]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/tcp.c
tcp: restore autocorking
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248 #define pr_fmt(fmt) "TCP: " fmt
249
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 #include <linux/errqueue.h>
273 #include <linux/static_key.h>
274
275 #include <net/icmp.h>
276 #include <net/inet_common.h>
277 #include <net/tcp.h>
278 #include <net/xfrm.h>
279 #include <net/ip.h>
280 #include <net/sock.h>
281
282 #include <linux/uaccess.h>
283 #include <asm/ioctls.h>
284 #include <net/busy_poll.h>
285
286 #include <trace/events/tcp.h>
287
288 struct percpu_counter tcp_orphan_count;
289 EXPORT_SYMBOL_GPL(tcp_orphan_count);
290
291 long sysctl_tcp_mem[3] __read_mostly;
292 EXPORT_SYMBOL(sysctl_tcp_mem);
293
294 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
295 EXPORT_SYMBOL(tcp_memory_allocated);
296
297 #if IS_ENABLED(CONFIG_SMC)
298 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
299 EXPORT_SYMBOL(tcp_have_smc);
300 #endif
301
302 /*
303 * Current number of TCP sockets.
304 */
305 struct percpu_counter tcp_sockets_allocated;
306 EXPORT_SYMBOL(tcp_sockets_allocated);
307
308 /*
309 * TCP splice context
310 */
311 struct tcp_splice_state {
312 struct pipe_inode_info *pipe;
313 size_t len;
314 unsigned int flags;
315 };
316
317 /*
318 * Pressure flag: try to collapse.
319 * Technical note: it is used by multiple contexts non atomically.
320 * All the __sk_mem_schedule() is of this nature: accounting
321 * is strict, actions are advisory and have some latency.
322 */
323 unsigned long tcp_memory_pressure __read_mostly;
324 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
325
326 void tcp_enter_memory_pressure(struct sock *sk)
327 {
328 unsigned long val;
329
330 if (tcp_memory_pressure)
331 return;
332 val = jiffies;
333
334 if (!val)
335 val--;
336 if (!cmpxchg(&tcp_memory_pressure, 0, val))
337 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
338 }
339 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
340
341 void tcp_leave_memory_pressure(struct sock *sk)
342 {
343 unsigned long val;
344
345 if (!tcp_memory_pressure)
346 return;
347 val = xchg(&tcp_memory_pressure, 0);
348 if (val)
349 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
350 jiffies_to_msecs(jiffies - val));
351 }
352 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
353
354 /* Convert seconds to retransmits based on initial and max timeout */
355 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
356 {
357 u8 res = 0;
358
359 if (seconds > 0) {
360 int period = timeout;
361
362 res = 1;
363 while (seconds > period && res < 255) {
364 res++;
365 timeout <<= 1;
366 if (timeout > rto_max)
367 timeout = rto_max;
368 period += timeout;
369 }
370 }
371 return res;
372 }
373
374 /* Convert retransmits to seconds based on initial and max timeout */
375 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
376 {
377 int period = 0;
378
379 if (retrans > 0) {
380 period = timeout;
381 while (--retrans) {
382 timeout <<= 1;
383 if (timeout > rto_max)
384 timeout = rto_max;
385 period += timeout;
386 }
387 }
388 return period;
389 }
390
391 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
392 {
393 u32 rate = READ_ONCE(tp->rate_delivered);
394 u32 intv = READ_ONCE(tp->rate_interval_us);
395 u64 rate64 = 0;
396
397 if (rate && intv) {
398 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
399 do_div(rate64, intv);
400 }
401 return rate64;
402 }
403
404 /* Address-family independent initialization for a tcp_sock.
405 *
406 * NOTE: A lot of things set to zero explicitly by call to
407 * sk_alloc() so need not be done here.
408 */
409 void tcp_init_sock(struct sock *sk)
410 {
411 struct inet_connection_sock *icsk = inet_csk(sk);
412 struct tcp_sock *tp = tcp_sk(sk);
413
414 tp->out_of_order_queue = RB_ROOT;
415 sk->tcp_rtx_queue = RB_ROOT;
416 tcp_init_xmit_timers(sk);
417 INIT_LIST_HEAD(&tp->tsq_node);
418 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
419
420 icsk->icsk_rto = TCP_TIMEOUT_INIT;
421 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
422 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
423
424 /* So many TCP implementations out there (incorrectly) count the
425 * initial SYN frame in their delayed-ACK and congestion control
426 * algorithms that we must have the following bandaid to talk
427 * efficiently to them. -DaveM
428 */
429 tp->snd_cwnd = TCP_INIT_CWND;
430
431 /* There's a bubble in the pipe until at least the first ACK. */
432 tp->app_limited = ~0U;
433
434 /* See draft-stevens-tcpca-spec-01 for discussion of the
435 * initialization of these values.
436 */
437 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
438 tp->snd_cwnd_clamp = ~0;
439 tp->mss_cache = TCP_MSS_DEFAULT;
440
441 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
442 tcp_assign_congestion_control(sk);
443
444 tp->tsoffset = 0;
445 tp->rack.reo_wnd_steps = 1;
446
447 sk->sk_state = TCP_CLOSE;
448
449 sk->sk_write_space = sk_stream_write_space;
450 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
451
452 icsk->icsk_sync_mss = tcp_sync_mss;
453
454 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
455 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
456
457 sk_sockets_allocated_inc(sk);
458 }
459 EXPORT_SYMBOL(tcp_init_sock);
460
461 void tcp_init_transfer(struct sock *sk, int bpf_op)
462 {
463 struct inet_connection_sock *icsk = inet_csk(sk);
464
465 tcp_mtup_init(sk);
466 icsk->icsk_af_ops->rebuild_header(sk);
467 tcp_init_metrics(sk);
468 tcp_call_bpf(sk, bpf_op);
469 tcp_init_congestion_control(sk);
470 tcp_init_buffer_space(sk);
471 }
472
473 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
474 {
475 struct sk_buff *skb = tcp_write_queue_tail(sk);
476
477 if (tsflags && skb) {
478 struct skb_shared_info *shinfo = skb_shinfo(skb);
479 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
480
481 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
482 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
483 tcb->txstamp_ack = 1;
484 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
485 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
486 }
487 }
488
489 /*
490 * Wait for a TCP event.
491 *
492 * Note that we don't need to lock the socket, as the upper poll layers
493 * take care of normal races (between the test and the event) and we don't
494 * go look at any of the socket buffers directly.
495 */
496 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
497 {
498 unsigned int mask;
499 struct sock *sk = sock->sk;
500 const struct tcp_sock *tp = tcp_sk(sk);
501 int state;
502
503 sock_rps_record_flow(sk);
504
505 sock_poll_wait(file, sk_sleep(sk), wait);
506
507 state = sk_state_load(sk);
508 if (state == TCP_LISTEN)
509 return inet_csk_listen_poll(sk);
510
511 /* Socket is not locked. We are protected from async events
512 * by poll logic and correct handling of state changes
513 * made by other threads is impossible in any case.
514 */
515
516 mask = 0;
517
518 /*
519 * POLLHUP is certainly not done right. But poll() doesn't
520 * have a notion of HUP in just one direction, and for a
521 * socket the read side is more interesting.
522 *
523 * Some poll() documentation says that POLLHUP is incompatible
524 * with the POLLOUT/POLLWR flags, so somebody should check this
525 * all. But careful, it tends to be safer to return too many
526 * bits than too few, and you can easily break real applications
527 * if you don't tell them that something has hung up!
528 *
529 * Check-me.
530 *
531 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
532 * our fs/select.c). It means that after we received EOF,
533 * poll always returns immediately, making impossible poll() on write()
534 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
535 * if and only if shutdown has been made in both directions.
536 * Actually, it is interesting to look how Solaris and DUX
537 * solve this dilemma. I would prefer, if POLLHUP were maskable,
538 * then we could set it on SND_SHUTDOWN. BTW examples given
539 * in Stevens' books assume exactly this behaviour, it explains
540 * why POLLHUP is incompatible with POLLOUT. --ANK
541 *
542 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
543 * blocking on fresh not-connected or disconnected socket. --ANK
544 */
545 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
546 mask |= POLLHUP;
547 if (sk->sk_shutdown & RCV_SHUTDOWN)
548 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
549
550 /* Connected or passive Fast Open socket? */
551 if (state != TCP_SYN_SENT &&
552 (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
553 int target = sock_rcvlowat(sk, 0, INT_MAX);
554
555 if (tp->urg_seq == tp->copied_seq &&
556 !sock_flag(sk, SOCK_URGINLINE) &&
557 tp->urg_data)
558 target++;
559
560 if (tp->rcv_nxt - tp->copied_seq >= target)
561 mask |= POLLIN | POLLRDNORM;
562
563 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
564 if (sk_stream_is_writeable(sk)) {
565 mask |= POLLOUT | POLLWRNORM;
566 } else { /* send SIGIO later */
567 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
568 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
569
570 /* Race breaker. If space is freed after
571 * wspace test but before the flags are set,
572 * IO signal will be lost. Memory barrier
573 * pairs with the input side.
574 */
575 smp_mb__after_atomic();
576 if (sk_stream_is_writeable(sk))
577 mask |= POLLOUT | POLLWRNORM;
578 }
579 } else
580 mask |= POLLOUT | POLLWRNORM;
581
582 if (tp->urg_data & TCP_URG_VALID)
583 mask |= POLLPRI;
584 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
585 /* Active TCP fastopen socket with defer_connect
586 * Return POLLOUT so application can call write()
587 * in order for kernel to generate SYN+data
588 */
589 mask |= POLLOUT | POLLWRNORM;
590 }
591 /* This barrier is coupled with smp_wmb() in tcp_reset() */
592 smp_rmb();
593 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
594 mask |= POLLERR;
595
596 return mask;
597 }
598 EXPORT_SYMBOL(tcp_poll);
599
600 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
601 {
602 struct tcp_sock *tp = tcp_sk(sk);
603 int answ;
604 bool slow;
605
606 switch (cmd) {
607 case SIOCINQ:
608 if (sk->sk_state == TCP_LISTEN)
609 return -EINVAL;
610
611 slow = lock_sock_fast(sk);
612 answ = tcp_inq(sk);
613 unlock_sock_fast(sk, slow);
614 break;
615 case SIOCATMARK:
616 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
617 break;
618 case SIOCOUTQ:
619 if (sk->sk_state == TCP_LISTEN)
620 return -EINVAL;
621
622 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
623 answ = 0;
624 else
625 answ = tp->write_seq - tp->snd_una;
626 break;
627 case SIOCOUTQNSD:
628 if (sk->sk_state == TCP_LISTEN)
629 return -EINVAL;
630
631 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
632 answ = 0;
633 else
634 answ = tp->write_seq - tp->snd_nxt;
635 break;
636 default:
637 return -ENOIOCTLCMD;
638 }
639
640 return put_user(answ, (int __user *)arg);
641 }
642 EXPORT_SYMBOL(tcp_ioctl);
643
644 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
645 {
646 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
647 tp->pushed_seq = tp->write_seq;
648 }
649
650 static inline bool forced_push(const struct tcp_sock *tp)
651 {
652 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
653 }
654
655 static void skb_entail(struct sock *sk, struct sk_buff *skb)
656 {
657 struct tcp_sock *tp = tcp_sk(sk);
658 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
659
660 skb->csum = 0;
661 tcb->seq = tcb->end_seq = tp->write_seq;
662 tcb->tcp_flags = TCPHDR_ACK;
663 tcb->sacked = 0;
664 __skb_header_release(skb);
665 tcp_add_write_queue_tail(sk, skb);
666 sk->sk_wmem_queued += skb->truesize;
667 sk_mem_charge(sk, skb->truesize);
668 if (tp->nonagle & TCP_NAGLE_PUSH)
669 tp->nonagle &= ~TCP_NAGLE_PUSH;
670
671 tcp_slow_start_after_idle_check(sk);
672 }
673
674 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
675 {
676 if (flags & MSG_OOB)
677 tp->snd_up = tp->write_seq;
678 }
679
680 /* If a not yet filled skb is pushed, do not send it if
681 * we have data packets in Qdisc or NIC queues :
682 * Because TX completion will happen shortly, it gives a chance
683 * to coalesce future sendmsg() payload into this skb, without
684 * need for a timer, and with no latency trade off.
685 * As packets containing data payload have a bigger truesize
686 * than pure acks (dataless) packets, the last checks prevent
687 * autocorking if we only have an ACK in Qdisc/NIC queues,
688 * or if TX completion was delayed after we processed ACK packet.
