of bytes
1556 * tcp_recvmsg has given to the user so far, it speeds up the
1557 * calculation of whether or not we must ACK for the sake of
1558 * a window update.
1559 */
1560 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1561 {
1562 struct tcp_sock *tp = tcp_sk(sk);
1563 bool time_to_ack = false;
1564
1565 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1566
1567 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1568 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1569 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1570
1571 if (inet_csk_ack_scheduled(sk)) {
1572 const struct inet_connection_sock *icsk = inet_csk(sk);
1573 /* Delayed ACKs frequently hit locked sockets during bulk
1574 * receive. */
1575 if (icsk->icsk_ack.blocked ||
1576 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1577 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1578 /*
1579 * If this read emptied read buffer, we send ACK, if
1580 * connection is not bidirectional, user drained
1581 * receive buffer and there was a small segment
1582 * in queue.
1583 */
1584 (copied > 0 &&
1585 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1586 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1587 !icsk->icsk_ack.pingpong)) &&
1588 !atomic_read(&sk->sk_rmem_alloc)))
1589 time_to_ack = true;
1590 }
1591
1592 /* We send an ACK if we can now advertise a non-zero window
1593 * which has been raised "significantly".
1594 *
1595 * Even if window raised up to infinity, do not send window open ACK
1596 * in states, where we will not receive more. It is useless.
1597 */
1598 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1599 __u32 rcv_window_now = tcp_receive_window(tp);
1600
1601 /* Optimize, __tcp_select_window() is not cheap. */
1602 if (2*rcv_window_now <= tp->window_clamp) {
1603 __u32 new_window = __tcp_select_window(sk);
1604
1605 /* Send ACK now, if this read freed lots of space
1606 * in our buffer. Certainly, new_window is new window.
1607 * We can advertise it now, if it is not less than current one.
1608 * "Lots" means "at least twice" here.
1609 */
1610 if (new_window && new_window >= 2 * rcv_window_now)
1611 time_to_ack = true;
1612 }
1613 }
1614 if (time_to_ack)
1615 tcp_send_ack(sk);
1616 }
1617
1618 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1619 {
1620 struct sk_buff *skb;
1621 u32 offset;
1622
1623 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1624 offset = seq - TCP_SKB_CB(skb)->seq;
1625 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1626 pr_err_once("%s: found a SYN, please report !\n", __func__);
1627 offset--;
1628 }
1629 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1630 *off = offset;
1631 return skb;
1632 }
1633 /* This looks weird, but this can happen if TCP collapsing
1634 * splitted a fat GRO packet, while we released socket lock
1635 * in skb_splice_bits()
1636 */
1637 sk_eat_skb(sk, skb);
1638 }
1639 return NULL;
1640 }
1641
1642 /*
1643 * This routine provides an alternative to tcp_recvmsg() for routines
1644 * that would like to handle copying from skbuffs directly in 'sendfile'
1645 * fashion.
1646 * Note:
1647 * - It is assumed that the socket was locked by the caller.
1648 * - The routine does not block.
1649 * - At present, there is no support for reading OOB data
1650 * or for 'peeking' the socket using this routine
1651 * (although both would be easy to implement).
1652 */
1653 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1654 sk_read_actor_t recv_actor)
1655 {
1656 struct sk_buff *skb;
1657 struct tcp_sock *tp = tcp_sk(sk);
1658 u32 seq = tp->copied_seq;
1659 u32 offset;
1660 int copied = 0;
1661
1662 if (sk->sk_state == TCP_LISTEN)
1663 return -ENOTCONN;
1664 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1665 if (offset < skb->len) {
1666 int used;
1667 size_t len;
1668
1669 len = skb->len - offset;
1670 /* Stop reading if we hit a patch of urgent data */
1671 if (tp->urg_data) {
1672 u32 urg_offset = tp->urg_seq - seq;
1673 if (urg_offset < len)
1674 len = urg_offset;
1675 if (!len)
1676 break;
1677 }
1678 used = recv_actor(desc, skb, offset, len);
1679 if (used <= 0) {
1680 if (!copied)
1681 copied = used;
1682 break;
1683 } else if (used <= len) {
1684 seq += used;
1685 copied += used;
1686 offset += used;
1687 }
1688 /* If recv_actor drops the lock (e.g. TCP splice
1689 * receive) the skb pointer might be invalid when
1690 * getting here: tcp_collapse might have deleted it
1691 * while aggregating skbs from the socket queue.
1692 */
1693 skb = tcp_recv_skb(sk, seq - 1, &offset);
1694 if (!skb)
1695 break;
1696 /* TCP coalescing might have appended data to the skb.
1697 * Try to splice more frags
1698 */
1699 if (offset + 1 != skb->len)
1700 continue;
1701 }
1702 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1703 sk_eat_skb(sk, skb);
1704 ++seq;
1705 break;
1706 }
1707 sk_eat_skb(sk, skb);
1708 if (!desc->count)
1709 break;
1710 tp->copied_seq = seq;
1711 }
1712 tp->copied_seq = seq;
1713
1714 tcp_rcv_space_adjust(sk);
1715
1716 /* Clean up data we have read: This will do ACK frames. */
1717 if (copied > 0) {
1718 tcp_recv_skb(sk, seq, &offset);
1719 tcp_cleanup_rbuf(sk, copied);
1720 }
1721 return copied;
1722 }
1723 EXPORT_SYMBOL(tcp_read_sock);
1724
1725 int tcp_peek_len(struct socket *sock)
1726 {
1727 return tcp_inq(sock->sk);
1728 }
1729 EXPORT_SYMBOL(tcp_peek_len);
1730
1731 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1732 struct scm_timestamping *tss)
1733 {
1734 if (skb->tstamp)
1735 tss->ts[0] = ktime_to_timespec(skb->tstamp);
1736 else
1737 tss->ts[0] = (struct timespec) {0};
1738
1739 if (skb_hwtstamps(skb)->hwtstamp)
1740 tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp);
1741 else
1742 tss->ts[2] = (struct timespec) {0};
1743 }
1744
1745 /* Similar to __sock_recv_timestamp, but does not require an skb */
1746 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1747 struct scm_timestamping *tss)
1748 {
1749 struct timeval tv;
1750 bool has_timestamping = false;
1751
1752 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1753 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1754 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1755 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
1756 sizeof(tss->ts[0]), &tss->ts[0]);
1757 } else {
1758 tv.tv_sec = tss->ts[0].tv_sec;
1759 tv.tv_usec = tss->ts[0].tv_nsec / 1000;
1760
1761 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
1762 sizeof(tv), &tv);
1763 }
1764 }
1765
1766 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1767 has_timestamping = true;
1768 else
1769 tss->ts[0] = (struct timespec) {0};
1770 }
1771
1772 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1773 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1774 has_timestamping = true;
1775 else
1776 tss->ts[2] = (struct timespec) {0};
1777 }
1778
1779 if (has_timestamping) {
1780 tss->ts[1] = (struct timespec) {0};
1781 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING,
1782 sizeof(*tss), tss);
1783 }
1784 }
1785
1786 /*
1787 * This routine copies from a sock struct into the user buffer.
1788 *
1789 * Technical note: in 2.3 we work on _locked_ socket, so that
1790 * tricks with *seq access order and skb->users are not required.
1791 * Probably, code can be easily improved even more.
