]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/tcp.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248 #define pr_fmt(fmt) "TCP: " fmt
249
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 #include <linux/errqueue.h>
273 #include <linux/static_key.h>
274
275 #include <net/icmp.h>
276 #include <net/inet_common.h>
277 #include <net/tcp.h>
278 #include <net/xfrm.h>
279 #include <net/ip.h>
280 #include <net/sock.h>
281
282 #include <linux/uaccess.h>
283 #include <asm/ioctls.h>
284 #include <net/busy_poll.h>
285
286 #include <trace/events/tcp.h>
287
288 struct percpu_counter tcp_orphan_count;
289 EXPORT_SYMBOL_GPL(tcp_orphan_count);
290
291 long sysctl_tcp_mem[3] __read_mostly;
292 EXPORT_SYMBOL(sysctl_tcp_mem);
293
294 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
295 EXPORT_SYMBOL(tcp_memory_allocated);
296
297 #if IS_ENABLED(CONFIG_SMC)
298 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
299 EXPORT_SYMBOL(tcp_have_smc);
300 #endif
301
302 /*
303 * Current number of TCP sockets.
304 */
305 struct percpu_counter tcp_sockets_allocated;
306 EXPORT_SYMBOL(tcp_sockets_allocated);
307
308 /*
309 * TCP splice context
310 */
311 struct tcp_splice_state {
312 struct pipe_inode_info *pipe;
313 size_t len;
314 unsigned int flags;
315 };
316
317 /*
318 * Pressure flag: try to collapse.
319 * Technical note: it is used by multiple contexts non atomically.
320 * All the __sk_mem_schedule() is of this nature: accounting
321 * is strict, actions are advisory and have some latency.
322 */
323 unsigned long tcp_memory_pressure __read_mostly;
324 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
325
326 void tcp_enter_memory_pressure(struct sock *sk)
327 {
328 unsigned long val;
329
330 if (READ_ONCE(tcp_memory_pressure))
331 return;
332 val = jiffies;
333
334 if (!val)
335 val--;
336 if (!cmpxchg(&tcp_memory_pressure, 0, val))
337 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
338 }
339 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
340
341 void tcp_leave_memory_pressure(struct sock *sk)
342 {
343 unsigned long val;
344
345 if (!READ_ONCE(tcp_memory_pressure))
346 return;
347 val = xchg(&tcp_memory_pressure, 0);
348 if (val)
349 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
350 jiffies_to_msecs(jiffies - val));
351 }
352 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
353
354 /* Convert seconds to retransmits based on initial and max timeout */
355 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
356 {
357 u8 res = 0;
358
359 if (seconds > 0) {
360 int period = timeout;
361
362 res = 1;
363 while (seconds > period && res < 255) {
364 res++;
365 timeout <<= 1;
366 if (timeout > rto_max)
367 timeout = rto_max;
368 period += timeout;
369 }
370 }
371 return res;
372 }
373
374 /* Convert retransmits to seconds based on initial and max timeout */
375 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
376 {
377 int period = 0;
378
379 if (retrans > 0) {
380 period = timeout;
381 while (--retrans) {
382 timeout <<= 1;
383 if (timeout > rto_max)
384 timeout = rto_max;
385 period += timeout;
386 }
387 }
388 return period;
389 }
390
391 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
392 {
393 u32 rate = READ_ONCE(tp->rate_delivered);
394 u32 intv = READ_ONCE(tp->rate_interval_us);
395 u64 rate64 = 0;
396
397 if (rate && intv) {
398 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
399 do_div(rate64, intv);
400 }
401 return rate64;
402 }
403
404 /* Address-family independent initialization for a tcp_sock.
405 *
406 * NOTE: A lot of things set to zero explicitly by call to
407 * sk_alloc() so need not be done here.
408 */
409 void tcp_init_sock(struct sock *sk)
410 {
411 struct inet_connection_sock *icsk = inet_csk(sk);
412 struct tcp_sock *tp = tcp_sk(sk);
413
414 tp->out_of_order_queue = RB_ROOT;
415 sk->tcp_rtx_queue = RB_ROOT;
416 tcp_init_xmit_timers(sk);
417 INIT_LIST_HEAD(&tp->tsq_node);
418 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
419
420 icsk->icsk_rto = TCP_TIMEOUT_INIT;
421 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
422 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
423
424 /* So many TCP implementations out there (incorrectly) count the
425 * initial SYN frame in their delayed-ACK and congestion control
426 * algorithms that we must have the following bandaid to talk
427 * efficiently to them. -DaveM
428 */
429 tp->snd_cwnd = TCP_INIT_CWND;
430
431 /* There's a bubble in the pipe until at least the first ACK. */
432 tp->app_limited = ~0U;
433
434 /* See draft-stevens-tcpca-spec-01 for discussion of the
435 * initialization of these values.
436 */
437 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
438 tp->snd_cwnd_clamp = ~0;
439 tp->mss_cache = TCP_MSS_DEFAULT;
440
441 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
442 tcp_assign_congestion_control(sk);
443
444 tp->tsoffset = 0;
445 tp->rack.reo_wnd_steps = 1;
446
447 sk->sk_state = TCP_CLOSE;
448
449 sk->sk_write_space = sk_stream_write_space;
450 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
451
452 icsk->icsk_sync_mss = tcp_sync_mss;
453
454 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
455 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
456
457 sk_sockets_allocated_inc(sk);
458 }
459 EXPORT_SYMBOL(tcp_init_sock);
460
461 void tcp_init_transfer(struct sock *sk, int bpf_op)
462 {
463 struct inet_connection_sock *icsk = inet_csk(sk);
464
465 tcp_mtup_init(sk);
466 icsk->icsk_af_ops->rebuild_header(sk);
467 tcp_init_metrics(sk);
468 tcp_call_bpf(sk, bpf_op);
469 tcp_init_congestion_control(sk);
470 tcp_init_buffer_space(sk);
471 }
472
473 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
474 {
475 struct sk_buff *skb = tcp_write_queue_tail(sk);
476
477 if (tsflags && skb) {
478 struct skb_shared_info *shinfo = skb_shinfo(skb);
479 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
480
481 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
482 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
483 tcb->txstamp_ack = 1;
484 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
485 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
486 }
487 }
488
489 /*
490 * Wait for a TCP event.
491 *
492 * Note that we don't need to lock the socket, as the upper poll layers
493 * take care of normal races (between the test and the event) and we don't
494 * go look at any of the socket buffers directly.
495 */
496 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
497 {
498 unsigned int mask;
499 struct sock *sk = sock->sk;
500 const struct tcp_sock *tp = tcp_sk(sk);
501 int state;
502
503 sock_rps_record_flow(sk);
504
505 sock_poll_wait(file, sk_sleep(sk), wait);
506
507 state = sk_state_load(sk);
508 if (state == TCP_LISTEN)
509 return inet_csk_listen_poll(sk);
510
511 /* Socket is not locked. We are protected from async events
512 * by poll logic and correct handling of state changes
513 * made by other threads is impossible in any case.
514 */
515
516 mask = 0;
517
518 /*
519 * POLLHUP is certainly not done right. But poll() doesn't
520 * have a notion of HUP in just one direction, and for a
521 * socket the read side is more interesting.
522 *
523 * Some poll() documentation says that POLLHUP is incompatible
524 * with the POLLOUT/POLLWR flags, so somebody should check this
525 * all. But careful, it tends to be safer to return too many
526 * bits than too few, and you can easily break real applications
527 * if you don't tell them that something has hung up!
528 *
529 * Check-me.
530 *
531 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
532 * our fs/select.c). It means that after we received EOF,
533 * poll always returns immediately, making impossible poll() on write()
534 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
535 * if and only if shutdown has been made in both directions.
536 * Actually, it is interesting to look how Solaris and DUX
537 * solve this dilemma. I would prefer, if POLLHUP were maskable,
538 * then we could set it on SND_SHUTDOWN. BTW examples given
539 * in Stevens' books assume exactly this behaviour, it explains
540 * why POLLHUP is incompatible with POLLOUT. --ANK
541 *
542 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
543 * blocking on fresh not-connected or disconnected socket. --ANK
544 */
545 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
546 mask |= POLLHUP;
547 if (sk->sk_shutdown & RCV_SHUTDOWN)
548 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
549
550 /* Connected or passive Fast Open socket? */
551 if (state != TCP_SYN_SENT &&
552 (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
553 int target = sock_rcvlowat(sk, 0, INT_MAX);
554
555 if (tp->urg_seq == tp->copied_seq &&
556 !sock_flag(sk, SOCK_URGINLINE) &&
557 tp->urg_data)
558 target++;
559
560 if (tp->rcv_nxt - tp->copied_seq >= target)
561 mask |= POLLIN | POLLRDNORM;
562
563 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
564 if (sk_stream_is_writeable(sk)) {
565 mask |= POLLOUT | POLLWRNORM;
566 } else { /* send SIGIO later */
567 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
568 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
569
570 /* Race breaker. If space is freed after
571 * wspace test but before the flags are set,
572 * IO signal will be lost. Memory barrier
573 * pairs with the input side.
574 */
575 smp_mb__after_atomic();
576 if (sk_stream_is_writeable(sk))
577 mask |= POLLOUT | POLLWRNORM;
578 }
579 } else
580 mask |= POLLOUT | POLLWRNORM;
581
582 if (tp->urg_data & TCP_URG_VALID)
583 mask |= POLLPRI;
584 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
585 /* Active TCP fastopen socket with defer_connect
586 * Return POLLOUT so application can call write()
587 * in order for kernel to generate SYN+data
588 */
589 mask |= POLLOUT | POLLWRNORM;
590 }
591 /* This barrier is coupled with smp_wmb() in tcp_reset() */
592 smp_rmb();
593 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
594 mask |= POLLERR;
595
596 return mask;
597 }
598 EXPORT_SYMBOL(tcp_poll);
599
600 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
601 {
602 struct tcp_sock *tp = tcp_sk(sk);
603 int answ;
604 bool slow;
605
606 switch (cmd) {
607 case SIOCINQ:
608 if (sk->sk_state == TCP_LISTEN)
609 return -EINVAL;
610
611 slow = lock_sock_fast(sk);
612 answ = tcp_inq(sk);
613 unlock_sock_fast(sk, slow);
614 break;
615 case SIOCATMARK:
616 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
617 break;
618 case SIOCOUTQ:
619 if (sk->sk_state == TCP_LISTEN)
620 return -EINVAL;
621
622 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
623 answ = 0;
624 else
625 answ = tp->write_seq - tp->snd_una;
626 break;
627 case SIOCOUTQNSD:
628 if (sk->sk_state == TCP_LISTEN)
629 return -EINVAL;
630
631 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
632 answ = 0;
633 else
634 answ = tp->write_seq - tp->snd_nxt;
635 break;
636 default:
637 return -ENOIOCTLCMD;
638 }
639
640 return put_user(answ, (int __user *)arg);
641 }
642 EXPORT_SYMBOL(tcp_ioctl);
643
644 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
645 {
646 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
647 tp->pushed_seq = tp->write_seq;
648 }
649
650 static inline bool forced_push(const struct tcp_sock *tp)
651 {
652 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
653 }
654
655 static void skb_entail(struct sock *sk, struct sk_buff *skb)
656 {
657 struct tcp_sock *tp = tcp_sk(sk);
658 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
659
660 skb->csum = 0;
661 tcb->seq = tcb->end_seq = tp->write_seq;
662 tcb->tcp_flags = TCPHDR_ACK;
663 tcb->sacked = 0;
664 __skb_header_release(skb);
665 tcp_add_write_queue_tail(sk, skb);
666 sk->sk_wmem_queued += skb->truesize;
667 sk_mem_charge(sk, skb->truesize);
668 if (tp->nonagle & TCP_NAGLE_PUSH)
669 tp->nonagle &= ~TCP_NAGLE_PUSH;
670
671 tcp_slow_start_after_idle_check(sk);
672 }
673
674 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
675 {
676 if (flags & MSG_OOB)
677 tp->snd_up = tp->write_seq;
678 }
679
680 /* If a not yet filled skb is pushed, do not send it if
681 * we have data packets in Qdisc or NIC queues :
682 * Because TX completion will happen shortly, it gives a chance
683 * to coalesce future sendmsg() payload into this skb, without
684 * need for a timer, and with no latency trade off.
685 * As packets containing data payload have a bigger truesize
686 * than pure acks (dataless) packets, the last checks prevent
687 * autocorking if we only have an ACK in Qdisc/NIC queues,
688 * or if TX completion was delayed after we processed ACK packet.
