]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/ipv4/tcp.c
efi/arm: Fix boot crash with CONFIG_CPUMASK_OFFSTACK=y
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / tcp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248 #define pr_fmt(fmt) "TCP: " fmt
249
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279
280 #include <linux/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <net/busy_poll.h>
283
284 int sysctl_tcp_min_tso_segs __read_mostly = 2;
285
286 int sysctl_tcp_autocorking __read_mostly = 1;
287
288 struct percpu_counter tcp_orphan_count;
289 EXPORT_SYMBOL_GPL(tcp_orphan_count);
290
291 long sysctl_tcp_mem[3] __read_mostly;
292 int sysctl_tcp_wmem[3] __read_mostly;
293 int sysctl_tcp_rmem[3] __read_mostly;
294
295 EXPORT_SYMBOL(sysctl_tcp_mem);
296 EXPORT_SYMBOL(sysctl_tcp_rmem);
297 EXPORT_SYMBOL(sysctl_tcp_wmem);
298
299 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
300 EXPORT_SYMBOL(tcp_memory_allocated);
301
302 /*
303 * Current number of TCP sockets.
304 */
305 struct percpu_counter tcp_sockets_allocated;
306 EXPORT_SYMBOL(tcp_sockets_allocated);
307
308 /*
309 * TCP splice context
310 */
311 struct tcp_splice_state {
312 struct pipe_inode_info *pipe;
313 size_t len;
314 unsigned int flags;
315 };
316
317 /*
318 * Pressure flag: try to collapse.
319 * Technical note: it is used by multiple contexts non atomically.
320 * All the __sk_mem_schedule() is of this nature: accounting
321 * is strict, actions are advisory and have some latency.
322 */
323 int tcp_memory_pressure __read_mostly;
324 EXPORT_SYMBOL(tcp_memory_pressure);
325
326 void tcp_enter_memory_pressure(struct sock *sk)
327 {
328 if (!tcp_memory_pressure) {
329 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
330 tcp_memory_pressure = 1;
331 }
332 }
333 EXPORT_SYMBOL(tcp_enter_memory_pressure);
334
335 /* Convert seconds to retransmits based on initial and max timeout */
336 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
337 {
338 u8 res = 0;
339
340 if (seconds > 0) {
341 int period = timeout;
342
343 res = 1;
344 while (seconds > period && res < 255) {
345 res++;
346 timeout <<= 1;
347 if (timeout > rto_max)
348 timeout = rto_max;
349 period += timeout;
350 }
351 }
352 return res;
353 }
354
355 /* Convert retransmits to seconds based on initial and max timeout */
356 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
357 {
358 int period = 0;
359
360 if (retrans > 0) {
361 period = timeout;
362 while (--retrans) {
363 timeout <<= 1;
364 if (timeout > rto_max)
365 timeout = rto_max;
366 period += timeout;
367 }
368 }
369 return period;
370 }
371
372 /* Address-family independent initialization for a tcp_sock.
373 *
374 * NOTE: A lot of things set to zero explicitly by call to
375 * sk_alloc() so need not be done here.
376 */
377 void tcp_init_sock(struct sock *sk)
378 {
379 struct inet_connection_sock *icsk = inet_csk(sk);
380 struct tcp_sock *tp = tcp_sk(sk);
381
382 tp->out_of_order_queue = RB_ROOT;
383 tcp_init_xmit_timers(sk);
384 tcp_prequeue_init(tp);
385 INIT_LIST_HEAD(&tp->tsq_node);
386
387 icsk->icsk_rto = TCP_TIMEOUT_INIT;
388 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
389 minmax_reset(&tp->rtt_min, tcp_time_stamp, ~0U);
390
391 /* So many TCP implementations out there (incorrectly) count the
392 * initial SYN frame in their delayed-ACK and congestion control
393 * algorithms that we must have the following bandaid to talk
394 * efficiently to them. -DaveM
395 */
396 tp->snd_cwnd = TCP_INIT_CWND;
397
398 /* There's a bubble in the pipe until at least the first ACK. */
399 tp->app_limited = ~0U;
400
401 /* See draft-stevens-tcpca-spec-01 for discussion of the
402 * initialization of these values.
403 */
404 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
405 tp->snd_cwnd_clamp = ~0;
406 tp->mss_cache = TCP_MSS_DEFAULT;
407
408 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
409 tcp_assign_congestion_control(sk);
410
411 tp->tsoffset = 0;
412
413 sk->sk_state = TCP_CLOSE;
414
415 sk->sk_write_space = sk_stream_write_space;
416 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
417
418 icsk->icsk_sync_mss = tcp_sync_mss;
419
420 sk->sk_sndbuf = sysctl_tcp_wmem[1];
421 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
422
423 sk_sockets_allocated_inc(sk);
424 }
425 EXPORT_SYMBOL(tcp_init_sock);
426
427 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags, struct sk_buff *skb)
428 {
429 if (tsflags && skb) {
430 struct skb_shared_info *shinfo = skb_shinfo(skb);
431 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
432
433 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
434 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
435 tcb->txstamp_ack = 1;
436 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
437 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
438 }
439 }
440
441 /*
442 * Wait for a TCP event.
443 *
444 * Note that we don't need to lock the socket, as the upper poll layers
445 * take care of normal races (between the test and the event) and we don't
446 * go look at any of the socket buffers directly.
447 */
448 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
449 {
450 unsigned int mask;
451 struct sock *sk = sock->sk;
452 const struct tcp_sock *tp = tcp_sk(sk);
453 int state;
454
455 sock_rps_record_flow(sk);
456
457 sock_poll_wait(file, sk_sleep(sk), wait);
458
459 state = sk_state_load(sk);
460 if (state == TCP_LISTEN)
461 return inet_csk_listen_poll(sk);
462
463 /* Socket is not locked. We are protected from async events
464 * by poll logic and correct handling of state changes
465 * made by other threads is impossible in any case.
466 */
467
468 mask = 0;
469
470 /*
471 * POLLHUP is certainly not done right. But poll() doesn't
472 * have a notion of HUP in just one direction, and for a
473 * socket the read side is more interesting.
474 *
475 * Some poll() documentation says that POLLHUP is incompatible
476 * with the POLLOUT/POLLWR flags, so somebody should check this
477 * all. But careful, it tends to be safer to return too many
478 * bits than too few, and you can easily break real applications
479 * if you don't tell them that something has hung up!
480 *
481 * Check-me.
482 *
483 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
484 * our fs/select.c). It means that after we received EOF,
485 * poll always returns immediately, making impossible poll() on write()
486 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
487 * if and only if shutdown has been made in both directions.
488 * Actually, it is interesting to look how Solaris and DUX
489 * solve this dilemma. I would prefer, if POLLHUP were maskable,
490 * then we could set it on SND_SHUTDOWN. BTW examples given
491 * in Stevens' books assume exactly this behaviour, it explains
492 * why POLLHUP is incompatible with POLLOUT. --ANK
493 *
494 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
495 * blocking on fresh not-connected or disconnected socket. --ANK
496 */
497 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
498 mask |= POLLHUP;
499 if (sk->sk_shutdown & RCV_SHUTDOWN)
500 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
501
502 /* Connected or passive Fast Open socket? */
503 if (state != TCP_SYN_SENT &&
504 (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
505 int target = sock_rcvlowat(sk, 0, INT_MAX);
506
507 if (tp->urg_seq == tp->copied_seq &&
508 !sock_flag(sk, SOCK_URGINLINE) &&
509 tp->urg_data)
510 target++;
511
512 if (tp->rcv_nxt - tp->copied_seq >= target)
513 mask |= POLLIN | POLLRDNORM;
514
515 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
516 if (sk_stream_is_writeable(sk)) {
517 mask |= POLLOUT | POLLWRNORM;
518 } else { /* send SIGIO later */
519 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
520 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
521
522 /* Race breaker. If space is freed after
523 * wspace test but before the flags are set,
524 * IO signal will be lost. Memory barrier
525 * pairs with the input side.
526 */
527 smp_mb__after_atomic();
528 if (sk_stream_is_writeable(sk))
529 mask |= POLLOUT | POLLWRNORM;
530 }
531 } else
532 mask |= POLLOUT | POLLWRNORM;
533
534 if (tp->urg_data & TCP_URG_VALID)
535 mask |= POLLPRI;
536 } else if (sk->sk_state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
537 /* Active TCP fastopen socket with defer_connect
538 * Return POLLOUT so application can call write()
539 * in order for kernel to generate SYN+data
540 */
541 mask |= POLLOUT | POLLWRNORM;
542 }
543 /* This barrier is coupled with smp_wmb() in tcp_reset() */
544 smp_rmb();
545 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
546 mask |= POLLERR;
547
548 return mask;
549 }
550 EXPORT_SYMBOL(tcp_poll);
551
552 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
553 {
554 struct tcp_sock *tp = tcp_sk(sk);
555 int answ;
556 bool slow;
557
558 switch (cmd) {
559 case SIOCINQ:
560 if (sk->sk_state == TCP_LISTEN)
561 return -EINVAL;
562
563 slow = lock_sock_fast(sk);
564 answ = tcp_inq(sk);
565 unlock_sock_fast(sk, slow);
566 break;
567 case SIOCATMARK:
568 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
569 break;
570 case SIOCOUTQ:
571 if (sk->sk_state == TCP_LISTEN)
572 return -EINVAL;
573
574 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
575 answ = 0;
576 else
577 answ = tp->write_seq - tp->snd_una;
578 break;
579 case SIOCOUTQNSD:
580 if (sk->sk_state == TCP_LISTEN)
581 return -EINVAL;
582
583 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
584 answ = 0;
585 else
586 answ = tp->write_seq - tp->snd_nxt;
587 break;
588 default:
589 return -ENOIOCTLCMD;
590 }
591
592 return put_user(answ, (int __user *)arg);
593 }
594 EXPORT_SYMBOL(tcp_ioctl);
595
596 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
597 {
598 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
599 tp->pushed_seq = tp->write_seq;
600 }
601
602 static inline bool forced_push(const struct tcp_sock *tp)
603 {
604 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
605 }
606
607 static void skb_entail(struct sock *sk, struct sk_buff *skb)
608 {
609 struct tcp_sock *tp = tcp_sk(sk);
610 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
611
612 skb->csum = 0;
613 tcb->seq = tcb->end_seq = tp->write_seq;
614 tcb->tcp_flags = TCPHDR_ACK;
615 tcb->sacked = 0;
616 __skb_header_release(skb);
617 tcp_add_write_queue_tail(sk, skb);
618 sk->sk_wmem_queued += skb->truesize;
619 sk_mem_charge(sk, skb->truesize);
620 if (tp->nonagle & TCP_NAGLE_PUSH)
621 tp->nonagle &= ~TCP_NAGLE_PUSH;
622
623 tcp_slow_start_after_idle_check(sk);
624 }
625
626 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
627 {
628 if (flags & MSG_OOB)
629 tp->snd_up = tp->write_seq;
630 }
631
632 /* If a not yet filled skb is pushed, do not send it if
633 * we have data packets in Qdisc or NIC queues :
634 * Because TX completion will happen shortly, it gives a chance
635 * to coalesce future sendmsg() payload into this skb, without
636 * need for a timer, and with no latency trade off.
637 * As packets containing data payload have a bigger truesize
638 * than pure acks (dataless) packets, the last checks prevent
639 * autocorking if we only have an ACK in Qdisc/NIC queues,
640 * or if TX completion was delayed after we processed ACK packet.
641 */
642 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
643 int size_goal)
644 {
645 return skb->len < size_goal &&
646 sysctl_tcp_autocorking &&
647 skb != tcp_write_queue_head(sk) &&
648 atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
649 }
650
651 static void tcp_push(struct sock *sk, int flags, int mss_now,
652 int nonagle, int size_goal)
653 {
654 struct tcp_sock *tp = tcp_sk(sk);
655 struct sk_buff *skb;
656
657 if (!tcp_send_head(sk))
658 return;
659
660 skb = tcp_write_queue_tail(sk);
661 if (!(flags & MSG_MORE) || forced_push(tp))
662 tcp_mark_push(tp, skb);
663
664 tcp_mark_urg(tp, flags);
665
666 if (tcp_should_autocork(sk, skb, size_goal)) {
667
668 /* avoid atomic op if TSQ_THROTTLED bit is already set */
669 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
670 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
671 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
672 }
673 /* It is possible TX completion already happened
674 * before we set TSQ_THROTTLED.
