]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - net/ipv4/tcp.c
Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / net / ipv4 / tcp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248 #define pr_fmt(fmt) "TCP: " fmt
249
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 #include <linux/errqueue.h>
273 #include <linux/static_key.h>
274
275 #include <net/icmp.h>
276 #include <net/inet_common.h>
277 #include <net/tcp.h>
278 #include <net/xfrm.h>
279 #include <net/ip.h>
280 #include <net/sock.h>
281
282 #include <linux/uaccess.h>
283 #include <asm/ioctls.h>
284 #include <net/busy_poll.h>
285
286 struct percpu_counter tcp_orphan_count;
287 EXPORT_SYMBOL_GPL(tcp_orphan_count);
288
289 long sysctl_tcp_mem[3] __read_mostly;
290 EXPORT_SYMBOL(sysctl_tcp_mem);
291
292 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
293 EXPORT_SYMBOL(tcp_memory_allocated);
294
295 #if IS_ENABLED(CONFIG_SMC)
296 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
297 EXPORT_SYMBOL(tcp_have_smc);
298 #endif
299
300 /*
301 * Current number of TCP sockets.
302 */
303 struct percpu_counter tcp_sockets_allocated;
304 EXPORT_SYMBOL(tcp_sockets_allocated);
305
306 /*
307 * TCP splice context
308 */
309 struct tcp_splice_state {
310 struct pipe_inode_info *pipe;
311 size_t len;
312 unsigned int flags;
313 };
314
315 /*
316 * Pressure flag: try to collapse.
317 * Technical note: it is used by multiple contexts non atomically.
318 * All the __sk_mem_schedule() is of this nature: accounting
319 * is strict, actions are advisory and have some latency.
320 */
321 unsigned long tcp_memory_pressure __read_mostly;
322 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
323
324 void tcp_enter_memory_pressure(struct sock *sk)
325 {
326 unsigned long val;
327
328 if (tcp_memory_pressure)
329 return;
330 val = jiffies;
331
332 if (!val)
333 val--;
334 if (!cmpxchg(&tcp_memory_pressure, 0, val))
335 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
336 }
337 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
338
339 void tcp_leave_memory_pressure(struct sock *sk)
340 {
341 unsigned long val;
342
343 if (!tcp_memory_pressure)
344 return;
345 val = xchg(&tcp_memory_pressure, 0);
346 if (val)
347 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
348 jiffies_to_msecs(jiffies - val));
349 }
350 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
351
352 /* Convert seconds to retransmits based on initial and max timeout */
353 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
354 {
355 u8 res = 0;
356
357 if (seconds > 0) {
358 int period = timeout;
359
360 res = 1;
361 while (seconds > period && res < 255) {
362 res++;
363 timeout <<= 1;
364 if (timeout > rto_max)
365 timeout = rto_max;
366 period += timeout;
367 }
368 }
369 return res;
370 }
371
372 /* Convert retransmits to seconds based on initial and max timeout */
373 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
374 {
375 int period = 0;
376
377 if (retrans > 0) {
378 period = timeout;
379 while (--retrans) {
380 timeout <<= 1;
381 if (timeout > rto_max)
382 timeout = rto_max;
383 period += timeout;
384 }
385 }
386 return period;
387 }
388
389 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
390 {
391 u32 rate = READ_ONCE(tp->rate_delivered);
392 u32 intv = READ_ONCE(tp->rate_interval_us);
393 u64 rate64 = 0;
394
395 if (rate && intv) {
396 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
397 do_div(rate64, intv);
398 }
399 return rate64;
400 }
401
402 /* Address-family independent initialization for a tcp_sock.
403 *
404 * NOTE: A lot of things set to zero explicitly by call to
405 * sk_alloc() so need not be done here.
