]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/ipv4/tcp.c
SUNRPC: Fix NFSD's request deferral on RDMA transports
[mirror_ubuntu-jammy-kernel.git] / net / ipv4 / tcp.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244 #define pr_fmt(fmt) "TCP: " fmt
245
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/time.h>
267 #include <linux/slab.h>
268 #include <linux/errqueue.h>
269 #include <linux/static_key.h>
270 #include <linux/btf.h>
271
272 #include <net/icmp.h>
273 #include <net/inet_common.h>
274 #include <net/tcp.h>
275 #include <net/mptcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279
280 #include <linux/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <net/busy_poll.h>
283
284 /* Track pending CMSGs. */
285 enum {
286 TCP_CMSG_INQ = 1,
287 TCP_CMSG_TS = 2
288 };
289
290 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
291 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
292
293 long sysctl_tcp_mem[3] __read_mostly;
294 EXPORT_SYMBOL(sysctl_tcp_mem);
295
296 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
297 EXPORT_SYMBOL(tcp_memory_allocated);
298
299 #if IS_ENABLED(CONFIG_SMC)
300 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
301 EXPORT_SYMBOL(tcp_have_smc);
302 #endif
303
304 /*
305 * Current number of TCP sockets.
306 */
307 struct percpu_counter tcp_sockets_allocated;
308 EXPORT_SYMBOL(tcp_sockets_allocated);
309
310 /*
311 * TCP splice context
312 */
313 struct tcp_splice_state {
314 struct pipe_inode_info *pipe;
315 size_t len;
316 unsigned int flags;
317 };
318
319 /*
320 * Pressure flag: try to collapse.
321 * Technical note: it is used by multiple contexts non atomically.
322 * All the __sk_mem_schedule() is of this nature: accounting
323 * is strict, actions are advisory and have some latency.
324 */
325 unsigned long tcp_memory_pressure __read_mostly;
326 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
327
328 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
329 EXPORT_SYMBOL(tcp_rx_skb_cache_key);
330
331 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
332
333 void tcp_enter_memory_pressure(struct sock *sk)
334 {
335 unsigned long val;
336
337 if (READ_ONCE(tcp_memory_pressure))
338 return;
339 val = jiffies;
340
341 if (!val)
342 val--;
343 if (!cmpxchg(&tcp_memory_pressure, 0, val))
344 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
345 }
346 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
347
348 void tcp_leave_memory_pressure(struct sock *sk)
349 {
350 unsigned long val;
351
352 if (!READ_ONCE(tcp_memory_pressure))
353 return;
354 val = xchg(&tcp_memory_pressure, 0);
355 if (val)
356 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
357 jiffies_to_msecs(jiffies - val));
358 }
359 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
360
361 /* Convert seconds to retransmits based on initial and max timeout */
362 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
363 {
364 u8 res = 0;
365
366 if (seconds > 0) {
367 int period = timeout;
368
369 res = 1;
370 while (seconds > period && res < 255) {
371 res++;
372 timeout <<= 1;
373 if (timeout > rto_max)
374 timeout = rto_max;
375 period += timeout;
376 }
377 }
378 return res;
379 }
380
381 /* Convert retransmits to seconds based on initial and max timeout */
382 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
383 {
384 int period = 0;
385
386 if (retrans > 0) {
387 period = timeout;
388 while (--retrans) {
389 timeout <<= 1;
390 if (timeout > rto_max)
391 timeout = rto_max;
392 period += timeout;
393 }
394 }
395 return period;
396 }
397
398 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
399 {
400 u32 rate = READ_ONCE(tp->rate_delivered);
401 u32 intv = READ_ONCE(tp->rate_interval_us);
402 u64 rate64 = 0;
403
404 if (rate && intv) {
405 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
406 do_div(rate64, intv);
407 }
408 return rate64;
409 }
410
411 /* Address-family independent initialization for a tcp_sock.
412 *
413 * NOTE: A lot of things set to zero explicitly by call to
414 * sk_alloc() so need not be done here.
415 */
416 void tcp_init_sock(struct sock *sk)
417 {
418 struct inet_connection_sock *icsk = inet_csk(sk);
419 struct tcp_sock *tp = tcp_sk(sk);
420
421 tp->out_of_order_queue = RB_ROOT;
422 sk->tcp_rtx_queue = RB_ROOT;
423 tcp_init_xmit_timers(sk);
424 INIT_LIST_HEAD(&tp->tsq_node);
425 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
426
427 icsk->icsk_rto = TCP_TIMEOUT_INIT;
428 icsk->icsk_rto_min = TCP_RTO_MIN;
429 icsk->icsk_delack_max = TCP_DELACK_MAX;
430 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
431 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
432
433 /* So many TCP implementations out there (incorrectly) count the
434 * initial SYN frame in their delayed-ACK and congestion control
435 * algorithms that we must have the following bandaid to talk
436 * efficiently to them. -DaveM
437 */
438 tp->snd_cwnd = TCP_INIT_CWND;
439
440 /* There's a bubble in the pipe until at least the first ACK. */
441 tp->app_limited = ~0U;
442
443 /* See draft-stevens-tcpca-spec-01 for discussion of the
444 * initialization of these values.
445 */
446 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
447 tp->snd_cwnd_clamp = ~0;
448 tp->mss_cache = TCP_MSS_DEFAULT;
449
450 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
451 tcp_assign_congestion_control(sk);
452
453 tp->tsoffset = 0;
454 tp->rack.reo_wnd_steps = 1;
455
456 sk->sk_write_space = sk_stream_write_space;
457 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
458
459 icsk->icsk_sync_mss = tcp_sync_mss;
460
461 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
462 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
463
464 sk_sockets_allocated_inc(sk);
465 sk->sk_route_forced_caps = NETIF_F_GSO;
466 }
467 EXPORT_SYMBOL(tcp_init_sock);
468
469 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
470 {
471 struct sk_buff *skb = tcp_write_queue_tail(sk);
472
473 if (tsflags && skb) {
474 struct skb_shared_info *shinfo = skb_shinfo(skb);
475 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
476
477 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
478 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
479 tcb->txstamp_ack = 1;
480 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
481 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
482 }
483 }
484
485 static bool tcp_stream_is_readable(struct sock *sk, int target)
486 {
487 if (tcp_epollin_ready(sk, target))
488 return true;
489 return sk_is_readable(sk);
490 }
491
492 /*
493 * Wait for a TCP event.
494 *
495 * Note that we don't need to lock the socket, as the upper poll layers
496 * take care of normal races (between the test and the event) and we don't
497 * go look at any of the socket buffers directly.
498 */
499 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
500 {
501 __poll_t mask;
502 struct sock *sk = sock->sk;
503 const struct tcp_sock *tp = tcp_sk(sk);
504 int state;
505
506 sock_poll_wait(file, sock, wait);
507
508 state = inet_sk_state_load(sk);
509 if (state == TCP_LISTEN)
510 return inet_csk_listen_poll(sk);
511
512 /* Socket is not locked. We are protected from async events
513 * by poll logic and correct handling of state changes
514 * made by other threads is impossible in any case.
515 */
516
517 mask = 0;
518
519 /*
520 * EPOLLHUP is certainly not done right. But poll() doesn't
521 * have a notion of HUP in just one direction, and for a
522 * socket the read side is more interesting.
523 *
524 * Some poll() documentation says that EPOLLHUP is incompatible
525 * with the EPOLLOUT/POLLWR flags, so somebody should check this
526 * all. But careful, it tends to be safer to return too many
527 * bits than too few, and you can easily break real applications
528 * if you don't tell them that something has hung up!
529 *
530 * Check-me.
531 *
532 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
533 * our fs/select.c). It means that after we received EOF,
534 * poll always returns immediately, making impossible poll() on write()
535 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
536 * if and only if shutdown has been made in both directions.
537 * Actually, it is interesting to look how Solaris and DUX
538 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
539 * then we could set it on SND_SHUTDOWN. BTW examples given
540 * in Stevens' books assume exactly this behaviour, it explains
541 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
542 *
543 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
544 * blocking on fresh not-connected or disconnected socket. --ANK
545 */
546 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
547 mask |= EPOLLHUP;
548 if (sk->sk_shutdown & RCV_SHUTDOWN)
549 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
550
551 /* Connected or passive Fast Open socket? */
552 if (state != TCP_SYN_SENT &&
553 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
554 int target = sock_rcvlowat(sk, 0, INT_MAX);
555
556 if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
557 !sock_flag(sk, SOCK_URGINLINE) &&
558 tp->urg_data)
559 target++;
560
561 if (tcp_stream_is_readable(sk, target))
562 mask |= EPOLLIN | EPOLLRDNORM;
563
564 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
565 if (__sk_stream_is_writeable(sk, 1)) {
566 mask |= EPOLLOUT | EPOLLWRNORM;
567 } else { /* send SIGIO later */
568 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
569 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
570
571 /* Race breaker. If space is freed after
572 * wspace test but before the flags are set,
573 * IO signal will be lost. Memory barrier
574 * pairs with the input side.
575 */
576 smp_mb__after_atomic();
577 if (__sk_stream_is_writeable(sk, 1))
578 mask |= EPOLLOUT | EPOLLWRNORM;
579 }
580 } else
581 mask |= EPOLLOUT | EPOLLWRNORM;
582
583 if (tp->urg_data & TCP_URG_VALID)
584 mask |= EPOLLPRI;
585 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
586 /* Active TCP fastopen socket with defer_connect
587 * Return EPOLLOUT so application can call write()
588 * in order for kernel to generate SYN+data
589 */
590 mask |= EPOLLOUT | EPOLLWRNORM;
591 }
592 /* This barrier is coupled with smp_wmb() in tcp_reset() */
593 smp_rmb();
594 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
595 mask |= EPOLLERR;
596
597 return mask;
598 }
599 EXPORT_SYMBOL(tcp_poll);
600
601 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
602 {
603 struct tcp_sock *tp = tcp_sk(sk);
604 int answ;
605 bool slow;
606
607 switch (cmd) {
608 case SIOCINQ:
609 if (sk->sk_state == TCP_LISTEN)
610 return -EINVAL;
611
612 slow = lock_sock_fast(sk);
613 answ = tcp_inq(sk);
614 unlock_sock_fast(sk, slow);
615 break;
616 case SIOCATMARK:
617 answ = tp->urg_data &&
618 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
619 break;
620 case SIOCOUTQ:
621 if (sk->sk_state == TCP_LISTEN)
622 return -EINVAL;
623
624 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
625 answ = 0;
626 else
627 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
628 break;
629 case SIOCOUTQNSD:
630 if (sk->sk_state == TCP_LISTEN)
631 return -EINVAL;
632
633 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
634 answ = 0;
635 else
636 answ = READ_ONCE(tp->write_seq) -
637 READ_ONCE(tp->snd_nxt);
638 break;
639 default:
640 return -ENOIOCTLCMD;
641 }
642
643 return put_user(answ, (int __user *)arg);
644 }
645 EXPORT_SYMBOL(tcp_ioctl);
646
647 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
648 {
649 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
650 tp->pushed_seq = tp->write_seq;
651 }
652
653 static inline bool forced_push(const struct tcp_sock *tp)
654 {
655 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
656 }
657
658 static void skb_entail(struct sock *sk, struct sk_buff *skb)
659 {
660 struct tcp_sock *tp = tcp_sk(sk);
661 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
662
663 skb->csum = 0;
664 tcb->seq = tcb->end_seq = tp->write_seq;
665 tcb->tcp_flags = TCPHDR_ACK;
666 tcb->sacked = 0;
667 __skb_header_release(skb);
668 tcp_add_write_queue_tail(sk, skb);
669 sk_wmem_queued_add(sk, skb->truesize);
670 sk_mem_charge(sk, skb->truesize);
671 if (tp->nonagle & TCP_NAGLE_PUSH)
672 tp->nonagle &= ~TCP_NAGLE_PUSH;
673
674 tcp_slow_start_after_idle_check(sk);
675 }
676
677 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
678 {
679 if (flags & MSG_OOB)
680 tp->snd_up = tp->write_seq;
681 }
682
683 /* If a not yet filled skb is pushed, do not send it if
684 * we have data packets in Qdisc or NIC queues :
685 * Because TX completion will happen shortly, it gives a chance
686 * to coalesce future sendmsg() payload into this skb, without
687 * need for a timer, and with no latency trade off.
688 * As packets containing data payload have a bigger truesize
689 * than pure acks (dataless) packets, the last checks prevent
690 * autocorking if we only have an ACK in Qdisc/NIC queues,
691 * or if TX completion was delayed after we processed ACK packet.
692 */
693 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
694 int size_goal)
695 {
696 return skb->len < size_goal &&
697 sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
698 !tcp_rtx_queue_empty(sk) &&
699 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
700 }
701
702 void tcp_push(struct sock *sk, int flags, int mss_now,
703 int nonagle, int size_goal)
704 {
705 struct tcp_sock *tp = tcp_sk(sk);
706 struct sk_buff *skb;
707
708 skb = tcp_write_queue_tail(sk);
709 if (!skb)
710 return;
711 if (!(flags & MSG_MORE) || forced_push(tp))
712 tcp_mark_push(tp, skb);
713
714 tcp_mark_urg(tp, flags);
715
716 if (tcp_should_autocork(sk, skb, size_goal)) {
717
718 /* avoid atomic op if TSQ_THROTTLED bit is already set */
719 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
720 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
721 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
722 }
723 /* It is possible TX completion already happened
724 * before we set TSQ_THROTTLED.
725 */
726 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
727 return;
728 }
729
730 if (flags & MSG_MORE)
731 nonagle = TCP_NAGLE_CORK;
732
733 __tcp_push_pending_frames(sk, mss_now, nonagle);
734 }
735
736 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
737 unsigned int offset, size_t len)
738 {
739 struct tcp_splice_state *tss = rd_desc->arg.data;
740 int ret;
741
742 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
743 min(rd_desc->count, len), tss->flags);
744 if (ret > 0)
745 rd_desc->count -= ret;
746 return ret;
747 }
748
749 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
750 {
751 /* Store TCP splice context information in read_descriptor_t. */
752 read_descriptor_t rd_desc = {
753 .arg.data = tss,
754 .count = tss->len,
755 };
756
757 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
758 }
759
760 /**
761 * tcp_splice_read - splice data from TCP socket to a pipe
762 * @sock: socket to splice from
763 * @ppos: position (not valid)
764 * @pipe: pipe to splice to
765 * @len: number of bytes to splice
766 * @flags: splice modifier flags
767 *
768 * Description:
769 * Will read pages from given socket and fill them into a pipe.
770 *
771 **/
772 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
773 struct pipe_inode_info *pipe, size_t len,
774 unsigned int flags)
775 {
776 struct sock *sk = sock->sk;
777 struct tcp_splice_state tss = {
778 .pipe = pipe,
779 .len = len,
780 .flags = flags,
781 };
782 long timeo;
783 ssize_t spliced;
784 int ret;
785
786 sock_rps_record_flow(sk);
787 /*
788 * We can't seek on a socket input
789 */
790 if (unlikely(*ppos))
791 return -ESPIPE;
792
793 ret = spliced = 0;
794
795 lock_sock(sk);
796
797 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
798 while (tss.len) {
799 ret = __tcp_splice_read(sk, &tss);
800 if (ret < 0)
801 break;
802 else if (!ret) {
803 if (spliced)
804 break;
805 if (sock_flag(sk, SOCK_DONE))
806 break;
807 if (sk->sk_err) {
808 ret = sock_error(sk);
809 break;
810 }
811 if (sk->sk_shutdown & RCV_SHUTDOWN)
812 break;
813 if (sk->sk_state == TCP_CLOSE) {
814 /*
815 * This occurs when user tries to read
816 * from never connected socket.
817 */
818 ret = -ENOTCONN;
819 break;
820 }
821 if (!timeo) {
822 ret = -EAGAIN;
823 break;
824 }
825 /* if __tcp_splice_read() got nothing while we have
826 * an skb in receive queue, we do not want to loop.
827 * This might happen with URG data.
