]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/tcp.c
Merge branch 'drm-fixes' of git://people.freedesktop.org/~airlied/linux
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248 #define pr_fmt(fmt) "TCP: " fmt
249
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/inet_diag.h>
256 #include <linux/init.h>
257 #include <linux/fs.h>
258 #include <linux/skbuff.h>
259 #include <linux/scatterlist.h>
260 #include <linux/splice.h>
261 #include <linux/net.h>
262 #include <linux/socket.h>
263 #include <linux/random.h>
264 #include <linux/bootmem.h>
265 #include <linux/highmem.h>
266 #include <linux/swap.h>
267 #include <linux/cache.h>
268 #include <linux/err.h>
269 #include <linux/crypto.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <net/busy_poll.h>
283
284 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
285
286 int sysctl_tcp_min_tso_segs __read_mostly = 2;
287
288 int sysctl_tcp_autocorking __read_mostly = 1;
289
290 struct percpu_counter tcp_orphan_count;
291 EXPORT_SYMBOL_GPL(tcp_orphan_count);
292
293 long sysctl_tcp_mem[3] __read_mostly;
294 int sysctl_tcp_wmem[3] __read_mostly;
295 int sysctl_tcp_rmem[3] __read_mostly;
296
297 EXPORT_SYMBOL(sysctl_tcp_mem);
298 EXPORT_SYMBOL(sysctl_tcp_rmem);
299 EXPORT_SYMBOL(sysctl_tcp_wmem);
300
301 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
302 EXPORT_SYMBOL(tcp_memory_allocated);
303
304 /*
305 * Current number of TCP sockets.
306 */
307 struct percpu_counter tcp_sockets_allocated;
308 EXPORT_SYMBOL(tcp_sockets_allocated);
309
310 /*
311 * TCP splice context
312 */
313 struct tcp_splice_state {
314 struct pipe_inode_info *pipe;
315 size_t len;
316 unsigned int flags;
317 };
318
319 /*
320 * Pressure flag: try to collapse.
321 * Technical note: it is used by multiple contexts non atomically.
322 * All the __sk_mem_schedule() is of this nature: accounting
323 * is strict, actions are advisory and have some latency.
324 */
325 int tcp_memory_pressure __read_mostly;
326 EXPORT_SYMBOL(tcp_memory_pressure);
327
328 void tcp_enter_memory_pressure(struct sock *sk)
329 {
330 if (!tcp_memory_pressure) {
331 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
332 tcp_memory_pressure = 1;
333 }
334 }
335 EXPORT_SYMBOL(tcp_enter_memory_pressure);
336
337 /* Convert seconds to retransmits based on initial and max timeout */
338 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
339 {
340 u8 res = 0;
341
342 if (seconds > 0) {
343 int period = timeout;
344
345 res = 1;
346 while (seconds > period && res < 255) {
347 res++;
348 timeout <<= 1;
349 if (timeout > rto_max)
350 timeout = rto_max;
351 period += timeout;
352 }
353 }
354 return res;
355 }
356
357 /* Convert retransmits to seconds based on initial and max timeout */
358 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
359 {
360 int period = 0;
361
362 if (retrans > 0) {
363 period = timeout;
364 while (--retrans) {
365 timeout <<= 1;
366 if (timeout > rto_max)
367 timeout = rto_max;
368 period += timeout;
369 }
370 }
371 return period;
372 }
373
374 /* Address-family independent initialization for a tcp_sock.
375 *
376 * NOTE: A lot of things set to zero explicitly by call to
377 * sk_alloc() so need not be done here.
378 */
379 void tcp_init_sock(struct sock *sk)
380 {
381 struct inet_connection_sock *icsk = inet_csk(sk);
382 struct tcp_sock *tp = tcp_sk(sk);
383
384 __skb_queue_head_init(&tp->out_of_order_queue);
385 tcp_init_xmit_timers(sk);
386 tcp_prequeue_init(tp);
387 INIT_LIST_HEAD(&tp->tsq_node);
388
389 icsk->icsk_rto = TCP_TIMEOUT_INIT;
390 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
391
392 /* So many TCP implementations out there (incorrectly) count the
393 * initial SYN frame in their delayed-ACK and congestion control
394 * algorithms that we must have the following bandaid to talk
395 * efficiently to them. -DaveM
396 */
397 tp->snd_cwnd = TCP_INIT_CWND;
398
399 /* See draft-stevens-tcpca-spec-01 for discussion of the
400 * initialization of these values.
401 */
402 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
403 tp->snd_cwnd_clamp = ~0;
404 tp->mss_cache = TCP_MSS_DEFAULT;
405 u64_stats_init(&tp->syncp);
406
407 tp->reordering = sysctl_tcp_reordering;
408 tcp_enable_early_retrans(tp);
409 tcp_assign_congestion_control(sk);
410
411 tp->tsoffset = 0;
412
413 sk->sk_state = TCP_CLOSE;
414
415 sk->sk_write_space = sk_stream_write_space;
416 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
417
418 icsk->icsk_sync_mss = tcp_sync_mss;
419
420 sk->sk_sndbuf = sysctl_tcp_wmem[1];
421 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
422
423 local_bh_disable();
424 sock_update_memcg(sk);
425 sk_sockets_allocated_inc(sk);
426 local_bh_enable();
427 }
428 EXPORT_SYMBOL(tcp_init_sock);
429
430 static void tcp_tx_timestamp(struct sock *sk, struct sk_buff *skb)
431 {
432 if (sk->sk_tsflags) {
433 struct skb_shared_info *shinfo = skb_shinfo(skb);
434
435 sock_tx_timestamp(sk, &shinfo->tx_flags);
436 if (shinfo->tx_flags & SKBTX_ANY_TSTAMP)
437 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
438 }
439 }
440
441 /*
442 * Wait for a TCP event.
443 *
444 * Note that we don't need to lock the socket, as the upper poll layers
445 * take care of normal races (between the test and the event) and we don't
446 * go look at any of the socket buffers directly.
447 */
448 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
449 {
450 unsigned int mask;
451 struct sock *sk = sock->sk;
452 const struct tcp_sock *tp = tcp_sk(sk);
453
454 sock_rps_record_flow(sk);
455
456 sock_poll_wait(file, sk_sleep(sk), wait);
457 if (sk->sk_state == TCP_LISTEN)
458 return inet_csk_listen_poll(sk);
459
460 /* Socket is not locked. We are protected from async events
461 * by poll logic and correct handling of state changes
462 * made by other threads is impossible in any case.
463 */
464
465 mask = 0;
466
467 /*
468 * POLLHUP is certainly not done right. But poll() doesn't
469 * have a notion of HUP in just one direction, and for a
470 * socket the read side is more interesting.
471 *
472 * Some poll() documentation says that POLLHUP is incompatible
473 * with the POLLOUT/POLLWR flags, so somebody should check this
474 * all. But careful, it tends to be safer to return too many
475 * bits than too few, and you can easily break real applications
476 * if you don't tell them that something has hung up!
477 *
478 * Check-me.
479 *
480 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
481 * our fs/select.c). It means that after we received EOF,
482 * poll always returns immediately, making impossible poll() on write()
483 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
484 * if and only if shutdown has been made in both directions.
485 * Actually, it is interesting to look how Solaris and DUX
486 * solve this dilemma. I would prefer, if POLLHUP were maskable,
487 * then we could set it on SND_SHUTDOWN. BTW examples given
488 * in Stevens' books assume exactly this behaviour, it explains
489 * why POLLHUP is incompatible with POLLOUT. --ANK
490 *
491 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
492 * blocking on fresh not-connected or disconnected socket. --ANK
493 */
494 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
495 mask |= POLLHUP;
496 if (sk->sk_shutdown & RCV_SHUTDOWN)
497 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
498
499 /* Connected or passive Fast Open socket? */
500 if (sk->sk_state != TCP_SYN_SENT &&
501 (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk)) {
502 int target = sock_rcvlowat(sk, 0, INT_MAX);
503
504 if (tp->urg_seq == tp->copied_seq &&
505 !sock_flag(sk, SOCK_URGINLINE) &&
506 tp->urg_data)
507 target++;
508
509 /* Potential race condition. If read of tp below will
510 * escape above sk->sk_state, we can be illegally awaken
511 * in SYN_* states. */
512 if (tp->rcv_nxt - tp->copied_seq >= target)
513 mask |= POLLIN | POLLRDNORM;
514
515 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
516 if (sk_stream_is_writeable(sk)) {
517 mask |= POLLOUT | POLLWRNORM;
518 } else { /* send SIGIO later */
519 set_bit(SOCK_ASYNC_NOSPACE,
520 &sk->sk_socket->flags);
521 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
522
523 /* Race breaker. If space is freed after
524 * wspace test but before the flags are set,
525 * IO signal will be lost. Memory barrier
526 * pairs with the input side.
527 */
528 smp_mb__after_atomic();
529 if (sk_stream_is_writeable(sk))
530 mask |= POLLOUT | POLLWRNORM;
531 }
532 } else
533 mask |= POLLOUT | POLLWRNORM;
534
535 if (tp->urg_data & TCP_URG_VALID)
536 mask |= POLLPRI;
537 }
538 /* This barrier is coupled with smp_wmb() in tcp_reset() */
539 smp_rmb();
540 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
541 mask |= POLLERR;
542
543 return mask;
544 }
545 EXPORT_SYMBOL(tcp_poll);
546
547 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
548 {
549 struct tcp_sock *tp = tcp_sk(sk);
550 int answ;
551 bool slow;
552
553 switch (cmd) {
554 case SIOCINQ:
555 if (sk->sk_state == TCP_LISTEN)
556 return -EINVAL;
557
558 slow = lock_sock_fast(sk);
559 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
560 answ = 0;
561 else if (sock_flag(sk, SOCK_URGINLINE) ||
562 !tp->urg_data ||
563 before(tp->urg_seq, tp->copied_seq) ||
564 !before(tp->urg_seq, tp->rcv_nxt)) {
565
566 answ = tp->rcv_nxt - tp->copied_seq;
567
568 /* Subtract 1, if FIN was received */
569 if (answ && sock_flag(sk, SOCK_DONE))
570 answ--;
571 } else
572 answ = tp->urg_seq - tp->copied_seq;
573 unlock_sock_fast(sk, slow);
574 break;
575 case SIOCATMARK:
576 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
577 break;
578 case SIOCOUTQ:
579 if (sk->sk_state == TCP_LISTEN)
580 return -EINVAL;
581
582 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
583 answ = 0;
584 else
585 answ = tp->write_seq - tp->snd_una;
586 break;
587 case SIOCOUTQNSD:
588 if (sk->sk_state == TCP_LISTEN)
589 return -EINVAL;
590
591 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
592 answ = 0;
593 else
594 answ = tp->write_seq - tp->snd_nxt;
595 break;
596 default:
597 return -ENOIOCTLCMD;
598 }
599
600 return put_user(answ, (int __user *)arg);
601 }
602 EXPORT_SYMBOL(tcp_ioctl);
603
604 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
605 {
606 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
607 tp->pushed_seq = tp->write_seq;
608 }
609
610 static inline bool forced_push(const struct tcp_sock *tp)
611 {
612 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
613 }
614
615 static void skb_entail(struct sock *sk, struct sk_buff *skb)
616 {
617 struct tcp_sock *tp = tcp_sk(sk);
618 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
619
620 skb->csum = 0;
621 tcb->seq = tcb->end_seq = tp->write_seq;
622 tcb->tcp_flags = TCPHDR_ACK;
623 tcb->sacked = 0;
624 __skb_header_release(skb);
625 tcp_add_write_queue_tail(sk, skb);
626 sk->sk_wmem_queued += skb->truesize;
627 sk_mem_charge(sk, skb->truesize);
628 if (tp->nonagle & TCP_NAGLE_PUSH)
629 tp->nonagle &= ~TCP_NAGLE_PUSH;
630 }
631
632 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
633 {
634 if (flags & MSG_OOB)
635 tp->snd_up = tp->write_seq;
636 }
637
638 /* If a not yet filled skb is pushed, do not send it if
639 * we have data packets in Qdisc or NIC queues :
640 * Because TX completion will happen shortly, it gives a chance
641 * to coalesce future sendmsg() payload into this skb, without
642 * need for a timer, and with no latency trade off.