406 */
407 void tcp_init_sock(struct sock *sk)
408 {
409 struct inet_connection_sock *icsk = inet_csk(sk);
410 struct tcp_sock *tp = tcp_sk(sk);
411
412 tp->out_of_order_queue = RB_ROOT;
413 sk->tcp_rtx_queue = RB_ROOT;
414 tcp_init_xmit_timers(sk);
415 INIT_LIST_HEAD(&tp->tsq_node);
416 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
417
418 icsk->icsk_rto = TCP_TIMEOUT_INIT;
419 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
420 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
421
422 /* So many TCP implementations out there (incorrectly) count the
423 * initial SYN frame in their delayed-ACK and congestion control
424 * algorithms that we must have the following bandaid to talk
425 * efficiently to them. -DaveM
426 */
427 tp->snd_cwnd = TCP_INIT_CWND;
428
429 /* There's a bubble in the pipe until at least the first ACK. */
430 tp->app_limited = ~0U;
431
432 /* See draft-stevens-tcpca-spec-01 for discussion of the
433 * initialization of these values.
434 */
435 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
436 tp->snd_cwnd_clamp = ~0;
437 tp->mss_cache = TCP_MSS_DEFAULT;
438
439 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
440 tcp_assign_congestion_control(sk);
441
442 tp->tsoffset = 0;
443 tp->rack.reo_wnd_steps = 1;
444
445 sk->sk_state = TCP_CLOSE;
446
447 sk->sk_write_space = sk_stream_write_space;
448 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
449
450 icsk->icsk_sync_mss = tcp_sync_mss;
451
452 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
453 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
454
455 sk_sockets_allocated_inc(sk);
456 }
457 EXPORT_SYMBOL(tcp_init_sock);
458
459 void tcp_init_transfer(struct sock *sk, int bpf_op)
460 {
461 struct inet_connection_sock *icsk = inet_csk(sk);
462
463 tcp_mtup_init(sk);
464 icsk->icsk_af_ops->rebuild_header(sk);
465 tcp_init_metrics(sk);
466 tcp_call_bpf(sk, bpf_op, 0, NULL);
467 tcp_init_congestion_control(sk);
468 tcp_init_buffer_space(sk);
469 }
470
471 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
472 {
473 struct sk_buff *skb = tcp_write_queue_tail(sk);
474
475 if (tsflags && skb) {
476 struct skb_shared_info *shinfo = skb_shinfo(skb);
477 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
478
479 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
480 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
481 tcb->txstamp_ack = 1;
482 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
483 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
484 }
485 }
486
487 /*
488 * Wait for a TCP event.
489 *
490 * Note that we don't need to lock the socket, as the upper poll layers
491 * take care of normal races (between the test and the event) and we don't
492 * go look at any of the socket buffers directly.
493 */
494 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
495 {
496 __poll_t mask;
497 struct sock *sk = sock->sk;
498 const struct tcp_sock *tp = tcp_sk(sk);
499 int state;
500
501 sock_poll_wait(file, sk_sleep(sk), wait);
502
503 state = inet_sk_state_load(sk);
504 if (state == TCP_LISTEN)
505 return inet_csk_listen_poll(sk);
506
507 /* Socket is not locked. We are protected from async events
508 * by poll logic and correct handling of state changes
509 * made by other threads is impossible in any case.
510 */
511
512 mask = 0;
513
514 /*
515 * EPOLLHUP is certainly not done right. But poll() doesn't
516 * have a notion of HUP in just one direction, and for a
517 * socket the read side is more interesting.
518 *
519 * Some poll() documentation says that EPOLLHUP is incompatible
520 * with the EPOLLOUT/POLLWR flags, so somebody should check this
521 * all. But careful, it tends to be safer to return too many
522 * bits than too few, and you can easily break real applications
523 * if you don't tell them that something has hung up!
524 *
525 * Check-me.
526 *
527 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
528 * our fs/select.c). It means that after we received EOF,
529 * poll always returns immediately, making impossible poll() on write()
530 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
531 * if and only if shutdown has been made in both directions.