675 */
676 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
677 return;
678 }
679
680 if (flags & MSG_MORE)
681 nonagle = TCP_NAGLE_CORK;
682
683 __tcp_push_pending_frames(sk, mss_now, nonagle);
684 }
685
686 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
687 unsigned int offset, size_t len)
688 {
689 struct tcp_splice_state *tss = rd_desc->arg.data;
690 int ret;
691
692 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
693 min(rd_desc->count, len), tss->flags);
694 if (ret > 0)
695 rd_desc->count -= ret;
696 return ret;
697 }
698
699 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
700 {
701 /* Store TCP splice context information in read_descriptor_t. */
702 read_descriptor_t rd_desc = {
703 .arg.data = tss,
704 .count = tss->len,
705 };
706
707 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
708 }
709
710 /**
711 * tcp_splice_read - splice data from TCP socket to a pipe
712 * @sock: socket to splice from
713 * @ppos: position (not valid)
714 * @pipe: pipe to splice to
715 * @len: number of bytes to splice
716 * @flags: splice modifier flags
717 *
718 * Description:
719 * Will read pages from given socket and fill them into a pipe.
720 *
721 **/
722 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
723 struct pipe_inode_info *pipe, size_t len,
724 unsigned int flags)
725 {
726 struct sock *sk = sock->sk;
727 struct tcp_splice_state tss = {
728 .pipe = pipe,
729 .len = len,
730 .flags = flags,
731 };
732 long timeo;
733 ssize_t spliced;
734 int ret;
735
736 sock_rps_record_flow(sk);
737 /*
738 * We can't seek on a socket input
739 */
740 if (unlikely(*ppos))
741 return -ESPIPE;
742
743 ret = spliced = 0;
744
745 lock_sock(sk);
746
747 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
748 while (tss.len) {
749 ret = __tcp_splice_read(sk, &tss);
750 if (ret < 0)
751 break;
752 else if (!ret) {
753 if (spliced)
754 break;
755 if (sock_flag(sk, SOCK_DONE))
756 break;
757 if (sk->sk_err) {
758 ret = sock_error(sk);
759 break;
760 }
761 if (sk->sk_shutdown & RCV_SHUTDOWN)
762 break;
763 if (sk->sk_state == TCP_CLOSE) {
764 /*
765 * This occurs when user tries to read
766 * from never connected socket.
767 */
768 if (!sock_flag(sk, SOCK_DONE))
769 ret = -ENOTCONN;
770 break;
771 }
772 if (!timeo) {
773 ret = -EAGAIN;
774 break;
775 }
776 /* if __tcp_splice_read() got nothing while we have
777 * an skb in receive queue, we do not want to loop.
778 * This might happen with URG data.
779 */
780 if (!skb_queue_empty(&sk->sk_receive_queue))
781 break;
782 sk_wait_data(sk, &timeo, NULL);
783 if (signal_pending(current)) {
784 ret = sock_intr_errno(timeo);
785 break;
786 }
787 continue;
788 }
789 tss.len -= ret;
790 spliced += ret;
791
792 if (!timeo)
793 break;
794 release_sock(sk);
795 lock_sock(sk);
796
797 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
798 (sk->sk_shutdown & RCV_SHUTDOWN) ||
799 signal_pending(current))
800 break;
801 }
802
803 release_sock(sk);
804
805 if (spliced)
806 return spliced;
807
808 return ret;
809 }
810 EXPORT_SYMBOL(tcp_splice_read);
811
812 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
813 bool force_schedule)
814 {
815 struct sk_buff *skb;
816
817 /* The TCP header must be at least 32-bit aligned. */
818 size = ALIGN(size, 4);
819
820 if (unlikely(tcp_under_memory_pressure(sk)))
821 sk_mem_reclaim_partial(sk);
822
823 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
824 if (likely(skb)) {
825 bool mem_scheduled;
826
827 if (force_schedule) {
828 mem_scheduled = true;
829 sk_forced_mem_schedule(sk, skb->truesize);
830 } else {
831 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
832 }
833 if (likely(mem_scheduled)) {
834 skb_reserve(skb, sk->sk_prot->max_header);
835 /*
836 * Make sure that we have exactly size bytes
837 * available to the caller, no more, no less.
838 */
839 skb->reserved_tailroom = skb->end - skb->tail - size;
840 return skb;
841 }
842 __kfree_skb(skb);
843 } else {
844 sk->sk_prot->enter_memory_pressure(sk);
845 sk_stream_moderate_sndbuf(sk);
846 }
847 return NULL;
848 }
849
850 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
851 int large_allowed)
852 {
853 struct tcp_sock *tp = tcp_sk(sk);
854 u32 new_size_goal, size_goal;
855
856 if (!large_allowed || !sk_can_gso(sk))
857 return mss_now;
858
859 /* Note : tcp_tso_autosize() will eventually split this later */
860 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
861 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
862
863 /* We try hard to avoid divides here */
864 size_goal = tp->gso_segs * mss_now;
865 if (unlikely(new_size_goal < size_goal ||
866 new_size_goal >= size_goal + mss_now)) {
867 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
868 sk->sk_gso_max_segs);
869 size_goal = tp->gso_segs * mss_now;
870 }
871
872 return max(size_goal, mss_now);
873 }
874
875 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
876 {
877 int mss_now;
878
879 mss_now = tcp_current_mss(sk);
880 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
881
882 return mss_now;
883 }
884
885 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
886 size_t size, int flags)
887 {
888 struct tcp_sock *tp = tcp_sk(sk);
889 int mss_now, size_goal;
890 int err;
891 ssize_t copied;
892 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
893
894 /* Wait for a connection to finish. One exception is TCP Fast Open
895 * (passive side) where data is allowed to be sent before a connection
896 * is fully established.
897 */
898 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
899 !tcp_passive_fastopen(sk)) {
900 err = sk_stream_wait_connect(sk, &timeo);
901 if (err != 0)
902 goto out_err;
903 }
904
905 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
906
907 mss_now = tcp_send_mss(sk, &size_goal, flags);
908 copied = 0;
909
910 err = -EPIPE;
911 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
912 goto out_err;
913
914 while (size > 0) {
915 struct sk_buff *skb = tcp_write_queue_tail(sk);
916 int copy, i;
917 bool can_coalesce;
918
919 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0 ||
920 !tcp_skb_can_collapse_to(skb)) {
921 new_segment:
922 if (!sk_stream_memory_free(sk))
923 goto wait_for_sndbuf;
924
925 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
926 skb_queue_empty(&sk->sk_write_queue));
927 if (!skb)
928 goto wait_for_memory;
929
930 skb_entail(sk, skb);
931 copy = size_goal;
932 }
933
934 if (copy > size)
935 copy = size;
936
937 i = skb_shinfo(skb)->nr_frags;
938 can_coalesce = skb_can_coalesce(skb, i, page, offset);
939 if (!can_coalesce && i >= sysctl_max_skb_frags) {
940 tcp_mark_push(tp, skb);
941 goto new_segment;
942 }
943 if (!sk_wmem_schedule(sk, copy))
944 goto wait_for_memory;
945
946 if (can_coalesce) {
947 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
948 } else {
949 get_page(page);
950 skb_fill_page_desc(skb, i, page, offset, copy);
951 }
952 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
953
954 skb->len += copy;
955 skb->data_len += copy;
956 skb->truesize += copy;
957 sk->sk_wmem_queued += copy;
958 sk_mem_charge(sk, copy);
959 skb->ip_summed = CHECKSUM_PARTIAL;
960 tp->write_seq += copy;
961 TCP_SKB_CB(skb)->end_seq += copy;
962 tcp_skb_pcount_set(skb, 0);
963
964 if (!copied)
965 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
966
967 copied += copy;
968 offset += copy;
969 size -= copy;
970 if (!size)
971 goto out;
972
973 if (skb->len < size_goal || (flags & MSG_OOB))
974 continue;
975
976 if (forced_push(tp)) {
977 tcp_mark_push(tp, skb);
978 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
979 } else if (skb == tcp_send_head(sk))
980 tcp_push_one(sk, mss_now);
981 continue;
982
983 wait_for_sndbuf:
984 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
985 wait_for_memory:
986 tcp_push(sk, flags & ~MSG_MORE, mss_now,
987 TCP_NAGLE_PUSH, size_goal);
988
989 err = sk_stream_wait_memory(sk, &timeo);
990 if (err != 0)
991 goto do_error;
992
993 mss_now = tcp_send_mss(sk, &size_goal, flags);
994 }
995
996 out:
997 if (copied) {
998 tcp_tx_timestamp(sk, sk->sk_tsflags, tcp_write_queue_tail(sk));
999 if (!(flags & MSG_SENDPAGE_NOTLAST))
1000 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1001 }
1002 return copied;
1003
1004 do_error:
1005 if (copied)
1006 goto out;
1007 out_err:
1008 /* make sure we wake any epoll edge trigger waiter */
1009 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1010 err == -EAGAIN)) {
1011 sk->sk_write_space(sk);
1012 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1013 }
1014 return sk_stream_error(sk, flags, err);
1015 }
1016
1017 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1018 size_t size, int flags)
1019 {
1020 ssize_t res;
1021
1022 if (!(sk->sk_route_caps & NETIF_F_SG) ||
1023 !sk_check_csum_caps(sk))
1024 return sock_no_sendpage(sk->sk_socket, page, offset, size,
1025 flags);
1026
1027 lock_sock(sk);
1028
1029 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1030
1031 res = do_tcp_sendpages(sk, page, offset, size, flags);
1032 release_sock(sk);
1033 return res;
1034 }
1035 EXPORT_SYMBOL(tcp_sendpage);
1036
1037 /* Do not bother using a page frag for very small frames.
1038 * But use this heuristic only for the first skb in write queue.
1039 *
1040 * Having no payload in skb->head allows better SACK shifting
1041 * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1042 * write queue has less skbs.
1043 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1044 * This also speeds up tso_fragment(), since it wont fallback
1045 * to tcp_fragment().
1046 */
1047 static int linear_payload_sz(bool first_skb)
1048 {
1049 if (first_skb)
1050 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1051 return 0;
1052 }
1053
1054 static int select_size(const struct sock *sk, bool sg, bool first_skb)
1055 {
1056 const struct tcp_sock *tp = tcp_sk(sk);
1057 int tmp = tp->mss_cache;
1058
1059 if (sg) {
1060 if (sk_can_gso(sk)) {
1061 tmp = linear_payload_sz(first_skb);
1062 } else {
1063 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1064
1065 if (tmp >= pgbreak &&
1066 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1067 tmp = pgbreak;
1068 }
1069 }
1070
1071 return tmp;
1072 }
1073
1074 void tcp_free_fastopen_req(struct tcp_sock *tp)
1075 {
1076 if (tp->fastopen_req) {
1077 kfree(tp->fastopen_req);
1078 tp->fastopen_req = NULL;
1079 }
1080 }
1081
1082 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1083 int *copied, size_t size)
1084 {
1085 struct tcp_sock *tp = tcp_sk(sk);
1086 struct inet_sock *inet = inet_sk(sk);
1087 int err, flags;
1088
1089 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1090 return -EOPNOTSUPP;
1091 if (tp->fastopen_req)
1092 return -EALREADY; /* Another Fast Open is in progress */
1093
1094 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1095 sk->sk_allocation);
1096 if (unlikely(!tp->fastopen_req))
1097 return -ENOBUFS;
1098 tp->fastopen_req->data = msg;
1099 tp->fastopen_req->size = size;
1100
1101 if (inet->defer_connect) {
1102 err = tcp_connect(sk);
1103 /* Same failure procedure as in tcp_v4/6_connect */
1104 if (err) {
1105 tcp_set_state(sk, TCP_CLOSE);
1106 inet->inet_dport = 0;
1107 sk->sk_route_caps = 0;
1108 }
1109 }
1110 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1111 err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1112 msg->msg_namelen, flags, 1);
1113 inet->defer_connect = 0;
1114 *copied = tp->fastopen_req->copied;
1115 tcp_free_fastopen_req(tp);
1116 return err;
1117 }
1118
1119 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1120 {
1121 struct tcp_sock *tp = tcp_sk(sk);
1122 struct sk_buff *skb;
1123 struct sockcm_cookie sockc;
1124 int flags, err, copied = 0;
1125 int mss_now = 0, size_goal, copied_syn = 0;
1126 bool process_backlog = false;
1127 bool sg;
1128 long timeo;
1129
1130 lock_sock(sk);
1131
1132 flags = msg->msg_flags;
1133 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect)) {
1134 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1135 if (err == -EINPROGRESS && copied_syn > 0)
1136 goto out;
1137 else if (err)
1138 goto out_err;
1139 }
1140
1141 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1142
1143 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1144
1145 /* Wait for a connection to finish. One exception is TCP Fast Open
1146 * (passive side) where data is allowed to be sent before a connection
1147 * is fully established.
