]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/tcp.c
tcp: invalidate rate samples during SACK reneging
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248 #define pr_fmt(fmt) "TCP: " fmt
249
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 #include <linux/errqueue.h>
273 #include <linux/static_key.h>
274
275 #include <net/icmp.h>
276 #include <net/inet_common.h>
277 #include <net/tcp.h>
278 #include <net/xfrm.h>
279 #include <net/ip.h>
280 #include <net/sock.h>
281
282 #include <linux/uaccess.h>
283 #include <asm/ioctls.h>
284 #include <net/busy_poll.h>
285
286 #include <trace/events/tcp.h>
287
288 struct percpu_counter tcp_orphan_count;
289 EXPORT_SYMBOL_GPL(tcp_orphan_count);
290
291 long sysctl_tcp_mem[3] __read_mostly;
292 EXPORT_SYMBOL(sysctl_tcp_mem);
293
294 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
295 EXPORT_SYMBOL(tcp_memory_allocated);
296
297 #if IS_ENABLED(CONFIG_SMC)
298 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
299 EXPORT_SYMBOL(tcp_have_smc);
300 #endif
301
302 /*
303 * Current number of TCP sockets.
304 */
305 struct percpu_counter tcp_sockets_allocated;
306 EXPORT_SYMBOL(tcp_sockets_allocated);
307
308 /*
309 * TCP splice context
310 */
311 struct tcp_splice_state {
312 struct pipe_inode_info *pipe;
313 size_t len;
314 unsigned int flags;
315 };
316
317 /*
318 * Pressure flag: try to collapse.
319 * Technical note: it is used by multiple contexts non atomically.
320 * All the __sk_mem_schedule() is of this nature: accounting
321 * is strict, actions are advisory and have some latency.
322 */
323 unsigned long tcp_memory_pressure __read_mostly;
324 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
325
326 void tcp_enter_memory_pressure(struct sock *sk)
327 {
328 unsigned long val;
329
330 if (tcp_memory_pressure)
331 return;
332 val = jiffies;
333
334 if (!val)
335 val--;
336 if (!cmpxchg(&tcp_memory_pressure, 0, val))
337 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
338 }
339 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
340
341 void tcp_leave_memory_pressure(struct sock *sk)
342 {
343 unsigned long val;
344
345 if (!tcp_memory_pressure)
346 return;
347 val = xchg(&tcp_memory_pressure, 0);
348 if (val)
349 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
350 jiffies_to_msecs(jiffies - val));
351 }
352 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
353
354 /* Convert seconds to retransmits based on initial and max timeout */
355 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
356 {
357 u8 res = 0;
358
359 if (seconds > 0) {
360 int period = timeout;
361
362 res = 1;
363 while (seconds > period && res < 255) {
364 res++;
365 timeout <<= 1;
366 if (timeout > rto_max)
367 timeout = rto_max;
368 period += timeout;
369 }
370 }
371 return res;
372 }
373
374 /* Convert retransmits to seconds based on initial and max timeout */
375 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
376 {
377 int period = 0;
378
379 if (retrans > 0) {
380 period = timeout;
381 while (--retrans) {
382 timeout <<= 1;
383 if (timeout > rto_max)
384 timeout = rto_max;
385 period += timeout;
386 }
387 }
388 return period;
389 }
390
391 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
392 {
393 u32 rate = READ_ONCE(tp->rate_delivered);
394 u32 intv = READ_ONCE(tp->rate_interval_us);
395 u64 rate64 = 0;
396
397 if (rate && intv) {
398 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
399 do_div(rate64, intv);
400 }
401 return rate64;
402 }
403
404 /* Address-family independent initialization for a tcp_sock.
405 *
406 * NOTE: A lot of things set to zero explicitly by call to
407 * sk_alloc() so need not be done here.
408 */
409 void tcp_init_sock(struct sock *sk)
410 {
411 struct inet_connection_sock *icsk = inet_csk(sk);
412 struct tcp_sock *tp = tcp_sk(sk);
413
414 tp->out_of_order_queue = RB_ROOT;
415 sk->tcp_rtx_queue = RB_ROOT;
416 tcp_init_xmit_timers(sk);
417 INIT_LIST_HEAD(&tp->tsq_node);
418 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
419
420 icsk->icsk_rto = TCP_TIMEOUT_INIT;
421 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
422 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
423
424 /* So many TCP implementations out there (incorrectly) count the
425 * initial SYN frame in their delayed-ACK and congestion control
426 * algorithms that we must have the following bandaid to talk
427 * efficiently to them. -DaveM
428 */
429 tp->snd_cwnd = TCP_INIT_CWND;
430
431 /* There's a bubble in the pipe until at least the first ACK. */
432 tp->app_limited = ~0U;
433
434 /* See draft-stevens-tcpca-spec-01 for discussion of the
435 * initialization of these values.
436 */
437 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
438 tp->snd_cwnd_clamp = ~0;
439 tp->mss_cache = TCP_MSS_DEFAULT;
440
441 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
442 tcp_assign_congestion_control(sk);
443
444 tp->tsoffset = 0;
445 tp->rack.reo_wnd_steps = 1;
446
447 sk->sk_state = TCP_CLOSE;
448
449 sk->sk_write_space = sk_stream_write_space;
450 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
451
452 icsk->icsk_sync_mss = tcp_sync_mss;
453
454 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
455 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
456
457 sk_sockets_allocated_inc(sk);
458 }
459 EXPORT_SYMBOL(tcp_init_sock);
460
461 void tcp_init_transfer(struct sock *sk, int bpf_op)
462 {
463 struct inet_connection_sock *icsk = inet_csk(sk);
464
465 tcp_mtup_init(sk);
466 icsk->icsk_af_ops->rebuild_header(sk);
467 tcp_init_metrics(sk);
468 tcp_call_bpf(sk, bpf_op);
469 tcp_init_congestion_control(sk);
470 tcp_init_buffer_space(sk);
471 }
472
473 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
474 {
475 struct sk_buff *skb = tcp_write_queue_tail(sk);
476
477 if (tsflags && skb) {
478 struct skb_shared_info *shinfo = skb_shinfo(skb);
479 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
480
481 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
482 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
483 tcb->txstamp_ack = 1;
484 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
485 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
486 }
487 }
488
489 /*
490 * Wait for a TCP event.
491 *
492 * Note that we don't need to lock the socket, as the upper poll layers
493 * take care of normal races (between the test and the event) and we don't
494 * go look at any of the socket buffers directly.
495 */
496 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
497 {
498 unsigned int mask;
499 struct sock *sk = sock->sk;
500 const struct tcp_sock *tp = tcp_sk(sk);
501 int state;
502
503 sock_rps_record_flow(sk);
504
505 sock_poll_wait(file, sk_sleep(sk), wait);
506
507 state = sk_state_load(sk);
508 if (state == TCP_LISTEN)
509 return inet_csk_listen_poll(sk);
510
511 /* Socket is not locked. We are protected from async events
512 * by poll logic and correct handling of state changes
513 * made by other threads is impossible in any case.
514 */
515
516 mask = 0;
517
518 /*
519 * POLLHUP is certainly not done right. But poll() doesn't
520 * have a notion of HUP in just one direction, and for a
521 * socket the read side is more interesting.
522 *
523 * Some poll() documentation says that POLLHUP is incompatible
524 * with the POLLOUT/POLLWR flags, so somebody should check this
525 * all. But careful, it tends to be safer to return too many
526 * bits than too few, and you can easily break real applications
527 * if you don't tell them that something has hung up!
528 *
529 * Check-me.
530 *
531 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
532 * our fs/select.c). It means that after we received EOF,
533 * poll always returns immediately, making impossible poll() on write()
534 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
535 * if and only if shutdown has been made in both directions.
536 * Actually, it is interesting to look how Solaris and DUX
537 * solve this dilemma. I would prefer, if POLLHUP were maskable,
538 * then we could set it on SND_SHUTDOWN. BTW examples given
539 * in Stevens' books assume exactly this behaviour, it explains
540 * why POLLHUP is incompatible with POLLOUT. --ANK
541 *
542 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
543 * blocking on fresh not-connected or disconnected socket. --ANK
544 */
545 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
546 mask |= POLLHUP;
547 if (sk->sk_shutdown & RCV_SHUTDOWN)
548 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
549
550 /* Connected or passive Fast Open socket? */
551 if (state != TCP_SYN_SENT &&
552 (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
553 int target = sock_rcvlowat(sk, 0, INT_MAX);
554
555 if (tp->urg_seq == tp->copied_seq &&
556 !sock_flag(sk, SOCK_URGINLINE) &&
557 tp->urg_data)
558 target++;
559
560 if (tp->rcv_nxt - tp->copied_seq >= target)
561 mask |= POLLIN | POLLRDNORM;
562
563 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
564 if (sk_stream_is_writeable(sk)) {
565 mask |= POLLOUT | POLLWRNORM;
566 } else { /* send SIGIO later */
567 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
568 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
569
570 /* Race breaker. If space is freed after
571 * wspace test but before the flags are set,
572 * IO signal will be lost. Memory barrier
573 * pairs with the input side.
574 */
575 smp_mb__after_atomic();
576 if (sk_stream_is_writeable(sk))
577 mask |= POLLOUT | POLLWRNORM;
578 }
579 } else
580 mask |= POLLOUT | POLLWRNORM;
581
582 if (tp->urg_data & TCP_URG_VALID)
583 mask |= POLLPRI;
584 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
585 /* Active TCP fastopen socket with defer_connect
586 * Return POLLOUT so application can call write()
587 * in order for kernel to generate SYN+data
588 */
589 mask |= POLLOUT | POLLWRNORM;
590 }
591 /* This barrier is coupled with smp_wmb() in tcp_reset() */
592 smp_rmb();
593 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
594 mask |= POLLERR;
595
596 return mask;
597 }
598 EXPORT_SYMBOL(tcp_poll);
599
600 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
601 {
602 struct tcp_sock *tp = tcp_sk(sk);
603 int answ;
604 bool slow;
605
606 switch (cmd) {
607 case SIOCINQ:
608 if (sk->sk_state == TCP_LISTEN)
609 return -EINVAL;
610
611 slow = lock_sock_fast(sk);
612 answ = tcp_inq(sk);
613 unlock_sock_fast(sk, slow);
614 break;
615 case SIOCATMARK:
616 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
617 break;
618 case SIOCOUTQ:
619 if (sk->sk_state == TCP_LISTEN)
620 return -EINVAL;
621
622 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
623 answ = 0;
624 else
625 answ = tp->write_seq - tp->snd_una;
626 break;
627 case SIOCOUTQNSD:
628 if (sk->sk_state == TCP_LISTEN)
629 return -EINVAL;
630
631 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
632 answ = 0;
633 else
634 answ = tp->write_seq - tp->snd_nxt;
635 break;
636 default:
637 return -ENOIOCTLCMD;
638 }
639
640 return put_user(answ, (int __user *)arg);
641 }
642 EXPORT_SYMBOL(tcp_ioctl);
643
644 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
645 {
646 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
647 tp->pushed_seq = tp->write_seq;
648 }
649
650 static inline bool forced_push(const struct tcp_sock *tp)
651 {
652 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
653 }
654
655 static void skb_entail(struct sock *sk, struct sk_buff *skb)
656 {
657 struct tcp_sock *tp = tcp_sk(sk);
658 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
659
660 skb->csum = 0;
661 tcb->seq = tcb->end_seq = tp->write_seq;
662 tcb->tcp_flags = TCPHDR_ACK;
663 tcb->sacked = 0;
664 __skb_header_release(skb);
665 tcp_add_write_queue_tail(sk, skb);
666 sk->sk_wmem_queued += skb->truesize;
667 sk_mem_charge(sk, skb->truesize);
668 if (tp->nonagle & TCP_NAGLE_PUSH)
669 tp->nonagle &= ~TCP_NAGLE_PUSH;
670
671 tcp_slow_start_after_idle_check(sk);
672 }
673
674 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
675 {
676 if (flags & MSG_OOB)
677 tp->snd_up = tp->write_seq;
678 }
679
680 /* If a not yet filled skb is pushed, do not send it if
681 * we have data packets in Qdisc or NIC queues :
682 * Because TX completion will happen shortly, it gives a chance
683 * to coalesce future sendmsg() payload into this skb, without
684 * need for a timer, and with no latency trade off.
685 * As packets containing data payload have a bigger truesize
686 * than pure acks (dataless) packets, the last checks prevent
687 * autocorking if we only have an ACK in Qdisc/NIC queues,
688 * or if TX completion was delayed after we processed ACK packet.