532 * Actually, it is interesting to look how Solaris and DUX
533 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
534 * then we could set it on SND_SHUTDOWN. BTW examples given
535 * in Stevens' books assume exactly this behaviour, it explains
536 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
537 *
538 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
539 * blocking on fresh not-connected or disconnected socket. --ANK
540 */
541 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
542 mask |= EPOLLHUP;
543 if (sk->sk_shutdown & RCV_SHUTDOWN)
544 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
545
546 /* Connected or passive Fast Open socket? */
547 if (state != TCP_SYN_SENT &&
548 (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
549 int target = sock_rcvlowat(sk, 0, INT_MAX);
550
551 if (tp->urg_seq == tp->copied_seq &&
552 !sock_flag(sk, SOCK_URGINLINE) &&
553 tp->urg_data)
554 target++;
555
556 if (tp->rcv_nxt - tp->copied_seq >= target)
557 mask |= EPOLLIN | EPOLLRDNORM;
558
559 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
560 if (sk_stream_is_writeable(sk)) {
561 mask |= EPOLLOUT | EPOLLWRNORM;
562 } else { /* send SIGIO later */
563 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
564 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
565
566 /* Race breaker. If space is freed after
567 * wspace test but before the flags are set,
568 * IO signal will be lost. Memory barrier
569 * pairs with the input side.
570 */
571 smp_mb__after_atomic();
572 if (sk_stream_is_writeable(sk))
573 mask |= EPOLLOUT | EPOLLWRNORM;
574 }
575 } else
576 mask |= EPOLLOUT | EPOLLWRNORM;
577
578 if (tp->urg_data & TCP_URG_VALID)
579 mask |= EPOLLPRI;
580 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
581 /* Active TCP fastopen socket with defer_connect
582 * Return EPOLLOUT so application can call write()
583 * in order for kernel to generate SYN+data
584 */
585 mask |= EPOLLOUT | EPOLLWRNORM;
586 }
587 /* This barrier is coupled with smp_wmb() in tcp_reset() */
588 smp_rmb();
589 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
590 mask |= EPOLLERR;
591
592 return mask;
593 }
594 EXPORT_SYMBOL(tcp_poll);
595
596 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
597 {
598 struct tcp_sock *tp = tcp_sk(sk);
599 int answ;
600 bool slow;
601
602 switch (cmd) {
603 case SIOCINQ:
604 if (sk->sk_state == TCP_LISTEN)
605 return -EINVAL;
606
607 slow = lock_sock_fast(sk);
608 answ = tcp_inq(sk);
609 unlock_sock_fast(sk, slow);
610 break;
611 case SIOCATMARK:
612 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
613 break;
614 case SIOCOUTQ:
615 if (sk->sk_state == TCP_LISTEN)
616 return -EINVAL;
617
618 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
619 answ = 0;
620 else
621 answ = tp->write_seq - tp->snd_una;
622 break;
623 case SIOCOUTQNSD:
624 if (sk->sk_state == TCP_LISTEN)
625 return -EINVAL;
626
627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
628 answ = 0;
629 else
630 answ = tp->write_seq - tp->snd_nxt;
631 break;
632 default:
633 return -ENOIOCTLCMD;
634 }
635
636 return put_user(answ, (int __user *)arg);
637 }
638 EXPORT_SYMBOL(tcp_ioctl);
639
640 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
641 {
642 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
643 tp->pushed_seq = tp->write_seq;
644 }
645
646 static inline bool forced_push(const struct tcp_sock *tp)
647 {
648 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
649 }
650
651 static void skb_entail(struct sock *sk, struct sk_buff *skb)
652 {
653 struct tcp_sock *tp = tcp_sk(sk);
654 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
655
656 skb->csum = 0;
657 tcb->seq = tcb->end_seq = tp->write_seq;
658 tcb->tcp_flags = TCPHDR_ACK;
659 tcb->sacked = 0;
660 __skb_header_release(skb);
661 tcp_add_write_queue_tail(sk, skb);
662 sk->sk_wmem_queued += skb->truesize;
663 sk_mem_charge(sk, skb->truesize);
664 if (tp->nonagle & TCP_NAGLE_PUSH)
665 tp->nonagle &= ~TCP_NAGLE_PUSH;
666
667 tcp_slow_start_after_idle_check(sk);
668 }
669
670 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
671 {
672 if (flags & MSG_OOB)
673 tp->snd_up = tp->write_seq;
674 }
675
676 /* If a not yet filled skb is pushed, do not send it if
677 * we have data packets in Qdisc or NIC queues :
678 * Because TX completion will happen shortly, it gives a chance
679 * to coalesce future sendmsg() payload into this skb, without
680 * need for a timer, and with no latency trade off.