1148 */
1149 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1150 !tcp_passive_fastopen(sk)) {
1151 err = sk_stream_wait_connect(sk, &timeo);
1152 if (err != 0)
1153 goto do_error;
1154 }
1155
1156 if (unlikely(tp->repair)) {
1157 if (tp->repair_queue == TCP_RECV_QUEUE) {
1158 copied = tcp_send_rcvq(sk, msg, size);
1159 goto out_nopush;
1160 }
1161
1162 err = -EINVAL;
1163 if (tp->repair_queue == TCP_NO_QUEUE)
1164 goto out_err;
1165
1166 /* 'common' sending to sendq */
1167 }
1168
1169 sockc.tsflags = sk->sk_tsflags;
1170 if (msg->msg_controllen) {
1171 err = sock_cmsg_send(sk, msg, &sockc);
1172 if (unlikely(err)) {
1173 err = -EINVAL;
1174 goto out_err;
1175 }
1176 }
1177
1178 /* This should be in poll */
1179 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1180
1181 /* Ok commence sending. */
1182 copied = 0;
1183
1184 restart:
1185 mss_now = tcp_send_mss(sk, &size_goal, flags);
1186
1187 err = -EPIPE;
1188 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1189 goto do_error;
1190
1191 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1192
1193 while (msg_data_left(msg)) {
1194 int copy = 0;
1195 int max = size_goal;
1196
1197 skb = tcp_write_queue_tail(sk);
1198 if (tcp_send_head(sk)) {
1199 if (skb->ip_summed == CHECKSUM_NONE)
1200 max = mss_now;
1201 copy = max - skb->len;
1202 }
1203
1204 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1205 bool first_skb;
1206
1207 new_segment:
1208 /* Allocate new segment. If the interface is SG,
1209 * allocate skb fitting to single page.
1210 */
1211 if (!sk_stream_memory_free(sk))
1212 goto wait_for_sndbuf;
1213
1214 if (process_backlog && sk_flush_backlog(sk)) {
1215 process_backlog = false;
1216 goto restart;
1217 }
1218 first_skb = skb_queue_empty(&sk->sk_write_queue);
1219 skb = sk_stream_alloc_skb(sk,
1220 select_size(sk, sg, first_skb),
1221 sk->sk_allocation,
1222 first_skb);
1223 if (!skb)
1224 goto wait_for_memory;
1225
1226 process_backlog = true;
1227 /*
1228 * Check whether we can use HW checksum.
1229 */
1230 if (sk_check_csum_caps(sk))
1231 skb->ip_summed = CHECKSUM_PARTIAL;
1232
1233 skb_entail(sk, skb);
1234 copy = size_goal;
1235 max = size_goal;
1236
1237 /* All packets are restored as if they have
1238 * already been sent. skb_mstamp isn't set to
1239 * avoid wrong rtt estimation.
1240 */
1241 if (tp->repair)
1242 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1243 }
1244
1245 /* Try to append data to the end of skb. */
1246 if (copy > msg_data_left(msg))
1247 copy = msg_data_left(msg);
1248
1249 /* Where to copy to? */
1250 if (skb_availroom(skb) > 0) {
1251 /* We have some space in skb head. Superb! */
1252 copy = min_t(int, copy, skb_availroom(skb));
1253 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1254 if (err)
1255 goto do_fault;
1256 } else {
1257 bool merge = true;
1258 int i = skb_shinfo(skb)->nr_frags;
1259 struct page_frag *pfrag = sk_page_frag(sk);
1260
1261 if (!sk_page_frag_refill(sk, pfrag))
1262 goto wait_for_memory;
1263
1264 if (!skb_can_coalesce(skb, i, pfrag->page,
1265 pfrag->offset)) {
1266 if (i >= sysctl_max_skb_frags || !sg) {
1267 tcp_mark_push(tp, skb);
1268 goto new_segment;
1269 }
1270 merge = false;
1271 }
1272
1273 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1274
1275 if (!sk_wmem_schedule(sk, copy))
1276 goto wait_for_memory;
1277
1278 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1279 pfrag->page,
1280 pfrag->offset,
1281 copy);
1282 if (err)
1283 goto do_error;
1284
1285 /* Update the skb. */
1286 if (merge) {
1287 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1288 } else {
1289 skb_fill_page_desc(skb, i, pfrag->page,
1290 pfrag->offset, copy);
1291 page_ref_inc(pfrag->page);
1292 }
1293 pfrag->offset += copy;
1294 }
1295
1296 if (!copied)
1297 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1298
1299 tp->write_seq += copy;
1300 TCP_SKB_CB(skb)->end_seq += copy;
1301 tcp_skb_pcount_set(skb, 0);
1302
1303 copied += copy;
1304 if (!msg_data_left(msg)) {
1305 if (unlikely(flags & MSG_EOR))
1306 TCP_SKB_CB(skb)->eor = 1;
1307 goto out;
1308 }
1309
1310 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1311 continue;
1312
1313 if (forced_push(tp)) {
1314 tcp_mark_push(tp, skb);
1315 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1316 } else if (skb == tcp_send_head(sk))
1317 tcp_push_one(sk, mss_now);
1318 continue;
1319
1320 wait_for_sndbuf:
1321 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1322 wait_for_memory:
1323 if (copied)
1324 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1325 TCP_NAGLE_PUSH, size_goal);
1326
1327 err = sk_stream_wait_memory(sk, &timeo);
1328 if (err != 0)
1329 goto do_error;
1330
1331 mss_now = tcp_send_mss(sk, &size_goal, flags);
1332 }
1333
1334 out:
1335 if (copied) {
1336 tcp_tx_timestamp(sk, sockc.tsflags, tcp_write_queue_tail(sk));
1337 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1338 }
1339 out_nopush:
1340 release_sock(sk);
1341 return copied + copied_syn;
1342
1343 do_fault:
1344 if (!skb->len) {
1345 tcp_unlink_write_queue(skb, sk);
1346 /* It is the one place in all of TCP, except connection
1347 * reset, where we can be unlinking the send_head.
1348 */
1349 tcp_check_send_head(sk, skb);
1350 sk_wmem_free_skb(sk, skb);
1351 }
1352
1353 do_error:
1354 if (copied + copied_syn)
1355 goto out;
1356 out_err:
1357 err = sk_stream_error(sk, flags, err);
1358 /* make sure we wake any epoll edge trigger waiter */
1359 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1360 err == -EAGAIN)) {
1361 sk->sk_write_space(sk);
1362 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1363 }
1364 release_sock(sk);
1365 return err;
1366 }
1367 EXPORT_SYMBOL(tcp_sendmsg);
1368
1369 /*
1370 * Handle reading urgent data. BSD has very simple semantics for
1371 * this, no blocking and very strange errors 8)
1372 */
1373
1374 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1375 {
1376 struct tcp_sock *tp = tcp_sk(sk);
1377
1378 /* No URG data to read. */
1379 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1380 tp->urg_data == TCP_URG_READ)
1381 return -EINVAL; /* Yes this is right ! */
1382
1383 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1384 return -ENOTCONN;
1385
1386 if (tp->urg_data & TCP_URG_VALID) {
1387 int err = 0;
1388 char c = tp->urg_data;
1389
1390 if (!(flags & MSG_PEEK))
1391 tp->urg_data = TCP_URG_READ;
1392
1393 /* Read urgent data. */
1394 msg->msg_flags |= MSG_OOB;
1395
1396 if (len > 0) {
1397 if (!(flags & MSG_TRUNC))
1398 err = memcpy_to_msg(msg, &c, 1);
1399 len = 1;
1400 } else
1401 msg->msg_flags |= MSG_TRUNC;
1402
1403 return err ? -EFAULT : len;
1404 }
1405
1406 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1407 return 0;
1408
1409 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1410 * the available implementations agree in this case:
1411 * this call should never block, independent of the
1412 * blocking state of the socket.
1413 * Mike <pall@rz.uni-karlsruhe.de>
1414 */
1415 return -EAGAIN;
1416 }
1417
1418 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1419 {
1420 struct sk_buff *skb;
1421 int copied = 0, err = 0;
1422
1423 /* XXX -- need to support SO_PEEK_OFF */
1424
1425 skb_queue_walk(&sk->sk_write_queue, skb) {
1426 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1427 if (err)
1428 break;
1429
1430 copied += skb->len;
1431 }
1432
1433 return err ?: copied;
1434 }
1435
1436 /* Clean up the receive buffer for full frames taken by the user,
1437 * then send an ACK if necessary. COPIED is the number of bytes
1438 * tcp_recvmsg has given to the user so far, it speeds up the
1439 * calculation of whether or not we must ACK for the sake of
1440 * a window update.
1441 */
1442 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1443 {
1444 struct tcp_sock *tp = tcp_sk(sk);
1445 bool time_to_ack = false;
1446
1447 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1448
1449 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1450 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1451 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1452
1453 if (inet_csk_ack_scheduled(sk)) {
1454 const struct inet_connection_sock *icsk = inet_csk(sk);
1455 /* Delayed ACKs frequently hit locked sockets during bulk
1456 * receive. */
1457 if (icsk->icsk_ack.blocked ||
1458 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1459 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1460 /*
1461 * If this read emptied read buffer, we send ACK, if
1462 * connection is not bidirectional, user drained
1463 * receive buffer and there was a small segment
1464 * in queue.
1465 */
1466 (copied > 0 &&
1467 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1468 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1469 !icsk->icsk_ack.pingpong)) &&
1470 !atomic_read(&sk->sk_rmem_alloc)))
1471 time_to_ack = true;
1472 }
1473
1474 /* We send an ACK if we can now advertise a non-zero window
1475 * which has been raised "significantly".
1476 *
1477 * Even if window raised up to infinity, do not send window open ACK
1478 * in states, where we will not receive more. It is useless.
1479 */
1480 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1481 __u32 rcv_window_now = tcp_receive_window(tp);
1482
1483 /* Optimize, __tcp_select_window() is not cheap. */
1484 if (2*rcv_window_now <= tp->window_clamp) {
1485 __u32 new_window = __tcp_select_window(sk);
1486
1487 /* Send ACK now, if this read freed lots of space
1488 * in our buffer. Certainly, new_window is new window.
1489 * We can advertise it now, if it is not less than current one.
1490 * "Lots" means "at least twice" here.