643 * As packets containing data payload have a bigger truesize
644 * than pure acks (dataless) packets, the last checks prevent
645 * autocorking if we only have an ACK in Qdisc/NIC queues,
646 * or if TX completion was delayed after we processed ACK packet.
647 */
648 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
649 int size_goal)
650 {
651 return skb->len < size_goal &&
652 sysctl_tcp_autocorking &&
653 skb != tcp_write_queue_head(sk) &&
654 atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
655 }
656
657 static void tcp_push(struct sock *sk, int flags, int mss_now,
658 int nonagle, int size_goal)
659 {
660 struct tcp_sock *tp = tcp_sk(sk);
661 struct sk_buff *skb;
662
663 if (!tcp_send_head(sk))
664 return;
665
666 skb = tcp_write_queue_tail(sk);
667 if (!(flags & MSG_MORE) || forced_push(tp))
668 tcp_mark_push(tp, skb);
669
670 tcp_mark_urg(tp, flags);
671
672 if (tcp_should_autocork(sk, skb, size_goal)) {
673
674 /* avoid atomic op if TSQ_THROTTLED bit is already set */
675 if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
676 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
677 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
678 }
679 /* It is possible TX completion already happened
680 * before we set TSQ_THROTTLED.
681 */
682 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
683 return;
684 }
685
686 if (flags & MSG_MORE)
687 nonagle = TCP_NAGLE_CORK;
688
689 __tcp_push_pending_frames(sk, mss_now, nonagle);
690 }
691
692 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
693 unsigned int offset, size_t len)
694 {
695 struct tcp_splice_state *tss = rd_desc->arg.data;
696 int ret;
697
698 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
699 tss->flags);
700 if (ret > 0)
701 rd_desc->count -= ret;
702 return ret;
703 }
704
705 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
706 {
707 /* Store TCP splice context information in read_descriptor_t. */
708 read_descriptor_t rd_desc = {
709 .arg.data = tss,
710 .count = tss->len,
711 };
712
713 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
714 }
715
716 /**
717 * tcp_splice_read - splice data from TCP socket to a pipe
718 * @sock: socket to splice from
719 * @ppos: position (not valid)
720 * @pipe: pipe to splice to
721 * @len: number of bytes to splice
722 * @flags: splice modifier flags
723 *
724 * Description:
725 * Will read pages from given socket and fill them into a pipe.
726 *
727 **/
728 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
729 struct pipe_inode_info *pipe, size_t len,
730 unsigned int flags)
731 {
732 struct sock *sk = sock->sk;
733 struct tcp_splice_state tss = {
734 .pipe = pipe,
735 .len = len,
736 .flags = flags,
737 };
738 long timeo;
739 ssize_t spliced;
740 int ret;
741
742 sock_rps_record_flow(sk);
743 /*
744 * We can't seek on a socket input
745 */
746 if (unlikely(*ppos))
747 return -ESPIPE;
748
749 ret = spliced = 0;
750
751 lock_sock(sk);
752
753 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
754 while (tss.len) {
755 ret = __tcp_splice_read(sk, &tss);
756 if (ret < 0)
757 break;
758 else if (!ret) {
759 if (spliced)
760 break;
761 if (sock_flag(sk, SOCK_DONE))
762 break;
763 if (sk->sk_err) {
764 ret = sock_error(sk);
765 break;
766 }
767 if (sk->sk_shutdown & RCV_SHUTDOWN)
768 break;
769 if (sk->sk_state == TCP_CLOSE) {
770 /*
771 * This occurs when user tries to read
772 * from never connected socket.
773 */
774 if (!sock_flag(sk, SOCK_DONE))
775 ret = -ENOTCONN;
776 break;
777 }
778 if (!timeo) {
779 ret = -EAGAIN;
780 break;
781 }
782 sk_wait_data(sk, &timeo);
783 if (signal_pending(current)) {
784 ret = sock_intr_errno(timeo);
785 break;
786 }
787 continue;
788 }
789 tss.len -= ret;
790 spliced += ret;
791
792 if (!timeo)
793 break;
794 release_sock(sk);
795 lock_sock(sk);
796
797 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
798 (sk->sk_shutdown & RCV_SHUTDOWN) ||
799 signal_pending(current))
800 break;
801 }
802
803 release_sock(sk);
804
805 if (spliced)
806 return spliced;
807
808 return ret;
809 }
810 EXPORT_SYMBOL(tcp_splice_read);
811
812 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
813 {
814 struct sk_buff *skb;
815
816 /* The TCP header must be at least 32-bit aligned. */
817 size = ALIGN(size, 4);
818
819 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
820 if (skb) {
821 if (sk_wmem_schedule(sk, skb->truesize)) {
822 skb_reserve(skb, sk->sk_prot->max_header);
823 /*
824 * Make sure that we have exactly size bytes
825 * available to the caller, no more, no less.
826 */
827 skb->reserved_tailroom = skb->end - skb->tail - size;
828 return skb;
829 }
830 __kfree_skb(skb);
831 } else {
832 sk->sk_prot->enter_memory_pressure(sk);
833 sk_stream_moderate_sndbuf(sk);
834 }
835 return NULL;
836 }
837
838 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
839 int large_allowed)
840 {
841 struct tcp_sock *tp = tcp_sk(sk);
842 u32 new_size_goal, size_goal;
843
844 if (!large_allowed || !sk_can_gso(sk))
845 return mss_now;
846
847 /* Note : tcp_tso_autosize() will eventually split this later */
848 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
849 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
850
851 /* We try hard to avoid divides here */
852 size_goal = tp->gso_segs * mss_now;
853 if (unlikely(new_size_goal < size_goal ||
854 new_size_goal >= size_goal + mss_now)) {
855 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
856 sk->sk_gso_max_segs);
857 size_goal = tp->gso_segs * mss_now;
858 }
859
860 return max(size_goal, mss_now);
861 }
862
863 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
864 {
865 int mss_now;
866
867 mss_now = tcp_current_mss(sk);
868 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
869
870 return mss_now;
871 }
872
873 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
874 size_t size, int flags)
875 {
876 struct tcp_sock *tp = tcp_sk(sk);
877 int mss_now, size_goal;
878 int err;
879 ssize_t copied;
880 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
881
882 /* Wait for a connection to finish. One exception is TCP Fast Open
883 * (passive side) where data is allowed to be sent before a connection
884 * is fully established.
885 */
886 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
887 !tcp_passive_fastopen(sk)) {
888 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
889 goto out_err;
890 }
891
892 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
893
894 mss_now = tcp_send_mss(sk, &size_goal, flags);
895 copied = 0;
896
897 err = -EPIPE;
898 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
899 goto out_err;
900
901 while (size > 0) {
902 struct sk_buff *skb = tcp_write_queue_tail(sk);
903 int copy, i;
904 bool can_coalesce;
905
906 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
907 new_segment:
908 if (!sk_stream_memory_free(sk))
909 goto wait_for_sndbuf;
910
911 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
912 if (!skb)
913 goto wait_for_memory;
914
915 skb_entail(sk, skb);
916 copy = size_goal;
917 }
918
919 if (copy > size)
920 copy = size;
921
922 i = skb_shinfo(skb)->nr_frags;
923 can_coalesce = skb_can_coalesce(skb, i, page, offset);
924 if (!can_coalesce && i >= MAX_SKB_FRAGS) {
925 tcp_mark_push(tp, skb);
926 goto new_segment;
927 }
928 if (!sk_wmem_schedule(sk, copy))
929 goto wait_for_memory;
930
931 if (can_coalesce) {
932 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
933 } else {
934 get_page(page);
935 skb_fill_page_desc(skb, i, page, offset, copy);
936 }
937 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
938
939 skb->len += copy;
940 skb->data_len += copy;
941 skb->truesize += copy;
942 sk->sk_wmem_queued += copy;
943 sk_mem_charge(sk, copy);
944 skb->ip_summed = CHECKSUM_PARTIAL;
945 tp->write_seq += copy;
946 TCP_SKB_CB(skb)->end_seq += copy;
947 tcp_skb_pcount_set(skb, 0);
948
949 if (!copied)
950 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
951
952 copied += copy;
953 offset += copy;
954 if (!(size -= copy)) {
955 tcp_tx_timestamp(sk, skb);
956 goto out;
957 }
958
959 if (skb->len < size_goal || (flags & MSG_OOB))
960 continue;
961
962 if (forced_push(tp)) {
963 tcp_mark_push(tp, skb);
964 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
965 } else if (skb == tcp_send_head(sk))
966 tcp_push_one(sk, mss_now);
967 continue;
968
969 wait_for_sndbuf:
970 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
971 wait_for_memory:
972 tcp_push(sk, flags & ~MSG_MORE, mss_now,
973 TCP_NAGLE_PUSH, size_goal);
974
975 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
976 goto do_error;
977
978 mss_now = tcp_send_mss(sk, &size_goal, flags);
979 }
980
981 out:
982 if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
983 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
984 return copied;
985
986 do_error:
987 if (copied)
988 goto out;
989 out_err:
990 return sk_stream_error(sk, flags, err);
991 }
992
993 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
994 size_t size, int flags)
995 {
996 ssize_t res;
997
998 if (!(sk->sk_route_caps & NETIF_F_SG) ||
999 !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
1000 return sock_no_sendpage(sk->sk_socket, page, offset, size,
1001 flags);
1002
1003 lock_sock(sk);
1004 res = do_tcp_sendpages(sk, page, offset, size, flags);
1005 release_sock(sk);
1006 return res;
1007 }
1008 EXPORT_SYMBOL(tcp_sendpage);
1009
1010 static inline int select_size(const struct sock *sk, bool sg)
1011 {
1012 const struct tcp_sock *tp = tcp_sk(sk);
1013 int tmp = tp->mss_cache;
1014
1015 if (sg) {
1016 if (sk_can_gso(sk)) {
1017 /* Small frames wont use a full page:
1018 * Payload will immediately follow tcp header.