689 */
690 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
691 int size_goal)
692 {
693 return skb->len < size_goal &&
694 sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
695 skb != tcp_write_queue_head(sk) &&
696 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
697 }
698
699 static void tcp_push(struct sock *sk, int flags, int mss_now,
700 int nonagle, int size_goal)
701 {
702 struct tcp_sock *tp = tcp_sk(sk);
703 struct sk_buff *skb;
704
705 skb = tcp_write_queue_tail(sk);
706 if (!skb)
707 return;
708 if (!(flags & MSG_MORE) || forced_push(tp))
709 tcp_mark_push(tp, skb);
710
711 tcp_mark_urg(tp, flags);
712
713 if (tcp_should_autocork(sk, skb, size_goal)) {
714
715 /* avoid atomic op if TSQ_THROTTLED bit is already set */
716 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
717 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
718 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
719 }
720 /* It is possible TX completion already happened
721 * before we set TSQ_THROTTLED.
722 */
723 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
724 return;
725 }
726
727 if (flags & MSG_MORE)
728 nonagle = TCP_NAGLE_CORK;
729
730 __tcp_push_pending_frames(sk, mss_now, nonagle);
731 }
732
733 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
734 unsigned int offset, size_t len)
735 {
736 struct tcp_splice_state *tss = rd_desc->arg.data;
737 int ret;
738
739 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
740 min(rd_desc->count, len), tss->flags);
741 if (ret > 0)
742 rd_desc->count -= ret;
743 return ret;
744 }
745
746 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
747 {
748 /* Store TCP splice context information in read_descriptor_t. */
749 read_descriptor_t rd_desc = {
750 .arg.data = tss,
751 .count = tss->len,
752 };
753
754 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
755 }
756
757 /**
758 * tcp_splice_read - splice data from TCP socket to a pipe
759 * @sock: socket to splice from
760 * @ppos: position (not valid)
761 * @pipe: pipe to splice to
762 * @len: number of bytes to splice
763 * @flags: splice modifier flags
764 *
765 * Description:
766 * Will read pages from given socket and fill them into a pipe.
767 *
768 **/
769 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
770 struct pipe_inode_info *pipe, size_t len,
771 unsigned int flags)
772 {
773 struct sock *sk = sock->sk;
774 struct tcp_splice_state tss = {
775 .pipe = pipe,
776 .len = len,
777 .flags = flags,
778 };
779 long timeo;
780 ssize_t spliced;
781 int ret;
782
783 sock_rps_record_flow(sk);
784 /*
785 * We can't seek on a socket input
786 */
787 if (unlikely(*ppos))
788 return -ESPIPE;
789
790 ret = spliced = 0;
791
792 lock_sock(sk);
793
794 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
795 while (tss.len) {
796 ret = __tcp_splice_read(sk, &tss);
797 if (ret < 0)
798 break;
799 else if (!ret) {
800 if (spliced)
801 break;
802 if (sock_flag(sk, SOCK_DONE))
803 break;
804 if (sk->sk_err) {
805 ret = sock_error(sk);
806 break;
807 }
808 if (sk->sk_shutdown & RCV_SHUTDOWN)
809 break;
810 if (sk->sk_state == TCP_CLOSE) {
811 /*
812 * This occurs when user tries to read
813 * from never connected socket.
814 */
815 if (!sock_flag(sk, SOCK_DONE))
816 ret = -ENOTCONN;
817 break;
818 }
819 if (!timeo) {
820 ret = -EAGAIN;
821 break;
822 }
823 /* if __tcp_splice_read() got nothing while we have
824 * an skb in receive queue, we do not want to loop.
825 * This might happen with URG data.
826 */
827 if (!skb_queue_empty(&sk->sk_receive_queue))
828 break;
829 sk_wait_data(sk, &timeo, NULL);
830 if (signal_pending(current)) {
831 ret = sock_intr_errno(timeo);
832 break;
833 }
834 continue;
835 }
836 tss.len -= ret;
837 spliced += ret;
838
839 if (!timeo)
840 break;
841 release_sock(sk);
842 lock_sock(sk);
843
844 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
845 (sk->sk_shutdown & RCV_SHUTDOWN) ||
846 signal_pending(current))
847 break;
848 }
849
850 release_sock(sk);
851
852 if (spliced)
853 return spliced;
854
855 return ret;
856 }
857 EXPORT_SYMBOL(tcp_splice_read);
858
859 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
860 bool force_schedule)
861 {
862 struct sk_buff *skb;
863
864 /* The TCP header must be at least 32-bit aligned. */
865 size = ALIGN(size, 4);
866
867 if (unlikely(tcp_under_memory_pressure(sk)))
868 sk_mem_reclaim_partial(sk);
869
870 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
871 if (likely(skb)) {
872 bool mem_scheduled;
873
874 if (force_schedule) {
875 mem_scheduled = true;
876 sk_forced_mem_schedule(sk, skb->truesize);
877 } else {
878 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
879 }
880 if (likely(mem_scheduled)) {
881 skb_reserve(skb, sk->sk_prot->max_header);
882 /*
883 * Make sure that we have exactly size bytes
884 * available to the caller, no more, no less.
885 */
886 skb->reserved_tailroom = skb->end - skb->tail - size;
887 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
888 return skb;
889 }
890 __kfree_skb(skb);
891 } else {
892 sk->sk_prot->enter_memory_pressure(sk);
893 sk_stream_moderate_sndbuf(sk);
894 }
895 return NULL;
896 }
897
898 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
899 int large_allowed)
900 {
901 struct tcp_sock *tp = tcp_sk(sk);
902 u32 new_size_goal, size_goal;
903
904 if (!large_allowed || !sk_can_gso(sk))
905 return mss_now;
906
907 /* Note : tcp_tso_autosize() will eventually split this later */
908 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
909 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
910
911 /* We try hard to avoid divides here */
912 size_goal = tp->gso_segs * mss_now;
913 if (unlikely(new_size_goal < size_goal ||
914 new_size_goal >= size_goal + mss_now)) {
915 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
916 sk->sk_gso_max_segs);
917 size_goal = tp->gso_segs * mss_now;
918 }
919
920 return max(size_goal, mss_now);
921 }
922
923 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
924 {
925 int mss_now;
926
927 mss_now = tcp_current_mss(sk);
928 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
929
930 return mss_now;
931 }
932
933 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
934 size_t size, int flags)
935 {
936 struct tcp_sock *tp = tcp_sk(sk);
937 int mss_now, size_goal;
938 int err;
939 ssize_t copied;
940 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
941
942 /* Wait for a connection to finish. One exception is TCP Fast Open
943 * (passive side) where data is allowed to be sent before a connection
944 * is fully established.
945 */
946 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
947 !tcp_passive_fastopen(sk)) {
948 err = sk_stream_wait_connect(sk, &timeo);
949 if (err != 0)
950 goto out_err;
951 }
952
953 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
954
955 mss_now = tcp_send_mss(sk, &size_goal, flags);
956 copied = 0;
957
958 err = -EPIPE;
959 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
960 goto out_err;
961
962 while (size > 0) {
963 struct sk_buff *skb = tcp_write_queue_tail(sk);
964 int copy, i;
965 bool can_coalesce;
966
967 if (!skb || (copy = size_goal - skb->len) <= 0 ||
968 !tcp_skb_can_collapse_to(skb)) {
969 new_segment:
970 if (!sk_stream_memory_free(sk))
971 goto wait_for_sndbuf;
972
973 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
974 tcp_rtx_and_write_queues_empty(sk));
975 if (!skb)
976 goto wait_for_memory;
977
978 skb_entail(sk, skb);
979 copy = size_goal;
980 }
981
982 if (copy > size)
983 copy = size;
984
985 i = skb_shinfo(skb)->nr_frags;
986 can_coalesce = skb_can_coalesce(skb, i, page, offset);
987 if (!can_coalesce && i >= sysctl_max_skb_frags) {
988 tcp_mark_push(tp, skb);
989 goto new_segment;
990 }
991 if (!sk_wmem_schedule(sk, copy))
992 goto wait_for_memory;
993
994 if (can_coalesce) {
995 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
996 } else {
997 get_page(page);
998 skb_fill_page_desc(skb, i, page, offset, copy);
999 }
1000 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1001
1002 skb->len += copy;
1003 skb->data_len += copy;
1004 skb->truesize += copy;
1005 sk->sk_wmem_queued += copy;
1006 sk_mem_charge(sk, copy);
1007 skb->ip_summed = CHECKSUM_PARTIAL;
1008 tp->write_seq += copy;
1009 TCP_SKB_CB(skb)->end_seq += copy;
1010 tcp_skb_pcount_set(skb, 0);
1011
1012 if (!copied)
1013 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1014
1015 copied += copy;
1016 offset += copy;
1017 size -= copy;
1018 if (!size)
1019 goto out;
1020
1021 if (skb->len < size_goal || (flags & MSG_OOB))
1022 continue;
1023
1024 if (forced_push(tp)) {
1025 tcp_mark_push(tp, skb);
1026 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1027 } else if (skb == tcp_send_head(sk))
1028 tcp_push_one(sk, mss_now);
1029 continue;
1030
1031 wait_for_sndbuf:
1032 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1033 wait_for_memory:
1034 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1035 TCP_NAGLE_PUSH, size_goal);
1036
1037 err = sk_stream_wait_memory(sk, &timeo);
1038 if (err != 0)
1039 goto do_error;
1040
1041 mss_now = tcp_send_mss(sk, &size_goal, flags);
1042 }
1043
1044 out:
1045 if (copied) {
1046 tcp_tx_timestamp(sk, sk->sk_tsflags);
1047 if (!(flags & MSG_SENDPAGE_NOTLAST))
1048 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1049 }
1050 return copied;
1051
1052 do_error:
1053 if (copied)
1054 goto out;
1055 out_err:
1056 /* make sure we wake any epoll edge trigger waiter */
1057 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1058 err == -EAGAIN)) {
1059 sk->sk_write_space(sk);
1060 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1061 }
1062 return sk_stream_error(sk, flags, err);
1063 }
1064 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1065
1066 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1067 size_t size, int flags)
1068 {
1069 if (!(sk->sk_route_caps & NETIF_F_SG) ||
1070 !sk_check_csum_caps(sk))
1071 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1072
1073 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1074
1075 return do_tcp_sendpages(sk, page, offset, size, flags);
1076 }
1077 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1078
1079 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1080 size_t size, int flags)
1081 {
1082 int ret;
1083
1084 lock_sock(sk);
1085 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1086 release_sock(sk);
1087
1088 return ret;
1089 }
1090 EXPORT_SYMBOL(tcp_sendpage);
1091
1092 /* Do not bother using a page frag for very small frames.
1093 * But use this heuristic only for the first skb in write queue.
1094 *
1095 * Having no payload in skb->head allows better SACK shifting
1096 * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1097 * write queue has less skbs.
1098 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1099 * This also speeds up tso_fragment(), since it wont fallback
1100 * to tcp_fragment().