828 */
829 if (!skb_queue_empty(&sk->sk_receive_queue))
830 break;
831 sk_wait_data(sk, &timeo, NULL);
832 if (signal_pending(current)) {
833 ret = sock_intr_errno(timeo);
834 break;
835 }
836 continue;
837 }
838 tss.len -= ret;
839 spliced += ret;
840
841 if (!timeo)
842 break;
843 release_sock(sk);
844 lock_sock(sk);
845
846 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
847 (sk->sk_shutdown & RCV_SHUTDOWN) ||
848 signal_pending(current))
849 break;
850 }
851
852 release_sock(sk);
853
854 if (spliced)
855 return spliced;
856
857 return ret;
858 }
859 EXPORT_SYMBOL(tcp_splice_read);
860
861 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
862 bool force_schedule)
863 {
864 struct sk_buff *skb;
865
866 if (likely(!size)) {
867 skb = sk->sk_tx_skb_cache;
868 if (skb) {
869 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
870 sk->sk_tx_skb_cache = NULL;
871 pskb_trim(skb, 0);
872 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
873 skb_shinfo(skb)->tx_flags = 0;
874 memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb));
875 return skb;
876 }
877 }
878 /* The TCP header must be at least 32-bit aligned. */
879 size = ALIGN(size, 4);
880
881 if (unlikely(tcp_under_memory_pressure(sk)))
882 sk_mem_reclaim_partial(sk);
883
884 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
885 if (likely(skb)) {
886 bool mem_scheduled;
887
888 if (force_schedule) {
889 mem_scheduled = true;
890 sk_forced_mem_schedule(sk, skb->truesize);
891 } else {
892 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
893 }
894 if (likely(mem_scheduled)) {
895 skb_reserve(skb, sk->sk_prot->max_header);
896 /*
897 * Make sure that we have exactly size bytes
898 * available to the caller, no more, no less.
899 */
900 skb->reserved_tailroom = skb->end - skb->tail - size;
901 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
902 return skb;
903 }
904 __kfree_skb(skb);
905 } else {
906 sk->sk_prot->enter_memory_pressure(sk);
907 sk_stream_moderate_sndbuf(sk);
908 }
909 return NULL;
910 }
911
912 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
913 int large_allowed)
914 {
915 struct tcp_sock *tp = tcp_sk(sk);
916 u32 new_size_goal, size_goal;
917
918 if (!large_allowed)
919 return mss_now;
920
921 /* Note : tcp_tso_autosize() will eventually split this later */
922 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
923 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
924
925 /* We try hard to avoid divides here */
926 size_goal = tp->gso_segs * mss_now;
927 if (unlikely(new_size_goal < size_goal ||
928 new_size_goal >= size_goal + mss_now)) {
929 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
930 sk->sk_gso_max_segs);
931 size_goal = tp->gso_segs * mss_now;
932 }
933
934 return max(size_goal, mss_now);
935 }
936
937 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
938 {
939 int mss_now;
940
941 mss_now = tcp_current_mss(sk);
942 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
943
944 return mss_now;
945 }
946
947 /* In some cases, both sendpage() and sendmsg() could have added
948 * an skb to the write queue, but failed adding payload on it.
949 * We need to remove it to consume less memory, but more
950 * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
951 * users.
952 */
953 void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)
954 {
955 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
956 tcp_unlink_write_queue(skb, sk);
957 if (tcp_write_queue_empty(sk))
958 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
959 sk_wmem_free_skb(sk, skb);
960 }
961 }
962
963 struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
964 struct page *page, int offset, size_t *size)
965 {
966 struct sk_buff *skb = tcp_write_queue_tail(sk);
967 struct tcp_sock *tp = tcp_sk(sk);
968 bool can_coalesce;
969 int copy, i;
970
971 if (!skb || (copy = size_goal - skb->len) <= 0 ||
972 !tcp_skb_can_collapse_to(skb)) {
973 new_segment:
974 if (!sk_stream_memory_free(sk))
975 return NULL;
976
977 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
978 tcp_rtx_and_write_queues_empty(sk));
979 if (!skb)
980 return NULL;
981
982 #ifdef CONFIG_TLS_DEVICE
983 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
984 #endif
985 skb_entail(sk, skb);
986 copy = size_goal;
987 }
988
989 if (copy > *size)
990 copy = *size;
991
992 i = skb_shinfo(skb)->nr_frags;
993 can_coalesce = skb_can_coalesce(skb, i, page, offset);
994 if (!can_coalesce && i >= sysctl_max_skb_frags) {
995 tcp_mark_push(tp, skb);
996 goto new_segment;
997 }
998 if (!sk_wmem_schedule(sk, copy))
999 return NULL;
1000
1001 if (can_coalesce) {
1002 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1003 } else {
1004 get_page(page);
1005 skb_fill_page_desc(skb, i, page, offset, copy);
1006 }
1007
1008 if (!(flags & MSG_NO_SHARED_FRAGS))
1009 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1010
1011 skb->len += copy;
1012 skb->data_len += copy;
1013 skb->truesize += copy;
1014 sk_wmem_queued_add(sk, copy);
1015 sk_mem_charge(sk, copy);
1016 skb->ip_summed = CHECKSUM_PARTIAL;
1017 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1018 TCP_SKB_CB(skb)->end_seq += copy;
1019 tcp_skb_pcount_set(skb, 0);
1020
1021 *size = copy;
1022 return skb;
1023 }
1024
1025 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
1026 size_t size, int flags)
1027 {
1028 struct tcp_sock *tp = tcp_sk(sk);
1029 int mss_now, size_goal;
1030 int err;
1031 ssize_t copied;
1032 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1033
1034 if (IS_ENABLED(CONFIG_DEBUG_VM) &&
1035 WARN_ONCE(!sendpage_ok(page),
1036 "page must not be a Slab one and have page_count > 0"))
1037 return -EINVAL;
1038
1039 /* Wait for a connection to finish. One exception is TCP Fast Open
1040 * (passive side) where data is allowed to be sent before a connection
1041 * is fully established.
1042 */
1043 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1044 !tcp_passive_fastopen(sk)) {
1045 err = sk_stream_wait_connect(sk, &timeo);
1046 if (err != 0)
1047 goto out_err;
1048 }
1049
1050 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1051
1052 mss_now = tcp_send_mss(sk, &size_goal, flags);
1053 copied = 0;
1054
1055 err = -EPIPE;
1056 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1057 goto out_err;
1058
1059 while (size > 0) {
1060 struct sk_buff *skb;
1061 size_t copy = size;
1062
1063 skb = tcp_build_frag(sk, size_goal, flags, page, offset, &copy);
1064 if (!skb)
1065 goto wait_for_space;
1066
1067 if (!copied)
1068 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1069
1070 copied += copy;
1071 offset += copy;
1072 size -= copy;
1073 if (!size)
1074 goto out;
1075
1076 if (skb->len < size_goal || (flags & MSG_OOB))
1077 continue;
1078
1079 if (forced_push(tp)) {
1080 tcp_mark_push(tp, skb);
1081 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1082 } else if (skb == tcp_send_head(sk))
1083 tcp_push_one(sk, mss_now);
1084 continue;
1085
1086 wait_for_space:
1087 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1088 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1089 TCP_NAGLE_PUSH, size_goal);
1090
1091 err = sk_stream_wait_memory(sk, &timeo);
1092 if (err != 0)
1093 goto do_error;
1094
1095 mss_now = tcp_send_mss(sk, &size_goal, flags);
1096 }
1097
1098 out:
1099 if (copied) {
1100 tcp_tx_timestamp(sk, sk->sk_tsflags);
1101 if (!(flags & MSG_SENDPAGE_NOTLAST))
1102 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1103 }
1104 return copied;
1105
1106 do_error:
1107 tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk));
1108 if (copied)
1109 goto out;
1110 out_err:
1111 /* make sure we wake any epoll edge trigger waiter */
1112 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1113 sk->sk_write_space(sk);
1114 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1115 }
1116 return sk_stream_error(sk, flags, err);
1117 }
1118 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1119
1120 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1121 size_t size, int flags)
1122 {
1123 if (!(sk->sk_route_caps & NETIF_F_SG))
1124 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1125
1126 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1127
1128 return do_tcp_sendpages(sk, page, offset, size, flags);
1129 }
1130 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1131
1132 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1133 size_t size, int flags)
1134 {
1135 int ret;
1136
1137 lock_sock(sk);
1138 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1139 release_sock(sk);
1140
1141 return ret;
1142 }
1143 EXPORT_SYMBOL(tcp_sendpage);
1144
1145 void tcp_free_fastopen_req(struct tcp_sock *tp)
1146 {
1147 if (tp->fastopen_req) {
1148 kfree(tp->fastopen_req);
1149 tp->fastopen_req = NULL;
1150 }
1151 }
1152
1153 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1154 int *copied, size_t size,
1155 struct ubuf_info *uarg)
1156 {
1157 struct tcp_sock *tp = tcp_sk(sk);
1158 struct inet_sock *inet = inet_sk(sk);
1159 struct sockaddr *uaddr = msg->msg_name;
1160 int err, flags;
1161
1162 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1163 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1164 uaddr->sa_family == AF_UNSPEC))
1165 return -EOPNOTSUPP;
1166 if (tp->fastopen_req)
1167 return -EALREADY; /* Another Fast Open is in progress */
1168
1169 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1170 sk->sk_allocation);
1171 if (unlikely(!tp->fastopen_req))
1172 return -ENOBUFS;
1173 tp->fastopen_req->data = msg;
1174 tp->fastopen_req->size = size;
1175 tp->fastopen_req->uarg = uarg;
1176
1177 if (inet->defer_connect) {
1178 err = tcp_connect(sk);
1179 /* Same failure procedure as in tcp_v4/6_connect */
1180 if (err) {
1181 tcp_set_state(sk, TCP_CLOSE);
1182 inet->inet_dport = 0;
1183 sk->sk_route_caps = 0;
1184 }
1185 }
1186 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1187 err = __inet_stream_connect(sk->sk_socket, uaddr,
1188 msg->msg_namelen, flags, 1);
1189 /* fastopen_req could already be freed in __inet_stream_connect
1190 * if the connection times out or gets rst
1191 */
1192 if (tp->fastopen_req) {
1193 *copied = tp->fastopen_req->copied;
1194 tcp_free_fastopen_req(tp);
1195 inet->defer_connect = 0;
1196 }
1197 return err;
1198 }
1199
1200 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1201 {
1202 struct tcp_sock *tp = tcp_sk(sk);
1203 struct ubuf_info *uarg = NULL;
1204 struct sk_buff *skb;
1205 struct sockcm_cookie sockc;
1206 int flags, err, copied = 0;
1207 int mss_now = 0, size_goal, copied_syn = 0;
1208 int process_backlog = 0;
1209 bool zc = false;
1210 long timeo;
1211
1212 flags = msg->msg_flags;
1213
1214 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1215 skb = tcp_write_queue_tail(sk);
1216 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1217 if (!uarg) {
1218 err = -ENOBUFS;
1219 goto out_err;
1220 }
1221
1222 zc = sk->sk_route_caps & NETIF_F_SG;
1223 if (!zc)
1224 uarg->zerocopy = 0;
1225 }
1226
1227 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1228 !tp->repair) {
1229 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1230 if (err == -EINPROGRESS && copied_syn > 0)
1231 goto out;
1232 else if (err)
1233 goto out_err;
1234 }
1235
1236 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1237
1238 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1239
1240 /* Wait for a connection to finish. One exception is TCP Fast Open
1241 * (passive side) where data is allowed to be sent before a connection
1242 * is fully established.
1243 */
1244 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1245 !tcp_passive_fastopen(sk)) {
1246 err = sk_stream_wait_connect(sk, &timeo);
1247 if (err != 0)
1248 goto do_error;
1249 }
1250
1251 if (unlikely(tp->repair)) {
1252 if (tp->repair_queue == TCP_RECV_QUEUE) {
1253 copied = tcp_send_rcvq(sk, msg, size);
1254 goto out_nopush;
1255 }
1256
1257 err = -EINVAL;
1258 if (tp->repair_queue == TCP_NO_QUEUE)
1259 goto out_err;
1260
1261 /* 'common' sending to sendq */
1262 }
1263
1264 sockcm_init(&sockc, sk);
1265 if (msg->msg_controllen) {
1266 err = sock_cmsg_send(sk, msg, &sockc);
1267 if (unlikely(err)) {
1268 err = -EINVAL;
1269 goto out_err;
1270 }
1271 }
1272
1273 /* This should be in poll */
1274 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1275
1276 /* Ok commence sending. */
1277 copied = 0;
1278
1279 restart:
1280 mss_now = tcp_send_mss(sk, &size_goal, flags);
1281
1282 err = -EPIPE;
1283 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1284 goto do_error;
1285
1286 while (msg_data_left(msg)) {
1287 int copy = 0;
1288
1289 skb = tcp_write_queue_tail(sk);
1290 if (skb)
1291 copy = size_goal - skb->len;
1292
1293 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1294 bool first_skb;
1295
1296 new_segment:
1297 if (!sk_stream_memory_free(sk))
1298 goto wait_for_space;
1299
1300 if (unlikely(process_backlog >= 16)) {
1301 process_backlog = 0;
1302 if (sk_flush_backlog(sk))
1303 goto restart;
1304 }
1305 first_skb = tcp_rtx_and_write_queues_empty(sk);
1306 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1307 first_skb);
1308 if (!skb)
1309 goto wait_for_space;
1310
1311 process_backlog++;
1312 skb->ip_summed = CHECKSUM_PARTIAL;
1313
1314 skb_entail(sk, skb);
1315 copy = size_goal;
1316
1317 /* All packets are restored as if they have
1318 * already been sent. skb_mstamp_ns isn't set to
1319 * avoid wrong rtt estimation.
1320 */
1321 if (tp->repair)
1322 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1323 }
1324
1325 /* Try to append data to the end of skb. */
1326 if (copy > msg_data_left(msg))
1327 copy = msg_data_left(msg);
1328
1329 /* Where to copy to? */
1330 if (skb_availroom(skb) > 0 && !zc) {
1331 /* We have some space in skb head. Superb! */
1332 copy = min_t(int, copy, skb_availroom(skb));
1333 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1334 if (err)
1335 goto do_fault;
1336 } else if (!zc) {
1337 bool merge = true;
1338 int i = skb_shinfo(skb)->nr_frags;
1339 struct page_frag *pfrag = sk_page_frag(sk);
1340
1341 if (!sk_page_frag_refill(sk, pfrag))
1342 goto wait_for_space;
1343
1344 if (!skb_can_coalesce(skb, i, pfrag->page,
1345 pfrag->offset)) {
1346 if (i >= sysctl_max_skb_frags) {
1347 tcp_mark_push(tp, skb);
1348 goto new_segment;
1349 }
1350 merge = false;
1351 }
1352
1353 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1354
1355 if (!sk_wmem_schedule(sk, copy))
1356 goto wait_for_space;
1357
1358 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1359 pfrag->page,
1360 pfrag->offset,
1361 copy);
1362 if (err)
1363 goto do_error;
1364
1365 /* Update the skb. */
1366 if (merge) {
1367 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1368 } else {
1369 skb_fill_page_desc(skb, i, pfrag->page,
1370 pfrag->offset, copy);
1371 page_ref_inc(pfrag->page);
1372 }
1373 pfrag->offset += copy;
1374 } else {
1375 if (!sk_wmem_schedule(sk, copy))
1376 goto wait_for_space;
1377
1378 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1379 if (err == -EMSGSIZE || err == -EEXIST) {
1380 tcp_mark_push(tp, skb);
1381 goto new_segment;
1382 }
1383 if (err < 0)
1384 goto do_error;
1385 copy = err;
1386 }
1387
1388 if (!copied)
1389 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1390
1391 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1392 TCP_SKB_CB(skb)->end_seq += copy;
1393 tcp_skb_pcount_set(skb, 0);
1394
1395 copied += copy;
1396 if (!msg_data_left(msg)) {
1397 if (unlikely(flags & MSG_EOR))
1398 TCP_SKB_CB(skb)->eor = 1;
1399 goto out;
1400 }
1401
1402 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1403 continue;
1404
1405 if (forced_push(tp)) {
1406 tcp_mark_push(tp, skb);
1407 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1408 } else if (skb == tcp_send_head(sk))
1409 tcp_push_one(sk, mss_now);
1410 continue;
1411
1412 wait_for_space:
1413 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1414 if (copied)
1415 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1416 TCP_NAGLE_PUSH, size_goal);
1417
1418 err = sk_stream_wait_memory(sk, &timeo);
1419 if (err != 0)
1420 goto do_error;
1421
1422 mss_now = tcp_send_mss(sk, &size_goal, flags);
1423 }
1424
1425 out:
1426 if (copied) {
1427 tcp_tx_timestamp(sk, sockc.tsflags);
1428 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1429 }
1430 out_nopush:
1431 net_zcopy_put(uarg);
1432 return copied + copied_syn;
1433
1434 do_error:
1435 skb = tcp_write_queue_tail(sk);
1436 do_fault:
1437 tcp_remove_empty_skb(sk, skb);
1438
1439 if (copied + copied_syn)
1440 goto out;
1441 out_err:
1442 net_zcopy_put_abort(uarg, true);
1443 err = sk_stream_error(sk, flags, err);
1444 /* make sure we wake any epoll edge trigger waiter */
1445 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1446 sk->sk_write_space(sk);
1447 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1448 }
1449 return err;
1450 }
1451 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1452
1453 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1454 {
1455 int ret;
1456
1457 lock_sock(sk);
1458 ret = tcp_sendmsg_locked(sk, msg, size);
1459 release_sock(sk);
1460
1461 return ret;
1462 }
1463 EXPORT_SYMBOL(tcp_sendmsg);
1464
1465 /*
1466 * Handle reading urgent data. BSD has very simple semantics for
1467 * this, no blocking and very strange errors 8)
1468 */
1469
1470 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1471 {
1472 struct tcp_sock *tp = tcp_sk(sk);
1473
1474 /* No URG data to read. */
1475 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1476 tp->urg_data == TCP_URG_READ)
1477 return -EINVAL; /* Yes this is right ! */
1478
1479 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1480 return -ENOTCONN;
1481
1482 if (tp->urg_data & TCP_URG_VALID) {
1483 int err = 0;
1484 char c = tp->urg_data;
1485
1486 if (!(flags & MSG_PEEK))
1487 tp->urg_data = TCP_URG_READ;
1488
1489 /* Read urgent data. */
1490 msg->msg_flags |= MSG_OOB;
1491
1492 if (len > 0) {
1493 if (!(flags & MSG_TRUNC))
1494 err = memcpy_to_msg(msg, &c, 1);
1495 len = 1;
1496 } else
1497 msg->msg_flags |= MSG_TRUNC;
1498
1499 return err ? -EFAULT : len;
1500 }
1501
1502 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1503 return 0;
1504
1505 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1506 * the available implementations agree in this case:
1507 * this call should never block, independent of the
1508 * blocking state of the socket.
