]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/tcp.c
Merge branch 'for-linus' of git://git.kernel.dk/linux-block
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248 #define pr_fmt(fmt) "TCP: " fmt
249
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/inet_diag.h>
256 #include <linux/init.h>
257 #include <linux/fs.h>
258 #include <linux/skbuff.h>
259 #include <linux/scatterlist.h>
260 #include <linux/splice.h>
261 #include <linux/net.h>
262 #include <linux/socket.h>
263 #include <linux/random.h>
264 #include <linux/bootmem.h>
265 #include <linux/highmem.h>
266 #include <linux/swap.h>
267 #include <linux/cache.h>
268 #include <linux/err.h>
269 #include <linux/crypto.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <net/busy_poll.h>
283
284 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
285
286 int sysctl_tcp_min_tso_segs __read_mostly = 2;
287
288 int sysctl_tcp_autocorking __read_mostly = 1;
289
290 struct percpu_counter tcp_orphan_count;
291 EXPORT_SYMBOL_GPL(tcp_orphan_count);
292
293 long sysctl_tcp_mem[3] __read_mostly;
294 int sysctl_tcp_wmem[3] __read_mostly;
295 int sysctl_tcp_rmem[3] __read_mostly;
296
297 EXPORT_SYMBOL(sysctl_tcp_mem);
298 EXPORT_SYMBOL(sysctl_tcp_rmem);
299 EXPORT_SYMBOL(sysctl_tcp_wmem);
300
301 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
302 EXPORT_SYMBOL(tcp_memory_allocated);
303
304 /*
305 * Current number of TCP sockets.
306 */
307 struct percpu_counter tcp_sockets_allocated;
308 EXPORT_SYMBOL(tcp_sockets_allocated);
309
310 /*
311 * TCP splice context
312 */
313 struct tcp_splice_state {
314 struct pipe_inode_info *pipe;
315 size_t len;
316 unsigned int flags;
317 };
318
319 /*
320 * Pressure flag: try to collapse.
321 * Technical note: it is used by multiple contexts non atomically.
322 * All the __sk_mem_schedule() is of this nature: accounting
323 * is strict, actions are advisory and have some latency.
324 */
325 int tcp_memory_pressure __read_mostly;
326 EXPORT_SYMBOL(tcp_memory_pressure);
327
328 void tcp_enter_memory_pressure(struct sock *sk)
329 {
330 if (!tcp_memory_pressure) {
331 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
332 tcp_memory_pressure = 1;
333 }
334 }
335 EXPORT_SYMBOL(tcp_enter_memory_pressure);
336
337 /* Convert seconds to retransmits based on initial and max timeout */
338 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
339 {
340 u8 res = 0;
341
342 if (seconds > 0) {
343 int period = timeout;
344
345 res = 1;
346 while (seconds > period && res < 255) {
347 res++;
348 timeout <<= 1;
349 if (timeout > rto_max)
350 timeout = rto_max;
351 period += timeout;
352 }
353 }
354 return res;
355 }
356
357 /* Convert retransmits to seconds based on initial and max timeout */
358 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
359 {
360 int period = 0;
361
362 if (retrans > 0) {
363 period = timeout;
364 while (--retrans) {
365 timeout <<= 1;
366 if (timeout > rto_max)
367 timeout = rto_max;
368 period += timeout;
369 }
370 }
371 return period;
372 }
373
374 /* Address-family independent initialization for a tcp_sock.
375 *
376 * NOTE: A lot of things set to zero explicitly by call to
377 * sk_alloc() so need not be done here.
378 */
379 void tcp_init_sock(struct sock *sk)
380 {
381 struct inet_connection_sock *icsk = inet_csk(sk);
382 struct tcp_sock *tp = tcp_sk(sk);
383
384 __skb_queue_head_init(&tp->out_of_order_queue);
385 tcp_init_xmit_timers(sk);
386 tcp_prequeue_init(tp);
387 INIT_LIST_HEAD(&tp->tsq_node);
388
389 icsk->icsk_rto = TCP_TIMEOUT_INIT;
390 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
391
392 /* So many TCP implementations out there (incorrectly) count the
393 * initial SYN frame in their delayed-ACK and congestion control
394 * algorithms that we must have the following bandaid to talk
395 * efficiently to them. -DaveM
396 */
397 tp->snd_cwnd = TCP_INIT_CWND;
398
399 /* See draft-stevens-tcpca-spec-01 for discussion of the
400 * initialization of these values.
401 */
402 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
403 tp->snd_cwnd_clamp = ~0;
404 tp->mss_cache = TCP_MSS_DEFAULT;
405
406 tp->reordering = sysctl_tcp_reordering;
407 tcp_enable_early_retrans(tp);
408 tcp_assign_congestion_control(sk);
409
410 tp->tsoffset = 0;
411
412 sk->sk_state = TCP_CLOSE;
413
414 sk->sk_write_space = sk_stream_write_space;
415 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
416
417 icsk->icsk_sync_mss = tcp_sync_mss;
418
419 sk->sk_sndbuf = sysctl_tcp_wmem[1];
420 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
421
422 local_bh_disable();
423 sock_update_memcg(sk);
424 sk_sockets_allocated_inc(sk);
425 local_bh_enable();
426 }
427 EXPORT_SYMBOL(tcp_init_sock);
428
429 static void tcp_tx_timestamp(struct sock *sk, struct sk_buff *skb)
430 {
431 if (sk->sk_tsflags) {
432 struct skb_shared_info *shinfo = skb_shinfo(skb);
433
434 sock_tx_timestamp(sk, &shinfo->tx_flags);
435 if (shinfo->tx_flags & SKBTX_ANY_TSTAMP)
436 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
437 }
438 }
439
440 /*
441 * Wait for a TCP event.
442 *
443 * Note that we don't need to lock the socket, as the upper poll layers
444 * take care of normal races (between the test and the event) and we don't
445 * go look at any of the socket buffers directly.
446 */
447 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
448 {
449 unsigned int mask;
450 struct sock *sk = sock->sk;
451 const struct tcp_sock *tp = tcp_sk(sk);
452
453 sock_rps_record_flow(sk);
454
455 sock_poll_wait(file, sk_sleep(sk), wait);
456 if (sk->sk_state == TCP_LISTEN)
457 return inet_csk_listen_poll(sk);
458
459 /* Socket is not locked. We are protected from async events
460 * by poll logic and correct handling of state changes
461 * made by other threads is impossible in any case.
462 */
463
464 mask = 0;
465
466 /*
467 * POLLHUP is certainly not done right. But poll() doesn't
468 * have a notion of HUP in just one direction, and for a
469 * socket the read side is more interesting.
470 *
471 * Some poll() documentation says that POLLHUP is incompatible
472 * with the POLLOUT/POLLWR flags, so somebody should check this
473 * all. But careful, it tends to be safer to return too many
474 * bits than too few, and you can easily break real applications
475 * if you don't tell them that something has hung up!
476 *
477 * Check-me.
478 *
479 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
480 * our fs/select.c). It means that after we received EOF,
481 * poll always returns immediately, making impossible poll() on write()
482 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
483 * if and only if shutdown has been made in both directions.
484 * Actually, it is interesting to look how Solaris and DUX
485 * solve this dilemma. I would prefer, if POLLHUP were maskable,
486 * then we could set it on SND_SHUTDOWN. BTW examples given
487 * in Stevens' books assume exactly this behaviour, it explains
488 * why POLLHUP is incompatible with POLLOUT. --ANK
489 *
490 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
491 * blocking on fresh not-connected or disconnected socket. --ANK
492 */
493 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
494 mask |= POLLHUP;
495 if (sk->sk_shutdown & RCV_SHUTDOWN)
496 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
497
498 /* Connected or passive Fast Open socket? */
499 if (sk->sk_state != TCP_SYN_SENT &&
500 (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk)) {
501 int target = sock_rcvlowat(sk, 0, INT_MAX);
502
503 if (tp->urg_seq == tp->copied_seq &&
504 !sock_flag(sk, SOCK_URGINLINE) &&
505 tp->urg_data)
506 target++;
507
508 /* Potential race condition. If read of tp below will
509 * escape above sk->sk_state, we can be illegally awaken
510 * in SYN_* states. */
511 if (tp->rcv_nxt - tp->copied_seq >= target)
512 mask |= POLLIN | POLLRDNORM;
513
514 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
515 if (sk_stream_is_writeable(sk)) {
516 mask |= POLLOUT | POLLWRNORM;
517 } else { /* send SIGIO later */
518 set_bit(SOCK_ASYNC_NOSPACE,
519 &sk->sk_socket->flags);
520 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
521
522 /* Race breaker. If space is freed after
523 * wspace test but before the flags are set,
524 * IO signal will be lost. Memory barrier
525 * pairs with the input side.
526 */
527 smp_mb__after_atomic();
528 if (sk_stream_is_writeable(sk))
529 mask |= POLLOUT | POLLWRNORM;
530 }
531 } else
532 mask |= POLLOUT | POLLWRNORM;
533
534 if (tp->urg_data & TCP_URG_VALID)
535 mask |= POLLPRI;
536 }
537 /* This barrier is coupled with smp_wmb() in tcp_reset() */
538 smp_rmb();
539 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
540 mask |= POLLERR;
541
542 return mask;
543 }
544 EXPORT_SYMBOL(tcp_poll);
545
546 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
547 {
548 struct tcp_sock *tp = tcp_sk(sk);
549 int answ;
550 bool slow;
551
552 switch (cmd) {
553 case SIOCINQ:
554 if (sk->sk_state == TCP_LISTEN)
555 return -EINVAL;
556
557 slow = lock_sock_fast(sk);
558 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
559 answ = 0;
560 else if (sock_flag(sk, SOCK_URGINLINE) ||
561 !tp->urg_data ||
562 before(tp->urg_seq, tp->copied_seq) ||
563 !before(tp->urg_seq, tp->rcv_nxt)) {
564
565 answ = tp->rcv_nxt - tp->copied_seq;
566
567 /* Subtract 1, if FIN was received */
568 if (answ && sock_flag(sk, SOCK_DONE))
569 answ--;
570 } else
571 answ = tp->urg_seq - tp->copied_seq;
572 unlock_sock_fast(sk, slow);
573 break;
574 case SIOCATMARK:
575 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
576 break;
577 case SIOCOUTQ:
578 if (sk->sk_state == TCP_LISTEN)
579 return -EINVAL;
580
581 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
582 answ = 0;
583 else
584 answ = tp->write_seq - tp->snd_una;
585 break;
586 case SIOCOUTQNSD:
587 if (sk->sk_state == TCP_LISTEN)
588 return -EINVAL;
589
590 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
591 answ = 0;
592 else
593 answ = tp->write_seq - tp->snd_nxt;
594 break;
595 default:
596 return -ENOIOCTLCMD;
597 }
598
599 return put_user(answ, (int __user *)arg);
600 }
601 EXPORT_SYMBOL(tcp_ioctl);
602
603 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
604 {
605 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
606 tp->pushed_seq = tp->write_seq;
607 }
608
609 static inline bool forced_push(const struct tcp_sock *tp)
610 {
611 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
612 }
613
614 static void skb_entail(struct sock *sk, struct sk_buff *skb)
615 {
616 struct tcp_sock *tp = tcp_sk(sk);
617 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
618
619 skb->csum = 0;
620 tcb->seq = tcb->end_seq = tp->write_seq;
621 tcb->tcp_flags = TCPHDR_ACK;
622 tcb->sacked = 0;
623 __skb_header_release(skb);
624 tcp_add_write_queue_tail(sk, skb);
625 sk->sk_wmem_queued += skb->truesize;
626 sk_mem_charge(sk, skb->truesize);
627 if (tp->nonagle & TCP_NAGLE_PUSH)
628 tp->nonagle &= ~TCP_NAGLE_PUSH;
629 }
630
631 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
632 {
633 if (flags & MSG_OOB)
634 tp->snd_up = tp->write_seq;
635 }
636
637 /* If a not yet filled skb is pushed, do not send it if
638 * we have data packets in Qdisc or NIC queues :
639 * Because TX completion will happen shortly, it gives a chance
640 * to coalesce future sendmsg() payload into this skb, without
641 * need for a timer, and with no latency trade off.