1101 */
1102 static int linear_payload_sz(bool first_skb)
1103 {
1104 if (first_skb)
1105 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1106 return 0;
1107 }
1108
1109 static int select_size(const struct sock *sk, bool sg, bool first_skb)
1110 {
1111 const struct tcp_sock *tp = tcp_sk(sk);
1112 int tmp = tp->mss_cache;
1113
1114 if (sg) {
1115 if (sk_can_gso(sk)) {
1116 tmp = linear_payload_sz(first_skb);
1117 } else {
1118 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1119
1120 if (tmp >= pgbreak &&
1121 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1122 tmp = pgbreak;
1123 }
1124 }
1125
1126 return tmp;
1127 }
1128
1129 void tcp_free_fastopen_req(struct tcp_sock *tp)
1130 {
1131 if (tp->fastopen_req) {
1132 kfree(tp->fastopen_req);
1133 tp->fastopen_req = NULL;
1134 }
1135 }
1136
1137 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1138 int *copied, size_t size)
1139 {
1140 struct tcp_sock *tp = tcp_sk(sk);
1141 struct inet_sock *inet = inet_sk(sk);
1142 struct sockaddr *uaddr = msg->msg_name;
1143 int err, flags;
1144
1145 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1146 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1147 uaddr->sa_family == AF_UNSPEC))
1148 return -EOPNOTSUPP;
1149 if (tp->fastopen_req)
1150 return -EALREADY; /* Another Fast Open is in progress */
1151
1152 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1153 sk->sk_allocation);
1154 if (unlikely(!tp->fastopen_req))
1155 return -ENOBUFS;
1156 tp->fastopen_req->data = msg;
1157 tp->fastopen_req->size = size;
1158
1159 if (inet->defer_connect) {
1160 err = tcp_connect(sk);
1161 /* Same failure procedure as in tcp_v4/6_connect */
1162 if (err) {
1163 tcp_set_state(sk, TCP_CLOSE);
1164 inet->inet_dport = 0;
1165 sk->sk_route_caps = 0;
1166 }
1167 }
1168 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1169 err = __inet_stream_connect(sk->sk_socket, uaddr,
1170 msg->msg_namelen, flags, 1);
1171 /* fastopen_req could already be freed in __inet_stream_connect
1172 * if the connection times out or gets rst
1173 */
1174 if (tp->fastopen_req) {
1175 *copied = tp->fastopen_req->copied;
1176 tcp_free_fastopen_req(tp);
1177 inet->defer_connect = 0;
1178 }
1179 return err;
1180 }
1181
1182 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1183 {
1184 struct tcp_sock *tp = tcp_sk(sk);
1185 struct ubuf_info *uarg = NULL;
1186 struct sk_buff *skb;
1187 struct sockcm_cookie sockc;
1188 int flags, err, copied = 0;
1189 int mss_now = 0, size_goal, copied_syn = 0;
1190 bool process_backlog = false;
1191 bool sg;
1192 long timeo;
1193
1194 flags = msg->msg_flags;
1195
1196 if (flags & MSG_ZEROCOPY && size) {
1197 if (sk->sk_state != TCP_ESTABLISHED) {
1198 err = -EINVAL;
1199 goto out_err;
1200 }
1201
1202 skb = tcp_write_queue_tail(sk);
1203 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1204 if (!uarg) {
1205 err = -ENOBUFS;
1206 goto out_err;
1207 }
1208
1209 if (!(sk_check_csum_caps(sk) && sk->sk_route_caps & NETIF_F_SG))
1210 uarg->zerocopy = 0;
1211 }
1212
1213 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect)) {
1214 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1215 if (err == -EINPROGRESS && copied_syn > 0)
1216 goto out;
1217 else if (err)
1218 goto out_err;
1219 }
1220
1221 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1222
1223 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1224
1225 /* Wait for a connection to finish. One exception is TCP Fast Open
1226 * (passive side) where data is allowed to be sent before a connection
1227 * is fully established.
1228 */
1229 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1230 !tcp_passive_fastopen(sk)) {
1231 err = sk_stream_wait_connect(sk, &timeo);
1232 if (err != 0)
1233 goto do_error;
1234 }
1235
1236 if (unlikely(tp->repair)) {
1237 if (tp->repair_queue == TCP_RECV_QUEUE) {
1238 copied = tcp_send_rcvq(sk, msg, size);
1239 goto out_nopush;
1240 }
1241
1242 err = -EINVAL;
1243 if (tp->repair_queue == TCP_NO_QUEUE)
1244 goto out_err;
1245
1246 /* 'common' sending to sendq */
1247 }
1248
1249 sockc.tsflags = sk->sk_tsflags;
1250 if (msg->msg_controllen) {
1251 err = sock_cmsg_send(sk, msg, &sockc);
1252 if (unlikely(err)) {
1253 err = -EINVAL;
1254 goto out_err;
1255 }
1256 }
1257
1258 /* This should be in poll */
1259 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1260
1261 /* Ok commence sending. */
1262 copied = 0;
1263
1264 restart:
1265 mss_now = tcp_send_mss(sk, &size_goal, flags);
1266
1267 err = -EPIPE;
1268 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1269 goto do_error;
1270
1271 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1272
1273 while (msg_data_left(msg)) {
1274 int copy = 0;
1275 int max = size_goal;
1276
1277 skb = tcp_write_queue_tail(sk);
1278 if (skb) {
1279 if (skb->ip_summed == CHECKSUM_NONE)
1280 max = mss_now;
1281 copy = max - skb->len;
1282 }
1283
1284 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1285 bool first_skb;
1286
1287 new_segment:
1288 /* Allocate new segment. If the interface is SG,
1289 * allocate skb fitting to single page.
1290 */
1291 if (!sk_stream_memory_free(sk))
1292 goto wait_for_sndbuf;
1293
1294 if (process_backlog && sk_flush_backlog(sk)) {
1295 process_backlog = false;
1296 goto restart;
1297 }
1298 first_skb = tcp_rtx_and_write_queues_empty(sk);
1299 skb = sk_stream_alloc_skb(sk,
1300 select_size(sk, sg, first_skb),
1301 sk->sk_allocation,
1302 first_skb);
1303 if (!skb)
1304 goto wait_for_memory;
1305
1306 process_backlog = true;
1307 /*
1308 * Check whether we can use HW checksum.
1309 */
1310 if (sk_check_csum_caps(sk))
1311 skb->ip_summed = CHECKSUM_PARTIAL;
1312
1313 skb_entail(sk, skb);
1314 copy = size_goal;
1315 max = size_goal;
1316
1317 /* All packets are restored as if they have
1318 * already been sent. skb_mstamp isn't set to
1319 * avoid wrong rtt estimation.
1320 */
1321 if (tp->repair)
1322 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1323 }
1324
1325 /* Try to append data to the end of skb. */
1326 if (copy > msg_data_left(msg))
1327 copy = msg_data_left(msg);
1328
1329 /* Where to copy to? */
1330 if (skb_availroom(skb) > 0) {
1331 /* We have some space in skb head. Superb! */
1332 copy = min_t(int, copy, skb_availroom(skb));
1333 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1334 if (err)
1335 goto do_fault;
1336 } else if (!uarg || !uarg->zerocopy) {
1337 bool merge = true;
1338 int i = skb_shinfo(skb)->nr_frags;
1339 struct page_frag *pfrag = sk_page_frag(sk);
1340
1341 if (!sk_page_frag_refill(sk, pfrag))
1342 goto wait_for_memory;
1343
1344 if (!skb_can_coalesce(skb, i, pfrag->page,
1345 pfrag->offset)) {
1346 if (i >= sysctl_max_skb_frags || !sg) {
1347 tcp_mark_push(tp, skb);
1348 goto new_segment;
1349 }
1350 merge = false;
1351 }
1352
1353 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1354
1355 if (!sk_wmem_schedule(sk, copy))
1356 goto wait_for_memory;
1357
1358 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1359 pfrag->page,
1360 pfrag->offset,
1361 copy);
1362 if (err)
1363 goto do_error;
1364
1365 /* Update the skb. */
1366 if (merge) {
1367 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1368 } else {
1369 skb_fill_page_desc(skb, i, pfrag->page,
1370 pfrag->offset, copy);
1371 page_ref_inc(pfrag->page);
1372 }
1373 pfrag->offset += copy;
1374 } else {
1375 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1376 if (err == -EMSGSIZE || err == -EEXIST)
1377 goto new_segment;
1378 if (err < 0)
1379 goto do_error;
1380 copy = err;
1381 }
1382
1383 if (!copied)
1384 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1385
1386 tp->write_seq += copy;
1387 TCP_SKB_CB(skb)->end_seq += copy;
1388 tcp_skb_pcount_set(skb, 0);
1389
1390 copied += copy;
1391 if (!msg_data_left(msg)) {
1392 if (unlikely(flags & MSG_EOR))
1393 TCP_SKB_CB(skb)->eor = 1;
1394 goto out;
1395 }
1396
1397 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1398 continue;
1399
1400 if (forced_push(tp)) {
1401 tcp_mark_push(tp, skb);
1402 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1403 } else if (skb == tcp_send_head(sk))
1404 tcp_push_one(sk, mss_now);
1405 continue;
1406
1407 wait_for_sndbuf:
1408 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1409 wait_for_memory:
1410 if (copied)
1411 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1412 TCP_NAGLE_PUSH, size_goal);
1413
1414 err = sk_stream_wait_memory(sk, &timeo);
1415 if (err != 0)
1416 goto do_error;
1417
1418 mss_now = tcp_send_mss(sk, &size_goal, flags);
1419 }
1420
1421 out:
1422 if (copied) {
1423 tcp_tx_timestamp(sk, sockc.tsflags);
1424 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1425 }
1426 out_nopush:
1427 sock_zerocopy_put(uarg);
1428 return copied + copied_syn;
1429
1430 do_fault:
1431 if (!skb->len) {
1432 tcp_unlink_write_queue(skb, sk);
1433 /* It is the one place in all of TCP, except connection
1434 * reset, where we can be unlinking the send_head.
1435 */
1436 tcp_check_send_head(sk, skb);
1437 sk_wmem_free_skb(sk, skb);
1438 }
1439
1440 do_error:
1441 if (copied + copied_syn)
1442 goto out;
1443 out_err:
1444 sock_zerocopy_put_abort(uarg);
1445 err = sk_stream_error(sk, flags, err);
1446 /* make sure we wake any epoll edge trigger waiter */
1447 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1448 err == -EAGAIN)) {
1449 sk->sk_write_space(sk);
1450 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1451 }
1452 return err;
1453 }
1454 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1455
1456 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1457 {
1458 int ret;
1459
1460 lock_sock(sk);
1461 ret = tcp_sendmsg_locked(sk, msg, size);
1462 release_sock(sk);
1463
1464 return ret;
1465 }
1466 EXPORT_SYMBOL(tcp_sendmsg);
1467
1468 /*
1469 * Handle reading urgent data. BSD has very simple semantics for
1470 * this, no blocking and very strange errors 8)
1471 */
1472
1473 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1474 {
1475 struct tcp_sock *tp = tcp_sk(sk);
1476
1477 /* No URG data to read. */
1478 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1479 tp->urg_data == TCP_URG_READ)
1480 return -EINVAL; /* Yes this is right ! */
1481
1482 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1483 return -ENOTCONN;
1484
1485 if (tp->urg_data & TCP_URG_VALID) {
1486 int err = 0;
1487 char c = tp->urg_data;
1488
1489 if (!(flags & MSG_PEEK))
1490 tp->urg_data = TCP_URG_READ;
1491
1492 /* Read urgent data. */
1493 msg->msg_flags |= MSG_OOB;
1494
1495 if (len > 0) {
1496 if (!(flags & MSG_TRUNC))
1497 err = memcpy_to_msg(msg, &c, 1);
1498 len = 1;
1499 } else
1500 msg->msg_flags |= MSG_TRUNC;
1501
1502 return err ? -EFAULT : len;
1503 }
1504
1505 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1506 return 0;
1507
1508 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1509 * the available implementations agree in this case:
1510 * this call should never block, independent of the
1511 * blocking state of the socket.
1512 * Mike <pall@rz.uni-karlsruhe.de>
1513 */
1514 return -EAGAIN;
1515 }
1516
1517 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1518 {
1519 struct sk_buff *skb;
1520 int copied = 0, err = 0;
1521
1522 /* XXX -- need to support SO_PEEK_OFF */
1523
1524 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1525 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1526 if (err)
1527 return err;
1528 copied += skb->len;
1529 }
1530
1531 skb_queue_walk(&sk->sk_write_queue, skb) {
1532 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1533 if (err)
1534 break;
1535
1536 copied += skb->len;
1537 }
1538
1539 return err ?: copied;
1540 }
1541
1542 /* Clean up the receive buffer for full frames taken by the user,
1543 * then send an ACK if necessary. COPIED is the number of bytes
1544 * tcp_recvmsg has given to the user so far, it speeds up the
1545 * calculation of whether or not we must ACK for the sake of
1546 * a window update.
1547 */
1548 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1549 {
1550 struct tcp_sock *tp = tcp_sk(sk);
1551 bool time_to_ack = false;
1552
1553 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1554
1555 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1556 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1557 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1558
1559 if (inet_csk_ack_scheduled(sk)) {
1560 const struct inet_connection_sock *icsk = inet_csk(sk);
1561 /* Delayed ACKs frequently hit locked sockets during bulk
1562 * receive. */
1563 if (icsk->icsk_ack.blocked ||
1564 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1565 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1566 /*
1567 * If this read emptied read buffer, we send ACK, if
1568 * connection is not bidirectional, user drained
1569 * receive buffer and there was a small segment
1570 * in queue.
1571 */
1572 (copied > 0 &&
1573 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1574 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1575 !icsk->icsk_ack.pingpong)) &&
1576 !atomic_read(&sk->sk_rmem_alloc)))
1577 time_to_ack = true;
1578 }
1579
1580 /* We send an ACK if we can now advertise a non-zero window
1581 * which has been raised "significantly".
1582 *
1583 * Even if window raised up to infinity, do not send window open ACK
1584 * in states, where we will not receive more. It is useless.
1585 */
1586 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1587 __u32 rcv_window_now = tcp_receive_window(tp);
1588
1589 /* Optimize, __tcp_select_window() is not cheap. */
1590 if (2*rcv_window_now <= tp->window_clamp) {
1591 __u32 new_window = __tcp_select_window(sk);
1592
1593 /* Send ACK now, if this read freed lots of space
1594 * in our buffer. Certainly, new_window is new window.