1509 * Mike <pall@rz.uni-karlsruhe.de>
1510 */
1511 return -EAGAIN;
1512 }
1513
1514 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1515 {
1516 struct sk_buff *skb;
1517 int copied = 0, err = 0;
1518
1519 /* XXX -- need to support SO_PEEK_OFF */
1520
1521 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1522 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1523 if (err)
1524 return err;
1525 copied += skb->len;
1526 }
1527
1528 skb_queue_walk(&sk->sk_write_queue, skb) {
1529 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1530 if (err)
1531 break;
1532
1533 copied += skb->len;
1534 }
1535
1536 return err ?: copied;
1537 }
1538
1539 /* Clean up the receive buffer for full frames taken by the user,
1540 * then send an ACK if necessary. COPIED is the number of bytes
1541 * tcp_recvmsg has given to the user so far, it speeds up the
1542 * calculation of whether or not we must ACK for the sake of
1543 * a window update.
1544 */
1545 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1546 {
1547 struct tcp_sock *tp = tcp_sk(sk);
1548 bool time_to_ack = false;
1549
1550 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1551
1552 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1553 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1554 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1555
1556 if (inet_csk_ack_scheduled(sk)) {
1557 const struct inet_connection_sock *icsk = inet_csk(sk);
1558
1559 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1560 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1561 /*
1562 * If this read emptied read buffer, we send ACK, if
1563 * connection is not bidirectional, user drained
1564 * receive buffer and there was a small segment
1565 * in queue.
1566 */
1567 (copied > 0 &&
1568 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1569 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1570 !inet_csk_in_pingpong_mode(sk))) &&
1571 !atomic_read(&sk->sk_rmem_alloc)))
1572 time_to_ack = true;
1573 }
1574
1575 /* We send an ACK if we can now advertise a non-zero window
1576 * which has been raised "significantly".
1577 *
1578 * Even if window raised up to infinity, do not send window open ACK
1579 * in states, where we will not receive more. It is useless.
1580 */
1581 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1582 __u32 rcv_window_now = tcp_receive_window(tp);
1583
1584 /* Optimize, __tcp_select_window() is not cheap. */
1585 if (2*rcv_window_now <= tp->window_clamp) {
1586 __u32 new_window = __tcp_select_window(sk);
1587
1588 /* Send ACK now, if this read freed lots of space
1589 * in our buffer. Certainly, new_window is new window.
1590 * We can advertise it now, if it is not less than current one.
1591 * "Lots" means "at least twice" here.
1592 */
1593 if (new_window && new_window >= 2 * rcv_window_now)
1594 time_to_ack = true;
1595 }
1596 }
1597 if (time_to_ack)
1598 tcp_send_ack(sk);
1599 }
1600
1601 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1602 {
1603 struct sk_buff *skb;
1604 u32 offset;
1605
1606 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1607 offset = seq - TCP_SKB_CB(skb)->seq;
1608 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1609 pr_err_once("%s: found a SYN, please report !\n", __func__);
1610 offset--;
1611 }
1612 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1613 *off = offset;
1614 return skb;
1615 }
1616 /* This looks weird, but this can happen if TCP collapsing
1617 * splitted a fat GRO packet, while we released socket lock
1618 * in skb_splice_bits()
1619 */
1620 sk_eat_skb(sk, skb);
1621 }
1622 return NULL;
1623 }
1624
1625 /*
1626 * This routine provides an alternative to tcp_recvmsg() for routines
1627 * that would like to handle copying from skbuffs directly in 'sendfile'
1628 * fashion.
1629 * Note:
1630 * - It is assumed that the socket was locked by the caller.
1631 * - The routine does not block.
1632 * - At present, there is no support for reading OOB data
1633 * or for 'peeking' the socket using this routine
1634 * (although both would be easy to implement).
1635 */
1636 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1637 sk_read_actor_t recv_actor)
1638 {
1639 struct sk_buff *skb;
1640 struct tcp_sock *tp = tcp_sk(sk);
1641 u32 seq = tp->copied_seq;
1642 u32 offset;
1643 int copied = 0;
1644
1645 if (sk->sk_state == TCP_LISTEN)
1646 return -ENOTCONN;
1647 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1648 if (offset < skb->len) {
1649 int used;
1650 size_t len;
1651
1652 len = skb->len - offset;
1653 /* Stop reading if we hit a patch of urgent data */
1654 if (tp->urg_data) {
1655 u32 urg_offset = tp->urg_seq - seq;
1656 if (urg_offset < len)
1657 len = urg_offset;
1658 if (!len)
1659 break;
1660 }
1661 used = recv_actor(desc, skb, offset, len);
1662 if (used <= 0) {
1663 if (!copied)
1664 copied = used;
1665 break;
1666 }
1667 if (WARN_ON_ONCE(used > len))
1668 used = len;
1669 seq += used;
1670 copied += used;
1671 offset += used;
1672
1673 /* If recv_actor drops the lock (e.g. TCP splice
1674 * receive) the skb pointer might be invalid when
1675 * getting here: tcp_collapse might have deleted it
1676 * while aggregating skbs from the socket queue.
1677 */
1678 skb = tcp_recv_skb(sk, seq - 1, &offset);
1679 if (!skb)
1680 break;
1681 /* TCP coalescing might have appended data to the skb.
1682 * Try to splice more frags
1683 */
1684 if (offset + 1 != skb->len)
1685 continue;
1686 }
1687 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1688 sk_eat_skb(sk, skb);
1689 ++seq;
1690 break;
1691 }
1692 sk_eat_skb(sk, skb);
1693 if (!desc->count)
1694 break;
1695 WRITE_ONCE(tp->copied_seq, seq);
1696 }
1697 WRITE_ONCE(tp->copied_seq, seq);
1698
1699 tcp_rcv_space_adjust(sk);
1700
1701 /* Clean up data we have read: This will do ACK frames. */
1702 if (copied > 0) {
1703 tcp_recv_skb(sk, seq, &offset);
1704 tcp_cleanup_rbuf(sk, copied);
1705 }
1706 return copied;
1707 }
1708 EXPORT_SYMBOL(tcp_read_sock);
1709
1710 int tcp_peek_len(struct socket *sock)
1711 {
1712 return tcp_inq(sock->sk);
1713 }
1714 EXPORT_SYMBOL(tcp_peek_len);
1715
1716 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1717 int tcp_set_rcvlowat(struct sock *sk, int val)
1718 {
1719 int cap;
1720
1721 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1722 cap = sk->sk_rcvbuf >> 1;
1723 else
1724 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1725 val = min(val, cap);
1726 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1727
1728 /* Check if we need to signal EPOLLIN right now */
1729 tcp_data_ready(sk);
1730
1731 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1732 return 0;
1733
1734 val <<= 1;
1735 if (val > sk->sk_rcvbuf) {
1736 WRITE_ONCE(sk->sk_rcvbuf, val);
1737 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1738 }
1739 return 0;
1740 }
1741 EXPORT_SYMBOL(tcp_set_rcvlowat);
1742
1743 void tcp_update_recv_tstamps(struct sk_buff *skb,
1744 struct scm_timestamping_internal *tss)
1745 {
1746 if (skb->tstamp)
1747 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1748 else
1749 tss->ts[0] = (struct timespec64) {0};
1750
1751 if (skb_hwtstamps(skb)->hwtstamp)
1752 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1753 else
1754 tss->ts[2] = (struct timespec64) {0};
1755 }
1756
1757 #ifdef CONFIG_MMU
1758 static const struct vm_operations_struct tcp_vm_ops = {
1759 };
1760
1761 int tcp_mmap(struct file *file, struct socket *sock,
1762 struct vm_area_struct *vma)
1763 {
1764 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1765 return -EPERM;
1766 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1767
1768 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1769 vma->vm_flags |= VM_MIXEDMAP;
1770
1771 vma->vm_ops = &tcp_vm_ops;
1772 return 0;
1773 }
1774 EXPORT_SYMBOL(tcp_mmap);
1775
1776 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1777 u32 *offset_frag)
1778 {
1779 skb_frag_t *frag;
1780
1781 if (unlikely(offset_skb >= skb->len))
1782 return NULL;
1783
1784 offset_skb -= skb_headlen(skb);
1785 if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1786 return NULL;
1787
1788 frag = skb_shinfo(skb)->frags;
1789 while (offset_skb) {
1790 if (skb_frag_size(frag) > offset_skb) {
1791 *offset_frag = offset_skb;
1792 return frag;
1793 }
1794 offset_skb -= skb_frag_size(frag);
1795 ++frag;
1796 }
1797 *offset_frag = 0;
1798 return frag;
1799 }
1800
1801 static bool can_map_frag(const skb_frag_t *frag)
1802 {
1803 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
1804 }
1805
1806 static int find_next_mappable_frag(const skb_frag_t *frag,
1807 int remaining_in_skb)
1808 {
1809 int offset = 0;
1810
1811 if (likely(can_map_frag(frag)))
1812 return 0;
1813
1814 while (offset < remaining_in_skb && !can_map_frag(frag)) {
1815 offset += skb_frag_size(frag);
1816 ++frag;
1817 }
1818 return offset;
1819 }
1820
1821 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1822 struct tcp_zerocopy_receive *zc,
1823 struct sk_buff *skb, u32 offset)
1824 {
1825 u32 frag_offset, partial_frag_remainder = 0;
1826 int mappable_offset;
1827 skb_frag_t *frag;
1828
1829 /* worst case: skip to next skb. try to improve on this case below */
1830 zc->recv_skip_hint = skb->len - offset;
1831
1832 /* Find the frag containing this offset (and how far into that frag) */
1833 frag = skb_advance_to_frag(skb, offset, &frag_offset);
1834 if (!frag)
1835 return;
1836
1837 if (frag_offset) {
1838 struct skb_shared_info *info = skb_shinfo(skb);
1839
1840 /* We read part of the last frag, must recvmsg() rest of skb. */
1841 if (frag == &info->frags[info->nr_frags - 1])
1842 return;
1843
1844 /* Else, we must at least read the remainder in this frag. */
1845 partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1846 zc->recv_skip_hint -= partial_frag_remainder;
1847 ++frag;
1848 }
1849
1850 /* partial_frag_remainder: If part way through a frag, must read rest.
1851 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1852 * in partial_frag_remainder.
1853 */
1854 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1855 zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1856 }
1857
1858 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1859 int nonblock, int flags,
1860 struct scm_timestamping_internal *tss,
1861 int *cmsg_flags);
1862 static int receive_fallback_to_copy(struct sock *sk,
1863 struct tcp_zerocopy_receive *zc, int inq,
1864 struct scm_timestamping_internal *tss)
1865 {
1866 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1867 struct msghdr msg = {};
1868 struct iovec iov;
1869 int err;
1870
1871 zc->length = 0;
1872 zc->recv_skip_hint = 0;
1873
1874 if (copy_address != zc->copybuf_address)
1875 return -EINVAL;
1876
1877 err = import_single_range(READ, (void __user *)copy_address,
1878 inq, &iov, &msg.msg_iter);
1879 if (err)
1880 return err;
1881
1882 err = tcp_recvmsg_locked(sk, &msg, inq, /*nonblock=*/1, /*flags=*/0,
1883 tss, &zc->msg_flags);
1884 if (err < 0)
1885 return err;
1886
1887 zc->copybuf_len = err;
1888 if (likely(zc->copybuf_len)) {
1889 struct sk_buff *skb;
1890 u32 offset;
1891
1892 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1893 if (skb)
1894 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1895 }
1896 return 0;
1897 }
1898
1899 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1900 struct sk_buff *skb, u32 copylen,
1901 u32 *offset, u32 *seq)
1902 {
1903 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1904 struct msghdr msg = {};
1905 struct iovec iov;
1906 int err;
1907
1908 if (copy_address != zc->copybuf_address)
1909 return -EINVAL;
1910
1911 err = import_single_range(READ, (void __user *)copy_address,
1912 copylen, &iov, &msg.msg_iter);
1913 if (err)
1914 return err;
1915 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1916 if (err)
1917 return err;
1918 zc->recv_skip_hint -= copylen;
1919 *offset += copylen;
1920 *seq += copylen;
1921 return (__s32)copylen;
1922 }
1923
1924 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1925 struct sock *sk,
1926 struct sk_buff *skb,
1927 u32 *seq,
1928 s32 copybuf_len,
1929 struct scm_timestamping_internal *tss)
1930 {
1931 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1932
1933 if (!copylen)
1934 return 0;
1935 /* skb is null if inq < PAGE_SIZE. */
1936 if (skb) {
1937 offset = *seq - TCP_SKB_CB(skb)->seq;
1938 } else {
1939 skb = tcp_recv_skb(sk, *seq, &offset);
1940 if (TCP_SKB_CB(skb)->has_rxtstamp) {
1941 tcp_update_recv_tstamps(skb, tss);
1942 zc->msg_flags |= TCP_CMSG_TS;
1943 }
1944 }
1945
1946 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1947 seq);
1948 return zc->copybuf_len < 0 ? 0 : copylen;
1949 }
1950
1951 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1952 struct page **pending_pages,
1953 unsigned long pages_remaining,
1954 unsigned long *address,
1955 u32 *length,
1956 u32 *seq,
1957 struct tcp_zerocopy_receive *zc,
1958 u32 total_bytes_to_map,
1959 int err)
1960 {
1961 /* At least one page did not map. Try zapping if we skipped earlier. */
1962 if (err == -EBUSY &&
1963 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1964 u32 maybe_zap_len;
1965
1966 maybe_zap_len = total_bytes_to_map - /* All bytes to map */
1967 *length + /* Mapped or pending */
1968 (pages_remaining * PAGE_SIZE); /* Failed map. */
1969 zap_page_range(vma, *address, maybe_zap_len);
1970 err = 0;
1971 }
1972
1973 if (!err) {
1974 unsigned long leftover_pages = pages_remaining;
1975 int bytes_mapped;
1976
1977 /* We called zap_page_range, try to reinsert. */
1978 err = vm_insert_pages(vma, *address,
1979 pending_pages,
1980 &pages_remaining);
1981 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1982 *seq += bytes_mapped;
1983 *address += bytes_mapped;
1984 }
1985 if (err) {
1986 /* Either we were unable to zap, OR we zapped, retried an
1987 * insert, and still had an issue. Either ways, pages_remaining
1988 * is the number of pages we were unable to map, and we unroll
1989 * some state we speculatively touched before.