1019 */
1020 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1021 } else {
1022 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1023
1024 if (tmp >= pgbreak &&
1025 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1026 tmp = pgbreak;
1027 }
1028 }
1029
1030 return tmp;
1031 }
1032
1033 void tcp_free_fastopen_req(struct tcp_sock *tp)
1034 {
1035 if (tp->fastopen_req) {
1036 kfree(tp->fastopen_req);
1037 tp->fastopen_req = NULL;
1038 }
1039 }
1040
1041 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1042 int *copied, size_t size)
1043 {
1044 struct tcp_sock *tp = tcp_sk(sk);
1045 int err, flags;
1046
1047 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1048 return -EOPNOTSUPP;
1049 if (tp->fastopen_req)
1050 return -EALREADY; /* Another Fast Open is in progress */
1051
1052 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1053 sk->sk_allocation);
1054 if (unlikely(!tp->fastopen_req))
1055 return -ENOBUFS;
1056 tp->fastopen_req->data = msg;
1057 tp->fastopen_req->size = size;
1058
1059 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1060 err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1061 msg->msg_namelen, flags);
1062 *copied = tp->fastopen_req->copied;
1063 tcp_free_fastopen_req(tp);
1064 return err;
1065 }
1066
1067 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1068 {
1069 struct tcp_sock *tp = tcp_sk(sk);
1070 struct sk_buff *skb;
1071 int flags, err, copied = 0;
1072 int mss_now = 0, size_goal, copied_syn = 0;
1073 bool sg;
1074 long timeo;
1075
1076 lock_sock(sk);
1077
1078 flags = msg->msg_flags;
1079 if (flags & MSG_FASTOPEN) {
1080 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1081 if (err == -EINPROGRESS && copied_syn > 0)
1082 goto out;
1083 else if (err)
1084 goto out_err;
1085 }
1086
1087 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1088
1089 /* Wait for a connection to finish. One exception is TCP Fast Open
1090 * (passive side) where data is allowed to be sent before a connection
1091 * is fully established.
1092 */
1093 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1094 !tcp_passive_fastopen(sk)) {
1095 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1096 goto do_error;
1097 }
1098
1099 if (unlikely(tp->repair)) {
1100 if (tp->repair_queue == TCP_RECV_QUEUE) {
1101 copied = tcp_send_rcvq(sk, msg, size);
1102 goto out_nopush;
1103 }
1104
1105 err = -EINVAL;
1106 if (tp->repair_queue == TCP_NO_QUEUE)
1107 goto out_err;
1108
1109 /* 'common' sending to sendq */
1110 }
1111
1112 /* This should be in poll */
1113 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1114
1115 mss_now = tcp_send_mss(sk, &size_goal, flags);
1116
1117 /* Ok commence sending. */
1118 copied = 0;
1119
1120 err = -EPIPE;
1121 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1122 goto out_err;
1123
1124 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1125
1126 while (msg_data_left(msg)) {
1127 int copy = 0;
1128 int max = size_goal;
1129
1130 skb = tcp_write_queue_tail(sk);
1131 if (tcp_send_head(sk)) {
1132 if (skb->ip_summed == CHECKSUM_NONE)
1133 max = mss_now;
1134 copy = max - skb->len;
1135 }
1136
1137 if (copy <= 0) {
1138 new_segment:
1139 /* Allocate new segment. If the interface is SG,
1140 * allocate skb fitting to single page.
1141 */
1142 if (!sk_stream_memory_free(sk))
1143 goto wait_for_sndbuf;
1144
1145 skb = sk_stream_alloc_skb(sk,
1146 select_size(sk, sg),
1147 sk->sk_allocation);
1148 if (!skb)
1149 goto wait_for_memory;
1150
1151 /*
1152 * Check whether we can use HW checksum.
1153 */
1154 if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1155 skb->ip_summed = CHECKSUM_PARTIAL;
1156
1157 skb_entail(sk, skb);
1158 copy = size_goal;
1159 max = size_goal;
1160
1161 /* All packets are restored as if they have
1162 * already been sent. skb_mstamp isn't set to
1163 * avoid wrong rtt estimation.
1164 */
1165 if (tp->repair)
1166 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1167 }
1168
1169 /* Try to append data to the end of skb. */
1170 if (copy > msg_data_left(msg))
1171 copy = msg_data_left(msg);
1172
1173 /* Where to copy to? */
1174 if (skb_availroom(skb) > 0) {
1175 /* We have some space in skb head. Superb! */
1176 copy = min_t(int, copy, skb_availroom(skb));
1177 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1178 if (err)
1179 goto do_fault;
1180 } else {
1181 bool merge = true;
1182 int i = skb_shinfo(skb)->nr_frags;
1183 struct page_frag *pfrag = sk_page_frag(sk);
1184
1185 if (!sk_page_frag_refill(sk, pfrag))
1186 goto wait_for_memory;
1187
1188 if (!skb_can_coalesce(skb, i, pfrag->page,
1189 pfrag->offset)) {
1190 if (i == MAX_SKB_FRAGS || !sg) {
1191 tcp_mark_push(tp, skb);
1192 goto new_segment;
1193 }
1194 merge = false;
1195 }
1196
1197 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1198
1199 if (!sk_wmem_schedule(sk, copy))
1200 goto wait_for_memory;
1201
1202 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1203 pfrag->page,
1204 pfrag->offset,
1205 copy);
1206 if (err)
1207 goto do_error;
1208
1209 /* Update the skb. */
1210 if (merge) {
1211 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1212 } else {
1213 skb_fill_page_desc(skb, i, pfrag->page,
1214 pfrag->offset, copy);
1215 get_page(pfrag->page);
1216 }
1217 pfrag->offset += copy;
1218 }
1219
1220 if (!copied)
1221 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1222
1223 tp->write_seq += copy;
1224 TCP_SKB_CB(skb)->end_seq += copy;
1225 tcp_skb_pcount_set(skb, 0);
1226
1227 copied += copy;
1228 if (!msg_data_left(msg)) {
1229 tcp_tx_timestamp(sk, skb);
1230 goto out;
1231 }
1232
1233 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1234 continue;
1235
1236 if (forced_push(tp)) {
1237 tcp_mark_push(tp, skb);
1238 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1239 } else if (skb == tcp_send_head(sk))
1240 tcp_push_one(sk, mss_now);
1241 continue;
1242
1243 wait_for_sndbuf:
1244 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1245 wait_for_memory:
1246 if (copied)
1247 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1248 TCP_NAGLE_PUSH, size_goal);
1249
1250 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1251 goto do_error;
1252
1253 mss_now = tcp_send_mss(sk, &size_goal, flags);
1254 }
1255
1256 out:
1257 if (copied)
1258 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1259 out_nopush:
1260 release_sock(sk);
1261 return copied + copied_syn;
1262
1263 do_fault:
1264 if (!skb->len) {
1265 tcp_unlink_write_queue(skb, sk);
1266 /* It is the one place in all of TCP, except connection
1267 * reset, where we can be unlinking the send_head.
1268 */
1269 tcp_check_send_head(sk, skb);
1270 sk_wmem_free_skb(sk, skb);
1271 }
1272
1273 do_error:
1274 if (copied + copied_syn)
1275 goto out;
1276 out_err:
1277 err = sk_stream_error(sk, flags, err);
1278 release_sock(sk);
1279 return err;
1280 }
1281 EXPORT_SYMBOL(tcp_sendmsg);
1282
1283 /*
1284 * Handle reading urgent data. BSD has very simple semantics for
1285 * this, no blocking and very strange errors 8)
1286 */
1287
1288 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1289 {
1290 struct tcp_sock *tp = tcp_sk(sk);
1291
1292 /* No URG data to read. */
1293 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1294 tp->urg_data == TCP_URG_READ)
1295 return -EINVAL; /* Yes this is right ! */
1296
1297 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1298 return -ENOTCONN;
1299
1300 if (tp->urg_data & TCP_URG_VALID) {
1301 int err = 0;
1302 char c = tp->urg_data;
1303
1304 if (!(flags & MSG_PEEK))
1305 tp->urg_data = TCP_URG_READ;
1306
1307 /* Read urgent data. */
1308 msg->msg_flags |= MSG_OOB;
1309
1310 if (len > 0) {
1311 if (!(flags & MSG_TRUNC))
1312 err = memcpy_to_msg(msg, &c, 1);
1313 len = 1;
1314 } else
1315 msg->msg_flags |= MSG_TRUNC;
1316
1317 return err ? -EFAULT : len;
1318 }
1319
1320 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1321 return 0;
1322
1323 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1324 * the available implementations agree in this case:
1325 * this call should never block, independent of the
1326 * blocking state of the socket.
1327 * Mike <pall@rz.uni-karlsruhe.de>
1328 */
1329 return -EAGAIN;
1330 }
1331
1332 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1333 {
1334 struct sk_buff *skb;
1335 int copied = 0, err = 0;
1336
1337 /* XXX -- need to support SO_PEEK_OFF */
1338
1339 skb_queue_walk(&sk->sk_write_queue, skb) {
1340 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1341 if (err)
1342 break;
1343
1344 copied += skb->len;
1345 }
1346
1347 return err ?: copied;
1348 }
1349
1350 /* Clean up the receive buffer for full frames taken by the user,
1351 * then send an ACK if necessary. COPIED is the number of bytes
1352 * tcp_recvmsg has given to the user so far, it speeds up the
1353 * calculation of whether or not we must ACK for the sake of
1354 * a window update.
1355 */
1356 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1357 {
1358 struct tcp_sock *tp = tcp_sk(sk);
1359 bool time_to_ack = false;
1360
1361 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1362
1363 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1364 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1365 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1366
1367 if (inet_csk_ack_scheduled(sk)) {
1368 const struct inet_connection_sock *icsk = inet_csk(sk);
1369 /* Delayed ACKs frequently hit locked sockets during bulk
1370 * receive. */
1371 if (icsk->icsk_ack.blocked ||
1372 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1373 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1374 /*
1375 * If this read emptied read buffer, we send ACK, if
1376 * connection is not bidirectional, user drained
1377 * receive buffer and there was a small segment
1378 * in queue.
1379 */
1380 (copied > 0 &&
1381 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1382 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1383 !icsk->icsk_ack.pingpong)) &&
1384 !atomic_read(&sk->sk_rmem_alloc)))
1385 time_to_ack = true;
1386 }
1387
1388 /* We send an ACK if we can now advertise a non-zero window
1389 * which has been raised "significantly".