689 */
690 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
691 int size_goal)
692 {
693 return skb->len < size_goal &&
694 sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
695 !tcp_rtx_queue_empty(sk) &&
696 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
697 }
698
699 static void tcp_push(struct sock *sk, int flags, int mss_now,
700 int nonagle, int size_goal)
701 {
702 struct tcp_sock *tp = tcp_sk(sk);
703 struct sk_buff *skb;
704
705 skb = tcp_write_queue_tail(sk);
706 if (!skb)
707 return;
708 if (!(flags & MSG_MORE) || forced_push(tp))
709 tcp_mark_push(tp, skb);
710
711 tcp_mark_urg(tp, flags);
712
713 if (tcp_should_autocork(sk, skb, size_goal)) {
714
715 /* avoid atomic op if TSQ_THROTTLED bit is already set */
716 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
717 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
718 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
719 }
720 /* It is possible TX completion already happened
721 * before we set TSQ_THROTTLED.
722 */
723 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
724 return;
725 }
726
727 if (flags & MSG_MORE)
728 nonagle = TCP_NAGLE_CORK;
729
730 __tcp_push_pending_frames(sk, mss_now, nonagle);
731 }
732
733 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
734 unsigned int offset, size_t len)
735 {
736 struct tcp_splice_state *tss = rd_desc->arg.data;
737 int ret;
738
739 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
740 min(rd_desc->count, len), tss->flags);
741 if (ret > 0)
742 rd_desc->count -= ret;
743 return ret;
744 }
745
746 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
747 {
748 /* Store TCP splice context information in read_descriptor_t. */
749 read_descriptor_t rd_desc = {
750 .arg.data = tss,
751 .count = tss->len,
752 };
753
754 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
755 }
756
757 /**
758 * tcp_splice_read - splice data from TCP socket to a pipe
759 * @sock: socket to splice from
760 * @ppos: position (not valid)
761 * @pipe: pipe to splice to
762 * @len: number of bytes to splice
763 * @flags: splice modifier flags
764 *
765 * Description:
766 * Will read pages from given socket and fill them into a pipe.
767 *
768 **/
769 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
770 struct pipe_inode_info *pipe, size_t len,
771 unsigned int flags)
772 {
773 struct sock *sk = sock->sk;
774 struct tcp_splice_state tss = {
775 .pipe = pipe,
776 .len = len,
777 .flags = flags,
778 };
779 long timeo;
780 ssize_t spliced;
781 int ret;
782
783 sock_rps_record_flow(sk);
784 /*
785 * We can't seek on a socket input
786 */
787 if (unlikely(*ppos))
788 return -ESPIPE;
789
790 ret = spliced = 0;
791
792 lock_sock(sk);
793
794 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
795 while (tss.len) {
796 ret = __tcp_splice_read(sk, &tss);
797 if (ret < 0)
798 break;
799 else if (!ret) {
800 if (spliced)
801 break;
802 if (sock_flag(sk, SOCK_DONE))
803 break;
804 if (sk->sk_err) {
805 ret = sock_error(sk);
806 break;
807 }
808 if (sk->sk_shutdown & RCV_SHUTDOWN)
809 break;
810 if (sk->sk_state == TCP_CLOSE) {
811 /*
812 * This occurs when user tries to read
813 * from never connected socket.
814 */
815 if (!sock_flag(sk, SOCK_DONE))
816 ret = -ENOTCONN;
817 break;
818 }
819 if (!timeo) {
820 ret = -EAGAIN;
821 break;
822 }
823 /* if __tcp_splice_read() got nothing while we have
824 * an skb in receive queue, we do not want to loop.
825 * This might happen with URG data.
826 */
827 if (!skb_queue_empty(&sk->sk_receive_queue))
828 break;
829 sk_wait_data(sk, &timeo, NULL);
830 if (signal_pending(current)) {
831 ret = sock_intr_errno(timeo);
832 break;
833 }
834 continue;
835 }
836 tss.len -= ret;
837 spliced += ret;
838
839 if (!timeo)
840 break;
841 release_sock(sk);
842 lock_sock(sk);
843
844 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
845 (sk->sk_shutdown & RCV_SHUTDOWN) ||
846 signal_pending(current))
847 break;
848 }
849
850 release_sock(sk);
851
852 if (spliced)
853 return spliced;
854
855 return ret;
856 }
857 EXPORT_SYMBOL(tcp_splice_read);
858
859 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
860 bool force_schedule)
861 {
862 struct sk_buff *skb;
863
864 /* The TCP header must be at least 32-bit aligned. */
865 size = ALIGN(size, 4);
866
867 if (unlikely(tcp_under_memory_pressure(sk)))
868 sk_mem_reclaim_partial(sk);
869
870 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
871 if (likely(skb)) {
872 bool mem_scheduled;
873
874 if (force_schedule) {
875 mem_scheduled = true;
876 sk_forced_mem_schedule(sk, skb->truesize);
877 } else {
878 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
879 }
880 if (likely(mem_scheduled)) {
881 skb_reserve(skb, sk->sk_prot->max_header);
882 /*
883 * Make sure that we have exactly size bytes
884 * available to the caller, no more, no less.
885 */
886 skb->reserved_tailroom = skb->end - skb->tail - size;
887 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
888 return skb;
889 }
890 __kfree_skb(skb);
891 } else {
892 sk->sk_prot->enter_memory_pressure(sk);
893 sk_stream_moderate_sndbuf(sk);
894 }
895 return NULL;
896 }
897
898 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
899 int large_allowed)
900 {
901 struct tcp_sock *tp = tcp_sk(sk);
902 u32 new_size_goal, size_goal;
903
904 if (!large_allowed || !sk_can_gso(sk))
905 return mss_now;
906
907 /* Note : tcp_tso_autosize() will eventually split this later */
908 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
909 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
910
911 /* We try hard to avoid divides here */
912 size_goal = tp->gso_segs * mss_now;
913 if (unlikely(new_size_goal < size_goal ||
914 new_size_goal >= size_goal + mss_now)) {
915 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
916 sk->sk_gso_max_segs);
917 size_goal = tp->gso_segs * mss_now;
918 }
919
920 return max(size_goal, mss_now);
921 }
922
923 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
924 {
925 int mss_now;
926
927 mss_now = tcp_current_mss(sk);
928 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
929
930 return mss_now;
931 }
932
933 /* In some cases, both sendpage() and sendmsg() could have added
934 * an skb to the write queue, but failed adding payload on it.
935 * We need to remove it to consume less memory, but more
936 * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
937 * users.
938 */
939 static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)
940 {
941 if (skb && !skb->len &&
942 TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
943 tcp_unlink_write_queue(skb, sk);
944 tcp_check_send_head(sk, skb);
945 sk_wmem_free_skb(sk, skb);
946 }
947 }
948
949 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
950 size_t size, int flags)
951 {
952 struct tcp_sock *tp = tcp_sk(sk);
953 int mss_now, size_goal;
954 int err;
955 ssize_t copied;
956 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
957
958 /* Wait for a connection to finish. One exception is TCP Fast Open
959 * (passive side) where data is allowed to be sent before a connection
960 * is fully established.
961 */
962 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
963 !tcp_passive_fastopen(sk)) {
964 err = sk_stream_wait_connect(sk, &timeo);
965 if (err != 0)
966 goto out_err;
967 }
968
969 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
970
971 mss_now = tcp_send_mss(sk, &size_goal, flags);
972 copied = 0;
973
974 err = -EPIPE;
975 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
976 goto out_err;
977
978 while (size > 0) {
979 struct sk_buff *skb = tcp_write_queue_tail(sk);
980 int copy, i;
981 bool can_coalesce;
982
983 if (!skb || (copy = size_goal - skb->len) <= 0 ||
984 !tcp_skb_can_collapse_to(skb)) {
985 new_segment:
986 if (!sk_stream_memory_free(sk))
987 goto wait_for_sndbuf;
988
989 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
990 tcp_rtx_and_write_queues_empty(sk));
991 if (!skb)
992 goto wait_for_memory;
993
994 skb_entail(sk, skb);
995 copy = size_goal;
996 }
997
998 if (copy > size)
999 copy = size;
1000
1001 i = skb_shinfo(skb)->nr_frags;
1002 can_coalesce = skb_can_coalesce(skb, i, page, offset);
1003 if (!can_coalesce && i >= sysctl_max_skb_frags) {
1004 tcp_mark_push(tp, skb);
1005 goto new_segment;
1006 }
1007 if (!sk_wmem_schedule(sk, copy))
1008 goto wait_for_memory;
1009
1010 if (can_coalesce) {
1011 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1012 } else {
1013 get_page(page);
1014 skb_fill_page_desc(skb, i, page, offset, copy);
1015 }
1016 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1017
1018 skb->len += copy;
1019 skb->data_len += copy;
1020 skb->truesize += copy;
1021 sk->sk_wmem_queued += copy;
1022 sk_mem_charge(sk, copy);
1023 skb->ip_summed = CHECKSUM_PARTIAL;
1024 tp->write_seq += copy;
1025 TCP_SKB_CB(skb)->end_seq += copy;
1026 tcp_skb_pcount_set(skb, 0);
1027
1028 if (!copied)
1029 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1030
1031 copied += copy;
1032 offset += copy;
1033 size -= copy;
1034 if (!size)
1035 goto out;
1036
1037 if (skb->len < size_goal || (flags & MSG_OOB))
1038 continue;
1039
1040 if (forced_push(tp)) {
1041 tcp_mark_push(tp, skb);
1042 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1043 } else if (skb == tcp_send_head(sk))
1044 tcp_push_one(sk, mss_now);
1045 continue;
1046
1047 wait_for_sndbuf:
1048 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1049 wait_for_memory:
1050 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1051 TCP_NAGLE_PUSH, size_goal);
1052
1053 err = sk_stream_wait_memory(sk, &timeo);
1054 if (err != 0)
1055 goto do_error;
1056
1057 mss_now = tcp_send_mss(sk, &size_goal, flags);
1058 }
1059
1060 out:
1061 if (copied) {
1062 tcp_tx_timestamp(sk, sk->sk_tsflags);
1063 if (!(flags & MSG_SENDPAGE_NOTLAST))
1064 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1065 }
1066 return copied;
1067
1068 do_error:
1069 tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk));
1070 if (copied)
1071 goto out;
1072 out_err:
1073 /* make sure we wake any epoll edge trigger waiter */
1074 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1075 sk->sk_write_space(sk);
1076 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1077 }
1078 return sk_stream_error(sk, flags, err);
1079 }
1080 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1081
1082 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1083 size_t size, int flags)
1084 {
1085 if (!(sk->sk_route_caps & NETIF_F_SG) ||
1086 !sk_check_csum_caps(sk))
1087 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1088
1089 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1090
1091 return do_tcp_sendpages(sk, page, offset, size, flags);
1092 }
1093 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1094
1095 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1096 size_t size, int flags)
1097 {
1098 int ret;
1099
1100 lock_sock(sk);
1101 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1102 release_sock(sk);
1103
1104 return ret;
1105 }
1106 EXPORT_SYMBOL(tcp_sendpage);
1107
1108 /* Do not bother using a page frag for very small frames.
1109 * But use this heuristic only for the first skb in write queue.
1110 *
1111 * Having no payload in skb->head allows better SACK shifting
1112 * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1113 * write queue has less skbs.
1114 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1115 * This also speeds up tso_fragment(), since it wont fallback
1116 * to tcp_fragment().