1792 */
1793
1794 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1795 int flags, int *addr_len)
1796 {
1797 struct tcp_sock *tp = tcp_sk(sk);
1798 int copied = 0;
1799 u32 peek_seq;
1800 u32 *seq;
1801 unsigned long used;
1802 int err;
1803 int target; /* Read at least this many bytes */
1804 long timeo;
1805 struct sk_buff *skb, *last;
1806 u32 urg_hole = 0;
1807 struct scm_timestamping tss;
1808 bool has_tss = false;
1809
1810 if (unlikely(flags & MSG_ERRQUEUE))
1811 return inet_recv_error(sk, msg, len, addr_len);
1812
1813 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1814 (sk->sk_state == TCP_ESTABLISHED))
1815 sk_busy_loop(sk, nonblock);
1816
1817 lock_sock(sk);
1818
1819 err = -ENOTCONN;
1820 if (sk->sk_state == TCP_LISTEN)
1821 goto out;
1822
1823 timeo = sock_rcvtimeo(sk, nonblock);
1824
1825 /* Urgent data needs to be handled specially. */
1826 if (flags & MSG_OOB)
1827 goto recv_urg;
1828
1829 if (unlikely(tp->repair)) {
1830 err = -EPERM;
1831 if (!(flags & MSG_PEEK))
1832 goto out;
1833
1834 if (tp->repair_queue == TCP_SEND_QUEUE)
1835 goto recv_sndq;
1836
1837 err = -EINVAL;
1838 if (tp->repair_queue == TCP_NO_QUEUE)
1839 goto out;
1840
1841 /* 'common' recv queue MSG_PEEK-ing */
1842 }
1843
1844 seq = &tp->copied_seq;
1845 if (flags & MSG_PEEK) {
1846 peek_seq = tp->copied_seq;
1847 seq = &peek_seq;
1848 }
1849
1850 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1851
1852 do {
1853 u32 offset;
1854
1855 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1856 if (tp->urg_data && tp->urg_seq == *seq) {
1857 if (copied)
1858 break;
1859 if (signal_pending(current)) {
1860 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1861 break;
1862 }
1863 }
1864
1865 /* Next get a buffer. */
1866
1867 last = skb_peek_tail(&sk->sk_receive_queue);
1868 skb_queue_walk(&sk->sk_receive_queue, skb) {
1869 last = skb;
1870 /* Now that we have two receive queues this
1871 * shouldn't happen.
1872 */
1873 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1874 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
1875 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1876 flags))
1877 break;
1878
1879 offset = *seq - TCP_SKB_CB(skb)->seq;
1880 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1881 pr_err_once("%s: found a SYN, please report !\n", __func__);
1882 offset--;
1883 }
1884 if (offset < skb->len)
1885 goto found_ok_skb;
1886 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1887 goto found_fin_ok;
1888 WARN(!(flags & MSG_PEEK),
1889 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
1890 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1891 }
1892
1893 /* Well, if we have backlog, try to process it now yet. */
1894
1895 if (copied >= target && !sk->sk_backlog.tail)
1896 break;
1897
1898 if (copied) {
1899 if (sk->sk_err ||
1900 sk->sk_state == TCP_CLOSE ||
1901 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1902 !timeo ||
1903 signal_pending(current))
1904 break;
1905 } else {
1906 if (sock_flag(sk, SOCK_DONE))
1907 break;
1908
1909 if (sk->sk_err) {
1910 copied = sock_error(sk);
1911 break;
1912 }
1913
1914 if (sk->sk_shutdown & RCV_SHUTDOWN)
1915 break;
1916
1917 if (sk->sk_state == TCP_CLOSE) {
1918 if (!sock_flag(sk, SOCK_DONE)) {
1919 /* This occurs when user tries to read
1920 * from never connected socket.
1921 */
1922 copied = -ENOTCONN;
1923 break;
1924 }
1925 break;
1926 }
1927
1928 if (!timeo) {
1929 copied = -EAGAIN;
1930 break;
1931 }
1932
1933 if (signal_pending(current)) {
1934 copied = sock_intr_errno(timeo);
1935 break;
1936 }
1937 }
1938
1939 tcp_cleanup_rbuf(sk, copied);
1940
1941 if (copied >= target) {
1942 /* Do not sleep, just process backlog. */
1943 release_sock(sk);
1944 lock_sock(sk);
1945 } else {
1946 sk_wait_data(sk, &timeo, last);
1947 }
1948
1949 if ((flags & MSG_PEEK) &&
1950 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1951 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1952 current->comm,
1953 task_pid_nr(current));
1954 peek_seq = tp->copied_seq;
1955 }
1956 continue;
1957
1958 found_ok_skb:
1959 /* Ok so how much can we use? */
1960 used = skb->len - offset;
1961 if (len < used)
1962 used = len;
1963
1964 /* Do we have urgent data here? */
1965 if (tp->urg_data) {
1966 u32 urg_offset = tp->urg_seq - *seq;
1967 if (urg_offset < used) {
1968 if (!urg_offset) {
1969 if (!sock_flag(sk, SOCK_URGINLINE)) {
1970 ++*seq;
1971 urg_hole++;
1972 offset++;
1973 used--;
1974 if (!used)
1975 goto skip_copy;
1976 }
1977 } else
1978 used = urg_offset;
1979 }
1980 }
1981
1982 if (!(flags & MSG_TRUNC)) {
1983 err = skb_copy_datagram_msg(skb, offset, msg, used);
1984 if (err) {
1985 /* Exception. Bailout! */
1986 if (!copied)
1987 copied = -EFAULT;
1988 break;
1989 }
1990 }
1991
1992 *seq += used;
1993 copied += used;
1994 len -= used;
1995
1996 tcp_rcv_space_adjust(sk);
1997
1998 skip_copy:
1999 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2000 tp->urg_data = 0;
2001 tcp_fast_path_check(sk);
2002 }
2003 if (used + offset < skb->len)
2004 continue;
2005
2006 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2007 tcp_update_recv_tstamps(skb, &tss);
2008 has_tss = true;
2009 }
2010 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2011 goto found_fin_ok;
2012 if (!(flags & MSG_PEEK))
2013 sk_eat_skb(sk, skb);
2014 continue;
2015
2016 found_fin_ok:
2017 /* Process the FIN. */
2018 ++*seq;
2019 if (!(flags & MSG_PEEK))
2020 sk_eat_skb(sk, skb);
2021 break;
2022 } while (len > 0);
2023
2024 /* According to UNIX98, msg_name/msg_namelen are ignored
2025 * on connected socket. I was just happy when found this 8) --ANK
2026 */
2027
2028 if (has_tss)
2029 tcp_recv_timestamp(msg, sk, &tss);
2030
2031 /* Clean up data we have read: This will do ACK frames. */
2032 tcp_cleanup_rbuf(sk, copied);
2033
2034 release_sock(sk);
2035 return copied;
2036
2037 out:
2038 release_sock(sk);
2039 return err;
2040
2041 recv_urg:
2042 err = tcp_recv_urg(sk, msg, len, flags);
2043 goto out;
2044
2045 recv_sndq:
2046 err = tcp_peek_sndq(sk, msg, len);
2047 goto out;
2048 }
2049 EXPORT_SYMBOL(tcp_recvmsg);
2050
2051 void tcp_set_state(struct sock *sk, int state)
2052 {
2053 int oldstate = sk->sk_state;
2054
2055 trace_tcp_set_state(sk, oldstate, state);
2056
2057 switch (state) {
2058 case TCP_ESTABLISHED:
2059 if (oldstate != TCP_ESTABLISHED)
2060 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2061 break;
2062
2063 case TCP_CLOSE:
2064 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2065 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2066
2067 sk->sk_prot->unhash(sk);
2068 if (inet_csk(sk)->icsk_bind_hash &&
2069 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2070 inet_put_port(sk);
2071 /* fall through */
2072 default:
2073 if (oldstate == TCP_ESTABLISHED)
2074 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2075 }
2076
2077 /* Change state AFTER socket is unhashed to avoid closed
2078 * socket sitting in hash tables.
2079 */
2080 sk_state_store(sk, state);
2081
2082 #ifdef STATE_TRACE
2083 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2084 #endif
2085 }
2086 EXPORT_SYMBOL_GPL(tcp_set_state);
2087
2088 /*
2089 * State processing on a close. This implements the state shift for
2090 * sending our FIN frame. Note that we only send a FIN for some
2091 * states. A shutdown() may have already sent the FIN, or we may be
2092 * closed.
2093 */
2094
2095 static const unsigned char new_state[16] = {
2096 /* current state: new state: action: */
2097 [0 /* (Invalid) */] = TCP_CLOSE,
2098 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2099 [TCP_SYN_SENT] = TCP_CLOSE,
2100 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2101 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2102 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2103 [TCP_TIME_WAIT] = TCP_CLOSE,
2104 [TCP_CLOSE] = TCP_CLOSE,
2105 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2106 [TCP_LAST_ACK] = TCP_LAST_ACK,
2107 [TCP_LISTEN] = TCP_CLOSE,
2108 [TCP_CLOSING] = TCP_CLOSING,
2109 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2110 };
2111
2112 static int tcp_close_state(struct sock *sk)
2113 {
2114 int next = (int)new_state[sk->sk_state];
2115 int ns = next & TCP_STATE_MASK;
2116
2117 tcp_set_state(sk, ns);
2118
2119 return next & TCP_ACTION_FIN;
2120 }
2121
2122 /*
2123 * Shutdown the sending side of a connection. Much like close except
2124 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2125 */
2126
2127 void tcp_shutdown(struct sock *sk, int how)
2128 {
2129 /* We need to grab some memory, and put together a FIN,
2130 * and then put it into the queue to be sent.