689 */
690 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
691 int size_goal)
692 {
693 return skb->len < size_goal &&
694 sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
695 !tcp_rtx_queue_empty(sk) &&
696 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
697 }
698
699 static void tcp_push(struct sock *sk, int flags, int mss_now,
700 int nonagle, int size_goal)
701 {
702 struct tcp_sock *tp = tcp_sk(sk);
703 struct sk_buff *skb;
704
705 skb = tcp_write_queue_tail(sk);
706 if (!skb)
707 return;
708 if (!(flags & MSG_MORE) || forced_push(tp))
709 tcp_mark_push(tp, skb);
710
711 tcp_mark_urg(tp, flags);
712
713 if (tcp_should_autocork(sk, skb, size_goal)) {
714
715 /* avoid atomic op if TSQ_THROTTLED bit is already set */
716 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
717 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
718 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
719 }
720 /* It is possible TX completion already happened
721 * before we set TSQ_THROTTLED.
722 */
723 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
724 return;
725 }
726
727 if (flags & MSG_MORE)
728 nonagle = TCP_NAGLE_CORK;
729
730 __tcp_push_pending_frames(sk, mss_now, nonagle);
731 }
732
733 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
734 unsigned int offset, size_t len)
735 {
736 struct tcp_splice_state *tss = rd_desc->arg.data;
737 int ret;
738
739 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
740 min(rd_desc->count, len), tss->flags);
741 if (ret > 0)
742 rd_desc->count -= ret;
743 return ret;
744 }
745
746 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
747 {
748 /* Store TCP splice context information in read_descriptor_t. */
749 read_descriptor_t rd_desc = {
750 .arg.data = tss,
751 .count = tss->len,
752 };
753
754 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
755 }
756
757 /**
758 * tcp_splice_read - splice data from TCP socket to a pipe
759 * @sock: socket to splice from
760 * @ppos: position (not valid)
761 * @pipe: pipe to splice to
762 * @len: number of bytes to splice
763 * @flags: splice modifier flags
764 *
765 * Description:
766 * Will read pages from given socket and fill them into a pipe.
767 *
768 **/
769 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
770 struct pipe_inode_info *pipe, size_t len,
771 unsigned int flags)
772 {
773 struct sock *sk = sock->sk;
774 struct tcp_splice_state tss = {
775 .pipe = pipe,
776 .len = len,
777 .flags = flags,
778 };
779 long timeo;
780 ssize_t spliced;
781 int ret;
782
783 sock_rps_record_flow(sk);
784 /*
785 * We can't seek on a socket input
786 */
787 if (unlikely(*ppos))
788 return -ESPIPE;
789
790 ret = spliced = 0;
791
792 lock_sock(sk);
793
794 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
795 while (tss.len) {
796 ret = __tcp_splice_read(sk, &tss);
797 if (ret < 0)
798 break;
799 else if (!ret) {
800 if (spliced)
801 break;
802 if (sock_flag(sk, SOCK_DONE))
803 break;
804 if (sk->sk_err) {
805 ret = sock_error(sk);
806 break;
807 }
808 if (sk->sk_shutdown & RCV_SHUTDOWN)
809 break;
810 if (sk->sk_state == TCP_CLOSE) {
811 /*
812 * This occurs when user tries to read
813 * from never connected socket.
814 */
815 if (!sock_flag(sk, SOCK_DONE))
816 ret = -ENOTCONN;
817 break;
818 }
819 if (!timeo) {
820 ret = -EAGAIN;
821 break;
822 }
823 /* if __tcp_splice_read() got nothing while we have
824 * an skb in receive queue, we do not want to loop.
825 * This might happen with URG data.
826 */
827 if (!skb_queue_empty(&sk->sk_receive_queue))
828 break;
829 sk_wait_data(sk, &timeo, NULL);
830 if (signal_pending(current)) {
831 ret = sock_intr_errno(timeo);
832 break;
833 }
834 continue;
835 }
836 tss.len -= ret;
837 spliced += ret;
838
839 if (!timeo)
840 break;
841 release_sock(sk);
842 lock_sock(sk);
843
844 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
845 (sk->sk_shutdown & RCV_SHUTDOWN) ||
846 signal_pending(current))
847 break;
848 }
849
850 release_sock(sk);
851
852 if (spliced)
853 return spliced;
854
855 return ret;
856 }
857 EXPORT_SYMBOL(tcp_splice_read);
858
859 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
860 bool force_schedule)
861 {
862 struct sk_buff *skb;
863
864 /* The TCP header must be at least 32-bit aligned. */
865 size = ALIGN(size, 4);
866
867 if (unlikely(tcp_under_memory_pressure(sk)))
868 sk_mem_reclaim_partial(sk);
869
870 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
871 if (likely(skb)) {
872 bool mem_scheduled;
873
874 if (force_schedule) {
875 mem_scheduled = true;
876 sk_forced_mem_schedule(sk, skb->truesize);
877 } else {
878 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
879 }
880 if (likely(mem_scheduled)) {
881 skb_reserve(skb, sk->sk_prot->max_header);
882 /*
883 * Make sure that we have exactly size bytes
884 * available to the caller, no more, no less.
885 */
886 skb->reserved_tailroom = skb->end - skb->tail - size;
887 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
888 return skb;
889 }
890 __kfree_skb(skb);
891 } else {
892 sk->sk_prot->enter_memory_pressure(sk);
893 sk_stream_moderate_sndbuf(sk);
894 }
895 return NULL;
896 }
897
898 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
899 int large_allowed)
900 {
901 struct tcp_sock *tp = tcp_sk(sk);
902 u32 new_size_goal, size_goal;
903
904 if (!large_allowed || !sk_can_gso(sk))
905 return mss_now;
906
907 /* Note : tcp_tso_autosize() will eventually split this later */
908 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
909 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
910
911 /* We try hard to avoid divides here */
912 size_goal = tp->gso_segs * mss_now;
913 if (unlikely(new_size_goal < size_goal ||
914 new_size_goal >= size_goal + mss_now)) {
915 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
916 sk->sk_gso_max_segs);
917 size_goal = tp->gso_segs * mss_now;
918 }
919
920 return max(size_goal, mss_now);
921 }
922
923 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
924 {
925 int mss_now;
926
927 mss_now = tcp_current_mss(sk);
928 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
929
930 return mss_now;
931 }
932
933 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
934 size_t size, int flags)
935 {
936 struct tcp_sock *tp = tcp_sk(sk);
937 int mss_now, size_goal;
938 int err;
939 ssize_t copied;
940 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
941
942 /* Wait for a connection to finish. One exception is TCP Fast Open
943 * (passive side) where data is allowed to be sent before a connection
944 * is fully established.
945 */
946 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
947 !tcp_passive_fastopen(sk)) {
948 err = sk_stream_wait_connect(sk, &timeo);
949 if (err != 0)
950 goto out_err;
951 }
952
953 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
954
955 mss_now = tcp_send_mss(sk, &size_goal, flags);
956 copied = 0;
957
958 err = -EPIPE;
959 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
960 goto out_err;
961
962 while (size > 0) {
963 struct sk_buff *skb = tcp_write_queue_tail(sk);
964 int copy, i;
965 bool can_coalesce;
966
967 if (!skb || (copy = size_goal - skb->len) <= 0 ||
968 !tcp_skb_can_collapse_to(skb)) {
969 new_segment:
970 if (!sk_stream_memory_free(sk))
971 goto wait_for_sndbuf;
972
973 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
974 tcp_rtx_and_write_queues_empty(sk));
975 if (!skb)
976 goto wait_for_memory;
977
978 skb_entail(sk, skb);
979 copy = size_goal;
980 }
981
982 if (copy > size)
983 copy = size;
984
985 i = skb_shinfo(skb)->nr_frags;
986 can_coalesce = skb_can_coalesce(skb, i, page, offset);
987 if (!can_coalesce && i >= sysctl_max_skb_frags) {
988 tcp_mark_push(tp, skb);
989 goto new_segment;
990 }
991 if (!sk_wmem_schedule(sk, copy))
992 goto wait_for_memory;
993
994 if (can_coalesce) {
995 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
996 } else {
997 get_page(page);
998 skb_fill_page_desc(skb, i, page, offset, copy);
999 }
1000 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1001
1002 skb->len += copy;
1003 skb->data_len += copy;
1004 skb->truesize += copy;
1005 sk->sk_wmem_queued += copy;
1006 sk_mem_charge(sk, copy);
1007 skb->ip_summed = CHECKSUM_PARTIAL;
1008 tp->write_seq += copy;
1009 TCP_SKB_CB(skb)->end_seq += copy;
1010 tcp_skb_pcount_set(skb, 0);
1011
1012 if (!copied)
1013 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1014
1015 copied += copy;
1016 offset += copy;
1017 size -= copy;
1018 if (!size)
1019 goto out;
1020
1021 if (skb->len < size_goal || (flags & MSG_OOB))
1022 continue;
1023
1024 if (forced_push(tp)) {
1025 tcp_mark_push(tp, skb);
1026 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1027 } else if (skb == tcp_send_head(sk))
1028 tcp_push_one(sk, mss_now);
1029 continue;
1030
1031 wait_for_sndbuf:
1032 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1033 wait_for_memory:
1034 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1035 TCP_NAGLE_PUSH, size_goal);
1036
1037 err = sk_stream_wait_memory(sk, &timeo);
1038 if (err != 0)
1039 goto do_error;
1040
1041 mss_now = tcp_send_mss(sk, &size_goal, flags);
1042 }
1043
1044 out:
1045 if (copied) {
1046 tcp_tx_timestamp(sk, sk->sk_tsflags);
1047 if (!(flags & MSG_SENDPAGE_NOTLAST))
1048 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1049 }
1050 return copied;
1051
1052 do_error:
1053 if (copied)
1054 goto out;
1055 out_err:
1056 /* make sure we wake any epoll edge trigger waiter */
1057 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1058 err == -EAGAIN)) {
1059 sk->sk_write_space(sk);
1060 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1061 }
1062 return sk_stream_error(sk, flags, err);
1063 }
1064 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1065
1066 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1067 size_t size, int flags)
1068 {
1069 if (!(sk->sk_route_caps & NETIF_F_SG) ||
1070 !sk_check_csum_caps(sk))
1071 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1072
1073 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1074
1075 return do_tcp_sendpages(sk, page, offset, size, flags);
1076 }
1077 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1078
1079 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1080 size_t size, int flags)
1081 {
1082 int ret;
1083
1084 lock_sock(sk);
1085 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1086 release_sock(sk);
1087
1088 return ret;
1089 }
1090 EXPORT_SYMBOL(tcp_sendpage);
1091
1092 /* Do not bother using a page frag for very small frames.
1093 * But use this heuristic only for the first skb in write queue.
1094 *
1095 * Having no payload in skb->head allows better SACK shifting
1096 * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1097 * write queue has less skbs.
1098 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1099 * This also speeds up tso_fragment(), since it wont fallback
1100 * to tcp_fragment().
1101 */
1102 static int linear_payload_sz(bool first_skb)
1103 {
1104 if (first_skb)
1105 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1106 return 0;
1107 }
1108
1109 static int select_size(const struct sock *sk, bool sg, bool first_skb)
1110 {
1111 const struct tcp_sock *tp = tcp_sk(sk);
1112 int tmp = tp->mss_cache;
1113
1114 if (sg) {
1115 if (sk_can_gso(sk)) {
1116 tmp = linear_payload_sz(first_skb);
1117 } else {
1118 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1119
1120 if (tmp >= pgbreak &&
1121 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1122 tmp = pgbreak;
1123 }
1124 }
1125
1126 return tmp;
1127 }
1128
1129 void tcp_free_fastopen_req(struct tcp_sock *tp)
1130 {
1131 if (tp->fastopen_req) {
1132 kfree(tp->fastopen_req);
1133 tp->fastopen_req = NULL;
1134 }
1135 }
1136
1137 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1138 int *copied, size_t size)
1139 {
1140 struct tcp_sock *tp = tcp_sk(sk);
1141 struct inet_sock *inet = inet_sk(sk);
1142 struct sockaddr *uaddr = msg->msg_name;
1143 int err, flags;
1144
1145 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1146 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1147 uaddr->sa_family == AF_UNSPEC))
1148 return -EOPNOTSUPP;
1149 if (tp->fastopen_req)
1150 return -EALREADY; /* Another Fast Open is in progress */
1151
1152 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1153 sk->sk_allocation);
1154 if (unlikely(!tp->fastopen_req))
1155 return -ENOBUFS;
1156 tp->fastopen_req->data = msg;
1157 tp->fastopen_req->size = size;
1158
1159 if (inet->defer_connect) {
1160 err = tcp_connect(sk);
1161 /* Same failure procedure as in tcp_v4/6_connect */
1162 if (err) {
1163 tcp_set_state(sk, TCP_CLOSE);
1164 inet->inet_dport = 0;
1165 sk->sk_route_caps = 0;
1166 }
1167 }
1168 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1169 err = __inet_stream_connect(sk->sk_socket, uaddr,
1170 msg->msg_namelen, flags, 1);
1171 /* fastopen_req could already be freed in __inet_stream_connect
1172 * if the connection times out or gets rst
1173 */
1174 if (tp->fastopen_req) {
1175 *copied = tp->fastopen_req->copied;
1176 tcp_free_fastopen_req(tp);
1177 inet->defer_connect = 0;
1178 }
1179 return err;
1180 }
1181
1182 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1183 {
1184 struct tcp_sock *tp = tcp_sk(sk);
1185 struct ubuf_info *uarg = NULL;
1186 struct sk_buff *skb;
1187 struct sockcm_cookie sockc;
1188 int flags, err, copied = 0;
1189 int mss_now = 0, size_goal, copied_syn = 0;
1190 bool process_backlog = false;
1191 bool sg;
1192 long timeo;
1193
1194 flags = msg->msg_flags;
1195
1196 if (flags & MSG_ZEROCOPY && size) {
1197 if (sk->sk_state != TCP_ESTABLISHED) {
1198 err = -EINVAL;
1199 goto out_err;
1200 }
1201
1202 skb = tcp_write_queue_tail(sk);
1203 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1204 if (!uarg) {
1205 err = -ENOBUFS;
1206 goto out_err;
1207 }
1208
1209 if (!(sk_check_csum_caps(sk) && sk->sk_route_caps & NETIF_F_SG))
1210 uarg->zerocopy = 0;
1211 }
1212
1213 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1214 !tp->repair) {
1215 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1216 if (err == -EINPROGRESS && copied_syn > 0)
1217 goto out;
1218 else if (err)
1219 goto out_err;
1220 }
1221
1222 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1223
1224 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1225
1226 /* Wait for a connection to finish. One exception is TCP Fast Open
1227 * (passive side) where data is allowed to be sent before a connection
1228 * is fully established.