1117 */
1118 static int linear_payload_sz(bool first_skb)
1119 {
1120 if (first_skb)
1121 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1122 return 0;
1123 }
1124
1125 static int select_size(const struct sock *sk, bool sg, bool first_skb)
1126 {
1127 const struct tcp_sock *tp = tcp_sk(sk);
1128 int tmp = tp->mss_cache;
1129
1130 if (sg) {
1131 if (sk_can_gso(sk)) {
1132 tmp = linear_payload_sz(first_skb);
1133 } else {
1134 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1135
1136 if (tmp >= pgbreak &&
1137 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1138 tmp = pgbreak;
1139 }
1140 }
1141
1142 return tmp;
1143 }
1144
1145 void tcp_free_fastopen_req(struct tcp_sock *tp)
1146 {
1147 if (tp->fastopen_req) {
1148 kfree(tp->fastopen_req);
1149 tp->fastopen_req = NULL;
1150 }
1151 }
1152
1153 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1154 int *copied, size_t size)
1155 {
1156 struct tcp_sock *tp = tcp_sk(sk);
1157 struct inet_sock *inet = inet_sk(sk);
1158 struct sockaddr *uaddr = msg->msg_name;
1159 int err, flags;
1160
1161 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1162 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1163 uaddr->sa_family == AF_UNSPEC))
1164 return -EOPNOTSUPP;
1165 if (tp->fastopen_req)
1166 return -EALREADY; /* Another Fast Open is in progress */
1167
1168 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1169 sk->sk_allocation);
1170 if (unlikely(!tp->fastopen_req))
1171 return -ENOBUFS;
1172 tp->fastopen_req->data = msg;
1173 tp->fastopen_req->size = size;
1174
1175 if (inet->defer_connect) {
1176 err = tcp_connect(sk);
1177 /* Same failure procedure as in tcp_v4/6_connect */
1178 if (err) {
1179 tcp_set_state(sk, TCP_CLOSE);
1180 inet->inet_dport = 0;
1181 sk->sk_route_caps = 0;
1182 }
1183 }
1184 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1185 err = __inet_stream_connect(sk->sk_socket, uaddr,
1186 msg->msg_namelen, flags, 1);
1187 /* fastopen_req could already be freed in __inet_stream_connect
1188 * if the connection times out or gets rst
1189 */
1190 if (tp->fastopen_req) {
1191 *copied = tp->fastopen_req->copied;
1192 tcp_free_fastopen_req(tp);
1193 inet->defer_connect = 0;
1194 }
1195 return err;
1196 }
1197
1198 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1199 {
1200 struct tcp_sock *tp = tcp_sk(sk);
1201 struct ubuf_info *uarg = NULL;
1202 struct sk_buff *skb;
1203 struct sockcm_cookie sockc;
1204 int flags, err, copied = 0;
1205 int mss_now = 0, size_goal, copied_syn = 0;
1206 bool process_backlog = false;
1207 bool sg;
1208 long timeo;
1209
1210 flags = msg->msg_flags;
1211
1212 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1213 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1214 err = -EINVAL;
1215 goto out_err;
1216 }
1217
1218 skb = tcp_write_queue_tail(sk);
1219 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1220 if (!uarg) {
1221 err = -ENOBUFS;
1222 goto out_err;
1223 }
1224
1225 if (!(sk_check_csum_caps(sk) && sk->sk_route_caps & NETIF_F_SG))
1226 uarg->zerocopy = 0;
1227 }
1228
1229 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1230 !tp->repair) {
1231 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1232 if (err == -EINPROGRESS && copied_syn > 0)
1233 goto out;
1234 else if (err)
1235 goto out_err;
1236 }
1237
1238 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1239
1240 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1241
1242 /* Wait for a connection to finish. One exception is TCP Fast Open
1243 * (passive side) where data is allowed to be sent before a connection
1244 * is fully established.
1245 */
1246 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1247 !tcp_passive_fastopen(sk)) {
1248 err = sk_stream_wait_connect(sk, &timeo);
1249 if (err != 0)
1250 goto do_error;
1251 }
1252
1253 if (unlikely(tp->repair)) {
1254 if (tp->repair_queue == TCP_RECV_QUEUE) {
1255 copied = tcp_send_rcvq(sk, msg, size);
1256 goto out_nopush;
1257 }
1258
1259 err = -EINVAL;
1260 if (tp->repair_queue == TCP_NO_QUEUE)
1261 goto out_err;
1262
1263 /* 'common' sending to sendq */
1264 }
1265
1266 sockc.tsflags = sk->sk_tsflags;
1267 if (msg->msg_controllen) {
1268 err = sock_cmsg_send(sk, msg, &sockc);
1269 if (unlikely(err)) {
1270 err = -EINVAL;
1271 goto out_err;
1272 }
1273 }
1274
1275 /* This should be in poll */
1276 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1277
1278 /* Ok commence sending. */
1279 copied = 0;
1280
1281 restart:
1282 mss_now = tcp_send_mss(sk, &size_goal, flags);
1283
1284 err = -EPIPE;
1285 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1286 goto do_error;
1287
1288 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1289
1290 while (msg_data_left(msg)) {
1291 int copy = 0;
1292 int max = size_goal;
1293
1294 skb = tcp_write_queue_tail(sk);
1295 if (skb) {
1296 if (skb->ip_summed == CHECKSUM_NONE)
1297 max = mss_now;
1298 copy = max - skb->len;
1299 }
1300
1301 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1302 bool first_skb;
1303
1304 new_segment:
1305 /* Allocate new segment. If the interface is SG,
1306 * allocate skb fitting to single page.
1307 */
1308 if (!sk_stream_memory_free(sk))
1309 goto wait_for_sndbuf;
1310
1311 if (process_backlog && sk_flush_backlog(sk)) {
1312 process_backlog = false;
1313 goto restart;
1314 }
1315 first_skb = tcp_rtx_and_write_queues_empty(sk);
1316 skb = sk_stream_alloc_skb(sk,
1317 select_size(sk, sg, first_skb),
1318 sk->sk_allocation,
1319 first_skb);
1320 if (!skb)
1321 goto wait_for_memory;
1322
1323 process_backlog = true;
1324 /*
1325 * Check whether we can use HW checksum.
1326 */
1327 if (sk_check_csum_caps(sk))
1328 skb->ip_summed = CHECKSUM_PARTIAL;
1329
1330 skb_entail(sk, skb);
1331 copy = size_goal;
1332 max = size_goal;
1333
1334 /* All packets are restored as if they have
1335 * already been sent. skb_mstamp isn't set to
1336 * avoid wrong rtt estimation.
1337 */
1338 if (tp->repair)
1339 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1340 }
1341
1342 /* Try to append data to the end of skb. */
1343 if (copy > msg_data_left(msg))
1344 copy = msg_data_left(msg);
1345
1346 /* Where to copy to? */
1347 if (skb_availroom(skb) > 0) {
1348 /* We have some space in skb head. Superb! */
1349 copy = min_t(int, copy, skb_availroom(skb));
1350 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1351 if (err)
1352 goto do_fault;
1353 } else if (!uarg || !uarg->zerocopy) {
1354 bool merge = true;
1355 int i = skb_shinfo(skb)->nr_frags;
1356 struct page_frag *pfrag = sk_page_frag(sk);
1357
1358 if (!sk_page_frag_refill(sk, pfrag))
1359 goto wait_for_memory;
1360
1361 if (!skb_can_coalesce(skb, i, pfrag->page,
1362 pfrag->offset)) {
1363 if (i >= sysctl_max_skb_frags || !sg) {
1364 tcp_mark_push(tp, skb);
1365 goto new_segment;
1366 }
1367 merge = false;
1368 }
1369
1370 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1371
1372 if (!sk_wmem_schedule(sk, copy))
1373 goto wait_for_memory;
1374
1375 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1376 pfrag->page,
1377 pfrag->offset,
1378 copy);
1379 if (err)
1380 goto do_error;
1381
1382 /* Update the skb. */
1383 if (merge) {
1384 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1385 } else {
1386 skb_fill_page_desc(skb, i, pfrag->page,
1387 pfrag->offset, copy);
1388 page_ref_inc(pfrag->page);
1389 }
1390 pfrag->offset += copy;
1391 } else {
1392 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1393 if (err == -EMSGSIZE || err == -EEXIST)
1394 goto new_segment;
1395 if (err < 0)
1396 goto do_error;
1397 copy = err;
1398 }
1399
1400 if (!copied)
1401 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1402
1403 tp->write_seq += copy;
1404 TCP_SKB_CB(skb)->end_seq += copy;
1405 tcp_skb_pcount_set(skb, 0);
1406
1407 copied += copy;
1408 if (!msg_data_left(msg)) {
1409 if (unlikely(flags & MSG_EOR))
1410 TCP_SKB_CB(skb)->eor = 1;
1411 goto out;
1412 }
1413
1414 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1415 continue;
1416
1417 if (forced_push(tp)) {
1418 tcp_mark_push(tp, skb);
1419 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1420 } else if (skb == tcp_send_head(sk))
1421 tcp_push_one(sk, mss_now);
1422 continue;
1423
1424 wait_for_sndbuf:
1425 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1426 wait_for_memory:
1427 if (copied)
1428 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1429 TCP_NAGLE_PUSH, size_goal);
1430
1431 err = sk_stream_wait_memory(sk, &timeo);
1432 if (err != 0)
1433 goto do_error;
1434
1435 mss_now = tcp_send_mss(sk, &size_goal, flags);
1436 }
1437
1438 out:
1439 if (copied) {
1440 tcp_tx_timestamp(sk, sockc.tsflags);
1441 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1442 }
1443 out_nopush:
1444 sock_zerocopy_put(uarg);
1445 return copied + copied_syn;
1446
1447 do_error:
1448 skb = tcp_write_queue_tail(sk);
1449 do_fault:
1450 tcp_remove_empty_skb(sk, skb);
1451
1452 if (copied + copied_syn)
1453 goto out;
1454 out_err:
1455 sock_zerocopy_put_abort(uarg);
1456 err = sk_stream_error(sk, flags, err);
1457 /* make sure we wake any epoll edge trigger waiter */
1458 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1459 sk->sk_write_space(sk);
1460 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1461 }
1462 return err;
1463 }
1464 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1465
1466 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1467 {
1468 int ret;
1469
1470 lock_sock(sk);
1471 ret = tcp_sendmsg_locked(sk, msg, size);
1472 release_sock(sk);
1473
1474 return ret;
1475 }
1476 EXPORT_SYMBOL(tcp_sendmsg);
1477
1478 /*
1479 * Handle reading urgent data. BSD has very simple semantics for
1480 * this, no blocking and very strange errors 8)
1481 */
1482
1483 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1484 {
1485 struct tcp_sock *tp = tcp_sk(sk);
1486
1487 /* No URG data to read. */
1488 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1489 tp->urg_data == TCP_URG_READ)
1490 return -EINVAL; /* Yes this is right ! */
1491
1492 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1493 return -ENOTCONN;
1494
1495 if (tp->urg_data & TCP_URG_VALID) {
1496 int err = 0;
1497 char c = tp->urg_data;
1498
1499 if (!(flags & MSG_PEEK))
1500 tp->urg_data = TCP_URG_READ;
1501
1502 /* Read urgent data. */
1503 msg->msg_flags |= MSG_OOB;
1504
1505 if (len > 0) {
1506 if (!(flags & MSG_TRUNC))
1507 err = memcpy_to_msg(msg, &c, 1);
1508 len = 1;
1509 } else
1510 msg->msg_flags |= MSG_TRUNC;
1511
1512 return err ? -EFAULT : len;
1513 }
1514
1515 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1516 return 0;
1517
1518 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1519 * the available implementations agree in this case:
1520 * this call should never block, independent of the
1521 * blocking state of the socket.
1522 * Mike <pall@rz.uni-karlsruhe.de>
1523 */
1524 return -EAGAIN;
1525 }
1526
1527 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1528 {
1529 struct sk_buff *skb;
1530 int copied = 0, err = 0;
1531
1532 /* XXX -- need to support SO_PEEK_OFF */
1533
1534 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1535 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1536 if (err)
1537 return err;
1538 copied += skb->len;
1539 }
1540
1541 skb_queue_walk(&sk->sk_write_queue, skb) {
1542 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1543 if (err)
1544 break;
1545
1546 copied += skb->len;
1547 }
1548
1549 return err ?: copied;
1550 }
1551
1552 /* Clean up the receive buffer for full frames taken by the user,
1553 * then send an ACK if necessary. COPIED is the number of bytes
1554 * tcp_recvmsg has given to the user so far, it speeds up the
1555 * calculation of whether or not we must ACK for the sake of
1556 * a window update.
1557 */
1558 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1559 {
1560 struct tcp_sock *tp = tcp_sk(sk);
1561 bool time_to_ack = false;
1562
1563 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1564
1565 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1566 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1567 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1568
1569 if (inet_csk_ack_scheduled(sk)) {
1570 const struct inet_connection_sock *icsk = inet_csk(sk);
1571 /* Delayed ACKs frequently hit locked sockets during bulk
1572 * receive. */
1573 if (icsk->icsk_ack.blocked ||
1574 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1575 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1576 /*
1577 * If this read emptied read buffer, we send ACK, if
1578 * connection is not bidirectional, user drained
1579 * receive buffer and there was a small segment
1580 * in queue.
1581 */
1582 (copied > 0 &&
1583 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1584 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1585 !icsk->icsk_ack.pingpong)) &&
1586 !atomic_read(&sk->sk_rmem_alloc)))
1587 time_to_ack = true;
1588 }
1589
1590 /* We send an ACK if we can now advertise a non-zero window
1591 * which has been raised "significantly".
1592 *
1593 * Even if window raised up to infinity, do not send window open ACK
1594 * in states, where we will not receive more. It is useless.
1595 */
1596 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1597 __u32 rcv_window_now = tcp_receive_window(tp);
1598
1599 /* Optimize, __tcp_select_window() is not cheap. */
1600 if (2*rcv_window_now <= tp->window_clamp) {
1601 __u32 new_window = __tcp_select_window(sk);
1602
1603 /* Send ACK now, if this read freed lots of space
1604 * in our buffer. Certainly, new_window is new window.
1605 * We can advertise it now, if it is not less than current one.