2131 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2132 */
2133 if (!(how & SEND_SHUTDOWN))
2134 return;
2135
2136 /* If we've already sent a FIN, or it's a closed state, skip this. */
2137 if ((1 << sk->sk_state) &
2138 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2139 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2140 /* Clear out any half completed packets. FIN if needed. */
2141 if (tcp_close_state(sk))
2142 tcp_send_fin(sk);
2143 }
2144 }
2145 EXPORT_SYMBOL(tcp_shutdown);
2146
2147 bool tcp_check_oom(struct sock *sk, int shift)
2148 {
2149 bool too_many_orphans, out_of_socket_memory;
2150
2151 too_many_orphans = tcp_too_many_orphans(sk, shift);
2152 out_of_socket_memory = tcp_out_of_memory(sk);
2153
2154 if (too_many_orphans)
2155 net_info_ratelimited("too many orphaned sockets\n");
2156 if (out_of_socket_memory)
2157 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2158 return too_many_orphans || out_of_socket_memory;
2159 }
2160
2161 void tcp_close(struct sock *sk, long timeout)
2162 {
2163 struct sk_buff *skb;
2164 int data_was_unread = 0;
2165 int state;
2166
2167 lock_sock(sk);
2168 sk->sk_shutdown = SHUTDOWN_MASK;
2169
2170 if (sk->sk_state == TCP_LISTEN) {
2171 tcp_set_state(sk, TCP_CLOSE);
2172
2173 /* Special case. */
2174 inet_csk_listen_stop(sk);
2175
2176 goto adjudge_to_death;
2177 }
2178
2179 /* We need to flush the recv. buffs. We do this only on the
2180 * descriptor close, not protocol-sourced closes, because the
2181 * reader process may not have drained the data yet!
2182 */
2183 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2184 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2185
2186 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2187 len--;
2188 data_was_unread += len;
2189 __kfree_skb(skb);
2190 }
2191
2192 sk_mem_reclaim(sk);
2193
2194 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2195 if (sk->sk_state == TCP_CLOSE)
2196 goto adjudge_to_death;
2197
2198 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2199 * data was lost. To witness the awful effects of the old behavior of
2200 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2201 * GET in an FTP client, suspend the process, wait for the client to
2202 * advertise a zero window, then kill -9 the FTP client, wheee...
2203 * Note: timeout is always zero in such a case.
2204 */
2205 if (unlikely(tcp_sk(sk)->repair)) {
2206 sk->sk_prot->disconnect(sk, 0);
2207 } else if (data_was_unread) {
2208 /* Unread data was tossed, zap the connection. */
2209 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2210 tcp_set_state(sk, TCP_CLOSE);
2211 tcp_send_active_reset(sk, sk->sk_allocation);
2212 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2213 /* Check zero linger _after_ checking for unread data. */
2214 sk->sk_prot->disconnect(sk, 0);
2215 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2216 } else if (tcp_close_state(sk)) {
2217 /* We FIN if the application ate all the data before
2218 * zapping the connection.
2219 */
2220
2221 /* RED-PEN. Formally speaking, we have broken TCP state
2222 * machine. State transitions:
2223 *
2224 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2225 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2226 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2227 *
2228 * are legal only when FIN has been sent (i.e. in window),
2229 * rather than queued out of window. Purists blame.
2230 *
2231 * F.e. "RFC state" is ESTABLISHED,
2232 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2233 *
2234 * The visible declinations are that sometimes
2235 * we enter time-wait state, when it is not required really
2236 * (harmless), do not send active resets, when they are
2237 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2238 * they look as CLOSING or LAST_ACK for Linux)
2239 * Probably, I missed some more holelets.
2240 * --ANK
2241 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2242 * in a single packet! (May consider it later but will
2243 * probably need API support or TCP_CORK SYN-ACK until
2244 * data is written and socket is closed.)
2245 */
2246 tcp_send_fin(sk);
2247 }
2248
2249 sk_stream_wait_close(sk, timeout);
2250
2251 adjudge_to_death:
2252 state = sk->sk_state;
2253 sock_hold(sk);
2254 sock_orphan(sk);
2255
2256 local_bh_disable();
2257 bh_lock_sock(sk);
2258 /* remove backlog if any, without releasing ownership. */
2259 __release_sock(sk);
2260
2261 percpu_counter_inc(sk->sk_prot->orphan_count);
2262
2263 /* Have we already been destroyed by a softirq or backlog? */
2264 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2265 goto out;
2266
2267 /* This is a (useful) BSD violating of the RFC. There is a
2268 * problem with TCP as specified in that the other end could
2269 * keep a socket open forever with no application left this end.
2270 * We use a 1 minute timeout (about the same as BSD) then kill
2271 * our end. If they send after that then tough - BUT: long enough
2272 * that we won't make the old 4*rto = almost no time - whoops
2273 * reset mistake.
2274 *
2275 * Nope, it was not mistake. It is really desired behaviour
2276 * f.e. on http servers, when such sockets are useless, but
2277 * consume significant resources. Let's do it with special
2278 * linger2 option. --ANK
2279 */
2280
2281 if (sk->sk_state == TCP_FIN_WAIT2) {
2282 struct tcp_sock *tp = tcp_sk(sk);
2283 if (tp->linger2 < 0) {
2284 tcp_set_state(sk, TCP_CLOSE);
2285 tcp_send_active_reset(sk, GFP_ATOMIC);
2286 __NET_INC_STATS(sock_net(sk),
2287 LINUX_MIB_TCPABORTONLINGER);
2288 } else {
2289 const int tmo = tcp_fin_time(sk);
2290
2291 if (tmo > TCP_TIMEWAIT_LEN) {
2292 inet_csk_reset_keepalive_timer(sk,
2293 tmo - TCP_TIMEWAIT_LEN);
2294 } else {
2295 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2296 goto out;
2297 }
2298 }
2299 }
2300 if (sk->sk_state != TCP_CLOSE) {
2301 sk_mem_reclaim(sk);
2302 if (tcp_check_oom(sk, 0)) {
2303 tcp_set_state(sk, TCP_CLOSE);
2304 tcp_send_active_reset(sk, GFP_ATOMIC);
2305 __NET_INC_STATS(sock_net(sk),
2306 LINUX_MIB_TCPABORTONMEMORY);
2307 } else if (!check_net(sock_net(sk))) {
2308 /* Not possible to send reset; just close */
2309 tcp_set_state(sk, TCP_CLOSE);
2310 }
2311 }
2312
2313 if (sk->sk_state == TCP_CLOSE) {
2314 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2315 /* We could get here with a non-NULL req if the socket is
2316 * aborted (e.g., closed with unread data) before 3WHS
2317 * finishes.