1491 */
1492 if (new_window && new_window >= 2 * rcv_window_now)
1493 time_to_ack = true;
1494 }
1495 }
1496 if (time_to_ack)
1497 tcp_send_ack(sk);
1498 }
1499
1500 static void tcp_prequeue_process(struct sock *sk)
1501 {
1502 struct sk_buff *skb;
1503 struct tcp_sock *tp = tcp_sk(sk);
1504
1505 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1506
1507 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1508 sk_backlog_rcv(sk, skb);
1509
1510 /* Clear memory counter. */
1511 tp->ucopy.memory = 0;
1512 }
1513
1514 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1515 {
1516 struct sk_buff *skb;
1517 u32 offset;
1518
1519 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1520 offset = seq - TCP_SKB_CB(skb)->seq;
1521 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1522 pr_err_once("%s: found a SYN, please report !\n", __func__);
1523 offset--;
1524 }
1525 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1526 *off = offset;
1527 return skb;
1528 }
1529 /* This looks weird, but this can happen if TCP collapsing
1530 * splitted a fat GRO packet, while we released socket lock
1531 * in skb_splice_bits()
1532 */
1533 sk_eat_skb(sk, skb);
1534 }
1535 return NULL;
1536 }
1537
1538 /*
1539 * This routine provides an alternative to tcp_recvmsg() for routines
1540 * that would like to handle copying from skbuffs directly in 'sendfile'
1541 * fashion.
1542 * Note:
1543 * - It is assumed that the socket was locked by the caller.
1544 * - The routine does not block.
1545 * - At present, there is no support for reading OOB data
1546 * or for 'peeking' the socket using this routine
1547 * (although both would be easy to implement).
1548 */
1549 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1550 sk_read_actor_t recv_actor)
1551 {
1552 struct sk_buff *skb;
1553 struct tcp_sock *tp = tcp_sk(sk);
1554 u32 seq = tp->copied_seq;
1555 u32 offset;
1556 int copied = 0;
1557
1558 if (sk->sk_state == TCP_LISTEN)
1559 return -ENOTCONN;
1560 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1561 if (offset < skb->len) {
1562 int used;
1563 size_t len;
1564
1565 len = skb->len - offset;
1566 /* Stop reading if we hit a patch of urgent data */
1567 if (tp->urg_data) {
1568 u32 urg_offset = tp->urg_seq - seq;
1569 if (urg_offset < len)
1570 len = urg_offset;
1571 if (!len)
1572 break;
1573 }
1574 used = recv_actor(desc, skb, offset, len);
1575 if (used <= 0) {
1576 if (!copied)
1577 copied = used;
1578 break;
1579 } else if (used <= len) {
1580 seq += used;
1581 copied += used;
1582 offset += used;
1583 }
1584 /* If recv_actor drops the lock (e.g. TCP splice
1585 * receive) the skb pointer might be invalid when
1586 * getting here: tcp_collapse might have deleted it
1587 * while aggregating skbs from the socket queue.
1588 */
1589 skb = tcp_recv_skb(sk, seq - 1, &offset);
1590 if (!skb)
1591 break;
1592 /* TCP coalescing might have appended data to the skb.
1593 * Try to splice more frags
1594 */
1595 if (offset + 1 != skb->len)
1596 continue;
1597 }
1598 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1599 sk_eat_skb(sk, skb);
1600 ++seq;
1601 break;
1602 }
1603 sk_eat_skb(sk, skb);
1604 if (!desc->count)
1605 break;
1606 tp->copied_seq = seq;
1607 }
1608 tp->copied_seq = seq;
1609
1610 tcp_rcv_space_adjust(sk);
1611
1612 /* Clean up data we have read: This will do ACK frames. */
1613 if (copied > 0) {
1614 tcp_recv_skb(sk, seq, &offset);
1615 tcp_cleanup_rbuf(sk, copied);
1616 }
1617 return copied;
1618 }
1619 EXPORT_SYMBOL(tcp_read_sock);
1620
1621 int tcp_peek_len(struct socket *sock)
1622 {
1623 return tcp_inq(sock->sk);
1624 }
1625 EXPORT_SYMBOL(tcp_peek_len);
1626
1627 /*
1628 * This routine copies from a sock struct into the user buffer.
1629 *
1630 * Technical note: in 2.3 we work on _locked_ socket, so that
1631 * tricks with *seq access order and skb->users are not required.
1632 * Probably, code can be easily improved even more.
1633 */
1634
1635 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1636 int flags, int *addr_len)
1637 {
1638 struct tcp_sock *tp = tcp_sk(sk);
1639 int copied = 0;
1640 u32 peek_seq;
1641 u32 *seq;
1642 unsigned long used;
1643 int err;
1644 int target; /* Read at least this many bytes */
1645 long timeo;
1646 struct task_struct *user_recv = NULL;
1647 struct sk_buff *skb, *last;
1648 u32 urg_hole = 0;
1649
1650 if (unlikely(flags & MSG_ERRQUEUE))
1651 return inet_recv_error(sk, msg, len, addr_len);
1652
1653 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1654 (sk->sk_state == TCP_ESTABLISHED))
1655 sk_busy_loop(sk, nonblock);
1656
1657 lock_sock(sk);
1658
1659 err = -ENOTCONN;
1660 if (sk->sk_state == TCP_LISTEN)
1661 goto out;
1662
1663 timeo = sock_rcvtimeo(sk, nonblock);
1664
1665 /* Urgent data needs to be handled specially. */
1666 if (flags & MSG_OOB)
1667 goto recv_urg;
1668
1669 if (unlikely(tp->repair)) {
1670 err = -EPERM;
1671 if (!(flags & MSG_PEEK))
1672 goto out;
1673
1674 if (tp->repair_queue == TCP_SEND_QUEUE)
1675 goto recv_sndq;
1676
1677 err = -EINVAL;
1678 if (tp->repair_queue == TCP_NO_QUEUE)
1679 goto out;
1680
1681 /* 'common' recv queue MSG_PEEK-ing */
1682 }
1683
1684 seq = &tp->copied_seq;
1685 if (flags & MSG_PEEK) {
1686 peek_seq = tp->copied_seq;
1687 seq = &peek_seq;
1688 }
1689
1690 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1691
1692 do {
1693 u32 offset;
1694
1695 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1696 if (tp->urg_data && tp->urg_seq == *seq) {
1697 if (copied)
1698 break;
1699 if (signal_pending(current)) {
1700 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1701 break;
1702 }
1703 }
1704
1705 /* Next get a buffer. */
1706
1707 last = skb_peek_tail(&sk->sk_receive_queue);
1708 skb_queue_walk(&sk->sk_receive_queue, skb) {
1709 last = skb;
1710 /* Now that we have two receive queues this
1711 * shouldn't happen.
1712 */
1713 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1714 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1715 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1716 flags))
1717 break;
1718
1719 offset = *seq - TCP_SKB_CB(skb)->seq;
1720 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1721 pr_err_once("%s: found a SYN, please report !\n", __func__);
1722 offset--;
1723 }
1724 if (offset < skb->len)
1725 goto found_ok_skb;
1726 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1727 goto found_fin_ok;
1728 WARN(!(flags & MSG_PEEK),
1729 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1730 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1731 }
1732
1733 /* Well, if we have backlog, try to process it now yet. */
1734
1735 if (copied >= target && !sk->sk_backlog.tail)
1736 break;
1737
1738 if (copied) {
1739 if (sk->sk_err ||
1740 sk->sk_state == TCP_CLOSE ||
1741 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1742 !timeo ||
1743 signal_pending(current))
1744 break;
1745 } else {
1746 if (sock_flag(sk, SOCK_DONE))
1747 break;
1748
1749 if (sk->sk_err) {
1750 copied = sock_error(sk);
1751 break;
1752 }
1753
1754 if (sk->sk_shutdown & RCV_SHUTDOWN)
1755 break;
1756
1757 if (sk->sk_state == TCP_CLOSE) {
1758 if (!sock_flag(sk, SOCK_DONE)) {
1759 /* This occurs when user tries to read
1760 * from never connected socket.
1761 */
1762 copied = -ENOTCONN;
1763 break;
1764 }
1765 break;
1766 }
1767
1768 if (!timeo) {
1769 copied = -EAGAIN;
1770 break;
1771 }
1772
1773 if (signal_pending(current)) {
1774 copied = sock_intr_errno(timeo);
1775 break;
1776 }
1777 }
1778
1779 tcp_cleanup_rbuf(sk, copied);
1780
1781 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1782 /* Install new reader */
1783 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1784 user_recv = current;
1785 tp->ucopy.task = user_recv;
1786 tp->ucopy.msg = msg;
1787 }
1788
1789 tp->ucopy.len = len;
1790
1791 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1792 !(flags & (MSG_PEEK | MSG_TRUNC)));
1793
1794 /* Ugly... If prequeue is not empty, we have to
1795 * process it before releasing socket, otherwise
1796 * order will be broken at second iteration.
1797 * More elegant solution is required!!!
1798 *
1799 * Look: we have the following (pseudo)queues:
1800 *
1801 * 1. packets in flight
1802 * 2. backlog
1803 * 3. prequeue
1804 * 4. receive_queue
1805 *
1806 * Each queue can be processed only if the next ones
1807 * are empty. At this point we have empty receive_queue.
1808 * But prequeue _can_ be not empty after 2nd iteration,
1809 * when we jumped to start of loop because backlog
1810 * processing added something to receive_queue.
1811 * We cannot release_sock(), because backlog contains
1812 * packets arrived _after_ prequeued ones.
1813 *
1814 * Shortly, algorithm is clear --- to process all
1815 * the queues in order. We could make it more directly,
1816 * requeueing packets from backlog to prequeue, if
1817 * is not empty. It is more elegant, but eats cycles,
1818 * unfortunately.
1819 */
1820 if (!skb_queue_empty(&tp->ucopy.prequeue))
1821 goto do_prequeue;
1822
1823 /* __ Set realtime policy in scheduler __ */
1824 }
1825
1826 if (copied >= target) {
1827 /* Do not sleep, just process backlog. */
1828 release_sock(sk);
1829 lock_sock(sk);
1830 } else {
1831 sk_wait_data(sk, &timeo, last);
1832 }
1833
1834 if (user_recv) {
1835 int chunk;
1836
1837 /* __ Restore normal policy in scheduler __ */
1838
1839 chunk = len - tp->ucopy.len;
1840 if (chunk != 0) {
1841 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1842 len -= chunk;
1843 copied += chunk;
1844 }
1845
1846 if (tp->rcv_nxt == tp->copied_seq &&
1847 !skb_queue_empty(&tp->ucopy.prequeue)) {
1848 do_prequeue:
1849 tcp_prequeue_process(sk);
1850
1851 chunk = len - tp->ucopy.len;
1852 if (chunk != 0) {
1853 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1854 len -= chunk;
1855 copied += chunk;
1856 }
1857 }
1858 }
1859 if ((flags & MSG_PEEK) &&
1860 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1861 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1862 current->comm,
1863 task_pid_nr(current));
1864 peek_seq = tp->copied_seq;
1865 }
1866 continue;
1867
1868 found_ok_skb:
1869 /* Ok so how much can we use? */
1870 used = skb->len - offset;
1871 if (len < used)
1872 used = len;
1873
1874 /* Do we have urgent data here? */
1875 if (tp->urg_data) {
1876 u32 urg_offset = tp->urg_seq - *seq;
1877 if (urg_offset < used) {
1878 if (!urg_offset) {
1879 if (!sock_flag(sk, SOCK_URGINLINE)) {
1880 ++*seq;
1881 urg_hole++;
1882 offset++;
1883 used--;
1884 if (!used)
1885 goto skip_copy;
1886 }
1887 } else
1888 used = urg_offset;
1889 }
1890 }
1891
1892 if (!(flags & MSG_TRUNC)) {
1893 err = skb_copy_datagram_msg(skb, offset, msg, used);
1894 if (err) {
1895 /* Exception. Bailout! */
1896 if (!copied)
1897 copied = -EFAULT;
1898 break;
1899 }
1900 }
1901
1902 *seq += used;
1903 copied += used;
1904 len -= used;
1905
1906 tcp_rcv_space_adjust(sk);
1907
1908 skip_copy:
1909 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1910 tp->urg_data = 0;
1911 tcp_fast_path_check(sk);
1912 }
1913 if (used + offset < skb->len)
1914 continue;
1915
1916 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1917 goto found_fin_ok;
1918 if (!(flags & MSG_PEEK))
1919 sk_eat_skb(sk, skb);
1920 continue;
1921
1922 found_fin_ok:
1923 /* Process the FIN. */
1924 ++*seq;
1925 if (!(flags & MSG_PEEK))
1926 sk_eat_skb(sk, skb);
1927 break;
1928 } while (len > 0);
1929
1930 if (user_recv) {
1931 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1932 int chunk;
1933
1934 tp->ucopy.len = copied > 0 ? len : 0;
1935
1936 tcp_prequeue_process(sk);
1937
1938 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1939 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1940 len -= chunk;
1941 copied += chunk;
1942 }
1943 }
1944
1945 tp->ucopy.task = NULL;
1946 tp->ucopy.len = 0;
1947 }
1948
1949 /* According to UNIX98, msg_name/msg_namelen are ignored
1950 * on connected socket. I was just happy when found this 8) --ANK
1951 */
1952
1953 /* Clean up data we have read: This will do ACK frames. */
1954 tcp_cleanup_rbuf(sk, copied);
1955
1956 release_sock(sk);
1957 return copied;
1958
1959 out:
1960 release_sock(sk);
1961 return err;
1962
1963 recv_urg:
1964 err = tcp_recv_urg(sk, msg, len, flags);
1965 goto out;
1966
1967 recv_sndq:
1968 err = tcp_peek_sndq(sk, msg, len);
1969 goto out;
1970 }
1971 EXPORT_SYMBOL(tcp_recvmsg);
1972
1973 void tcp_set_state(struct sock *sk, int state)
1974 {
1975 int oldstate = sk->sk_state;
1976
1977 switch (state) {
1978 case TCP_ESTABLISHED:
1979 if (oldstate != TCP_ESTABLISHED)
1980 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1981 break;
1982
1983 case TCP_CLOSE:
1984 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1985 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1986
1987 sk->sk_prot->unhash(sk);
1988 if (inet_csk(sk)->icsk_bind_hash &&
1989 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1990 inet_put_port(sk);
1991 /* fall through */
1992 default:
1993 if (oldstate == TCP_ESTABLISHED)
1994 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1995 }
1996
1997 /* Change state AFTER socket is unhashed to avoid closed
1998 * socket sitting in hash tables.