1595 * We can advertise it now, if it is not less than current one.
1596 * "Lots" means "at least twice" here.
1597 */
1598 if (new_window && new_window >= 2 * rcv_window_now)
1599 time_to_ack = true;
1600 }
1601 }
1602 if (time_to_ack)
1603 tcp_send_ack(sk);
1604 }
1605
1606 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1607 {
1608 struct sk_buff *skb;
1609 u32 offset;
1610
1611 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1612 offset = seq - TCP_SKB_CB(skb)->seq;
1613 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1614 pr_err_once("%s: found a SYN, please report !\n", __func__);
1615 offset--;
1616 }
1617 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1618 *off = offset;
1619 return skb;
1620 }
1621 /* This looks weird, but this can happen if TCP collapsing
1622 * splitted a fat GRO packet, while we released socket lock
1623 * in skb_splice_bits()
1624 */
1625 sk_eat_skb(sk, skb);
1626 }
1627 return NULL;
1628 }
1629
1630 /*
1631 * This routine provides an alternative to tcp_recvmsg() for routines
1632 * that would like to handle copying from skbuffs directly in 'sendfile'
1633 * fashion.
1634 * Note:
1635 * - It is assumed that the socket was locked by the caller.
1636 * - The routine does not block.
1637 * - At present, there is no support for reading OOB data
1638 * or for 'peeking' the socket using this routine
1639 * (although both would be easy to implement).
1640 */
1641 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1642 sk_read_actor_t recv_actor)
1643 {
1644 struct sk_buff *skb;
1645 struct tcp_sock *tp = tcp_sk(sk);
1646 u32 seq = tp->copied_seq;
1647 u32 offset;
1648 int copied = 0;
1649
1650 if (sk->sk_state == TCP_LISTEN)
1651 return -ENOTCONN;
1652 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1653 if (offset < skb->len) {
1654 int used;
1655 size_t len;
1656
1657 len = skb->len - offset;
1658 /* Stop reading if we hit a patch of urgent data */
1659 if (tp->urg_data) {
1660 u32 urg_offset = tp->urg_seq - seq;
1661 if (urg_offset < len)
1662 len = urg_offset;
1663 if (!len)
1664 break;
1665 }
1666 used = recv_actor(desc, skb, offset, len);
1667 if (used <= 0) {
1668 if (!copied)
1669 copied = used;
1670 break;
1671 } else if (used <= len) {
1672 seq += used;
1673 copied += used;
1674 offset += used;
1675 }
1676 /* If recv_actor drops the lock (e.g. TCP splice
1677 * receive) the skb pointer might be invalid when
1678 * getting here: tcp_collapse might have deleted it
1679 * while aggregating skbs from the socket queue.
1680 */
1681 skb = tcp_recv_skb(sk, seq - 1, &offset);
1682 if (!skb)
1683 break;
1684 /* TCP coalescing might have appended data to the skb.
1685 * Try to splice more frags
1686 */
1687 if (offset + 1 != skb->len)
1688 continue;
1689 }
1690 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1691 sk_eat_skb(sk, skb);
1692 ++seq;
1693 break;
1694 }
1695 sk_eat_skb(sk, skb);
1696 if (!desc->count)
1697 break;
1698 tp->copied_seq = seq;
1699 }
1700 tp->copied_seq = seq;
1701
1702 tcp_rcv_space_adjust(sk);
1703
1704 /* Clean up data we have read: This will do ACK frames. */
1705 if (copied > 0) {
1706 tcp_recv_skb(sk, seq, &offset);
1707 tcp_cleanup_rbuf(sk, copied);
1708 }
1709 return copied;
1710 }
1711 EXPORT_SYMBOL(tcp_read_sock);
1712
1713 int tcp_peek_len(struct socket *sock)
1714 {
1715 return tcp_inq(sock->sk);
1716 }
1717 EXPORT_SYMBOL(tcp_peek_len);
1718
1719 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1720 struct scm_timestamping *tss)
1721 {
1722 if (skb->tstamp)
1723 tss->ts[0] = ktime_to_timespec(skb->tstamp);
1724 else
1725 tss->ts[0] = (struct timespec) {0};
1726
1727 if (skb_hwtstamps(skb)->hwtstamp)
1728 tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp);
1729 else
1730 tss->ts[2] = (struct timespec) {0};
1731 }
1732
1733 /* Similar to __sock_recv_timestamp, but does not require an skb */
1734 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1735 struct scm_timestamping *tss)
1736 {
1737 struct timeval tv;
1738 bool has_timestamping = false;
1739
1740 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1741 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1742 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1743 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
1744 sizeof(tss->ts[0]), &tss->ts[0]);
1745 } else {
1746 tv.tv_sec = tss->ts[0].tv_sec;
1747 tv.tv_usec = tss->ts[0].tv_nsec / 1000;
1748
1749 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
1750 sizeof(tv), &tv);
1751 }
1752 }
1753
1754 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1755 has_timestamping = true;
1756 else
1757 tss->ts[0] = (struct timespec) {0};
1758 }
1759
1760 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1761 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1762 has_timestamping = true;
1763 else
1764 tss->ts[2] = (struct timespec) {0};
1765 }
1766
1767 if (has_timestamping) {
1768 tss->ts[1] = (struct timespec) {0};
1769 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING,
1770 sizeof(*tss), tss);
1771 }
1772 }
1773
1774 /*
1775 * This routine copies from a sock struct into the user buffer.
1776 *
1777 * Technical note: in 2.3 we work on _locked_ socket, so that
1778 * tricks with *seq access order and skb->users are not required.
1779 * Probably, code can be easily improved even more.
1780 */
1781
1782 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1783 int flags, int *addr_len)
1784 {
1785 struct tcp_sock *tp = tcp_sk(sk);
1786 int copied = 0;
1787 u32 peek_seq;
1788 u32 *seq;
1789 unsigned long used;
1790 int err;
1791 int target; /* Read at least this many bytes */
1792 long timeo;
1793 struct sk_buff *skb, *last;
1794 u32 urg_hole = 0;
1795 struct scm_timestamping tss;
1796 bool has_tss = false;
1797
1798 if (unlikely(flags & MSG_ERRQUEUE))
1799 return inet_recv_error(sk, msg, len, addr_len);
1800
1801 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1802 (sk->sk_state == TCP_ESTABLISHED))
1803 sk_busy_loop(sk, nonblock);
1804
1805 lock_sock(sk);
1806
1807 err = -ENOTCONN;
1808 if (sk->sk_state == TCP_LISTEN)
1809 goto out;
1810
1811 timeo = sock_rcvtimeo(sk, nonblock);
1812
1813 /* Urgent data needs to be handled specially. */
1814 if (flags & MSG_OOB)
1815 goto recv_urg;
1816
1817 if (unlikely(tp->repair)) {
1818 err = -EPERM;
1819 if (!(flags & MSG_PEEK))
1820 goto out;
1821
1822 if (tp->repair_queue == TCP_SEND_QUEUE)
1823 goto recv_sndq;
1824
1825 err = -EINVAL;
1826 if (tp->repair_queue == TCP_NO_QUEUE)
1827 goto out;
1828
1829 /* 'common' recv queue MSG_PEEK-ing */
1830 }
1831
1832 seq = &tp->copied_seq;
1833 if (flags & MSG_PEEK) {
1834 peek_seq = tp->copied_seq;
1835 seq = &peek_seq;
1836 }
1837
1838 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1839
1840 do {
1841 u32 offset;
1842
1843 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1844 if (tp->urg_data && tp->urg_seq == *seq) {
1845 if (copied)
1846 break;
1847 if (signal_pending(current)) {
1848 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1849 break;
1850 }
1851 }
1852
1853 /* Next get a buffer. */
1854
1855 last = skb_peek_tail(&sk->sk_receive_queue);
1856 skb_queue_walk(&sk->sk_receive_queue, skb) {
1857 last = skb;
1858 /* Now that we have two receive queues this
1859 * shouldn't happen.
1860 */
1861 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1862 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1863 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1864 flags))
1865 break;
1866
1867 offset = *seq - TCP_SKB_CB(skb)->seq;
1868 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1869 pr_err_once("%s: found a SYN, please report !\n", __func__);
1870 offset--;
1871 }
1872 if (offset < skb->len)
1873 goto found_ok_skb;
1874 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1875 goto found_fin_ok;
1876 WARN(!(flags & MSG_PEEK),
1877 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1878 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1879 }
1880
1881 /* Well, if we have backlog, try to process it now yet. */
1882
1883 if (copied >= target && !sk->sk_backlog.tail)
1884 break;
1885
1886 if (copied) {
1887 if (sk->sk_err ||
1888 sk->sk_state == TCP_CLOSE ||
1889 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1890 !timeo ||
1891 signal_pending(current))
1892 break;
1893 } else {
1894 if (sock_flag(sk, SOCK_DONE))
1895 break;
1896
1897 if (sk->sk_err) {
1898 copied = sock_error(sk);
1899 break;
1900 }
1901
1902 if (sk->sk_shutdown & RCV_SHUTDOWN)
1903 break;
1904
1905 if (sk->sk_state == TCP_CLOSE) {
1906 if (!sock_flag(sk, SOCK_DONE)) {
1907 /* This occurs when user tries to read
1908 * from never connected socket.
1909 */
1910 copied = -ENOTCONN;
1911 break;
1912 }
1913 break;
1914 }
1915
1916 if (!timeo) {
1917 copied = -EAGAIN;
1918 break;
1919 }
1920
1921 if (signal_pending(current)) {
1922 copied = sock_intr_errno(timeo);
1923 break;
1924 }
1925 }
1926
1927 tcp_cleanup_rbuf(sk, copied);
1928
1929 if (copied >= target) {
1930 /* Do not sleep, just process backlog. */
1931 release_sock(sk);
1932 lock_sock(sk);
1933 } else {
1934 sk_wait_data(sk, &timeo, last);
1935 }
1936
1937 if ((flags & MSG_PEEK) &&
1938 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1939 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1940 current->comm,
1941 task_pid_nr(current));
1942 peek_seq = tp->copied_seq;
1943 }
1944 continue;
1945
1946 found_ok_skb:
1947 /* Ok so how much can we use? */
1948 used = skb->len - offset;
1949 if (len < used)
1950 used = len;
1951
1952 /* Do we have urgent data here? */
1953 if (tp->urg_data) {
1954 u32 urg_offset = tp->urg_seq - *seq;
1955 if (urg_offset < used) {
1956 if (!urg_offset) {
1957 if (!sock_flag(sk, SOCK_URGINLINE)) {
1958 ++*seq;
1959 urg_hole++;
1960 offset++;
1961 used--;
1962 if (!used)
1963 goto skip_copy;
1964 }
1965 } else
1966 used = urg_offset;
1967 }
1968 }
1969
1970 if (!(flags & MSG_TRUNC)) {
1971 err = skb_copy_datagram_msg(skb, offset, msg, used);
1972 if (err) {
1973 /* Exception. Bailout! */
1974 if (!copied)
1975 copied = -EFAULT;
1976 break;
1977 }
1978 }
1979
1980 *seq += used;
1981 copied += used;
1982 len -= used;
1983
1984 tcp_rcv_space_adjust(sk);
1985
1986 skip_copy:
1987 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1988 tp->urg_data = 0;
1989 tcp_fast_path_check(sk);
1990 }
1991 if (used + offset < skb->len)
1992 continue;
1993
1994 if (TCP_SKB_CB(skb)->has_rxtstamp) {
1995 tcp_update_recv_tstamps(skb, &tss);
1996 has_tss = true;
1997 }
1998 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1999 goto found_fin_ok;
2000 if (!(flags & MSG_PEEK))
2001 sk_eat_skb(sk, skb);
2002 continue;
2003
2004 found_fin_ok:
2005 /* Process the FIN. */
2006 ++*seq;
2007 if (!(flags & MSG_PEEK))
2008 sk_eat_skb(sk, skb);
2009 break;
2010 } while (len > 0);
2011
2012 /* According to UNIX98, msg_name/msg_namelen are ignored
2013 * on connected socket. I was just happy when found this 8) --ANK
2014 */
2015
2016 if (has_tss)
2017 tcp_recv_timestamp(msg, sk, &tss);
2018
2019 /* Clean up data we have read: This will do ACK frames. */
2020 tcp_cleanup_rbuf(sk, copied);
2021
2022 release_sock(sk);
2023 return copied;
2024
2025 out:
2026 release_sock(sk);
2027 return err;
2028
2029 recv_urg:
2030 err = tcp_recv_urg(sk, msg, len, flags);
2031 goto out;
2032
2033 recv_sndq:
2034 err = tcp_peek_sndq(sk, msg, len);
2035 goto out;
2036 }
2037 EXPORT_SYMBOL(tcp_recvmsg);
2038
2039 void tcp_set_state(struct sock *sk, int state)
2040 {
2041 int oldstate = sk->sk_state;
2042
2043 trace_tcp_set_state(sk, oldstate, state);
2044
2045 switch (state) {
2046 case TCP_ESTABLISHED:
2047 if (oldstate != TCP_ESTABLISHED)
2048 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2049 break;
2050
2051 case TCP_CLOSE:
2052 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2053 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2054
2055 sk->sk_prot->unhash(sk);
2056 if (inet_csk(sk)->icsk_bind_hash &&
2057 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2058 inet_put_port(sk);
2059 /* fall through */
2060 default:
2061 if (oldstate == TCP_ESTABLISHED)
2062 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2063 }
2064
2065 /* Change state AFTER socket is unhashed to avoid closed
2066 * socket sitting in hash tables.