1390 *
1391 * Even if window raised up to infinity, do not send window open ACK
1392 * in states, where we will not receive more. It is useless.
1393 */
1394 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1395 __u32 rcv_window_now = tcp_receive_window(tp);
1396
1397 /* Optimize, __tcp_select_window() is not cheap. */
1398 if (2*rcv_window_now <= tp->window_clamp) {
1399 __u32 new_window = __tcp_select_window(sk);
1400
1401 /* Send ACK now, if this read freed lots of space
1402 * in our buffer. Certainly, new_window is new window.
1403 * We can advertise it now, if it is not less than current one.
1404 * "Lots" means "at least twice" here.
1405 */
1406 if (new_window && new_window >= 2 * rcv_window_now)
1407 time_to_ack = true;
1408 }
1409 }
1410 if (time_to_ack)
1411 tcp_send_ack(sk);
1412 }
1413
1414 static void tcp_prequeue_process(struct sock *sk)
1415 {
1416 struct sk_buff *skb;
1417 struct tcp_sock *tp = tcp_sk(sk);
1418
1419 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1420
1421 /* RX process wants to run with disabled BHs, though it is not
1422 * necessary */
1423 local_bh_disable();
1424 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1425 sk_backlog_rcv(sk, skb);
1426 local_bh_enable();
1427
1428 /* Clear memory counter. */
1429 tp->ucopy.memory = 0;
1430 }
1431
1432 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1433 {
1434 struct sk_buff *skb;
1435 u32 offset;
1436
1437 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1438 offset = seq - TCP_SKB_CB(skb)->seq;
1439 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
1440 offset--;
1441 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1442 *off = offset;
1443 return skb;
1444 }
1445 /* This looks weird, but this can happen if TCP collapsing
1446 * splitted a fat GRO packet, while we released socket lock
1447 * in skb_splice_bits()
1448 */
1449 sk_eat_skb(sk, skb);
1450 }
1451 return NULL;
1452 }
1453
1454 /*
1455 * This routine provides an alternative to tcp_recvmsg() for routines
1456 * that would like to handle copying from skbuffs directly in 'sendfile'
1457 * fashion.
1458 * Note:
1459 * - It is assumed that the socket was locked by the caller.
1460 * - The routine does not block.
1461 * - At present, there is no support for reading OOB data
1462 * or for 'peeking' the socket using this routine
1463 * (although both would be easy to implement).
1464 */
1465 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1466 sk_read_actor_t recv_actor)
1467 {
1468 struct sk_buff *skb;
1469 struct tcp_sock *tp = tcp_sk(sk);
1470 u32 seq = tp->copied_seq;
1471 u32 offset;
1472 int copied = 0;
1473
1474 if (sk->sk_state == TCP_LISTEN)
1475 return -ENOTCONN;
1476 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1477 if (offset < skb->len) {
1478 int used;
1479 size_t len;
1480
1481 len = skb->len - offset;
1482 /* Stop reading if we hit a patch of urgent data */
1483 if (tp->urg_data) {
1484 u32 urg_offset = tp->urg_seq - seq;
1485 if (urg_offset < len)
1486 len = urg_offset;
1487 if (!len)
1488 break;
1489 }
1490 used = recv_actor(desc, skb, offset, len);
1491 if (used <= 0) {
1492 if (!copied)
1493 copied = used;
1494 break;
1495 } else if (used <= len) {
1496 seq += used;
1497 copied += used;
1498 offset += used;
1499 }
1500 /* If recv_actor drops the lock (e.g. TCP splice
1501 * receive) the skb pointer might be invalid when
1502 * getting here: tcp_collapse might have deleted it
1503 * while aggregating skbs from the socket queue.
1504 */
1505 skb = tcp_recv_skb(sk, seq - 1, &offset);
1506 if (!skb)
1507 break;
1508 /* TCP coalescing might have appended data to the skb.
1509 * Try to splice more frags
1510 */
1511 if (offset + 1 != skb->len)
1512 continue;
1513 }
1514 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1515 sk_eat_skb(sk, skb);
1516 ++seq;
1517 break;
1518 }
1519 sk_eat_skb(sk, skb);
1520 if (!desc->count)
1521 break;
1522 tp->copied_seq = seq;
1523 }
1524 tp->copied_seq = seq;
1525
1526 tcp_rcv_space_adjust(sk);
1527
1528 /* Clean up data we have read: This will do ACK frames. */
1529 if (copied > 0) {
1530 tcp_recv_skb(sk, seq, &offset);
1531 tcp_cleanup_rbuf(sk, copied);
1532 }
1533 return copied;
1534 }
1535 EXPORT_SYMBOL(tcp_read_sock);
1536
1537 /*
1538 * This routine copies from a sock struct into the user buffer.
1539 *
1540 * Technical note: in 2.3 we work on _locked_ socket, so that
1541 * tricks with *seq access order and skb->users are not required.
1542 * Probably, code can be easily improved even more.
1543 */
1544
1545 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1546 int flags, int *addr_len)
1547 {
1548 struct tcp_sock *tp = tcp_sk(sk);
1549 int copied = 0;
1550 u32 peek_seq;
1551 u32 *seq;
1552 unsigned long used;
1553 int err;
1554 int target; /* Read at least this many bytes */
1555 long timeo;
1556 struct task_struct *user_recv = NULL;
1557 struct sk_buff *skb;
1558 u32 urg_hole = 0;
1559
1560 if (unlikely(flags & MSG_ERRQUEUE))
1561 return inet_recv_error(sk, msg, len, addr_len);
1562
1563 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1564 (sk->sk_state == TCP_ESTABLISHED))
1565 sk_busy_loop(sk, nonblock);
1566
1567 lock_sock(sk);
1568
1569 err = -ENOTCONN;
1570 if (sk->sk_state == TCP_LISTEN)
1571 goto out;
1572
1573 timeo = sock_rcvtimeo(sk, nonblock);
1574
1575 /* Urgent data needs to be handled specially. */
1576 if (flags & MSG_OOB)
1577 goto recv_urg;
1578
1579 if (unlikely(tp->repair)) {
1580 err = -EPERM;
1581 if (!(flags & MSG_PEEK))
1582 goto out;
1583
1584 if (tp->repair_queue == TCP_SEND_QUEUE)
1585 goto recv_sndq;
1586
1587 err = -EINVAL;
1588 if (tp->repair_queue == TCP_NO_QUEUE)
1589 goto out;
1590
1591 /* 'common' recv queue MSG_PEEK-ing */
1592 }
1593
1594 seq = &tp->copied_seq;
1595 if (flags & MSG_PEEK) {
1596 peek_seq = tp->copied_seq;
1597 seq = &peek_seq;
1598 }
1599
1600 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1601
1602 do {
1603 u32 offset;
1604
1605 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1606 if (tp->urg_data && tp->urg_seq == *seq) {
1607 if (copied)
1608 break;
1609 if (signal_pending(current)) {
1610 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1611 break;
1612 }
1613 }
1614
1615 /* Next get a buffer. */
1616
1617 skb_queue_walk(&sk->sk_receive_queue, skb) {
1618 /* Now that we have two receive queues this
1619 * shouldn't happen.
1620 */
1621 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1622 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1623 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1624 flags))
1625 break;
1626
1627 offset = *seq - TCP_SKB_CB(skb)->seq;
1628 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
1629 offset--;
1630 if (offset < skb->len)
1631 goto found_ok_skb;
1632 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1633 goto found_fin_ok;
1634 WARN(!(flags & MSG_PEEK),
1635 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1636 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1637 }
1638
1639 /* Well, if we have backlog, try to process it now yet. */
1640
1641 if (copied >= target && !sk->sk_backlog.tail)
1642 break;
1643
1644 if (copied) {
1645 if (sk->sk_err ||
1646 sk->sk_state == TCP_CLOSE ||
1647 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1648 !timeo ||
1649 signal_pending(current))
1650 break;
1651 } else {
1652 if (sock_flag(sk, SOCK_DONE))
1653 break;
1654
1655 if (sk->sk_err) {
1656 copied = sock_error(sk);
1657 break;
1658 }
1659
1660 if (sk->sk_shutdown & RCV_SHUTDOWN)
1661 break;
1662
1663 if (sk->sk_state == TCP_CLOSE) {
1664 if (!sock_flag(sk, SOCK_DONE)) {
1665 /* This occurs when user tries to read
1666 * from never connected socket.
1667 */
1668 copied = -ENOTCONN;
1669 break;
1670 }
1671 break;
1672 }
1673
1674 if (!timeo) {
1675 copied = -EAGAIN;
1676 break;
1677 }
1678
1679 if (signal_pending(current)) {
1680 copied = sock_intr_errno(timeo);
1681 break;
1682 }
1683 }
1684
1685 tcp_cleanup_rbuf(sk, copied);
1686
1687 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1688 /* Install new reader */
1689 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1690 user_recv = current;
1691 tp->ucopy.task = user_recv;
1692 tp->ucopy.msg = msg;
1693 }
1694
1695 tp->ucopy.len = len;
1696
1697 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1698 !(flags & (MSG_PEEK | MSG_TRUNC)));
1699
1700 /* Ugly... If prequeue is not empty, we have to
1701 * process it before releasing socket, otherwise
1702 * order will be broken at second iteration.
1703 * More elegant solution is required!!!
1704 *
1705 * Look: we have the following (pseudo)queues:
1706 *
1707 * 1. packets in flight
1708 * 2. backlog
1709 * 3. prequeue
1710 * 4. receive_queue
1711 *
1712 * Each queue can be processed only if the next ones
1713 * are empty. At this point we have empty receive_queue.
1714 * But prequeue _can_ be not empty after 2nd iteration,
1715 * when we jumped to start of loop because backlog
1716 * processing added something to receive_queue.
1717 * We cannot release_sock(), because backlog contains
1718 * packets arrived _after_ prequeued ones.
1719 *
1720 * Shortly, algorithm is clear --- to process all
1721 * the queues in order. We could make it more directly,
1722 * requeueing packets from backlog to prequeue, if
1723 * is not empty. It is more elegant, but eats cycles,
1724 * unfortunately.