642 * As packets containing data payload have a bigger truesize
643 * than pure acks (dataless) packets, the last checks prevent
644 * autocorking if we only have an ACK in Qdisc/NIC queues,
645 * or if TX completion was delayed after we processed ACK packet.
646 */
647 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
648 int size_goal)
649 {
650 return skb->len < size_goal &&
651 sysctl_tcp_autocorking &&
652 skb != tcp_write_queue_head(sk) &&
653 atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
654 }
655
656 static void tcp_push(struct sock *sk, int flags, int mss_now,
657 int nonagle, int size_goal)
658 {
659 struct tcp_sock *tp = tcp_sk(sk);
660 struct sk_buff *skb;
661
662 if (!tcp_send_head(sk))
663 return;
664
665 skb = tcp_write_queue_tail(sk);
666 if (!(flags & MSG_MORE) || forced_push(tp))
667 tcp_mark_push(tp, skb);
668
669 tcp_mark_urg(tp, flags);
670
671 if (tcp_should_autocork(sk, skb, size_goal)) {
672
673 /* avoid atomic op if TSQ_THROTTLED bit is already set */
674 if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
675 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
676 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
677 }
678 /* It is possible TX completion already happened
679 * before we set TSQ_THROTTLED.
680 */
681 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
682 return;
683 }
684
685 if (flags & MSG_MORE)
686 nonagle = TCP_NAGLE_CORK;
687
688 __tcp_push_pending_frames(sk, mss_now, nonagle);
689 }
690
691 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
692 unsigned int offset, size_t len)
693 {
694 struct tcp_splice_state *tss = rd_desc->arg.data;
695 int ret;
696
697 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
698 tss->flags);
699 if (ret > 0)
700 rd_desc->count -= ret;
701 return ret;
702 }
703
704 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
705 {
706 /* Store TCP splice context information in read_descriptor_t. */
707 read_descriptor_t rd_desc = {
708 .arg.data = tss,
709 .count = tss->len,
710 };
711
712 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
713 }
714
715 /**
716 * tcp_splice_read - splice data from TCP socket to a pipe
717 * @sock: socket to splice from
718 * @ppos: position (not valid)
719 * @pipe: pipe to splice to
720 * @len: number of bytes to splice
721 * @flags: splice modifier flags
722 *
723 * Description:
724 * Will read pages from given socket and fill them into a pipe.
725 *
726 **/
727 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
728 struct pipe_inode_info *pipe, size_t len,
729 unsigned int flags)
730 {
731 struct sock *sk = sock->sk;
732 struct tcp_splice_state tss = {
733 .pipe = pipe,
734 .len = len,
735 .flags = flags,
736 };
737 long timeo;
738 ssize_t spliced;
739 int ret;
740
741 sock_rps_record_flow(sk);
742 /*
743 * We can't seek on a socket input
744 */
745 if (unlikely(*ppos))
746 return -ESPIPE;
747
748 ret = spliced = 0;
749
750 lock_sock(sk);
751
752 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
753 while (tss.len) {
754 ret = __tcp_splice_read(sk, &tss);
755 if (ret < 0)
756 break;
757 else if (!ret) {
758 if (spliced)
759 break;
760 if (sock_flag(sk, SOCK_DONE))
761 break;
762 if (sk->sk_err) {
763 ret = sock_error(sk);
764 break;
765 }
766 if (sk->sk_shutdown & RCV_SHUTDOWN)
767 break;
768 if (sk->sk_state == TCP_CLOSE) {
769 /*
770 * This occurs when user tries to read
771 * from never connected socket.
772 */
773 if (!sock_flag(sk, SOCK_DONE))
774 ret = -ENOTCONN;
775 break;
776 }
777 if (!timeo) {
778 ret = -EAGAIN;
779 break;
780 }
781 sk_wait_data(sk, &timeo);
782 if (signal_pending(current)) {
783 ret = sock_intr_errno(timeo);
784 break;
785 }
786 continue;
787 }
788 tss.len -= ret;
789 spliced += ret;
790
791 if (!timeo)
792 break;
793 release_sock(sk);
794 lock_sock(sk);
795
796 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
797 (sk->sk_shutdown & RCV_SHUTDOWN) ||
798 signal_pending(current))
799 break;
800 }
801
802 release_sock(sk);
803
804 if (spliced)
805 return spliced;
806
807 return ret;
808 }
809 EXPORT_SYMBOL(tcp_splice_read);
810
811 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
812 {
813 struct sk_buff *skb;
814
815 /* The TCP header must be at least 32-bit aligned. */
816 size = ALIGN(size, 4);
817
818 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
819 if (skb) {
820 if (sk_wmem_schedule(sk, skb->truesize)) {
821 skb_reserve(skb, sk->sk_prot->max_header);
822 /*
823 * Make sure that we have exactly size bytes
824 * available to the caller, no more, no less.
825 */
826 skb->reserved_tailroom = skb->end - skb->tail - size;
827 return skb;
828 }
829 __kfree_skb(skb);
830 } else {
831 sk->sk_prot->enter_memory_pressure(sk);
832 sk_stream_moderate_sndbuf(sk);
833 }
834 return NULL;
835 }
836
837 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
838 int large_allowed)
839 {
840 struct tcp_sock *tp = tcp_sk(sk);
841 u32 new_size_goal, size_goal;
842
843 if (!large_allowed || !sk_can_gso(sk))
844 return mss_now;
845
846 /* Note : tcp_tso_autosize() will eventually split this later */
847 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
848 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
849
850 /* We try hard to avoid divides here */
851 size_goal = tp->gso_segs * mss_now;
852 if (unlikely(new_size_goal < size_goal ||
853 new_size_goal >= size_goal + mss_now)) {
854 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
855 sk->sk_gso_max_segs);
856 size_goal = tp->gso_segs * mss_now;
857 }
858
859 return max(size_goal, mss_now);
860 }
861
862 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
863 {
864 int mss_now;
865
866 mss_now = tcp_current_mss(sk);
867 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
868
869 return mss_now;
870 }
871
872 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
873 size_t size, int flags)
874 {
875 struct tcp_sock *tp = tcp_sk(sk);
876 int mss_now, size_goal;
877 int err;
878 ssize_t copied;
879 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
880
881 /* Wait for a connection to finish. One exception is TCP Fast Open
882 * (passive side) where data is allowed to be sent before a connection
883 * is fully established.
884 */
885 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
886 !tcp_passive_fastopen(sk)) {
887 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
888 goto out_err;
889 }
890
891 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
892
893 mss_now = tcp_send_mss(sk, &size_goal, flags);
894 copied = 0;
895
896 err = -EPIPE;
897 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
898 goto out_err;
899
900 while (size > 0) {
901 struct sk_buff *skb = tcp_write_queue_tail(sk);
902 int copy, i;
903 bool can_coalesce;
904
905 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
906 new_segment:
907 if (!sk_stream_memory_free(sk))
908 goto wait_for_sndbuf;
909
910 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
911 if (!skb)
912 goto wait_for_memory;
913
914 skb_entail(sk, skb);
915 copy = size_goal;
916 }
917
918 if (copy > size)
919 copy = size;
920
921 i = skb_shinfo(skb)->nr_frags;
922 can_coalesce = skb_can_coalesce(skb, i, page, offset);
923 if (!can_coalesce && i >= MAX_SKB_FRAGS) {
924 tcp_mark_push(tp, skb);
925 goto new_segment;
926 }
927 if (!sk_wmem_schedule(sk, copy))
928 goto wait_for_memory;
929
930 if (can_coalesce) {
931 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
932 } else {
933 get_page(page);
934 skb_fill_page_desc(skb, i, page, offset, copy);
935 }
936 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
937
938 skb->len += copy;
939 skb->data_len += copy;
940 skb->truesize += copy;
941 sk->sk_wmem_queued += copy;
942 sk_mem_charge(sk, copy);
943 skb->ip_summed = CHECKSUM_PARTIAL;
944 tp->write_seq += copy;
945 TCP_SKB_CB(skb)->end_seq += copy;
946 tcp_skb_pcount_set(skb, 0);
947
948 if (!copied)
949 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
950
951 copied += copy;
952 offset += copy;
953 if (!(size -= copy)) {
954 tcp_tx_timestamp(sk, skb);
955 goto out;
956 }
957
958 if (skb->len < size_goal || (flags & MSG_OOB))
959 continue;
960
961 if (forced_push(tp)) {
962 tcp_mark_push(tp, skb);
963 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
964 } else if (skb == tcp_send_head(sk))
965 tcp_push_one(sk, mss_now);
966 continue;
967
968 wait_for_sndbuf:
969 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
970 wait_for_memory:
971 tcp_push(sk, flags & ~MSG_MORE, mss_now,
972 TCP_NAGLE_PUSH, size_goal);
973
974 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
975 goto do_error;
976
977 mss_now = tcp_send_mss(sk, &size_goal, flags);
978 }
979
980 out:
981 if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
982 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
983 return copied;
984
985 do_error:
986 if (copied)
987 goto out;
988 out_err:
989 return sk_stream_error(sk, flags, err);
990 }
991
992 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
993 size_t size, int flags)
994 {
995 ssize_t res;
996
997 if (!(sk->sk_route_caps & NETIF_F_SG) ||
998 !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
999 return sock_no_sendpage(sk->sk_socket, page, offset, size,
1000 flags);
1001
1002 lock_sock(sk);
1003 res = do_tcp_sendpages(sk, page, offset, size, flags);
1004 release_sock(sk);
1005 return res;
1006 }
1007 EXPORT_SYMBOL(tcp_sendpage);
1008
1009 static inline int select_size(const struct sock *sk, bool sg)
1010 {
1011 const struct tcp_sock *tp = tcp_sk(sk);
1012 int tmp = tp->mss_cache;
1013
1014 if (sg) {
1015 if (sk_can_gso(sk)) {
1016 /* Small frames wont use a full page:
1017 * Payload will immediately follow tcp header.