2067 */
2068 sk_state_store(sk, state);
2069
2070 #ifdef STATE_TRACE
2071 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2072 #endif
2073 }
2074 EXPORT_SYMBOL_GPL(tcp_set_state);
2075
2076 /*
2077 * State processing on a close. This implements the state shift for
2078 * sending our FIN frame. Note that we only send a FIN for some
2079 * states. A shutdown() may have already sent the FIN, or we may be
2080 * closed.
2081 */
2082
2083 static const unsigned char new_state[16] = {
2084 /* current state: new state: action: */
2085 [0 /* (Invalid) */] = TCP_CLOSE,
2086 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2087 [TCP_SYN_SENT] = TCP_CLOSE,
2088 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2089 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2090 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2091 [TCP_TIME_WAIT] = TCP_CLOSE,
2092 [TCP_CLOSE] = TCP_CLOSE,
2093 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2094 [TCP_LAST_ACK] = TCP_LAST_ACK,
2095 [TCP_LISTEN] = TCP_CLOSE,
2096 [TCP_CLOSING] = TCP_CLOSING,
2097 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2098 };
2099
2100 static int tcp_close_state(struct sock *sk)
2101 {
2102 int next = (int)new_state[sk->sk_state];
2103 int ns = next & TCP_STATE_MASK;
2104
2105 tcp_set_state(sk, ns);
2106
2107 return next & TCP_ACTION_FIN;
2108 }
2109
2110 /*
2111 * Shutdown the sending side of a connection. Much like close except
2112 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2113 */
2114
2115 void tcp_shutdown(struct sock *sk, int how)
2116 {
2117 /* We need to grab some memory, and put together a FIN,
2118 * and then put it into the queue to be sent.
2119 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2120 */
2121 if (!(how & SEND_SHUTDOWN))
2122 return;
2123
2124 /* If we've already sent a FIN, or it's a closed state, skip this. */
2125 if ((1 << sk->sk_state) &
2126 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2127 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2128 /* Clear out any half completed packets. FIN if needed. */
2129 if (tcp_close_state(sk))
2130 tcp_send_fin(sk);
2131 }
2132 }
2133 EXPORT_SYMBOL(tcp_shutdown);
2134
2135 bool tcp_check_oom(struct sock *sk, int shift)
2136 {
2137 bool too_many_orphans, out_of_socket_memory;
2138
2139 too_many_orphans = tcp_too_many_orphans(sk, shift);
2140 out_of_socket_memory = tcp_out_of_memory(sk);
2141
2142 if (too_many_orphans)
2143 net_info_ratelimited("too many orphaned sockets\n");
2144 if (out_of_socket_memory)
2145 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2146 return too_many_orphans || out_of_socket_memory;
2147 }
2148
2149 void tcp_close(struct sock *sk, long timeout)
2150 {
2151 struct sk_buff *skb;
2152 int data_was_unread = 0;
2153 int state;
2154
2155 lock_sock(sk);
2156 sk->sk_shutdown = SHUTDOWN_MASK;
2157
2158 if (sk->sk_state == TCP_LISTEN) {
2159 tcp_set_state(sk, TCP_CLOSE);
2160
2161 /* Special case. */
2162 inet_csk_listen_stop(sk);
2163
2164 goto adjudge_to_death;
2165 }
2166
2167 /* We need to flush the recv. buffs. We do this only on the
2168 * descriptor close, not protocol-sourced closes, because the
2169 * reader process may not have drained the data yet!
2170 */
2171 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2172 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2173
2174 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2175 len--;
2176 data_was_unread += len;
2177 __kfree_skb(skb);
2178 }
2179
2180 sk_mem_reclaim(sk);
2181
2182 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2183 if (sk->sk_state == TCP_CLOSE)
2184 goto adjudge_to_death;
2185
2186 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2187 * data was lost. To witness the awful effects of the old behavior of
2188 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2189 * GET in an FTP client, suspend the process, wait for the client to
2190 * advertise a zero window, then kill -9 the FTP client, wheee...
2191 * Note: timeout is always zero in such a case.
2192 */
2193 if (unlikely(tcp_sk(sk)->repair)) {
2194 sk->sk_prot->disconnect(sk, 0);
2195 } else if (data_was_unread) {
2196 /* Unread data was tossed, zap the connection. */
2197 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2198 tcp_set_state(sk, TCP_CLOSE);
2199 tcp_send_active_reset(sk, sk->sk_allocation);
2200 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2201 /* Check zero linger _after_ checking for unread data. */
2202 sk->sk_prot->disconnect(sk, 0);
2203 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2204 } else if (tcp_close_state(sk)) {
2205 /* We FIN if the application ate all the data before
2206 * zapping the connection.
2207 */
2208
2209 /* RED-PEN. Formally speaking, we have broken TCP state
2210 * machine. State transitions:
2211 *
2212 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2213 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2214 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2215 *
2216 * are legal only when FIN has been sent (i.e. in window),
2217 * rather than queued out of window. Purists blame.
2218 *
2219 * F.e. "RFC state" is ESTABLISHED,
2220 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2221 *
2222 * The visible declinations are that sometimes
2223 * we enter time-wait state, when it is not required really
2224 * (harmless), do not send active resets, when they are
2225 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2226 * they look as CLOSING or LAST_ACK for Linux)
2227 * Probably, I missed some more holelets.
2228 * --ANK
2229 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2230 * in a single packet! (May consider it later but will
2231 * probably need API support or TCP_CORK SYN-ACK until
2232 * data is written and socket is closed.)
2233 */
2234 tcp_send_fin(sk);
2235 }
2236
2237 sk_stream_wait_close(sk, timeout);
2238
2239 adjudge_to_death:
2240 state = sk->sk_state;
2241 sock_hold(sk);
2242 sock_orphan(sk);
2243
2244 /* It is the last release_sock in its life. It will remove backlog. */
2245 release_sock(sk);
2246
2247
2248 /* Now socket is owned by kernel and we acquire BH lock
2249 * to finish close. No need to check for user refs.
2250 */
2251 local_bh_disable();
2252 bh_lock_sock(sk);
2253 WARN_ON(sock_owned_by_user(sk));
2254
2255 percpu_counter_inc(sk->sk_prot->orphan_count);
2256
2257 /* Have we already been destroyed by a softirq or backlog? */
2258 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2259 goto out;
2260
2261 /* This is a (useful) BSD violating of the RFC. There is a
2262 * problem with TCP as specified in that the other end could
2263 * keep a socket open forever with no application left this end.
2264 * We use a 1 minute timeout (about the same as BSD) then kill
2265 * our end. If they send after that then tough - BUT: long enough
2266 * that we won't make the old 4*rto = almost no time - whoops
2267 * reset mistake.
2268 *
2269 * Nope, it was not mistake. It is really desired behaviour
2270 * f.e. on http servers, when such sockets are useless, but
2271 * consume significant resources. Let's do it with special
2272 * linger2 option. --ANK
2273 */
2274
2275 if (sk->sk_state == TCP_FIN_WAIT2) {
2276 struct tcp_sock *tp = tcp_sk(sk);
2277 if (tp->linger2 < 0) {
2278 tcp_set_state(sk, TCP_CLOSE);
2279 tcp_send_active_reset(sk, GFP_ATOMIC);
2280 __NET_INC_STATS(sock_net(sk),
2281 LINUX_MIB_TCPABORTONLINGER);
2282 } else {
2283 const int tmo = tcp_fin_time(sk);
2284
2285 if (tmo > TCP_TIMEWAIT_LEN) {
2286 inet_csk_reset_keepalive_timer(sk,
2287 tmo - TCP_TIMEWAIT_LEN);
2288 } else {
2289 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2290 goto out;
2291 }
2292 }
2293 }
2294 if (sk->sk_state != TCP_CLOSE) {
2295 sk_mem_reclaim(sk);
2296 if (tcp_check_oom(sk, 0)) {
2297 tcp_set_state(sk, TCP_CLOSE);
2298 tcp_send_active_reset(sk, GFP_ATOMIC);
2299 __NET_INC_STATS(sock_net(sk),
2300 LINUX_MIB_TCPABORTONMEMORY);
2301 }
2302 }
2303
2304 if (sk->sk_state == TCP_CLOSE) {
2305 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2306 /* We could get here with a non-NULL req if the socket is
2307 * aborted (e.g., closed with unread data) before 3WHS
2308 * finishes.