1229 */
1230 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1231 !tcp_passive_fastopen(sk)) {
1232 err = sk_stream_wait_connect(sk, &timeo);
1233 if (err != 0)
1234 goto do_error;
1235 }
1236
1237 if (unlikely(tp->repair)) {
1238 if (tp->repair_queue == TCP_RECV_QUEUE) {
1239 copied = tcp_send_rcvq(sk, msg, size);
1240 goto out_nopush;
1241 }
1242
1243 err = -EINVAL;
1244 if (tp->repair_queue == TCP_NO_QUEUE)
1245 goto out_err;
1246
1247 /* 'common' sending to sendq */
1248 }
1249
1250 sockc.tsflags = sk->sk_tsflags;
1251 if (msg->msg_controllen) {
1252 err = sock_cmsg_send(sk, msg, &sockc);
1253 if (unlikely(err)) {
1254 err = -EINVAL;
1255 goto out_err;
1256 }
1257 }
1258
1259 /* This should be in poll */
1260 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1261
1262 /* Ok commence sending. */
1263 copied = 0;
1264
1265 restart:
1266 mss_now = tcp_send_mss(sk, &size_goal, flags);
1267
1268 err = -EPIPE;
1269 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1270 goto do_error;
1271
1272 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1273
1274 while (msg_data_left(msg)) {
1275 int copy = 0;
1276 int max = size_goal;
1277
1278 skb = tcp_write_queue_tail(sk);
1279 if (skb) {
1280 if (skb->ip_summed == CHECKSUM_NONE)
1281 max = mss_now;
1282 copy = max - skb->len;
1283 }
1284
1285 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1286 bool first_skb;
1287
1288 new_segment:
1289 /* Allocate new segment. If the interface is SG,
1290 * allocate skb fitting to single page.
1291 */
1292 if (!sk_stream_memory_free(sk))
1293 goto wait_for_sndbuf;
1294
1295 if (process_backlog && sk_flush_backlog(sk)) {
1296 process_backlog = false;
1297 goto restart;
1298 }
1299 first_skb = tcp_rtx_and_write_queues_empty(sk);
1300 skb = sk_stream_alloc_skb(sk,
1301 select_size(sk, sg, first_skb),
1302 sk->sk_allocation,
1303 first_skb);
1304 if (!skb)
1305 goto wait_for_memory;
1306
1307 process_backlog = true;
1308 /*
1309 * Check whether we can use HW checksum.
1310 */
1311 if (sk_check_csum_caps(sk))
1312 skb->ip_summed = CHECKSUM_PARTIAL;
1313
1314 skb_entail(sk, skb);
1315 copy = size_goal;
1316 max = size_goal;
1317
1318 /* All packets are restored as if they have
1319 * already been sent. skb_mstamp isn't set to
1320 * avoid wrong rtt estimation.
1321 */
1322 if (tp->repair)
1323 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1324 }
1325
1326 /* Try to append data to the end of skb. */
1327 if (copy > msg_data_left(msg))
1328 copy = msg_data_left(msg);
1329
1330 /* Where to copy to? */
1331 if (skb_availroom(skb) > 0) {
1332 /* We have some space in skb head. Superb! */
1333 copy = min_t(int, copy, skb_availroom(skb));
1334 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1335 if (err)
1336 goto do_fault;
1337 } else if (!uarg || !uarg->zerocopy) {
1338 bool merge = true;
1339 int i = skb_shinfo(skb)->nr_frags;
1340 struct page_frag *pfrag = sk_page_frag(sk);
1341
1342 if (!sk_page_frag_refill(sk, pfrag))
1343 goto wait_for_memory;
1344
1345 if (!skb_can_coalesce(skb, i, pfrag->page,
1346 pfrag->offset)) {
1347 if (i >= sysctl_max_skb_frags || !sg) {
1348 tcp_mark_push(tp, skb);
1349 goto new_segment;
1350 }
1351 merge = false;
1352 }
1353
1354 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1355
1356 if (!sk_wmem_schedule(sk, copy))
1357 goto wait_for_memory;
1358
1359 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1360 pfrag->page,
1361 pfrag->offset,
1362 copy);
1363 if (err)
1364 goto do_error;
1365
1366 /* Update the skb. */
1367 if (merge) {
1368 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1369 } else {
1370 skb_fill_page_desc(skb, i, pfrag->page,
1371 pfrag->offset, copy);
1372 page_ref_inc(pfrag->page);
1373 }
1374 pfrag->offset += copy;
1375 } else {
1376 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1377 if (err == -EMSGSIZE || err == -EEXIST)
1378 goto new_segment;
1379 if (err < 0)
1380 goto do_error;
1381 copy = err;
1382 }
1383
1384 if (!copied)
1385 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1386
1387 tp->write_seq += copy;
1388 TCP_SKB_CB(skb)->end_seq += copy;
1389 tcp_skb_pcount_set(skb, 0);
1390
1391 copied += copy;
1392 if (!msg_data_left(msg)) {
1393 if (unlikely(flags & MSG_EOR))
1394 TCP_SKB_CB(skb)->eor = 1;
1395 goto out;
1396 }
1397
1398 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1399 continue;
1400
1401 if (forced_push(tp)) {
1402 tcp_mark_push(tp, skb);
1403 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1404 } else if (skb == tcp_send_head(sk))
1405 tcp_push_one(sk, mss_now);
1406 continue;
1407
1408 wait_for_sndbuf:
1409 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1410 wait_for_memory:
1411 if (copied)
1412 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1413 TCP_NAGLE_PUSH, size_goal);
1414
1415 err = sk_stream_wait_memory(sk, &timeo);
1416 if (err != 0)
1417 goto do_error;
1418
1419 mss_now = tcp_send_mss(sk, &size_goal, flags);
1420 }
1421
1422 out:
1423 if (copied) {
1424 tcp_tx_timestamp(sk, sockc.tsflags);
1425 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1426 }
1427 out_nopush:
1428 sock_zerocopy_put(uarg);
1429 return copied + copied_syn;
1430
1431 do_fault:
1432 if (!skb->len) {
1433 tcp_unlink_write_queue(skb, sk);
1434 /* It is the one place in all of TCP, except connection
1435 * reset, where we can be unlinking the send_head.
1436 */
1437 tcp_check_send_head(sk, skb);
1438 sk_wmem_free_skb(sk, skb);
1439 }
1440
1441 do_error:
1442 if (copied + copied_syn)
1443 goto out;
1444 out_err:
1445 sock_zerocopy_put_abort(uarg);
1446 err = sk_stream_error(sk, flags, err);
1447 /* make sure we wake any epoll edge trigger waiter */
1448 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1449 err == -EAGAIN)) {
1450 sk->sk_write_space(sk);
1451 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1452 }
1453 return err;
1454 }
1455 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1456
1457 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1458 {
1459 int ret;
1460
1461 lock_sock(sk);
1462 ret = tcp_sendmsg_locked(sk, msg, size);
1463 release_sock(sk);
1464
1465 return ret;
1466 }
1467 EXPORT_SYMBOL(tcp_sendmsg);
1468
1469 /*
1470 * Handle reading urgent data. BSD has very simple semantics for
1471 * this, no blocking and very strange errors 8)
1472 */
1473
1474 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1475 {
1476 struct tcp_sock *tp = tcp_sk(sk);
1477
1478 /* No URG data to read. */
1479 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1480 tp->urg_data == TCP_URG_READ)
1481 return -EINVAL; /* Yes this is right ! */
1482
1483 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1484 return -ENOTCONN;
1485
1486 if (tp->urg_data & TCP_URG_VALID) {
1487 int err = 0;
1488 char c = tp->urg_data;
1489
1490 if (!(flags & MSG_PEEK))
1491 tp->urg_data = TCP_URG_READ;
1492
1493 /* Read urgent data. */
1494 msg->msg_flags |= MSG_OOB;
1495
1496 if (len > 0) {
1497 if (!(flags & MSG_TRUNC))
1498 err = memcpy_to_msg(msg, &c, 1);
1499 len = 1;
1500 } else
1501 msg->msg_flags |= MSG_TRUNC;
1502
1503 return err ? -EFAULT : len;
1504 }
1505
1506 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1507 return 0;
1508
1509 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1510 * the available implementations agree in this case:
1511 * this call should never block, independent of the
1512 * blocking state of the socket.
1513 * Mike <pall@rz.uni-karlsruhe.de>
1514 */
1515 return -EAGAIN;
1516 }
1517
1518 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1519 {
1520 struct sk_buff *skb;
1521 int copied = 0, err = 0;
1522
1523 /* XXX -- need to support SO_PEEK_OFF */
1524
1525 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1526 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1527 if (err)
1528 return err;
1529 copied += skb->len;
1530 }
1531
1532 skb_queue_walk(&sk->sk_write_queue, skb) {
1533 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1534 if (err)
1535 break;
1536
1537 copied += skb->len;
1538 }
1539
1540 return err ?: copied;
1541 }
1542
1543 /* Clean up the receive buffer for full frames taken by the user,
1544 * then send an ACK if necessary. COPIED is the number of bytes
1545 * tcp_recvmsg has given to the user so far, it speeds up the
1546 * calculation of whether or not we must ACK for the sake of
1547 * a window update.
1548 */
1549 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1550 {
1551 struct tcp_sock *tp = tcp_sk(sk);
1552 bool time_to_ack = false;
1553
1554 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1555
1556 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1557 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1558 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1559
1560 if (inet_csk_ack_scheduled(sk)) {
1561 const struct inet_connection_sock *icsk = inet_csk(sk);
1562 /* Delayed ACKs frequently hit locked sockets during bulk
1563 * receive. */
1564 if (icsk->icsk_ack.blocked ||
1565 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1566 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1567 /*
1568 * If this read emptied read buffer, we send ACK, if
1569 * connection is not bidirectional, user drained
1570 * receive buffer and there was a small segment
1571 * in queue.
1572 */
1573 (copied > 0 &&
1574 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1575 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1576 !icsk->icsk_ack.pingpong)) &&
1577 !atomic_read(&sk->sk_rmem_alloc)))
1578 time_to_ack = true;
1579 }
1580
1581 /* We send an ACK if we can now advertise a non-zero window
1582 * which has been raised "significantly".
1583 *
1584 * Even if window raised up to infinity, do not send window open ACK
1585 * in states, where we will not receive more. It is useless.
1586 */
1587 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1588 __u32 rcv_window_now = tcp_receive_window(tp);
1589
1590 /* Optimize, __tcp_select_window() is not cheap. */
1591 if (2*rcv_window_now <= tp->window_clamp) {
1592 __u32 new_window = __tcp_select_window(sk);
1593
1594 /* Send ACK now, if this read freed lots of space
1595 * in our buffer. Certainly, new_window is new window.
1596 * We can advertise it now, if it is not less than current one.
1597 * "Lots" means "at least twice" here.