1990 */
1991 const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1992
1993 *length -= bytes_not_mapped;
1994 zc->recv_skip_hint += bytes_not_mapped;
1995 }
1996 return err;
1997 }
1998
1999 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2000 struct page **pages,
2001 unsigned int pages_to_map,
2002 unsigned long *address,
2003 u32 *length,
2004 u32 *seq,
2005 struct tcp_zerocopy_receive *zc,
2006 u32 total_bytes_to_map)
2007 {
2008 unsigned long pages_remaining = pages_to_map;
2009 unsigned int pages_mapped;
2010 unsigned int bytes_mapped;
2011 int err;
2012
2013 err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2014 pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2015 bytes_mapped = PAGE_SIZE * pages_mapped;
2016 /* Even if vm_insert_pages fails, it may have partially succeeded in
2017 * mapping (some but not all of the pages).
2018 */
2019 *seq += bytes_mapped;
2020 *address += bytes_mapped;
2021
2022 if (likely(!err))
2023 return 0;
2024
2025 /* Error: maybe zap and retry + rollback state for failed inserts. */
2026 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2027 pages_remaining, address, length, seq, zc, total_bytes_to_map,
2028 err);
2029 }
2030
2031 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS)
2032 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2033 struct tcp_zerocopy_receive *zc,
2034 struct scm_timestamping_internal *tss)
2035 {
2036 unsigned long msg_control_addr;
2037 struct msghdr cmsg_dummy;
2038
2039 msg_control_addr = (unsigned long)zc->msg_control;
2040 cmsg_dummy.msg_control = (void *)msg_control_addr;
2041 cmsg_dummy.msg_controllen =
2042 (__kernel_size_t)zc->msg_controllen;
2043 cmsg_dummy.msg_flags = in_compat_syscall()
2044 ? MSG_CMSG_COMPAT : 0;
2045 cmsg_dummy.msg_control_is_user = true;
2046 zc->msg_flags = 0;
2047 if (zc->msg_control == msg_control_addr &&
2048 zc->msg_controllen == cmsg_dummy.msg_controllen) {
2049 tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2050 zc->msg_control = (__u64)
2051 ((uintptr_t)cmsg_dummy.msg_control);
2052 zc->msg_controllen =
2053 (__u64)cmsg_dummy.msg_controllen;
2054 zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2055 }
2056 }
2057
2058 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2059 static int tcp_zerocopy_receive(struct sock *sk,
2060 struct tcp_zerocopy_receive *zc,
2061 struct scm_timestamping_internal *tss)
2062 {
2063 u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2064 unsigned long address = (unsigned long)zc->address;
2065 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2066 s32 copybuf_len = zc->copybuf_len;
2067 struct tcp_sock *tp = tcp_sk(sk);
2068 const skb_frag_t *frags = NULL;
2069 unsigned int pages_to_map = 0;
2070 struct vm_area_struct *vma;
2071 struct sk_buff *skb = NULL;
2072 u32 seq = tp->copied_seq;
2073 u32 total_bytes_to_map;
2074 int inq = tcp_inq(sk);
2075 int ret;
2076
2077 zc->copybuf_len = 0;
2078 zc->msg_flags = 0;
2079
2080 if (address & (PAGE_SIZE - 1) || address != zc->address)
2081 return -EINVAL;
2082
2083 if (sk->sk_state == TCP_LISTEN)
2084 return -ENOTCONN;
2085
2086 sock_rps_record_flow(sk);
2087
2088 if (inq && inq <= copybuf_len)
2089 return receive_fallback_to_copy(sk, zc, inq, tss);
2090
2091 if (inq < PAGE_SIZE) {
2092 zc->length = 0;
2093 zc->recv_skip_hint = inq;
2094 if (!inq && sock_flag(sk, SOCK_DONE))
2095 return -EIO;
2096 return 0;
2097 }
2098
2099 mmap_read_lock(current->mm);
2100
2101 vma = vma_lookup(current->mm, address);
2102 if (!vma || vma->vm_ops != &tcp_vm_ops) {
2103 mmap_read_unlock(current->mm);
2104 return -EINVAL;
2105 }
2106 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2107 avail_len = min_t(u32, vma_len, inq);
2108 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2109 if (total_bytes_to_map) {
2110 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2111 zap_page_range(vma, address, total_bytes_to_map);
2112 zc->length = total_bytes_to_map;
2113 zc->recv_skip_hint = 0;
2114 } else {
2115 zc->length = avail_len;
2116 zc->recv_skip_hint = avail_len;
2117 }
2118 ret = 0;
2119 while (length + PAGE_SIZE <= zc->length) {
2120 int mappable_offset;
2121 struct page *page;
2122
2123 if (zc->recv_skip_hint < PAGE_SIZE) {
2124 u32 offset_frag;
2125
2126 if (skb) {
2127 if (zc->recv_skip_hint > 0)
2128 break;
2129 skb = skb->next;
2130 offset = seq - TCP_SKB_CB(skb)->seq;
2131 } else {
2132 skb = tcp_recv_skb(sk, seq, &offset);
2133 }
2134
2135 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2136 tcp_update_recv_tstamps(skb, tss);
2137 zc->msg_flags |= TCP_CMSG_TS;
2138 }
2139 zc->recv_skip_hint = skb->len - offset;
2140 frags = skb_advance_to_frag(skb, offset, &offset_frag);
2141 if (!frags || offset_frag)
2142 break;
2143 }
2144
2145 mappable_offset = find_next_mappable_frag(frags,
2146 zc->recv_skip_hint);
2147 if (mappable_offset) {
2148 zc->recv_skip_hint = mappable_offset;
2149 break;
2150 }
2151 page = skb_frag_page(frags);
2152 prefetchw(page);
2153 pages[pages_to_map++] = page;
2154 length += PAGE_SIZE;
2155 zc->recv_skip_hint -= PAGE_SIZE;
2156 frags++;
2157 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2158 zc->recv_skip_hint < PAGE_SIZE) {
2159 /* Either full batch, or we're about to go to next skb
2160 * (and we cannot unroll failed ops across skbs).
2161 */
2162 ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2163 pages_to_map,
2164 &address, &length,
2165 &seq, zc,
2166 total_bytes_to_map);
2167 if (ret)
2168 goto out;
2169 pages_to_map = 0;
2170 }
2171 }
2172 if (pages_to_map) {
2173 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2174 &address, &length, &seq,
2175 zc, total_bytes_to_map);
2176 }
2177 out:
2178 mmap_read_unlock(current->mm);
2179 /* Try to copy straggler data. */
2180 if (!ret)
2181 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2182
2183 if (length + copylen) {
2184 WRITE_ONCE(tp->copied_seq, seq);
2185 tcp_rcv_space_adjust(sk);
2186
2187 /* Clean up data we have read: This will do ACK frames. */
2188 tcp_recv_skb(sk, seq, &offset);
2189 tcp_cleanup_rbuf(sk, length + copylen);
2190 ret = 0;
2191 if (length == zc->length)
2192 zc->recv_skip_hint = 0;
2193 } else {
2194 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2195 ret = -EIO;
2196 }
2197 zc->length = length;
2198 return ret;
2199 }
2200 #endif
2201
2202 /* Similar to __sock_recv_timestamp, but does not require an skb */
2203 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2204 struct scm_timestamping_internal *tss)
2205 {
2206 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2207 bool has_timestamping = false;
2208
2209 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2210 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2211 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2212 if (new_tstamp) {
2213 struct __kernel_timespec kts = {
2214 .tv_sec = tss->ts[0].tv_sec,
2215 .tv_nsec = tss->ts[0].tv_nsec,
2216 };
2217 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2218 sizeof(kts), &kts);
2219 } else {
2220 struct __kernel_old_timespec ts_old = {
2221 .tv_sec = tss->ts[0].tv_sec,
2222 .tv_nsec = tss->ts[0].tv_nsec,
2223 };
2224 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2225 sizeof(ts_old), &ts_old);
2226 }
2227 } else {
2228 if (new_tstamp) {
2229 struct __kernel_sock_timeval stv = {
2230 .tv_sec = tss->ts[0].tv_sec,
2231 .tv_usec = tss->ts[0].tv_nsec / 1000,
2232 };
2233 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2234 sizeof(stv), &stv);
2235 } else {
2236 struct __kernel_old_timeval tv = {
2237 .tv_sec = tss->ts[0].tv_sec,
2238 .tv_usec = tss->ts[0].tv_nsec / 1000,
2239 };
2240 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2241 sizeof(tv), &tv);
2242 }
2243 }
2244 }
2245
2246 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2247 has_timestamping = true;
2248 else
2249 tss->ts[0] = (struct timespec64) {0};
2250 }
2251
2252 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2253 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2254 has_timestamping = true;
2255 else
2256 tss->ts[2] = (struct timespec64) {0};
2257 }
2258
2259 if (has_timestamping) {
2260 tss->ts[1] = (struct timespec64) {0};
2261 if (sock_flag(sk, SOCK_TSTAMP_NEW))
2262 put_cmsg_scm_timestamping64(msg, tss);
2263 else
2264 put_cmsg_scm_timestamping(msg, tss);
2265 }
2266 }
2267
2268 static int tcp_inq_hint(struct sock *sk)
2269 {
2270 const struct tcp_sock *tp = tcp_sk(sk);
2271 u32 copied_seq = READ_ONCE(tp->copied_seq);
2272 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2273 int inq;
2274
2275 inq = rcv_nxt - copied_seq;
2276 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2277 lock_sock(sk);
2278 inq = tp->rcv_nxt - tp->copied_seq;
2279 release_sock(sk);
2280 }
2281 /* After receiving a FIN, tell the user-space to continue reading
2282 * by returning a non-zero inq.
2283 */
2284 if (inq == 0 && sock_flag(sk, SOCK_DONE))
2285 inq = 1;
2286 return inq;
2287 }
2288
2289 /*
2290 * This routine copies from a sock struct into the user buffer.
2291 *
2292 * Technical note: in 2.3 we work on _locked_ socket, so that
2293 * tricks with *seq access order and skb->users are not required.
2294 * Probably, code can be easily improved even more.
2295 */
2296
2297 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2298 int nonblock, int flags,
2299 struct scm_timestamping_internal *tss,
2300 int *cmsg_flags)
2301 {
2302 struct tcp_sock *tp = tcp_sk(sk);
2303 int copied = 0;
2304 u32 peek_seq;
2305 u32 *seq;
2306 unsigned long used;
2307 int err;
2308 int target; /* Read at least this many bytes */
2309 long timeo;
2310 struct sk_buff *skb, *last;
2311 u32 urg_hole = 0;
2312
2313 err = -ENOTCONN;
2314 if (sk->sk_state == TCP_LISTEN)
2315 goto out;
2316
2317 if (tp->recvmsg_inq)
2318 *cmsg_flags = TCP_CMSG_INQ;
2319 timeo = sock_rcvtimeo(sk, nonblock);
2320
2321 /* Urgent data needs to be handled specially. */
2322 if (flags & MSG_OOB)
2323 goto recv_urg;
2324
2325 if (unlikely(tp->repair)) {
2326 err = -EPERM;
2327 if (!(flags & MSG_PEEK))
2328 goto out;
2329
2330 if (tp->repair_queue == TCP_SEND_QUEUE)
2331 goto recv_sndq;
2332
2333 err = -EINVAL;
2334 if (tp->repair_queue == TCP_NO_QUEUE)
2335 goto out;
2336
2337 /* 'common' recv queue MSG_PEEK-ing */
2338 }
2339
2340 seq = &tp->copied_seq;
2341 if (flags & MSG_PEEK) {
2342 peek_seq = tp->copied_seq;
2343 seq = &peek_seq;
2344 }
2345
2346 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2347
2348 do {
2349 u32 offset;
2350
2351 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2352 if (tp->urg_data && tp->urg_seq == *seq) {
2353 if (copied)
2354 break;
2355 if (signal_pending(current)) {
2356 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2357 break;
2358 }
2359 }
2360
2361 /* Next get a buffer. */
2362
2363 last = skb_peek_tail(&sk->sk_receive_queue);
2364 skb_queue_walk(&sk->sk_receive_queue, skb) {
2365 last = skb;
2366 /* Now that we have two receive queues this
2367 * shouldn't happen.
2368 */
2369 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2370 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2371 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2372 flags))
2373 break;
2374
2375 offset = *seq - TCP_SKB_CB(skb)->seq;
2376 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2377 pr_err_once("%s: found a SYN, please report !\n", __func__);
2378 offset--;
2379 }
2380 if (offset < skb->len)
2381 goto found_ok_skb;
2382 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2383 goto found_fin_ok;
2384 WARN(!(flags & MSG_PEEK),
2385 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2386 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2387 }
2388
2389 /* Well, if we have backlog, try to process it now yet. */
2390
2391 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2392 break;
2393
2394 if (copied) {
2395 if (sk->sk_err ||
2396 sk->sk_state == TCP_CLOSE ||
2397 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2398 !timeo ||
2399 signal_pending(current))
2400 break;
2401 } else {
2402 if (sock_flag(sk, SOCK_DONE))
2403 break;
2404
2405 if (sk->sk_err) {
2406 copied = sock_error(sk);
2407 break;
2408 }
2409
2410 if (sk->sk_shutdown & RCV_SHUTDOWN)
2411 break;
2412
2413 if (sk->sk_state == TCP_CLOSE) {
2414 /* This occurs when user tries to read
2415 * from never connected socket.