2309 */
2310 if (req)
2311 reqsk_fastopen_remove(sk, req, false);
2312 inet_csk_destroy_sock(sk);
2313 }
2314 /* Otherwise, socket is reprieved until protocol close. */
2315
2316 out:
2317 bh_unlock_sock(sk);
2318 local_bh_enable();
2319 sock_put(sk);
2320 }
2321 EXPORT_SYMBOL(tcp_close);
2322
2323 /* These states need RST on ABORT according to RFC793 */
2324
2325 static inline bool tcp_need_reset(int state)
2326 {
2327 return (1 << state) &
2328 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2329 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2330 }
2331
2332 static void tcp_rtx_queue_purge(struct sock *sk)
2333 {
2334 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2335
2336 while (p) {
2337 struct sk_buff *skb = rb_to_skb(p);
2338
2339 p = rb_next(p);
2340 /* Since we are deleting whole queue, no need to
2341 * list_del(&skb->tcp_tsorted_anchor)
2342 */
2343 tcp_rtx_queue_unlink(skb, sk);
2344 sk_wmem_free_skb(sk, skb);
2345 }
2346 }
2347
2348 void tcp_write_queue_purge(struct sock *sk)
2349 {
2350 struct sk_buff *skb;
2351
2352 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2353 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2354 tcp_skb_tsorted_anchor_cleanup(skb);
2355 sk_wmem_free_skb(sk, skb);
2356 }
2357 tcp_rtx_queue_purge(sk);
2358 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2359 sk_mem_reclaim(sk);
2360 tcp_clear_all_retrans_hints(tcp_sk(sk));
2361 }
2362
2363 int tcp_disconnect(struct sock *sk, int flags)
2364 {
2365 struct inet_sock *inet = inet_sk(sk);
2366 struct inet_connection_sock *icsk = inet_csk(sk);
2367 struct tcp_sock *tp = tcp_sk(sk);
2368 int err = 0;
2369 int old_state = sk->sk_state;
2370
2371 if (old_state != TCP_CLOSE)
2372 tcp_set_state(sk, TCP_CLOSE);
2373
2374 /* ABORT function of RFC793 */
2375 if (old_state == TCP_LISTEN) {
2376 inet_csk_listen_stop(sk);
2377 } else if (unlikely(tp->repair)) {
2378 sk->sk_err = ECONNABORTED;
2379 } else if (tcp_need_reset(old_state) ||
2380 (tp->snd_nxt != tp->write_seq &&
2381 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2382 /* The last check adjusts for discrepancy of Linux wrt. RFC
2383 * states
2384 */
2385 tcp_send_active_reset(sk, gfp_any());
2386 sk->sk_err = ECONNRESET;
2387 } else if (old_state == TCP_SYN_SENT)
2388 sk->sk_err = ECONNRESET;
2389
2390 tcp_clear_xmit_timers(sk);
2391 __skb_queue_purge(&sk->sk_receive_queue);
2392 tcp_write_queue_purge(sk);
2393 tcp_fastopen_active_disable_ofo_check(sk);
2394 skb_rbtree_purge(&tp->out_of_order_queue);
2395
2396 inet->inet_dport = 0;
2397
2398 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2399 inet_reset_saddr(sk);
2400
2401 sk->sk_shutdown = 0;
2402 sock_reset_flag(sk, SOCK_DONE);
2403 tp->srtt_us = 0;
2404 tp->write_seq += tp->max_window + 2;
2405 if (tp->write_seq == 0)
2406 tp->write_seq = 1;
2407 icsk->icsk_backoff = 0;
2408 tp->snd_cwnd = 2;
2409 icsk->icsk_probes_out = 0;
2410 tp->packets_out = 0;
2411 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2412 tp->snd_cwnd_cnt = 0;
2413 tp->window_clamp = 0;
2414 tcp_set_ca_state(sk, TCP_CA_Open);
2415 tp->is_sack_reneg = 0;
2416 tcp_clear_retrans(tp);
2417 inet_csk_delack_init(sk);
2418 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2419 * issue in __tcp_select_window()
2420 */
2421 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2422 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2423 __sk_dst_reset(sk);
2424 dst_release(sk->sk_rx_dst);
2425 sk->sk_rx_dst = NULL;
2426 tcp_saved_syn_free(tp);
2427
2428 /* Clean up fastopen related fields */
2429 tcp_free_fastopen_req(tp);
2430 inet->defer_connect = 0;
2431
2432 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2433
2434 sk->sk_error_report(sk);
2435 return err;
2436 }
2437 EXPORT_SYMBOL(tcp_disconnect);
2438
2439 static inline bool tcp_can_repair_sock(const struct sock *sk)
2440 {
2441 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2442 (sk->sk_state != TCP_LISTEN);
2443 }
2444
2445 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2446 {
2447 struct tcp_repair_window opt;
2448
2449 if (!tp->repair)
2450 return -EPERM;
2451
2452 if (len != sizeof(opt))
2453 return -EINVAL;
2454
2455 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2456 return -EFAULT;
2457
2458 if (opt.max_window < opt.snd_wnd)
2459 return -EINVAL;
2460
2461 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2462 return -EINVAL;
2463
2464 if (after(opt.rcv_wup, tp->rcv_nxt))
2465 return -EINVAL;
2466
2467 tp->snd_wl1 = opt.snd_wl1;
2468 tp->snd_wnd = opt.snd_wnd;
2469 tp->max_window = opt.max_window;
2470
2471 tp->rcv_wnd = opt.rcv_wnd;
2472 tp->rcv_wup = opt.rcv_wup;
2473
2474 return 0;
2475 }
2476
2477 static int tcp_repair_options_est(struct sock *sk,
2478 struct tcp_repair_opt __user *optbuf, unsigned int len)
2479 {
2480 struct tcp_sock *tp = tcp_sk(sk);
2481 struct tcp_repair_opt opt;
2482
2483 while (len >= sizeof(opt)) {
2484 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2485 return -EFAULT;
2486
2487 optbuf++;
2488 len -= sizeof(opt);
2489
2490 switch (opt.opt_code) {
2491 case TCPOPT_MSS:
2492 tp->rx_opt.mss_clamp = opt.opt_val;
2493 tcp_mtup_init(sk);
2494 break;
2495 case TCPOPT_WINDOW:
2496 {
2497 u16 snd_wscale = opt.opt_val & 0xFFFF;
2498 u16 rcv_wscale = opt.opt_val >> 16;
2499
2500 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2501 return -EFBIG;
2502
2503 tp->rx_opt.snd_wscale = snd_wscale;
2504 tp->rx_opt.rcv_wscale = rcv_wscale;
2505 tp->rx_opt.wscale_ok = 1;
2506 }
2507 break;
2508 case TCPOPT_SACK_PERM:
2509 if (opt.opt_val != 0)
2510 return -EINVAL;
2511
2512 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2513 break;
2514 case TCPOPT_TIMESTAMP:
2515 if (opt.opt_val != 0)
2516 return -EINVAL;
2517
2518 tp->rx_opt.tstamp_ok = 1;
2519 break;
2520 }
2521 }
2522
2523 return 0;
2524 }
2525
2526 /*
2527 * Socket option code for TCP.
2528 */
2529 static int do_tcp_setsockopt(struct sock *sk, int level,
2530 int optname, char __user *optval, unsigned int optlen)
2531 {
2532 struct tcp_sock *tp = tcp_sk(sk);
2533 struct inet_connection_sock *icsk = inet_csk(sk);
2534 struct net *net = sock_net(sk);
2535 int val;
2536 int err = 0;
2537
2538 /* These are data/string values, all the others are ints */
2539 switch (optname) {
2540 case TCP_CONGESTION: {
2541 char name[TCP_CA_NAME_MAX];
2542
2543 if (optlen < 1)
2544 return -EINVAL;
2545
2546 val = strncpy_from_user(name, optval,
2547 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2548 if (val < 0)
2549 return -EFAULT;
2550 name[val] = 0;
2551
2552 lock_sock(sk);
2553 err = tcp_set_congestion_control(sk, name, true, true);
2554 release_sock(sk);
2555 return err;
2556 }
2557 case TCP_ULP: {
2558 char name[TCP_ULP_NAME_MAX];
2559
2560 if (optlen < 1)
2561 return -EINVAL;
2562
2563 val = strncpy_from_user(name, optval,
2564 min_t(long, TCP_ULP_NAME_MAX - 1,
2565 optlen));
2566 if (val < 0)
2567 return -EFAULT;
2568 name[val] = 0;
2569
2570 lock_sock(sk);
2571 err = tcp_set_ulp(sk, name);
2572 release_sock(sk);
2573 return err;
2574 }
2575 case TCP_FASTOPEN_KEY: {
2576 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
2577
2578 if (optlen != sizeof(key))
2579 return -EINVAL;
2580
2581 if (copy_from_user(key, optval, optlen))
2582 return -EFAULT;
2583
2584 return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key));
2585 }
2586 default:
2587 /* fallthru */
2588 break;
2589 }
2590
2591 if (optlen < sizeof(int))
2592 return -EINVAL;
2593
2594 if (get_user(val, (int __user *)optval))
2595 return -EFAULT;
2596
2597 lock_sock(sk);
2598
2599 switch (optname) {
2600 case TCP_MAXSEG:
2601 /* Values greater than interface MTU won't take effect. However
2602 * at the point when this call is done we typically don't yet
2603 * know which interface is going to be used
2604 */
2605 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2606 err = -EINVAL;
2607 break;
2608 }
2609 tp->rx_opt.user_mss = val;
2610 break;
2611
2612 case TCP_NODELAY:
2613 if (val) {
2614 /* TCP_NODELAY is weaker than TCP_CORK, so that
2615 * this option on corked socket is remembered, but
2616 * it is not activated until cork is cleared.
2617 *
2618 * However, when TCP_NODELAY is set we make
2619 * an explicit push, which overrides even TCP_CORK
2620 * for currently queued segments.
2621 */
2622 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2623 tcp_push_pending_frames(sk);
2624 } else {
2625 tp->nonagle &= ~TCP_NAGLE_OFF;
2626 }
2627 break;
2628
2629 case TCP_THIN_LINEAR_TIMEOUTS:
2630 if (val < 0 || val > 1)
2631 err = -EINVAL;
2632 else
2633 tp->thin_lto = val;
2634 break;
2635
2636 case TCP_THIN_DUPACK:
2637 if (val < 0 || val > 1)
2638 err = -EINVAL;
2639 break;
2640
2641 case TCP_REPAIR:
2642 if (!tcp_can_repair_sock(sk))
2643 err = -EPERM;
2644 else if (val == 1) {
2645 tp->repair = 1;
2646 sk->sk_reuse = SK_FORCE_REUSE;
2647 tp->repair_queue = TCP_NO_QUEUE;
2648 } else if (val == 0) {
2649 tp->repair = 0;
2650 sk->sk_reuse = SK_NO_REUSE;
2651 tcp_send_window_probe(sk);
2652 } else
2653 err = -EINVAL;
2654
2655 break;
2656
2657 case TCP_REPAIR_QUEUE:
2658 if (!tp->repair)
2659 err = -EPERM;
2660 else if (val < TCP_QUEUES_NR)
2661 tp->repair_queue = val;
2662 else
2663 err = -EINVAL;
2664 break;
2665
2666 case TCP_QUEUE_SEQ:
2667 if (sk->sk_state != TCP_CLOSE)
2668 err = -EPERM;
2669 else if (tp->repair_queue == TCP_SEND_QUEUE)
2670 tp->write_seq = val;
2671 else if (tp->repair_queue == TCP_RECV_QUEUE)
2672 tp->rcv_nxt = val;
2673 else
2674 err = -EINVAL;
2675 break;
2676
2677 case TCP_REPAIR_OPTIONS:
2678 if (!tp->repair)
2679 err = -EINVAL;
2680 else if (sk->sk_state == TCP_ESTABLISHED)
2681 err = tcp_repair_options_est(sk,
2682 (struct tcp_repair_opt __user *)optval,
2683 optlen);
2684 else
2685 err = -EPERM;
2686 break;
2687
2688 case TCP_CORK:
2689 /* When set indicates to always queue non-full frames.
2690 * Later the user clears this option and we transmit
2691 * any pending partial frames in the queue. This is
2692 * meant to be used alongside sendfile() to get properly
2693 * filled frames when the user (for example) must write
2694 * out headers with a write() call first and then use
2695 * sendfile to send out the data parts.
2696 *
2697 * TCP_CORK can be set together with TCP_NODELAY and it is
2698 * stronger than TCP_NODELAY.
2699 */
2700 if (val) {
2701 tp->nonagle |= TCP_NAGLE_CORK;
2702 } else {
2703 tp->nonagle &= ~TCP_NAGLE_CORK;
2704 if (tp->nonagle&TCP_NAGLE_OFF)
2705 tp->nonagle |= TCP_NAGLE_PUSH;
2706 tcp_push_pending_frames(sk);
2707 }
2708 break;
2709
2710 case TCP_KEEPIDLE:
2711 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2712 err = -EINVAL;
2713 else {
2714 tp->keepalive_time = val * HZ;
2715 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2716 !((1 << sk->sk_state) &
2717 (TCPF_CLOSE | TCPF_LISTEN))) {
2718 u32 elapsed = keepalive_time_elapsed(tp);
2719 if (tp->keepalive_time > elapsed)
2720 elapsed = tp->keepalive_time - elapsed;
2721 else
2722 elapsed = 0;
2723 inet_csk_reset_keepalive_timer(sk, elapsed);
2724 }
2725 }
2726 break;
2727 case TCP_KEEPINTVL:
2728 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2729 err = -EINVAL;
2730 else
2731 tp->keepalive_intvl = val * HZ;
2732 break;
2733 case TCP_KEEPCNT:
2734 if (val < 1 || val > MAX_TCP_KEEPCNT)
2735 err = -EINVAL;
2736 else
2737 tp->keepalive_probes = val;
2738 break;
2739 case TCP_SYNCNT:
2740 if (val < 1 || val > MAX_TCP_SYNCNT)
2741 err = -EINVAL;
2742 else
2743 icsk->icsk_syn_retries = val;
2744 break;
2745
2746 case TCP_SAVE_SYN:
2747 if (val < 0 || val > 1)
2748 err = -EINVAL;
2749 else
2750 tp->save_syn = val;
2751 break;
2752
2753 case TCP_LINGER2:
2754 if (val < 0)
2755 tp->linger2 = -1;
2756 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2757 tp->linger2 = 0;
2758 else
2759 tp->linger2 = val * HZ;
2760 break;
2761
2762 case TCP_DEFER_ACCEPT:
2763 /* Translate value in seconds to number of retransmits */
2764 icsk->icsk_accept_queue.rskq_defer_accept =
2765 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2766 TCP_RTO_MAX / HZ);
2767 break;
2768
2769 case TCP_WINDOW_CLAMP:
2770 if (!val) {
2771 if (sk->sk_state != TCP_CLOSE) {
2772 err = -EINVAL;
2773 break;
2774 }
2775 tp->window_clamp = 0;
2776 } else
2777 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2778 SOCK_MIN_RCVBUF / 2 : val;
2779 break;
2780
2781 case TCP_QUICKACK:
2782 if (!val) {
2783 icsk->icsk_ack.pingpong = 1;
2784 } else {
2785 icsk->icsk_ack.pingpong = 0;
2786 if ((1 << sk->sk_state) &
2787 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2788 inet_csk_ack_scheduled(sk)) {
2789 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2790 tcp_cleanup_rbuf(sk, 1);
2791 if (!(val & 1))
2792 icsk->icsk_ack.pingpong = 1;
2793 }
2794 }
2795 break;
2796
2797 #ifdef CONFIG_TCP_MD5SIG
2798 case TCP_MD5SIG:
2799 case TCP_MD5SIG_EXT:
2800 /* Read the IP->Key mappings from userspace */
2801 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
2802 break;
2803 #endif
2804 case TCP_USER_TIMEOUT:
2805 /* Cap the max time in ms TCP will retry or probe the window
2806 * before giving up and aborting (ETIMEDOUT) a connection.