1598 */
1599 if (new_window && new_window >= 2 * rcv_window_now)
1600 time_to_ack = true;
1601 }
1602 }
1603 if (time_to_ack)
1604 tcp_send_ack(sk);
1605 }
1606
1607 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1608 {
1609 struct sk_buff *skb;
1610 u32 offset;
1611
1612 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1613 offset = seq - TCP_SKB_CB(skb)->seq;
1614 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1615 pr_err_once("%s: found a SYN, please report !\n", __func__);
1616 offset--;
1617 }
1618 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1619 *off = offset;
1620 return skb;
1621 }
1622 /* This looks weird, but this can happen if TCP collapsing
1623 * splitted a fat GRO packet, while we released socket lock
1624 * in skb_splice_bits()
1625 */
1626 sk_eat_skb(sk, skb);
1627 }
1628 return NULL;
1629 }
1630
1631 /*
1632 * This routine provides an alternative to tcp_recvmsg() for routines
1633 * that would like to handle copying from skbuffs directly in 'sendfile'
1634 * fashion.
1635 * Note:
1636 * - It is assumed that the socket was locked by the caller.
1637 * - The routine does not block.
1638 * - At present, there is no support for reading OOB data
1639 * or for 'peeking' the socket using this routine
1640 * (although both would be easy to implement).
1641 */
1642 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1643 sk_read_actor_t recv_actor)
1644 {
1645 struct sk_buff *skb;
1646 struct tcp_sock *tp = tcp_sk(sk);
1647 u32 seq = tp->copied_seq;
1648 u32 offset;
1649 int copied = 0;
1650
1651 if (sk->sk_state == TCP_LISTEN)
1652 return -ENOTCONN;
1653 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1654 if (offset < skb->len) {
1655 int used;
1656 size_t len;
1657
1658 len = skb->len - offset;
1659 /* Stop reading if we hit a patch of urgent data */
1660 if (tp->urg_data) {
1661 u32 urg_offset = tp->urg_seq - seq;
1662 if (urg_offset < len)
1663 len = urg_offset;
1664 if (!len)
1665 break;
1666 }
1667 used = recv_actor(desc, skb, offset, len);
1668 if (used <= 0) {
1669 if (!copied)
1670 copied = used;
1671 break;
1672 } else if (used <= len) {
1673 seq += used;
1674 copied += used;
1675 offset += used;
1676 }
1677 /* If recv_actor drops the lock (e.g. TCP splice
1678 * receive) the skb pointer might be invalid when
1679 * getting here: tcp_collapse might have deleted it
1680 * while aggregating skbs from the socket queue.
1681 */
1682 skb = tcp_recv_skb(sk, seq - 1, &offset);
1683 if (!skb)
1684 break;
1685 /* TCP coalescing might have appended data to the skb.
1686 * Try to splice more frags
1687 */
1688 if (offset + 1 != skb->len)
1689 continue;
1690 }
1691 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1692 sk_eat_skb(sk, skb);
1693 ++seq;
1694 break;
1695 }
1696 sk_eat_skb(sk, skb);
1697 if (!desc->count)
1698 break;
1699 tp->copied_seq = seq;
1700 }
1701 tp->copied_seq = seq;
1702
1703 tcp_rcv_space_adjust(sk);
1704
1705 /* Clean up data we have read: This will do ACK frames. */
1706 if (copied > 0) {
1707 tcp_recv_skb(sk, seq, &offset);
1708 tcp_cleanup_rbuf(sk, copied);
1709 }
1710 return copied;
1711 }
1712 EXPORT_SYMBOL(tcp_read_sock);
1713
1714 int tcp_peek_len(struct socket *sock)
1715 {
1716 return tcp_inq(sock->sk);
1717 }
1718 EXPORT_SYMBOL(tcp_peek_len);
1719
1720 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1721 struct scm_timestamping *tss)
1722 {
1723 if (skb->tstamp)
1724 tss->ts[0] = ktime_to_timespec(skb->tstamp);
1725 else
1726 tss->ts[0] = (struct timespec) {0};
1727
1728 if (skb_hwtstamps(skb)->hwtstamp)
1729 tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp);
1730 else
1731 tss->ts[2] = (struct timespec) {0};
1732 }
1733
1734 /* Similar to __sock_recv_timestamp, but does not require an skb */
1735 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1736 struct scm_timestamping *tss)
1737 {
1738 struct timeval tv;
1739 bool has_timestamping = false;
1740
1741 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1742 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1743 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1744 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
1745 sizeof(tss->ts[0]), &tss->ts[0]);
1746 } else {
1747 tv.tv_sec = tss->ts[0].tv_sec;
1748 tv.tv_usec = tss->ts[0].tv_nsec / 1000;
1749
1750 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
1751 sizeof(tv), &tv);
1752 }
1753 }
1754
1755 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1756 has_timestamping = true;
1757 else
1758 tss->ts[0] = (struct timespec) {0};
1759 }
1760
1761 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1762 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1763 has_timestamping = true;
1764 else
1765 tss->ts[2] = (struct timespec) {0};
1766 }
1767
1768 if (has_timestamping) {
1769 tss->ts[1] = (struct timespec) {0};
1770 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING,
1771 sizeof(*tss), tss);
1772 }
1773 }
1774
1775 /*
1776 * This routine copies from a sock struct into the user buffer.
1777 *
1778 * Technical note: in 2.3 we work on _locked_ socket, so that
1779 * tricks with *seq access order and skb->users are not required.
1780 * Probably, code can be easily improved even more.
1781 */
1782
1783 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1784 int flags, int *addr_len)
1785 {
1786 struct tcp_sock *tp = tcp_sk(sk);
1787 int copied = 0;
1788 u32 peek_seq;
1789 u32 *seq;
1790 unsigned long used;
1791 int err;
1792 int target; /* Read at least this many bytes */
1793 long timeo;
1794 struct sk_buff *skb, *last;
1795 u32 urg_hole = 0;
1796 struct scm_timestamping tss;
1797 bool has_tss = false;
1798
1799 if (unlikely(flags & MSG_ERRQUEUE))
1800 return inet_recv_error(sk, msg, len, addr_len);
1801
1802 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1803 (sk->sk_state == TCP_ESTABLISHED))
1804 sk_busy_loop(sk, nonblock);
1805
1806 lock_sock(sk);
1807
1808 err = -ENOTCONN;
1809 if (sk->sk_state == TCP_LISTEN)
1810 goto out;
1811
1812 timeo = sock_rcvtimeo(sk, nonblock);
1813
1814 /* Urgent data needs to be handled specially. */
1815 if (flags & MSG_OOB)
1816 goto recv_urg;
1817
1818 if (unlikely(tp->repair)) {
1819 err = -EPERM;
1820 if (!(flags & MSG_PEEK))
1821 goto out;
1822
1823 if (tp->repair_queue == TCP_SEND_QUEUE)
1824 goto recv_sndq;
1825
1826 err = -EINVAL;
1827 if (tp->repair_queue == TCP_NO_QUEUE)
1828 goto out;
1829
1830 /* 'common' recv queue MSG_PEEK-ing */
1831 }
1832
1833 seq = &tp->copied_seq;
1834 if (flags & MSG_PEEK) {
1835 peek_seq = tp->copied_seq;
1836 seq = &peek_seq;
1837 }
1838
1839 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1840
1841 do {
1842 u32 offset;
1843
1844 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1845 if (tp->urg_data && tp->urg_seq == *seq) {
1846 if (copied)
1847 break;
1848 if (signal_pending(current)) {
1849 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1850 break;
1851 }
1852 }
1853
1854 /* Next get a buffer. */
1855
1856 last = skb_peek_tail(&sk->sk_receive_queue);
1857 skb_queue_walk(&sk->sk_receive_queue, skb) {
1858 last = skb;
1859 /* Now that we have two receive queues this
1860 * shouldn't happen.
1861 */
1862 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1863 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1864 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1865 flags))
1866 break;
1867
1868 offset = *seq - TCP_SKB_CB(skb)->seq;
1869 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1870 pr_err_once("%s: found a SYN, please report !\n", __func__);
1871 offset--;
1872 }
1873 if (offset < skb->len)
1874 goto found_ok_skb;
1875 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1876 goto found_fin_ok;
1877 WARN(!(flags & MSG_PEEK),
1878 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1879 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1880 }
1881
1882 /* Well, if we have backlog, try to process it now yet. */
1883
1884 if (copied >= target && !sk->sk_backlog.tail)
1885 break;
1886
1887 if (copied) {
1888 if (sk->sk_err ||
1889 sk->sk_state == TCP_CLOSE ||
1890 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1891 !timeo ||
1892 signal_pending(current))
1893 break;
1894 } else {
1895 if (sock_flag(sk, SOCK_DONE))
1896 break;
1897
1898 if (sk->sk_err) {
1899 copied = sock_error(sk);
1900 break;
1901 }
1902
1903 if (sk->sk_shutdown & RCV_SHUTDOWN)
1904 break;
1905
1906 if (sk->sk_state == TCP_CLOSE) {
1907 if (!sock_flag(sk, SOCK_DONE)) {
1908 /* This occurs when user tries to read
1909 * from never connected socket.
1910 */
1911 copied = -ENOTCONN;
1912 break;
1913 }
1914 break;
1915 }
1916
1917 if (!timeo) {
1918 copied = -EAGAIN;
1919 break;
1920 }
1921
1922 if (signal_pending(current)) {
1923 copied = sock_intr_errno(timeo);
1924 break;
1925 }
1926 }
1927
1928 tcp_cleanup_rbuf(sk, copied);
1929
1930 if (copied >= target) {
1931 /* Do not sleep, just process backlog. */
1932 release_sock(sk);
1933 lock_sock(sk);
1934 } else {
1935 sk_wait_data(sk, &timeo, last);
1936 }
1937
1938 if ((flags & MSG_PEEK) &&
1939 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1940 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1941 current->comm,
1942 task_pid_nr(current));
1943 peek_seq = tp->copied_seq;
1944 }
1945 continue;
1946
1947 found_ok_skb:
1948 /* Ok so how much can we use? */
1949 used = skb->len - offset;
1950 if (len < used)
1951 used = len;
1952
1953 /* Do we have urgent data here? */
1954 if (tp->urg_data) {
1955 u32 urg_offset = tp->urg_seq - *seq;
1956 if (urg_offset < used) {
1957 if (!urg_offset) {
1958 if (!sock_flag(sk, SOCK_URGINLINE)) {
1959 ++*seq;
1960 urg_hole++;
1961 offset++;
1962 used--;
1963 if (!used)
1964 goto skip_copy;
1965 }
1966 } else
1967 used = urg_offset;
1968 }
1969 }
1970
1971 if (!(flags & MSG_TRUNC)) {
1972 err = skb_copy_datagram_msg(skb, offset, msg, used);
1973 if (err) {
1974 /* Exception. Bailout! */
1975 if (!copied)
1976 copied = -EFAULT;
1977 break;
1978 }
1979 }
1980
1981 *seq += used;
1982 copied += used;
1983 len -= used;
1984
1985 tcp_rcv_space_adjust(sk);
1986
1987 skip_copy:
1988 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1989 tp->urg_data = 0;
1990 tcp_fast_path_check(sk);
1991 }
1992 if (used + offset < skb->len)
1993 continue;
1994
1995 if (TCP_SKB_CB(skb)->has_rxtstamp) {
1996 tcp_update_recv_tstamps(skb, &tss);
1997 has_tss = true;
1998 }
1999 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2000 goto found_fin_ok;
2001 if (!(flags & MSG_PEEK))
2002 sk_eat_skb(sk, skb);
2003 continue;
2004
2005 found_fin_ok:
2006 /* Process the FIN. */
2007 ++*seq;
2008 if (!(flags & MSG_PEEK))
2009 sk_eat_skb(sk, skb);
2010 break;
2011 } while (len > 0);
2012
2013 /* According to UNIX98, msg_name/msg_namelen are ignored
2014 * on connected socket. I was just happy when found this 8) --ANK
2015 */
2016
2017 if (has_tss)
2018 tcp_recv_timestamp(msg, sk, &tss);
2019
2020 /* Clean up data we have read: This will do ACK frames. */
2021 tcp_cleanup_rbuf(sk, copied);
2022
2023 release_sock(sk);
2024 return copied;
2025
2026 out:
2027 release_sock(sk);
2028 return err;
2029
2030 recv_urg:
2031 err = tcp_recv_urg(sk, msg, len, flags);
2032 goto out;
2033
2034 recv_sndq:
2035 err = tcp_peek_sndq(sk, msg, len);
2036 goto out;
2037 }
2038 EXPORT_SYMBOL(tcp_recvmsg);
2039
2040 void tcp_set_state(struct sock *sk, int state)
2041 {
2042 int oldstate = sk->sk_state;
2043
2044 trace_tcp_set_state(sk, oldstate, state);
2045
2046 switch (state) {
2047 case TCP_ESTABLISHED:
2048 if (oldstate != TCP_ESTABLISHED)
2049 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2050 break;
2051
2052 case TCP_CLOSE:
2053 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2054 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2055
2056 sk->sk_prot->unhash(sk);
2057 if (inet_csk(sk)->icsk_bind_hash &&
2058 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2059 inet_put_port(sk);
2060 /* fall through */
2061 default:
2062 if (oldstate == TCP_ESTABLISHED)
2063 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2064 }
2065
2066 /* Change state AFTER socket is unhashed to avoid closed
2067 * socket sitting in hash tables.