1999 */
2000 sk_state_store(sk, state);
2001
2002 #ifdef STATE_TRACE
2003 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2004 #endif
2005 }
2006 EXPORT_SYMBOL_GPL(tcp_set_state);
2007
2008 /*
2009 * State processing on a close. This implements the state shift for
2010 * sending our FIN frame. Note that we only send a FIN for some
2011 * states. A shutdown() may have already sent the FIN, or we may be
2012 * closed.
2013 */
2014
2015 static const unsigned char new_state[16] = {
2016 /* current state: new state: action: */
2017 [0 /* (Invalid) */] = TCP_CLOSE,
2018 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2019 [TCP_SYN_SENT] = TCP_CLOSE,
2020 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2021 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2022 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2023 [TCP_TIME_WAIT] = TCP_CLOSE,
2024 [TCP_CLOSE] = TCP_CLOSE,
2025 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2026 [TCP_LAST_ACK] = TCP_LAST_ACK,
2027 [TCP_LISTEN] = TCP_CLOSE,
2028 [TCP_CLOSING] = TCP_CLOSING,
2029 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2030 };
2031
2032 static int tcp_close_state(struct sock *sk)
2033 {
2034 int next = (int)new_state[sk->sk_state];
2035 int ns = next & TCP_STATE_MASK;
2036
2037 tcp_set_state(sk, ns);
2038
2039 return next & TCP_ACTION_FIN;
2040 }
2041
2042 /*
2043 * Shutdown the sending side of a connection. Much like close except
2044 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2045 */
2046
2047 void tcp_shutdown(struct sock *sk, int how)
2048 {
2049 /* We need to grab some memory, and put together a FIN,
2050 * and then put it into the queue to be sent.
2051 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2052 */
2053 if (!(how & SEND_SHUTDOWN))
2054 return;
2055
2056 /* If we've already sent a FIN, or it's a closed state, skip this. */
2057 if ((1 << sk->sk_state) &
2058 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2059 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2060 /* Clear out any half completed packets. FIN if needed. */
2061 if (tcp_close_state(sk))
2062 tcp_send_fin(sk);
2063 }
2064 }
2065 EXPORT_SYMBOL(tcp_shutdown);
2066
2067 bool tcp_check_oom(struct sock *sk, int shift)
2068 {
2069 bool too_many_orphans, out_of_socket_memory;
2070
2071 too_many_orphans = tcp_too_many_orphans(sk, shift);
2072 out_of_socket_memory = tcp_out_of_memory(sk);
2073
2074 if (too_many_orphans)
2075 net_info_ratelimited("too many orphaned sockets\n");
2076 if (out_of_socket_memory)
2077 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2078 return too_many_orphans || out_of_socket_memory;
2079 }
2080
2081 void tcp_close(struct sock *sk, long timeout)
2082 {
2083 struct sk_buff *skb;
2084 int data_was_unread = 0;
2085 int state;
2086
2087 lock_sock(sk);
2088 sk->sk_shutdown = SHUTDOWN_MASK;
2089
2090 if (sk->sk_state == TCP_LISTEN) {
2091 tcp_set_state(sk, TCP_CLOSE);
2092
2093 /* Special case. */
2094 inet_csk_listen_stop(sk);
2095
2096 goto adjudge_to_death;
2097 }
2098
2099 /* We need to flush the recv. buffs. We do this only on the
2100 * descriptor close, not protocol-sourced closes, because the
2101 * reader process may not have drained the data yet!
2102 */
2103 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2104 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2105
2106 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2107 len--;
2108 data_was_unread += len;
2109 __kfree_skb(skb);
2110 }
2111
2112 sk_mem_reclaim(sk);
2113
2114 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2115 if (sk->sk_state == TCP_CLOSE)
2116 goto adjudge_to_death;
2117
2118 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2119 * data was lost. To witness the awful effects of the old behavior of
2120 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2121 * GET in an FTP client, suspend the process, wait for the client to
2122 * advertise a zero window, then kill -9 the FTP client, wheee...
2123 * Note: timeout is always zero in such a case.
2124 */
2125 if (unlikely(tcp_sk(sk)->repair)) {
2126 sk->sk_prot->disconnect(sk, 0);
2127 } else if (data_was_unread) {
2128 /* Unread data was tossed, zap the connection. */
2129 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2130 tcp_set_state(sk, TCP_CLOSE);
2131 tcp_send_active_reset(sk, sk->sk_allocation);
2132 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2133 /* Check zero linger _after_ checking for unread data. */
2134 sk->sk_prot->disconnect(sk, 0);
2135 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2136 } else if (tcp_close_state(sk)) {
2137 /* We FIN if the application ate all the data before
2138 * zapping the connection.
2139 */
2140
2141 /* RED-PEN. Formally speaking, we have broken TCP state
2142 * machine. State transitions:
2143 *
2144 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2145 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2146 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2147 *
2148 * are legal only when FIN has been sent (i.e. in window),
2149 * rather than queued out of window. Purists blame.
2150 *
2151 * F.e. "RFC state" is ESTABLISHED,
2152 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2153 *
2154 * The visible declinations are that sometimes
2155 * we enter time-wait state, when it is not required really
2156 * (harmless), do not send active resets, when they are
2157 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2158 * they look as CLOSING or LAST_ACK for Linux)
2159 * Probably, I missed some more holelets.
2160 * --ANK
2161 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2162 * in a single packet! (May consider it later but will
2163 * probably need API support or TCP_CORK SYN-ACK until
2164 * data is written and socket is closed.)
2165 */
2166 tcp_send_fin(sk);
2167 }
2168
2169 sk_stream_wait_close(sk, timeout);
2170
2171 adjudge_to_death:
2172 state = sk->sk_state;
2173 sock_hold(sk);
2174 sock_orphan(sk);
2175
2176 /* It is the last release_sock in its life. It will remove backlog. */
2177 release_sock(sk);
2178
2179
2180 /* Now socket is owned by kernel and we acquire BH lock
2181 to finish close. No need to check for user refs.
2182 */
2183 local_bh_disable();
2184 bh_lock_sock(sk);
2185 WARN_ON(sock_owned_by_user(sk));
2186
2187 percpu_counter_inc(sk->sk_prot->orphan_count);
2188
2189 /* Have we already been destroyed by a softirq or backlog? */
2190 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2191 goto out;
2192
2193 /* This is a (useful) BSD violating of the RFC. There is a
2194 * problem with TCP as specified in that the other end could
2195 * keep a socket open forever with no application left this end.
2196 * We use a 1 minute timeout (about the same as BSD) then kill
2197 * our end. If they send after that then tough - BUT: long enough
2198 * that we won't make the old 4*rto = almost no time - whoops
2199 * reset mistake.
2200 *
2201 * Nope, it was not mistake. It is really desired behaviour
2202 * f.e. on http servers, when such sockets are useless, but
2203 * consume significant resources. Let's do it with special
2204 * linger2 option. --ANK
2205 */
2206
2207 if (sk->sk_state == TCP_FIN_WAIT2) {
2208 struct tcp_sock *tp = tcp_sk(sk);
2209 if (tp->linger2 < 0) {
2210 tcp_set_state(sk, TCP_CLOSE);
2211 tcp_send_active_reset(sk, GFP_ATOMIC);
2212 __NET_INC_STATS(sock_net(sk),
2213 LINUX_MIB_TCPABORTONLINGER);
2214 } else {
2215 const int tmo = tcp_fin_time(sk);
2216
2217 if (tmo > TCP_TIMEWAIT_LEN) {
2218 inet_csk_reset_keepalive_timer(sk,
2219 tmo - TCP_TIMEWAIT_LEN);
2220 } else {
2221 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2222 goto out;
2223 }
2224 }
2225 }
2226 if (sk->sk_state != TCP_CLOSE) {
2227 sk_mem_reclaim(sk);
2228 if (tcp_check_oom(sk, 0)) {
2229 tcp_set_state(sk, TCP_CLOSE);
2230 tcp_send_active_reset(sk, GFP_ATOMIC);
2231 __NET_INC_STATS(sock_net(sk),
2232 LINUX_MIB_TCPABORTONMEMORY);
2233 }
2234 }
2235
2236 if (sk->sk_state == TCP_CLOSE) {
2237 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2238 /* We could get here with a non-NULL req if the socket is
2239 * aborted (e.g., closed with unread data) before 3WHS
2240 * finishes.