2318 */
2319 if (req)
2320 reqsk_fastopen_remove(sk, req, false);
2321 inet_csk_destroy_sock(sk);
2322 }
2323 /* Otherwise, socket is reprieved until protocol close. */
2324
2325 out:
2326 bh_unlock_sock(sk);
2327 local_bh_enable();
2328 release_sock(sk);
2329 sock_put(sk);
2330 }
2331 EXPORT_SYMBOL(tcp_close);
2332
2333 /* These states need RST on ABORT according to RFC793 */
2334
2335 static inline bool tcp_need_reset(int state)
2336 {
2337 return (1 << state) &
2338 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2339 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2340 }
2341
2342 static void tcp_rtx_queue_purge(struct sock *sk)
2343 {
2344 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2345
2346 while (p) {
2347 struct sk_buff *skb = rb_to_skb(p);
2348
2349 p = rb_next(p);
2350 /* Since we are deleting whole queue, no need to
2351 * list_del(&skb->tcp_tsorted_anchor)
2352 */
2353 tcp_rtx_queue_unlink(skb, sk);
2354 sk_wmem_free_skb(sk, skb);
2355 }
2356 }
2357
2358 void tcp_write_queue_purge(struct sock *sk)
2359 {
2360 struct sk_buff *skb;
2361
2362 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2363 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2364 tcp_skb_tsorted_anchor_cleanup(skb);
2365 sk_wmem_free_skb(sk, skb);
2366 }
2367 tcp_rtx_queue_purge(sk);
2368 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2369 sk_mem_reclaim(sk);
2370 tcp_clear_all_retrans_hints(tcp_sk(sk));
2371 tcp_sk(sk)->packets_out = 0;
2372 inet_csk(sk)->icsk_backoff = 0;
2373 }
2374
2375 int tcp_disconnect(struct sock *sk, int flags)
2376 {
2377 struct inet_sock *inet = inet_sk(sk);
2378 struct inet_connection_sock *icsk = inet_csk(sk);
2379 struct tcp_sock *tp = tcp_sk(sk);
2380 int err = 0;
2381 int old_state = sk->sk_state;
2382
2383 if (old_state != TCP_CLOSE)
2384 tcp_set_state(sk, TCP_CLOSE);
2385
2386 /* ABORT function of RFC793 */
2387 if (old_state == TCP_LISTEN) {
2388 inet_csk_listen_stop(sk);
2389 } else if (unlikely(tp->repair)) {
2390 sk->sk_err = ECONNABORTED;
2391 } else if (tcp_need_reset(old_state) ||
2392 (tp->snd_nxt != tp->write_seq &&
2393 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2394 /* The last check adjusts for discrepancy of Linux wrt. RFC
2395 * states
2396 */
2397 tcp_send_active_reset(sk, gfp_any());
2398 sk->sk_err = ECONNRESET;
2399 } else if (old_state == TCP_SYN_SENT)
2400 sk->sk_err = ECONNRESET;
2401
2402 tcp_clear_xmit_timers(sk);
2403 __skb_queue_purge(&sk->sk_receive_queue);
2404 tcp_write_queue_purge(sk);
2405 tcp_fastopen_active_disable_ofo_check(sk);
2406 skb_rbtree_purge(&tp->out_of_order_queue);
2407
2408 inet->inet_dport = 0;
2409
2410 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2411 inet_reset_saddr(sk);
2412
2413 sk->sk_shutdown = 0;
2414 sock_reset_flag(sk, SOCK_DONE);
2415 tp->srtt_us = 0;
2416 tp->write_seq += tp->max_window + 2;
2417 if (tp->write_seq == 0)
2418 tp->write_seq = 1;
2419 tp->snd_cwnd = 2;
2420 icsk->icsk_probes_out = 0;
2421 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2422 tp->snd_cwnd_cnt = 0;
2423 tp->window_clamp = 0;
2424 tcp_set_ca_state(sk, TCP_CA_Open);
2425 tp->is_sack_reneg = 0;
2426 tcp_clear_retrans(tp);
2427 inet_csk_delack_init(sk);
2428 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2429 * issue in __tcp_select_window()
2430 */
2431 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2432 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2433 __sk_dst_reset(sk);
2434 dst_release(sk->sk_rx_dst);
2435 sk->sk_rx_dst = NULL;
2436 tcp_saved_syn_free(tp);
2437 tp->bytes_acked = 0;
2438 tp->bytes_received = 0;
2439
2440 /* Clean up fastopen related fields */
2441 tcp_free_fastopen_req(tp);
2442 inet->defer_connect = 0;
2443
2444 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2445
2446 if (sk->sk_frag.page) {
2447 put_page(sk->sk_frag.page);
2448 sk->sk_frag.page = NULL;
2449 sk->sk_frag.offset = 0;
2450 }
2451
2452 sk->sk_error_report(sk);
2453 return err;
2454 }
2455 EXPORT_SYMBOL(tcp_disconnect);
2456
2457 static inline bool tcp_can_repair_sock(const struct sock *sk)
2458 {
2459 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2460 (sk->sk_state != TCP_LISTEN);
2461 }
2462
2463 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2464 {
2465 struct tcp_repair_window opt;
2466
2467 if (!tp->repair)
2468 return -EPERM;
2469
2470 if (len != sizeof(opt))
2471 return -EINVAL;
2472
2473 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2474 return -EFAULT;
2475
2476 if (opt.max_window < opt.snd_wnd)
2477 return -EINVAL;
2478
2479 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2480 return -EINVAL;
2481
2482 if (after(opt.rcv_wup, tp->rcv_nxt))
2483 return -EINVAL;
2484
2485 tp->snd_wl1 = opt.snd_wl1;
2486 tp->snd_wnd = opt.snd_wnd;
2487 tp->max_window = opt.max_window;
2488
2489 tp->rcv_wnd = opt.rcv_wnd;
2490 tp->rcv_wup = opt.rcv_wup;
2491
2492 return 0;
2493 }
2494
2495 static int tcp_repair_options_est(struct sock *sk,
2496 struct tcp_repair_opt __user *optbuf, unsigned int len)
2497 {
2498 struct tcp_sock *tp = tcp_sk(sk);
2499 struct tcp_repair_opt opt;
2500
2501 while (len >= sizeof(opt)) {
2502 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2503 return -EFAULT;
2504
2505 optbuf++;
2506 len -= sizeof(opt);
2507
2508 switch (opt.opt_code) {
2509 case TCPOPT_MSS:
2510 tp->rx_opt.mss_clamp = opt.opt_val;
2511 tcp_mtup_init(sk);
2512 break;
2513 case TCPOPT_WINDOW:
2514 {
2515 u16 snd_wscale = opt.opt_val & 0xFFFF;
2516 u16 rcv_wscale = opt.opt_val >> 16;
2517
2518 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2519 return -EFBIG;
2520
2521 tp->rx_opt.snd_wscale = snd_wscale;
2522 tp->rx_opt.rcv_wscale = rcv_wscale;
2523 tp->rx_opt.wscale_ok = 1;
2524 }
2525 break;
2526 case TCPOPT_SACK_PERM:
2527 if (opt.opt_val != 0)
2528 return -EINVAL;
2529
2530 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2531 break;
2532 case TCPOPT_TIMESTAMP:
2533 if (opt.opt_val != 0)
2534 return -EINVAL;
2535
2536 tp->rx_opt.tstamp_ok = 1;
2537 break;
2538 }
2539 }
2540
2541 return 0;
2542 }
2543
2544 /*
2545 * Socket option code for TCP.
2546 */
2547 static int do_tcp_setsockopt(struct sock *sk, int level,
2548 int optname, char __user *optval, unsigned int optlen)
2549 {
2550 struct tcp_sock *tp = tcp_sk(sk);
2551 struct inet_connection_sock *icsk = inet_csk(sk);
2552 struct net *net = sock_net(sk);
2553 int val;
2554 int err = 0;
2555
2556 /* These are data/string values, all the others are ints */
2557 switch (optname) {
2558 case TCP_CONGESTION: {
2559 char name[TCP_CA_NAME_MAX];
2560
2561 if (optlen < 1)
2562 return -EINVAL;
2563
2564 val = strncpy_from_user(name, optval,
2565 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2566 if (val < 0)
2567 return -EFAULT;
2568 name[val] = 0;
2569
2570 lock_sock(sk);
2571 err = tcp_set_congestion_control(sk, name, true, true,
2572 ns_capable(sock_net(sk)->user_ns,
2573 CAP_NET_ADMIN));
2574 release_sock(sk);
2575 return err;
2576 }
2577 case TCP_ULP: {
2578 char name[TCP_ULP_NAME_MAX];
2579
2580 if (optlen < 1)
2581 return -EINVAL;
2582
2583 val = strncpy_from_user(name, optval,
2584 min_t(long, TCP_ULP_NAME_MAX - 1,
2585 optlen));
2586 if (val < 0)
2587 return -EFAULT;
2588 name[val] = 0;
2589
2590 lock_sock(sk);
2591 err = tcp_set_ulp(sk, name);
2592 release_sock(sk);
2593 return err;
2594 }
2595 case TCP_FASTOPEN_KEY: {
2596 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
2597
2598 if (optlen != sizeof(key))
2599 return -EINVAL;
2600
2601 if (copy_from_user(key, optval, optlen))
2602 return -EFAULT;
2603
2604 return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key));
2605 }
2606 default:
2607 /* fallthru */
2608 break;
2609 }
2610
2611 if (optlen < sizeof(int))
2612 return -EINVAL;
2613
2614 if (get_user(val, (int __user *)optval))
2615 return -EFAULT;
2616
2617 lock_sock(sk);
2618
2619 switch (optname) {
2620 case TCP_MAXSEG:
2621 /* Values greater than interface MTU won't take effect. However
2622 * at the point when this call is done we typically don't yet
2623 * know which interface is going to be used
2624 */
2625 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2626 err = -EINVAL;
2627 break;
2628 }
2629 tp->rx_opt.user_mss = val;
2630 break;
2631
2632 case TCP_NODELAY:
2633 if (val) {
2634 /* TCP_NODELAY is weaker than TCP_CORK, so that
2635 * this option on corked socket is remembered, but
2636 * it is not activated until cork is cleared.