1606 * "Lots" means "at least twice" here.
1607 */
1608 if (new_window && new_window >= 2 * rcv_window_now)
1609 time_to_ack = true;
1610 }
1611 }
1612 if (time_to_ack)
1613 tcp_send_ack(sk);
1614 }
1615
1616 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1617 {
1618 struct sk_buff *skb;
1619 u32 offset;
1620
1621 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1622 offset = seq - TCP_SKB_CB(skb)->seq;
1623 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1624 pr_err_once("%s: found a SYN, please report !\n", __func__);
1625 offset--;
1626 }
1627 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1628 *off = offset;
1629 return skb;
1630 }
1631 /* This looks weird, but this can happen if TCP collapsing
1632 * splitted a fat GRO packet, while we released socket lock
1633 * in skb_splice_bits()
1634 */
1635 sk_eat_skb(sk, skb);
1636 }
1637 return NULL;
1638 }
1639
1640 /*
1641 * This routine provides an alternative to tcp_recvmsg() for routines
1642 * that would like to handle copying from skbuffs directly in 'sendfile'
1643 * fashion.
1644 * Note:
1645 * - It is assumed that the socket was locked by the caller.
1646 * - The routine does not block.
1647 * - At present, there is no support for reading OOB data
1648 * or for 'peeking' the socket using this routine
1649 * (although both would be easy to implement).
1650 */
1651 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1652 sk_read_actor_t recv_actor)
1653 {
1654 struct sk_buff *skb;
1655 struct tcp_sock *tp = tcp_sk(sk);
1656 u32 seq = tp->copied_seq;
1657 u32 offset;
1658 int copied = 0;
1659
1660 if (sk->sk_state == TCP_LISTEN)
1661 return -ENOTCONN;
1662 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1663 if (offset < skb->len) {
1664 int used;
1665 size_t len;
1666
1667 len = skb->len - offset;
1668 /* Stop reading if we hit a patch of urgent data */
1669 if (tp->urg_data) {
1670 u32 urg_offset = tp->urg_seq - seq;
1671 if (urg_offset < len)
1672 len = urg_offset;
1673 if (!len)
1674 break;
1675 }
1676 used = recv_actor(desc, skb, offset, len);
1677 if (used <= 0) {
1678 if (!copied)
1679 copied = used;
1680 break;
1681 } else if (used <= len) {
1682 seq += used;
1683 copied += used;
1684 offset += used;
1685 }
1686 /* If recv_actor drops the lock (e.g. TCP splice
1687 * receive) the skb pointer might be invalid when
1688 * getting here: tcp_collapse might have deleted it
1689 * while aggregating skbs from the socket queue.
1690 */
1691 skb = tcp_recv_skb(sk, seq - 1, &offset);
1692 if (!skb)
1693 break;
1694 /* TCP coalescing might have appended data to the skb.
1695 * Try to splice more frags
1696 */
1697 if (offset + 1 != skb->len)
1698 continue;
1699 }
1700 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1701 sk_eat_skb(sk, skb);
1702 ++seq;
1703 break;
1704 }
1705 sk_eat_skb(sk, skb);
1706 if (!desc->count)
1707 break;
1708 tp->copied_seq = seq;
1709 }
1710 tp->copied_seq = seq;
1711
1712 tcp_rcv_space_adjust(sk);
1713
1714 /* Clean up data we have read: This will do ACK frames. */
1715 if (copied > 0) {
1716 tcp_recv_skb(sk, seq, &offset);
1717 tcp_cleanup_rbuf(sk, copied);
1718 }
1719 return copied;
1720 }
1721 EXPORT_SYMBOL(tcp_read_sock);
1722
1723 int tcp_peek_len(struct socket *sock)
1724 {
1725 return tcp_inq(sock->sk);
1726 }
1727 EXPORT_SYMBOL(tcp_peek_len);
1728
1729 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1730 struct scm_timestamping *tss)
1731 {
1732 if (skb->tstamp)
1733 tss->ts[0] = ktime_to_timespec(skb->tstamp);
1734 else
1735 tss->ts[0] = (struct timespec) {0};
1736
1737 if (skb_hwtstamps(skb)->hwtstamp)
1738 tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp);
1739 else
1740 tss->ts[2] = (struct timespec) {0};
1741 }
1742
1743 /* Similar to __sock_recv_timestamp, but does not require an skb */
1744 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1745 struct scm_timestamping *tss)
1746 {
1747 struct timeval tv;
1748 bool has_timestamping = false;
1749
1750 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1751 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1752 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1753 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
1754 sizeof(tss->ts[0]), &tss->ts[0]);
1755 } else {
1756 tv.tv_sec = tss->ts[0].tv_sec;
1757 tv.tv_usec = tss->ts[0].tv_nsec / 1000;
1758
1759 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
1760 sizeof(tv), &tv);
1761 }
1762 }
1763
1764 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1765 has_timestamping = true;
1766 else
1767 tss->ts[0] = (struct timespec) {0};
1768 }
1769
1770 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1771 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1772 has_timestamping = true;
1773 else
1774 tss->ts[2] = (struct timespec) {0};
1775 }
1776
1777 if (has_timestamping) {
1778 tss->ts[1] = (struct timespec) {0};
1779 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING,
1780 sizeof(*tss), tss);
1781 }
1782 }
1783
1784 /*
1785 * This routine copies from a sock struct into the user buffer.
1786 *
1787 * Technical note: in 2.3 we work on _locked_ socket, so that
1788 * tricks with *seq access order and skb->users are not required.
1789 * Probably, code can be easily improved even more.
1790 */
1791
1792 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1793 int flags, int *addr_len)
1794 {
1795 struct tcp_sock *tp = tcp_sk(sk);
1796 int copied = 0;
1797 u32 peek_seq;
1798 u32 *seq;
1799 unsigned long used;
1800 int err;
1801 int target; /* Read at least this many bytes */
1802 long timeo;
1803 struct sk_buff *skb, *last;
1804 u32 urg_hole = 0;
1805 struct scm_timestamping tss;
1806 bool has_tss = false;
1807
1808 if (unlikely(flags & MSG_ERRQUEUE))
1809 return inet_recv_error(sk, msg, len, addr_len);
1810
1811 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) &&
1812 (sk->sk_state == TCP_ESTABLISHED))
1813 sk_busy_loop(sk, nonblock);
1814
1815 lock_sock(sk);
1816
1817 err = -ENOTCONN;
1818 if (sk->sk_state == TCP_LISTEN)
1819 goto out;
1820
1821 timeo = sock_rcvtimeo(sk, nonblock);
1822
1823 /* Urgent data needs to be handled specially. */
1824 if (flags & MSG_OOB)
1825 goto recv_urg;
1826
1827 if (unlikely(tp->repair)) {
1828 err = -EPERM;
1829 if (!(flags & MSG_PEEK))
1830 goto out;
1831
1832 if (tp->repair_queue == TCP_SEND_QUEUE)
1833 goto recv_sndq;
1834
1835 err = -EINVAL;
1836 if (tp->repair_queue == TCP_NO_QUEUE)
1837 goto out;
1838
1839 /* 'common' recv queue MSG_PEEK-ing */
1840 }
1841
1842 seq = &tp->copied_seq;
1843 if (flags & MSG_PEEK) {
1844 peek_seq = tp->copied_seq;
1845 seq = &peek_seq;
1846 }
1847
1848 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1849
1850 do {
1851 u32 offset;
1852
1853 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1854 if (tp->urg_data && tp->urg_seq == *seq) {
1855 if (copied)
1856 break;
1857 if (signal_pending(current)) {
1858 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1859 break;
1860 }
1861 }
1862
1863 /* Next get a buffer. */
1864
1865 last = skb_peek_tail(&sk->sk_receive_queue);
1866 skb_queue_walk(&sk->sk_receive_queue, skb) {
1867 last = skb;
1868 /* Now that we have two receive queues this
1869 * shouldn't happen.
1870 */
1871 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1872 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
1873 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1874 flags))
1875 break;
1876
1877 offset = *seq - TCP_SKB_CB(skb)->seq;
1878 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1879 pr_err_once("%s: found a SYN, please report !\n", __func__);
1880 offset--;
1881 }
1882 if (offset < skb->len)
1883 goto found_ok_skb;
1884 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1885 goto found_fin_ok;
1886 WARN(!(flags & MSG_PEEK),
1887 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
1888 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1889 }
1890
1891 /* Well, if we have backlog, try to process it now yet. */
1892
1893 if (copied >= target && !sk->sk_backlog.tail)
1894 break;
1895
1896 if (copied) {
1897 if (sk->sk_err ||
1898 sk->sk_state == TCP_CLOSE ||
1899 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1900 !timeo ||
1901 signal_pending(current))
1902 break;
1903 } else {
1904 if (sock_flag(sk, SOCK_DONE))
1905 break;
1906
1907 if (sk->sk_err) {
1908 copied = sock_error(sk);
1909 break;
1910 }
1911
1912 if (sk->sk_shutdown & RCV_SHUTDOWN)
1913 break;
1914
1915 if (sk->sk_state == TCP_CLOSE) {
1916 if (!sock_flag(sk, SOCK_DONE)) {
1917 /* This occurs when user tries to read
1918 * from never connected socket.
1919 */
1920 copied = -ENOTCONN;
1921 break;
1922 }
1923 break;
1924 }
1925
1926 if (!timeo) {
1927 copied = -EAGAIN;
1928 break;
1929 }
1930
1931 if (signal_pending(current)) {
1932 copied = sock_intr_errno(timeo);
1933 break;
1934 }
1935 }
1936
1937 tcp_cleanup_rbuf(sk, copied);
1938
1939 if (copied >= target) {
1940 /* Do not sleep, just process backlog. */
1941 release_sock(sk);
1942 lock_sock(sk);
1943 } else {
1944 sk_wait_data(sk, &timeo, last);
1945 }
1946
1947 if ((flags & MSG_PEEK) &&
1948 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1949 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1950 current->comm,
1951 task_pid_nr(current));
1952 peek_seq = tp->copied_seq;
1953 }
1954 continue;
1955
1956 found_ok_skb:
1957 /* Ok so how much can we use? */
1958 used = skb->len - offset;
1959 if (len < used)
1960 used = len;
1961
1962 /* Do we have urgent data here? */
1963 if (tp->urg_data) {
1964 u32 urg_offset = tp->urg_seq - *seq;
1965 if (urg_offset < used) {
1966 if (!urg_offset) {
1967 if (!sock_flag(sk, SOCK_URGINLINE)) {
1968 ++*seq;
1969 urg_hole++;
1970 offset++;
1971 used--;
1972 if (!used)
1973 goto skip_copy;
1974 }
1975 } else
1976 used = urg_offset;
1977 }
1978 }
1979
1980 if (!(flags & MSG_TRUNC)) {
1981 err = skb_copy_datagram_msg(skb, offset, msg, used);
1982 if (err) {
1983 /* Exception. Bailout! */
1984 if (!copied)
1985 copied = -EFAULT;
1986 break;
1987 }
1988 }
1989
1990 *seq += used;
1991 copied += used;
1992 len -= used;
1993
1994 tcp_rcv_space_adjust(sk);
1995
1996 skip_copy:
1997 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1998 tp->urg_data = 0;
1999 tcp_fast_path_check(sk);
2000 }
2001 if (used + offset < skb->len)
2002 continue;
2003
2004 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2005 tcp_update_recv_tstamps(skb, &tss);
2006 has_tss = true;
2007 }
2008 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2009 goto found_fin_ok;
2010 if (!(flags & MSG_PEEK))
2011 sk_eat_skb(sk, skb);
2012 continue;
2013
2014 found_fin_ok:
2015 /* Process the FIN. */
2016 ++*seq;
2017 if (!(flags & MSG_PEEK))
2018 sk_eat_skb(sk, skb);
2019 break;
2020 } while (len > 0);
2021
2022 /* According to UNIX98, msg_name/msg_namelen are ignored
2023 * on connected socket. I was just happy when found this 8) --ANK
2024 */
2025
2026 if (has_tss)
2027 tcp_recv_timestamp(msg, sk, &tss);
2028
2029 /* Clean up data we have read: This will do ACK frames. */
2030 tcp_cleanup_rbuf(sk, copied);
2031
2032 release_sock(sk);
2033 return copied;
2034
2035 out:
2036 release_sock(sk);
2037 return err;
2038
2039 recv_urg:
2040 err = tcp_recv_urg(sk, msg, len, flags);
2041 goto out;
2042
2043 recv_sndq:
2044 err = tcp_peek_sndq(sk, msg, len);
2045 goto out;
2046 }
2047 EXPORT_SYMBOL(tcp_recvmsg);
2048
2049 void tcp_set_state(struct sock *sk, int state)
2050 {
2051 int oldstate = sk->sk_state;
2052
2053 trace_tcp_set_state(sk, oldstate, state);
2054
2055 switch (state) {
2056 case TCP_ESTABLISHED:
2057 if (oldstate != TCP_ESTABLISHED)
2058 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2059 break;
2060
2061 case TCP_CLOSE:
2062 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2063 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2064
2065 sk->sk_prot->unhash(sk);
2066 if (inet_csk(sk)->icsk_bind_hash &&
2067 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2068 inet_put_port(sk);
2069 /* fall through */
2070 default:
2071 if (oldstate == TCP_ESTABLISHED)
2072 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2073 }
2074
2075 /* Change state AFTER socket is unhashed to avoid closed
2076 * socket sitting in hash tables.