1018 */
1019 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1020 } else {
1021 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1022
1023 if (tmp >= pgbreak &&
1024 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1025 tmp = pgbreak;
1026 }
1027 }
1028
1029 return tmp;
1030 }
1031
1032 void tcp_free_fastopen_req(struct tcp_sock *tp)
1033 {
1034 if (tp->fastopen_req) {
1035 kfree(tp->fastopen_req);
1036 tp->fastopen_req = NULL;
1037 }
1038 }
1039
1040 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1041 int *copied, size_t size)
1042 {
1043 struct tcp_sock *tp = tcp_sk(sk);
1044 int err, flags;
1045
1046 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1047 return -EOPNOTSUPP;
1048 if (tp->fastopen_req)
1049 return -EALREADY; /* Another Fast Open is in progress */
1050
1051 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1052 sk->sk_allocation);
1053 if (unlikely(!tp->fastopen_req))
1054 return -ENOBUFS;
1055 tp->fastopen_req->data = msg;
1056 tp->fastopen_req->size = size;
1057
1058 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1059 err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1060 msg->msg_namelen, flags);
1061 *copied = tp->fastopen_req->copied;
1062 tcp_free_fastopen_req(tp);
1063 return err;
1064 }
1065
1066 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1067 {
1068 struct tcp_sock *tp = tcp_sk(sk);
1069 struct sk_buff *skb;
1070 int flags, err, copied = 0;
1071 int mss_now = 0, size_goal, copied_syn = 0;
1072 bool sg;
1073 long timeo;
1074
1075 lock_sock(sk);
1076
1077 flags = msg->msg_flags;
1078 if (flags & MSG_FASTOPEN) {
1079 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1080 if (err == -EINPROGRESS && copied_syn > 0)
1081 goto out;
1082 else if (err)
1083 goto out_err;
1084 }
1085
1086 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1087
1088 /* Wait for a connection to finish. One exception is TCP Fast Open
1089 * (passive side) where data is allowed to be sent before a connection
1090 * is fully established.
1091 */
1092 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1093 !tcp_passive_fastopen(sk)) {
1094 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1095 goto do_error;
1096 }
1097
1098 if (unlikely(tp->repair)) {
1099 if (tp->repair_queue == TCP_RECV_QUEUE) {
1100 copied = tcp_send_rcvq(sk, msg, size);
1101 goto out_nopush;
1102 }
1103
1104 err = -EINVAL;
1105 if (tp->repair_queue == TCP_NO_QUEUE)
1106 goto out_err;
1107
1108 /* 'common' sending to sendq */
1109 }
1110
1111 /* This should be in poll */
1112 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1113
1114 mss_now = tcp_send_mss(sk, &size_goal, flags);
1115
1116 /* Ok commence sending. */
1117 copied = 0;
1118
1119 err = -EPIPE;
1120 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1121 goto out_err;
1122
1123 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1124
1125 while (msg_data_left(msg)) {
1126 int copy = 0;
1127 int max = size_goal;
1128
1129 skb = tcp_write_queue_tail(sk);
1130 if (tcp_send_head(sk)) {
1131 if (skb->ip_summed == CHECKSUM_NONE)
1132 max = mss_now;
1133 copy = max - skb->len;
1134 }
1135
1136 if (copy <= 0) {
1137 new_segment:
1138 /* Allocate new segment. If the interface is SG,
1139 * allocate skb fitting to single page.
1140 */
1141 if (!sk_stream_memory_free(sk))
1142 goto wait_for_sndbuf;
1143
1144 skb = sk_stream_alloc_skb(sk,
1145 select_size(sk, sg),
1146 sk->sk_allocation);
1147 if (!skb)
1148 goto wait_for_memory;
1149
1150 /*
1151 * Check whether we can use HW checksum.
1152 */
1153 if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1154 skb->ip_summed = CHECKSUM_PARTIAL;
1155
1156 skb_entail(sk, skb);
1157 copy = size_goal;
1158 max = size_goal;
1159
1160 /* All packets are restored as if they have
1161 * already been sent. skb_mstamp isn't set to
1162 * avoid wrong rtt estimation.
1163 */
1164 if (tp->repair)
1165 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1166 }
1167
1168 /* Try to append data to the end of skb. */
1169 if (copy > msg_data_left(msg))
1170 copy = msg_data_left(msg);
1171
1172 /* Where to copy to? */
1173 if (skb_availroom(skb) > 0) {
1174 /* We have some space in skb head. Superb! */
1175 copy = min_t(int, copy, skb_availroom(skb));
1176 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1177 if (err)
1178 goto do_fault;
1179 } else {
1180 bool merge = true;
1181 int i = skb_shinfo(skb)->nr_frags;
1182 struct page_frag *pfrag = sk_page_frag(sk);
1183
1184 if (!sk_page_frag_refill(sk, pfrag))
1185 goto wait_for_memory;
1186
1187 if (!skb_can_coalesce(skb, i, pfrag->page,
1188 pfrag->offset)) {
1189 if (i == MAX_SKB_FRAGS || !sg) {
1190 tcp_mark_push(tp, skb);
1191 goto new_segment;
1192 }
1193 merge = false;
1194 }
1195
1196 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1197
1198 if (!sk_wmem_schedule(sk, copy))
1199 goto wait_for_memory;
1200
1201 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1202 pfrag->page,
1203 pfrag->offset,
1204 copy);
1205 if (err)
1206 goto do_error;
1207
1208 /* Update the skb. */
1209 if (merge) {
1210 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1211 } else {
1212 skb_fill_page_desc(skb, i, pfrag->page,
1213 pfrag->offset, copy);
1214 get_page(pfrag->page);
1215 }
1216 pfrag->offset += copy;
1217 }
1218
1219 if (!copied)
1220 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1221
1222 tp->write_seq += copy;
1223 TCP_SKB_CB(skb)->end_seq += copy;
1224 tcp_skb_pcount_set(skb, 0);
1225
1226 copied += copy;
1227 if (!msg_data_left(msg)) {
1228 tcp_tx_timestamp(sk, skb);
1229 goto out;
1230 }
1231
1232 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1233 continue;
1234
1235 if (forced_push(tp)) {
1236 tcp_mark_push(tp, skb);
1237 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1238 } else if (skb == tcp_send_head(sk))
1239 tcp_push_one(sk, mss_now);
1240 continue;
1241
1242 wait_for_sndbuf:
1243 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1244 wait_for_memory:
1245 if (copied)
1246 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1247 TCP_NAGLE_PUSH, size_goal);
1248
1249 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1250 goto do_error;
1251
1252 mss_now = tcp_send_mss(sk, &size_goal, flags);
1253 }
1254
1255 out:
1256 if (copied)
1257 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1258 out_nopush:
1259 release_sock(sk);
1260 return copied + copied_syn;
1261
1262 do_fault:
1263 if (!skb->len) {
1264 tcp_unlink_write_queue(skb, sk);
1265 /* It is the one place in all of TCP, except connection
1266 * reset, where we can be unlinking the send_head.
1267 */
1268 tcp_check_send_head(sk, skb);
1269 sk_wmem_free_skb(sk, skb);
1270 }
1271
1272 do_error:
1273 if (copied + copied_syn)
1274 goto out;
1275 out_err:
1276 err = sk_stream_error(sk, flags, err);
1277 release_sock(sk);
1278 return err;
1279 }
1280 EXPORT_SYMBOL(tcp_sendmsg);
1281
1282 /*
1283 * Handle reading urgent data. BSD has very simple semantics for
1284 * this, no blocking and very strange errors 8)
1285 */
1286
1287 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1288 {
1289 struct tcp_sock *tp = tcp_sk(sk);
1290
1291 /* No URG data to read. */
1292 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1293 tp->urg_data == TCP_URG_READ)
1294 return -EINVAL; /* Yes this is right ! */
1295
1296 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1297 return -ENOTCONN;
1298
1299 if (tp->urg_data & TCP_URG_VALID) {
1300 int err = 0;
1301 char c = tp->urg_data;
1302
1303 if (!(flags & MSG_PEEK))
1304 tp->urg_data = TCP_URG_READ;
1305
1306 /* Read urgent data. */
1307 msg->msg_flags |= MSG_OOB;
1308
1309 if (len > 0) {
1310 if (!(flags & MSG_TRUNC))
1311 err = memcpy_to_msg(msg, &c, 1);
1312 len = 1;
1313 } else
1314 msg->msg_flags |= MSG_TRUNC;
1315
1316 return err ? -EFAULT : len;
1317 }
1318
1319 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1320 return 0;
1321
1322 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1323 * the available implementations agree in this case:
1324 * this call should never block, independent of the
1325 * blocking state of the socket.
1326 * Mike <pall@rz.uni-karlsruhe.de>
1327 */
1328 return -EAGAIN;
1329 }
1330
1331 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1332 {
1333 struct sk_buff *skb;
1334 int copied = 0, err = 0;
1335
1336 /* XXX -- need to support SO_PEEK_OFF */
1337
1338 skb_queue_walk(&sk->sk_write_queue, skb) {
1339 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1340 if (err)
1341 break;
1342
1343 copied += skb->len;
1344 }
1345
1346 return err ?: copied;
1347 }
1348
1349 /* Clean up the receive buffer for full frames taken by the user,
1350 * then send an ACK if necessary. COPIED is the number of bytes
1351 * tcp_recvmsg has given to the user so far, it speeds up the
1352 * calculation of whether or not we must ACK for the sake of
1353 * a window update.
1354 */
1355 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1356 {
1357 struct tcp_sock *tp = tcp_sk(sk);
1358 bool time_to_ack = false;
1359
1360 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1361
1362 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1363 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1364 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1365
1366 if (inet_csk_ack_scheduled(sk)) {
1367 const struct inet_connection_sock *icsk = inet_csk(sk);
1368 /* Delayed ACKs frequently hit locked sockets during bulk
1369 * receive. */
1370 if (icsk->icsk_ack.blocked ||
1371 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1372 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1373 /*
1374 * If this read emptied read buffer, we send ACK, if
1375 * connection is not bidirectional, user drained
1376 * receive buffer and there was a small segment
1377 * in queue.
1378 */
1379 (copied > 0 &&
1380 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1381 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1382 !icsk->icsk_ack.pingpong)) &&
1383 !atomic_read(&sk->sk_rmem_alloc)))
1384 time_to_ack = true;
1385 }
1386
1387 /* We send an ACK if we can now advertise a non-zero window
1388 * which has been raised "significantly".