2637 *
2638 * However, when TCP_NODELAY is set we make
2639 * an explicit push, which overrides even TCP_CORK
2640 * for currently queued segments.
2641 */
2642 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2643 tcp_push_pending_frames(sk);
2644 } else {
2645 tp->nonagle &= ~TCP_NAGLE_OFF;
2646 }
2647 break;
2648
2649 case TCP_THIN_LINEAR_TIMEOUTS:
2650 if (val < 0 || val > 1)
2651 err = -EINVAL;
2652 else
2653 tp->thin_lto = val;
2654 break;
2655
2656 case TCP_THIN_DUPACK:
2657 if (val < 0 || val > 1)
2658 err = -EINVAL;
2659 break;
2660
2661 case TCP_REPAIR:
2662 if (!tcp_can_repair_sock(sk))
2663 err = -EPERM;
2664 else if (val == 1) {
2665 tp->repair = 1;
2666 sk->sk_reuse = SK_FORCE_REUSE;
2667 tp->repair_queue = TCP_NO_QUEUE;
2668 } else if (val == 0) {
2669 tp->repair = 0;
2670 sk->sk_reuse = SK_NO_REUSE;
2671 tcp_send_window_probe(sk);
2672 } else
2673 err = -EINVAL;
2674
2675 break;
2676
2677 case TCP_REPAIR_QUEUE:
2678 if (!tp->repair)
2679 err = -EPERM;
2680 else if ((unsigned int)val < TCP_QUEUES_NR)
2681 tp->repair_queue = val;
2682 else
2683 err = -EINVAL;
2684 break;
2685
2686 case TCP_QUEUE_SEQ:
2687 if (sk->sk_state != TCP_CLOSE)
2688 err = -EPERM;
2689 else if (tp->repair_queue == TCP_SEND_QUEUE)
2690 tp->write_seq = val;
2691 else if (tp->repair_queue == TCP_RECV_QUEUE)
2692 tp->rcv_nxt = val;
2693 else
2694 err = -EINVAL;
2695 break;
2696
2697 case TCP_REPAIR_OPTIONS:
2698 if (!tp->repair)
2699 err = -EINVAL;
2700 else if (sk->sk_state == TCP_ESTABLISHED)
2701 err = tcp_repair_options_est(sk,
2702 (struct tcp_repair_opt __user *)optval,
2703 optlen);
2704 else
2705 err = -EPERM;
2706 break;
2707
2708 case TCP_CORK:
2709 /* When set indicates to always queue non-full frames.
2710 * Later the user clears this option and we transmit
2711 * any pending partial frames in the queue. This is
2712 * meant to be used alongside sendfile() to get properly
2713 * filled frames when the user (for example) must write
2714 * out headers with a write() call first and then use
2715 * sendfile to send out the data parts.
2716 *
2717 * TCP_CORK can be set together with TCP_NODELAY and it is
2718 * stronger than TCP_NODELAY.
2719 */
2720 if (val) {
2721 tp->nonagle |= TCP_NAGLE_CORK;
2722 } else {
2723 tp->nonagle &= ~TCP_NAGLE_CORK;
2724 if (tp->nonagle&TCP_NAGLE_OFF)
2725 tp->nonagle |= TCP_NAGLE_PUSH;
2726 tcp_push_pending_frames(sk);
2727 }
2728 break;
2729
2730 case TCP_KEEPIDLE:
2731 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2732 err = -EINVAL;
2733 else {
2734 tp->keepalive_time = val * HZ;
2735 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2736 !((1 << sk->sk_state) &
2737 (TCPF_CLOSE | TCPF_LISTEN))) {
2738 u32 elapsed = keepalive_time_elapsed(tp);
2739 if (tp->keepalive_time > elapsed)
2740 elapsed = tp->keepalive_time - elapsed;
2741 else
2742 elapsed = 0;
2743 inet_csk_reset_keepalive_timer(sk, elapsed);
2744 }
2745 }
2746 break;
2747 case TCP_KEEPINTVL:
2748 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2749 err = -EINVAL;
2750 else
2751 tp->keepalive_intvl = val * HZ;
2752 break;
2753 case TCP_KEEPCNT:
2754 if (val < 1 || val > MAX_TCP_KEEPCNT)
2755 err = -EINVAL;
2756 else
2757 tp->keepalive_probes = val;
2758 break;
2759 case TCP_SYNCNT:
2760 if (val < 1 || val > MAX_TCP_SYNCNT)
2761 err = -EINVAL;
2762 else
2763 icsk->icsk_syn_retries = val;
2764 break;
2765
2766 case TCP_SAVE_SYN:
2767 if (val < 0 || val > 1)
2768 err = -EINVAL;
2769 else
2770 tp->save_syn = val;
2771 break;
2772
2773 case TCP_LINGER2:
2774 if (val < 0)
2775 tp->linger2 = -1;
2776 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2777 tp->linger2 = 0;
2778 else
2779 tp->linger2 = val * HZ;
2780 break;
2781
2782 case TCP_DEFER_ACCEPT:
2783 /* Translate value in seconds to number of retransmits */
2784 icsk->icsk_accept_queue.rskq_defer_accept =
2785 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2786 TCP_RTO_MAX / HZ);
2787 break;
2788
2789 case TCP_WINDOW_CLAMP:
2790 if (!val) {
2791 if (sk->sk_state != TCP_CLOSE) {
2792 err = -EINVAL;
2793 break;
2794 }
2795 tp->window_clamp = 0;
2796 } else
2797 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2798 SOCK_MIN_RCVBUF / 2 : val;
2799 break;
2800
2801 case TCP_QUICKACK:
2802 if (!val) {
2803 icsk->icsk_ack.pingpong = 1;
2804 } else {
2805 icsk->icsk_ack.pingpong = 0;
2806 if ((1 << sk->sk_state) &
2807 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2808 inet_csk_ack_scheduled(sk)) {
2809 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2810 tcp_cleanup_rbuf(sk, 1);
2811 if (!(val & 1))
2812 icsk->icsk_ack.pingpong = 1;
2813 }
2814 }
2815 break;
2816
2817 #ifdef CONFIG_TCP_MD5SIG
2818 case TCP_MD5SIG:
2819 case TCP_MD5SIG_EXT:
2820 if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))
2821 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
2822 else
2823 err = -EINVAL;
2824 break;
2825 #endif
2826 case TCP_USER_TIMEOUT:
2827 /* Cap the max time in ms TCP will retry or probe the window
2828 * before giving up and aborting (ETIMEDOUT) a connection.