2241 */
2242 if (req)
2243 reqsk_fastopen_remove(sk, req, false);
2244 inet_csk_destroy_sock(sk);
2245 }
2246 /* Otherwise, socket is reprieved until protocol close. */
2247
2248 out:
2249 bh_unlock_sock(sk);
2250 local_bh_enable();
2251 sock_put(sk);
2252 }
2253 EXPORT_SYMBOL(tcp_close);
2254
2255 /* These states need RST on ABORT according to RFC793 */
2256
2257 static inline bool tcp_need_reset(int state)
2258 {
2259 return (1 << state) &
2260 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2261 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2262 }
2263
2264 int tcp_disconnect(struct sock *sk, int flags)
2265 {
2266 struct inet_sock *inet = inet_sk(sk);
2267 struct inet_connection_sock *icsk = inet_csk(sk);
2268 struct tcp_sock *tp = tcp_sk(sk);
2269 int err = 0;
2270 int old_state = sk->sk_state;
2271
2272 if (old_state != TCP_CLOSE)
2273 tcp_set_state(sk, TCP_CLOSE);
2274
2275 /* ABORT function of RFC793 */
2276 if (old_state == TCP_LISTEN) {
2277 inet_csk_listen_stop(sk);
2278 } else if (unlikely(tp->repair)) {
2279 sk->sk_err = ECONNABORTED;
2280 } else if (tcp_need_reset(old_state) ||
2281 (tp->snd_nxt != tp->write_seq &&
2282 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2283 /* The last check adjusts for discrepancy of Linux wrt. RFC
2284 * states
2285 */
2286 tcp_send_active_reset(sk, gfp_any());
2287 sk->sk_err = ECONNRESET;
2288 } else if (old_state == TCP_SYN_SENT)
2289 sk->sk_err = ECONNRESET;
2290
2291 tcp_clear_xmit_timers(sk);
2292 __skb_queue_purge(&sk->sk_receive_queue);
2293 tcp_write_queue_purge(sk);
2294 skb_rbtree_purge(&tp->out_of_order_queue);
2295
2296 inet->inet_dport = 0;
2297
2298 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2299 inet_reset_saddr(sk);
2300
2301 sk->sk_shutdown = 0;
2302 sock_reset_flag(sk, SOCK_DONE);
2303 tp->srtt_us = 0;
2304 tp->write_seq += tp->max_window + 2;
2305 if (tp->write_seq == 0)
2306 tp->write_seq = 1;
2307 icsk->icsk_backoff = 0;
2308 tp->snd_cwnd = 2;
2309 icsk->icsk_probes_out = 0;
2310 tp->packets_out = 0;
2311 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2312 tp->snd_cwnd_cnt = 0;
2313 tp->window_clamp = 0;
2314 tcp_set_ca_state(sk, TCP_CA_Open);
2315 tcp_clear_retrans(tp);
2316 inet_csk_delack_init(sk);
2317 tcp_init_send_head(sk);
2318 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2319 __sk_dst_reset(sk);
2320
2321 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2322
2323 sk->sk_error_report(sk);
2324 return err;
2325 }
2326 EXPORT_SYMBOL(tcp_disconnect);
2327
2328 static inline bool tcp_can_repair_sock(const struct sock *sk)
2329 {
2330 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2331 (sk->sk_state != TCP_LISTEN);
2332 }
2333
2334 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2335 {
2336 struct tcp_repair_window opt;
2337
2338 if (!tp->repair)
2339 return -EPERM;
2340
2341 if (len != sizeof(opt))
2342 return -EINVAL;
2343
2344 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2345 return -EFAULT;
2346
2347 if (opt.max_window < opt.snd_wnd)
2348 return -EINVAL;
2349
2350 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2351 return -EINVAL;
2352
2353 if (after(opt.rcv_wup, tp->rcv_nxt))
2354 return -EINVAL;
2355
2356 tp->snd_wl1 = opt.snd_wl1;
2357 tp->snd_wnd = opt.snd_wnd;
2358 tp->max_window = opt.max_window;
2359
2360 tp->rcv_wnd = opt.rcv_wnd;
2361 tp->rcv_wup = opt.rcv_wup;
2362
2363 return 0;
2364 }
2365
2366 static int tcp_repair_options_est(struct tcp_sock *tp,
2367 struct tcp_repair_opt __user *optbuf, unsigned int len)
2368 {
2369 struct tcp_repair_opt opt;
2370
2371 while (len >= sizeof(opt)) {
2372 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2373 return -EFAULT;
2374
2375 optbuf++;
2376 len -= sizeof(opt);
2377
2378 switch (opt.opt_code) {
2379 case TCPOPT_MSS:
2380 tp->rx_opt.mss_clamp = opt.opt_val;
2381 break;
2382 case TCPOPT_WINDOW:
2383 {
2384 u16 snd_wscale = opt.opt_val & 0xFFFF;
2385 u16 rcv_wscale = opt.opt_val >> 16;
2386
2387 if (snd_wscale > 14 || rcv_wscale > 14)
2388 return -EFBIG;
2389
2390 tp->rx_opt.snd_wscale = snd_wscale;
2391 tp->rx_opt.rcv_wscale = rcv_wscale;
2392 tp->rx_opt.wscale_ok = 1;
2393 }
2394 break;
2395 case TCPOPT_SACK_PERM:
2396 if (opt.opt_val != 0)
2397 return -EINVAL;
2398
2399 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2400 if (sysctl_tcp_fack)
2401 tcp_enable_fack(tp);
2402 break;
2403 case TCPOPT_TIMESTAMP:
2404 if (opt.opt_val != 0)
2405 return -EINVAL;
2406
2407 tp->rx_opt.tstamp_ok = 1;
2408 break;
2409 }
2410 }
2411
2412 return 0;
2413 }
2414
2415 /*
2416 * Socket option code for TCP.
2417 */
2418 static int do_tcp_setsockopt(struct sock *sk, int level,
2419 int optname, char __user *optval, unsigned int optlen)
2420 {
2421 struct tcp_sock *tp = tcp_sk(sk);
2422 struct inet_connection_sock *icsk = inet_csk(sk);
2423 struct net *net = sock_net(sk);
2424 int val;
2425 int err = 0;
2426
2427 /* These are data/string values, all the others are ints */
2428 switch (optname) {
2429 case TCP_CONGESTION: {
2430 char name[TCP_CA_NAME_MAX];
2431
2432 if (optlen < 1)
2433 return -EINVAL;
2434
2435 val = strncpy_from_user(name, optval,
2436 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2437 if (val < 0)
2438 return -EFAULT;
2439 name[val] = 0;
2440
2441 lock_sock(sk);
2442 err = tcp_set_congestion_control(sk, name);
2443 release_sock(sk);
2444 return err;
2445 }
2446 default:
2447 /* fallthru */
2448 break;
2449 }
2450
2451 if (optlen < sizeof(int))
2452 return -EINVAL;
2453
2454 if (get_user(val, (int __user *)optval))
2455 return -EFAULT;
2456
2457 lock_sock(sk);
2458
2459 switch (optname) {
2460 case TCP_MAXSEG:
2461 /* Values greater than interface MTU won't take effect. However
2462 * at the point when this call is done we typically don't yet
2463 * know which interface is going to be used */
2464 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2465 err = -EINVAL;
2466 break;
2467 }
2468 tp->rx_opt.user_mss = val;
2469 break;
2470
2471 case TCP_NODELAY:
2472 if (val) {
2473 /* TCP_NODELAY is weaker than TCP_CORK, so that
2474 * this option on corked socket is remembered, but
2475 * it is not activated until cork is cleared.
2476 *
2477 * However, when TCP_NODELAY is set we make
2478 * an explicit push, which overrides even TCP_CORK
2479 * for currently queued segments.
2480 */
2481 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2482 tcp_push_pending_frames(sk);
2483 } else {
2484 tp->nonagle &= ~TCP_NAGLE_OFF;
2485 }
2486 break;
2487
2488 case TCP_THIN_LINEAR_TIMEOUTS:
2489 if (val < 0 || val > 1)
2490 err = -EINVAL;
2491 else
2492 tp->thin_lto = val;
2493 break;
2494
2495 case TCP_THIN_DUPACK:
2496 if (val < 0 || val > 1)
2497 err = -EINVAL;
2498 break;
2499
2500 case TCP_REPAIR:
2501 if (!tcp_can_repair_sock(sk))
2502 err = -EPERM;
2503 else if (val == 1) {
2504 tp->repair = 1;
2505 sk->sk_reuse = SK_FORCE_REUSE;
2506 tp->repair_queue = TCP_NO_QUEUE;
2507 } else if (val == 0) {
2508 tp->repair = 0;
2509 sk->sk_reuse = SK_NO_REUSE;
2510 tcp_send_window_probe(sk);
2511 } else
2512 err = -EINVAL;
2513
2514 break;
2515
2516 case TCP_REPAIR_QUEUE:
2517 if (!tp->repair)
2518 err = -EPERM;
2519 else if (val < TCP_QUEUES_NR)
2520 tp->repair_queue = val;
2521 else
2522 err = -EINVAL;
2523 break;
2524
2525 case TCP_QUEUE_SEQ:
2526 if (sk->sk_state != TCP_CLOSE)
2527 err = -EPERM;
2528 else if (tp->repair_queue == TCP_SEND_QUEUE)
2529 tp->write_seq = val;
2530 else if (tp->repair_queue == TCP_RECV_QUEUE)
2531 tp->rcv_nxt = val;
2532 else
2533 err = -EINVAL;
2534 break;
2535
2536 case TCP_REPAIR_OPTIONS:
2537 if (!tp->repair)
2538 err = -EINVAL;
2539 else if (sk->sk_state == TCP_ESTABLISHED)
2540 err = tcp_repair_options_est(tp,
2541 (struct tcp_repair_opt __user *)optval,
2542 optlen);
2543 else
2544 err = -EPERM;
2545 break;
2546
2547 case TCP_CORK:
2548 /* When set indicates to always queue non-full frames.
2549 * Later the user clears this option and we transmit
2550 * any pending partial frames in the queue. This is
2551 * meant to be used alongside sendfile() to get properly
2552 * filled frames when the user (for example) must write
2553 * out headers with a write() call first and then use
2554 * sendfile to send out the data parts.
2555 *
2556 * TCP_CORK can be set together with TCP_NODELAY and it is
2557 * stronger than TCP_NODELAY.
2558 */
2559 if (val) {
2560 tp->nonagle |= TCP_NAGLE_CORK;
2561 } else {
2562 tp->nonagle &= ~TCP_NAGLE_CORK;
2563 if (tp->nonagle&TCP_NAGLE_OFF)
2564 tp->nonagle |= TCP_NAGLE_PUSH;
2565 tcp_push_pending_frames(sk);
2566 }
2567 break;
2568
2569 case TCP_KEEPIDLE:
2570 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2571 err = -EINVAL;
2572 else {
2573 tp->keepalive_time = val * HZ;
2574 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2575 !((1 << sk->sk_state) &
2576 (TCPF_CLOSE | TCPF_LISTEN))) {
2577 u32 elapsed = keepalive_time_elapsed(tp);
2578 if (tp->keepalive_time > elapsed)
2579 elapsed = tp->keepalive_time - elapsed;
2580 else
2581 elapsed = 0;
2582 inet_csk_reset_keepalive_timer(sk, elapsed);
2583 }
2584 }
2585 break;
2586 case TCP_KEEPINTVL:
2587 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2588 err = -EINVAL;
2589 else
2590 tp->keepalive_intvl = val * HZ;
2591 break;
2592 case TCP_KEEPCNT:
2593 if (val < 1 || val > MAX_TCP_KEEPCNT)
2594 err = -EINVAL;
2595 else
2596 tp->keepalive_probes = val;
2597 break;
2598 case TCP_SYNCNT:
2599 if (val < 1 || val > MAX_TCP_SYNCNT)
2600 err = -EINVAL;
2601 else
2602 icsk->icsk_syn_retries = val;
2603 break;
2604
2605 case TCP_SAVE_SYN:
2606 if (val < 0 || val > 1)
2607 err = -EINVAL;
2608 else
2609 tp->save_syn = val;
2610 break;
2611
2612 case TCP_LINGER2:
2613 if (val < 0)
2614 tp->linger2 = -1;
2615 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2616 tp->linger2 = 0;
2617 else
2618 tp->linger2 = val * HZ;
2619 break;
2620
2621 case TCP_DEFER_ACCEPT:
2622 /* Translate value in seconds to number of retransmits */
2623 icsk->icsk_accept_queue.rskq_defer_accept =
2624 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2625 TCP_RTO_MAX / HZ);
2626 break;
2627
2628 case TCP_WINDOW_CLAMP:
2629 if (!val) {
2630 if (sk->sk_state != TCP_CLOSE) {
2631 err = -EINVAL;
2632 break;
2633 }
2634 tp->window_clamp = 0;
2635 } else
2636 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2637 SOCK_MIN_RCVBUF / 2 : val;
2638 break;
2639
2640 case TCP_QUICKACK:
2641 if (!val) {
2642 icsk->icsk_ack.pingpong = 1;
2643 } else {
2644 icsk->icsk_ack.pingpong = 0;
2645 if ((1 << sk->sk_state) &
2646 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2647 inet_csk_ack_scheduled(sk)) {
2648 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2649 tcp_cleanup_rbuf(sk, 1);
2650 if (!(val & 1))
2651 icsk->icsk_ack.pingpong = 1;
2652 }
2653 }
2654 break;
2655
2656 #ifdef CONFIG_TCP_MD5SIG
2657 case TCP_MD5SIG:
2658 /* Read the IP->Key mappings from userspace */
2659 err = tp->af_specific->md5_parse(sk, optval, optlen);
2660 break;
2661 #endif
2662 case TCP_USER_TIMEOUT:
2663 /* Cap the max time in ms TCP will retry or probe the window
2664 * before giving up and aborting (ETIMEDOUT) a connection.