1725 */
1726 if (!skb_queue_empty(&tp->ucopy.prequeue))
1727 goto do_prequeue;
1728
1729 /* __ Set realtime policy in scheduler __ */
1730 }
1731
1732 if (copied >= target) {
1733 /* Do not sleep, just process backlog. */
1734 release_sock(sk);
1735 lock_sock(sk);
1736 } else
1737 sk_wait_data(sk, &timeo);
1738
1739 if (user_recv) {
1740 int chunk;
1741
1742 /* __ Restore normal policy in scheduler __ */
1743
1744 if ((chunk = len - tp->ucopy.len) != 0) {
1745 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1746 len -= chunk;
1747 copied += chunk;
1748 }
1749
1750 if (tp->rcv_nxt == tp->copied_seq &&
1751 !skb_queue_empty(&tp->ucopy.prequeue)) {
1752 do_prequeue:
1753 tcp_prequeue_process(sk);
1754
1755 if ((chunk = len - tp->ucopy.len) != 0) {
1756 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1757 len -= chunk;
1758 copied += chunk;
1759 }
1760 }
1761 }
1762 if ((flags & MSG_PEEK) &&
1763 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1764 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1765 current->comm,
1766 task_pid_nr(current));
1767 peek_seq = tp->copied_seq;
1768 }
1769 continue;
1770
1771 found_ok_skb:
1772 /* Ok so how much can we use? */
1773 used = skb->len - offset;
1774 if (len < used)
1775 used = len;
1776
1777 /* Do we have urgent data here? */
1778 if (tp->urg_data) {
1779 u32 urg_offset = tp->urg_seq - *seq;
1780 if (urg_offset < used) {
1781 if (!urg_offset) {
1782 if (!sock_flag(sk, SOCK_URGINLINE)) {
1783 ++*seq;
1784 urg_hole++;
1785 offset++;
1786 used--;
1787 if (!used)
1788 goto skip_copy;
1789 }
1790 } else
1791 used = urg_offset;
1792 }
1793 }
1794
1795 if (!(flags & MSG_TRUNC)) {
1796 err = skb_copy_datagram_msg(skb, offset, msg, used);
1797 if (err) {
1798 /* Exception. Bailout! */
1799 if (!copied)
1800 copied = -EFAULT;
1801 break;
1802 }
1803 }
1804
1805 *seq += used;
1806 copied += used;
1807 len -= used;
1808
1809 tcp_rcv_space_adjust(sk);
1810
1811 skip_copy:
1812 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1813 tp->urg_data = 0;
1814 tcp_fast_path_check(sk);
1815 }
1816 if (used + offset < skb->len)
1817 continue;
1818
1819 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1820 goto found_fin_ok;
1821 if (!(flags & MSG_PEEK))
1822 sk_eat_skb(sk, skb);
1823 continue;
1824
1825 found_fin_ok:
1826 /* Process the FIN. */
1827 ++*seq;
1828 if (!(flags & MSG_PEEK))
1829 sk_eat_skb(sk, skb);
1830 break;
1831 } while (len > 0);
1832
1833 if (user_recv) {
1834 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1835 int chunk;
1836
1837 tp->ucopy.len = copied > 0 ? len : 0;
1838
1839 tcp_prequeue_process(sk);
1840
1841 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1842 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1843 len -= chunk;
1844 copied += chunk;
1845 }
1846 }
1847
1848 tp->ucopy.task = NULL;
1849 tp->ucopy.len = 0;
1850 }
1851
1852 /* According to UNIX98, msg_name/msg_namelen are ignored
1853 * on connected socket. I was just happy when found this 8) --ANK
1854 */
1855
1856 /* Clean up data we have read: This will do ACK frames. */
1857 tcp_cleanup_rbuf(sk, copied);
1858
1859 release_sock(sk);
1860 return copied;
1861
1862 out:
1863 release_sock(sk);
1864 return err;
1865
1866 recv_urg:
1867 err = tcp_recv_urg(sk, msg, len, flags);
1868 goto out;
1869
1870 recv_sndq:
1871 err = tcp_peek_sndq(sk, msg, len);
1872 goto out;
1873 }
1874 EXPORT_SYMBOL(tcp_recvmsg);
1875
1876 void tcp_set_state(struct sock *sk, int state)
1877 {
1878 int oldstate = sk->sk_state;
1879
1880 switch (state) {
1881 case TCP_ESTABLISHED:
1882 if (oldstate != TCP_ESTABLISHED)
1883 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1884 break;
1885
1886 case TCP_CLOSE:
1887 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1888 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1889
1890 sk->sk_prot->unhash(sk);
1891 if (inet_csk(sk)->icsk_bind_hash &&
1892 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1893 inet_put_port(sk);
1894 /* fall through */
1895 default:
1896 if (oldstate == TCP_ESTABLISHED)
1897 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1898 }
1899
1900 /* Change state AFTER socket is unhashed to avoid closed
1901 * socket sitting in hash tables.
1902 */
1903 sk->sk_state = state;
1904
1905 #ifdef STATE_TRACE
1906 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1907 #endif
1908 }
1909 EXPORT_SYMBOL_GPL(tcp_set_state);
1910
1911 /*
1912 * State processing on a close. This implements the state shift for
1913 * sending our FIN frame. Note that we only send a FIN for some
1914 * states. A shutdown() may have already sent the FIN, or we may be
1915 * closed.
1916 */
1917
1918 static const unsigned char new_state[16] = {
1919 /* current state: new state: action: */
1920 [0 /* (Invalid) */] = TCP_CLOSE,
1921 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1922 [TCP_SYN_SENT] = TCP_CLOSE,
1923 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1924 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
1925 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
1926 [TCP_TIME_WAIT] = TCP_CLOSE,
1927 [TCP_CLOSE] = TCP_CLOSE,
1928 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
1929 [TCP_LAST_ACK] = TCP_LAST_ACK,
1930 [TCP_LISTEN] = TCP_CLOSE,
1931 [TCP_CLOSING] = TCP_CLOSING,
1932 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
1933 };
1934
1935 static int tcp_close_state(struct sock *sk)
1936 {
1937 int next = (int)new_state[sk->sk_state];
1938 int ns = next & TCP_STATE_MASK;
1939
1940 tcp_set_state(sk, ns);
1941
1942 return next & TCP_ACTION_FIN;
1943 }
1944
1945 /*
1946 * Shutdown the sending side of a connection. Much like close except
1947 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1948 */
1949
1950 void tcp_shutdown(struct sock *sk, int how)
1951 {
1952 /* We need to grab some memory, and put together a FIN,
1953 * and then put it into the queue to be sent.
1954 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1955 */
1956 if (!(how & SEND_SHUTDOWN))
1957 return;
1958
1959 /* If we've already sent a FIN, or it's a closed state, skip this. */
1960 if ((1 << sk->sk_state) &
1961 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1962 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1963 /* Clear out any half completed packets. FIN if needed. */
1964 if (tcp_close_state(sk))
1965 tcp_send_fin(sk);
1966 }
1967 }
1968 EXPORT_SYMBOL(tcp_shutdown);
1969
1970 bool tcp_check_oom(struct sock *sk, int shift)
1971 {
1972 bool too_many_orphans, out_of_socket_memory;
1973
1974 too_many_orphans = tcp_too_many_orphans(sk, shift);
1975 out_of_socket_memory = tcp_out_of_memory(sk);
1976
1977 if (too_many_orphans)
1978 net_info_ratelimited("too many orphaned sockets\n");
1979 if (out_of_socket_memory)
1980 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
1981 return too_many_orphans || out_of_socket_memory;
1982 }
1983
1984 void tcp_close(struct sock *sk, long timeout)
1985 {
1986 struct sk_buff *skb;
1987 int data_was_unread = 0;
1988 int state;
1989
1990 lock_sock(sk);
1991 sk->sk_shutdown = SHUTDOWN_MASK;
1992
1993 if (sk->sk_state == TCP_LISTEN) {
1994 tcp_set_state(sk, TCP_CLOSE);
1995
1996 /* Special case. */
1997 inet_csk_listen_stop(sk);
1998
1999 goto adjudge_to_death;
2000 }
2001
2002 /* We need to flush the recv. buffs. We do this only on the
2003 * descriptor close, not protocol-sourced closes, because the
2004 * reader process may not have drained the data yet!
2005 */
2006 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2007 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2008
2009 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2010 len--;
2011 data_was_unread += len;
2012 __kfree_skb(skb);
2013 }
2014
2015 sk_mem_reclaim(sk);
2016
2017 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2018 if (sk->sk_state == TCP_CLOSE)
2019 goto adjudge_to_death;
2020
2021 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2022 * data was lost. To witness the awful effects of the old behavior of
2023 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2024 * GET in an FTP client, suspend the process, wait for the client to
2025 * advertise a zero window, then kill -9 the FTP client, wheee...
2026 * Note: timeout is always zero in such a case.
2027 */
2028 if (unlikely(tcp_sk(sk)->repair)) {
2029 sk->sk_prot->disconnect(sk, 0);
2030 } else if (data_was_unread) {
2031 /* Unread data was tossed, zap the connection. */
2032 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2033 tcp_set_state(sk, TCP_CLOSE);
2034 tcp_send_active_reset(sk, sk->sk_allocation);
2035 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2036 /* Check zero linger _after_ checking for unread data. */
2037 sk->sk_prot->disconnect(sk, 0);
2038 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2039 } else if (tcp_close_state(sk)) {
2040 /* We FIN if the application ate all the data before
2041 * zapping the connection.
2042 */
2043
2044 /* RED-PEN. Formally speaking, we have broken TCP state
2045 * machine. State transitions:
2046 *
2047 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2048 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2049 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2050 *
2051 * are legal only when FIN has been sent (i.e. in window),
2052 * rather than queued out of window. Purists blame.
2053 *
2054 * F.e. "RFC state" is ESTABLISHED,
2055 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2056 *
2057 * The visible declinations are that sometimes
2058 * we enter time-wait state, when it is not required really
2059 * (harmless), do not send active resets, when they are
2060 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2061 * they look as CLOSING or LAST_ACK for Linux)
2062 * Probably, I missed some more holelets.
2063 * --ANK
2064 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2065 * in a single packet! (May consider it later but will
2066 * probably need API support or TCP_CORK SYN-ACK until
2067 * data is written and socket is closed.)
2068 */
2069 tcp_send_fin(sk);
2070 }
2071
2072 sk_stream_wait_close(sk, timeout);
2073
2074 adjudge_to_death:
2075 state = sk->sk_state;
2076 sock_hold(sk);
2077 sock_orphan(sk);
2078
2079 /* It is the last release_sock in its life. It will remove backlog. */
2080 release_sock(sk);
2081
2082
2083 /* Now socket is owned by kernel and we acquire BH lock
2084 to finish close. No need to check for user refs.
2085 */
2086 local_bh_disable();
2087 bh_lock_sock(sk);
2088 WARN_ON(sock_owned_by_user(sk));
2089
2090 percpu_counter_inc(sk->sk_prot->orphan_count);
2091
2092 /* Have we already been destroyed by a softirq or backlog? */
2093 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2094 goto out;
2095
2096 /* This is a (useful) BSD violating of the RFC. There is a
2097 * problem with TCP as specified in that the other end could
2098 * keep a socket open forever with no application left this end.
2099 * We use a 1 minute timeout (about the same as BSD) then kill
2100 * our end. If they send after that then tough - BUT: long enough
2101 * that we won't make the old 4*rto = almost no time - whoops
2102 * reset mistake.