2829 */
2830 if (val < 0)
2831 err = -EINVAL;
2832 else
2833 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2834 break;
2835
2836 case TCP_FASTOPEN:
2837 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2838 TCPF_LISTEN))) {
2839 tcp_fastopen_init_key_once(net);
2840
2841 fastopen_queue_tune(sk, val);
2842 } else {
2843 err = -EINVAL;
2844 }
2845 break;
2846 case TCP_FASTOPEN_CONNECT:
2847 if (val > 1 || val < 0) {
2848 err = -EINVAL;
2849 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
2850 if (sk->sk_state == TCP_CLOSE)
2851 tp->fastopen_connect = val;
2852 else
2853 err = -EINVAL;
2854 } else {
2855 err = -EOPNOTSUPP;
2856 }
2857 break;
2858 case TCP_FASTOPEN_NO_COOKIE:
2859 if (val > 1 || val < 0)
2860 err = -EINVAL;
2861 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2862 err = -EINVAL;
2863 else
2864 tp->fastopen_no_cookie = val;
2865 break;
2866 case TCP_TIMESTAMP:
2867 if (!tp->repair)
2868 err = -EPERM;
2869 else
2870 tp->tsoffset = val - tcp_time_stamp_raw();
2871 break;
2872 case TCP_REPAIR_WINDOW:
2873 err = tcp_repair_set_window(tp, optval, optlen);
2874 break;
2875 case TCP_NOTSENT_LOWAT:
2876 tp->notsent_lowat = val;
2877 sk->sk_write_space(sk);
2878 break;
2879 default:
2880 err = -ENOPROTOOPT;
2881 break;
2882 }
2883
2884 release_sock(sk);
2885 return err;
2886 }
2887
2888 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2889 unsigned int optlen)
2890 {
2891 const struct inet_connection_sock *icsk = inet_csk(sk);
2892
2893 if (level != SOL_TCP)
2894 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2895 optval, optlen);
2896 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2897 }
2898 EXPORT_SYMBOL(tcp_setsockopt);
2899
2900 #ifdef CONFIG_COMPAT
2901 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2902 char __user *optval, unsigned int optlen)
2903 {
2904 if (level != SOL_TCP)
2905 return inet_csk_compat_setsockopt(sk, level, optname,
2906 optval, optlen);
2907 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2908 }
2909 EXPORT_SYMBOL(compat_tcp_setsockopt);
2910 #endif
2911
2912 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
2913 struct tcp_info *info)
2914 {
2915 u64 stats[__TCP_CHRONO_MAX], total = 0;
2916 enum tcp_chrono i;
2917
2918 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
2919 stats[i] = tp->chrono_stat[i - 1];
2920 if (i == tp->chrono_type)
2921 stats[i] += tcp_jiffies32 - tp->chrono_start;
2922 stats[i] *= USEC_PER_SEC / HZ;
2923 total += stats[i];
2924 }
2925
2926 info->tcpi_busy_time = total;
2927 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
2928 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
2929 }
2930
2931 /* Return information about state of tcp endpoint in API format. */
2932 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2933 {
2934 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2935 const struct inet_connection_sock *icsk = inet_csk(sk);
2936 u32 now;
2937 u64 rate64;
2938 bool slow;
2939 u32 rate;
2940
2941 memset(info, 0, sizeof(*info));
2942 if (sk->sk_type != SOCK_STREAM)
2943 return;
2944
2945 info->tcpi_state = sk_state_load(sk);
2946
2947 /* Report meaningful fields for all TCP states, including listeners */
2948 rate = READ_ONCE(sk->sk_pacing_rate);
2949 rate64 = rate != ~0U ? rate : ~0ULL;
2950 info->tcpi_pacing_rate = rate64;
2951
2952 rate = READ_ONCE(sk->sk_max_pacing_rate);
2953 rate64 = rate != ~0U ? rate : ~0ULL;
2954 info->tcpi_max_pacing_rate = rate64;
2955
2956 info->tcpi_reordering = tp->reordering;
2957 info->tcpi_snd_cwnd = tp->snd_cwnd;
2958
2959 if (info->tcpi_state == TCP_LISTEN) {
2960 /* listeners aliased fields :
2961 * tcpi_unacked -> Number of children ready for accept()
2962 * tcpi_sacked -> max backlog
2963 */
2964 info->tcpi_unacked = sk->sk_ack_backlog;
2965 info->tcpi_sacked = sk->sk_max_ack_backlog;
2966 return;
2967 }
2968
2969 slow = lock_sock_fast(sk);
2970
2971 info->tcpi_ca_state = icsk->icsk_ca_state;
2972 info->tcpi_retransmits = icsk->icsk_retransmits;
2973 info->tcpi_probes = icsk->icsk_probes_out;
2974 info->tcpi_backoff = icsk->icsk_backoff;
2975
2976 if (tp->rx_opt.tstamp_ok)
2977 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2978 if (tcp_is_sack(tp))
2979 info->tcpi_options |= TCPI_OPT_SACK;
2980 if (tp->rx_opt.wscale_ok) {
2981 info->tcpi_options |= TCPI_OPT_WSCALE;
2982 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2983 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2984 }
2985
2986 if (tp->ecn_flags & TCP_ECN_OK)
2987 info->tcpi_options |= TCPI_OPT_ECN;
2988 if (tp->ecn_flags & TCP_ECN_SEEN)
2989 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2990 if (tp->syn_data_acked)
2991 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2992
2993 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2994 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2995 info->tcpi_snd_mss = tp->mss_cache;
2996 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2997
2998 info->tcpi_unacked = tp->packets_out;
2999 info->tcpi_sacked = tp->sacked_out;
3000
3001 info->tcpi_lost = tp->lost_out;
3002 info->tcpi_retrans = tp->retrans_out;
3003
3004 now = tcp_jiffies32;
3005 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3006 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3007 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3008
3009 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3010 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3011 info->tcpi_rtt = tp->srtt_us >> 3;
3012 info->tcpi_rttvar = tp->mdev_us >> 2;
3013 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3014 info->tcpi_advmss = tp->advmss;
3015
3016 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3017 info->tcpi_rcv_space = tp->rcvq_space.space;
3018
3019 info->tcpi_total_retrans = tp->total_retrans;
3020
3021 info->tcpi_bytes_acked = tp->bytes_acked;
3022 info->tcpi_bytes_received = tp->bytes_received;
3023 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3024 tcp_get_info_chrono_stats(tp, info);
3025
3026 info->tcpi_segs_out = tp->segs_out;
3027 info->tcpi_segs_in = tp->segs_in;
3028
3029 info->tcpi_min_rtt = tcp_min_rtt(tp);
3030 info->tcpi_data_segs_in = tp->data_segs_in;
3031 info->tcpi_data_segs_out = tp->data_segs_out;
3032
3033 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3034 rate64 = tcp_compute_delivery_rate(tp);
3035 if (rate64)
3036 info->tcpi_delivery_rate = rate64;
3037 unlock_sock_fast(sk, slow);
3038 }
3039 EXPORT_SYMBOL_GPL(tcp_get_info);
3040
3041 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
3042 {
3043 const struct tcp_sock *tp = tcp_sk(sk);
3044 struct sk_buff *stats;
3045 struct tcp_info info;
3046 u64 rate64;
3047 u32 rate;
3048
3049 stats = alloc_skb(7 * nla_total_size_64bit(sizeof(u64)) +
3050 3 * nla_total_size(sizeof(u32)) +
3051 2 * nla_total_size(sizeof(u8)), GFP_ATOMIC);
3052 if (!stats)
3053 return NULL;
3054
3055 tcp_get_info_chrono_stats(tp, &info);
3056 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3057 info.tcpi_busy_time, TCP_NLA_PAD);
3058 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3059 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3060 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3061 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3062 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3063 tp->data_segs_out, TCP_NLA_PAD);
3064 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3065 tp->total_retrans, TCP_NLA_PAD);
3066
3067 rate = READ_ONCE(sk->sk_pacing_rate);
3068 rate64 = rate != ~0U ? rate : ~0ULL;
3069 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3070
3071 rate64 = tcp_compute_delivery_rate(tp);
3072 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3073
3074 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3075 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3076 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3077
3078 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3079 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3080 return stats;
3081 }
3082
3083 static int do_tcp_getsockopt(struct sock *sk, int level,
3084 int optname, char __user *optval, int __user *optlen)
3085 {
3086 struct inet_connection_sock *icsk = inet_csk(sk);
3087 struct tcp_sock *tp = tcp_sk(sk);
3088 struct net *net = sock_net(sk);
3089 int val, len;
3090
3091 if (get_user(len, optlen))
3092 return -EFAULT;
3093
3094 len = min_t(unsigned int, len, sizeof(int));
3095
3096 if (len < 0)