2665 */
2666 if (val < 0)
2667 err = -EINVAL;
2668 else
2669 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2670 break;
2671
2672 case TCP_FASTOPEN:
2673 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2674 TCPF_LISTEN))) {
2675 tcp_fastopen_init_key_once(true);
2676
2677 fastopen_queue_tune(sk, val);
2678 } else {
2679 err = -EINVAL;
2680 }
2681 break;
2682 case TCP_FASTOPEN_CONNECT:
2683 if (val > 1 || val < 0) {
2684 err = -EINVAL;
2685 } else if (sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
2686 if (sk->sk_state == TCP_CLOSE)
2687 tp->fastopen_connect = val;
2688 else
2689 err = -EINVAL;
2690 } else {
2691 err = -EOPNOTSUPP;
2692 }
2693 break;
2694 case TCP_TIMESTAMP:
2695 if (!tp->repair)
2696 err = -EPERM;
2697 else
2698 tp->tsoffset = val - tcp_time_stamp;
2699 break;
2700 case TCP_REPAIR_WINDOW:
2701 err = tcp_repair_set_window(tp, optval, optlen);
2702 break;
2703 case TCP_NOTSENT_LOWAT:
2704 tp->notsent_lowat = val;
2705 sk->sk_write_space(sk);
2706 break;
2707 default:
2708 err = -ENOPROTOOPT;
2709 break;
2710 }
2711
2712 release_sock(sk);
2713 return err;
2714 }
2715
2716 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2717 unsigned int optlen)
2718 {
2719 const struct inet_connection_sock *icsk = inet_csk(sk);
2720
2721 if (level != SOL_TCP)
2722 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2723 optval, optlen);
2724 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2725 }
2726 EXPORT_SYMBOL(tcp_setsockopt);
2727
2728 #ifdef CONFIG_COMPAT
2729 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2730 char __user *optval, unsigned int optlen)
2731 {
2732 if (level != SOL_TCP)
2733 return inet_csk_compat_setsockopt(sk, level, optname,
2734 optval, optlen);
2735 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2736 }
2737 EXPORT_SYMBOL(compat_tcp_setsockopt);
2738 #endif
2739
2740 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
2741 struct tcp_info *info)
2742 {
2743 u64 stats[__TCP_CHRONO_MAX], total = 0;
2744 enum tcp_chrono i;
2745
2746 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
2747 stats[i] = tp->chrono_stat[i - 1];
2748 if (i == tp->chrono_type)
2749 stats[i] += tcp_time_stamp - tp->chrono_start;
2750 stats[i] *= USEC_PER_SEC / HZ;
2751 total += stats[i];
2752 }
2753
2754 info->tcpi_busy_time = total;
2755 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
2756 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
2757 }
2758
2759 /* Return information about state of tcp endpoint in API format. */
2760 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2761 {
2762 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2763 const struct inet_connection_sock *icsk = inet_csk(sk);
2764 u32 now = tcp_time_stamp, intv;
2765 u64 rate64;
2766 bool slow;
2767 u32 rate;
2768
2769 memset(info, 0, sizeof(*info));
2770 if (sk->sk_type != SOCK_STREAM)
2771 return;
2772
2773 info->tcpi_state = sk_state_load(sk);
2774
2775 /* Report meaningful fields for all TCP states, including listeners */
2776 rate = READ_ONCE(sk->sk_pacing_rate);
2777 rate64 = rate != ~0U ? rate : ~0ULL;
2778 info->tcpi_pacing_rate = rate64;
2779
2780 rate = READ_ONCE(sk->sk_max_pacing_rate);
2781 rate64 = rate != ~0U ? rate : ~0ULL;
2782 info->tcpi_max_pacing_rate = rate64;
2783
2784 info->tcpi_reordering = tp->reordering;
2785 info->tcpi_snd_cwnd = tp->snd_cwnd;
2786
2787 if (info->tcpi_state == TCP_LISTEN) {
2788 /* listeners aliased fields :
2789 * tcpi_unacked -> Number of children ready for accept()
2790 * tcpi_sacked -> max backlog
2791 */
2792 info->tcpi_unacked = sk->sk_ack_backlog;
2793 info->tcpi_sacked = sk->sk_max_ack_backlog;
2794 return;
2795 }
2796
2797 slow = lock_sock_fast(sk);
2798
2799 info->tcpi_ca_state = icsk->icsk_ca_state;
2800 info->tcpi_retransmits = icsk->icsk_retransmits;
2801 info->tcpi_probes = icsk->icsk_probes_out;
2802 info->tcpi_backoff = icsk->icsk_backoff;
2803
2804 if (tp->rx_opt.tstamp_ok)
2805 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2806 if (tcp_is_sack(tp))
2807 info->tcpi_options |= TCPI_OPT_SACK;
2808 if (tp->rx_opt.wscale_ok) {
2809 info->tcpi_options |= TCPI_OPT_WSCALE;
2810 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2811 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2812 }
2813
2814 if (tp->ecn_flags & TCP_ECN_OK)
2815 info->tcpi_options |= TCPI_OPT_ECN;
2816 if (tp->ecn_flags & TCP_ECN_SEEN)
2817 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2818 if (tp->syn_data_acked)
2819 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2820
2821 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2822 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2823 info->tcpi_snd_mss = tp->mss_cache;
2824 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2825
2826 info->tcpi_unacked = tp->packets_out;
2827 info->tcpi_sacked = tp->sacked_out;
2828
2829 info->tcpi_lost = tp->lost_out;
2830 info->tcpi_retrans = tp->retrans_out;
2831 info->tcpi_fackets = tp->fackets_out;
2832
2833 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2834 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2835 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2836
2837 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2838 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2839 info->tcpi_rtt = tp->srtt_us >> 3;
2840 info->tcpi_rttvar = tp->mdev_us >> 2;
2841 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2842 info->tcpi_advmss = tp->advmss;
2843
2844 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2845 info->tcpi_rcv_space = tp->rcvq_space.space;
2846
2847 info->tcpi_total_retrans = tp->total_retrans;
2848
2849 info->tcpi_bytes_acked = tp->bytes_acked;
2850 info->tcpi_bytes_received = tp->bytes_received;
2851 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
2852 tcp_get_info_chrono_stats(tp, info);
2853
2854 info->tcpi_segs_out = tp->segs_out;
2855 info->tcpi_segs_in = tp->segs_in;
2856
2857 info->tcpi_min_rtt = tcp_min_rtt(tp);
2858 info->tcpi_data_segs_in = tp->data_segs_in;
2859 info->tcpi_data_segs_out = tp->data_segs_out;
2860
2861 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
2862 rate = READ_ONCE(tp->rate_delivered);
2863 intv = READ_ONCE(tp->rate_interval_us);
2864 if (rate && intv) {
2865 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
2866 do_div(rate64, intv);
2867 info->tcpi_delivery_rate = rate64;
2868 }
2869 unlock_sock_fast(sk, slow);
2870 }
2871 EXPORT_SYMBOL_GPL(tcp_get_info);
2872
2873 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
2874 {
2875 const struct tcp_sock *tp = tcp_sk(sk);
2876 struct sk_buff *stats;
2877 struct tcp_info info;
2878
2879 stats = alloc_skb(5 * nla_total_size_64bit(sizeof(u64)), GFP_ATOMIC);
2880 if (!stats)
2881 return NULL;
2882
2883 tcp_get_info_chrono_stats(tp, &info);
2884 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
2885 info.tcpi_busy_time, TCP_NLA_PAD);
2886 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
2887 info.tcpi_rwnd_limited, TCP_NLA_PAD);
2888 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
2889 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
2890 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
2891 tp->data_segs_out, TCP_NLA_PAD);
2892 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
2893 tp->total_retrans, TCP_NLA_PAD);
2894 return stats;
2895 }
2896
2897 static int do_tcp_getsockopt(struct sock *sk, int level,
2898 int optname, char __user *optval, int __user *optlen)
2899 {
2900 struct inet_connection_sock *icsk = inet_csk(sk);
2901 struct tcp_sock *tp = tcp_sk(sk);
2902 struct net *net = sock_net(sk);
2903 int val, len;
2904
2905 if (get_user(len, optlen))
2906 return -EFAULT;
2907
2908 len = min_t(unsigned int, len, sizeof(int));
2909
2910 if (len < 0)
2911 return -EINVAL;
2912
2913 switch (optname) {
2914 case TCP_MAXSEG:
2915 val = tp->mss_cache;
2916 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2917 val = tp->rx_opt.user_mss;
2918 if (tp->repair)
2919 val = tp->rx_opt.mss_clamp;
2920 break;
2921 case TCP_NODELAY:
2922 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2923 break;
2924 case TCP_CORK:
2925 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2926 break;
2927 case TCP_KEEPIDLE:
2928 val = keepalive_time_when(tp) / HZ;
2929 break;
2930 case TCP_KEEPINTVL:
2931 val = keepalive_intvl_when(tp) / HZ;
2932 break;
2933 case TCP_KEEPCNT:
2934 val = keepalive_probes(tp);
2935 break;
2936 case TCP_SYNCNT:
2937 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
2938 break;
2939 case TCP_LINGER2:
2940 val = tp->linger2;
2941 if (val >= 0)
2942 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
2943 break;
2944 case TCP_DEFER_ACCEPT:
2945 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2946 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2947 break;
2948 case TCP_WINDOW_CLAMP:
2949 val = tp->window_clamp;
2950 break;
2951 case TCP_INFO: {
2952 struct tcp_info info;
2953
2954 if (get_user(len, optlen))
2955 return -EFAULT;
2956
2957 tcp_get_info(sk, &info);
2958
2959 len = min_t(unsigned int, len, sizeof(info));
2960 if (put_user(len, optlen))
2961 return -EFAULT;
2962 if (copy_to_user(optval, &info, len))
2963 return -EFAULT;
2964 return 0;
2965 }
2966 case TCP_CC_INFO: {
2967 const struct tcp_congestion_ops *ca_ops;
2968 union tcp_cc_info info;
2969 size_t sz = 0;
2970 int attr;
2971
2972 if (get_user(len, optlen))
2973 return -EFAULT;
2974
2975 ca_ops = icsk->icsk_ca_ops;
2976 if (ca_ops && ca_ops->get_info)
2977 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
2978
2979 len = min_t(unsigned int, len, sz);
2980 if (put_user(len, optlen))
2981 return -EFAULT;
2982 if (copy_to_user(optval, &info, len))
2983 return -EFAULT;
2984 return 0;
2985 }
2986 case TCP_QUICKACK:
2987 val = !icsk->icsk_ack.pingpong;
2988 break;
2989
2990 case TCP_CONGESTION:
2991 if (get_user(len, optlen))
2992 return -EFAULT;
2993 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2994 if (put_user(len, optlen))
2995 return -EFAULT;
2996 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2997 return -EFAULT;
2998 return 0;
2999
3000 case TCP_THIN_LINEAR_TIMEOUTS:
3001 val = tp->thin_lto;
3002 break;
3003
3004 case TCP_THIN_DUPACK:
3005 val = 0;
3006 break;
3007
3008 case TCP_REPAIR:
3009 val = tp->repair;
3010 break;
3011
3012 case TCP_REPAIR_QUEUE:
3013 if (tp->repair)
3014 val = tp->repair_queue;
3015 else
3016 return -EINVAL;
3017 break;
3018
3019 case TCP_REPAIR_WINDOW: {
3020 struct tcp_repair_window opt;
3021
3022 if (get_user(len, optlen))
3023 return -EFAULT;
3024
3025 if (len != sizeof(opt))
3026 return -EINVAL;
3027
3028 if (!tp->repair)
3029 return -EPERM;
3030
3031 opt.snd_wl1 = tp->snd_wl1;
3032 opt.snd_wnd = tp->snd_wnd;
3033 opt.max_window = tp->max_window;
3034 opt.rcv_wnd = tp->rcv_wnd;
3035 opt.rcv_wup = tp->rcv_wup;
3036
3037 if (copy_to_user(optval, &opt, len))
3038 return -EFAULT;
3039 return 0;
3040 }
3041 case TCP_QUEUE_SEQ:
3042 if (tp->repair_queue == TCP_SEND_QUEUE)
3043 val = tp->write_seq;
3044 else if (tp->repair_queue == TCP_RECV_QUEUE)