1389 *
1390 * Even if window raised up to infinity, do not send window open ACK
1391 * in states, where we will not receive more. It is useless.
1392 */
1393 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1394 __u32 rcv_window_now = tcp_receive_window(tp);
1395
1396 /* Optimize, __tcp_select_window() is not cheap. */
1397 if (2*rcv_window_now <= tp->window_clamp) {
1398 __u32 new_window = __tcp_select_window(sk);
1399
1400 /* Send ACK now, if this read freed lots of space
1401 * in our buffer. Certainly, new_window is new window.
1402 * We can advertise it now, if it is not less than current one.
1403 * "Lots" means "at least twice" here.
1404 */
1405 if (new_window && new_window >= 2 * rcv_window_now)
1406 time_to_ack = true;
1407 }
1408 }
1409 if (time_to_ack)
1410 tcp_send_ack(sk);
1411 }
1412
1413 static void tcp_prequeue_process(struct sock *sk)
1414 {
1415 struct sk_buff *skb;
1416 struct tcp_sock *tp = tcp_sk(sk);
1417
1418 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1419
1420 /* RX process wants to run with disabled BHs, though it is not
1421 * necessary */
1422 local_bh_disable();
1423 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1424 sk_backlog_rcv(sk, skb);
1425 local_bh_enable();
1426
1427 /* Clear memory counter. */
1428 tp->ucopy.memory = 0;
1429 }
1430
1431 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1432 {
1433 struct sk_buff *skb;
1434 u32 offset;
1435
1436 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1437 offset = seq - TCP_SKB_CB(skb)->seq;
1438 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
1439 offset--;
1440 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1441 *off = offset;
1442 return skb;
1443 }
1444 /* This looks weird, but this can happen if TCP collapsing
1445 * splitted a fat GRO packet, while we released socket lock
1446 * in skb_splice_bits()
1447 */
1448 sk_eat_skb(sk, skb);
1449 }
1450 return NULL;
1451 }
1452
1453 /*
1454 * This routine provides an alternative to tcp_recvmsg() for routines
1455 * that would like to handle copying from skbuffs directly in 'sendfile'
1456 * fashion.
1457 * Note:
1458 * - It is assumed that the socket was locked by the caller.
1459 * - The routine does not block.
1460 * - At present, there is no support for reading OOB data
1461 * or for 'peeking' the socket using this routine
1462 * (although both would be easy to implement).
1463 */
1464 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1465 sk_read_actor_t recv_actor)
1466 {
1467 struct sk_buff *skb;
1468 struct tcp_sock *tp = tcp_sk(sk);
1469 u32 seq = tp->copied_seq;
1470 u32 offset;
1471 int copied = 0;
1472
1473 if (sk->sk_state == TCP_LISTEN)
1474 return -ENOTCONN;
1475 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1476 if (offset < skb->len) {
1477 int used;
1478 size_t len;
1479
1480 len = skb->len - offset;
1481 /* Stop reading if we hit a patch of urgent data */
1482 if (tp->urg_data) {
1483 u32 urg_offset = tp->urg_seq - seq;
1484 if (urg_offset < len)
1485 len = urg_offset;
1486 if (!len)
1487 break;
1488 }
1489 used = recv_actor(desc, skb, offset, len);
1490 if (used <= 0) {
1491 if (!copied)
1492 copied = used;
1493 break;
1494 } else if (used <= len) {
1495 seq += used;
1496 copied += used;
1497 offset += used;
1498 }
1499 /* If recv_actor drops the lock (e.g. TCP splice
1500 * receive) the skb pointer might be invalid when
1501 * getting here: tcp_collapse might have deleted it
1502 * while aggregating skbs from the socket queue.
1503 */
1504 skb = tcp_recv_skb(sk, seq - 1, &offset);
1505 if (!skb)
1506 break;
1507 /* TCP coalescing might have appended data to the skb.
1508 * Try to splice more frags
1509 */
1510 if (offset + 1 != skb->len)
1511 continue;
1512 }
1513 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1514 sk_eat_skb(sk, skb);
1515 ++seq;
1516 break;
1517 }
1518 sk_eat_skb(sk, skb);
1519 if (!desc->count)
1520 break;
1521 tp->copied_seq = seq;
1522 }
1523 tp->copied_seq = seq;
1524
1525 tcp_rcv_space_adjust(sk);
1526
1527 /* Clean up data we have read: This will do ACK frames. */
1528 if (copied > 0) {
1529 tcp_recv_skb(sk, seq, &offset);
1530 tcp_cleanup_rbuf(sk, copied);
1531 }
1532 return copied;
1533 }
1534 EXPORT_SYMBOL(tcp_read_sock);
1535
1536 /*
1537 * This routine copies from a sock struct into the user buffer.
1538 *
1539 * Technical note: in 2.3 we work on _locked_ socket, so that
1540 * tricks with *seq access order and skb->users are not required.
1541 * Probably, code can be easily improved even more.
1542 */
1543
1544 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1545 int flags, int *addr_len)
1546 {
1547 struct tcp_sock *tp = tcp_sk(sk);
1548 int copied = 0;
1549 u32 peek_seq;
1550 u32 *seq;
1551 unsigned long used;
1552 int err;
1553 int target; /* Read at least this many bytes */
1554 long timeo;
1555 struct task_struct *user_recv = NULL;
1556 struct sk_buff *skb;
1557 u32 urg_hole = 0;
1558
1559 if (unlikely(flags & MSG_ERRQUEUE))
1560 return inet_recv_error(sk, msg, len, addr_len);
1561
1562 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1563 (sk->sk_state == TCP_ESTABLISHED))
1564 sk_busy_loop(sk, nonblock);
1565
1566 lock_sock(sk);
1567
1568 err = -ENOTCONN;
1569 if (sk->sk_state == TCP_LISTEN)
1570 goto out;
1571
1572 timeo = sock_rcvtimeo(sk, nonblock);
1573
1574 /* Urgent data needs to be handled specially. */
1575 if (flags & MSG_OOB)
1576 goto recv_urg;
1577
1578 if (unlikely(tp->repair)) {
1579 err = -EPERM;
1580 if (!(flags & MSG_PEEK))
1581 goto out;
1582
1583 if (tp->repair_queue == TCP_SEND_QUEUE)
1584 goto recv_sndq;
1585
1586 err = -EINVAL;
1587 if (tp->repair_queue == TCP_NO_QUEUE)
1588 goto out;
1589
1590 /* 'common' recv queue MSG_PEEK-ing */
1591 }
1592
1593 seq = &tp->copied_seq;
1594 if (flags & MSG_PEEK) {
1595 peek_seq = tp->copied_seq;
1596 seq = &peek_seq;
1597 }
1598
1599 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1600
1601 do {
1602 u32 offset;
1603
1604 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1605 if (tp->urg_data && tp->urg_seq == *seq) {
1606 if (copied)
1607 break;
1608 if (signal_pending(current)) {
1609 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1610 break;
1611 }
1612 }
1613
1614 /* Next get a buffer. */
1615
1616 skb_queue_walk(&sk->sk_receive_queue, skb) {
1617 /* Now that we have two receive queues this
1618 * shouldn't happen.
1619 */
1620 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1621 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1622 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1623 flags))
1624 break;
1625
1626 offset = *seq - TCP_SKB_CB(skb)->seq;
1627 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
1628 offset--;
1629 if (offset < skb->len)
1630 goto found_ok_skb;
1631 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1632 goto found_fin_ok;
1633 WARN(!(flags & MSG_PEEK),
1634 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1635 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1636 }
1637
1638 /* Well, if we have backlog, try to process it now yet. */
1639
1640 if (copied >= target && !sk->sk_backlog.tail)
1641 break;
1642
1643 if (copied) {
1644 if (sk->sk_err ||
1645 sk->sk_state == TCP_CLOSE ||
1646 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1647 !timeo ||
1648 signal_pending(current))
1649 break;
1650 } else {
1651 if (sock_flag(sk, SOCK_DONE))
1652 break;
1653
1654 if (sk->sk_err) {
1655 copied = sock_error(sk);
1656 break;
1657 }
1658
1659 if (sk->sk_shutdown & RCV_SHUTDOWN)
1660 break;
1661
1662 if (sk->sk_state == TCP_CLOSE) {
1663 if (!sock_flag(sk, SOCK_DONE)) {
1664 /* This occurs when user tries to read
1665 * from never connected socket.
1666 */
1667 copied = -ENOTCONN;
1668 break;
1669 }
1670 break;
1671 }
1672
1673 if (!timeo) {
1674 copied = -EAGAIN;
1675 break;
1676 }
1677
1678 if (signal_pending(current)) {
1679 copied = sock_intr_errno(timeo);
1680 break;
1681 }
1682 }
1683
1684 tcp_cleanup_rbuf(sk, copied);
1685
1686 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1687 /* Install new reader */
1688 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1689 user_recv = current;
1690 tp->ucopy.task = user_recv;
1691 tp->ucopy.msg = msg;
1692 }
1693
1694 tp->ucopy.len = len;
1695
1696 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1697 !(flags & (MSG_PEEK | MSG_TRUNC)));
1698
1699 /* Ugly... If prequeue is not empty, we have to
1700 * process it before releasing socket, otherwise
1701 * order will be broken at second iteration.
1702 * More elegant solution is required!!!
1703 *
1704 * Look: we have the following (pseudo)queues:
1705 *
1706 * 1. packets in flight
1707 * 2. backlog
1708 * 3. prequeue
1709 * 4. receive_queue
1710 *
1711 * Each queue can be processed only if the next ones
1712 * are empty. At this point we have empty receive_queue.
1713 * But prequeue _can_ be not empty after 2nd iteration,
1714 * when we jumped to start of loop because backlog
1715 * processing added something to receive_queue.
1716 * We cannot release_sock(), because backlog contains
1717 * packets arrived _after_ prequeued ones.
1718 *
1719 * Shortly, algorithm is clear --- to process all
1720 * the queues in order. We could make it more directly,
1721 * requeueing packets from backlog to prequeue, if
1722 * is not empty. It is more elegant, but eats cycles,
1723 * unfortunately.