2068 */
2069 sk_state_store(sk, state);
2070
2071 #ifdef STATE_TRACE
2072 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2073 #endif
2074 }
2075 EXPORT_SYMBOL_GPL(tcp_set_state);
2076
2077 /*
2078 * State processing on a close. This implements the state shift for
2079 * sending our FIN frame. Note that we only send a FIN for some
2080 * states. A shutdown() may have already sent the FIN, or we may be
2081 * closed.
2082 */
2083
2084 static const unsigned char new_state[16] = {
2085 /* current state: new state: action: */
2086 [0 /* (Invalid) */] = TCP_CLOSE,
2087 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2088 [TCP_SYN_SENT] = TCP_CLOSE,
2089 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2090 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2091 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2092 [TCP_TIME_WAIT] = TCP_CLOSE,
2093 [TCP_CLOSE] = TCP_CLOSE,
2094 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2095 [TCP_LAST_ACK] = TCP_LAST_ACK,
2096 [TCP_LISTEN] = TCP_CLOSE,
2097 [TCP_CLOSING] = TCP_CLOSING,
2098 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2099 };
2100
2101 static int tcp_close_state(struct sock *sk)
2102 {
2103 int next = (int)new_state[sk->sk_state];
2104 int ns = next & TCP_STATE_MASK;
2105
2106 tcp_set_state(sk, ns);
2107
2108 return next & TCP_ACTION_FIN;
2109 }
2110
2111 /*
2112 * Shutdown the sending side of a connection. Much like close except
2113 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2114 */
2115
2116 void tcp_shutdown(struct sock *sk, int how)
2117 {
2118 /* We need to grab some memory, and put together a FIN,
2119 * and then put it into the queue to be sent.
2120 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2121 */
2122 if (!(how & SEND_SHUTDOWN))
2123 return;
2124
2125 /* If we've already sent a FIN, or it's a closed state, skip this. */
2126 if ((1 << sk->sk_state) &
2127 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2128 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2129 /* Clear out any half completed packets. FIN if needed. */
2130 if (tcp_close_state(sk))
2131 tcp_send_fin(sk);
2132 }
2133 }
2134 EXPORT_SYMBOL(tcp_shutdown);
2135
2136 bool tcp_check_oom(struct sock *sk, int shift)
2137 {
2138 bool too_many_orphans, out_of_socket_memory;
2139
2140 too_many_orphans = tcp_too_many_orphans(sk, shift);
2141 out_of_socket_memory = tcp_out_of_memory(sk);
2142
2143 if (too_many_orphans)
2144 net_info_ratelimited("too many orphaned sockets\n");
2145 if (out_of_socket_memory)
2146 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2147 return too_many_orphans || out_of_socket_memory;
2148 }
2149
2150 void tcp_close(struct sock *sk, long timeout)
2151 {
2152 struct sk_buff *skb;
2153 int data_was_unread = 0;
2154 int state;
2155
2156 lock_sock(sk);
2157 sk->sk_shutdown = SHUTDOWN_MASK;
2158
2159 if (sk->sk_state == TCP_LISTEN) {
2160 tcp_set_state(sk, TCP_CLOSE);
2161
2162 /* Special case. */
2163 inet_csk_listen_stop(sk);
2164
2165 goto adjudge_to_death;
2166 }
2167
2168 /* We need to flush the recv. buffs. We do this only on the
2169 * descriptor close, not protocol-sourced closes, because the
2170 * reader process may not have drained the data yet!
2171 */
2172 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2173 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2174
2175 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2176 len--;
2177 data_was_unread += len;
2178 __kfree_skb(skb);
2179 }
2180
2181 sk_mem_reclaim(sk);
2182
2183 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2184 if (sk->sk_state == TCP_CLOSE)
2185 goto adjudge_to_death;
2186
2187 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2188 * data was lost. To witness the awful effects of the old behavior of
2189 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2190 * GET in an FTP client, suspend the process, wait for the client to
2191 * advertise a zero window, then kill -9 the FTP client, wheee...
2192 * Note: timeout is always zero in such a case.
2193 */
2194 if (unlikely(tcp_sk(sk)->repair)) {
2195 sk->sk_prot->disconnect(sk, 0);
2196 } else if (data_was_unread) {
2197 /* Unread data was tossed, zap the connection. */
2198 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2199 tcp_set_state(sk, TCP_CLOSE);
2200 tcp_send_active_reset(sk, sk->sk_allocation);
2201 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2202 /* Check zero linger _after_ checking for unread data. */
2203 sk->sk_prot->disconnect(sk, 0);
2204 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2205 } else if (tcp_close_state(sk)) {
2206 /* We FIN if the application ate all the data before
2207 * zapping the connection.
2208 */
2209
2210 /* RED-PEN. Formally speaking, we have broken TCP state
2211 * machine. State transitions:
2212 *
2213 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2214 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2215 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2216 *
2217 * are legal only when FIN has been sent (i.e. in window),
2218 * rather than queued out of window. Purists blame.
2219 *
2220 * F.e. "RFC state" is ESTABLISHED,
2221 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2222 *
2223 * The visible declinations are that sometimes
2224 * we enter time-wait state, when it is not required really
2225 * (harmless), do not send active resets, when they are
2226 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2227 * they look as CLOSING or LAST_ACK for Linux)
2228 * Probably, I missed some more holelets.
2229 * --ANK
2230 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2231 * in a single packet! (May consider it later but will
2232 * probably need API support or TCP_CORK SYN-ACK until
2233 * data is written and socket is closed.)
2234 */
2235 tcp_send_fin(sk);
2236 }
2237
2238 sk_stream_wait_close(sk, timeout);
2239
2240 adjudge_to_death:
2241 state = sk->sk_state;
2242 sock_hold(sk);
2243 sock_orphan(sk);
2244
2245 /* It is the last release_sock in its life. It will remove backlog. */
2246 release_sock(sk);
2247
2248
2249 /* Now socket is owned by kernel and we acquire BH lock
2250 * to finish close. No need to check for user refs.
2251 */
2252 local_bh_disable();
2253 bh_lock_sock(sk);
2254 WARN_ON(sock_owned_by_user(sk));
2255
2256 percpu_counter_inc(sk->sk_prot->orphan_count);
2257
2258 /* Have we already been destroyed by a softirq or backlog? */
2259 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2260 goto out;
2261
2262 /* This is a (useful) BSD violating of the RFC. There is a
2263 * problem with TCP as specified in that the other end could
2264 * keep a socket open forever with no application left this end.
2265 * We use a 1 minute timeout (about the same as BSD) then kill
2266 * our end. If they send after that then tough - BUT: long enough
2267 * that we won't make the old 4*rto = almost no time - whoops
2268 * reset mistake.
2269 *
2270 * Nope, it was not mistake. It is really desired behaviour
2271 * f.e. on http servers, when such sockets are useless, but
2272 * consume significant resources. Let's do it with special
2273 * linger2 option. --ANK
2274 */
2275
2276 if (sk->sk_state == TCP_FIN_WAIT2) {
2277 struct tcp_sock *tp = tcp_sk(sk);
2278 if (tp->linger2 < 0) {
2279 tcp_set_state(sk, TCP_CLOSE);
2280 tcp_send_active_reset(sk, GFP_ATOMIC);
2281 __NET_INC_STATS(sock_net(sk),
2282 LINUX_MIB_TCPABORTONLINGER);
2283 } else {
2284 const int tmo = tcp_fin_time(sk);
2285
2286 if (tmo > TCP_TIMEWAIT_LEN) {
2287 inet_csk_reset_keepalive_timer(sk,
2288 tmo - TCP_TIMEWAIT_LEN);
2289 } else {
2290 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2291 goto out;
2292 }
2293 }
2294 }
2295 if (sk->sk_state != TCP_CLOSE) {
2296 sk_mem_reclaim(sk);
2297 if (tcp_check_oom(sk, 0)) {
2298 tcp_set_state(sk, TCP_CLOSE);
2299 tcp_send_active_reset(sk, GFP_ATOMIC);
2300 __NET_INC_STATS(sock_net(sk),
2301 LINUX_MIB_TCPABORTONMEMORY);
2302 } else if (!check_net(sock_net(sk))) {
2303 /* Not possible to send reset; just close */
2304 tcp_set_state(sk, TCP_CLOSE);
2305 }
2306 }
2307
2308 if (sk->sk_state == TCP_CLOSE) {
2309 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2310 /* We could get here with a non-NULL req if the socket is
2311 * aborted (e.g., closed with unread data) before 3WHS
2312 * finishes.