2416 */
2417 copied = -ENOTCONN;
2418 break;
2419 }
2420
2421 if (!timeo) {
2422 copied = -EAGAIN;
2423 break;
2424 }
2425
2426 if (signal_pending(current)) {
2427 copied = sock_intr_errno(timeo);
2428 break;
2429 }
2430 }
2431
2432 tcp_cleanup_rbuf(sk, copied);
2433
2434 if (copied >= target) {
2435 /* Do not sleep, just process backlog. */
2436 release_sock(sk);
2437 lock_sock(sk);
2438 } else {
2439 sk_wait_data(sk, &timeo, last);
2440 }
2441
2442 if ((flags & MSG_PEEK) &&
2443 (peek_seq - copied - urg_hole != tp->copied_seq)) {
2444 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2445 current->comm,
2446 task_pid_nr(current));
2447 peek_seq = tp->copied_seq;
2448 }
2449 continue;
2450
2451 found_ok_skb:
2452 /* Ok so how much can we use? */
2453 used = skb->len - offset;
2454 if (len < used)
2455 used = len;
2456
2457 /* Do we have urgent data here? */
2458 if (tp->urg_data) {
2459 u32 urg_offset = tp->urg_seq - *seq;
2460 if (urg_offset < used) {
2461 if (!urg_offset) {
2462 if (!sock_flag(sk, SOCK_URGINLINE)) {
2463 WRITE_ONCE(*seq, *seq + 1);
2464 urg_hole++;
2465 offset++;
2466 used--;
2467 if (!used)
2468 goto skip_copy;
2469 }
2470 } else
2471 used = urg_offset;
2472 }
2473 }
2474
2475 if (!(flags & MSG_TRUNC)) {
2476 err = skb_copy_datagram_msg(skb, offset, msg, used);
2477 if (err) {
2478 /* Exception. Bailout! */
2479 if (!copied)
2480 copied = -EFAULT;
2481 break;
2482 }
2483 }
2484
2485 WRITE_ONCE(*seq, *seq + used);
2486 copied += used;
2487 len -= used;
2488
2489 tcp_rcv_space_adjust(sk);
2490
2491 skip_copy:
2492 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2493 tp->urg_data = 0;
2494 tcp_fast_path_check(sk);
2495 }
2496
2497 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2498 tcp_update_recv_tstamps(skb, tss);
2499 *cmsg_flags |= TCP_CMSG_TS;
2500 }
2501
2502 if (used + offset < skb->len)
2503 continue;
2504
2505 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2506 goto found_fin_ok;
2507 if (!(flags & MSG_PEEK))
2508 sk_eat_skb(sk, skb);
2509 continue;
2510
2511 found_fin_ok:
2512 /* Process the FIN. */
2513 WRITE_ONCE(*seq, *seq + 1);
2514 if (!(flags & MSG_PEEK))
2515 sk_eat_skb(sk, skb);
2516 break;
2517 } while (len > 0);
2518
2519 /* According to UNIX98, msg_name/msg_namelen are ignored
2520 * on connected socket. I was just happy when found this 8) --ANK
2521 */
2522
2523 /* Clean up data we have read: This will do ACK frames. */
2524 tcp_cleanup_rbuf(sk, copied);
2525 return copied;
2526
2527 out:
2528 return err;
2529
2530 recv_urg:
2531 err = tcp_recv_urg(sk, msg, len, flags);
2532 goto out;
2533
2534 recv_sndq:
2535 err = tcp_peek_sndq(sk, msg, len);
2536 goto out;
2537 }
2538
2539 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
2540 int flags, int *addr_len)
2541 {
2542 int cmsg_flags = 0, ret, inq;
2543 struct scm_timestamping_internal tss;
2544
2545 if (unlikely(flags & MSG_ERRQUEUE))
2546 return inet_recv_error(sk, msg, len, addr_len);
2547
2548 if (sk_can_busy_loop(sk) &&
2549 skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2550 sk->sk_state == TCP_ESTABLISHED)
2551 sk_busy_loop(sk, nonblock);
2552
2553 lock_sock(sk);
2554 ret = tcp_recvmsg_locked(sk, msg, len, nonblock, flags, &tss,
2555 &cmsg_flags);
2556 release_sock(sk);
2557
2558 if (cmsg_flags && ret >= 0) {
2559 if (cmsg_flags & TCP_CMSG_TS)
2560 tcp_recv_timestamp(msg, sk, &tss);
2561 if (cmsg_flags & TCP_CMSG_INQ) {
2562 inq = tcp_inq_hint(sk);
2563 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2564 }
2565 }
2566 return ret;
2567 }
2568 EXPORT_SYMBOL(tcp_recvmsg);
2569
2570 void tcp_set_state(struct sock *sk, int state)
2571 {
2572 int oldstate = sk->sk_state;
2573
2574 /* We defined a new enum for TCP states that are exported in BPF
2575 * so as not force the internal TCP states to be frozen. The
2576 * following checks will detect if an internal state value ever
2577 * differs from the BPF value. If this ever happens, then we will
2578 * need to remap the internal value to the BPF value before calling
2579 * tcp_call_bpf_2arg.
2580 */
2581 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2582 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2583 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2584 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2585 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2586 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2587 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2588 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2589 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2590 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2591 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2592 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2593 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2594
2595 /* bpf uapi header bpf.h defines an anonymous enum with values
2596 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2597 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2598 * But clang built vmlinux does not have this enum in DWARF
2599 * since clang removes the above code before generating IR/debuginfo.
2600 * Let us explicitly emit the type debuginfo to ensure the
2601 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2602 * regardless of which compiler is used.
2603 */
2604 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2605
2606 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2607 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2608
2609 switch (state) {
2610 case TCP_ESTABLISHED:
2611 if (oldstate != TCP_ESTABLISHED)
2612 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2613 break;
2614
2615 case TCP_CLOSE:
2616 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2617 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2618
2619 sk->sk_prot->unhash(sk);
2620 if (inet_csk(sk)->icsk_bind_hash &&
2621 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2622 inet_put_port(sk);
2623 fallthrough;
2624 default:
2625 if (oldstate == TCP_ESTABLISHED)
2626 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2627 }
2628
2629 /* Change state AFTER socket is unhashed to avoid closed
2630 * socket sitting in hash tables.
2631 */
2632 inet_sk_state_store(sk, state);
2633 }
2634 EXPORT_SYMBOL_GPL(tcp_set_state);
2635
2636 /*
2637 * State processing on a close. This implements the state shift for
2638 * sending our FIN frame. Note that we only send a FIN for some
2639 * states. A shutdown() may have already sent the FIN, or we may be
2640 * closed.
2641 */
2642
2643 static const unsigned char new_state[16] = {
2644 /* current state: new state: action: */
2645 [0 /* (Invalid) */] = TCP_CLOSE,
2646 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2647 [TCP_SYN_SENT] = TCP_CLOSE,
2648 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2649 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2650 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2651 [TCP_TIME_WAIT] = TCP_CLOSE,
2652 [TCP_CLOSE] = TCP_CLOSE,
2653 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2654 [TCP_LAST_ACK] = TCP_LAST_ACK,
2655 [TCP_LISTEN] = TCP_CLOSE,
2656 [TCP_CLOSING] = TCP_CLOSING,
2657 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2658 };
2659
2660 static int tcp_close_state(struct sock *sk)
2661 {
2662 int next = (int)new_state[sk->sk_state];
2663 int ns = next & TCP_STATE_MASK;
2664
2665 tcp_set_state(sk, ns);
2666
2667 return next & TCP_ACTION_FIN;
2668 }
2669
2670 /*
2671 * Shutdown the sending side of a connection. Much like close except
2672 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2673 */
2674
2675 void tcp_shutdown(struct sock *sk, int how)
2676 {
2677 /* We need to grab some memory, and put together a FIN,
2678 * and then put it into the queue to be sent.
2679 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2680 */
2681 if (!(how & SEND_SHUTDOWN))
2682 return;
2683
2684 /* If we've already sent a FIN, or it's a closed state, skip this. */
2685 if ((1 << sk->sk_state) &
2686 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2687 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2688 /* Clear out any half completed packets. FIN if needed. */
2689 if (tcp_close_state(sk))
2690 tcp_send_fin(sk);
2691 }
2692 }
2693 EXPORT_SYMBOL(tcp_shutdown);
2694
2695 int tcp_orphan_count_sum(void)
2696 {
2697 int i, total = 0;
2698
2699 for_each_possible_cpu(i)
2700 total += per_cpu(tcp_orphan_count, i);
2701
2702 return max(total, 0);
2703 }
2704
2705 static int tcp_orphan_cache;
2706 static struct timer_list tcp_orphan_timer;
2707 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2708
2709 static void tcp_orphan_update(struct timer_list *unused)
2710 {
2711 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2712 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2713 }
2714
2715 static bool tcp_too_many_orphans(int shift)
2716 {
2717 return READ_ONCE(tcp_orphan_cache) << shift > sysctl_tcp_max_orphans;
2718 }
2719
2720 bool tcp_check_oom(struct sock *sk, int shift)
2721 {
2722 bool too_many_orphans, out_of_socket_memory;
2723
2724 too_many_orphans = tcp_too_many_orphans(shift);
2725 out_of_socket_memory = tcp_out_of_memory(sk);
2726
2727 if (too_many_orphans)
2728 net_info_ratelimited("too many orphaned sockets\n");
2729 if (out_of_socket_memory)
2730 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2731 return too_many_orphans || out_of_socket_memory;
2732 }
2733
2734 void __tcp_close(struct sock *sk, long timeout)
2735 {
2736 struct sk_buff *skb;
2737 int data_was_unread = 0;
2738 int state;
2739
2740 sk->sk_shutdown = SHUTDOWN_MASK;
2741
2742 if (sk->sk_state == TCP_LISTEN) {
2743 tcp_set_state(sk, TCP_CLOSE);
2744
2745 /* Special case. */
2746 inet_csk_listen_stop(sk);
2747
2748 goto adjudge_to_death;
2749 }
2750
2751 /* We need to flush the recv. buffs. We do this only on the
2752 * descriptor close, not protocol-sourced closes, because the
2753 * reader process may not have drained the data yet!
2754 */
2755 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2756 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2757
2758 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2759 len--;
2760 data_was_unread += len;
2761 __kfree_skb(skb);
2762 }
2763
2764 sk_mem_reclaim(sk);
2765
2766 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2767 if (sk->sk_state == TCP_CLOSE)
2768 goto adjudge_to_death;
2769
2770 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2771 * data was lost. To witness the awful effects of the old behavior of
2772 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2773 * GET in an FTP client, suspend the process, wait for the client to
2774 * advertise a zero window, then kill -9 the FTP client, wheee...
2775 * Note: timeout is always zero in such a case.
2776 */
2777 if (unlikely(tcp_sk(sk)->repair)) {
2778 sk->sk_prot->disconnect(sk, 0);
2779 } else if (data_was_unread) {
2780 /* Unread data was tossed, zap the connection. */
2781 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2782 tcp_set_state(sk, TCP_CLOSE);
2783 tcp_send_active_reset(sk, sk->sk_allocation);
2784 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2785 /* Check zero linger _after_ checking for unread data. */
2786 sk->sk_prot->disconnect(sk, 0);
2787 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2788 } else if (tcp_close_state(sk)) {
2789 /* We FIN if the application ate all the data before
2790 * zapping the connection.
2791 */
2792
2793 /* RED-PEN. Formally speaking, we have broken TCP state
2794 * machine. State transitions:
2795 *
2796 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2797 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2798 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2799 *
2800 * are legal only when FIN has been sent (i.e. in window),
2801 * rather than queued out of window. Purists blame.
2802 *
2803 * F.e. "RFC state" is ESTABLISHED,
2804 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2805 *
2806 * The visible declinations are that sometimes
2807 * we enter time-wait state, when it is not required really
2808 * (harmless), do not send active resets, when they are
2809 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2810 * they look as CLOSING or LAST_ACK for Linux)
2811 * Probably, I missed some more holelets.
2812 * --ANK
2813 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2814 * in a single packet! (May consider it later but will
2815 * probably need API support or TCP_CORK SYN-ACK until
2816 * data is written and socket is closed.)
2817 */
2818 tcp_send_fin(sk);
2819 }
2820
2821 sk_stream_wait_close(sk, timeout);
2822
2823 adjudge_to_death:
2824 state = sk->sk_state;
2825 sock_hold(sk);
2826 sock_orphan(sk);
2827
2828 local_bh_disable();
2829 bh_lock_sock(sk);
2830 /* remove backlog if any, without releasing ownership. */
2831 __release_sock(sk);
2832
2833 this_cpu_inc(tcp_orphan_count);
2834
2835 /* Have we already been destroyed by a softirq or backlog? */
2836 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2837 goto out;
2838
2839 /* This is a (useful) BSD violating of the RFC. There is a
2840 * problem with TCP as specified in that the other end could
2841 * keep a socket open forever with no application left this end.
2842 * We use a 1 minute timeout (about the same as BSD) then kill
2843 * our end. If they send after that then tough - BUT: long enough
2844 * that we won't make the old 4*rto = almost no time - whoops
2845 * reset mistake.
2846 *
2847 * Nope, it was not mistake. It is really desired behaviour
2848 * f.e. on http servers, when such sockets are useless, but
2849 * consume significant resources. Let's do it with special
2850 * linger2 option. --ANK
2851 */
2852
2853 if (sk->sk_state == TCP_FIN_WAIT2) {
2854 struct tcp_sock *tp = tcp_sk(sk);
2855 if (tp->linger2 < 0) {
2856 tcp_set_state(sk, TCP_CLOSE);
2857 tcp_send_active_reset(sk, GFP_ATOMIC);
2858 __NET_INC_STATS(sock_net(sk),
2859 LINUX_MIB_TCPABORTONLINGER);
2860 } else {
2861 const int tmo = tcp_fin_time(sk);
2862
2863 if (tmo > TCP_TIMEWAIT_LEN) {
2864 inet_csk_reset_keepalive_timer(sk,
2865 tmo - TCP_TIMEWAIT_LEN);
2866 } else {
2867 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2868 goto out;
2869 }
2870 }
2871 }
2872 if (sk->sk_state != TCP_CLOSE) {
2873 sk_mem_reclaim(sk);
2874 if (tcp_check_oom(sk, 0)) {
2875 tcp_set_state(sk, TCP_CLOSE);
2876 tcp_send_active_reset(sk, GFP_ATOMIC);
2877 __NET_INC_STATS(sock_net(sk),
2878 LINUX_MIB_TCPABORTONMEMORY);
2879 } else if (!check_net(sock_net(sk))) {
2880 /* Not possible to send reset; just close */
2881 tcp_set_state(sk, TCP_CLOSE);
2882 }
2883 }
2884
2885 if (sk->sk_state == TCP_CLOSE) {
2886 struct request_sock *req;
2887
2888 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2889 lockdep_sock_is_held(sk));
2890 /* We could get here with a non-NULL req if the socket is
2891 * aborted (e.g., closed with unread data) before 3WHS
2892 * finishes.