3097 return -EINVAL;
3098
3099 switch (optname) {
3100 case TCP_MAXSEG:
3101 val = tp->mss_cache;
3102 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3103 val = tp->rx_opt.user_mss;
3104 if (tp->repair)
3105 val = tp->rx_opt.mss_clamp;
3106 break;
3107 case TCP_NODELAY:
3108 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3109 break;
3110 case TCP_CORK:
3111 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3112 break;
3113 case TCP_KEEPIDLE:
3114 val = keepalive_time_when(tp) / HZ;
3115 break;
3116 case TCP_KEEPINTVL:
3117 val = keepalive_intvl_when(tp) / HZ;
3118 break;
3119 case TCP_KEEPCNT:
3120 val = keepalive_probes(tp);
3121 break;
3122 case TCP_SYNCNT:
3123 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3124 break;
3125 case TCP_LINGER2:
3126 val = tp->linger2;
3127 if (val >= 0)
3128 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3129 break;
3130 case TCP_DEFER_ACCEPT:
3131 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3132 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3133 break;
3134 case TCP_WINDOW_CLAMP:
3135 val = tp->window_clamp;
3136 break;
3137 case TCP_INFO: {
3138 struct tcp_info info;
3139
3140 if (get_user(len, optlen))
3141 return -EFAULT;
3142
3143 tcp_get_info(sk, &info);
3144
3145 len = min_t(unsigned int, len, sizeof(info));
3146 if (put_user(len, optlen))
3147 return -EFAULT;
3148 if (copy_to_user(optval, &info, len))
3149 return -EFAULT;
3150 return 0;
3151 }
3152 case TCP_CC_INFO: {
3153 const struct tcp_congestion_ops *ca_ops;
3154 union tcp_cc_info info;
3155 size_t sz = 0;
3156 int attr;
3157
3158 if (get_user(len, optlen))
3159 return -EFAULT;
3160
3161 ca_ops = icsk->icsk_ca_ops;
3162 if (ca_ops && ca_ops->get_info)
3163 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3164
3165 len = min_t(unsigned int, len, sz);
3166 if (put_user(len, optlen))
3167 return -EFAULT;
3168 if (copy_to_user(optval, &info, len))
3169 return -EFAULT;
3170 return 0;
3171 }
3172 case TCP_QUICKACK:
3173 val = !icsk->icsk_ack.pingpong;
3174 break;
3175
3176 case TCP_CONGESTION:
3177 if (get_user(len, optlen))
3178 return -EFAULT;
3179 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3180 if (put_user(len, optlen))
3181 return -EFAULT;
3182 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3183 return -EFAULT;
3184 return 0;
3185
3186 case TCP_ULP:
3187 if (get_user(len, optlen))
3188 return -EFAULT;
3189 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3190 if (!icsk->icsk_ulp_ops) {
3191 if (put_user(0, optlen))
3192 return -EFAULT;
3193 return 0;
3194 }
3195 if (put_user(len, optlen))
3196 return -EFAULT;
3197 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3198 return -EFAULT;
3199 return 0;
3200
3201 case TCP_FASTOPEN_KEY: {
3202 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
3203 struct tcp_fastopen_context *ctx;
3204
3205 if (get_user(len, optlen))
3206 return -EFAULT;
3207
3208 rcu_read_lock();
3209 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
3210 if (ctx)
3211 memcpy(key, ctx->key, sizeof(key));
3212 else
3213 len = 0;
3214 rcu_read_unlock();
3215
3216 len = min_t(unsigned int, len, sizeof(key));
3217 if (put_user(len, optlen))
3218 return -EFAULT;
3219 if (copy_to_user(optval, key, len))
3220 return -EFAULT;
3221 return 0;
3222 }
3223 case TCP_THIN_LINEAR_TIMEOUTS:
3224 val = tp->thin_lto;
3225 break;
3226
3227 case TCP_THIN_DUPACK:
3228 val = 0;
3229 break;
3230
3231 case TCP_REPAIR:
3232 val = tp->repair;
3233 break;
3234
3235 case TCP_REPAIR_QUEUE:
3236 if (tp->repair)
3237 val = tp->repair_queue;
3238 else
3239 return -EINVAL;
3240 break;
3241
3242 case TCP_REPAIR_WINDOW: {
3243 struct tcp_repair_window opt;
3244
3245 if (get_user(len, optlen))
3246 return -EFAULT;
3247
3248 if (len != sizeof(opt))
3249 return -EINVAL;
3250
3251 if (!tp->repair)
3252 return -EPERM;
3253
3254 opt.snd_wl1 = tp->snd_wl1;
3255 opt.snd_wnd = tp->snd_wnd;
3256 opt.max_window = tp->max_window;
3257 opt.rcv_wnd = tp->rcv_wnd;
3258 opt.rcv_wup = tp->rcv_wup;
3259
3260 if (copy_to_user(optval, &opt, len))
3261 return -EFAULT;
3262 return 0;
3263 }
3264 case TCP_QUEUE_SEQ:
3265 if (tp->repair_queue == TCP_SEND_QUEUE)
3266 val = tp->write_seq;
3267 else if (tp->repair_queue == TCP_RECV_QUEUE)
3268 val = tp->rcv_nxt;
3269 else
3270 return -EINVAL;
3271 break;
3272
3273 case TCP_USER_TIMEOUT:
3274 val = jiffies_to_msecs(icsk->icsk_user_timeout);
3275 break;
3276
3277 case TCP_FASTOPEN:
3278 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3279 break;
3280
3281 case TCP_FASTOPEN_CONNECT:
3282 val = tp->fastopen_connect;
3283 break;
3284
3285 case TCP_FASTOPEN_NO_COOKIE:
3286 val = tp->fastopen_no_cookie;
3287 break;
3288
3289 case TCP_TIMESTAMP:
3290 val = tcp_time_stamp_raw() + tp->tsoffset;
3291 break;
3292 case TCP_NOTSENT_LOWAT:
3293 val = tp->notsent_lowat;
3294 break;
3295 case TCP_SAVE_SYN:
3296 val = tp->save_syn;
3297 break;
3298 case TCP_SAVED_SYN: {
3299 if (get_user(len, optlen))
3300 return -EFAULT;
3301
3302 lock_sock(sk);
3303 if (tp->saved_syn) {
3304 if (len < tp->saved_syn[0]) {
3305 if (put_user(tp->saved_syn[0], optlen)) {
3306 release_sock(sk);
3307 return -EFAULT;
3308 }
3309 release_sock(sk);
3310 return -EINVAL;
3311 }
3312 len = tp->saved_syn[0];
3313 if (put_user(len, optlen)) {
3314 release_sock(sk);
3315 return -EFAULT;
3316 }
3317 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3318 release_sock(sk);
3319 return -EFAULT;
3320 }
3321 tcp_saved_syn_free(tp);
3322 release_sock(sk);
3323 } else {
3324 release_sock(sk);
3325 len = 0;
3326 if (put_user(len, optlen))
3327 return -EFAULT;
3328 }
3329 return 0;
3330 }
3331 default:
3332 return -ENOPROTOOPT;
3333 }
3334
3335 if (put_user(len, optlen))
3336 return -EFAULT;
3337 if (copy_to_user(optval, &val, len))
3338 return -EFAULT;
3339 return 0;
3340 }
3341
3342 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3343 int __user *optlen)
3344 {
3345 struct inet_connection_sock *icsk = inet_csk(sk);
3346
3347 if (level != SOL_TCP)
3348 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3349 optval, optlen);
3350 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3351 }
3352 EXPORT_SYMBOL(tcp_getsockopt);
3353
3354 #ifdef CONFIG_COMPAT
3355 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3356 char __user *optval, int __user *optlen)
3357 {
3358 if (level != SOL_TCP)
3359 return inet_csk_compat_getsockopt(sk, level, optname,
3360 optval, optlen);
3361 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3362 }
3363 EXPORT_SYMBOL(compat_tcp_getsockopt);
3364 #endif
3365
3366 #ifdef CONFIG_TCP_MD5SIG
3367 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3368 static DEFINE_MUTEX(tcp_md5sig_mutex);
3369 static bool tcp_md5sig_pool_populated = false;
3370
3371 static void __tcp_alloc_md5sig_pool(void)
3372 {
3373 struct crypto_ahash *hash;
3374 int cpu;
3375
3376 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3377 if (IS_ERR(hash))
3378 return;
3379
3380 for_each_possible_cpu(cpu) {
3381 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3382 struct ahash_request *req;
3383
3384 if (!scratch) {
3385 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3386 sizeof(struct tcphdr),
3387 GFP_KERNEL,
3388 cpu_to_node(cpu));
3389 if (!scratch)
3390 return;
3391 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3392 }
3393 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3394 continue;
3395
3396 req = ahash_request_alloc(hash, GFP_KERNEL);
3397 if (!req)
3398 return;
3399
3400 ahash_request_set_callback(req, 0, NULL, NULL);
3401
3402 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3403 }
3404 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3405 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3406 */
3407 smp_wmb();
3408 tcp_md5sig_pool_populated = true;
3409 }
3410
3411 bool tcp_alloc_md5sig_pool(void)
3412 {
3413 if (unlikely(!tcp_md5sig_pool_populated)) {
3414 mutex_lock(&tcp_md5sig_mutex);
3415
3416 if (!tcp_md5sig_pool_populated)
3417 __tcp_alloc_md5sig_pool();
3418
3419 mutex_unlock(&tcp_md5sig_mutex);
3420 }
3421 return tcp_md5sig_pool_populated;
3422 }
3423 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3424
3425
3426 /**
3427 * tcp_get_md5sig_pool - get md5sig_pool for this user
3428 *
3429 * We use percpu structure, so if we succeed, we exit with preemption
3430 * and BH disabled, to make sure another thread or softirq handling
3431 * wont try to get same context.