2313 */
2314 if (req)
2315 reqsk_fastopen_remove(sk, req, false);
2316 inet_csk_destroy_sock(sk);
2317 }
2318 /* Otherwise, socket is reprieved until protocol close. */
2319
2320 out:
2321 bh_unlock_sock(sk);
2322 local_bh_enable();
2323 sock_put(sk);
2324 }
2325 EXPORT_SYMBOL(tcp_close);
2326
2327 /* These states need RST on ABORT according to RFC793 */
2328
2329 static inline bool tcp_need_reset(int state)
2330 {
2331 return (1 << state) &
2332 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2333 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2334 }
2335
2336 static void tcp_rtx_queue_purge(struct sock *sk)
2337 {
2338 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2339
2340 while (p) {
2341 struct sk_buff *skb = rb_to_skb(p);
2342
2343 p = rb_next(p);
2344 /* Since we are deleting whole queue, no need to
2345 * list_del(&skb->tcp_tsorted_anchor)
2346 */
2347 tcp_rtx_queue_unlink(skb, sk);
2348 sk_wmem_free_skb(sk, skb);
2349 }
2350 }
2351
2352 void tcp_write_queue_purge(struct sock *sk)
2353 {
2354 struct sk_buff *skb;
2355
2356 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2357 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2358 tcp_skb_tsorted_anchor_cleanup(skb);
2359 sk_wmem_free_skb(sk, skb);
2360 }
2361 tcp_rtx_queue_purge(sk);
2362 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2363 sk_mem_reclaim(sk);
2364 tcp_clear_all_retrans_hints(tcp_sk(sk));
2365 tcp_sk(sk)->packets_out = 0;
2366 }
2367
2368 int tcp_disconnect(struct sock *sk, int flags)
2369 {
2370 struct inet_sock *inet = inet_sk(sk);
2371 struct inet_connection_sock *icsk = inet_csk(sk);
2372 struct tcp_sock *tp = tcp_sk(sk);
2373 int err = 0;
2374 int old_state = sk->sk_state;
2375
2376 if (old_state != TCP_CLOSE)
2377 tcp_set_state(sk, TCP_CLOSE);
2378
2379 /* ABORT function of RFC793 */
2380 if (old_state == TCP_LISTEN) {
2381 inet_csk_listen_stop(sk);
2382 } else if (unlikely(tp->repair)) {
2383 sk->sk_err = ECONNABORTED;
2384 } else if (tcp_need_reset(old_state) ||
2385 (tp->snd_nxt != tp->write_seq &&
2386 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2387 /* The last check adjusts for discrepancy of Linux wrt. RFC
2388 * states
2389 */
2390 tcp_send_active_reset(sk, gfp_any());
2391 sk->sk_err = ECONNRESET;
2392 } else if (old_state == TCP_SYN_SENT)
2393 sk->sk_err = ECONNRESET;
2394
2395 tcp_clear_xmit_timers(sk);
2396 __skb_queue_purge(&sk->sk_receive_queue);
2397 tcp_write_queue_purge(sk);
2398 tcp_fastopen_active_disable_ofo_check(sk);
2399 skb_rbtree_purge(&tp->out_of_order_queue);
2400
2401 inet->inet_dport = 0;
2402
2403 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2404 inet_reset_saddr(sk);
2405
2406 sk->sk_shutdown = 0;
2407 sock_reset_flag(sk, SOCK_DONE);
2408 tp->srtt_us = 0;
2409 tp->write_seq += tp->max_window + 2;
2410 if (tp->write_seq == 0)
2411 tp->write_seq = 1;
2412 icsk->icsk_backoff = 0;
2413 tp->snd_cwnd = 2;
2414 icsk->icsk_probes_out = 0;
2415 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2416 tp->snd_cwnd_cnt = 0;
2417 tp->window_clamp = 0;
2418 tcp_set_ca_state(sk, TCP_CA_Open);
2419 tp->is_sack_reneg = 0;
2420 tcp_clear_retrans(tp);
2421 inet_csk_delack_init(sk);
2422 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2423 * issue in __tcp_select_window()
2424 */
2425 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2426 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2427 __sk_dst_reset(sk);
2428 dst_release(sk->sk_rx_dst);
2429 sk->sk_rx_dst = NULL;
2430 tcp_saved_syn_free(tp);
2431
2432 /* Clean up fastopen related fields */
2433 tcp_free_fastopen_req(tp);
2434 inet->defer_connect = 0;
2435
2436 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2437
2438 if (sk->sk_frag.page) {
2439 put_page(sk->sk_frag.page);
2440 sk->sk_frag.page = NULL;
2441 sk->sk_frag.offset = 0;
2442 }
2443
2444 sk->sk_error_report(sk);
2445 return err;
2446 }
2447 EXPORT_SYMBOL(tcp_disconnect);
2448
2449 static inline bool tcp_can_repair_sock(const struct sock *sk)
2450 {
2451 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2452 (sk->sk_state != TCP_LISTEN);
2453 }
2454
2455 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2456 {
2457 struct tcp_repair_window opt;
2458
2459 if (!tp->repair)
2460 return -EPERM;
2461
2462 if (len != sizeof(opt))
2463 return -EINVAL;
2464
2465 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2466 return -EFAULT;
2467
2468 if (opt.max_window < opt.snd_wnd)
2469 return -EINVAL;
2470
2471 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2472 return -EINVAL;
2473
2474 if (after(opt.rcv_wup, tp->rcv_nxt))
2475 return -EINVAL;
2476
2477 tp->snd_wl1 = opt.snd_wl1;
2478 tp->snd_wnd = opt.snd_wnd;
2479 tp->max_window = opt.max_window;
2480
2481 tp->rcv_wnd = opt.rcv_wnd;
2482 tp->rcv_wup = opt.rcv_wup;
2483
2484 return 0;
2485 }
2486
2487 static int tcp_repair_options_est(struct sock *sk,
2488 struct tcp_repair_opt __user *optbuf, unsigned int len)
2489 {
2490 struct tcp_sock *tp = tcp_sk(sk);
2491 struct tcp_repair_opt opt;
2492
2493 while (len >= sizeof(opt)) {
2494 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2495 return -EFAULT;
2496
2497 optbuf++;
2498 len -= sizeof(opt);
2499
2500 switch (opt.opt_code) {
2501 case TCPOPT_MSS:
2502 tp->rx_opt.mss_clamp = opt.opt_val;
2503 tcp_mtup_init(sk);
2504 break;
2505 case TCPOPT_WINDOW:
2506 {
2507 u16 snd_wscale = opt.opt_val & 0xFFFF;
2508 u16 rcv_wscale = opt.opt_val >> 16;
2509
2510 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2511 return -EFBIG;
2512
2513 tp->rx_opt.snd_wscale = snd_wscale;
2514 tp->rx_opt.rcv_wscale = rcv_wscale;
2515 tp->rx_opt.wscale_ok = 1;
2516 }
2517 break;
2518 case TCPOPT_SACK_PERM:
2519 if (opt.opt_val != 0)
2520 return -EINVAL;
2521
2522 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2523 break;
2524 case TCPOPT_TIMESTAMP:
2525 if (opt.opt_val != 0)
2526 return -EINVAL;
2527
2528 tp->rx_opt.tstamp_ok = 1;
2529 break;
2530 }
2531 }
2532
2533 return 0;
2534 }
2535
2536 /*
2537 * Socket option code for TCP.
2538 */
2539 static int do_tcp_setsockopt(struct sock *sk, int level,
2540 int optname, char __user *optval, unsigned int optlen)
2541 {
2542 struct tcp_sock *tp = tcp_sk(sk);
2543 struct inet_connection_sock *icsk = inet_csk(sk);
2544 struct net *net = sock_net(sk);
2545 int val;
2546 int err = 0;
2547
2548 /* These are data/string values, all the others are ints */
2549 switch (optname) {
2550 case TCP_CONGESTION: {
2551 char name[TCP_CA_NAME_MAX];
2552
2553 if (optlen < 1)
2554 return -EINVAL;
2555
2556 val = strncpy_from_user(name, optval,
2557 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2558 if (val < 0)
2559 return -EFAULT;
2560 name[val] = 0;
2561
2562 lock_sock(sk);
2563 err = tcp_set_congestion_control(sk, name, true, true);
2564 release_sock(sk);
2565 return err;
2566 }
2567 case TCP_ULP: {
2568 char name[TCP_ULP_NAME_MAX];
2569
2570 if (optlen < 1)
2571 return -EINVAL;
2572
2573 val = strncpy_from_user(name, optval,
2574 min_t(long, TCP_ULP_NAME_MAX - 1,
2575 optlen));
2576 if (val < 0)
2577 return -EFAULT;
2578 name[val] = 0;
2579
2580 lock_sock(sk);
2581 err = tcp_set_ulp(sk, name);
2582 release_sock(sk);
2583 return err;
2584 }
2585 case TCP_FASTOPEN_KEY: {
2586 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
2587
2588 if (optlen != sizeof(key))
2589 return -EINVAL;
2590
2591 if (copy_from_user(key, optval, optlen))
2592 return -EFAULT;
2593
2594 return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key));
2595 }
2596 default:
2597 /* fallthru */
2598 break;
2599 }
2600
2601 if (optlen < sizeof(int))
2602 return -EINVAL;
2603
2604 if (get_user(val, (int __user *)optval))
2605 return -EFAULT;
2606
2607 lock_sock(sk);
2608
2609 switch (optname) {
2610 case TCP_MAXSEG:
2611 /* Values greater than interface MTU won't take effect. However
2612 * at the point when this call is done we typically don't yet
2613 * know which interface is going to be used
2614 */
2615 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2616 err = -EINVAL;
2617 break;
2618 }
2619 tp->rx_opt.user_mss = val;
2620 break;
2621
2622 case TCP_NODELAY:
2623 if (val) {
2624 /* TCP_NODELAY is weaker than TCP_CORK, so that
2625 * this option on corked socket is remembered, but
2626 * it is not activated until cork is cleared.
2627 *
2628 * However, when TCP_NODELAY is set we make
2629 * an explicit push, which overrides even TCP_CORK
2630 * for currently queued segments.
2631 */
2632 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2633 tcp_push_pending_frames(sk);
2634 } else {
2635 tp->nonagle &= ~TCP_NAGLE_OFF;
2636 }
2637 break;
2638
2639 case TCP_THIN_LINEAR_TIMEOUTS:
2640 if (val < 0 || val > 1)
2641 err = -EINVAL;
2642 else
2643 tp->thin_lto = val;
2644 break;
2645
2646 case TCP_THIN_DUPACK:
2647 if (val < 0 || val > 1)
2648 err = -EINVAL;
2649 break;
2650
2651 case TCP_REPAIR:
2652 if (!tcp_can_repair_sock(sk))
2653 err = -EPERM;
2654 else if (val == 1) {
2655 tp->repair = 1;
2656 sk->sk_reuse = SK_FORCE_REUSE;
2657 tp->repair_queue = TCP_NO_QUEUE;
2658 } else if (val == 0) {
2659 tp->repair = 0;
2660 sk->sk_reuse = SK_NO_REUSE;
2661 tcp_send_window_probe(sk);
2662 } else
2663 err = -EINVAL;
2664
2665 break;
2666
2667 case TCP_REPAIR_QUEUE:
2668 if (!tp->repair)
2669 err = -EPERM;
2670 else if ((unsigned int)val < TCP_QUEUES_NR)
2671 tp->repair_queue = val;
2672 else
2673 err = -EINVAL;
2674 break;
2675
2676 case TCP_QUEUE_SEQ:
2677 if (sk->sk_state != TCP_CLOSE)
2678 err = -EPERM;
2679 else if (tp->repair_queue == TCP_SEND_QUEUE)
2680 tp->write_seq = val;
2681 else if (tp->repair_queue == TCP_RECV_QUEUE)
2682 tp->rcv_nxt = val;
2683 else
2684 err = -EINVAL;
2685 break;
2686
2687 case TCP_REPAIR_OPTIONS:
2688 if (!tp->repair)
2689 err = -EINVAL;
2690 else if (sk->sk_state == TCP_ESTABLISHED)
2691 err = tcp_repair_options_est(sk,
2692 (struct tcp_repair_opt __user *)optval,
2693 optlen);
2694 else
2695 err = -EPERM;
2696 break;
2697
2698 case TCP_CORK:
2699 /* When set indicates to always queue non-full frames.
2700 * Later the user clears this option and we transmit
2701 * any pending partial frames in the queue. This is
2702 * meant to be used alongside sendfile() to get properly
2703 * filled frames when the user (for example) must write
2704 * out headers with a write() call first and then use
2705 * sendfile to send out the data parts.
2706 *
2707 * TCP_CORK can be set together with TCP_NODELAY and it is
2708 * stronger than TCP_NODELAY.
2709 */
2710 if (val) {
2711 tp->nonagle |= TCP_NAGLE_CORK;
2712 } else {
2713 tp->nonagle &= ~TCP_NAGLE_CORK;
2714 if (tp->nonagle&TCP_NAGLE_OFF)
2715 tp->nonagle |= TCP_NAGLE_PUSH;
2716 tcp_push_pending_frames(sk);
2717 }
2718 break;
2719
2720 case TCP_KEEPIDLE:
2721 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2722 err = -EINVAL;
2723 else {
2724 tp->keepalive_time = val * HZ;
2725 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2726 !((1 << sk->sk_state) &
2727 (TCPF_CLOSE | TCPF_LISTEN))) {
2728 u32 elapsed = keepalive_time_elapsed(tp);
2729 if (tp->keepalive_time > elapsed)
2730 elapsed = tp->keepalive_time - elapsed;
2731 else
2732 elapsed = 0;
2733 inet_csk_reset_keepalive_timer(sk, elapsed);
2734 }
2735 }
2736 break;
2737 case TCP_KEEPINTVL:
2738 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2739 err = -EINVAL;
2740 else
2741 tp->keepalive_intvl = val * HZ;
2742 break;
2743 case TCP_KEEPCNT:
2744 if (val < 1 || val > MAX_TCP_KEEPCNT)
2745 err = -EINVAL;
2746 else
2747 tp->keepalive_probes = val;
2748 break;
2749 case TCP_SYNCNT:
2750 if (val < 1 || val > MAX_TCP_SYNCNT)
2751 err = -EINVAL;
2752 else
2753 icsk->icsk_syn_retries = val;
2754 break;
2755
2756 case TCP_SAVE_SYN:
2757 if (val < 0 || val > 1)
2758 err = -EINVAL;
2759 else
2760 tp->save_syn = val;
2761 break;
2762
2763 case TCP_LINGER2:
2764 if (val < 0)
2765 tp->linger2 = -1;
2766 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2767 tp->linger2 = 0;
2768 else
2769 tp->linger2 = val * HZ;
2770 break;
2771
2772 case TCP_DEFER_ACCEPT:
2773 /* Translate value in seconds to number of retransmits */
2774 icsk->icsk_accept_queue.rskq_defer_accept =
2775 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2776 TCP_RTO_MAX / HZ);
2777 break;
2778
2779 case TCP_WINDOW_CLAMP:
2780 if (!val) {
2781 if (sk->sk_state != TCP_CLOSE) {
2782 err = -EINVAL;
2783 break;
2784 }
2785 tp->window_clamp = 0;
2786 } else
2787 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2788 SOCK_MIN_RCVBUF / 2 : val;
2789 break;
2790
2791 case TCP_QUICKACK:
2792 if (!val) {
2793 icsk->icsk_ack.pingpong = 1;
2794 } else {
2795 icsk->icsk_ack.pingpong = 0;
2796 if ((1 << sk->sk_state) &
2797 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2798 inet_csk_ack_scheduled(sk)) {
2799 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2800 tcp_cleanup_rbuf(sk, 1);
2801 if (!(val & 1))
2802 icsk->icsk_ack.pingpong = 1;
2803 }
2804 }
2805 break;
2806
2807 #ifdef CONFIG_TCP_MD5SIG
2808 case TCP_MD5SIG:
2809 case TCP_MD5SIG_EXT:
2810 if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))
2811 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
2812 else
2813 err = -EINVAL;
2814 break;
2815 #endif
2816 case TCP_USER_TIMEOUT:
2817 /* Cap the max time in ms TCP will retry or probe the window
2818 * before giving up and aborting (ETIMEDOUT) a connection.