3045 val = tp->rcv_nxt;
3046 else
3047 return -EINVAL;
3048 break;
3049
3050 case TCP_USER_TIMEOUT:
3051 val = jiffies_to_msecs(icsk->icsk_user_timeout);
3052 break;
3053
3054 case TCP_FASTOPEN:
3055 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3056 break;
3057
3058 case TCP_FASTOPEN_CONNECT:
3059 val = tp->fastopen_connect;
3060 break;
3061
3062 case TCP_TIMESTAMP:
3063 val = tcp_time_stamp + tp->tsoffset;
3064 break;
3065 case TCP_NOTSENT_LOWAT:
3066 val = tp->notsent_lowat;
3067 break;
3068 case TCP_SAVE_SYN:
3069 val = tp->save_syn;
3070 break;
3071 case TCP_SAVED_SYN: {
3072 if (get_user(len, optlen))
3073 return -EFAULT;
3074
3075 lock_sock(sk);
3076 if (tp->saved_syn) {
3077 if (len < tp->saved_syn[0]) {
3078 if (put_user(tp->saved_syn[0], optlen)) {
3079 release_sock(sk);
3080 return -EFAULT;
3081 }
3082 release_sock(sk);
3083 return -EINVAL;
3084 }
3085 len = tp->saved_syn[0];
3086 if (put_user(len, optlen)) {
3087 release_sock(sk);
3088 return -EFAULT;
3089 }
3090 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3091 release_sock(sk);
3092 return -EFAULT;
3093 }
3094 tcp_saved_syn_free(tp);
3095 release_sock(sk);
3096 } else {
3097 release_sock(sk);
3098 len = 0;
3099 if (put_user(len, optlen))
3100 return -EFAULT;
3101 }
3102 return 0;
3103 }
3104 default:
3105 return -ENOPROTOOPT;
3106 }
3107
3108 if (put_user(len, optlen))
3109 return -EFAULT;
3110 if (copy_to_user(optval, &val, len))
3111 return -EFAULT;
3112 return 0;
3113 }
3114
3115 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3116 int __user *optlen)
3117 {
3118 struct inet_connection_sock *icsk = inet_csk(sk);
3119
3120 if (level != SOL_TCP)
3121 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3122 optval, optlen);
3123 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3124 }
3125 EXPORT_SYMBOL(tcp_getsockopt);
3126
3127 #ifdef CONFIG_COMPAT
3128 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3129 char __user *optval, int __user *optlen)
3130 {
3131 if (level != SOL_TCP)
3132 return inet_csk_compat_getsockopt(sk, level, optname,
3133 optval, optlen);
3134 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3135 }
3136 EXPORT_SYMBOL(compat_tcp_getsockopt);
3137 #endif
3138
3139 #ifdef CONFIG_TCP_MD5SIG
3140 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3141 static DEFINE_MUTEX(tcp_md5sig_mutex);
3142 static bool tcp_md5sig_pool_populated = false;
3143
3144 static void __tcp_alloc_md5sig_pool(void)
3145 {
3146 struct crypto_ahash *hash;
3147 int cpu;
3148
3149 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3150 if (IS_ERR(hash))
3151 return;
3152
3153 for_each_possible_cpu(cpu) {
3154 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3155 struct ahash_request *req;
3156
3157 if (!scratch) {
3158 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3159 sizeof(struct tcphdr),
3160 GFP_KERNEL,
3161 cpu_to_node(cpu));
3162 if (!scratch)
3163 return;
3164 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3165 }
3166 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3167 continue;
3168
3169 req = ahash_request_alloc(hash, GFP_KERNEL);
3170 if (!req)
3171 return;
3172
3173 ahash_request_set_callback(req, 0, NULL, NULL);
3174
3175 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3176 }
3177 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3178 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3179 */
3180 smp_wmb();
3181 tcp_md5sig_pool_populated = true;
3182 }
3183
3184 bool tcp_alloc_md5sig_pool(void)
3185 {
3186 if (unlikely(!tcp_md5sig_pool_populated)) {
3187 mutex_lock(&tcp_md5sig_mutex);
3188
3189 if (!tcp_md5sig_pool_populated)
3190 __tcp_alloc_md5sig_pool();
3191
3192 mutex_unlock(&tcp_md5sig_mutex);
3193 }
3194 return tcp_md5sig_pool_populated;
3195 }
3196 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3197
3198
3199 /**
3200 * tcp_get_md5sig_pool - get md5sig_pool for this user
3201 *
3202 * We use percpu structure, so if we succeed, we exit with preemption
3203 * and BH disabled, to make sure another thread or softirq handling
3204 * wont try to get same context.
3205 */
3206 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3207 {
3208 local_bh_disable();
3209
3210 if (tcp_md5sig_pool_populated) {
3211 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3212 smp_rmb();
3213 return this_cpu_ptr(&tcp_md5sig_pool);
3214 }
3215 local_bh_enable();
3216 return NULL;
3217 }
3218 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3219
3220 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3221 const struct sk_buff *skb, unsigned int header_len)
3222 {
3223 struct scatterlist sg;
3224 const struct tcphdr *tp = tcp_hdr(skb);
3225 struct ahash_request *req = hp->md5_req;
3226 unsigned int i;
3227 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3228 skb_headlen(skb) - header_len : 0;
3229 const struct skb_shared_info *shi = skb_shinfo(skb);
3230 struct sk_buff *frag_iter;
3231
3232 sg_init_table(&sg, 1);
3233
3234 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3235 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3236 if (crypto_ahash_update(req))
3237 return 1;
3238
3239 for (i = 0; i < shi->nr_frags; ++i) {
3240 const struct skb_frag_struct *f = &shi->frags[i];
3241 unsigned int offset = f->page_offset;
3242 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3243
3244 sg_set_page(&sg, page, skb_frag_size(f),
3245 offset_in_page(offset));
3246 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3247 if (crypto_ahash_update(req))
3248 return 1;
3249 }
3250
3251 skb_walk_frags(skb, frag_iter)
3252 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3253 return 1;
3254
3255 return 0;
3256 }
3257 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3258
3259 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3260 {
3261 struct scatterlist sg;
3262
3263 sg_init_one(&sg, key->key, key->keylen);
3264 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3265 return crypto_ahash_update(hp->md5_req);
3266 }
3267 EXPORT_SYMBOL(tcp_md5_hash_key);
3268
3269 #endif
3270
3271 void tcp_done(struct sock *sk)
3272 {
3273 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3274
3275 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3276 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3277
3278 tcp_set_state(sk, TCP_CLOSE);
3279 tcp_clear_xmit_timers(sk);
3280 if (req)
3281 reqsk_fastopen_remove(sk, req, false);
3282
3283 sk->sk_shutdown = SHUTDOWN_MASK;
3284
3285 if (!sock_flag(sk, SOCK_DEAD))
3286 sk->sk_state_change(sk);
3287 else
3288 inet_csk_destroy_sock(sk);
3289 }
3290 EXPORT_SYMBOL_GPL(tcp_done);
3291
3292 int tcp_abort(struct sock *sk, int err)
3293 {
3294 if (!sk_fullsock(sk)) {
3295 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3296 struct request_sock *req = inet_reqsk(sk);
3297
3298 local_bh_disable();
3299 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3300 req);
3301 local_bh_enable();
3302 return 0;
3303 }
3304 return -EOPNOTSUPP;
3305 }
3306
3307 /* Don't race with userspace socket closes such as tcp_close. */
3308 lock_sock(sk);
3309
3310 if (sk->sk_state == TCP_LISTEN) {
3311 tcp_set_state(sk, TCP_CLOSE);
3312 inet_csk_listen_stop(sk);
3313 }
3314
3315 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3316 local_bh_disable();
3317 bh_lock_sock(sk);
3318
3319 if (!sock_flag(sk, SOCK_DEAD)) {
3320 sk->sk_err = err;
3321 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3322 smp_wmb();
3323 sk->sk_error_report(sk);
3324 if (tcp_need_reset(sk->sk_state))
3325 tcp_send_active_reset(sk, GFP_ATOMIC);
3326 tcp_done(sk);
3327 }
3328
3329 bh_unlock_sock(sk);
3330 local_bh_enable();
3331 release_sock(sk);
3332 return 0;
3333 }
3334 EXPORT_SYMBOL_GPL(tcp_abort);
3335
3336 extern struct tcp_congestion_ops tcp_reno;
3337
3338 static __initdata unsigned long thash_entries;
3339 static int __init set_thash_entries(char *str)
3340 {
3341 ssize_t ret;
3342
3343 if (!str)
3344 return 0;
3345
3346 ret = kstrtoul(str, 0, &thash_entries);
3347 if (ret)
3348 return 0;
3349
3350 return 1;
3351 }
3352 __setup("thash_entries=", set_thash_entries);
3353
3354 static void __init tcp_init_mem(void)
3355 {
3356 unsigned long limit = nr_free_buffer_pages() / 16;
3357
3358 limit = max(limit, 128UL);
3359 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3360 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3361 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3362 }
3363
3364 void __init tcp_init(void)
3365 {
3366 int max_rshare, max_wshare, cnt;
3367 unsigned long limit;
3368 unsigned int i;
3369
3370 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3371 FIELD_SIZEOF(struct sk_buff, cb));
3372
3373 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3374 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3375 inet_hashinfo_init(&tcp_hashinfo);
3376 tcp_hashinfo.bind_bucket_cachep =
3377 kmem_cache_create("tcp_bind_bucket",
3378 sizeof(struct inet_bind_bucket), 0,
3379 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3380
3381 /* Size and allocate the main established and bind bucket
3382 * hash tables.
3383 *
3384 * The methodology is similar to that of the buffer cache.
3385 */
3386 tcp_hashinfo.ehash =
3387 alloc_large_system_hash("TCP established",
3388 sizeof(struct inet_ehash_bucket),
3389 thash_entries,
3390 17, /* one slot per 128 KB of memory */
3391 0,
3392 NULL,
3393 &tcp_hashinfo.ehash_mask,
3394 0,
3395 thash_entries ? 0 : 512 * 1024);
3396 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3397 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3398
3399 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3400 panic("TCP: failed to alloc ehash_locks");
3401 tcp_hashinfo.bhash =
3402 alloc_large_system_hash("TCP bind",
3403 sizeof(struct inet_bind_hashbucket),
3404 tcp_hashinfo.ehash_mask + 1,
3405 17, /* one slot per 128 KB of memory */
3406 0,
3407 &tcp_hashinfo.bhash_size,
3408 NULL,
3409 0,
3410 64 * 1024);
3411 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3412 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3413 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3414 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3415 }
3416
3417
3418 cnt = tcp_hashinfo.ehash_mask + 1;
3419 sysctl_tcp_max_orphans = cnt / 2;
3420
3421 tcp_init_mem();
3422 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3423 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3424 max_wshare = min(4UL*1024*1024, limit);
3425 max_rshare = min(6UL*1024*1024, limit);
3426
3427 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3428 sysctl_tcp_wmem[1] = 16*1024;
3429 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3430
3431 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3432 sysctl_tcp_rmem[1] = 87380;
3433 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3434
3435 pr_info("Hash tables configured (established %u bind %u)\n",
3436 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3437
3438 tcp_v4_init();
3439 tcp_metrics_init();
3440 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3441 tcp_tasklet_init();
3442 }