2103 *
2104 * Nope, it was not mistake. It is really desired behaviour
2105 * f.e. on http servers, when such sockets are useless, but
2106 * consume significant resources. Let's do it with special
2107 * linger2 option. --ANK
2108 */
2109
2110 if (sk->sk_state == TCP_FIN_WAIT2) {
2111 struct tcp_sock *tp = tcp_sk(sk);
2112 if (tp->linger2 < 0) {
2113 tcp_set_state(sk, TCP_CLOSE);
2114 tcp_send_active_reset(sk, GFP_ATOMIC);
2115 NET_INC_STATS_BH(sock_net(sk),
2116 LINUX_MIB_TCPABORTONLINGER);
2117 } else {
2118 const int tmo = tcp_fin_time(sk);
2119
2120 if (tmo > TCP_TIMEWAIT_LEN) {
2121 inet_csk_reset_keepalive_timer(sk,
2122 tmo - TCP_TIMEWAIT_LEN);
2123 } else {
2124 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2125 goto out;
2126 }
2127 }
2128 }
2129 if (sk->sk_state != TCP_CLOSE) {
2130 sk_mem_reclaim(sk);
2131 if (tcp_check_oom(sk, 0)) {
2132 tcp_set_state(sk, TCP_CLOSE);
2133 tcp_send_active_reset(sk, GFP_ATOMIC);
2134 NET_INC_STATS_BH(sock_net(sk),
2135 LINUX_MIB_TCPABORTONMEMORY);
2136 }
2137 }
2138
2139 if (sk->sk_state == TCP_CLOSE) {
2140 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2141 /* We could get here with a non-NULL req if the socket is
2142 * aborted (e.g., closed with unread data) before 3WHS
2143 * finishes.
2144 */
2145 if (req)
2146 reqsk_fastopen_remove(sk, req, false);
2147 inet_csk_destroy_sock(sk);
2148 }
2149 /* Otherwise, socket is reprieved until protocol close. */
2150
2151 out:
2152 bh_unlock_sock(sk);
2153 local_bh_enable();
2154 sock_put(sk);
2155 }
2156 EXPORT_SYMBOL(tcp_close);
2157
2158 /* These states need RST on ABORT according to RFC793 */
2159
2160 static inline bool tcp_need_reset(int state)
2161 {
2162 return (1 << state) &
2163 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2164 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2165 }
2166
2167 int tcp_disconnect(struct sock *sk, int flags)
2168 {
2169 struct inet_sock *inet = inet_sk(sk);
2170 struct inet_connection_sock *icsk = inet_csk(sk);
2171 struct tcp_sock *tp = tcp_sk(sk);
2172 int err = 0;
2173 int old_state = sk->sk_state;
2174
2175 if (old_state != TCP_CLOSE)
2176 tcp_set_state(sk, TCP_CLOSE);
2177
2178 /* ABORT function of RFC793 */
2179 if (old_state == TCP_LISTEN) {
2180 inet_csk_listen_stop(sk);
2181 } else if (unlikely(tp->repair)) {
2182 sk->sk_err = ECONNABORTED;
2183 } else if (tcp_need_reset(old_state) ||
2184 (tp->snd_nxt != tp->write_seq &&
2185 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2186 /* The last check adjusts for discrepancy of Linux wrt. RFC
2187 * states
2188 */
2189 tcp_send_active_reset(sk, gfp_any());
2190 sk->sk_err = ECONNRESET;
2191 } else if (old_state == TCP_SYN_SENT)
2192 sk->sk_err = ECONNRESET;
2193
2194 tcp_clear_xmit_timers(sk);
2195 __skb_queue_purge(&sk->sk_receive_queue);
2196 tcp_write_queue_purge(sk);
2197 __skb_queue_purge(&tp->out_of_order_queue);
2198
2199 inet->inet_dport = 0;
2200
2201 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2202 inet_reset_saddr(sk);
2203
2204 sk->sk_shutdown = 0;
2205 sock_reset_flag(sk, SOCK_DONE);
2206 tp->srtt_us = 0;
2207 if ((tp->write_seq += tp->max_window + 2) == 0)
2208 tp->write_seq = 1;
2209 icsk->icsk_backoff = 0;
2210 tp->snd_cwnd = 2;
2211 icsk->icsk_probes_out = 0;
2212 tp->packets_out = 0;
2213 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2214 tp->snd_cwnd_cnt = 0;
2215 tp->window_clamp = 0;
2216 tcp_set_ca_state(sk, TCP_CA_Open);
2217 tcp_clear_retrans(tp);
2218 inet_csk_delack_init(sk);
2219 tcp_init_send_head(sk);
2220 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2221 __sk_dst_reset(sk);
2222
2223 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2224
2225 sk->sk_error_report(sk);
2226 return err;
2227 }
2228 EXPORT_SYMBOL(tcp_disconnect);
2229
2230 void tcp_sock_destruct(struct sock *sk)
2231 {
2232 inet_sock_destruct(sk);
2233
2234 kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2235 }
2236
2237 static inline bool tcp_can_repair_sock(const struct sock *sk)
2238 {
2239 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2240 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2241 }
2242
2243 static int tcp_repair_options_est(struct tcp_sock *tp,
2244 struct tcp_repair_opt __user *optbuf, unsigned int len)
2245 {
2246 struct tcp_repair_opt opt;
2247
2248 while (len >= sizeof(opt)) {
2249 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2250 return -EFAULT;
2251
2252 optbuf++;
2253 len -= sizeof(opt);
2254
2255 switch (opt.opt_code) {
2256 case TCPOPT_MSS:
2257 tp->rx_opt.mss_clamp = opt.opt_val;
2258 break;
2259 case TCPOPT_WINDOW:
2260 {
2261 u16 snd_wscale = opt.opt_val & 0xFFFF;
2262 u16 rcv_wscale = opt.opt_val >> 16;
2263
2264 if (snd_wscale > 14 || rcv_wscale > 14)
2265 return -EFBIG;
2266
2267 tp->rx_opt.snd_wscale = snd_wscale;
2268 tp->rx_opt.rcv_wscale = rcv_wscale;
2269 tp->rx_opt.wscale_ok = 1;
2270 }
2271 break;
2272 case TCPOPT_SACK_PERM:
2273 if (opt.opt_val != 0)
2274 return -EINVAL;
2275
2276 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2277 if (sysctl_tcp_fack)
2278 tcp_enable_fack(tp);
2279 break;
2280 case TCPOPT_TIMESTAMP:
2281 if (opt.opt_val != 0)
2282 return -EINVAL;
2283
2284 tp->rx_opt.tstamp_ok = 1;
2285 break;
2286 }
2287 }
2288
2289 return 0;
2290 }
2291
2292 /*
2293 * Socket option code for TCP.
2294 */
2295 static int do_tcp_setsockopt(struct sock *sk, int level,
2296 int optname, char __user *optval, unsigned int optlen)
2297 {
2298 struct tcp_sock *tp = tcp_sk(sk);
2299 struct inet_connection_sock *icsk = inet_csk(sk);
2300 int val;
2301 int err = 0;
2302
2303 /* These are data/string values, all the others are ints */
2304 switch (optname) {
2305 case TCP_CONGESTION: {
2306 char name[TCP_CA_NAME_MAX];
2307
2308 if (optlen < 1)
2309 return -EINVAL;
2310
2311 val = strncpy_from_user(name, optval,
2312 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2313 if (val < 0)
2314 return -EFAULT;
2315 name[val] = 0;
2316
2317 lock_sock(sk);
2318 err = tcp_set_congestion_control(sk, name);
2319 release_sock(sk);
2320 return err;
2321 }
2322 default:
2323 /* fallthru */
2324 break;
2325 }
2326
2327 if (optlen < sizeof(int))
2328 return -EINVAL;
2329
2330 if (get_user(val, (int __user *)optval))
2331 return -EFAULT;
2332
2333 lock_sock(sk);
2334
2335 switch (optname) {
2336 case TCP_MAXSEG:
2337 /* Values greater than interface MTU won't take effect. However
2338 * at the point when this call is done we typically don't yet
2339 * know which interface is going to be used */
2340 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2341 err = -EINVAL;
2342 break;
2343 }
2344 tp->rx_opt.user_mss = val;
2345 break;
2346
2347 case TCP_NODELAY:
2348 if (val) {
2349 /* TCP_NODELAY is weaker than TCP_CORK, so that
2350 * this option on corked socket is remembered, but
2351 * it is not activated until cork is cleared.
2352 *
2353 * However, when TCP_NODELAY is set we make
2354 * an explicit push, which overrides even TCP_CORK
2355 * for currently queued segments.
2356 */
2357 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2358 tcp_push_pending_frames(sk);
2359 } else {
2360 tp->nonagle &= ~TCP_NAGLE_OFF;
2361 }
2362 break;
2363
2364 case TCP_THIN_LINEAR_TIMEOUTS:
2365 if (val < 0 || val > 1)
2366 err = -EINVAL;
2367 else
2368 tp->thin_lto = val;
2369 break;
2370
2371 case TCP_THIN_DUPACK:
2372 if (val < 0 || val > 1)
2373 err = -EINVAL;
2374 else {
2375 tp->thin_dupack = val;
2376 if (tp->thin_dupack)
2377 tcp_disable_early_retrans(tp);
2378 }
2379 break;
2380
2381 case TCP_REPAIR:
2382 if (!tcp_can_repair_sock(sk))
2383 err = -EPERM;
2384 else if (val == 1) {
2385 tp->repair = 1;
2386 sk->sk_reuse = SK_FORCE_REUSE;
2387 tp->repair_queue = TCP_NO_QUEUE;
2388 } else if (val == 0) {
2389 tp->repair = 0;
2390 sk->sk_reuse = SK_NO_REUSE;
2391 tcp_send_window_probe(sk);
2392 } else
2393 err = -EINVAL;
2394
2395 break;
2396
2397 case TCP_REPAIR_QUEUE:
2398 if (!tp->repair)
2399 err = -EPERM;
2400 else if (val < TCP_QUEUES_NR)
2401 tp->repair_queue = val;
2402 else
2403 err = -EINVAL;
2404 break;
2405
2406 case TCP_QUEUE_SEQ:
2407 if (sk->sk_state != TCP_CLOSE)
2408 err = -EPERM;
2409 else if (tp->repair_queue == TCP_SEND_QUEUE)
2410 tp->write_seq = val;
2411 else if (tp->repair_queue == TCP_RECV_QUEUE)
2412 tp->rcv_nxt = val;
2413 else
2414 err = -EINVAL;
2415 break;
2416
2417 case TCP_REPAIR_OPTIONS:
2418 if (!tp->repair)
2419 err = -EINVAL;
2420 else if (sk->sk_state == TCP_ESTABLISHED)
2421 err = tcp_repair_options_est(tp,
2422 (struct tcp_repair_opt __user *)optval,
2423 optlen);
2424 else
2425 err = -EPERM;
2426 break;
2427
2428 case TCP_CORK:
2429 /* When set indicates to always queue non-full frames.