1724 */
1725 if (!skb_queue_empty(&tp->ucopy.prequeue))
1726 goto do_prequeue;
1727
1728 /* __ Set realtime policy in scheduler __ */
1729 }
1730
1731 if (copied >= target) {
1732 /* Do not sleep, just process backlog. */
1733 release_sock(sk);
1734 lock_sock(sk);
1735 } else
1736 sk_wait_data(sk, &timeo);
1737
1738 if (user_recv) {
1739 int chunk;
1740
1741 /* __ Restore normal policy in scheduler __ */
1742
1743 if ((chunk = len - tp->ucopy.len) != 0) {
1744 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1745 len -= chunk;
1746 copied += chunk;
1747 }
1748
1749 if (tp->rcv_nxt == tp->copied_seq &&
1750 !skb_queue_empty(&tp->ucopy.prequeue)) {
1751 do_prequeue:
1752 tcp_prequeue_process(sk);
1753
1754 if ((chunk = len - tp->ucopy.len) != 0) {
1755 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1756 len -= chunk;
1757 copied += chunk;
1758 }
1759 }
1760 }
1761 if ((flags & MSG_PEEK) &&
1762 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1763 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1764 current->comm,
1765 task_pid_nr(current));
1766 peek_seq = tp->copied_seq;
1767 }
1768 continue;
1769
1770 found_ok_skb:
1771 /* Ok so how much can we use? */
1772 used = skb->len - offset;
1773 if (len < used)
1774 used = len;
1775
1776 /* Do we have urgent data here? */
1777 if (tp->urg_data) {
1778 u32 urg_offset = tp->urg_seq - *seq;
1779 if (urg_offset < used) {
1780 if (!urg_offset) {
1781 if (!sock_flag(sk, SOCK_URGINLINE)) {
1782 ++*seq;
1783 urg_hole++;
1784 offset++;
1785 used--;
1786 if (!used)
1787 goto skip_copy;
1788 }
1789 } else
1790 used = urg_offset;
1791 }
1792 }
1793
1794 if (!(flags & MSG_TRUNC)) {
1795 err = skb_copy_datagram_msg(skb, offset, msg, used);
1796 if (err) {
1797 /* Exception. Bailout! */
1798 if (!copied)
1799 copied = -EFAULT;
1800 break;
1801 }
1802 }
1803
1804 *seq += used;
1805 copied += used;
1806 len -= used;
1807
1808 tcp_rcv_space_adjust(sk);
1809
1810 skip_copy:
1811 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1812 tp->urg_data = 0;
1813 tcp_fast_path_check(sk);
1814 }
1815 if (used + offset < skb->len)
1816 continue;
1817
1818 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1819 goto found_fin_ok;
1820 if (!(flags & MSG_PEEK))
1821 sk_eat_skb(sk, skb);
1822 continue;
1823
1824 found_fin_ok:
1825 /* Process the FIN. */
1826 ++*seq;
1827 if (!(flags & MSG_PEEK))
1828 sk_eat_skb(sk, skb);
1829 break;
1830 } while (len > 0);
1831
1832 if (user_recv) {
1833 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1834 int chunk;
1835
1836 tp->ucopy.len = copied > 0 ? len : 0;
1837
1838 tcp_prequeue_process(sk);
1839
1840 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1841 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1842 len -= chunk;
1843 copied += chunk;
1844 }
1845 }
1846
1847 tp->ucopy.task = NULL;
1848 tp->ucopy.len = 0;
1849 }
1850
1851 /* According to UNIX98, msg_name/msg_namelen are ignored
1852 * on connected socket. I was just happy when found this 8) --ANK
1853 */
1854
1855 /* Clean up data we have read: This will do ACK frames. */
1856 tcp_cleanup_rbuf(sk, copied);
1857
1858 release_sock(sk);
1859 return copied;
1860
1861 out:
1862 release_sock(sk);
1863 return err;
1864
1865 recv_urg:
1866 err = tcp_recv_urg(sk, msg, len, flags);
1867 goto out;
1868
1869 recv_sndq:
1870 err = tcp_peek_sndq(sk, msg, len);
1871 goto out;
1872 }
1873 EXPORT_SYMBOL(tcp_recvmsg);
1874
1875 void tcp_set_state(struct sock *sk, int state)
1876 {
1877 int oldstate = sk->sk_state;
1878
1879 switch (state) {
1880 case TCP_ESTABLISHED:
1881 if (oldstate != TCP_ESTABLISHED)
1882 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1883 break;
1884
1885 case TCP_CLOSE:
1886 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1887 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1888
1889 sk->sk_prot->unhash(sk);
1890 if (inet_csk(sk)->icsk_bind_hash &&
1891 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1892 inet_put_port(sk);
1893 /* fall through */
1894 default:
1895 if (oldstate == TCP_ESTABLISHED)
1896 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1897 }
1898
1899 /* Change state AFTER socket is unhashed to avoid closed
1900 * socket sitting in hash tables.
1901 */
1902 sk->sk_state = state;
1903
1904 #ifdef STATE_TRACE
1905 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1906 #endif
1907 }
1908 EXPORT_SYMBOL_GPL(tcp_set_state);
1909
1910 /*
1911 * State processing on a close. This implements the state shift for
1912 * sending our FIN frame. Note that we only send a FIN for some
1913 * states. A shutdown() may have already sent the FIN, or we may be
1914 * closed.
1915 */
1916
1917 static const unsigned char new_state[16] = {
1918 /* current state: new state: action: */
1919 [0 /* (Invalid) */] = TCP_CLOSE,
1920 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1921 [TCP_SYN_SENT] = TCP_CLOSE,
1922 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1923 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
1924 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
1925 [TCP_TIME_WAIT] = TCP_CLOSE,
1926 [TCP_CLOSE] = TCP_CLOSE,
1927 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
1928 [TCP_LAST_ACK] = TCP_LAST_ACK,
1929 [TCP_LISTEN] = TCP_CLOSE,
1930 [TCP_CLOSING] = TCP_CLOSING,
1931 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
1932 };
1933
1934 static int tcp_close_state(struct sock *sk)
1935 {
1936 int next = (int)new_state[sk->sk_state];
1937 int ns = next & TCP_STATE_MASK;
1938
1939 tcp_set_state(sk, ns);
1940
1941 return next & TCP_ACTION_FIN;
1942 }
1943
1944 /*
1945 * Shutdown the sending side of a connection. Much like close except
1946 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1947 */
1948
1949 void tcp_shutdown(struct sock *sk, int how)
1950 {
1951 /* We need to grab some memory, and put together a FIN,
1952 * and then put it into the queue to be sent.
1953 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1954 */
1955 if (!(how & SEND_SHUTDOWN))
1956 return;
1957
1958 /* If we've already sent a FIN, or it's a closed state, skip this. */
1959 if ((1 << sk->sk_state) &
1960 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1961 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1962 /* Clear out any half completed packets. FIN if needed. */
1963 if (tcp_close_state(sk))
1964 tcp_send_fin(sk);
1965 }
1966 }
1967 EXPORT_SYMBOL(tcp_shutdown);
1968
1969 bool tcp_check_oom(struct sock *sk, int shift)
1970 {
1971 bool too_many_orphans, out_of_socket_memory;
1972
1973 too_many_orphans = tcp_too_many_orphans(sk, shift);
1974 out_of_socket_memory = tcp_out_of_memory(sk);
1975
1976 if (too_many_orphans)
1977 net_info_ratelimited("too many orphaned sockets\n");
1978 if (out_of_socket_memory)
1979 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
1980 return too_many_orphans || out_of_socket_memory;
1981 }
1982
1983 void tcp_close(struct sock *sk, long timeout)
1984 {
1985 struct sk_buff *skb;
1986 int data_was_unread = 0;
1987 int state;
1988
1989 lock_sock(sk);
1990 sk->sk_shutdown = SHUTDOWN_MASK;
1991
1992 if (sk->sk_state == TCP_LISTEN) {
1993 tcp_set_state(sk, TCP_CLOSE);
1994
1995 /* Special case. */
1996 inet_csk_listen_stop(sk);
1997
1998 goto adjudge_to_death;
1999 }
2000
2001 /* We need to flush the recv. buffs. We do this only on the
2002 * descriptor close, not protocol-sourced closes, because the
2003 * reader process may not have drained the data yet!
2004 */
2005 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2006 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2007
2008 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2009 len--;
2010 data_was_unread += len;
2011 __kfree_skb(skb);
2012 }
2013
2014 sk_mem_reclaim(sk);
2015
2016 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2017 if (sk->sk_state == TCP_CLOSE)
2018 goto adjudge_to_death;
2019
2020 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2021 * data was lost. To witness the awful effects of the old behavior of
2022 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2023 * GET in an FTP client, suspend the process, wait for the client to
2024 * advertise a zero window, then kill -9 the FTP client, wheee...
2025 * Note: timeout is always zero in such a case.
2026 */
2027 if (unlikely(tcp_sk(sk)->repair)) {
2028 sk->sk_prot->disconnect(sk, 0);
2029 } else if (data_was_unread) {
2030 /* Unread data was tossed, zap the connection. */
2031 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2032 tcp_set_state(sk, TCP_CLOSE);
2033 tcp_send_active_reset(sk, sk->sk_allocation);
2034 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2035 /* Check zero linger _after_ checking for unread data. */
2036 sk->sk_prot->disconnect(sk, 0);
2037 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2038 } else if (tcp_close_state(sk)) {
2039 /* We FIN if the application ate all the data before
2040 * zapping the connection.
2041 */
2042
2043 /* RED-PEN. Formally speaking, we have broken TCP state
2044 * machine. State transitions:
2045 *
2046 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2047 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2048 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2049 *
2050 * are legal only when FIN has been sent (i.e. in window),
2051 * rather than queued out of window. Purists blame.
2052 *
2053 * F.e. "RFC state" is ESTABLISHED,
2054 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2055 *
2056 * The visible declinations are that sometimes
2057 * we enter time-wait state, when it is not required really
2058 * (harmless), do not send active resets, when they are
2059 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2060 * they look as CLOSING or LAST_ACK for Linux)
2061 * Probably, I missed some more holelets.
2062 * --ANK
2063 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2064 * in a single packet! (May consider it later but will
2065 * probably need API support or TCP_CORK SYN-ACK until
2066 * data is written and socket is closed.)
2067 */
2068 tcp_send_fin(sk);
2069 }
2070
2071 sk_stream_wait_close(sk, timeout);
2072
2073 adjudge_to_death:
2074 state = sk->sk_state;
2075 sock_hold(sk);
2076 sock_orphan(sk);
2077
2078 /* It is the last release_sock in its life. It will remove backlog. */
2079 release_sock(sk);
2080
2081
2082 /* Now socket is owned by kernel and we acquire BH lock
2083 to finish close. No need to check for user refs.
2084 */
2085 local_bh_disable();
2086 bh_lock_sock(sk);
2087 WARN_ON(sock_owned_by_user(sk));
2088
2089 percpu_counter_inc(sk->sk_prot->orphan_count);
2090
2091 /* Have we already been destroyed by a softirq or backlog? */
2092 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2093 goto out;
2094
2095 /* This is a (useful) BSD violating of the RFC. There is a
2096 * problem with TCP as specified in that the other end could
2097 * keep a socket open forever with no application left this end.
2098 * We use a 1 minute timeout (about the same as BSD) then kill
2099 * our end. If they send after that then tough - BUT: long enough
2100 * that we won't make the old 4*rto = almost no time - whoops
2101 * reset mistake.