2807 */
2808 if (val < 0)
2809 err = -EINVAL;
2810 else
2811 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2812 break;
2813
2814 case TCP_FASTOPEN:
2815 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2816 TCPF_LISTEN))) {
2817 tcp_fastopen_init_key_once(net);
2818
2819 fastopen_queue_tune(sk, val);
2820 } else {
2821 err = -EINVAL;
2822 }
2823 break;
2824 case TCP_FASTOPEN_CONNECT:
2825 if (val > 1 || val < 0) {
2826 err = -EINVAL;
2827 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
2828 if (sk->sk_state == TCP_CLOSE)
2829 tp->fastopen_connect = val;
2830 else
2831 err = -EINVAL;
2832 } else {
2833 err = -EOPNOTSUPP;
2834 }
2835 break;
2836 case TCP_FASTOPEN_NO_COOKIE:
2837 if (val > 1 || val < 0)
2838 err = -EINVAL;
2839 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2840 err = -EINVAL;
2841 else
2842 tp->fastopen_no_cookie = val;
2843 break;
2844 case TCP_TIMESTAMP:
2845 if (!tp->repair)
2846 err = -EPERM;
2847 else
2848 tp->tsoffset = val - tcp_time_stamp_raw();
2849 break;
2850 case TCP_REPAIR_WINDOW:
2851 err = tcp_repair_set_window(tp, optval, optlen);
2852 break;
2853 case TCP_NOTSENT_LOWAT:
2854 tp->notsent_lowat = val;
2855 sk->sk_write_space(sk);
2856 break;
2857 default:
2858 err = -ENOPROTOOPT;
2859 break;
2860 }
2861
2862 release_sock(sk);
2863 return err;
2864 }
2865
2866 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2867 unsigned int optlen)
2868 {
2869 const struct inet_connection_sock *icsk = inet_csk(sk);
2870
2871 if (level != SOL_TCP)
2872 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2873 optval, optlen);
2874 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2875 }
2876 EXPORT_SYMBOL(tcp_setsockopt);
2877
2878 #ifdef CONFIG_COMPAT
2879 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2880 char __user *optval, unsigned int optlen)
2881 {
2882 if (level != SOL_TCP)
2883 return inet_csk_compat_setsockopt(sk, level, optname,
2884 optval, optlen);
2885 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2886 }
2887 EXPORT_SYMBOL(compat_tcp_setsockopt);
2888 #endif
2889
2890 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
2891 struct tcp_info *info)
2892 {
2893 u64 stats[__TCP_CHRONO_MAX], total = 0;
2894 enum tcp_chrono i;
2895
2896 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
2897 stats[i] = tp->chrono_stat[i - 1];
2898 if (i == tp->chrono_type)
2899 stats[i] += tcp_jiffies32 - tp->chrono_start;
2900 stats[i] *= USEC_PER_SEC / HZ;
2901 total += stats[i];
2902 }
2903
2904 info->tcpi_busy_time = total;
2905 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
2906 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
2907 }
2908
2909 /* Return information about state of tcp endpoint in API format. */
2910 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2911 {
2912 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2913 const struct inet_connection_sock *icsk = inet_csk(sk);
2914 u32 now;
2915 u64 rate64;
2916 bool slow;
2917 u32 rate;
2918
2919 memset(info, 0, sizeof(*info));
2920 if (sk->sk_type != SOCK_STREAM)
2921 return;
2922
2923 info->tcpi_state = sk_state_load(sk);
2924
2925 /* Report meaningful fields for all TCP states, including listeners */
2926 rate = READ_ONCE(sk->sk_pacing_rate);
2927 rate64 = rate != ~0U ? rate : ~0ULL;
2928 info->tcpi_pacing_rate = rate64;
2929
2930 rate = READ_ONCE(sk->sk_max_pacing_rate);
2931 rate64 = rate != ~0U ? rate : ~0ULL;
2932 info->tcpi_max_pacing_rate = rate64;
2933
2934 info->tcpi_reordering = tp->reordering;
2935 info->tcpi_snd_cwnd = tp->snd_cwnd;
2936
2937 if (info->tcpi_state == TCP_LISTEN) {
2938 /* listeners aliased fields :
2939 * tcpi_unacked -> Number of children ready for accept()
2940 * tcpi_sacked -> max backlog
2941 */
2942 info->tcpi_unacked = sk->sk_ack_backlog;
2943 info->tcpi_sacked = sk->sk_max_ack_backlog;
2944 return;
2945 }
2946
2947 slow = lock_sock_fast(sk);
2948
2949 info->tcpi_ca_state = icsk->icsk_ca_state;
2950 info->tcpi_retransmits = icsk->icsk_retransmits;
2951 info->tcpi_probes = icsk->icsk_probes_out;
2952 info->tcpi_backoff = icsk->icsk_backoff;
2953
2954 if (tp->rx_opt.tstamp_ok)
2955 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2956 if (tcp_is_sack(tp))
2957 info->tcpi_options |= TCPI_OPT_SACK;
2958 if (tp->rx_opt.wscale_ok) {
2959 info->tcpi_options |= TCPI_OPT_WSCALE;
2960 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2961 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2962 }
2963
2964 if (tp->ecn_flags & TCP_ECN_OK)
2965 info->tcpi_options |= TCPI_OPT_ECN;
2966 if (tp->ecn_flags & TCP_ECN_SEEN)
2967 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2968 if (tp->syn_data_acked)
2969 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2970
2971 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2972 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2973 info->tcpi_snd_mss = tp->mss_cache;
2974 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2975
2976 info->tcpi_unacked = tp->packets_out;
2977 info->tcpi_sacked = tp->sacked_out;
2978
2979 info->tcpi_lost = tp->lost_out;
2980 info->tcpi_retrans = tp->retrans_out;
2981
2982 now = tcp_jiffies32;
2983 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2984 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2985 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2986
2987 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2988 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2989 info->tcpi_rtt = tp->srtt_us >> 3;
2990 info->tcpi_rttvar = tp->mdev_us >> 2;
2991 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2992 info->tcpi_advmss = tp->advmss;
2993
2994 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
2995 info->tcpi_rcv_space = tp->rcvq_space.space;
2996
2997 info->tcpi_total_retrans = tp->total_retrans;
2998
2999 info->tcpi_bytes_acked = tp->bytes_acked;
3000 info->tcpi_bytes_received = tp->bytes_received;
3001 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3002 tcp_get_info_chrono_stats(tp, info);
3003
3004 info->tcpi_segs_out = tp->segs_out;
3005 info->tcpi_segs_in = tp->segs_in;
3006
3007 info->tcpi_min_rtt = tcp_min_rtt(tp);
3008 info->tcpi_data_segs_in = tp->data_segs_in;
3009 info->tcpi_data_segs_out = tp->data_segs_out;
3010
3011 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3012 rate64 = tcp_compute_delivery_rate(tp);
3013 if (rate64)
3014 info->tcpi_delivery_rate = rate64;
3015 unlock_sock_fast(sk, slow);
3016 }
3017 EXPORT_SYMBOL_GPL(tcp_get_info);
3018
3019 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
3020 {
3021 const struct tcp_sock *tp = tcp_sk(sk);
3022 struct sk_buff *stats;
3023 struct tcp_info info;
3024 u64 rate64;
3025 u32 rate;
3026
3027 stats = alloc_skb(7 * nla_total_size_64bit(sizeof(u64)) +
3028 3 * nla_total_size(sizeof(u32)) +
3029 2 * nla_total_size(sizeof(u8)), GFP_ATOMIC);
3030 if (!stats)
3031 return NULL;
3032
3033 tcp_get_info_chrono_stats(tp, &info);
3034 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3035 info.tcpi_busy_time, TCP_NLA_PAD);
3036 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3037 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3038 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3039 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3040 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3041 tp->data_segs_out, TCP_NLA_PAD);
3042 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3043 tp->total_retrans, TCP_NLA_PAD);
3044
3045 rate = READ_ONCE(sk->sk_pacing_rate);
3046 rate64 = rate != ~0U ? rate : ~0ULL;
3047 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3048
3049 rate64 = tcp_compute_delivery_rate(tp);
3050 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3051
3052 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3053 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3054 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3055
3056 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3057 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3058 return stats;
3059 }
3060
3061 static int do_tcp_getsockopt(struct sock *sk, int level,
3062 int optname, char __user *optval, int __user *optlen)
3063 {
3064 struct inet_connection_sock *icsk = inet_csk(sk);
3065 struct tcp_sock *tp = tcp_sk(sk);
3066 struct net *net = sock_net(sk);
3067 int val, len;
3068
3069 if (get_user(len, optlen))
3070 return -EFAULT;
3071
3072 len = min_t(unsigned int, len, sizeof(int));
3073
3074 if (len < 0)
3075 return -EINVAL;
3076
3077 switch (optname) {
3078 case TCP_MAXSEG:
3079 val = tp->mss_cache;
3080 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3081 val = tp->rx_opt.user_mss;
3082 if (tp->repair)
3083 val = tp->rx_opt.mss_clamp;
3084 break;
3085 case TCP_NODELAY:
3086 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3087 break;
3088 case TCP_CORK:
3089 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3090 break;
3091 case TCP_KEEPIDLE:
3092 val = keepalive_time_when(tp) / HZ;
3093 break;
3094 case TCP_KEEPINTVL:
3095 val = keepalive_intvl_when(tp) / HZ;
3096 break;
3097 case TCP_KEEPCNT:
3098 val = keepalive_probes(tp);
3099 break;
3100 case TCP_SYNCNT:
3101 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3102 break;
3103 case TCP_LINGER2:
3104 val = tp->linger2;
3105 if (val >= 0)
3106 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3107 break;
3108 case TCP_DEFER_ACCEPT:
3109 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3110 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3111 break;
3112 case TCP_WINDOW_CLAMP:
3113 val = tp->window_clamp;
3114 break;
3115 case TCP_INFO: {
3116 struct tcp_info info;
3117
3118 if (get_user(len, optlen))
3119 return -EFAULT;
3120
3121 tcp_get_info(sk, &info);
3122
3123 len = min_t(unsigned int, len, sizeof(info));
3124 if (put_user(len, optlen))
3125 return -EFAULT;
3126 if (copy_to_user(optval, &info, len))
3127 return -EFAULT;
3128 return 0;
3129 }
3130 case TCP_CC_INFO: {
3131 const struct tcp_congestion_ops *ca_ops;
3132 union tcp_cc_info info;
3133 size_t sz = 0;
3134 int attr;
3135
3136 if (get_user(len, optlen))
3137 return -EFAULT;
3138
3139 ca_ops = icsk->icsk_ca_ops;
3140 if (ca_ops && ca_ops->get_info)
3141 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3142
3143 len = min_t(unsigned int, len, sz);
3144 if (put_user(len, optlen))
3145 return -EFAULT;
3146 if (copy_to_user(optval, &info, len))
3147 return -EFAULT;
3148 return 0;
3149 }
3150 case TCP_QUICKACK:
3151 val = !icsk->icsk_ack.pingpong;
3152 break;
3153
3154 case TCP_CONGESTION:
3155 if (get_user(len, optlen))
3156 return -EFAULT;
3157 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3158 if (put_user(len, optlen))
3159 return -EFAULT;
3160 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3161 return -EFAULT;
3162 return 0;
3163
3164 case TCP_ULP:
3165 if (get_user(len, optlen))
3166 return -EFAULT;
3167 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3168 if (!icsk->icsk_ulp_ops) {
3169 if (put_user(0, optlen))
3170 return -EFAULT;
3171 return 0;
3172 }
3173 if (put_user(len, optlen))
3174 return -EFAULT;
3175 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3176 return -EFAULT;
3177 return 0;
3178
3179 case TCP_FASTOPEN_KEY: {
3180 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
3181 struct tcp_fastopen_context *ctx;
3182
3183 if (get_user(len, optlen))
3184 return -EFAULT;
3185
3186 rcu_read_lock();
3187 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
3188 if (ctx)
3189 memcpy(key, ctx->key, sizeof(key));
3190 else
3191 len = 0;
3192 rcu_read_unlock();
3193
3194 len = min_t(unsigned int, len, sizeof(key));
3195 if (put_user(len, optlen))
3196 return -EFAULT;
3197 if (copy_to_user(optval, key, len))
3198 return -EFAULT;
3199 return 0;
3200 }
3201 case TCP_THIN_LINEAR_TIMEOUTS:
3202 val = tp->thin_lto;
3203 break;
3204
3205 case TCP_THIN_DUPACK:
3206 val = 0;
3207 break;
3208
3209 case TCP_REPAIR:
3210 val = tp->repair;
3211 break;
3212