2077 */
2078 sk_state_store(sk, state);
2079
2080 #ifdef STATE_TRACE
2081 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2082 #endif
2083 }
2084 EXPORT_SYMBOL_GPL(tcp_set_state);
2085
2086 /*
2087 * State processing on a close. This implements the state shift for
2088 * sending our FIN frame. Note that we only send a FIN for some
2089 * states. A shutdown() may have already sent the FIN, or we may be
2090 * closed.
2091 */
2092
2093 static const unsigned char new_state[16] = {
2094 /* current state: new state: action: */
2095 [0 /* (Invalid) */] = TCP_CLOSE,
2096 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2097 [TCP_SYN_SENT] = TCP_CLOSE,
2098 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2099 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2100 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2101 [TCP_TIME_WAIT] = TCP_CLOSE,
2102 [TCP_CLOSE] = TCP_CLOSE,
2103 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2104 [TCP_LAST_ACK] = TCP_LAST_ACK,
2105 [TCP_LISTEN] = TCP_CLOSE,
2106 [TCP_CLOSING] = TCP_CLOSING,
2107 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2108 };
2109
2110 static int tcp_close_state(struct sock *sk)
2111 {
2112 int next = (int)new_state[sk->sk_state];
2113 int ns = next & TCP_STATE_MASK;
2114
2115 tcp_set_state(sk, ns);
2116
2117 return next & TCP_ACTION_FIN;
2118 }
2119
2120 /*
2121 * Shutdown the sending side of a connection. Much like close except
2122 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2123 */
2124
2125 void tcp_shutdown(struct sock *sk, int how)
2126 {
2127 /* We need to grab some memory, and put together a FIN,
2128 * and then put it into the queue to be sent.
2129 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2130 */
2131 if (!(how & SEND_SHUTDOWN))
2132 return;
2133
2134 /* If we've already sent a FIN, or it's a closed state, skip this. */
2135 if ((1 << sk->sk_state) &
2136 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2137 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2138 /* Clear out any half completed packets. FIN if needed. */
2139 if (tcp_close_state(sk))
2140 tcp_send_fin(sk);
2141 }
2142 }
2143 EXPORT_SYMBOL(tcp_shutdown);
2144
2145 bool tcp_check_oom(struct sock *sk, int shift)
2146 {
2147 bool too_many_orphans, out_of_socket_memory;
2148
2149 too_many_orphans = tcp_too_many_orphans(sk, shift);
2150 out_of_socket_memory = tcp_out_of_memory(sk);
2151
2152 if (too_many_orphans)
2153 net_info_ratelimited("too many orphaned sockets\n");
2154 if (out_of_socket_memory)
2155 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2156 return too_many_orphans || out_of_socket_memory;
2157 }
2158
2159 void tcp_close(struct sock *sk, long timeout)
2160 {
2161 struct sk_buff *skb;
2162 int data_was_unread = 0;
2163 int state;
2164
2165 lock_sock(sk);
2166 sk->sk_shutdown = SHUTDOWN_MASK;
2167
2168 if (sk->sk_state == TCP_LISTEN) {
2169 tcp_set_state(sk, TCP_CLOSE);
2170
2171 /* Special case. */
2172 inet_csk_listen_stop(sk);
2173
2174 goto adjudge_to_death;
2175 }
2176
2177 /* We need to flush the recv. buffs. We do this only on the
2178 * descriptor close, not protocol-sourced closes, because the
2179 * reader process may not have drained the data yet!
2180 */
2181 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2182 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2183
2184 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2185 len--;
2186 data_was_unread += len;
2187 __kfree_skb(skb);
2188 }
2189
2190 sk_mem_reclaim(sk);
2191
2192 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2193 if (sk->sk_state == TCP_CLOSE)
2194 goto adjudge_to_death;
2195
2196 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2197 * data was lost. To witness the awful effects of the old behavior of
2198 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2199 * GET in an FTP client, suspend the process, wait for the client to
2200 * advertise a zero window, then kill -9 the FTP client, wheee...
2201 * Note: timeout is always zero in such a case.
2202 */
2203 if (unlikely(tcp_sk(sk)->repair)) {
2204 sk->sk_prot->disconnect(sk, 0);
2205 } else if (data_was_unread) {
2206 /* Unread data was tossed, zap the connection. */
2207 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2208 tcp_set_state(sk, TCP_CLOSE);
2209 tcp_send_active_reset(sk, sk->sk_allocation);
2210 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2211 /* Check zero linger _after_ checking for unread data. */
2212 sk->sk_prot->disconnect(sk, 0);
2213 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2214 } else if (tcp_close_state(sk)) {
2215 /* We FIN if the application ate all the data before
2216 * zapping the connection.
2217 */
2218
2219 /* RED-PEN. Formally speaking, we have broken TCP state
2220 * machine. State transitions:
2221 *
2222 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2223 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2224 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2225 *
2226 * are legal only when FIN has been sent (i.e. in window),
2227 * rather than queued out of window. Purists blame.
2228 *
2229 * F.e. "RFC state" is ESTABLISHED,
2230 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2231 *
2232 * The visible declinations are that sometimes
2233 * we enter time-wait state, when it is not required really
2234 * (harmless), do not send active resets, when they are
2235 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2236 * they look as CLOSING or LAST_ACK for Linux)
2237 * Probably, I missed some more holelets.
2238 * --ANK
2239 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2240 * in a single packet! (May consider it later but will
2241 * probably need API support or TCP_CORK SYN-ACK until
2242 * data is written and socket is closed.)
2243 */
2244 tcp_send_fin(sk);
2245 }
2246
2247 sk_stream_wait_close(sk, timeout);
2248
2249 adjudge_to_death:
2250 state = sk->sk_state;
2251 sock_hold(sk);
2252 sock_orphan(sk);
2253
2254 local_bh_disable();
2255 bh_lock_sock(sk);
2256 /* remove backlog if any, without releasing ownership. */
2257 __release_sock(sk);
2258
2259 percpu_counter_inc(sk->sk_prot->orphan_count);
2260
2261 /* Have we already been destroyed by a softirq or backlog? */
2262 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2263 goto out;
2264
2265 /* This is a (useful) BSD violating of the RFC. There is a
2266 * problem with TCP as specified in that the other end could
2267 * keep a socket open forever with no application left this end.
2268 * We use a 1 minute timeout (about the same as BSD) then kill
2269 * our end. If they send after that then tough - BUT: long enough
2270 * that we won't make the old 4*rto = almost no time - whoops
2271 * reset mistake.
2272 *
2273 * Nope, it was not mistake. It is really desired behaviour
2274 * f.e. on http servers, when such sockets are useless, but
2275 * consume significant resources. Let's do it with special
2276 * linger2 option. --ANK
2277 */
2278
2279 if (sk->sk_state == TCP_FIN_WAIT2) {
2280 struct tcp_sock *tp = tcp_sk(sk);
2281 if (tp->linger2 < 0) {
2282 tcp_set_state(sk, TCP_CLOSE);
2283 tcp_send_active_reset(sk, GFP_ATOMIC);
2284 __NET_INC_STATS(sock_net(sk),
2285 LINUX_MIB_TCPABORTONLINGER);
2286 } else {
2287 const int tmo = tcp_fin_time(sk);
2288
2289 if (tmo > TCP_TIMEWAIT_LEN) {
2290 inet_csk_reset_keepalive_timer(sk,
2291 tmo - TCP_TIMEWAIT_LEN);
2292 } else {
2293 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2294 goto out;
2295 }
2296 }
2297 }
2298 if (sk->sk_state != TCP_CLOSE) {
2299 sk_mem_reclaim(sk);
2300 if (tcp_check_oom(sk, 0)) {
2301 tcp_set_state(sk, TCP_CLOSE);
2302 tcp_send_active_reset(sk, GFP_ATOMIC);
2303 __NET_INC_STATS(sock_net(sk),
2304 LINUX_MIB_TCPABORTONMEMORY);
2305 } else if (!check_net(sock_net(sk))) {
2306 /* Not possible to send reset; just close */
2307 tcp_set_state(sk, TCP_CLOSE);
2308 }
2309 }
2310
2311 if (sk->sk_state == TCP_CLOSE) {
2312 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2313 /* We could get here with a non-NULL req if the socket is
2314 * aborted (e.g., closed with unread data) before 3WHS
2315 * finishes.