2102 *
2103 * Nope, it was not mistake. It is really desired behaviour
2104 * f.e. on http servers, when such sockets are useless, but
2105 * consume significant resources. Let's do it with special
2106 * linger2 option. --ANK
2107 */
2108
2109 if (sk->sk_state == TCP_FIN_WAIT2) {
2110 struct tcp_sock *tp = tcp_sk(sk);
2111 if (tp->linger2 < 0) {
2112 tcp_set_state(sk, TCP_CLOSE);
2113 tcp_send_active_reset(sk, GFP_ATOMIC);
2114 NET_INC_STATS_BH(sock_net(sk),
2115 LINUX_MIB_TCPABORTONLINGER);
2116 } else {
2117 const int tmo = tcp_fin_time(sk);
2118
2119 if (tmo > TCP_TIMEWAIT_LEN) {
2120 inet_csk_reset_keepalive_timer(sk,
2121 tmo - TCP_TIMEWAIT_LEN);
2122 } else {
2123 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2124 goto out;
2125 }
2126 }
2127 }
2128 if (sk->sk_state != TCP_CLOSE) {
2129 sk_mem_reclaim(sk);
2130 if (tcp_check_oom(sk, 0)) {
2131 tcp_set_state(sk, TCP_CLOSE);
2132 tcp_send_active_reset(sk, GFP_ATOMIC);
2133 NET_INC_STATS_BH(sock_net(sk),
2134 LINUX_MIB_TCPABORTONMEMORY);
2135 }
2136 }
2137
2138 if (sk->sk_state == TCP_CLOSE) {
2139 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2140 /* We could get here with a non-NULL req if the socket is
2141 * aborted (e.g., closed with unread data) before 3WHS
2142 * finishes.
2143 */
2144 if (req)
2145 reqsk_fastopen_remove(sk, req, false);
2146 inet_csk_destroy_sock(sk);
2147 }
2148 /* Otherwise, socket is reprieved until protocol close. */
2149
2150 out:
2151 bh_unlock_sock(sk);
2152 local_bh_enable();
2153 sock_put(sk);
2154 }
2155 EXPORT_SYMBOL(tcp_close);
2156
2157 /* These states need RST on ABORT according to RFC793 */
2158
2159 static inline bool tcp_need_reset(int state)
2160 {
2161 return (1 << state) &
2162 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2163 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2164 }
2165
2166 int tcp_disconnect(struct sock *sk, int flags)
2167 {
2168 struct inet_sock *inet = inet_sk(sk);
2169 struct inet_connection_sock *icsk = inet_csk(sk);
2170 struct tcp_sock *tp = tcp_sk(sk);
2171 int err = 0;
2172 int old_state = sk->sk_state;
2173
2174 if (old_state != TCP_CLOSE)
2175 tcp_set_state(sk, TCP_CLOSE);
2176
2177 /* ABORT function of RFC793 */
2178 if (old_state == TCP_LISTEN) {
2179 inet_csk_listen_stop(sk);
2180 } else if (unlikely(tp->repair)) {
2181 sk->sk_err = ECONNABORTED;
2182 } else if (tcp_need_reset(old_state) ||
2183 (tp->snd_nxt != tp->write_seq &&
2184 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2185 /* The last check adjusts for discrepancy of Linux wrt. RFC
2186 * states
2187 */
2188 tcp_send_active_reset(sk, gfp_any());
2189 sk->sk_err = ECONNRESET;
2190 } else if (old_state == TCP_SYN_SENT)
2191 sk->sk_err = ECONNRESET;
2192
2193 tcp_clear_xmit_timers(sk);
2194 __skb_queue_purge(&sk->sk_receive_queue);
2195 tcp_write_queue_purge(sk);
2196 __skb_queue_purge(&tp->out_of_order_queue);
2197
2198 inet->inet_dport = 0;
2199
2200 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2201 inet_reset_saddr(sk);
2202
2203 sk->sk_shutdown = 0;
2204 sock_reset_flag(sk, SOCK_DONE);
2205 tp->srtt_us = 0;
2206 if ((tp->write_seq += tp->max_window + 2) == 0)
2207 tp->write_seq = 1;
2208 icsk->icsk_backoff = 0;
2209 tp->snd_cwnd = 2;
2210 icsk->icsk_probes_out = 0;
2211 tp->packets_out = 0;
2212 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2213 tp->snd_cwnd_cnt = 0;
2214 tp->window_clamp = 0;
2215 tcp_set_ca_state(sk, TCP_CA_Open);
2216 tcp_clear_retrans(tp);
2217 inet_csk_delack_init(sk);
2218 tcp_init_send_head(sk);
2219 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2220 __sk_dst_reset(sk);
2221
2222 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2223
2224 sk->sk_error_report(sk);
2225 return err;
2226 }
2227 EXPORT_SYMBOL(tcp_disconnect);
2228
2229 void tcp_sock_destruct(struct sock *sk)
2230 {
2231 inet_sock_destruct(sk);
2232
2233 kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2234 }
2235
2236 static inline bool tcp_can_repair_sock(const struct sock *sk)
2237 {
2238 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2239 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2240 }
2241
2242 static int tcp_repair_options_est(struct tcp_sock *tp,
2243 struct tcp_repair_opt __user *optbuf, unsigned int len)
2244 {
2245 struct tcp_repair_opt opt;
2246
2247 while (len >= sizeof(opt)) {
2248 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2249 return -EFAULT;
2250
2251 optbuf++;
2252 len -= sizeof(opt);
2253
2254 switch (opt.opt_code) {
2255 case TCPOPT_MSS:
2256 tp->rx_opt.mss_clamp = opt.opt_val;
2257 break;
2258 case TCPOPT_WINDOW:
2259 {
2260 u16 snd_wscale = opt.opt_val & 0xFFFF;
2261 u16 rcv_wscale = opt.opt_val >> 16;
2262
2263 if (snd_wscale > 14 || rcv_wscale > 14)
2264 return -EFBIG;
2265
2266 tp->rx_opt.snd_wscale = snd_wscale;
2267 tp->rx_opt.rcv_wscale = rcv_wscale;
2268 tp->rx_opt.wscale_ok = 1;
2269 }
2270 break;
2271 case TCPOPT_SACK_PERM:
2272 if (opt.opt_val != 0)
2273 return -EINVAL;
2274
2275 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2276 if (sysctl_tcp_fack)
2277 tcp_enable_fack(tp);
2278 break;
2279 case TCPOPT_TIMESTAMP:
2280 if (opt.opt_val != 0)
2281 return -EINVAL;
2282
2283 tp->rx_opt.tstamp_ok = 1;
2284 break;
2285 }
2286 }
2287
2288 return 0;
2289 }
2290
2291 /*
2292 * Socket option code for TCP.
2293 */
2294 static int do_tcp_setsockopt(struct sock *sk, int level,
2295 int optname, char __user *optval, unsigned int optlen)
2296 {
2297 struct tcp_sock *tp = tcp_sk(sk);
2298 struct inet_connection_sock *icsk = inet_csk(sk);
2299 int val;
2300 int err = 0;
2301
2302 /* These are data/string values, all the others are ints */
2303 switch (optname) {
2304 case TCP_CONGESTION: {
2305 char name[TCP_CA_NAME_MAX];
2306
2307 if (optlen < 1)
2308 return -EINVAL;
2309
2310 val = strncpy_from_user(name, optval,
2311 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2312 if (val < 0)
2313 return -EFAULT;
2314 name[val] = 0;
2315
2316 lock_sock(sk);
2317 err = tcp_set_congestion_control(sk, name);
2318 release_sock(sk);
2319 return err;
2320 }
2321 default:
2322 /* fallthru */
2323 break;
2324 }
2325
2326 if (optlen < sizeof(int))
2327 return -EINVAL;
2328
2329 if (get_user(val, (int __user *)optval))
2330 return -EFAULT;
2331
2332 lock_sock(sk);
2333
2334 switch (optname) {
2335 case TCP_MAXSEG:
2336 /* Values greater than interface MTU won't take effect. However
2337 * at the point when this call is done we typically don't yet
2338 * know which interface is going to be used */
2339 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2340 err = -EINVAL;
2341 break;
2342 }
2343 tp->rx_opt.user_mss = val;
2344 break;
2345
2346 case TCP_NODELAY:
2347 if (val) {
2348 /* TCP_NODELAY is weaker than TCP_CORK, so that
2349 * this option on corked socket is remembered, but
2350 * it is not activated until cork is cleared.
2351 *
2352 * However, when TCP_NODELAY is set we make
2353 * an explicit push, which overrides even TCP_CORK
2354 * for currently queued segments.
2355 */
2356 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2357 tcp_push_pending_frames(sk);
2358 } else {
2359 tp->nonagle &= ~TCP_NAGLE_OFF;
2360 }
2361 break;
2362
2363 case TCP_THIN_LINEAR_TIMEOUTS:
2364 if (val < 0 || val > 1)
2365 err = -EINVAL;
2366 else
2367 tp->thin_lto = val;
2368 break;
2369
2370 case TCP_THIN_DUPACK:
2371 if (val < 0 || val > 1)
2372 err = -EINVAL;
2373 else {
2374 tp->thin_dupack = val;
2375 if (tp->thin_dupack)
2376 tcp_disable_early_retrans(tp);
2377 }
2378 break;
2379
2380 case TCP_REPAIR:
2381 if (!tcp_can_repair_sock(sk))
2382 err = -EPERM;
2383 else if (val == 1) {
2384 tp->repair = 1;
2385 sk->sk_reuse = SK_FORCE_REUSE;
2386 tp->repair_queue = TCP_NO_QUEUE;
2387 } else if (val == 0) {
2388 tp->repair = 0;
2389 sk->sk_reuse = SK_NO_REUSE;
2390 tcp_send_window_probe(sk);
2391 } else
2392 err = -EINVAL;
2393
2394 break;
2395
2396 case TCP_REPAIR_QUEUE:
2397 if (!tp->repair)
2398 err = -EPERM;
2399 else if (val < TCP_QUEUES_NR)
2400 tp->repair_queue = val;
2401 else
2402 err = -EINVAL;
2403 break;
2404
2405 case TCP_QUEUE_SEQ:
2406 if (sk->sk_state != TCP_CLOSE)
2407 err = -EPERM;
2408 else if (tp->repair_queue == TCP_SEND_QUEUE)
2409 tp->write_seq = val;
2410 else if (tp->repair_queue == TCP_RECV_QUEUE)
2411 tp->rcv_nxt = val;
2412 else
2413 err = -EINVAL;
2414 break;
2415
2416 case TCP_REPAIR_OPTIONS:
2417 if (!tp->repair)
2418 err = -EINVAL;
2419 else if (sk->sk_state == TCP_ESTABLISHED)
2420 err = tcp_repair_options_est(tp,
2421 (struct tcp_repair_opt __user *)optval,
2422 optlen);
2423 else
2424 err = -EPERM;
2425 break;
2426
2427 case TCP_CORK:
2428 /* When set indicates to always queue non-full frames.