3213 case TCP_REPAIR_QUEUE:
3214 if (tp->repair)
3215 val = tp->repair_queue;
3216 else
3217 return -EINVAL;
3218 break;
3219
3220 case TCP_REPAIR_WINDOW: {
3221 struct tcp_repair_window opt;
3222
3223 if (get_user(len, optlen))
3224 return -EFAULT;
3225
3226 if (len != sizeof(opt))
3227 return -EINVAL;
3228
3229 if (!tp->repair)
3230 return -EPERM;
3231
3232 opt.snd_wl1 = tp->snd_wl1;
3233 opt.snd_wnd = tp->snd_wnd;
3234 opt.max_window = tp->max_window;
3235 opt.rcv_wnd = tp->rcv_wnd;
3236 opt.rcv_wup = tp->rcv_wup;
3237
3238 if (copy_to_user(optval, &opt, len))
3239 return -EFAULT;
3240 return 0;
3241 }
3242 case TCP_QUEUE_SEQ:
3243 if (tp->repair_queue == TCP_SEND_QUEUE)
3244 val = tp->write_seq;
3245 else if (tp->repair_queue == TCP_RECV_QUEUE)
3246 val = tp->rcv_nxt;
3247 else
3248 return -EINVAL;
3249 break;
3250
3251 case TCP_USER_TIMEOUT:
3252 val = jiffies_to_msecs(icsk->icsk_user_timeout);
3253 break;
3254
3255 case TCP_FASTOPEN:
3256 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3257 break;
3258
3259 case TCP_FASTOPEN_CONNECT:
3260 val = tp->fastopen_connect;
3261 break;
3262
3263 case TCP_FASTOPEN_NO_COOKIE:
3264 val = tp->fastopen_no_cookie;
3265 break;
3266
3267 case TCP_TIMESTAMP:
3268 val = tcp_time_stamp_raw() + tp->tsoffset;
3269 break;
3270 case TCP_NOTSENT_LOWAT:
3271 val = tp->notsent_lowat;
3272 break;
3273 case TCP_SAVE_SYN:
3274 val = tp->save_syn;
3275 break;
3276 case TCP_SAVED_SYN: {
3277 if (get_user(len, optlen))
3278 return -EFAULT;
3279
3280 lock_sock(sk);
3281 if (tp->saved_syn) {
3282 if (len < tp->saved_syn[0]) {
3283 if (put_user(tp->saved_syn[0], optlen)) {
3284 release_sock(sk);
3285 return -EFAULT;
3286 }
3287 release_sock(sk);
3288 return -EINVAL;
3289 }
3290 len = tp->saved_syn[0];
3291 if (put_user(len, optlen)) {
3292 release_sock(sk);
3293 return -EFAULT;
3294 }
3295 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3296 release_sock(sk);
3297 return -EFAULT;
3298 }
3299 tcp_saved_syn_free(tp);
3300 release_sock(sk);
3301 } else {
3302 release_sock(sk);
3303 len = 0;
3304 if (put_user(len, optlen))
3305 return -EFAULT;
3306 }
3307 return 0;
3308 }
3309 default:
3310 return -ENOPROTOOPT;
3311 }
3312
3313 if (put_user(len, optlen))
3314 return -EFAULT;
3315 if (copy_to_user(optval, &val, len))
3316 return -EFAULT;
3317 return 0;
3318 }
3319
3320 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3321 int __user *optlen)
3322 {
3323 struct inet_connection_sock *icsk = inet_csk(sk);
3324
3325 if (level != SOL_TCP)
3326 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3327 optval, optlen);
3328 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3329 }
3330 EXPORT_SYMBOL(tcp_getsockopt);
3331
3332 #ifdef CONFIG_COMPAT
3333 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3334 char __user *optval, int __user *optlen)
3335 {
3336 if (level != SOL_TCP)
3337 return inet_csk_compat_getsockopt(sk, level, optname,
3338 optval, optlen);
3339 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3340 }
3341 EXPORT_SYMBOL(compat_tcp_getsockopt);
3342 #endif
3343
3344 #ifdef CONFIG_TCP_MD5SIG
3345 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3346 static DEFINE_MUTEX(tcp_md5sig_mutex);
3347 static bool tcp_md5sig_pool_populated = false;
3348
3349 static void __tcp_alloc_md5sig_pool(void)
3350 {
3351 struct crypto_ahash *hash;
3352 int cpu;
3353
3354 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3355 if (IS_ERR(hash))
3356 return;
3357
3358 for_each_possible_cpu(cpu) {
3359 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3360 struct ahash_request *req;
3361
3362 if (!scratch) {
3363 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3364 sizeof(struct tcphdr),
3365 GFP_KERNEL,
3366 cpu_to_node(cpu));
3367 if (!scratch)
3368 return;
3369 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3370 }
3371 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3372 continue;
3373
3374 req = ahash_request_alloc(hash, GFP_KERNEL);
3375 if (!req)
3376 return;
3377
3378 ahash_request_set_callback(req, 0, NULL, NULL);
3379
3380 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3381 }
3382 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3383 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3384 */
3385 smp_wmb();
3386 tcp_md5sig_pool_populated = true;
3387 }
3388
3389 bool tcp_alloc_md5sig_pool(void)
3390 {
3391 if (unlikely(!tcp_md5sig_pool_populated)) {
3392 mutex_lock(&tcp_md5sig_mutex);
3393
3394 if (!tcp_md5sig_pool_populated)
3395 __tcp_alloc_md5sig_pool();
3396
3397 mutex_unlock(&tcp_md5sig_mutex);
3398 }
3399 return tcp_md5sig_pool_populated;
3400 }
3401 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3402
3403
3404 /**
3405 * tcp_get_md5sig_pool - get md5sig_pool for this user
3406 *
3407 * We use percpu structure, so if we succeed, we exit with preemption
3408 * and BH disabled, to make sure another thread or softirq handling
3409 * wont try to get same context.
3410 */
3411 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3412 {
3413 local_bh_disable();
3414
3415 if (tcp_md5sig_pool_populated) {
3416 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3417 smp_rmb();
3418 return this_cpu_ptr(&tcp_md5sig_pool);
3419 }
3420 local_bh_enable();
3421 return NULL;
3422 }
3423 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3424
3425 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3426 const struct sk_buff *skb, unsigned int header_len)
3427 {
3428 struct scatterlist sg;
3429 const struct tcphdr *tp = tcp_hdr(skb);
3430 struct ahash_request *req = hp->md5_req;
3431 unsigned int i;
3432 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3433 skb_headlen(skb) - header_len : 0;
3434 const struct skb_shared_info *shi = skb_shinfo(skb);
3435 struct sk_buff *frag_iter;
3436
3437 sg_init_table(&sg, 1);
3438
3439 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3440 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3441 if (crypto_ahash_update(req))
3442 return 1;
3443
3444 for (i = 0; i < shi->nr_frags; ++i) {
3445 const struct skb_frag_struct *f = &shi->frags[i];
3446 unsigned int offset = f->page_offset;
3447 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3448
3449 sg_set_page(&sg, page, skb_frag_size(f),
3450 offset_in_page(offset));
3451 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3452 if (crypto_ahash_update(req))
3453 return 1;
3454 }
3455
3456 skb_walk_frags(skb, frag_iter)
3457 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3458 return 1;
3459
3460 return 0;
3461 }
3462 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3463
3464 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3465 {
3466 struct scatterlist sg;
3467
3468 sg_init_one(&sg, key->key, key->keylen);
3469 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3470 return crypto_ahash_update(hp->md5_req);
3471 }
3472 EXPORT_SYMBOL(tcp_md5_hash_key);
3473
3474 #endif
3475
3476 void tcp_done(struct sock *sk)
3477 {
3478 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3479
3480 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3481 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3482
3483 tcp_set_state(sk, TCP_CLOSE);
3484 tcp_clear_xmit_timers(sk);
3485 if (req)
3486 reqsk_fastopen_remove(sk, req, false);
3487
3488 sk->sk_shutdown = SHUTDOWN_MASK;
3489
3490 if (!sock_flag(sk, SOCK_DEAD))
3491 sk->sk_state_change(sk);
3492 else
3493 inet_csk_destroy_sock(sk);
3494 }
3495 EXPORT_SYMBOL_GPL(tcp_done);
3496
3497 int tcp_abort(struct sock *sk, int err)
3498 {
3499 if (!sk_fullsock(sk)) {
3500 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3501 struct request_sock *req = inet_reqsk(sk);
3502
3503 local_bh_disable();
3504 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3505 req);
3506 local_bh_enable();
3507 return 0;
3508 }
3509 return -EOPNOTSUPP;
3510 }
3511
3512 /* Don't race with userspace socket closes such as tcp_close. */
3513 lock_sock(sk);
3514
3515 if (sk->sk_state == TCP_LISTEN) {
3516 tcp_set_state(sk, TCP_CLOSE);
3517 inet_csk_listen_stop(sk);
3518 }
3519
3520 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3521 local_bh_disable();
3522 bh_lock_sock(sk);
3523
3524 if (!sock_flag(sk, SOCK_DEAD)) {
3525 sk->sk_err = err;
3526 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3527 smp_wmb();
3528 sk->sk_error_report(sk);
3529 if (tcp_need_reset(sk->sk_state))
3530 tcp_send_active_reset(sk, GFP_ATOMIC);
3531 tcp_done(sk);
3532 }
3533
3534 bh_unlock_sock(sk);
3535 local_bh_enable();
3536 release_sock(sk);
3537 return 0;
3538 }
3539 EXPORT_SYMBOL_GPL(tcp_abort);
3540
3541 extern struct tcp_congestion_ops tcp_reno;
3542
3543 static __initdata unsigned long thash_entries;
3544 static int __init set_thash_entries(char *str)
3545 {
3546 ssize_t ret;
3547
3548 if (!str)
3549 return 0;
3550
3551 ret = kstrtoul(str, 0, &thash_entries);
3552 if (ret)
3553 return 0;
3554
3555 return 1;
3556 }
3557 __setup("thash_entries=", set_thash_entries);
3558
3559 static void __init tcp_init_mem(void)
3560 {
3561 unsigned long limit = nr_free_buffer_pages() / 16;
3562
3563 limit = max(limit, 128UL);
3564 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3565 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3566 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3567 }
3568
3569 void __init tcp_init(void)
3570 {
3571 int max_rshare, max_wshare, cnt;
3572 unsigned long limit;
3573 unsigned int i;
3574
3575 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3576 FIELD_SIZEOF(struct sk_buff, cb));
3577
3578 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3579 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3580 inet_hashinfo_init(&tcp_hashinfo);
3581 tcp_hashinfo.bind_bucket_cachep =
3582 kmem_cache_create("tcp_bind_bucket",
3583 sizeof(struct inet_bind_bucket), 0,
3584 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3585
3586 /* Size and allocate the main established and bind bucket
3587 * hash tables.
3588 *
3589 * The methodology is similar to that of the buffer cache.
3590 */
3591 tcp_hashinfo.ehash =
3592 alloc_large_system_hash("TCP established",
3593 sizeof(struct inet_ehash_bucket),
3594 thash_entries,
3595 17, /* one slot per 128 KB of memory */
3596 0,
3597 NULL,
3598 &tcp_hashinfo.ehash_mask,
3599 0,
3600 thash_entries ? 0 : 512 * 1024);
3601 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3602 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3603
3604 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3605 panic("TCP: failed to alloc ehash_locks");
3606 tcp_hashinfo.bhash =
3607 alloc_large_system_hash("TCP bind",
3608 sizeof(struct inet_bind_hashbucket),
3609 tcp_hashinfo.ehash_mask + 1,
3610 17, /* one slot per 128 KB of memory */
3611 0,
3612 &tcp_hashinfo.bhash_size,
3613 NULL,
3614 0,
3615 64 * 1024);
3616 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3617 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3618 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3619 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3620 }
3621
3622
3623 cnt = tcp_hashinfo.ehash_mask + 1;
3624 sysctl_tcp_max_orphans = cnt / 2;
3625
3626 tcp_init_mem();
3627 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3628 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3629 max_wshare = min(4UL*1024*1024, limit);
3630 max_rshare = min(6UL*1024*1024, limit);
3631
3632 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3633 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
3634 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3635
3636 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3637 init_net.ipv4.sysctl_tcp_rmem[1] = 87380;
3638 init_net.ipv4.sysctl_tcp_rmem[2] = max(87380, max_rshare);
3639
3640 pr_info("Hash tables configured (established %u bind %u)\n",
3641 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3642
3643 tcp_v4_init();
3644 tcp_metrics_init();
3645 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3646 tcp_tasklet_init();
3647 }