2430 * Later the user clears this option and we transmit
2431 * any pending partial frames in the queue. This is
2432 * meant to be used alongside sendfile() to get properly
2433 * filled frames when the user (for example) must write
2434 * out headers with a write() call first and then use
2435 * sendfile to send out the data parts.
2436 *
2437 * TCP_CORK can be set together with TCP_NODELAY and it is
2438 * stronger than TCP_NODELAY.
2439 */
2440 if (val) {
2441 tp->nonagle |= TCP_NAGLE_CORK;
2442 } else {
2443 tp->nonagle &= ~TCP_NAGLE_CORK;
2444 if (tp->nonagle&TCP_NAGLE_OFF)
2445 tp->nonagle |= TCP_NAGLE_PUSH;
2446 tcp_push_pending_frames(sk);
2447 }
2448 break;
2449
2450 case TCP_KEEPIDLE:
2451 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2452 err = -EINVAL;
2453 else {
2454 tp->keepalive_time = val * HZ;
2455 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2456 !((1 << sk->sk_state) &
2457 (TCPF_CLOSE | TCPF_LISTEN))) {
2458 u32 elapsed = keepalive_time_elapsed(tp);
2459 if (tp->keepalive_time > elapsed)
2460 elapsed = tp->keepalive_time - elapsed;
2461 else
2462 elapsed = 0;
2463 inet_csk_reset_keepalive_timer(sk, elapsed);
2464 }
2465 }
2466 break;
2467 case TCP_KEEPINTVL:
2468 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2469 err = -EINVAL;
2470 else
2471 tp->keepalive_intvl = val * HZ;
2472 break;
2473 case TCP_KEEPCNT:
2474 if (val < 1 || val > MAX_TCP_KEEPCNT)
2475 err = -EINVAL;
2476 else
2477 tp->keepalive_probes = val;
2478 break;
2479 case TCP_SYNCNT:
2480 if (val < 1 || val > MAX_TCP_SYNCNT)
2481 err = -EINVAL;
2482 else
2483 icsk->icsk_syn_retries = val;
2484 break;
2485
2486 case TCP_LINGER2:
2487 if (val < 0)
2488 tp->linger2 = -1;
2489 else if (val > sysctl_tcp_fin_timeout / HZ)
2490 tp->linger2 = 0;
2491 else
2492 tp->linger2 = val * HZ;
2493 break;
2494
2495 case TCP_DEFER_ACCEPT:
2496 /* Translate value in seconds to number of retransmits */
2497 icsk->icsk_accept_queue.rskq_defer_accept =
2498 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2499 TCP_RTO_MAX / HZ);
2500 break;
2501
2502 case TCP_WINDOW_CLAMP:
2503 if (!val) {
2504 if (sk->sk_state != TCP_CLOSE) {
2505 err = -EINVAL;
2506 break;
2507 }
2508 tp->window_clamp = 0;
2509 } else
2510 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2511 SOCK_MIN_RCVBUF / 2 : val;
2512 break;
2513
2514 case TCP_QUICKACK:
2515 if (!val) {
2516 icsk->icsk_ack.pingpong = 1;
2517 } else {
2518 icsk->icsk_ack.pingpong = 0;
2519 if ((1 << sk->sk_state) &
2520 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2521 inet_csk_ack_scheduled(sk)) {
2522 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2523 tcp_cleanup_rbuf(sk, 1);
2524 if (!(val & 1))
2525 icsk->icsk_ack.pingpong = 1;
2526 }
2527 }
2528 break;
2529
2530 #ifdef CONFIG_TCP_MD5SIG
2531 case TCP_MD5SIG:
2532 /* Read the IP->Key mappings from userspace */
2533 err = tp->af_specific->md5_parse(sk, optval, optlen);
2534 break;
2535 #endif
2536 case TCP_USER_TIMEOUT:
2537 /* Cap the max time in ms TCP will retry or probe the window
2538 * before giving up and aborting (ETIMEDOUT) a connection.
2539 */
2540 if (val < 0)
2541 err = -EINVAL;
2542 else
2543 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2544 break;
2545
2546 case TCP_FASTOPEN:
2547 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2548 TCPF_LISTEN)))
2549 err = fastopen_init_queue(sk, val);
2550 else
2551 err = -EINVAL;
2552 break;
2553 case TCP_TIMESTAMP:
2554 if (!tp->repair)
2555 err = -EPERM;
2556 else
2557 tp->tsoffset = val - tcp_time_stamp;
2558 break;
2559 case TCP_NOTSENT_LOWAT:
2560 tp->notsent_lowat = val;
2561 sk->sk_write_space(sk);
2562 break;
2563 default:
2564 err = -ENOPROTOOPT;
2565 break;
2566 }
2567
2568 release_sock(sk);
2569 return err;
2570 }
2571
2572 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2573 unsigned int optlen)
2574 {
2575 const struct inet_connection_sock *icsk = inet_csk(sk);
2576
2577 if (level != SOL_TCP)
2578 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2579 optval, optlen);
2580 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2581 }
2582 EXPORT_SYMBOL(tcp_setsockopt);
2583
2584 #ifdef CONFIG_COMPAT
2585 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2586 char __user *optval, unsigned int optlen)
2587 {
2588 if (level != SOL_TCP)
2589 return inet_csk_compat_setsockopt(sk, level, optname,
2590 optval, optlen);
2591 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2592 }
2593 EXPORT_SYMBOL(compat_tcp_setsockopt);
2594 #endif
2595
2596 /* Return information about state of tcp endpoint in API format. */
2597 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2598 {
2599 const struct tcp_sock *tp = tcp_sk(sk);
2600 const struct inet_connection_sock *icsk = inet_csk(sk);
2601 u32 now = tcp_time_stamp;
2602 unsigned int start;
2603 u32 rate;
2604
2605 memset(info, 0, sizeof(*info));
2606
2607 info->tcpi_state = sk->sk_state;
2608 info->tcpi_ca_state = icsk->icsk_ca_state;
2609 info->tcpi_retransmits = icsk->icsk_retransmits;
2610 info->tcpi_probes = icsk->icsk_probes_out;
2611 info->tcpi_backoff = icsk->icsk_backoff;
2612
2613 if (tp->rx_opt.tstamp_ok)
2614 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2615 if (tcp_is_sack(tp))
2616 info->tcpi_options |= TCPI_OPT_SACK;
2617 if (tp->rx_opt.wscale_ok) {
2618 info->tcpi_options |= TCPI_OPT_WSCALE;
2619 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2620 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2621 }
2622
2623 if (tp->ecn_flags & TCP_ECN_OK)
2624 info->tcpi_options |= TCPI_OPT_ECN;
2625 if (tp->ecn_flags & TCP_ECN_SEEN)
2626 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2627 if (tp->syn_data_acked)
2628 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2629
2630 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2631 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2632 info->tcpi_snd_mss = tp->mss_cache;
2633 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2634
2635 if (sk->sk_state == TCP_LISTEN) {
2636 info->tcpi_unacked = sk->sk_ack_backlog;
2637 info->tcpi_sacked = sk->sk_max_ack_backlog;
2638 } else {
2639 info->tcpi_unacked = tp->packets_out;
2640 info->tcpi_sacked = tp->sacked_out;
2641 }
2642 info->tcpi_lost = tp->lost_out;
2643 info->tcpi_retrans = tp->retrans_out;
2644 info->tcpi_fackets = tp->fackets_out;
2645
2646 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2647 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2648 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2649
2650 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2651 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2652 info->tcpi_rtt = tp->srtt_us >> 3;
2653 info->tcpi_rttvar = tp->mdev_us >> 2;
2654 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2655 info->tcpi_snd_cwnd = tp->snd_cwnd;
2656 info->tcpi_advmss = tp->advmss;
2657 info->tcpi_reordering = tp->reordering;
2658
2659 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2660 info->tcpi_rcv_space = tp->rcvq_space.space;
2661
2662 info->tcpi_total_retrans = tp->total_retrans;
2663
2664 rate = READ_ONCE(sk->sk_pacing_rate);
2665 info->tcpi_pacing_rate = rate != ~0U ? rate : ~0ULL;
2666
2667 rate = READ_ONCE(sk->sk_max_pacing_rate);
2668 info->tcpi_max_pacing_rate = rate != ~0U ? rate : ~0ULL;
2669
2670 do {
2671 start = u64_stats_fetch_begin_irq(&tp->syncp);
2672 info->tcpi_bytes_acked = tp->bytes_acked;
2673 info->tcpi_bytes_received = tp->bytes_received;
2674 } while (u64_stats_fetch_retry_irq(&tp->syncp, start));
2675 }
2676 EXPORT_SYMBOL_GPL(tcp_get_info);
2677
2678 static int do_tcp_getsockopt(struct sock *sk, int level,
2679 int optname, char __user *optval, int __user *optlen)
2680 {
2681 struct inet_connection_sock *icsk = inet_csk(sk);
2682 struct tcp_sock *tp = tcp_sk(sk);
2683 int val, len;
2684
2685 if (get_user(len, optlen))
2686 return -EFAULT;
2687
2688 len = min_t(unsigned int, len, sizeof(int));
2689
2690 if (len < 0)
2691 return -EINVAL;
2692
2693 switch (optname) {
2694 case TCP_MAXSEG:
2695 val = tp->mss_cache;
2696 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2697 val = tp->rx_opt.user_mss;
2698 if (tp->repair)
2699 val = tp->rx_opt.mss_clamp;
2700 break;
2701 case TCP_NODELAY:
2702 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2703 break;
2704 case TCP_CORK:
2705 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2706 break;
2707 case TCP_KEEPIDLE:
2708 val = keepalive_time_when(tp) / HZ;
2709 break;
2710 case TCP_KEEPINTVL:
2711 val = keepalive_intvl_when(tp) / HZ;
2712 break;
2713 case TCP_KEEPCNT:
2714 val = keepalive_probes(tp);
2715 break;
2716 case TCP_SYNCNT:
2717 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2718 break;
2719 case TCP_LINGER2:
2720 val = tp->linger2;
2721 if (val >= 0)
2722 val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2723 break;
2724 case TCP_DEFER_ACCEPT:
2725 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2726 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2727 break;
2728 case TCP_WINDOW_CLAMP:
2729 val = tp->window_clamp;
2730 break;
2731 case TCP_INFO: {
2732 struct tcp_info info;
2733
2734 if (get_user(len, optlen))
2735 return -EFAULT;
2736
2737 tcp_get_info(sk, &info);
2738
2739 len = min_t(unsigned int, len, sizeof(info));
2740 if (put_user(len, optlen))
2741 return -EFAULT;
2742 if (copy_to_user(optval, &info, len))
2743 return -EFAULT;
2744 return 0;
2745 }
2746 case TCP_CC_INFO: {
2747 const struct tcp_congestion_ops *ca_ops;
2748 union tcp_cc_info info;
2749 size_t sz = 0;
2750 int attr;
2751
2752 if (get_user(len, optlen))
2753 return -EFAULT;
2754
2755 ca_ops = icsk->icsk_ca_ops;
2756 if (ca_ops && ca_ops->get_info)
2757 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
2758
2759 len = min_t(unsigned int, len, sz);
2760 if (put_user(len, optlen))
2761 return -EFAULT;
2762 if (copy_to_user(optval, &info, len))
2763 return -EFAULT;
2764 return 0;
2765 }