2429 * Later the user clears this option and we transmit
2430 * any pending partial frames in the queue. This is
2431 * meant to be used alongside sendfile() to get properly
2432 * filled frames when the user (for example) must write
2433 * out headers with a write() call first and then use
2434 * sendfile to send out the data parts.
2435 *
2436 * TCP_CORK can be set together with TCP_NODELAY and it is
2437 * stronger than TCP_NODELAY.
2438 */
2439 if (val) {
2440 tp->nonagle |= TCP_NAGLE_CORK;
2441 } else {
2442 tp->nonagle &= ~TCP_NAGLE_CORK;
2443 if (tp->nonagle&TCP_NAGLE_OFF)
2444 tp->nonagle |= TCP_NAGLE_PUSH;
2445 tcp_push_pending_frames(sk);
2446 }
2447 break;
2448
2449 case TCP_KEEPIDLE:
2450 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2451 err = -EINVAL;
2452 else {
2453 tp->keepalive_time = val * HZ;
2454 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2455 !((1 << sk->sk_state) &
2456 (TCPF_CLOSE | TCPF_LISTEN))) {
2457 u32 elapsed = keepalive_time_elapsed(tp);
2458 if (tp->keepalive_time > elapsed)
2459 elapsed = tp->keepalive_time - elapsed;
2460 else
2461 elapsed = 0;
2462 inet_csk_reset_keepalive_timer(sk, elapsed);
2463 }
2464 }
2465 break;
2466 case TCP_KEEPINTVL:
2467 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2468 err = -EINVAL;
2469 else
2470 tp->keepalive_intvl = val * HZ;
2471 break;
2472 case TCP_KEEPCNT:
2473 if (val < 1 || val > MAX_TCP_KEEPCNT)
2474 err = -EINVAL;
2475 else
2476 tp->keepalive_probes = val;
2477 break;
2478 case TCP_SYNCNT:
2479 if (val < 1 || val > MAX_TCP_SYNCNT)
2480 err = -EINVAL;
2481 else
2482 icsk->icsk_syn_retries = val;
2483 break;
2484
2485 case TCP_LINGER2:
2486 if (val < 0)
2487 tp->linger2 = -1;
2488 else if (val > sysctl_tcp_fin_timeout / HZ)
2489 tp->linger2 = 0;
2490 else
2491 tp->linger2 = val * HZ;
2492 break;
2493
2494 case TCP_DEFER_ACCEPT:
2495 /* Translate value in seconds to number of retransmits */
2496 icsk->icsk_accept_queue.rskq_defer_accept =
2497 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2498 TCP_RTO_MAX / HZ);
2499 break;
2500
2501 case TCP_WINDOW_CLAMP:
2502 if (!val) {
2503 if (sk->sk_state != TCP_CLOSE) {
2504 err = -EINVAL;
2505 break;
2506 }
2507 tp->window_clamp = 0;
2508 } else
2509 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2510 SOCK_MIN_RCVBUF / 2 : val;
2511 break;
2512
2513 case TCP_QUICKACK:
2514 if (!val) {
2515 icsk->icsk_ack.pingpong = 1;
2516 } else {
2517 icsk->icsk_ack.pingpong = 0;
2518 if ((1 << sk->sk_state) &
2519 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2520 inet_csk_ack_scheduled(sk)) {
2521 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2522 tcp_cleanup_rbuf(sk, 1);
2523 if (!(val & 1))
2524 icsk->icsk_ack.pingpong = 1;
2525 }
2526 }
2527 break;
2528
2529 #ifdef CONFIG_TCP_MD5SIG
2530 case TCP_MD5SIG:
2531 /* Read the IP->Key mappings from userspace */
2532 err = tp->af_specific->md5_parse(sk, optval, optlen);
2533 break;
2534 #endif
2535 case TCP_USER_TIMEOUT:
2536 /* Cap the max time in ms TCP will retry or probe the window
2537 * before giving up and aborting (ETIMEDOUT) a connection.
2538 */
2539 if (val < 0)
2540 err = -EINVAL;
2541 else
2542 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2543 break;
2544
2545 case TCP_FASTOPEN:
2546 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2547 TCPF_LISTEN)))
2548 err = fastopen_init_queue(sk, val);
2549 else
2550 err = -EINVAL;
2551 break;
2552 case TCP_TIMESTAMP:
2553 if (!tp->repair)
2554 err = -EPERM;
2555 else
2556 tp->tsoffset = val - tcp_time_stamp;
2557 break;
2558 case TCP_NOTSENT_LOWAT:
2559 tp->notsent_lowat = val;
2560 sk->sk_write_space(sk);
2561 break;
2562 default:
2563 err = -ENOPROTOOPT;
2564 break;
2565 }
2566
2567 release_sock(sk);
2568 return err;
2569 }
2570
2571 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2572 unsigned int optlen)
2573 {
2574 const struct inet_connection_sock *icsk = inet_csk(sk);
2575
2576 if (level != SOL_TCP)
2577 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2578 optval, optlen);
2579 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2580 }
2581 EXPORT_SYMBOL(tcp_setsockopt);
2582
2583 #ifdef CONFIG_COMPAT
2584 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2585 char __user *optval, unsigned int optlen)
2586 {
2587 if (level != SOL_TCP)
2588 return inet_csk_compat_setsockopt(sk, level, optname,
2589 optval, optlen);
2590 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2591 }
2592 EXPORT_SYMBOL(compat_tcp_setsockopt);
2593 #endif
2594
2595 /* Return information about state of tcp endpoint in API format. */
2596 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2597 {
2598 const struct tcp_sock *tp = tcp_sk(sk);
2599 const struct inet_connection_sock *icsk = inet_csk(sk);
2600 u32 now = tcp_time_stamp;
2601 u32 rate;
2602
2603 memset(info, 0, sizeof(*info));
2604
2605 info->tcpi_state = sk->sk_state;
2606 info->tcpi_ca_state = icsk->icsk_ca_state;
2607 info->tcpi_retransmits = icsk->icsk_retransmits;
2608 info->tcpi_probes = icsk->icsk_probes_out;
2609 info->tcpi_backoff = icsk->icsk_backoff;
2610
2611 if (tp->rx_opt.tstamp_ok)
2612 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2613 if (tcp_is_sack(tp))
2614 info->tcpi_options |= TCPI_OPT_SACK;
2615 if (tp->rx_opt.wscale_ok) {
2616 info->tcpi_options |= TCPI_OPT_WSCALE;
2617 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2618 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2619 }
2620
2621 if (tp->ecn_flags & TCP_ECN_OK)
2622 info->tcpi_options |= TCPI_OPT_ECN;
2623 if (tp->ecn_flags & TCP_ECN_SEEN)
2624 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2625 if (tp->syn_data_acked)
2626 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2627
2628 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2629 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2630 info->tcpi_snd_mss = tp->mss_cache;
2631 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2632
2633 if (sk->sk_state == TCP_LISTEN) {
2634 info->tcpi_unacked = sk->sk_ack_backlog;
2635 info->tcpi_sacked = sk->sk_max_ack_backlog;
2636 } else {
2637 info->tcpi_unacked = tp->packets_out;
2638 info->tcpi_sacked = tp->sacked_out;
2639 }
2640 info->tcpi_lost = tp->lost_out;
2641 info->tcpi_retrans = tp->retrans_out;
2642 info->tcpi_fackets = tp->fackets_out;
2643
2644 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2645 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2646 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2647
2648 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2649 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2650 info->tcpi_rtt = tp->srtt_us >> 3;
2651 info->tcpi_rttvar = tp->mdev_us >> 2;
2652 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2653 info->tcpi_snd_cwnd = tp->snd_cwnd;
2654 info->tcpi_advmss = tp->advmss;
2655 info->tcpi_reordering = tp->reordering;
2656
2657 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2658 info->tcpi_rcv_space = tp->rcvq_space.space;
2659
2660 info->tcpi_total_retrans = tp->total_retrans;
2661
2662 rate = READ_ONCE(sk->sk_pacing_rate);
2663 info->tcpi_pacing_rate = rate != ~0U ? rate : ~0ULL;
2664
2665 rate = READ_ONCE(sk->sk_max_pacing_rate);
2666 info->tcpi_max_pacing_rate = rate != ~0U ? rate : ~0ULL;
2667
2668 spin_lock_bh(&sk->sk_lock.slock);
2669 info->tcpi_bytes_acked = tp->bytes_acked;
2670 info->tcpi_bytes_received = tp->bytes_received;
2671 spin_unlock_bh(&sk->sk_lock.slock);
2672 }
2673 EXPORT_SYMBOL_GPL(tcp_get_info);
2674
2675 static int do_tcp_getsockopt(struct sock *sk, int level,
2676 int optname, char __user *optval, int __user *optlen)
2677 {
2678 struct inet_connection_sock *icsk = inet_csk(sk);
2679 struct tcp_sock *tp = tcp_sk(sk);
2680 int val, len;
2681
2682 if (get_user(len, optlen))
2683 return -EFAULT;
2684
2685 len = min_t(unsigned int, len, sizeof(int));
2686
2687 if (len < 0)
2688 return -EINVAL;
2689
2690 switch (optname) {
2691 case TCP_MAXSEG:
2692 val = tp->mss_cache;
2693 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2694 val = tp->rx_opt.user_mss;
2695 if (tp->repair)
2696 val = tp->rx_opt.mss_clamp;
2697 break;
2698 case TCP_NODELAY:
2699 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2700 break;
2701 case TCP_CORK:
2702 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2703 break;
2704 case TCP_KEEPIDLE:
2705 val = keepalive_time_when(tp) / HZ;
2706 break;
2707 case TCP_KEEPINTVL:
2708 val = keepalive_intvl_when(tp) / HZ;
2709 break;
2710 case TCP_KEEPCNT:
2711 val = keepalive_probes(tp);
2712 break;
2713 case TCP_SYNCNT:
2714 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2715 break;
2716 case TCP_LINGER2:
2717 val = tp->linger2;
2718 if (val >= 0)
2719 val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2720 break;
2721 case TCP_DEFER_ACCEPT:
2722 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2723 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2724 break;
2725 case TCP_WINDOW_CLAMP:
2726 val = tp->window_clamp;
2727 break;
2728 case TCP_INFO: {
2729 struct tcp_info info;
2730
2731 if (get_user(len, optlen))
2732 return -EFAULT;
2733
2734 tcp_get_info(sk, &info);
2735
2736 len = min_t(unsigned int, len, sizeof(info));
2737 if (put_user(len, optlen))
2738 return -EFAULT;
2739 if (copy_to_user(optval, &info, len))
2740 return -EFAULT;
2741 return 0;
2742 }
2743 case TCP_CC_INFO: {
2744 const struct tcp_congestion_ops *ca_ops;
2745 union tcp_cc_info info;
2746 size_t sz = 0;
2747 int attr;
2748
2749 if (get_user(len, optlen))
2750 return -EFAULT;
2751
2752 ca_ops = icsk->icsk_ca_ops;
2753 if (ca_ops && ca_ops->get_info)
2754 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
2755
2756 len = min_t(unsigned int, len, sz);
2757 if (put_user(len, optlen))
2758 return -EFAULT;
2759 if (copy_to_user(optval, &info, len))
2760 return -EFAULT;
2761 return 0;
2762 }
2763 case TCP_QUICKACK:
2764 val = !icsk->icsk_ack.pingpong;
2765 break;
2766
2767 case TCP_CONGESTION:
2768 if (get_user(len, optlen))
2769 return -EFAULT;
2770 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2771 if (put_user(len, optlen))
2772 return -EFAULT;
2773 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2774 return -EFAULT;
2775 return 0;
2776
2777 case TCP_THIN_LINEAR_TIMEOUTS:
2778 val = tp->thin_lto;
2779 break;
2780 case TCP_THIN_DUPACK:
2781 val = tp->thin_dupack;
2782 break;
2783
2784 case TCP_REPAIR:
2785 val = tp->repair;
2786 break;
2787
2788 case TCP_REPAIR_QUEUE:
2789 if (tp->repair)
2790 val = tp->repair_queue;
2791 else
2792 return -EINVAL;
2793 break;
2794
2795 case TCP_QUEUE_SEQ:
2796 if (tp->repair_queue == TCP_SEND_QUEUE)
2797 val = tp->write_seq;
2798 else if (tp->repair_queue == TCP_RECV_QUEUE)
2799 val = tp->rcv_nxt;
2800 else
2801 return -EINVAL;
2802 break;
2803
2804 case TCP_USER_TIMEOUT:
2805 val = jiffies_to_msecs(icsk->icsk_user_timeout);
2806 break;
2807
2808 case TCP_FASTOPEN:
2809 if (icsk->icsk_accept_queue.fastopenq)
2810 val = icsk->icsk_accept_queue.fastopenq->max_qlen;
2811 else
2812 val = 0;
2813 break;
2814
2815 case TCP_TIMESTAMP:
2816 val = tcp_time_stamp + tp->tsoffset;
2817 break;
2818 case TCP_NOTSENT_LOWAT:
2819 val = tp->notsent_lowat;
2820 break;
2821 default:
2822 return -ENOPROTOOPT;
2823 }
2824
2825 if (put_user(len, optlen))
2826 return -EFAULT;
2827 if (copy_to_user(optval, &val, len))
2828 return -EFAULT;
2829 return 0;
2830 }
2831
2832 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2833 int __user *optlen)
2834 {
2835 struct inet_connection_sock *icsk = inet_csk(sk);
2836
2837 if (level != SOL_TCP)
2838 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2839 optval, optlen);
2840 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2841 }
2842 EXPORT_SYMBOL(tcp_getsockopt);
2843
2844 #ifdef CONFIG_COMPAT
2845 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2846 char __user *optval, int __user *optlen)
2847 {
2848 if (level != SOL_TCP)
2849 return inet_csk_compat_getsockopt(sk, level, optname,
2850 optval, optlen);
2851 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2852 }
2853 EXPORT_SYMBOL(compat_tcp_getsockopt);
2854 #endif
2855
2856 #ifdef CONFIG_TCP_MD5SIG
2857 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
2858 static DEFINE_MUTEX(tcp_md5sig_mutex);
2859 static bool tcp_md5sig_pool_populated = false;
2860
2861 static void __tcp_alloc_md5sig_pool(void)
2862 {
2863 int cpu;
2864
2865 for_each_possible_cpu(cpu) {
2866 if (!per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm) {
2867 struct crypto_hash *hash;
2868
2869 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2870 if (IS_ERR_OR_NULL(hash))
2871 return;
2872 per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm = hash;
2873 }
2874 }
2875 /* before setting tcp_md5sig_pool_populated, we must commit all writes
2876 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
2877 */
2878 smp_wmb();
2879 tcp_md5sig_pool_populated = true;
2880 }
2881
2882 bool tcp_alloc_md5sig_pool(void)
2883 {
2884 if (unlikely(!tcp_md5sig_pool_populated)) {
2885 mutex_lock(&tcp_md5sig_mutex);
2886
2887 if (!tcp_md5sig_pool_populated)
2888 __tcp_alloc_md5sig_pool();
2889
2890 mutex_unlock(&tcp_md5sig_mutex);
2891 }
2892 return tcp_md5sig_pool_populated;
2893 }
2894 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2895
2896
2897 /**
2898 * tcp_get_md5sig_pool - get md5sig_pool for this user
2899 *
2900 * We use percpu structure, so if we succeed, we exit with preemption
2901 * and BH disabled, to make sure another thread or softirq handling
2902 * wont try to get same context.
2903 */
2904 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2905 {
2906 local_bh_disable();
2907
2908 if (tcp_md5sig_pool_populated) {
2909 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
2910 smp_rmb();
2911 return this_cpu_ptr(&tcp_md5sig_pool);
2912 }
2913 local_bh_enable();
2914 return NULL;
2915 }
2916 EXPORT_SYMBOL(tcp_get_md5sig_pool);
2917
2918 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2919 const struct tcphdr *th)
2920 {
2921 struct scatterlist sg;
2922 struct tcphdr hdr;
2923 int err;
2924
2925 /* We are not allowed to change tcphdr, make a local copy */
2926 memcpy(&hdr, th, sizeof(hdr));
2927 hdr.check = 0;
2928
2929 /* options aren't included in the hash */
2930 sg_init_one(&sg, &hdr, sizeof(hdr));
2931 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
2932 return err;
2933 }
2934 EXPORT_SYMBOL(tcp_md5_hash_header);
2935
2936 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
2937 const struct sk_buff *skb, unsigned int header_len)
2938 {
2939 struct scatterlist sg;
2940 const struct tcphdr *tp = tcp_hdr(skb);
2941 struct hash_desc *desc = &hp->md5_desc;
2942 unsigned int i;
2943 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
2944 skb_headlen(skb) - header_len : 0;
2945 const struct skb_shared_info *shi = skb_shinfo(skb);
2946 struct sk_buff *frag_iter;
2947
2948 sg_init_table(&sg, 1);
2949
2950 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
2951 if (crypto_hash_update(desc, &sg, head_data_len))
2952 return 1;
2953
2954 for (i = 0; i < shi->nr_frags; ++i) {
2955 const struct skb_frag_struct *f = &shi->frags[i];
2956 unsigned int offset = f->page_offset;
2957 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
2958
2959 sg_set_page(&sg, page, skb_frag_size(f),
2960 offset_in_page(offset));
2961 if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
2962 return 1;
2963 }
2964
2965 skb_walk_frags(skb, frag_iter)
2966 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
2967 return 1;
2968
2969 return 0;
2970 }
2971 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
2972
2973 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
2974 {
2975 struct scatterlist sg;
2976
2977 sg_init_one(&sg, key->key, key->keylen);
2978 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
2979 }
2980 EXPORT_SYMBOL(tcp_md5_hash_key);
2981
2982 #endif
2983
2984 void tcp_done(struct sock *sk)
2985 {
2986 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2987
2988 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
2989 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
2990
2991 tcp_set_state(sk, TCP_CLOSE);
2992 tcp_clear_xmit_timers(sk);
2993 if (req)
2994 reqsk_fastopen_remove(sk, req, false);
2995
2996 sk->sk_shutdown = SHUTDOWN_MASK;
2997
2998 if (!sock_flag(sk, SOCK_DEAD))
2999 sk->sk_state_change(sk);
3000 else
3001 inet_csk_destroy_sock(sk);
3002 }
3003 EXPORT_SYMBOL_GPL(tcp_done);
3004
3005 extern struct tcp_congestion_ops tcp_reno;
3006
3007 static __initdata unsigned long thash_entries;
3008 static int __init set_thash_entries(char *str)
3009 {
3010 ssize_t ret;
3011
3012 if (!str)
3013 return 0;
3014
3015 ret = kstrtoul(str, 0, &thash_entries);
3016 if (ret)
3017 return 0;
3018
3019 return 1;
3020 }
3021 __setup("thash_entries=", set_thash_entries);
3022
3023 static void __init tcp_init_mem(void)
3024 {
3025 unsigned long limit = nr_free_buffer_pages() / 8;
3026 limit = max(limit, 128UL);
3027 sysctl_tcp_mem[0] = limit / 4 * 3;
3028 sysctl_tcp_mem[1] = limit;
3029 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
3030 }
3031
3032 void __init tcp_init(void)
3033 {
3034 unsigned long limit;
3035 int max_rshare, max_wshare, cnt;
3036 unsigned int i;
3037
3038 sock_skb_cb_check_size(sizeof(struct tcp_skb_cb));
3039
3040 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3041 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3042 tcp_hashinfo.bind_bucket_cachep =
3043 kmem_cache_create("tcp_bind_bucket",
3044 sizeof(struct inet_bind_bucket), 0,
3045 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3046
3047 /* Size and allocate the main established and bind bucket
3048 * hash tables.
3049 *
3050 * The methodology is similar to that of the buffer cache.
3051 */
3052 tcp_hashinfo.ehash =
3053 alloc_large_system_hash("TCP established",
3054 sizeof(struct inet_ehash_bucket),
3055 thash_entries,
3056 17, /* one slot per 128 KB of memory */
3057 0,
3058 NULL,
3059 &tcp_hashinfo.ehash_mask,
3060 0,
3061 thash_entries ? 0 : 512 * 1024);
3062 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3063 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3064
3065 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3066 panic("TCP: failed to alloc ehash_locks");
3067 tcp_hashinfo.bhash =
3068 alloc_large_system_hash("TCP bind",
3069 sizeof(struct inet_bind_hashbucket),
3070 tcp_hashinfo.ehash_mask + 1,
3071 17, /* one slot per 128 KB of memory */
3072 0,
3073 &tcp_hashinfo.bhash_size,
3074 NULL,
3075 0,
3076 64 * 1024);
3077 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3078 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3079 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3080 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3081 }
3082
3083
3084 cnt = tcp_hashinfo.ehash_mask + 1;
3085
3086 tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3087 sysctl_tcp_max_orphans = cnt / 2;
3088 sysctl_max_syn_backlog = max(128, cnt / 256);
3089
3090 tcp_init_mem();
3091 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3092 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3093 max_wshare = min(4UL*1024*1024, limit);
3094 max_rshare = min(6UL*1024*1024, limit);
3095
3096 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3097 sysctl_tcp_wmem[1] = 16*1024;
3098 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3099
3100 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3101 sysctl_tcp_rmem[1] = 87380;
3102 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3103
3104 pr_info("Hash tables configured (established %u bind %u)\n",
3105 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3106
3107 tcp_metrics_init();
3108 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3109 tcp_tasklet_init();
3110 }