2316 */
2317 if (req)
2318 reqsk_fastopen_remove(sk, req, false);
2319 inet_csk_destroy_sock(sk);
2320 }
2321 /* Otherwise, socket is reprieved until protocol close. */
2322
2323 out:
2324 bh_unlock_sock(sk);
2325 local_bh_enable();
2326 release_sock(sk);
2327 sock_put(sk);
2328 }
2329 EXPORT_SYMBOL(tcp_close);
2330
2331 /* These states need RST on ABORT according to RFC793 */
2332
2333 static inline bool tcp_need_reset(int state)
2334 {
2335 return (1 << state) &
2336 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2337 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2338 }
2339
2340 static void tcp_rtx_queue_purge(struct sock *sk)
2341 {
2342 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2343
2344 tcp_sk(sk)->highest_sack = NULL;
2345 while (p) {
2346 struct sk_buff *skb = rb_to_skb(p);
2347
2348 p = rb_next(p);
2349 /* Since we are deleting whole queue, no need to
2350 * list_del(&skb->tcp_tsorted_anchor)
2351 */
2352 tcp_rtx_queue_unlink(skb, sk);
2353 sk_wmem_free_skb(sk, skb);
2354 }
2355 }
2356
2357 void tcp_write_queue_purge(struct sock *sk)
2358 {
2359 struct sk_buff *skb;
2360
2361 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2362 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2363 tcp_skb_tsorted_anchor_cleanup(skb);
2364 sk_wmem_free_skb(sk, skb);
2365 }
2366 tcp_rtx_queue_purge(sk);
2367 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2368 sk_mem_reclaim(sk);
2369 tcp_clear_all_retrans_hints(tcp_sk(sk));
2370 tcp_sk(sk)->packets_out = 0;
2371 inet_csk(sk)->icsk_backoff = 0;
2372 }
2373
2374 int tcp_disconnect(struct sock *sk, int flags)
2375 {
2376 struct inet_sock *inet = inet_sk(sk);
2377 struct inet_connection_sock *icsk = inet_csk(sk);
2378 struct tcp_sock *tp = tcp_sk(sk);
2379 int err = 0;
2380 int old_state = sk->sk_state;
2381
2382 if (old_state != TCP_CLOSE)
2383 tcp_set_state(sk, TCP_CLOSE);
2384
2385 /* ABORT function of RFC793 */
2386 if (old_state == TCP_LISTEN) {
2387 inet_csk_listen_stop(sk);
2388 } else if (unlikely(tp->repair)) {
2389 sk->sk_err = ECONNABORTED;
2390 } else if (tcp_need_reset(old_state) ||
2391 (tp->snd_nxt != tp->write_seq &&
2392 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2393 /* The last check adjusts for discrepancy of Linux wrt. RFC
2394 * states
2395 */
2396 tcp_send_active_reset(sk, gfp_any());
2397 sk->sk_err = ECONNRESET;
2398 } else if (old_state == TCP_SYN_SENT)
2399 sk->sk_err = ECONNRESET;
2400
2401 tcp_clear_xmit_timers(sk);
2402 __skb_queue_purge(&sk->sk_receive_queue);
2403 tcp_write_queue_purge(sk);
2404 tcp_fastopen_active_disable_ofo_check(sk);
2405 skb_rbtree_purge(&tp->out_of_order_queue);
2406
2407 inet->inet_dport = 0;
2408
2409 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2410 inet_reset_saddr(sk);
2411
2412 sk->sk_shutdown = 0;
2413 sock_reset_flag(sk, SOCK_DONE);
2414 tp->srtt_us = 0;
2415 tp->write_seq += tp->max_window + 2;
2416 if (tp->write_seq == 0)
2417 tp->write_seq = 1;
2418 tp->snd_cwnd = 2;
2419 icsk->icsk_probes_out = 0;
2420 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2421 tp->snd_cwnd_cnt = 0;
2422 tp->window_clamp = 0;
2423 tp->delivered = 0;
2424 tcp_set_ca_state(sk, TCP_CA_Open);
2425 tp->is_sack_reneg = 0;
2426 tcp_clear_retrans(tp);
2427 tp->total_retrans = 0;
2428 inet_csk_delack_init(sk);
2429 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2430 * issue in __tcp_select_window()
2431 */
2432 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2433 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2434 __sk_dst_reset(sk);
2435 dst_release(sk->sk_rx_dst);
2436 sk->sk_rx_dst = NULL;
2437 tcp_saved_syn_free(tp);
2438 tp->segs_in = 0;
2439 tp->segs_out = 0;
2440 tp->bytes_acked = 0;
2441 tp->bytes_received = 0;
2442 tp->data_segs_in = 0;
2443 tp->data_segs_out = 0;
2444
2445 /* Clean up fastopen related fields */
2446 tcp_free_fastopen_req(tp);
2447 inet->defer_connect = 0;
2448
2449 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2450
2451 if (sk->sk_frag.page) {
2452 put_page(sk->sk_frag.page);
2453 sk->sk_frag.page = NULL;
2454 sk->sk_frag.offset = 0;
2455 }
2456
2457 sk->sk_error_report(sk);
2458 return err;
2459 }
2460 EXPORT_SYMBOL(tcp_disconnect);
2461
2462 static inline bool tcp_can_repair_sock(const struct sock *sk)
2463 {
2464 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2465 (sk->sk_state != TCP_LISTEN);
2466 }
2467
2468 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2469 {
2470 struct tcp_repair_window opt;
2471
2472 if (!tp->repair)
2473 return -EPERM;
2474
2475 if (len != sizeof(opt))
2476 return -EINVAL;
2477
2478 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2479 return -EFAULT;
2480
2481 if (opt.max_window < opt.snd_wnd)
2482 return -EINVAL;
2483
2484 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2485 return -EINVAL;
2486
2487 if (after(opt.rcv_wup, tp->rcv_nxt))
2488 return -EINVAL;
2489
2490 tp->snd_wl1 = opt.snd_wl1;
2491 tp->snd_wnd = opt.snd_wnd;
2492 tp->max_window = opt.max_window;
2493
2494 tp->rcv_wnd = opt.rcv_wnd;
2495 tp->rcv_wup = opt.rcv_wup;
2496
2497 return 0;
2498 }
2499
2500 static int tcp_repair_options_est(struct sock *sk,
2501 struct tcp_repair_opt __user *optbuf, unsigned int len)
2502 {
2503 struct tcp_sock *tp = tcp_sk(sk);
2504 struct tcp_repair_opt opt;
2505
2506 while (len >= sizeof(opt)) {
2507 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2508 return -EFAULT;
2509
2510 optbuf++;
2511 len -= sizeof(opt);
2512
2513 switch (opt.opt_code) {
2514 case TCPOPT_MSS:
2515 tp->rx_opt.mss_clamp = opt.opt_val;
2516 tcp_mtup_init(sk);
2517 break;
2518 case TCPOPT_WINDOW:
2519 {
2520 u16 snd_wscale = opt.opt_val & 0xFFFF;
2521 u16 rcv_wscale = opt.opt_val >> 16;
2522
2523 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2524 return -EFBIG;
2525
2526 tp->rx_opt.snd_wscale = snd_wscale;
2527 tp->rx_opt.rcv_wscale = rcv_wscale;
2528 tp->rx_opt.wscale_ok = 1;
2529 }
2530 break;
2531 case TCPOPT_SACK_PERM:
2532 if (opt.opt_val != 0)
2533 return -EINVAL;
2534
2535 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2536 break;
2537 case TCPOPT_TIMESTAMP:
2538 if (opt.opt_val != 0)
2539 return -EINVAL;
2540
2541 tp->rx_opt.tstamp_ok = 1;
2542 break;
2543 }
2544 }
2545
2546 return 0;
2547 }
2548
2549 /*
2550 * Socket option code for TCP.
2551 */
2552 static int do_tcp_setsockopt(struct sock *sk, int level,
2553 int optname, char __user *optval, unsigned int optlen)
2554 {
2555 struct tcp_sock *tp = tcp_sk(sk);
2556 struct inet_connection_sock *icsk = inet_csk(sk);
2557 struct net *net = sock_net(sk);
2558 int val;
2559 int err = 0;
2560
2561 /* These are data/string values, all the others are ints */
2562 switch (optname) {
2563 case TCP_CONGESTION: {
2564 char name[TCP_CA_NAME_MAX];
2565
2566 if (optlen < 1)
2567 return -EINVAL;
2568
2569 val = strncpy_from_user(name, optval,
2570 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2571 if (val < 0)
2572 return -EFAULT;
2573 name[val] = 0;
2574
2575 lock_sock(sk);
2576 err = tcp_set_congestion_control(sk, name, true, true,
2577 ns_capable(sock_net(sk)->user_ns,
2578 CAP_NET_ADMIN));
2579 release_sock(sk);
2580 return err;
2581 }
2582 case TCP_ULP: {
2583 char name[TCP_ULP_NAME_MAX];
2584
2585 if (optlen < 1)
2586 return -EINVAL;
2587
2588 val = strncpy_from_user(name, optval,
2589 min_t(long, TCP_ULP_NAME_MAX - 1,
2590 optlen));
2591 if (val < 0)
2592 return -EFAULT;
2593 name[val] = 0;
2594
2595 lock_sock(sk);
2596 err = tcp_set_ulp(sk, name);
2597 release_sock(sk);
2598 return err;
2599 }
2600 case TCP_FASTOPEN_KEY: {
2601 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
2602
2603 if (optlen != sizeof(key))
2604 return -EINVAL;
2605
2606 if (copy_from_user(key, optval, optlen))
2607 return -EFAULT;
2608
2609 return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key));
2610 }
2611 default:
2612 /* fallthru */
2613 break;
2614 }
2615
2616 if (optlen < sizeof(int))
2617 return -EINVAL;
2618
2619 if (get_user(val, (int __user *)optval))
2620 return -EFAULT;
2621
2622 lock_sock(sk);
2623
2624 switch (optname) {
2625 case TCP_MAXSEG:
2626 /* Values greater than interface MTU won't take effect. However
2627 * at the point when this call is done we typically don't yet
2628 * know which interface is going to be used
2629 */
2630 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2631 err = -EINVAL;
2632 break;
2633 }
2634 tp->rx_opt.user_mss = val;
2635 break;
2636
2637 case TCP_NODELAY:
2638 if (val) {
2639 /* TCP_NODELAY is weaker than TCP_CORK, so that
2640 * this option on corked socket is remembered, but
2641 * it is not activated until cork is cleared.
2642 *
2643 * However, when TCP_NODELAY is set we make
2644 * an explicit push, which overrides even TCP_CORK
2645 * for currently queued segments.
2646 */
2647 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2648 tcp_push_pending_frames(sk);
2649 } else {
2650 tp->nonagle &= ~TCP_NAGLE_OFF;
2651 }
2652 break;
2653
2654 case TCP_THIN_LINEAR_TIMEOUTS:
2655 if (val < 0 || val > 1)
2656 err = -EINVAL;
2657 else
2658 tp->thin_lto = val;
2659 break;
2660
2661 case TCP_THIN_DUPACK:
2662 if (val < 0 || val > 1)
2663 err = -EINVAL;
2664 break;
2665
2666 case TCP_REPAIR:
2667 if (!tcp_can_repair_sock(sk))
2668 err = -EPERM;
2669 else if (val == 1) {
2670 tp->repair = 1;
2671 sk->sk_reuse = SK_FORCE_REUSE;
2672 tp->repair_queue = TCP_NO_QUEUE;
2673 } else if (val == 0) {
2674 tp->repair = 0;
2675 sk->sk_reuse = SK_NO_REUSE;
2676 tcp_send_window_probe(sk);
2677 } else
2678 err = -EINVAL;
2679
2680 break;
2681
2682 case TCP_REPAIR_QUEUE:
2683 if (!tp->repair)
2684 err = -EPERM;
2685 else if ((unsigned int)val < TCP_QUEUES_NR)
2686 tp->repair_queue = val;
2687 else
2688 err = -EINVAL;
2689 break;
2690
2691 case TCP_QUEUE_SEQ:
2692 if (sk->sk_state != TCP_CLOSE)
2693 err = -EPERM;
2694 else if (tp->repair_queue == TCP_SEND_QUEUE)
2695 tp->write_seq = val;
2696 else if (tp->repair_queue == TCP_RECV_QUEUE)
2697 tp->rcv_nxt = val;
2698 else
2699 err = -EINVAL;
2700 break;
2701
2702 case TCP_REPAIR_OPTIONS:
2703 if (!tp->repair)
2704 err = -EINVAL;
2705 else if (sk->sk_state == TCP_ESTABLISHED)
2706 err = tcp_repair_options_est(sk,
2707 (struct tcp_repair_opt __user *)optval,
2708 optlen);
2709 else
2710 err = -EPERM;
2711 break;
2712
2713 case TCP_CORK:
2714 /* When set indicates to always queue non-full frames.
2715 * Later the user clears this option and we transmit
2716 * any pending partial frames in the queue. This is
2717 * meant to be used alongside sendfile() to get properly
2718 * filled frames when the user (for example) must write
2719 * out headers with a write() call first and then use
2720 * sendfile to send out the data parts.
2721 *
2722 * TCP_CORK can be set together with TCP_NODELAY and it is
2723 * stronger than TCP_NODELAY.
2724 */
2725 if (val) {
2726 tp->nonagle |= TCP_NAGLE_CORK;
2727 } else {
2728 tp->nonagle &= ~TCP_NAGLE_CORK;
2729 if (tp->nonagle&TCP_NAGLE_OFF)
2730 tp->nonagle |= TCP_NAGLE_PUSH;
2731 tcp_push_pending_frames(sk);
2732 }
2733 break;
2734
2735 case TCP_KEEPIDLE:
2736 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2737 err = -EINVAL;
2738 else {
2739 tp->keepalive_time = val * HZ;
2740 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2741 !((1 << sk->sk_state) &
2742 (TCPF_CLOSE | TCPF_LISTEN))) {
2743 u32 elapsed = keepalive_time_elapsed(tp);
2744 if (tp->keepalive_time > elapsed)
2745 elapsed = tp->keepalive_time - elapsed;
2746 else
2747 elapsed = 0;
2748 inet_csk_reset_keepalive_timer(sk, elapsed);
2749 }
2750 }
2751 break;
2752 case TCP_KEEPINTVL:
2753 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2754 err = -EINVAL;
2755 else
2756 tp->keepalive_intvl = val * HZ;
2757 break;
2758 case TCP_KEEPCNT:
2759 if (val < 1 || val > MAX_TCP_KEEPCNT)
2760 err = -EINVAL;
2761 else
2762 tp->keepalive_probes = val;
2763 break;
2764 case TCP_SYNCNT:
2765 if (val < 1 || val > MAX_TCP_SYNCNT)
2766 err = -EINVAL;
2767 else
2768 icsk->icsk_syn_retries = val;
2769 break;
2770
2771 case TCP_SAVE_SYN:
2772 if (val < 0 || val > 1)
2773 err = -EINVAL;
2774 else
2775 tp->save_syn = val;
2776 break;
2777
2778 case TCP_LINGER2:
2779 if (val < 0)
2780 tp->linger2 = -1;
2781 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2782 tp->linger2 = 0;
2783 else
2784 tp->linger2 = val * HZ;
2785 break;
2786
2787 case TCP_DEFER_ACCEPT:
2788 /* Translate value in seconds to number of retransmits */
2789 icsk->icsk_accept_queue.rskq_defer_accept =
2790 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2791 TCP_RTO_MAX / HZ);
2792 break;
2793
2794 case TCP_WINDOW_CLAMP:
2795 if (!val) {
2796 if (sk->sk_state != TCP_CLOSE) {
2797 err = -EINVAL;
2798 break;
2799 }
2800 tp->window_clamp = 0;
2801 } else
2802 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2803 SOCK_MIN_RCVBUF / 2 : val;
2804 break;
2805
2806 case TCP_QUICKACK:
2807 if (!val) {
2808 icsk->icsk_ack.pingpong = 1;
2809 } else {
2810 icsk->icsk_ack.pingpong = 0;
2811 if ((1 << sk->sk_state) &
2812 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2813 inet_csk_ack_scheduled(sk)) {
2814 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2815 tcp_cleanup_rbuf(sk, 1);
2816 if (!(val & 1))
2817 icsk->icsk_ack.pingpong = 1;
2818 }
2819 }
2820 break;
2821
2822 #ifdef CONFIG_TCP_MD5SIG
2823 case TCP_MD5SIG:
2824 case TCP_MD5SIG_EXT:
2825 if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))
2826 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
2827 else
2828 err = -EINVAL;
2829 break;
2830 #endif
2831 case TCP_USER_TIMEOUT:
2832 /* Cap the max time in ms TCP will retry or probe the window
2833 * before giving up and aborting (ETIMEDOUT) a connection.