2893 */
2894 if (req)
2895 reqsk_fastopen_remove(sk, req, false);
2896 inet_csk_destroy_sock(sk);
2897 }
2898 /* Otherwise, socket is reprieved until protocol close. */
2899
2900 out:
2901 bh_unlock_sock(sk);
2902 local_bh_enable();
2903 }
2904
2905 void tcp_close(struct sock *sk, long timeout)
2906 {
2907 lock_sock(sk);
2908 __tcp_close(sk, timeout);
2909 release_sock(sk);
2910 sock_put(sk);
2911 }
2912 EXPORT_SYMBOL(tcp_close);
2913
2914 /* These states need RST on ABORT according to RFC793 */
2915
2916 static inline bool tcp_need_reset(int state)
2917 {
2918 return (1 << state) &
2919 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2920 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2921 }
2922
2923 static void tcp_rtx_queue_purge(struct sock *sk)
2924 {
2925 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2926
2927 tcp_sk(sk)->highest_sack = NULL;
2928 while (p) {
2929 struct sk_buff *skb = rb_to_skb(p);
2930
2931 p = rb_next(p);
2932 /* Since we are deleting whole queue, no need to
2933 * list_del(&skb->tcp_tsorted_anchor)
2934 */
2935 tcp_rtx_queue_unlink(skb, sk);
2936 sk_wmem_free_skb(sk, skb);
2937 }
2938 }
2939
2940 void tcp_write_queue_purge(struct sock *sk)
2941 {
2942 struct sk_buff *skb;
2943
2944 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2945 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2946 tcp_skb_tsorted_anchor_cleanup(skb);
2947 sk_wmem_free_skb(sk, skb);
2948 }
2949 tcp_rtx_queue_purge(sk);
2950 skb = sk->sk_tx_skb_cache;
2951 if (skb) {
2952 __kfree_skb(skb);
2953 sk->sk_tx_skb_cache = NULL;
2954 }
2955 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2956 sk_mem_reclaim(sk);
2957 tcp_clear_all_retrans_hints(tcp_sk(sk));
2958 tcp_sk(sk)->packets_out = 0;
2959 inet_csk(sk)->icsk_backoff = 0;
2960 }
2961
2962 int tcp_disconnect(struct sock *sk, int flags)
2963 {
2964 struct inet_sock *inet = inet_sk(sk);
2965 struct inet_connection_sock *icsk = inet_csk(sk);
2966 struct tcp_sock *tp = tcp_sk(sk);
2967 int old_state = sk->sk_state;
2968 u32 seq;
2969
2970 if (old_state != TCP_CLOSE)
2971 tcp_set_state(sk, TCP_CLOSE);
2972
2973 /* ABORT function of RFC793 */
2974 if (old_state == TCP_LISTEN) {
2975 inet_csk_listen_stop(sk);
2976 } else if (unlikely(tp->repair)) {
2977 sk->sk_err = ECONNABORTED;
2978 } else if (tcp_need_reset(old_state) ||
2979 (tp->snd_nxt != tp->write_seq &&
2980 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2981 /* The last check adjusts for discrepancy of Linux wrt. RFC
2982 * states
2983 */
2984 tcp_send_active_reset(sk, gfp_any());
2985 sk->sk_err = ECONNRESET;
2986 } else if (old_state == TCP_SYN_SENT)
2987 sk->sk_err = ECONNRESET;
2988
2989 tcp_clear_xmit_timers(sk);
2990 __skb_queue_purge(&sk->sk_receive_queue);
2991 if (sk->sk_rx_skb_cache) {
2992 __kfree_skb(sk->sk_rx_skb_cache);
2993 sk->sk_rx_skb_cache = NULL;
2994 }
2995 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2996 tp->urg_data = 0;
2997 tcp_write_queue_purge(sk);
2998 tcp_fastopen_active_disable_ofo_check(sk);
2999 skb_rbtree_purge(&tp->out_of_order_queue);
3000
3001 inet->inet_dport = 0;
3002
3003 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
3004 inet_reset_saddr(sk);
3005
3006 sk->sk_shutdown = 0;
3007 sock_reset_flag(sk, SOCK_DONE);
3008 tp->srtt_us = 0;
3009 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3010 tp->rcv_rtt_last_tsecr = 0;
3011
3012 seq = tp->write_seq + tp->max_window + 2;
3013 if (!seq)
3014 seq = 1;
3015 WRITE_ONCE(tp->write_seq, seq);
3016
3017 icsk->icsk_backoff = 0;
3018 icsk->icsk_probes_out = 0;
3019 icsk->icsk_probes_tstamp = 0;
3020 icsk->icsk_rto = TCP_TIMEOUT_INIT;
3021 icsk->icsk_rto_min = TCP_RTO_MIN;
3022 icsk->icsk_delack_max = TCP_DELACK_MAX;
3023 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3024 tp->snd_cwnd = TCP_INIT_CWND;
3025 tp->snd_cwnd_cnt = 0;
3026 tp->window_clamp = 0;
3027 tp->delivered = 0;
3028 tp->delivered_ce = 0;
3029 if (icsk->icsk_ca_ops->release)
3030 icsk->icsk_ca_ops->release(sk);
3031 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3032 icsk->icsk_ca_initialized = 0;
3033 tcp_set_ca_state(sk, TCP_CA_Open);
3034 tp->is_sack_reneg = 0;
3035 tcp_clear_retrans(tp);
3036 tp->total_retrans = 0;
3037 inet_csk_delack_init(sk);
3038 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3039 * issue in __tcp_select_window()
3040 */
3041 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3042 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3043 __sk_dst_reset(sk);
3044 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3045 tcp_saved_syn_free(tp);
3046 tp->compressed_ack = 0;
3047 tp->segs_in = 0;
3048 tp->segs_out = 0;
3049 tp->bytes_sent = 0;
3050 tp->bytes_acked = 0;
3051 tp->bytes_received = 0;
3052 tp->bytes_retrans = 0;
3053 tp->data_segs_in = 0;
3054 tp->data_segs_out = 0;
3055 tp->duplicate_sack[0].start_seq = 0;
3056 tp->duplicate_sack[0].end_seq = 0;
3057 tp->dsack_dups = 0;
3058 tp->reord_seen = 0;
3059 tp->retrans_out = 0;
3060 tp->sacked_out = 0;
3061 tp->tlp_high_seq = 0;
3062 tp->last_oow_ack_time = 0;
3063 /* There's a bubble in the pipe until at least the first ACK. */
3064 tp->app_limited = ~0U;
3065 tp->rack.mstamp = 0;
3066 tp->rack.advanced = 0;
3067 tp->rack.reo_wnd_steps = 1;
3068 tp->rack.last_delivered = 0;
3069 tp->rack.reo_wnd_persist = 0;
3070 tp->rack.dsack_seen = 0;
3071 tp->syn_data_acked = 0;
3072 tp->rx_opt.saw_tstamp = 0;
3073 tp->rx_opt.dsack = 0;
3074 tp->rx_opt.num_sacks = 0;
3075 tp->rcv_ooopack = 0;
3076
3077
3078 /* Clean up fastopen related fields */
3079 tcp_free_fastopen_req(tp);
3080 inet->defer_connect = 0;
3081 tp->fastopen_client_fail = 0;
3082
3083 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3084
3085 if (sk->sk_frag.page) {
3086 put_page(sk->sk_frag.page);
3087 sk->sk_frag.page = NULL;
3088 sk->sk_frag.offset = 0;
3089 }
3090
3091 sk_error_report(sk);
3092 return 0;
3093 }
3094 EXPORT_SYMBOL(tcp_disconnect);
3095
3096 static inline bool tcp_can_repair_sock(const struct sock *sk)
3097 {
3098 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3099 (sk->sk_state != TCP_LISTEN);
3100 }
3101
3102 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3103 {
3104 struct tcp_repair_window opt;
3105
3106 if (!tp->repair)
3107 return -EPERM;
3108
3109 if (len != sizeof(opt))
3110 return -EINVAL;
3111
3112 if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3113 return -EFAULT;
3114
3115 if (opt.max_window < opt.snd_wnd)
3116 return -EINVAL;
3117
3118 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3119 return -EINVAL;
3120
3121 if (after(opt.rcv_wup, tp->rcv_nxt))
3122 return -EINVAL;
3123
3124 tp->snd_wl1 = opt.snd_wl1;
3125 tp->snd_wnd = opt.snd_wnd;
3126 tp->max_window = opt.max_window;
3127
3128 tp->rcv_wnd = opt.rcv_wnd;
3129 tp->rcv_wup = opt.rcv_wup;
3130
3131 return 0;
3132 }
3133
3134 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3135 unsigned int len)
3136 {
3137 struct tcp_sock *tp = tcp_sk(sk);
3138 struct tcp_repair_opt opt;
3139 size_t offset = 0;
3140
3141 while (len >= sizeof(opt)) {
3142 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3143 return -EFAULT;
3144
3145 offset += sizeof(opt);
3146 len -= sizeof(opt);
3147
3148 switch (opt.opt_code) {
3149 case TCPOPT_MSS:
3150 tp->rx_opt.mss_clamp = opt.opt_val;
3151 tcp_mtup_init(sk);
3152 break;
3153 case TCPOPT_WINDOW:
3154 {
3155 u16 snd_wscale = opt.opt_val & 0xFFFF;
3156 u16 rcv_wscale = opt.opt_val >> 16;
3157
3158 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3159 return -EFBIG;
3160
3161 tp->rx_opt.snd_wscale = snd_wscale;
3162 tp->rx_opt.rcv_wscale = rcv_wscale;
3163 tp->rx_opt.wscale_ok = 1;
3164 }
3165 break;
3166 case TCPOPT_SACK_PERM:
3167 if (opt.opt_val != 0)
3168 return -EINVAL;
3169
3170 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3171 break;
3172 case TCPOPT_TIMESTAMP:
3173 if (opt.opt_val != 0)
3174 return -EINVAL;
3175
3176 tp->rx_opt.tstamp_ok = 1;
3177 break;
3178 }
3179 }
3180
3181 return 0;
3182 }
3183
3184 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3185 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3186
3187 static void tcp_enable_tx_delay(void)
3188 {
3189 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3190 static int __tcp_tx_delay_enabled = 0;
3191
3192 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3193 static_branch_enable(&tcp_tx_delay_enabled);
3194 pr_info("TCP_TX_DELAY enabled\n");
3195 }
3196 }
3197 }
3198
3199 /* When set indicates to always queue non-full frames. Later the user clears
3200 * this option and we transmit any pending partial frames in the queue. This is
3201 * meant to be used alongside sendfile() to get properly filled frames when the
3202 * user (for example) must write out headers with a write() call first and then
3203 * use sendfile to send out the data parts.
3204 *
3205 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3206 * TCP_NODELAY.
3207 */
3208 static void __tcp_sock_set_cork(struct sock *sk, bool on)
3209 {
3210 struct tcp_sock *tp = tcp_sk(sk);
3211
3212 if (on) {
3213 tp->nonagle |= TCP_NAGLE_CORK;
3214 } else {
3215 tp->nonagle &= ~TCP_NAGLE_CORK;
3216 if (tp->nonagle & TCP_NAGLE_OFF)
3217 tp->nonagle |= TCP_NAGLE_PUSH;
3218 tcp_push_pending_frames(sk);
3219 }
3220 }
3221
3222 void tcp_sock_set_cork(struct sock *sk, bool on)
3223 {
3224 lock_sock(sk);
3225 __tcp_sock_set_cork(sk, on);
3226 release_sock(sk);
3227 }
3228 EXPORT_SYMBOL(tcp_sock_set_cork);
3229
3230 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3231 * remembered, but it is not activated until cork is cleared.
3232 *
3233 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3234 * even TCP_CORK for currently queued segments.
3235 */
3236 static void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3237 {
3238 if (on) {
3239 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3240 tcp_push_pending_frames(sk);
3241 } else {
3242 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3243 }
3244 }
3245
3246 void tcp_sock_set_nodelay(struct sock *sk)
3247 {
3248 lock_sock(sk);
3249 __tcp_sock_set_nodelay(sk, true);
3250 release_sock(sk);
3251 }
3252 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3253
3254 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3255 {
3256 if (!val) {
3257 inet_csk_enter_pingpong_mode(sk);
3258 return;
3259 }
3260
3261 inet_csk_exit_pingpong_mode(sk);
3262 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3263 inet_csk_ack_scheduled(sk)) {
3264 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3265 tcp_cleanup_rbuf(sk, 1);
3266 if (!(val & 1))
3267 inet_csk_enter_pingpong_mode(sk);
3268 }
3269 }
3270
3271 void tcp_sock_set_quickack(struct sock *sk, int val)
3272 {
3273 lock_sock(sk);
3274 __tcp_sock_set_quickack(sk, val);
3275 release_sock(sk);
3276 }
3277 EXPORT_SYMBOL(tcp_sock_set_quickack);
3278
3279 int tcp_sock_set_syncnt(struct sock *sk, int val)
3280 {
3281 if (val < 1 || val > MAX_TCP_SYNCNT)
3282 return -EINVAL;
3283
3284 lock_sock(sk);
3285 inet_csk(sk)->icsk_syn_retries = val;
3286 release_sock(sk);
3287 return 0;
3288 }
3289 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3290
3291 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3292 {
3293 lock_sock(sk);
3294 inet_csk(sk)->icsk_user_timeout = val;
3295 release_sock(sk);
3296 }
3297 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3298
3299 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3300 {
3301 struct tcp_sock *tp = tcp_sk(sk);
3302
3303 if (val < 1 || val > MAX_TCP_KEEPIDLE)
3304 return -EINVAL;
3305
3306 tp->keepalive_time = val * HZ;
3307 if (sock_flag(sk, SOCK_KEEPOPEN) &&
3308 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3309 u32 elapsed = keepalive_time_elapsed(tp);
3310
3311 if (tp->keepalive_time > elapsed)
3312 elapsed = tp->keepalive_time - elapsed;
3313 else
3314 elapsed = 0;
3315 inet_csk_reset_keepalive_timer(sk, elapsed);
3316 }
3317
3318 return 0;
3319 }
3320
3321 int tcp_sock_set_keepidle(struct sock *sk, int val)
3322 {
3323 int err;
3324
3325 lock_sock(sk);
3326 err = tcp_sock_set_keepidle_locked(sk, val);
3327 release_sock(sk);
3328 return err;
3329 }
3330 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3331
3332 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3333 {
3334 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3335 return -EINVAL;
3336
3337 lock_sock(sk);
3338 tcp_sk(sk)->keepalive_intvl = val * HZ;
3339 release_sock(sk);
3340 return 0;
3341 }
3342 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3343
3344 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3345 {
3346 if (val < 1 || val > MAX_TCP_KEEPCNT)
3347 return -EINVAL;
3348
3349 lock_sock(sk);
3350 tcp_sk(sk)->keepalive_probes = val;
3351 release_sock(sk);
3352 return 0;
3353 }
3354 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3355
3356 int tcp_set_window_clamp(struct sock *sk, int val)
3357 {
3358 struct tcp_sock *tp = tcp_sk(sk);
3359
3360 if (!val) {
3361 if (sk->sk_state != TCP_CLOSE)
3362 return -EINVAL;
3363 tp->window_clamp = 0;
3364 } else {
3365 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3366 SOCK_MIN_RCVBUF / 2 : val;
3367 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3368 }
3369 return 0;
3370 }
3371
3372 /*
3373 * Socket option code for TCP.
3374 */
3375 static int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3376 sockptr_t optval, unsigned int optlen)
3377 {
3378 struct tcp_sock *tp = tcp_sk(sk);
3379 struct inet_connection_sock *icsk = inet_csk(sk);
3380 struct net *net = sock_net(sk);
3381 int val;
3382 int err = 0;
3383
3384 /* These are data/string values, all the others are ints */
3385 switch (optname) {
3386 case TCP_CONGESTION: {
3387 char name[TCP_CA_NAME_MAX];
3388
3389 if (optlen < 1)
3390 return -EINVAL;
3391
3392 val = strncpy_from_sockptr(name, optval,
3393 min_t(long, TCP_CA_NAME_MAX-1, optlen));
3394 if (val < 0)
3395 return -EFAULT;
3396 name[val] = 0;
3397
3398 lock_sock(sk);
3399 err = tcp_set_congestion_control(sk, name, true,
3400 ns_capable(sock_net(sk)->user_ns,
3401 CAP_NET_ADMIN));
3402 release_sock(sk);
3403 return err;
3404 }
3405 case TCP_ULP: {
3406 char name[TCP_ULP_NAME_MAX];
3407
3408 if (optlen < 1)
3409 return -EINVAL;
3410
3411 val = strncpy_from_sockptr(name, optval,
3412 min_t(long, TCP_ULP_NAME_MAX - 1,
3413 optlen));
3414 if (val < 0)
3415 return -EFAULT;
3416 name[val] = 0;
3417
3418 lock_sock(sk);
3419 err = tcp_set_ulp(sk, name);
3420 release_sock(sk);
3421 return err;
3422 }
3423 case TCP_FASTOPEN_KEY: {
3424 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3425 __u8 *backup_key = NULL;
3426
3427 /* Allow a backup key as well to facilitate key rotation
3428 * First key is the active one.