2819 */
2820 if (val < 0)
2821 err = -EINVAL;
2822 else
2823 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2824 break;
2825
2826 case TCP_FASTOPEN:
2827 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2828 TCPF_LISTEN))) {
2829 tcp_fastopen_init_key_once(net);
2830
2831 fastopen_queue_tune(sk, val);
2832 } else {
2833 err = -EINVAL;
2834 }
2835 break;
2836 case TCP_FASTOPEN_CONNECT:
2837 if (val > 1 || val < 0) {
2838 err = -EINVAL;
2839 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
2840 if (sk->sk_state == TCP_CLOSE)
2841 tp->fastopen_connect = val;
2842 else
2843 err = -EINVAL;
2844 } else {
2845 err = -EOPNOTSUPP;
2846 }
2847 break;
2848 case TCP_FASTOPEN_NO_COOKIE:
2849 if (val > 1 || val < 0)
2850 err = -EINVAL;
2851 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2852 err = -EINVAL;
2853 else
2854 tp->fastopen_no_cookie = val;
2855 break;
2856 case TCP_TIMESTAMP:
2857 if (!tp->repair)
2858 err = -EPERM;
2859 else
2860 tp->tsoffset = val - tcp_time_stamp_raw();
2861 break;
2862 case TCP_REPAIR_WINDOW:
2863 err = tcp_repair_set_window(tp, optval, optlen);
2864 break;
2865 case TCP_NOTSENT_LOWAT:
2866 tp->notsent_lowat = val;
2867 sk->sk_write_space(sk);
2868 break;
2869 default:
2870 err = -ENOPROTOOPT;
2871 break;
2872 }
2873
2874 release_sock(sk);
2875 return err;
2876 }
2877
2878 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2879 unsigned int optlen)
2880 {
2881 const struct inet_connection_sock *icsk = inet_csk(sk);
2882
2883 if (level != SOL_TCP)
2884 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2885 optval, optlen);
2886 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2887 }
2888 EXPORT_SYMBOL(tcp_setsockopt);
2889
2890 #ifdef CONFIG_COMPAT
2891 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2892 char __user *optval, unsigned int optlen)
2893 {
2894 if (level != SOL_TCP)
2895 return inet_csk_compat_setsockopt(sk, level, optname,
2896 optval, optlen);
2897 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2898 }
2899 EXPORT_SYMBOL(compat_tcp_setsockopt);
2900 #endif
2901
2902 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
2903 struct tcp_info *info)
2904 {
2905 u64 stats[__TCP_CHRONO_MAX], total = 0;
2906 enum tcp_chrono i;
2907
2908 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
2909 stats[i] = tp->chrono_stat[i - 1];
2910 if (i == tp->chrono_type)
2911 stats[i] += tcp_jiffies32 - tp->chrono_start;
2912 stats[i] *= USEC_PER_SEC / HZ;
2913 total += stats[i];
2914 }
2915
2916 info->tcpi_busy_time = total;
2917 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
2918 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
2919 }
2920
2921 /* Return information about state of tcp endpoint in API format. */
2922 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2923 {
2924 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2925 const struct inet_connection_sock *icsk = inet_csk(sk);
2926 u32 now;
2927 u64 rate64;
2928 bool slow;
2929 u32 rate;
2930
2931 memset(info, 0, sizeof(*info));
2932 if (sk->sk_type != SOCK_STREAM)
2933 return;
2934
2935 info->tcpi_state = sk_state_load(sk);
2936
2937 /* Report meaningful fields for all TCP states, including listeners */
2938 rate = READ_ONCE(sk->sk_pacing_rate);
2939 rate64 = rate != ~0U ? rate : ~0ULL;
2940 info->tcpi_pacing_rate = rate64;
2941
2942 rate = READ_ONCE(sk->sk_max_pacing_rate);
2943 rate64 = rate != ~0U ? rate : ~0ULL;
2944 info->tcpi_max_pacing_rate = rate64;
2945
2946 info->tcpi_reordering = tp->reordering;
2947 info->tcpi_snd_cwnd = tp->snd_cwnd;
2948
2949 if (info->tcpi_state == TCP_LISTEN) {
2950 /* listeners aliased fields :
2951 * tcpi_unacked -> Number of children ready for accept()
2952 * tcpi_sacked -> max backlog
2953 */
2954 info->tcpi_unacked = sk->sk_ack_backlog;
2955 info->tcpi_sacked = sk->sk_max_ack_backlog;
2956 return;
2957 }
2958
2959 slow = lock_sock_fast(sk);
2960
2961 info->tcpi_ca_state = icsk->icsk_ca_state;
2962 info->tcpi_retransmits = icsk->icsk_retransmits;
2963 info->tcpi_probes = icsk->icsk_probes_out;
2964 info->tcpi_backoff = icsk->icsk_backoff;
2965
2966 if (tp->rx_opt.tstamp_ok)
2967 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2968 if (tcp_is_sack(tp))
2969 info->tcpi_options |= TCPI_OPT_SACK;
2970 if (tp->rx_opt.wscale_ok) {
2971 info->tcpi_options |= TCPI_OPT_WSCALE;
2972 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2973 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2974 }
2975
2976 if (tp->ecn_flags & TCP_ECN_OK)
2977 info->tcpi_options |= TCPI_OPT_ECN;
2978 if (tp->ecn_flags & TCP_ECN_SEEN)
2979 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2980 if (tp->syn_data_acked)
2981 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2982
2983 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2984 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2985 info->tcpi_snd_mss = tp->mss_cache;
2986 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2987
2988 info->tcpi_unacked = tp->packets_out;
2989 info->tcpi_sacked = tp->sacked_out;
2990
2991 info->tcpi_lost = tp->lost_out;
2992 info->tcpi_retrans = tp->retrans_out;
2993
2994 now = tcp_jiffies32;
2995 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2996 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2997 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2998
2999 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3000 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3001 info->tcpi_rtt = tp->srtt_us >> 3;
3002 info->tcpi_rttvar = tp->mdev_us >> 2;
3003 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3004 info->tcpi_advmss = tp->advmss;
3005
3006 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3007 info->tcpi_rcv_space = tp->rcvq_space.space;
3008
3009 info->tcpi_total_retrans = tp->total_retrans;
3010
3011 info->tcpi_bytes_acked = tp->bytes_acked;
3012 info->tcpi_bytes_received = tp->bytes_received;
3013 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3014 tcp_get_info_chrono_stats(tp, info);
3015
3016 info->tcpi_segs_out = tp->segs_out;
3017 info->tcpi_segs_in = tp->segs_in;
3018
3019 info->tcpi_min_rtt = tcp_min_rtt(tp);
3020 info->tcpi_data_segs_in = tp->data_segs_in;
3021 info->tcpi_data_segs_out = tp->data_segs_out;
3022
3023 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3024 rate64 = tcp_compute_delivery_rate(tp);
3025 if (rate64)
3026 info->tcpi_delivery_rate = rate64;
3027 unlock_sock_fast(sk, slow);
3028 }
3029 EXPORT_SYMBOL_GPL(tcp_get_info);
3030
3031 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
3032 {
3033 const struct tcp_sock *tp = tcp_sk(sk);
3034 struct sk_buff *stats;
3035 struct tcp_info info;
3036 u64 rate64;
3037 u32 rate;
3038
3039 stats = alloc_skb(7 * nla_total_size_64bit(sizeof(u64)) +
3040 3 * nla_total_size(sizeof(u32)) +
3041 2 * nla_total_size(sizeof(u8)), GFP_ATOMIC);
3042 if (!stats)
3043 return NULL;
3044
3045 tcp_get_info_chrono_stats(tp, &info);
3046 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3047 info.tcpi_busy_time, TCP_NLA_PAD);
3048 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3049 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3050 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3051 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3052 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3053 tp->data_segs_out, TCP_NLA_PAD);
3054 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3055 tp->total_retrans, TCP_NLA_PAD);
3056
3057 rate = READ_ONCE(sk->sk_pacing_rate);
3058 rate64 = rate != ~0U ? rate : ~0ULL;
3059 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3060
3061 rate64 = tcp_compute_delivery_rate(tp);
3062 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3063
3064 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3065 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3066 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3067
3068 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3069 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3070 return stats;
3071 }
3072
3073 static int do_tcp_getsockopt(struct sock *sk, int level,
3074 int optname, char __user *optval, int __user *optlen)
3075 {
3076 struct inet_connection_sock *icsk = inet_csk(sk);
3077 struct tcp_sock *tp = tcp_sk(sk);
3078 struct net *net = sock_net(sk);
3079 int val, len;
3080
3081 if (get_user(len, optlen))
3082 return -EFAULT;
3083
3084 len = min_t(unsigned int, len, sizeof(int));
3085
3086 if (len < 0)
3087 return -EINVAL;
3088
3089 switch (optname) {
3090 case TCP_MAXSEG:
3091 val = tp->mss_cache;
3092 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3093 val = tp->rx_opt.user_mss;
3094 if (tp->repair)
3095 val = tp->rx_opt.mss_clamp;
3096 break;
3097 case TCP_NODELAY:
3098 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3099 break;
3100 case TCP_CORK:
3101 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3102 break;
3103 case TCP_KEEPIDLE:
3104 val = keepalive_time_when(tp) / HZ;
3105 break;
3106 case TCP_KEEPINTVL:
3107 val = keepalive_intvl_when(tp) / HZ;
3108 break;
3109 case TCP_KEEPCNT:
3110 val = keepalive_probes(tp);
3111 break;
3112 case TCP_SYNCNT:
3113 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3114 break;
3115 case TCP_LINGER2:
3116 val = tp->linger2;
3117 if (val >= 0)
3118 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3119 break;
3120 case TCP_DEFER_ACCEPT:
3121 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3122 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3123 break;
3124 case TCP_WINDOW_CLAMP:
3125 val = tp->window_clamp;
3126 break;
3127 case TCP_INFO: {
3128 struct tcp_info info;
3129
3130 if (get_user(len, optlen))
3131 return -EFAULT;
3132
3133 tcp_get_info(sk, &info);
3134
3135 len = min_t(unsigned int, len, sizeof(info));
3136 if (put_user(len, optlen))
3137 return -EFAULT;
3138 if (copy_to_user(optval, &info, len))
3139 return -EFAULT;
3140 return 0;
3141 }
3142 case TCP_CC_INFO: {
3143 const struct tcp_congestion_ops *ca_ops;
3144 union tcp_cc_info info;
3145 size_t sz = 0;
3146 int attr;
3147
3148 if (get_user(len, optlen))
3149 return -EFAULT;
3150
3151 ca_ops = icsk->icsk_ca_ops;
3152 if (ca_ops && ca_ops->get_info)
3153 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3154
3155 len = min_t(unsigned int, len, sz);
3156 if (put_user(len, optlen))
3157 return -EFAULT;
3158 if (copy_to_user(optval, &info, len))
3159 return -EFAULT;
3160 return 0;
3161 }
3162 case TCP_QUICKACK:
3163 val = !icsk->icsk_ack.pingpong;
3164 break;
3165
3166 case TCP_CONGESTION:
3167 if (get_user(len, optlen))
3168 return -EFAULT;
3169 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3170 if (put_user(len, optlen))
3171 return -EFAULT;
3172 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3173 return -EFAULT;
3174 return 0;
3175
3176 case TCP_ULP:
3177 if (get_user(len, optlen))
3178 return -EFAULT;
3179 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3180 if (!icsk->icsk_ulp_ops) {
3181 if (put_user(0, optlen))
3182 return -EFAULT;
3183 return 0;
3184 }
3185 if (put_user(len, optlen))
3186 return -EFAULT;
3187 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3188 return -EFAULT;
3189 return 0;
3190
3191 case TCP_FASTOPEN_KEY: {
3192 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
3193 struct tcp_fastopen_context *ctx;
3194
3195 if (get_user(len, optlen))
3196 return -EFAULT;
3197
3198 rcu_read_lock();
3199 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
3200 if (ctx)
3201 memcpy(key, ctx->key, sizeof(key));
3202 else
3203 len = 0;
3204 rcu_read_unlock();
3205
3206 len = min_t(unsigned int, len, sizeof(key));
3207 if (put_user(len, optlen))
3208 return -EFAULT;
3209 if (copy_to_user(optval, key, len))
3210 return -EFAULT;
3211 return 0;
3212 }
3213 case TCP_THIN_LINEAR_TIMEOUTS:
3214 val = tp->thin_lto;
3215 break;
3216
3217 case TCP_THIN_DUPACK:
3218 val = 0;
3219 break;
3220
3221 case TCP_REPAIR:
3222 val = tp->repair;
3223 break;
3224
3225 case TCP_REPAIR_QUEUE:
3226 if (tp->repair)
3227 val = tp->repair_queue;
3228 else
3229 return -EINVAL;
3230 break;
3231
3232 case TCP_REPAIR_WINDOW: {
3233 struct tcp_repair_window opt;
3234
3235 if (get_user(len, optlen))
3236 return -EFAULT;
3237
3238 if (len != sizeof(opt))
3239 return -EINVAL;
3240
3241 if (!tp->repair)
3242 return -EPERM;
3243
3244 opt.snd_wl1 = tp->snd_wl1;
3245 opt.snd_wnd = tp->snd_wnd;
3246 opt.max_window = tp->max_window;
3247 opt.rcv_wnd = tp->rcv_wnd;
3248 opt.rcv_wup = tp->rcv_wup;
3249
3250 if (copy_to_user(optval, &opt, len))
3251 return -EFAULT;
3252 return 0;
3253 }
3254 case TCP_QUEUE_SEQ:
3255 if (tp->repair_queue == TCP_SEND_QUEUE)
3256 val = tp->write_seq;
3257 else if (tp->repair_queue == TCP_RECV_QUEUE)
3258 val = tp->rcv_nxt;
3259 else
3260 return -EINVAL;
3261 break;
3262
3263 case TCP_USER_TIMEOUT:
3264 val = jiffies_to_msecs(icsk->icsk_user_timeout);
3265 break;
3266
3267 case TCP_FASTOPEN:
3268 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3269 break;
3270
3271 case TCP_FASTOPEN_CONNECT:
3272 val = tp->fastopen_connect;
3273 break;
3274
3275 case TCP_FASTOPEN_NO_COOKIE:
3276 val = tp->fastopen_no_cookie;
3277 break;
3278
3279 case TCP_TIMESTAMP:
3280 val = tcp_time_stamp_raw() + tp->tsoffset;
3281 break;
3282 case TCP_NOTSENT_LOWAT:
3283 val = tp->notsent_lowat;
3284 break;
3285 case TCP_SAVE_SYN:
3286 val = tp->save_syn;
3287 break;
3288 case TCP_SAVED_SYN: {
3289 if (get_user(len, optlen))
3290 return -EFAULT;
3291
3292 lock_sock(sk);
3293 if (tp->saved_syn) {
3294 if (len < tp->saved_syn[0]) {
3295 if (put_user(tp->saved_syn[0], optlen)) {
3296 release_sock(sk);
3297 return -EFAULT;
3298 }
3299 release_sock(sk);
3300 return -EINVAL;
3301 }
3302 len = tp->saved_syn[0];
3303 if (put_user(len, optlen)) {
3304 release_sock(sk);
3305 return -EFAULT;
3306 }
3307 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3308 release_sock(sk);
3309 return -EFAULT;
3310 }
3311 tcp_saved_syn_free(tp);
3312 release_sock(sk);
3313 } else {
3314 release_sock(sk);
3315 len = 0;
3316 if (put_user(len, optlen))
3317 return -EFAULT;
3318 }
3319 return 0;
3320 }
3321 default:
3322 return -ENOPROTOOPT;
3323 }
3324
3325 if (put_user(len, optlen))
3326 return -EFAULT;
3327 if (copy_to_user(optval, &val, len))
3328 return -EFAULT;
3329 return 0;
3330 }
3331
3332 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3333 int __user *optlen)
3334 {
3335 struct inet_connection_sock *icsk = inet_csk(sk);
3336
3337 if (level != SOL_TCP)
3338 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3339 optval, optlen);
3340 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3341 }
3342 EXPORT_SYMBOL(tcp_getsockopt);
3343
3344 #ifdef CONFIG_COMPAT
3345 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3346 char __user *optval, int __user *optlen)
3347 {
3348 if (level != SOL_TCP)
3349 return inet_csk_compat_getsockopt(sk, level, optname,
3350 optval, optlen);
3351 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3352 }
3353 EXPORT_SYMBOL(compat_tcp_getsockopt);
3354 #endif
3355
3356 #ifdef CONFIG_TCP_MD5SIG
3357 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3358 static DEFINE_MUTEX(tcp_md5sig_mutex);
3359 static bool tcp_md5sig_pool_populated = false;
3360
3361 static void __tcp_alloc_md5sig_pool(void)
3362 {
3363 struct crypto_ahash *hash;
3364 int cpu;
3365
3366 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3367 if (IS_ERR(hash))
3368 return;
3369
3370 for_each_possible_cpu(cpu) {
3371 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3372 struct ahash_request *req;
3373
3374 if (!scratch) {
3375 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3376 sizeof(struct tcphdr),
3377 GFP_KERNEL,
3378 cpu_to_node(cpu));
3379 if (!scratch)
3380 return;
3381 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3382 }
3383 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3384 continue;
3385
3386 req = ahash_request_alloc(hash, GFP_KERNEL);
3387 if (!req)
3388 return;
3389
3390 ahash_request_set_callback(req, 0, NULL, NULL);
3391
3392 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3393 }
3394 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3395 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3396 */
3397 smp_wmb();
3398 tcp_md5sig_pool_populated = true;
3399 }
3400
3401 bool tcp_alloc_md5sig_pool(void)
3402 {
3403 if (unlikely(!tcp_md5sig_pool_populated)) {
3404 mutex_lock(&tcp_md5sig_mutex);
3405
3406 if (!tcp_md5sig_pool_populated)
3407 __tcp_alloc_md5sig_pool();
3408
3409 mutex_unlock(&tcp_md5sig_mutex);
3410 }
3411 return tcp_md5sig_pool_populated;
3412 }
3413 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3414
3415
3416 /**
3417 * tcp_get_md5sig_pool - get md5sig_pool for this user
3418 *
3419 * We use percpu structure, so if we succeed, we exit with preemption
3420 * and BH disabled, to make sure another thread or softirq handling
3421 * wont try to get same context.
3422 */
3423 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3424 {
3425 local_bh_disable();
3426
3427 if (tcp_md5sig_pool_populated) {
3428 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3429 smp_rmb();
3430 return this_cpu_ptr(&tcp_md5sig_pool);
3431 }
3432 local_bh_enable();
3433 return NULL;
3434 }
3435 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3436
3437 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3438 const struct sk_buff *skb, unsigned int header_len)
3439 {
3440 struct scatterlist sg;
3441 const struct tcphdr *tp = tcp_hdr(skb);
3442 struct ahash_request *req = hp->md5_req;
3443 unsigned int i;
3444 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3445 skb_headlen(skb) - header_len : 0;
3446 const struct skb_shared_info *shi = skb_shinfo(skb);
3447 struct sk_buff *frag_iter;
3448
3449 sg_init_table(&sg, 1);
3450
3451 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3452 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3453 if (crypto_ahash_update(req))
3454 return 1;
3455
3456 for (i = 0; i < shi->nr_frags; ++i) {
3457 const struct skb_frag_struct *f = &shi->frags[i];
3458 unsigned int offset = f->page_offset;
3459 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3460
3461 sg_set_page(&sg, page, skb_frag_size(f),
3462 offset_in_page(offset));
3463 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3464 if (crypto_ahash_update(req))
3465 return 1;
3466 }
3467
3468 skb_walk_frags(skb, frag_iter)
3469 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3470 return 1;
3471
3472 return 0;
3473 }
3474 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3475
3476 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3477 {
3478 struct scatterlist sg;
3479
3480 sg_init_one(&sg, key->key, key->keylen);
3481 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3482 return crypto_ahash_update(hp->md5_req);
3483 }
3484 EXPORT_SYMBOL(tcp_md5_hash_key);
3485
3486 #endif
3487
3488 void tcp_done(struct sock *sk)
3489 {
3490 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3491
3492 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3493 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3494
3495 tcp_set_state(sk, TCP_CLOSE);
3496 tcp_clear_xmit_timers(sk);
3497 if (req)
3498 reqsk_fastopen_remove(sk, req, false);
3499
3500 sk->sk_shutdown = SHUTDOWN_MASK;
3501
3502 if (!sock_flag(sk, SOCK_DEAD))
3503 sk->sk_state_change(sk);
3504 else
3505 inet_csk_destroy_sock(sk);
3506 }
3507 EXPORT_SYMBOL_GPL(tcp_done);
3508
3509 int tcp_abort(struct sock *sk, int err)
3510 {
3511 if (!sk_fullsock(sk)) {
3512 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3513 struct request_sock *req = inet_reqsk(sk);
3514
3515 local_bh_disable();
3516 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3517 req);
3518 local_bh_enable();
3519 return 0;
3520 }
3521 return -EOPNOTSUPP;
3522 }
3523
3524 /* Don't race with userspace socket closes such as tcp_close. */
3525 lock_sock(sk);
3526
3527 if (sk->sk_state == TCP_LISTEN) {
3528 tcp_set_state(sk, TCP_CLOSE);
3529 inet_csk_listen_stop(sk);
3530 }
3531
3532 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3533 local_bh_disable();
3534 bh_lock_sock(sk);
3535
3536 if (!sock_flag(sk, SOCK_DEAD)) {
3537 sk->sk_err = err;
3538 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3539 smp_wmb();
3540 sk->sk_error_report(sk);
3541 if (tcp_need_reset(sk->sk_state))
3542 tcp_send_active_reset(sk, GFP_ATOMIC);
3543 tcp_done(sk);
3544 }
3545
3546 bh_unlock_sock(sk);
3547 local_bh_enable();
3548 tcp_write_queue_purge(sk);
3549 release_sock(sk);
3550 return 0;
3551 }
3552 EXPORT_SYMBOL_GPL(tcp_abort);
3553
3554 extern struct tcp_congestion_ops tcp_reno;
3555
3556 static __initdata unsigned long thash_entries;
3557 static int __init set_thash_entries(char *str)
3558 {
3559 ssize_t ret;
3560
3561 if (!str)
3562 return 0;
3563
3564 ret = kstrtoul(str, 0, &thash_entries);
3565 if (ret)
3566 return 0;
3567
3568 return 1;
3569 }
3570 __setup("thash_entries=", set_thash_entries);
3571
3572 static void __init tcp_init_mem(void)
3573 {
3574 unsigned long limit = nr_free_buffer_pages() / 16;
3575
3576 limit = max(limit, 128UL);
3577 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3578 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3579 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3580 }
3581
3582 void __init tcp_init(void)
3583 {
3584 int max_rshare, max_wshare, cnt;
3585 unsigned long limit;
3586 unsigned int i;
3587
3588 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3589 FIELD_SIZEOF(struct sk_buff, cb));
3590
3591 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3592 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3593 inet_hashinfo_init(&tcp_hashinfo);
3594 tcp_hashinfo.bind_bucket_cachep =
3595 kmem_cache_create("tcp_bind_bucket",
3596 sizeof(struct inet_bind_bucket), 0,
3597 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3598
3599 /* Size and allocate the main established and bind bucket
3600 * hash tables.
3601 *
3602 * The methodology is similar to that of the buffer cache.
3603 */
3604 tcp_hashinfo.ehash =
3605 alloc_large_system_hash("TCP established",
3606 sizeof(struct inet_ehash_bucket),
3607 thash_entries,
3608 17, /* one slot per 128 KB of memory */
3609 0,
3610 NULL,
3611 &tcp_hashinfo.ehash_mask,
3612 0,
3613 thash_entries ? 0 : 512 * 1024);
3614 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3615 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3616
3617 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3618 panic("TCP: failed to alloc ehash_locks");
3619 tcp_hashinfo.bhash =
3620 alloc_large_system_hash("TCP bind",
3621 sizeof(struct inet_bind_hashbucket),
3622 tcp_hashinfo.ehash_mask + 1,
3623 17, /* one slot per 128 KB of memory */
3624 0,
3625 &tcp_hashinfo.bhash_size,
3626 NULL,
3627 0,
3628 64 * 1024);
3629 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3630 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3631 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3632 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3633 }
3634
3635
3636 cnt = tcp_hashinfo.ehash_mask + 1;
3637 sysctl_tcp_max_orphans = cnt / 2;
3638
3639 tcp_init_mem();
3640 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3641 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3642 max_wshare = min(4UL*1024*1024, limit);
3643 max_rshare = min(6UL*1024*1024, limit);
3644
3645 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3646 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
3647 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3648
3649 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3650 init_net.ipv4.sysctl_tcp_rmem[1] = 87380;
3651 init_net.ipv4.sysctl_tcp_rmem[2] = max(87380, max_rshare);
3652
3653 pr_info("Hash tables configured (established %u bind %u)\n",
3654 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3655
3656 tcp_v4_init();
3657 tcp_metrics_init();
3658 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3659 tcp_tasklet_init();
3660 }