2766 case TCP_QUICKACK:
2767 val = !icsk->icsk_ack.pingpong;
2768 break;
2769
2770 case TCP_CONGESTION:
2771 if (get_user(len, optlen))
2772 return -EFAULT;
2773 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2774 if (put_user(len, optlen))
2775 return -EFAULT;
2776 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2777 return -EFAULT;
2778 return 0;
2779
2780 case TCP_THIN_LINEAR_TIMEOUTS:
2781 val = tp->thin_lto;
2782 break;
2783 case TCP_THIN_DUPACK:
2784 val = tp->thin_dupack;
2785 break;
2786
2787 case TCP_REPAIR:
2788 val = tp->repair;
2789 break;
2790
2791 case TCP_REPAIR_QUEUE:
2792 if (tp->repair)
2793 val = tp->repair_queue;
2794 else
2795 return -EINVAL;
2796 break;
2797
2798 case TCP_QUEUE_SEQ:
2799 if (tp->repair_queue == TCP_SEND_QUEUE)
2800 val = tp->write_seq;
2801 else if (tp->repair_queue == TCP_RECV_QUEUE)
2802 val = tp->rcv_nxt;
2803 else
2804 return -EINVAL;
2805 break;
2806
2807 case TCP_USER_TIMEOUT:
2808 val = jiffies_to_msecs(icsk->icsk_user_timeout);
2809 break;
2810
2811 case TCP_FASTOPEN:
2812 if (icsk->icsk_accept_queue.fastopenq)
2813 val = icsk->icsk_accept_queue.fastopenq->max_qlen;
2814 else
2815 val = 0;
2816 break;
2817
2818 case TCP_TIMESTAMP:
2819 val = tcp_time_stamp + tp->tsoffset;
2820 break;
2821 case TCP_NOTSENT_LOWAT:
2822 val = tp->notsent_lowat;
2823 break;
2824 default:
2825 return -ENOPROTOOPT;
2826 }
2827
2828 if (put_user(len, optlen))
2829 return -EFAULT;
2830 if (copy_to_user(optval, &val, len))
2831 return -EFAULT;
2832 return 0;
2833 }
2834
2835 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2836 int __user *optlen)
2837 {
2838 struct inet_connection_sock *icsk = inet_csk(sk);
2839
2840 if (level != SOL_TCP)
2841 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2842 optval, optlen);
2843 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2844 }
2845 EXPORT_SYMBOL(tcp_getsockopt);
2846
2847 #ifdef CONFIG_COMPAT
2848 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2849 char __user *optval, int __user *optlen)
2850 {
2851 if (level != SOL_TCP)
2852 return inet_csk_compat_getsockopt(sk, level, optname,
2853 optval, optlen);
2854 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2855 }
2856 EXPORT_SYMBOL(compat_tcp_getsockopt);
2857 #endif
2858
2859 #ifdef CONFIG_TCP_MD5SIG
2860 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
2861 static DEFINE_MUTEX(tcp_md5sig_mutex);
2862 static bool tcp_md5sig_pool_populated = false;
2863
2864 static void __tcp_alloc_md5sig_pool(void)
2865 {
2866 int cpu;
2867
2868 for_each_possible_cpu(cpu) {
2869 if (!per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm) {
2870 struct crypto_hash *hash;
2871
2872 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2873 if (IS_ERR_OR_NULL(hash))
2874 return;
2875 per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm = hash;
2876 }
2877 }
2878 /* before setting tcp_md5sig_pool_populated, we must commit all writes
2879 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
2880 */
2881 smp_wmb();
2882 tcp_md5sig_pool_populated = true;
2883 }
2884
2885 bool tcp_alloc_md5sig_pool(void)
2886 {
2887 if (unlikely(!tcp_md5sig_pool_populated)) {
2888 mutex_lock(&tcp_md5sig_mutex);
2889
2890 if (!tcp_md5sig_pool_populated)
2891 __tcp_alloc_md5sig_pool();
2892
2893 mutex_unlock(&tcp_md5sig_mutex);
2894 }
2895 return tcp_md5sig_pool_populated;
2896 }
2897 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2898
2899
2900 /**
2901 * tcp_get_md5sig_pool - get md5sig_pool for this user
2902 *
2903 * We use percpu structure, so if we succeed, we exit with preemption
2904 * and BH disabled, to make sure another thread or softirq handling
2905 * wont try to get same context.
2906 */
2907 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2908 {
2909 local_bh_disable();
2910
2911 if (tcp_md5sig_pool_populated) {
2912 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
2913 smp_rmb();
2914 return this_cpu_ptr(&tcp_md5sig_pool);
2915 }
2916 local_bh_enable();
2917 return NULL;
2918 }
2919 EXPORT_SYMBOL(tcp_get_md5sig_pool);
2920
2921 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2922 const struct tcphdr *th)
2923 {
2924 struct scatterlist sg;
2925 struct tcphdr hdr;
2926 int err;
2927
2928 /* We are not allowed to change tcphdr, make a local copy */
2929 memcpy(&hdr, th, sizeof(hdr));
2930 hdr.check = 0;
2931
2932 /* options aren't included in the hash */
2933 sg_init_one(&sg, &hdr, sizeof(hdr));
2934 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
2935 return err;
2936 }
2937 EXPORT_SYMBOL(tcp_md5_hash_header);
2938
2939 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
2940 const struct sk_buff *skb, unsigned int header_len)
2941 {
2942 struct scatterlist sg;
2943 const struct tcphdr *tp = tcp_hdr(skb);
2944 struct hash_desc *desc = &hp->md5_desc;
2945 unsigned int i;
2946 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
2947 skb_headlen(skb) - header_len : 0;
2948 const struct skb_shared_info *shi = skb_shinfo(skb);
2949 struct sk_buff *frag_iter;
2950
2951 sg_init_table(&sg, 1);
2952
2953 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
2954 if (crypto_hash_update(desc, &sg, head_data_len))
2955 return 1;
2956
2957 for (i = 0; i < shi->nr_frags; ++i) {
2958 const struct skb_frag_struct *f = &shi->frags[i];
2959 unsigned int offset = f->page_offset;
2960 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
2961
2962 sg_set_page(&sg, page, skb_frag_size(f),
2963 offset_in_page(offset));
2964 if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
2965 return 1;
2966 }
2967
2968 skb_walk_frags(skb, frag_iter)
2969 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
2970 return 1;
2971
2972 return 0;
2973 }
2974 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
2975
2976 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
2977 {
2978 struct scatterlist sg;
2979
2980 sg_init_one(&sg, key->key, key->keylen);
2981 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
2982 }
2983 EXPORT_SYMBOL(tcp_md5_hash_key);
2984
2985 #endif
2986
2987 void tcp_done(struct sock *sk)
2988 {
2989 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2990
2991 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
2992 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
2993
2994 tcp_set_state(sk, TCP_CLOSE);
2995 tcp_clear_xmit_timers(sk);
2996 if (req)
2997 reqsk_fastopen_remove(sk, req, false);
2998
2999 sk->sk_shutdown = SHUTDOWN_MASK;
3000
3001 if (!sock_flag(sk, SOCK_DEAD))
3002 sk->sk_state_change(sk);
3003 else
3004 inet_csk_destroy_sock(sk);
3005 }
3006 EXPORT_SYMBOL_GPL(tcp_done);
3007
3008 extern struct tcp_congestion_ops tcp_reno;
3009
3010 static __initdata unsigned long thash_entries;
3011 static int __init set_thash_entries(char *str)
3012 {
3013 ssize_t ret;
3014
3015 if (!str)
3016 return 0;
3017
3018 ret = kstrtoul(str, 0, &thash_entries);
3019 if (ret)
3020 return 0;
3021
3022 return 1;
3023 }
3024 __setup("thash_entries=", set_thash_entries);
3025
3026 static void __init tcp_init_mem(void)
3027 {
3028 unsigned long limit = nr_free_buffer_pages() / 8;
3029 limit = max(limit, 128UL);
3030 sysctl_tcp_mem[0] = limit / 4 * 3;
3031 sysctl_tcp_mem[1] = limit;
3032 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
3033 }
3034
3035 void __init tcp_init(void)
3036 {
3037 unsigned long limit;
3038 int max_rshare, max_wshare, cnt;
3039 unsigned int i;
3040
3041 sock_skb_cb_check_size(sizeof(struct tcp_skb_cb));
3042
3043 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3044 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3045 tcp_hashinfo.bind_bucket_cachep =
3046 kmem_cache_create("tcp_bind_bucket",
3047 sizeof(struct inet_bind_bucket), 0,
3048 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3049
3050 /* Size and allocate the main established and bind bucket
3051 * hash tables.
3052 *
3053 * The methodology is similar to that of the buffer cache.
3054 */
3055 tcp_hashinfo.ehash =
3056 alloc_large_system_hash("TCP established",
3057 sizeof(struct inet_ehash_bucket),
3058 thash_entries,
3059 17, /* one slot per 128 KB of memory */
3060 0,
3061 NULL,
3062 &tcp_hashinfo.ehash_mask,
3063 0,
3064 thash_entries ? 0 : 512 * 1024);
3065 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3066 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3067
3068 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3069 panic("TCP: failed to alloc ehash_locks");
3070 tcp_hashinfo.bhash =
3071 alloc_large_system_hash("TCP bind",
3072 sizeof(struct inet_bind_hashbucket),
3073 tcp_hashinfo.ehash_mask + 1,
3074 17, /* one slot per 128 KB of memory */
3075 0,
3076 &tcp_hashinfo.bhash_size,
3077 NULL,
3078 0,
3079 64 * 1024);
3080 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3081 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3082 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3083 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3084 }
3085
3086
3087 cnt = tcp_hashinfo.ehash_mask + 1;
3088
3089 tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3090 sysctl_tcp_max_orphans = cnt / 2;
3091 sysctl_max_syn_backlog = max(128, cnt / 256);
3092
3093 tcp_init_mem();
3094 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3095 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3096 max_wshare = min(4UL*1024*1024, limit);
3097 max_rshare = min(6UL*1024*1024, limit);
3098
3099 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3100 sysctl_tcp_wmem[1] = 16*1024;
3101 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3102
3103 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3104 sysctl_tcp_rmem[1] = 87380;
3105 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3106
3107 pr_info("Hash tables configured (established %u bind %u)\n",
3108 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3109
3110 tcp_metrics_init();
3111 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3112 tcp_tasklet_init();
3113 }