3429 */
3430 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3431 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3432 return -EINVAL;
3433
3434 if (copy_from_sockptr(key, optval, optlen))
3435 return -EFAULT;
3436
3437 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3438 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3439
3440 return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3441 }
3442 default:
3443 /* fallthru */
3444 break;
3445 }
3446
3447 if (optlen < sizeof(int))
3448 return -EINVAL;
3449
3450 if (copy_from_sockptr(&val, optval, sizeof(val)))
3451 return -EFAULT;
3452
3453 lock_sock(sk);
3454
3455 switch (optname) {
3456 case TCP_MAXSEG:
3457 /* Values greater than interface MTU won't take effect. However
3458 * at the point when this call is done we typically don't yet
3459 * know which interface is going to be used
3460 */
3461 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3462 err = -EINVAL;
3463 break;
3464 }
3465 tp->rx_opt.user_mss = val;
3466 break;
3467
3468 case TCP_NODELAY:
3469 __tcp_sock_set_nodelay(sk, val);
3470 break;
3471
3472 case TCP_THIN_LINEAR_TIMEOUTS:
3473 if (val < 0 || val > 1)
3474 err = -EINVAL;
3475 else
3476 tp->thin_lto = val;
3477 break;
3478
3479 case TCP_THIN_DUPACK:
3480 if (val < 0 || val > 1)
3481 err = -EINVAL;
3482 break;
3483
3484 case TCP_REPAIR:
3485 if (!tcp_can_repair_sock(sk))
3486 err = -EPERM;
3487 else if (val == TCP_REPAIR_ON) {
3488 tp->repair = 1;
3489 sk->sk_reuse = SK_FORCE_REUSE;
3490 tp->repair_queue = TCP_NO_QUEUE;
3491 } else if (val == TCP_REPAIR_OFF) {
3492 tp->repair = 0;
3493 sk->sk_reuse = SK_NO_REUSE;
3494 tcp_send_window_probe(sk);
3495 } else if (val == TCP_REPAIR_OFF_NO_WP) {
3496 tp->repair = 0;
3497 sk->sk_reuse = SK_NO_REUSE;
3498 } else
3499 err = -EINVAL;
3500
3501 break;
3502
3503 case TCP_REPAIR_QUEUE:
3504 if (!tp->repair)
3505 err = -EPERM;
3506 else if ((unsigned int)val < TCP_QUEUES_NR)
3507 tp->repair_queue = val;
3508 else
3509 err = -EINVAL;
3510 break;
3511
3512 case TCP_QUEUE_SEQ:
3513 if (sk->sk_state != TCP_CLOSE) {
3514 err = -EPERM;
3515 } else if (tp->repair_queue == TCP_SEND_QUEUE) {
3516 if (!tcp_rtx_queue_empty(sk))
3517 err = -EPERM;
3518 else
3519 WRITE_ONCE(tp->write_seq, val);
3520 } else if (tp->repair_queue == TCP_RECV_QUEUE) {
3521 if (tp->rcv_nxt != tp->copied_seq) {
3522 err = -EPERM;
3523 } else {
3524 WRITE_ONCE(tp->rcv_nxt, val);
3525 WRITE_ONCE(tp->copied_seq, val);
3526 }
3527 } else {
3528 err = -EINVAL;
3529 }
3530 break;
3531
3532 case TCP_REPAIR_OPTIONS:
3533 if (!tp->repair)
3534 err = -EINVAL;
3535 else if (sk->sk_state == TCP_ESTABLISHED)
3536 err = tcp_repair_options_est(sk, optval, optlen);
3537 else
3538 err = -EPERM;
3539 break;
3540
3541 case TCP_CORK:
3542 __tcp_sock_set_cork(sk, val);
3543 break;
3544
3545 case TCP_KEEPIDLE:
3546 err = tcp_sock_set_keepidle_locked(sk, val);
3547 break;
3548 case TCP_KEEPINTVL:
3549 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3550 err = -EINVAL;
3551 else
3552 tp->keepalive_intvl = val * HZ;
3553 break;
3554 case TCP_KEEPCNT:
3555 if (val < 1 || val > MAX_TCP_KEEPCNT)
3556 err = -EINVAL;
3557 else
3558 tp->keepalive_probes = val;
3559 break;
3560 case TCP_SYNCNT:
3561 if (val < 1 || val > MAX_TCP_SYNCNT)
3562 err = -EINVAL;
3563 else
3564 icsk->icsk_syn_retries = val;
3565 break;
3566
3567 case TCP_SAVE_SYN:
3568 /* 0: disable, 1: enable, 2: start from ether_header */
3569 if (val < 0 || val > 2)
3570 err = -EINVAL;
3571 else
3572 tp->save_syn = val;
3573 break;
3574
3575 case TCP_LINGER2:
3576 if (val < 0)
3577 tp->linger2 = -1;
3578 else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3579 tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3580 else
3581 tp->linger2 = val * HZ;
3582 break;
3583
3584 case TCP_DEFER_ACCEPT:
3585 /* Translate value in seconds to number of retransmits */
3586 icsk->icsk_accept_queue.rskq_defer_accept =
3587 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3588 TCP_RTO_MAX / HZ);
3589 break;
3590
3591 case TCP_WINDOW_CLAMP:
3592 err = tcp_set_window_clamp(sk, val);
3593 break;
3594
3595 case TCP_QUICKACK:
3596 __tcp_sock_set_quickack(sk, val);
3597 break;
3598
3599 #ifdef CONFIG_TCP_MD5SIG
3600 case TCP_MD5SIG:
3601 case TCP_MD5SIG_EXT:
3602 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3603 break;
3604 #endif
3605 case TCP_USER_TIMEOUT:
3606 /* Cap the max time in ms TCP will retry or probe the window
3607 * before giving up and aborting (ETIMEDOUT) a connection.
3608 */
3609 if (val < 0)
3610 err = -EINVAL;
3611 else
3612 icsk->icsk_user_timeout = val;
3613 break;
3614
3615 case TCP_FASTOPEN:
3616 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3617 TCPF_LISTEN))) {
3618 tcp_fastopen_init_key_once(net);
3619
3620 fastopen_queue_tune(sk, val);
3621 } else {
3622 err = -EINVAL;
3623 }
3624 break;
3625 case TCP_FASTOPEN_CONNECT:
3626 if (val > 1 || val < 0) {
3627 err = -EINVAL;
3628 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
3629 if (sk->sk_state == TCP_CLOSE)
3630 tp->fastopen_connect = val;
3631 else
3632 err = -EINVAL;
3633 } else {
3634 err = -EOPNOTSUPP;
3635 }
3636 break;
3637 case TCP_FASTOPEN_NO_COOKIE:
3638 if (val > 1 || val < 0)
3639 err = -EINVAL;
3640 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3641 err = -EINVAL;
3642 else
3643 tp->fastopen_no_cookie = val;
3644 break;
3645 case TCP_TIMESTAMP:
3646 if (!tp->repair)
3647 err = -EPERM;
3648 else
3649 tp->tsoffset = val - tcp_time_stamp_raw();
3650 break;
3651 case TCP_REPAIR_WINDOW:
3652 err = tcp_repair_set_window(tp, optval, optlen);
3653 break;
3654 case TCP_NOTSENT_LOWAT:
3655 tp->notsent_lowat = val;
3656 sk->sk_write_space(sk);
3657 break;
3658 case TCP_INQ:
3659 if (val > 1 || val < 0)
3660 err = -EINVAL;
3661 else
3662 tp->recvmsg_inq = val;
3663 break;
3664 case TCP_TX_DELAY:
3665 if (val)
3666 tcp_enable_tx_delay();
3667 tp->tcp_tx_delay = val;
3668 break;
3669 default:
3670 err = -ENOPROTOOPT;
3671 break;
3672 }
3673
3674 release_sock(sk);
3675 return err;
3676 }
3677
3678 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3679 unsigned int optlen)
3680 {
3681 const struct inet_connection_sock *icsk = inet_csk(sk);
3682
3683 if (level != SOL_TCP)
3684 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3685 optval, optlen);
3686 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3687 }
3688 EXPORT_SYMBOL(tcp_setsockopt);
3689
3690 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3691 struct tcp_info *info)
3692 {
3693 u64 stats[__TCP_CHRONO_MAX], total = 0;
3694 enum tcp_chrono i;
3695
3696 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3697 stats[i] = tp->chrono_stat[i - 1];
3698 if (i == tp->chrono_type)
3699 stats[i] += tcp_jiffies32 - tp->chrono_start;
3700 stats[i] *= USEC_PER_SEC / HZ;
3701 total += stats[i];
3702 }
3703
3704 info->tcpi_busy_time = total;
3705 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3706 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3707 }
3708
3709 /* Return information about state of tcp endpoint in API format. */
3710 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3711 {
3712 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3713 const struct inet_connection_sock *icsk = inet_csk(sk);
3714 unsigned long rate;
3715 u32 now;
3716 u64 rate64;
3717 bool slow;
3718
3719 memset(info, 0, sizeof(*info));
3720 if (sk->sk_type != SOCK_STREAM)
3721 return;
3722
3723 info->tcpi_state = inet_sk_state_load(sk);
3724
3725 /* Report meaningful fields for all TCP states, including listeners */
3726 rate = READ_ONCE(sk->sk_pacing_rate);
3727 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3728 info->tcpi_pacing_rate = rate64;
3729
3730 rate = READ_ONCE(sk->sk_max_pacing_rate);
3731 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3732 info->tcpi_max_pacing_rate = rate64;
3733
3734 info->tcpi_reordering = tp->reordering;
3735 info->tcpi_snd_cwnd = tp->snd_cwnd;
3736
3737 if (info->tcpi_state == TCP_LISTEN) {
3738 /* listeners aliased fields :
3739 * tcpi_unacked -> Number of children ready for accept()
3740 * tcpi_sacked -> max backlog
3741 */
3742 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3743 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3744 return;
3745 }
3746
3747 slow = lock_sock_fast(sk);
3748
3749 info->tcpi_ca_state = icsk->icsk_ca_state;
3750 info->tcpi_retransmits = icsk->icsk_retransmits;
3751 info->tcpi_probes = icsk->icsk_probes_out;
3752 info->tcpi_backoff = icsk->icsk_backoff;
3753
3754 if (tp->rx_opt.tstamp_ok)
3755 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3756 if (tcp_is_sack(tp))
3757 info->tcpi_options |= TCPI_OPT_SACK;
3758 if (tp->rx_opt.wscale_ok) {
3759 info->tcpi_options |= TCPI_OPT_WSCALE;
3760 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3761 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3762 }
3763
3764 if (tp->ecn_flags & TCP_ECN_OK)
3765 info->tcpi_options |= TCPI_OPT_ECN;
3766 if (tp->ecn_flags & TCP_ECN_SEEN)
3767 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3768 if (tp->syn_data_acked)
3769 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3770
3771 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3772 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3773 info->tcpi_snd_mss = tp->mss_cache;
3774 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3775
3776 info->tcpi_unacked = tp->packets_out;
3777 info->tcpi_sacked = tp->sacked_out;
3778
3779 info->tcpi_lost = tp->lost_out;
3780 info->tcpi_retrans = tp->retrans_out;
3781
3782 now = tcp_jiffies32;
3783 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3784 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3785 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3786
3787 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3788 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3789 info->tcpi_rtt = tp->srtt_us >> 3;
3790 info->tcpi_rttvar = tp->mdev_us >> 2;
3791 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3792 info->tcpi_advmss = tp->advmss;
3793
3794 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3795 info->tcpi_rcv_space = tp->rcvq_space.space;
3796
3797 info->tcpi_total_retrans = tp->total_retrans;
3798
3799 info->tcpi_bytes_acked = tp->bytes_acked;
3800 info->tcpi_bytes_received = tp->bytes_received;
3801 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3802 tcp_get_info_chrono_stats(tp, info);
3803
3804 info->tcpi_segs_out = tp->segs_out;
3805 info->tcpi_segs_in = tp->segs_in;
3806
3807 info->tcpi_min_rtt = tcp_min_rtt(tp);
3808 info->tcpi_data_segs_in = tp->data_segs_in;
3809 info->tcpi_data_segs_out = tp->data_segs_out;
3810
3811 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3812 rate64 = tcp_compute_delivery_rate(tp);
3813 if (rate64)
3814 info->tcpi_delivery_rate = rate64;
3815 info->tcpi_delivered = tp->delivered;
3816 info->tcpi_delivered_ce = tp->delivered_ce;
3817 info->tcpi_bytes_sent = tp->bytes_sent;
3818 info->tcpi_bytes_retrans = tp->bytes_retrans;
3819 info->tcpi_dsack_dups = tp->dsack_dups;
3820 info->tcpi_reord_seen = tp->reord_seen;
3821 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3822 info->tcpi_snd_wnd = tp->snd_wnd;
3823 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3824 unlock_sock_fast(sk, slow);
3825 }
3826 EXPORT_SYMBOL_GPL(tcp_get_info);
3827
3828 static size_t tcp_opt_stats_get_size(void)
3829 {
3830 return
3831 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3832 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3833 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3834 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3835 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3836 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3837 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3838 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3839 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3840 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3841 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3842 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3843 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3844 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3845 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3846 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3847 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3848 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3849 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3850 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3851 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3852 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3853 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3854 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3855 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3856 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3857 0;
3858 }
3859
3860 /* Returns TTL or hop limit of an incoming packet from skb. */
3861 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3862 {
3863 if (skb->protocol == htons(ETH_P_IP))
3864 return ip_hdr(skb)->ttl;
3865 else if (skb->protocol == htons(ETH_P_IPV6))
3866 return ipv6_hdr(skb)->hop_limit;
3867 else
3868 return 0;
3869 }
3870
3871 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3872 const struct sk_buff *orig_skb,
3873 const struct sk_buff *ack_skb)
3874 {
3875 const struct tcp_sock *tp = tcp_sk(sk);
3876 struct sk_buff *stats;
3877 struct tcp_info info;
3878 unsigned long rate;
3879 u64 rate64;
3880
3881 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3882 if (!stats)
3883 return NULL;
3884
3885 tcp_get_info_chrono_stats(tp, &info);
3886 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3887 info.tcpi_busy_time, TCP_NLA_PAD);
3888 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3889 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3890 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3891 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3892 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3893 tp->data_segs_out, TCP_NLA_PAD);
3894 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3895 tp->total_retrans, TCP_NLA_PAD);
3896
3897 rate = READ_ONCE(sk->sk_pacing_rate);
3898 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3899 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3900
3901 rate64 = tcp_compute_delivery_rate(tp);
3902 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3903
3904 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3905 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3906 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3907
3908 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3909 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3910 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3911 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3912 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3913
3914 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3915 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3916
3917 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3918 TCP_NLA_PAD);
3919 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3920 TCP_NLA_PAD);
3921 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3922 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3923 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3924 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3925 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3926 max_t(int, 0, tp->write_seq - tp->snd_nxt));
3927 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3928 TCP_NLA_PAD);
3929 if (ack_skb)
3930 nla_put_u8(stats, TCP_NLA_TTL,
3931 tcp_skb_ttl_or_hop_limit(ack_skb));
3932
3933 return stats;
3934 }
3935
3936 static int do_tcp_getsockopt(struct sock *sk, int level,
3937 int optname, char __user *optval, int __user *optlen)
3938 {
3939 struct inet_connection_sock *icsk = inet_csk(sk);
3940 struct tcp_sock *tp = tcp_sk(sk);
3941 struct net *net = sock_net(sk);
3942 int val, len;
3943
3944 if (get_user(len, optlen))
3945 return -EFAULT;
3946
3947 len = min_t(unsigned int, len, sizeof(int));
3948
3949 if (len < 0)
3950 return -EINVAL;
3951
3952 switch (optname) {
3953 case TCP_MAXSEG:
3954 val = tp->mss_cache;
3955 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3956 val = tp->rx_opt.user_mss;
3957 if (tp->repair)
3958 val = tp->rx_opt.mss_clamp;
3959 break;
3960 case TCP_NODELAY:
3961 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3962 break;
3963 case TCP_CORK:
3964 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3965 break;
3966 case TCP_KEEPIDLE:
3967 val = keepalive_time_when(tp) / HZ;
3968 break;
3969 case TCP_KEEPINTVL:
3970 val = keepalive_intvl_when(tp) / HZ;
3971 break;
3972 case TCP_KEEPCNT:
3973 val = keepalive_probes(tp);
3974 break;
3975 case TCP_SYNCNT:
3976 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3977 break;
3978 case TCP_LINGER2:
3979 val = tp->linger2;
3980 if (val >= 0)
3981 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3982 break;
3983 case TCP_DEFER_ACCEPT:
3984 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3985 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3986 break;
3987 case TCP_WINDOW_CLAMP:
3988 val = tp->window_clamp;