2834 */
2835 if (val < 0)
2836 err = -EINVAL;
2837 else
2838 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2839 break;
2840
2841 case TCP_FASTOPEN:
2842 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2843 TCPF_LISTEN))) {
2844 tcp_fastopen_init_key_once(net);
2845
2846 fastopen_queue_tune(sk, val);
2847 } else {
2848 err = -EINVAL;
2849 }
2850 break;
2851 case TCP_FASTOPEN_CONNECT:
2852 if (val > 1 || val < 0) {
2853 err = -EINVAL;
2854 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
2855 if (sk->sk_state == TCP_CLOSE)
2856 tp->fastopen_connect = val;
2857 else
2858 err = -EINVAL;
2859 } else {
2860 err = -EOPNOTSUPP;
2861 }
2862 break;
2863 case TCP_FASTOPEN_NO_COOKIE:
2864 if (val > 1 || val < 0)
2865 err = -EINVAL;
2866 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2867 err = -EINVAL;
2868 else
2869 tp->fastopen_no_cookie = val;
2870 break;
2871 case TCP_TIMESTAMP:
2872 if (!tp->repair)
2873 err = -EPERM;
2874 else
2875 tp->tsoffset = val - tcp_time_stamp_raw();
2876 break;
2877 case TCP_REPAIR_WINDOW:
2878 err = tcp_repair_set_window(tp, optval, optlen);
2879 break;
2880 case TCP_NOTSENT_LOWAT:
2881 tp->notsent_lowat = val;
2882 sk->sk_write_space(sk);
2883 break;
2884 default:
2885 err = -ENOPROTOOPT;
2886 break;
2887 }
2888
2889 release_sock(sk);
2890 return err;
2891 }
2892
2893 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2894 unsigned int optlen)
2895 {
2896 const struct inet_connection_sock *icsk = inet_csk(sk);
2897
2898 if (level != SOL_TCP)
2899 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2900 optval, optlen);
2901 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2902 }
2903 EXPORT_SYMBOL(tcp_setsockopt);
2904
2905 #ifdef CONFIG_COMPAT
2906 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2907 char __user *optval, unsigned int optlen)
2908 {
2909 if (level != SOL_TCP)
2910 return inet_csk_compat_setsockopt(sk, level, optname,
2911 optval, optlen);
2912 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2913 }
2914 EXPORT_SYMBOL(compat_tcp_setsockopt);
2915 #endif
2916
2917 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
2918 struct tcp_info *info)
2919 {
2920 u64 stats[__TCP_CHRONO_MAX], total = 0;
2921 enum tcp_chrono i;
2922
2923 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
2924 stats[i] = tp->chrono_stat[i - 1];
2925 if (i == tp->chrono_type)
2926 stats[i] += tcp_jiffies32 - tp->chrono_start;
2927 stats[i] *= USEC_PER_SEC / HZ;
2928 total += stats[i];
2929 }
2930
2931 info->tcpi_busy_time = total;
2932 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
2933 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
2934 }
2935
2936 /* Return information about state of tcp endpoint in API format. */
2937 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2938 {
2939 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2940 const struct inet_connection_sock *icsk = inet_csk(sk);
2941 u32 now;
2942 u64 rate64;
2943 bool slow;
2944 u32 rate;
2945
2946 memset(info, 0, sizeof(*info));
2947 if (sk->sk_type != SOCK_STREAM)
2948 return;
2949
2950 info->tcpi_state = sk_state_load(sk);
2951
2952 /* Report meaningful fields for all TCP states, including listeners */
2953 rate = READ_ONCE(sk->sk_pacing_rate);
2954 rate64 = rate != ~0U ? rate : ~0ULL;
2955 info->tcpi_pacing_rate = rate64;
2956
2957 rate = READ_ONCE(sk->sk_max_pacing_rate);
2958 rate64 = rate != ~0U ? rate : ~0ULL;
2959 info->tcpi_max_pacing_rate = rate64;
2960
2961 info->tcpi_reordering = tp->reordering;
2962 info->tcpi_snd_cwnd = tp->snd_cwnd;
2963
2964 if (info->tcpi_state == TCP_LISTEN) {
2965 /* listeners aliased fields :
2966 * tcpi_unacked -> Number of children ready for accept()
2967 * tcpi_sacked -> max backlog
2968 */
2969 info->tcpi_unacked = sk->sk_ack_backlog;
2970 info->tcpi_sacked = sk->sk_max_ack_backlog;
2971 return;
2972 }
2973
2974 slow = lock_sock_fast(sk);
2975
2976 info->tcpi_ca_state = icsk->icsk_ca_state;
2977 info->tcpi_retransmits = icsk->icsk_retransmits;
2978 info->tcpi_probes = icsk->icsk_probes_out;
2979 info->tcpi_backoff = icsk->icsk_backoff;
2980
2981 if (tp->rx_opt.tstamp_ok)
2982 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2983 if (tcp_is_sack(tp))
2984 info->tcpi_options |= TCPI_OPT_SACK;
2985 if (tp->rx_opt.wscale_ok) {
2986 info->tcpi_options |= TCPI_OPT_WSCALE;
2987 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2988 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2989 }
2990
2991 if (tp->ecn_flags & TCP_ECN_OK)
2992 info->tcpi_options |= TCPI_OPT_ECN;
2993 if (tp->ecn_flags & TCP_ECN_SEEN)
2994 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2995 if (tp->syn_data_acked)
2996 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2997
2998 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2999 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3000 info->tcpi_snd_mss = tp->mss_cache;
3001 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3002
3003 info->tcpi_unacked = tp->packets_out;
3004 info->tcpi_sacked = tp->sacked_out;
3005
3006 info->tcpi_lost = tp->lost_out;
3007 info->tcpi_retrans = tp->retrans_out;
3008
3009 now = tcp_jiffies32;
3010 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3011 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3012 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3013
3014 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3015 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3016 info->tcpi_rtt = tp->srtt_us >> 3;
3017 info->tcpi_rttvar = tp->mdev_us >> 2;
3018 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3019 info->tcpi_advmss = tp->advmss;
3020
3021 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3022 info->tcpi_rcv_space = tp->rcvq_space.space;
3023
3024 info->tcpi_total_retrans = tp->total_retrans;
3025
3026 info->tcpi_bytes_acked = tp->bytes_acked;
3027 info->tcpi_bytes_received = tp->bytes_received;
3028 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3029 tcp_get_info_chrono_stats(tp, info);
3030
3031 info->tcpi_segs_out = tp->segs_out;
3032 info->tcpi_segs_in = tp->segs_in;
3033
3034 info->tcpi_min_rtt = tcp_min_rtt(tp);
3035 info->tcpi_data_segs_in = tp->data_segs_in;
3036 info->tcpi_data_segs_out = tp->data_segs_out;
3037
3038 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3039 rate64 = tcp_compute_delivery_rate(tp);
3040 if (rate64)
3041 info->tcpi_delivery_rate = rate64;
3042 unlock_sock_fast(sk, slow);
3043 }
3044 EXPORT_SYMBOL_GPL(tcp_get_info);
3045
3046 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
3047 {
3048 const struct tcp_sock *tp = tcp_sk(sk);
3049 struct sk_buff *stats;
3050 struct tcp_info info;
3051 u64 rate64;
3052 u32 rate;
3053
3054 stats = alloc_skb(7 * nla_total_size_64bit(sizeof(u64)) +
3055 3 * nla_total_size(sizeof(u32)) +
3056 2 * nla_total_size(sizeof(u8)), GFP_ATOMIC);
3057 if (!stats)
3058 return NULL;
3059
3060 tcp_get_info_chrono_stats(tp, &info);
3061 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3062 info.tcpi_busy_time, TCP_NLA_PAD);
3063 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3064 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3065 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3066 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3067 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3068 tp->data_segs_out, TCP_NLA_PAD);
3069 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3070 tp->total_retrans, TCP_NLA_PAD);
3071
3072 rate = READ_ONCE(sk->sk_pacing_rate);
3073 rate64 = rate != ~0U ? rate : ~0ULL;
3074 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3075
3076 rate64 = tcp_compute_delivery_rate(tp);
3077 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3078
3079 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3080 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3081 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3082
3083 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3084 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3085 return stats;
3086 }
3087
3088 static int do_tcp_getsockopt(struct sock *sk, int level,
3089 int optname, char __user *optval, int __user *optlen)
3090 {
3091 struct inet_connection_sock *icsk = inet_csk(sk);
3092 struct tcp_sock *tp = tcp_sk(sk);
3093 struct net *net = sock_net(sk);
3094 int val, len;
3095
3096 if (get_user(len, optlen))
3097 return -EFAULT;
3098
3099 len = min_t(unsigned int, len, sizeof(int));
3100
3101 if (len < 0)
3102 return -EINVAL;
3103
3104 switch (optname) {
3105 case TCP_MAXSEG:
3106 val = tp->mss_cache;
3107 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3108 val = tp->rx_opt.user_mss;
3109 if (tp->repair)
3110 val = tp->rx_opt.mss_clamp;
3111 break;
3112 case TCP_NODELAY:
3113 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3114 break;
3115 case TCP_CORK:
3116 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3117 break;
3118 case TCP_KEEPIDLE:
3119 val = keepalive_time_when(tp) / HZ;
3120 break;
3121 case TCP_KEEPINTVL:
3122 val = keepalive_intvl_when(tp) / HZ;
3123 break;
3124 case TCP_KEEPCNT:
3125 val = keepalive_probes(tp);
3126 break;
3127 case TCP_SYNCNT:
3128 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3129 break;
3130 case TCP_LINGER2:
3131 val = tp->linger2;
3132 if (val >= 0)
3133 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3134 break;
3135 case TCP_DEFER_ACCEPT:
3136 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3137 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3138 break;
3139 case TCP_WINDOW_CLAMP:
3140 val = tp->window_clamp;
3141 break;
3142 case TCP_INFO: {
3143 struct tcp_info info;
3144
3145 if (get_user(len, optlen))
3146 return -EFAULT;
3147
3148 tcp_get_info(sk, &info);
3149
3150 len = min_t(unsigned int, len, sizeof(info));
3151 if (put_user(len, optlen))
3152 return -EFAULT;
3153 if (copy_to_user(optval, &info, len))
3154 return -EFAULT;
3155 return 0;
3156 }
3157 case TCP_CC_INFO: {
3158 const struct tcp_congestion_ops *ca_ops;
3159 union tcp_cc_info info;
3160 size_t sz = 0;
3161 int attr;
3162
3163 if (get_user(len, optlen))
3164 return -EFAULT;
3165
3166 ca_ops = icsk->icsk_ca_ops;
3167 if (ca_ops && ca_ops->get_info)
3168 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3169
3170 len = min_t(unsigned int, len, sz);
3171 if (put_user(len, optlen))
3172 return -EFAULT;
3173 if (copy_to_user(optval, &info, len))
3174 return -EFAULT;
3175 return 0;
3176 }
3177 case TCP_QUICKACK:
3178 val = !icsk->icsk_ack.pingpong;
3179 break;
3180
3181 case TCP_CONGESTION:
3182 if (get_user(len, optlen))
3183 return -EFAULT;
3184 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3185 if (put_user(len, optlen))
3186 return -EFAULT;
3187 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3188 return -EFAULT;
3189 return 0;
3190
3191 case TCP_ULP:
3192 if (get_user(len, optlen))
3193 return -EFAULT;
3194 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3195 if (!icsk->icsk_ulp_ops) {
3196 if (put_user(0, optlen))
3197 return -EFAULT;
3198 return 0;
3199 }
3200 if (put_user(len, optlen))
3201 return -EFAULT;
3202 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3203 return -EFAULT;
3204 return 0;
3205
3206 case TCP_FASTOPEN_KEY: {
3207 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
3208 struct tcp_fastopen_context *ctx;
3209
3210 if (get_user(len, optlen))
3211 return -EFAULT;
3212
3213 rcu_read_lock();
3214 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
3215 if (ctx)
3216 memcpy(key, ctx->key, sizeof(key));
3217 else
3218 len = 0;
3219 rcu_read_unlock();
3220
3221 len = min_t(unsigned int, len, sizeof(key));
3222 if (put_user(len, optlen))
3223 return -EFAULT;
3224 if (copy_to_user(optval, key, len))
3225 return -EFAULT;
3226 return 0;
3227 }
3228 case TCP_THIN_LINEAR_TIMEOUTS:
3229 val = tp->thin_lto;
3230 break;
3231
3232 case TCP_THIN_DUPACK:
3233 val = 0;
3234 break;
3235
3236 case TCP_REPAIR:
3237 val = tp->repair;
3238 break;
3239
3240 case TCP_REPAIR_QUEUE:
3241 if (tp->repair)