3432 */
3433 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3434 {
3435 local_bh_disable();
3436
3437 if (tcp_md5sig_pool_populated) {
3438 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3439 smp_rmb();
3440 return this_cpu_ptr(&tcp_md5sig_pool);
3441 }
3442 local_bh_enable();
3443 return NULL;
3444 }
3445 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3446
3447 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3448 const struct sk_buff *skb, unsigned int header_len)
3449 {
3450 struct scatterlist sg;
3451 const struct tcphdr *tp = tcp_hdr(skb);
3452 struct ahash_request *req = hp->md5_req;
3453 unsigned int i;
3454 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3455 skb_headlen(skb) - header_len : 0;
3456 const struct skb_shared_info *shi = skb_shinfo(skb);
3457 struct sk_buff *frag_iter;
3458
3459 sg_init_table(&sg, 1);
3460
3461 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3462 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3463 if (crypto_ahash_update(req))
3464 return 1;
3465
3466 for (i = 0; i < shi->nr_frags; ++i) {
3467 const struct skb_frag_struct *f = &shi->frags[i];
3468 unsigned int offset = f->page_offset;
3469 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3470
3471 sg_set_page(&sg, page, skb_frag_size(f),
3472 offset_in_page(offset));
3473 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3474 if (crypto_ahash_update(req))
3475 return 1;
3476 }
3477
3478 skb_walk_frags(skb, frag_iter)
3479 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3480 return 1;
3481
3482 return 0;
3483 }
3484 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3485
3486 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3487 {
3488 struct scatterlist sg;
3489
3490 sg_init_one(&sg, key->key, key->keylen);
3491 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3492 return crypto_ahash_update(hp->md5_req);
3493 }
3494 EXPORT_SYMBOL(tcp_md5_hash_key);
3495
3496 #endif
3497
3498 void tcp_done(struct sock *sk)
3499 {
3500 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3501
3502 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3503 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3504
3505 tcp_set_state(sk, TCP_CLOSE);
3506 tcp_clear_xmit_timers(sk);
3507 if (req)
3508 reqsk_fastopen_remove(sk, req, false);
3509
3510 sk->sk_shutdown = SHUTDOWN_MASK;
3511
3512 if (!sock_flag(sk, SOCK_DEAD))
3513 sk->sk_state_change(sk);
3514 else
3515 inet_csk_destroy_sock(sk);
3516 }
3517 EXPORT_SYMBOL_GPL(tcp_done);
3518
3519 int tcp_abort(struct sock *sk, int err)
3520 {
3521 if (!sk_fullsock(sk)) {
3522 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3523 struct request_sock *req = inet_reqsk(sk);
3524
3525 local_bh_disable();
3526 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
3527 local_bh_enable();
3528 return 0;
3529 }
3530 return -EOPNOTSUPP;
3531 }
3532
3533 /* Don't race with userspace socket closes such as tcp_close. */
3534 lock_sock(sk);
3535
3536 if (sk->sk_state == TCP_LISTEN) {
3537 tcp_set_state(sk, TCP_CLOSE);
3538 inet_csk_listen_stop(sk);
3539 }
3540
3541 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3542 local_bh_disable();
3543 bh_lock_sock(sk);
3544
3545 if (!sock_flag(sk, SOCK_DEAD)) {
3546 sk->sk_err = err;
3547 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3548 smp_wmb();
3549 sk->sk_error_report(sk);
3550 if (tcp_need_reset(sk->sk_state))
3551 tcp_send_active_reset(sk, GFP_ATOMIC);
3552 tcp_done(sk);
3553 }
3554
3555 bh_unlock_sock(sk);
3556 local_bh_enable();
3557 tcp_write_queue_purge(sk);
3558 release_sock(sk);
3559 return 0;
3560 }
3561 EXPORT_SYMBOL_GPL(tcp_abort);
3562
3563 extern struct tcp_congestion_ops tcp_reno;
3564
3565 static __initdata unsigned long thash_entries;
3566 static int __init set_thash_entries(char *str)
3567 {
3568 ssize_t ret;
3569
3570 if (!str)
3571 return 0;
3572
3573 ret = kstrtoul(str, 0, &thash_entries);
3574 if (ret)
3575 return 0;
3576
3577 return 1;
3578 }
3579 __setup("thash_entries=", set_thash_entries);
3580
3581 static void __init tcp_init_mem(void)
3582 {
3583 unsigned long limit = nr_free_buffer_pages() / 16;
3584
3585 limit = max(limit, 128UL);
3586 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3587 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3588 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3589 }
3590
3591 void __init tcp_init(void)
3592 {
3593 int max_rshare, max_wshare, cnt;
3594 unsigned long limit;
3595 unsigned int i;
3596
3597 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
3598 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3599 FIELD_SIZEOF(struct sk_buff, cb));
3600
3601 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3602 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3603 inet_hashinfo_init(&tcp_hashinfo);
3604 tcp_hashinfo.bind_bucket_cachep =
3605 kmem_cache_create("tcp_bind_bucket",
3606 sizeof(struct inet_bind_bucket), 0,
3607 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3608
3609 /* Size and allocate the main established and bind bucket
3610 * hash tables.
3611 *
3612 * The methodology is similar to that of the buffer cache.
3613 */
3614 tcp_hashinfo.ehash =
3615 alloc_large_system_hash("TCP established",
3616 sizeof(struct inet_ehash_bucket),
3617 thash_entries,
3618 17, /* one slot per 128 KB of memory */
3619 0,
3620 NULL,
3621 &tcp_hashinfo.ehash_mask,
3622 0,
3623 thash_entries ? 0 : 512 * 1024);
3624 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3625 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3626
3627 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3628 panic("TCP: failed to alloc ehash_locks");
3629 tcp_hashinfo.bhash =
3630 alloc_large_system_hash("TCP bind",
3631 sizeof(struct inet_bind_hashbucket),
3632 tcp_hashinfo.ehash_mask + 1,
3633 17, /* one slot per 128 KB of memory */
3634 0,
3635 &tcp_hashinfo.bhash_size,
3636 NULL,
3637 0,
3638 64 * 1024);
3639 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3640 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3641 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3642 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3643 }
3644
3645
3646 cnt = tcp_hashinfo.ehash_mask + 1;
3647 sysctl_tcp_max_orphans = cnt / 2;
3648
3649 tcp_init_mem();
3650 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3651 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3652 max_wshare = min(4UL*1024*1024, limit);
3653 max_rshare = min(6UL*1024*1024, limit);
3654
3655 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3656 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
3657 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3658
3659 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3660 init_net.ipv4.sysctl_tcp_rmem[1] = 87380;
3661 init_net.ipv4.sysctl_tcp_rmem[2] = max(87380, max_rshare);
3662
3663 pr_info("Hash tables configured (established %u bind %u)\n",
3664 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3665
3666 tcp_v4_init();
3667 tcp_metrics_init();
3668 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3669 tcp_tasklet_init();
3670 }