3989 break;
3990 case TCP_INFO: {
3991 struct tcp_info info;
3992
3993 if (get_user(len, optlen))
3994 return -EFAULT;
3995
3996 tcp_get_info(sk, &info);
3997
3998 len = min_t(unsigned int, len, sizeof(info));
3999 if (put_user(len, optlen))
4000 return -EFAULT;
4001 if (copy_to_user(optval, &info, len))
4002 return -EFAULT;
4003 return 0;
4004 }
4005 case TCP_CC_INFO: {
4006 const struct tcp_congestion_ops *ca_ops;
4007 union tcp_cc_info info;
4008 size_t sz = 0;
4009 int attr;
4010
4011 if (get_user(len, optlen))
4012 return -EFAULT;
4013
4014 ca_ops = icsk->icsk_ca_ops;
4015 if (ca_ops && ca_ops->get_info)
4016 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4017
4018 len = min_t(unsigned int, len, sz);
4019 if (put_user(len, optlen))
4020 return -EFAULT;
4021 if (copy_to_user(optval, &info, len))
4022 return -EFAULT;
4023 return 0;
4024 }
4025 case TCP_QUICKACK:
4026 val = !inet_csk_in_pingpong_mode(sk);
4027 break;
4028
4029 case TCP_CONGESTION:
4030 if (get_user(len, optlen))
4031 return -EFAULT;
4032 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4033 if (put_user(len, optlen))
4034 return -EFAULT;
4035 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
4036 return -EFAULT;
4037 return 0;
4038
4039 case TCP_ULP:
4040 if (get_user(len, optlen))
4041 return -EFAULT;
4042 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4043 if (!icsk->icsk_ulp_ops) {
4044 if (put_user(0, optlen))
4045 return -EFAULT;
4046 return 0;
4047 }
4048 if (put_user(len, optlen))
4049 return -EFAULT;
4050 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
4051 return -EFAULT;
4052 return 0;
4053
4054 case TCP_FASTOPEN_KEY: {
4055 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4056 unsigned int key_len;
4057
4058 if (get_user(len, optlen))
4059 return -EFAULT;
4060
4061 key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4062 TCP_FASTOPEN_KEY_LENGTH;
4063 len = min_t(unsigned int, len, key_len);
4064 if (put_user(len, optlen))
4065 return -EFAULT;
4066 if (copy_to_user(optval, key, len))
4067 return -EFAULT;
4068 return 0;
4069 }
4070 case TCP_THIN_LINEAR_TIMEOUTS:
4071 val = tp->thin_lto;
4072 break;
4073
4074 case TCP_THIN_DUPACK:
4075 val = 0;
4076 break;
4077
4078 case TCP_REPAIR:
4079 val = tp->repair;
4080 break;
4081
4082 case TCP_REPAIR_QUEUE:
4083 if (tp->repair)
4084 val = tp->repair_queue;
4085 else
4086 return -EINVAL;
4087 break;
4088
4089 case TCP_REPAIR_WINDOW: {
4090 struct tcp_repair_window opt;
4091
4092 if (get_user(len, optlen))
4093 return -EFAULT;
4094
4095 if (len != sizeof(opt))
4096 return -EINVAL;
4097
4098 if (!tp->repair)
4099 return -EPERM;
4100
4101 opt.snd_wl1 = tp->snd_wl1;
4102 opt.snd_wnd = tp->snd_wnd;
4103 opt.max_window = tp->max_window;
4104 opt.rcv_wnd = tp->rcv_wnd;
4105 opt.rcv_wup = tp->rcv_wup;
4106
4107 if (copy_to_user(optval, &opt, len))
4108 return -EFAULT;
4109 return 0;
4110 }
4111 case TCP_QUEUE_SEQ:
4112 if (tp->repair_queue == TCP_SEND_QUEUE)
4113 val = tp->write_seq;
4114 else if (tp->repair_queue == TCP_RECV_QUEUE)
4115 val = tp->rcv_nxt;
4116 else
4117 return -EINVAL;
4118 break;
4119
4120 case TCP_USER_TIMEOUT:
4121 val = icsk->icsk_user_timeout;
4122 break;
4123
4124 case TCP_FASTOPEN:
4125 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
4126 break;
4127
4128 case TCP_FASTOPEN_CONNECT:
4129 val = tp->fastopen_connect;
4130 break;
4131
4132 case TCP_FASTOPEN_NO_COOKIE:
4133 val = tp->fastopen_no_cookie;
4134 break;
4135
4136 case TCP_TX_DELAY:
4137 val = tp->tcp_tx_delay;
4138 break;
4139
4140 case TCP_TIMESTAMP:
4141 val = tcp_time_stamp_raw() + tp->tsoffset;
4142 break;
4143 case TCP_NOTSENT_LOWAT:
4144 val = tp->notsent_lowat;
4145 break;
4146 case TCP_INQ:
4147 val = tp->recvmsg_inq;
4148 break;
4149 case TCP_SAVE_SYN:
4150 val = tp->save_syn;
4151 break;
4152 case TCP_SAVED_SYN: {
4153 if (get_user(len, optlen))
4154 return -EFAULT;
4155
4156 lock_sock(sk);
4157 if (tp->saved_syn) {
4158 if (len < tcp_saved_syn_len(tp->saved_syn)) {
4159 if (put_user(tcp_saved_syn_len(tp->saved_syn),
4160 optlen)) {
4161 release_sock(sk);
4162 return -EFAULT;
4163 }
4164 release_sock(sk);
4165 return -EINVAL;
4166 }
4167 len = tcp_saved_syn_len(tp->saved_syn);
4168 if (put_user(len, optlen)) {
4169 release_sock(sk);
4170 return -EFAULT;
4171 }
4172 if (copy_to_user(optval, tp->saved_syn->data, len)) {
4173 release_sock(sk);
4174 return -EFAULT;
4175 }
4176 tcp_saved_syn_free(tp);
4177 release_sock(sk);
4178 } else {
4179 release_sock(sk);
4180 len = 0;
4181 if (put_user(len, optlen))
4182 return -EFAULT;
4183 }
4184 return 0;
4185 }
4186 #ifdef CONFIG_MMU
4187 case TCP_ZEROCOPY_RECEIVE: {
4188 struct scm_timestamping_internal tss;
4189 struct tcp_zerocopy_receive zc = {};
4190 int err;
4191
4192 if (get_user(len, optlen))
4193 return -EFAULT;
4194 if (len < 0 ||
4195 len < offsetofend(struct tcp_zerocopy_receive, length))
4196 return -EINVAL;
4197 if (unlikely(len > sizeof(zc))) {
4198 err = check_zeroed_user(optval + sizeof(zc),
4199 len - sizeof(zc));
4200 if (err < 1)
4201 return err == 0 ? -EINVAL : err;
4202 len = sizeof(zc);
4203 if (put_user(len, optlen))
4204 return -EFAULT;
4205 }
4206 if (copy_from_user(&zc, optval, len))
4207 return -EFAULT;
4208 if (zc.reserved)
4209 return -EINVAL;
4210 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS))
4211 return -EINVAL;
4212 lock_sock(sk);
4213 err = tcp_zerocopy_receive(sk, &zc, &tss);
4214 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4215 &zc, &len, err);
4216 release_sock(sk);
4217 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4218 goto zerocopy_rcv_cmsg;
4219 switch (len) {
4220 case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4221 goto zerocopy_rcv_cmsg;
4222 case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4223 case offsetofend(struct tcp_zerocopy_receive, msg_control):
4224 case offsetofend(struct tcp_zerocopy_receive, flags):
4225 case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4226 case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4227 case offsetofend(struct tcp_zerocopy_receive, err):
4228 goto zerocopy_rcv_sk_err;
4229 case offsetofend(struct tcp_zerocopy_receive, inq):
4230 goto zerocopy_rcv_inq;
4231 case offsetofend(struct tcp_zerocopy_receive, length):
4232 default:
4233 goto zerocopy_rcv_out;
4234 }
4235 zerocopy_rcv_cmsg:
4236 if (zc.msg_flags & TCP_CMSG_TS)
4237 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4238 else
4239 zc.msg_flags = 0;
4240 zerocopy_rcv_sk_err:
4241 if (!err)
4242 zc.err = sock_error(sk);
4243 zerocopy_rcv_inq:
4244 zc.inq = tcp_inq_hint(sk);
4245 zerocopy_rcv_out:
4246 if (!err && copy_to_user(optval, &zc, len))
4247 err = -EFAULT;
4248 return err;
4249 }
4250 #endif
4251 default:
4252 return -ENOPROTOOPT;
4253 }
4254
4255 if (put_user(len, optlen))
4256 return -EFAULT;
4257 if (copy_to_user(optval, &val, len))
4258 return -EFAULT;
4259 return 0;
4260 }
4261
4262 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4263 {
4264 /* TCP do_tcp_getsockopt has optimized getsockopt implementation
4265 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4266 */
4267 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4268 return true;
4269
4270 return false;
4271 }
4272 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4273
4274 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4275 int __user *optlen)
4276 {
4277 struct inet_connection_sock *icsk = inet_csk(sk);
4278
4279 if (level != SOL_TCP)
4280 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
4281 optval, optlen);
4282 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
4283 }
4284 EXPORT_SYMBOL(tcp_getsockopt);
4285
4286 #ifdef CONFIG_TCP_MD5SIG
4287 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4288 static DEFINE_MUTEX(tcp_md5sig_mutex);
4289 static bool tcp_md5sig_pool_populated = false;
4290
4291 static void __tcp_alloc_md5sig_pool(void)
4292 {
4293 struct crypto_ahash *hash;
4294 int cpu;
4295
4296 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4297 if (IS_ERR(hash))
4298 return;
4299
4300 for_each_possible_cpu(cpu) {
4301 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4302 struct ahash_request *req;
4303
4304 if (!scratch) {
4305 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4306 sizeof(struct tcphdr),
4307 GFP_KERNEL,
4308 cpu_to_node(cpu));
4309 if (!scratch)
4310 return;
4311 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4312 }
4313 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4314 continue;
4315
4316 req = ahash_request_alloc(hash, GFP_KERNEL);
4317 if (!req)
4318 return;
4319
4320 ahash_request_set_callback(req, 0, NULL, NULL);
4321
4322 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4323 }
4324 /* before setting tcp_md5sig_pool_populated, we must commit all writes
4325 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4326 */
4327 smp_wmb();
4328 tcp_md5sig_pool_populated = true;
4329 }
4330
4331 bool tcp_alloc_md5sig_pool(void)
4332 {
4333 if (unlikely(!tcp_md5sig_pool_populated)) {
4334 mutex_lock(&tcp_md5sig_mutex);
4335
4336 if (!tcp_md5sig_pool_populated) {
4337 __tcp_alloc_md5sig_pool();
4338 if (tcp_md5sig_pool_populated)
4339 static_branch_inc(&tcp_md5_needed);
4340 }
4341
4342 mutex_unlock(&tcp_md5sig_mutex);
4343 }
4344 return tcp_md5sig_pool_populated;
4345 }
4346 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4347
4348
4349 /**
4350 * tcp_get_md5sig_pool - get md5sig_pool for this user
4351 *
4352 * We use percpu structure, so if we succeed, we exit with preemption
4353 * and BH disabled, to make sure another thread or softirq handling
4354 * wont try to get same context.
4355 */
4356 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4357 {
4358 local_bh_disable();
4359
4360 if (tcp_md5sig_pool_populated) {
4361 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4362 smp_rmb();
4363 return this_cpu_ptr(&tcp_md5sig_pool);
4364 }
4365 local_bh_enable();
4366 return NULL;
4367 }
4368 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4369
4370 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4371 const struct sk_buff *skb, unsigned int header_len)
4372 {
4373 struct scatterlist sg;
4374 const struct tcphdr *tp = tcp_hdr(skb);
4375 struct ahash_request *req = hp->md5_req;
4376 unsigned int i;
4377 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4378 skb_headlen(skb) - header_len : 0;
4379 const struct skb_shared_info *shi = skb_shinfo(skb);
4380 struct sk_buff *frag_iter;
4381
4382 sg_init_table(&sg, 1);
4383
4384 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4385 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4386 if (crypto_ahash_update(req))
4387 return 1;
4388
4389 for (i = 0; i < shi->nr_frags; ++i) {
4390 const skb_frag_t *f = &shi->frags[i];
4391 unsigned int offset = skb_frag_off(f);
4392 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4393
4394 sg_set_page(&sg, page, skb_frag_size(f),
4395 offset_in_page(offset));
4396 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4397 if (crypto_ahash_update(req))
4398 return 1;
4399 }
4400
4401 skb_walk_frags(skb, frag_iter)
4402 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4403 return 1;
4404
4405 return 0;
4406 }
4407 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4408
4409 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4410 {
4411 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4412 struct scatterlist sg;
4413
4414 sg_init_one(&sg, key->key, keylen);
4415 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4416
4417 /* We use data_race() because tcp_md5_do_add() might change key->key under us */
4418 return data_race(crypto_ahash_update(hp->md5_req));
4419 }
4420 EXPORT_SYMBOL(tcp_md5_hash_key);
4421
4422 #endif
4423
4424 void tcp_done(struct sock *sk)
4425 {
4426 struct request_sock *req;
4427
4428 /* We might be called with a new socket, after
4429 * inet_csk_prepare_forced_close() has been called
4430 * so we can not use lockdep_sock_is_held(sk)
4431 */
4432 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4433
4434 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4435 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4436
4437 tcp_set_state(sk, TCP_CLOSE);
4438 tcp_clear_xmit_timers(sk);
4439 if (req)
4440 reqsk_fastopen_remove(sk, req, false);
4441
4442 sk->sk_shutdown = SHUTDOWN_MASK;
4443
4444 if (!sock_flag(sk, SOCK_DEAD))
4445 sk->sk_state_change(sk);
4446 else
4447 inet_csk_destroy_sock(sk);
4448 }
4449 EXPORT_SYMBOL_GPL(tcp_done);
4450
4451 int tcp_abort(struct sock *sk, int err)
4452 {
4453 if (!sk_fullsock(sk)) {
4454 if (sk->sk_state == TCP_NEW_SYN_RECV) {
4455 struct request_sock *req = inet_reqsk(sk);
4456
4457 local_bh_disable();
4458 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4459 local_bh_enable();
4460 return 0;
4461 }
4462 return -EOPNOTSUPP;
4463 }
4464
4465 /* Don't race with userspace socket closes such as tcp_close. */
4466 lock_sock(sk);
4467
4468 if (sk->sk_state == TCP_LISTEN) {
4469 tcp_set_state(sk, TCP_CLOSE);
4470 inet_csk_listen_stop(sk);
4471 }
4472
4473 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
4474 local_bh_disable();
4475 bh_lock_sock(sk);
4476
4477 if (!sock_flag(sk, SOCK_DEAD)) {
4478 sk->sk_err = err;
4479 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4480 smp_wmb();
4481 sk_error_report(sk);
4482 if (tcp_need_reset(sk->sk_state))
4483 tcp_send_active_reset(sk, GFP_ATOMIC);
4484 tcp_done(sk);
4485 }
4486
4487 bh_unlock_sock(sk);
4488 local_bh_enable();
4489 tcp_write_queue_purge(sk);
4490 release_sock(sk);
4491 return 0;
4492 }
4493 EXPORT_SYMBOL_GPL(tcp_abort);
4494
4495 extern struct tcp_congestion_ops tcp_reno;
4496
4497 static __initdata unsigned long thash_entries;
4498 static int __init set_thash_entries(char *str)
4499 {
4500 ssize_t ret;
4501
4502 if (!str)
4503 return 0;
4504
4505 ret = kstrtoul(str, 0, &thash_entries);
4506 if (ret)
4507 return 0;
4508
4509 return 1;
4510 }
4511 __setup("thash_entries=", set_thash_entries);
4512
4513 static void __init tcp_init_mem(void)
4514 {
4515 unsigned long limit = nr_free_buffer_pages() / 16;
4516
4517 limit = max(limit, 128UL);
4518 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
4519 sysctl_tcp_mem[1] = limit; /* 6.25 % */
4520 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
4521 }
4522
4523 void __init tcp_init(void)
4524 {
4525 int max_rshare, max_wshare, cnt;
4526 unsigned long limit;
4527 unsigned int i;
4528
4529 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4530 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4531 sizeof_field(struct sk_buff, cb));
4532
4533 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4534
4535 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4536 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4537
4538 inet_hashinfo_init(&tcp_hashinfo);
4539 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4540 thash_entries, 21, /* one slot per 2 MB*/
4541 0, 64 * 1024);
4542 tcp_hashinfo.bind_bucket_cachep =
4543 kmem_cache_create("tcp_bind_bucket",
4544 sizeof(struct inet_bind_bucket), 0,
4545 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4546 SLAB_ACCOUNT,
4547 NULL);
4548
4549 /* Size and allocate the main established and bind bucket
4550 * hash tables.
4551 *
4552 * The methodology is similar to that of the buffer cache.
4553 */
4554 tcp_hashinfo.ehash =
4555 alloc_large_system_hash("TCP established",
4556 sizeof(struct inet_ehash_bucket),
4557 thash_entries,
4558 17, /* one slot per 128 KB of memory */
4559 0,
4560 NULL,
4561 &tcp_hashinfo.ehash_mask,
4562 0,
4563 thash_entries ? 0 : 512 * 1024);
4564 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4565 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4566
4567 if (inet_ehash_locks_alloc(&tcp_hashinfo))
4568 panic("TCP: failed to alloc ehash_locks");
4569 tcp_hashinfo.bhash =
4570 alloc_large_system_hash("TCP bind",
4571 sizeof(struct inet_bind_hashbucket),
4572 tcp_hashinfo.ehash_mask + 1,
4573 17, /* one slot per 128 KB of memory */
4574 0,
4575 &tcp_hashinfo.bhash_size,
4576 NULL,
4577 0,
4578 64 * 1024);
4579 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4580 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4581 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4582 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4583 }
4584
4585
4586 cnt = tcp_hashinfo.ehash_mask + 1;
4587 sysctl_tcp_max_orphans = cnt / 2;
4588
4589 tcp_init_mem();
4590 /* Set per-socket limits to no more than 1/128 the pressure threshold */
4591 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4592 max_wshare = min(4UL*1024*1024, limit);
4593 max_rshare = min(6UL*1024*1024, limit);
4594
4595 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4596 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4597 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4598
4599 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4600 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4601 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4602
4603 pr_info("Hash tables configured (established %u bind %u)\n",
4604 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4605
4606 tcp_v4_init();
4607 tcp_metrics_init();
4608 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4609 tcp_tasklet_init();
4610 mptcp_init();
4611 }