3242 val = tp->repair_queue;
3243 else
3244 return -EINVAL;
3245 break;
3246
3247 case TCP_REPAIR_WINDOW: {
3248 struct tcp_repair_window opt;
3249
3250 if (get_user(len, optlen))
3251 return -EFAULT;
3252
3253 if (len != sizeof(opt))
3254 return -EINVAL;
3255
3256 if (!tp->repair)
3257 return -EPERM;
3258
3259 opt.snd_wl1 = tp->snd_wl1;
3260 opt.snd_wnd = tp->snd_wnd;
3261 opt.max_window = tp->max_window;
3262 opt.rcv_wnd = tp->rcv_wnd;
3263 opt.rcv_wup = tp->rcv_wup;
3264
3265 if (copy_to_user(optval, &opt, len))
3266 return -EFAULT;
3267 return 0;
3268 }
3269 case TCP_QUEUE_SEQ:
3270 if (tp->repair_queue == TCP_SEND_QUEUE)
3271 val = tp->write_seq;
3272 else if (tp->repair_queue == TCP_RECV_QUEUE)
3273 val = tp->rcv_nxt;
3274 else
3275 return -EINVAL;
3276 break;
3277
3278 case TCP_USER_TIMEOUT:
3279 val = jiffies_to_msecs(icsk->icsk_user_timeout);
3280 break;
3281
3282 case TCP_FASTOPEN:
3283 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3284 break;
3285
3286 case TCP_FASTOPEN_CONNECT:
3287 val = tp->fastopen_connect;
3288 break;
3289
3290 case TCP_FASTOPEN_NO_COOKIE:
3291 val = tp->fastopen_no_cookie;
3292 break;
3293
3294 case TCP_TIMESTAMP:
3295 val = tcp_time_stamp_raw() + tp->tsoffset;
3296 break;
3297 case TCP_NOTSENT_LOWAT:
3298 val = tp->notsent_lowat;
3299 break;
3300 case TCP_SAVE_SYN:
3301 val = tp->save_syn;
3302 break;
3303 case TCP_SAVED_SYN: {
3304 if (get_user(len, optlen))
3305 return -EFAULT;
3306
3307 lock_sock(sk);
3308 if (tp->saved_syn) {
3309 if (len < tp->saved_syn[0]) {
3310 if (put_user(tp->saved_syn[0], optlen)) {
3311 release_sock(sk);
3312 return -EFAULT;
3313 }
3314 release_sock(sk);
3315 return -EINVAL;
3316 }
3317 len = tp->saved_syn[0];
3318 if (put_user(len, optlen)) {
3319 release_sock(sk);
3320 return -EFAULT;
3321 }
3322 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3323 release_sock(sk);
3324 return -EFAULT;
3325 }
3326 tcp_saved_syn_free(tp);
3327 release_sock(sk);
3328 } else {
3329 release_sock(sk);
3330 len = 0;
3331 if (put_user(len, optlen))
3332 return -EFAULT;
3333 }
3334 return 0;
3335 }
3336 default:
3337 return -ENOPROTOOPT;
3338 }
3339
3340 if (put_user(len, optlen))
3341 return -EFAULT;
3342 if (copy_to_user(optval, &val, len))
3343 return -EFAULT;
3344 return 0;
3345 }
3346
3347 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3348 int __user *optlen)
3349 {
3350 struct inet_connection_sock *icsk = inet_csk(sk);
3351
3352 if (level != SOL_TCP)
3353 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3354 optval, optlen);
3355 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3356 }
3357 EXPORT_SYMBOL(tcp_getsockopt);
3358
3359 #ifdef CONFIG_COMPAT
3360 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3361 char __user *optval, int __user *optlen)
3362 {
3363 if (level != SOL_TCP)
3364 return inet_csk_compat_getsockopt(sk, level, optname,
3365 optval, optlen);
3366 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3367 }
3368 EXPORT_SYMBOL(compat_tcp_getsockopt);
3369 #endif
3370
3371 #ifdef CONFIG_TCP_MD5SIG
3372 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3373 static DEFINE_MUTEX(tcp_md5sig_mutex);
3374 static bool tcp_md5sig_pool_populated = false;
3375
3376 static void __tcp_alloc_md5sig_pool(void)
3377 {
3378 struct crypto_ahash *hash;
3379 int cpu;
3380
3381 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3382 if (IS_ERR(hash))
3383 return;
3384
3385 for_each_possible_cpu(cpu) {
3386 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3387 struct ahash_request *req;
3388
3389 if (!scratch) {
3390 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3391 sizeof(struct tcphdr),
3392 GFP_KERNEL,
3393 cpu_to_node(cpu));
3394 if (!scratch)
3395 return;
3396 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3397 }
3398 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3399 continue;
3400
3401 req = ahash_request_alloc(hash, GFP_KERNEL);
3402 if (!req)
3403 return;
3404
3405 ahash_request_set_callback(req, 0, NULL, NULL);
3406
3407 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3408 }
3409 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3410 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3411 */
3412 smp_wmb();
3413 tcp_md5sig_pool_populated = true;
3414 }
3415
3416 bool tcp_alloc_md5sig_pool(void)
3417 {
3418 if (unlikely(!tcp_md5sig_pool_populated)) {
3419 mutex_lock(&tcp_md5sig_mutex);
3420
3421 if (!tcp_md5sig_pool_populated)
3422 __tcp_alloc_md5sig_pool();
3423
3424 mutex_unlock(&tcp_md5sig_mutex);
3425 }
3426 return tcp_md5sig_pool_populated;
3427 }
3428 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3429
3430
3431 /**
3432 * tcp_get_md5sig_pool - get md5sig_pool for this user
3433 *
3434 * We use percpu structure, so if we succeed, we exit with preemption
3435 * and BH disabled, to make sure another thread or softirq handling
3436 * wont try to get same context.
3437 */
3438 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3439 {
3440 local_bh_disable();
3441
3442 if (tcp_md5sig_pool_populated) {
3443 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3444 smp_rmb();
3445 return this_cpu_ptr(&tcp_md5sig_pool);
3446 }
3447 local_bh_enable();
3448 return NULL;
3449 }
3450 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3451
3452 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3453 const struct sk_buff *skb, unsigned int header_len)
3454 {
3455 struct scatterlist sg;
3456 const struct tcphdr *tp = tcp_hdr(skb);
3457 struct ahash_request *req = hp->md5_req;
3458 unsigned int i;
3459 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3460 skb_headlen(skb) - header_len : 0;
3461 const struct skb_shared_info *shi = skb_shinfo(skb);
3462 struct sk_buff *frag_iter;
3463
3464 sg_init_table(&sg, 1);
3465
3466 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3467 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3468 if (crypto_ahash_update(req))
3469 return 1;
3470
3471 for (i = 0; i < shi->nr_frags; ++i) {
3472 const struct skb_frag_struct *f = &shi->frags[i];
3473 unsigned int offset = f->page_offset;
3474 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3475
3476 sg_set_page(&sg, page, skb_frag_size(f),
3477 offset_in_page(offset));
3478 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3479 if (crypto_ahash_update(req))
3480 return 1;
3481 }
3482
3483 skb_walk_frags(skb, frag_iter)
3484 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3485 return 1;
3486
3487 return 0;
3488 }
3489 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3490
3491 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3492 {
3493 struct scatterlist sg;
3494
3495 sg_init_one(&sg, key->key, key->keylen);
3496 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3497 return crypto_ahash_update(hp->md5_req);
3498 }
3499 EXPORT_SYMBOL(tcp_md5_hash_key);
3500
3501 #endif
3502
3503 void tcp_done(struct sock *sk)
3504 {
3505 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3506
3507 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3508 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3509
3510 tcp_set_state(sk, TCP_CLOSE);
3511 tcp_clear_xmit_timers(sk);
3512 if (req)
3513 reqsk_fastopen_remove(sk, req, false);
3514
3515 sk->sk_shutdown = SHUTDOWN_MASK;
3516
3517 if (!sock_flag(sk, SOCK_DEAD))
3518 sk->sk_state_change(sk);
3519 else
3520 inet_csk_destroy_sock(sk);
3521 }
3522 EXPORT_SYMBOL_GPL(tcp_done);
3523
3524 int tcp_abort(struct sock *sk, int err)
3525 {
3526 if (!sk_fullsock(sk)) {
3527 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3528 struct request_sock *req = inet_reqsk(sk);
3529
3530 local_bh_disable();
3531 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
3532 local_bh_enable();
3533 return 0;
3534 }
3535 return -EOPNOTSUPP;
3536 }
3537
3538 /* Don't race with userspace socket closes such as tcp_close. */
3539 lock_sock(sk);
3540
3541 if (sk->sk_state == TCP_LISTEN) {
3542 tcp_set_state(sk, TCP_CLOSE);
3543 inet_csk_listen_stop(sk);
3544 }
3545
3546 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3547 local_bh_disable();
3548 bh_lock_sock(sk);
3549
3550 if (!sock_flag(sk, SOCK_DEAD)) {
3551 sk->sk_err = err;
3552 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3553 smp_wmb();
3554 sk->sk_error_report(sk);
3555 if (tcp_need_reset(sk->sk_state))
3556 tcp_send_active_reset(sk, GFP_ATOMIC);
3557 tcp_done(sk);
3558 }
3559
3560 bh_unlock_sock(sk);
3561 local_bh_enable();
3562 tcp_write_queue_purge(sk);
3563 release_sock(sk);
3564 return 0;
3565 }
3566 EXPORT_SYMBOL_GPL(tcp_abort);
3567
3568 extern struct tcp_congestion_ops tcp_reno;
3569
3570 static __initdata unsigned long thash_entries;
3571 static int __init set_thash_entries(char *str)
3572 {
3573 ssize_t ret;
3574
3575 if (!str)
3576 return 0;
3577
3578 ret = kstrtoul(str, 0, &thash_entries);
3579 if (ret)
3580 return 0;
3581
3582 return 1;
3583 }
3584 __setup("thash_entries=", set_thash_entries);
3585
3586 static void __init tcp_init_mem(void)
3587 {
3588 unsigned long limit = nr_free_buffer_pages() / 16;
3589
3590 limit = max(limit, 128UL);
3591 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3592 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3593 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3594 }
3595
3596 void __init tcp_init(void)
3597 {
3598 int max_rshare, max_wshare, cnt;
3599 unsigned long limit;
3600 unsigned int i;
3601
3602 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
3603 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3604 FIELD_SIZEOF(struct sk_buff, cb));
3605
3606 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3607 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3608 inet_hashinfo_init(&tcp_hashinfo);
3609 tcp_hashinfo.bind_bucket_cachep =
3610 kmem_cache_create("tcp_bind_bucket",
3611 sizeof(struct inet_bind_bucket), 0,
3612 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3613
3614 /* Size and allocate the main established and bind bucket
3615 * hash tables.
3616 *
3617 * The methodology is similar to that of the buffer cache.
3618 */
3619 tcp_hashinfo.ehash =
3620 alloc_large_system_hash("TCP established",
3621 sizeof(struct inet_ehash_bucket),
3622 thash_entries,
3623 17, /* one slot per 128 KB of memory */
3624 0,
3625 NULL,
3626 &tcp_hashinfo.ehash_mask,
3627 0,
3628 thash_entries ? 0 : 512 * 1024);
3629 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3630 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3631
3632 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3633 panic("TCP: failed to alloc ehash_locks");
3634 tcp_hashinfo.bhash =
3635 alloc_large_system_hash("TCP bind",
3636 sizeof(struct inet_bind_hashbucket),
3637 tcp_hashinfo.ehash_mask + 1,
3638 17, /* one slot per 128 KB of memory */
3639 0,
3640 &tcp_hashinfo.bhash_size,
3641 NULL,
3642 0,
3643 64 * 1024);
3644 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3645 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3646 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3647 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3648 }
3649
3650
3651 cnt = tcp_hashinfo.ehash_mask + 1;
3652 sysctl_tcp_max_orphans = cnt / 2;
3653
3654 tcp_init_mem();
3655 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3656 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3657 max_wshare = min(4UL*1024*1024, limit);
3658 max_rshare = min(6UL*1024*1024, limit);
3659
3660 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3661 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
3662 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3663
3664 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3665 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
3666 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
3667
3668 pr_info("Hash tables configured (established %u bind %u)\n",
3669 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3670
3671 tcp_v4_init();
3672 tcp_metrics_init();
3673 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3674 tcp_tasklet_init();
3675 }