681 * As packets containing data payload have a bigger truesize
682 * than pure acks (dataless) packets, the last checks prevent
683 * autocorking if we only have an ACK in Qdisc/NIC queues,
684 * or if TX completion was delayed after we processed ACK packet.
685 */
686 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
687 int size_goal)
688 {
689 return skb->len < size_goal &&
690 sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
691 skb != tcp_write_queue_head(sk) &&
692 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
693 }
694
695 static void tcp_push(struct sock *sk, int flags, int mss_now,
696 int nonagle, int size_goal)
697 {
698 struct tcp_sock *tp = tcp_sk(sk);
699 struct sk_buff *skb;
700
701 skb = tcp_write_queue_tail(sk);
702 if (!skb)
703 return;
704 if (!(flags & MSG_MORE) || forced_push(tp))
705 tcp_mark_push(tp, skb);
706
707 tcp_mark_urg(tp, flags);
708
709 if (tcp_should_autocork(sk, skb, size_goal)) {
710
711 /* avoid atomic op if TSQ_THROTTLED bit is already set */
712 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
713 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
714 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
715 }
716 /* It is possible TX completion already happened
717 * before we set TSQ_THROTTLED.
718 */
719 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
720 return;
721 }
722
723 if (flags & MSG_MORE)
724 nonagle = TCP_NAGLE_CORK;
725
726 __tcp_push_pending_frames(sk, mss_now, nonagle);
727 }
728
729 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
730 unsigned int offset, size_t len)
731 {
732 struct tcp_splice_state *tss = rd_desc->arg.data;
733 int ret;
734
735 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
736 min(rd_desc->count, len), tss->flags);
737 if (ret > 0)
738 rd_desc->count -= ret;
739 return ret;
740 }
741
742 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
743 {
744 /* Store TCP splice context information in read_descriptor_t. */
745 read_descriptor_t rd_desc = {
746 .arg.data = tss,
747 .count = tss->len,
748 };
749
750 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
751 }
752
753 /**
754 * tcp_splice_read - splice data from TCP socket to a pipe
755 * @sock: socket to splice from
756 * @ppos: position (not valid)
757 * @pipe: pipe to splice to
758 * @len: number of bytes to splice
759 * @flags: splice modifier flags
760 *
761 * Description:
762 * Will read pages from given socket and fill them into a pipe.
763 *
764 **/
765 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
766 struct pipe_inode_info *pipe, size_t len,
767 unsigned int flags)
768 {
769 struct sock *sk = sock->sk;
770 struct tcp_splice_state tss = {
771 .pipe = pipe,
772 .len = len,
773 .flags = flags,
774 };
775 long timeo;
776 ssize_t spliced;
777 int ret;
778
779 sock_rps_record_flow(sk);
780 /*
781 * We can't seek on a socket input
782 */
783 if (unlikely(*ppos))
784 return -ESPIPE;
785
786 ret = spliced = 0;
787
788 lock_sock(sk);
789
790 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
791 while (tss.len) {
792 ret = __tcp_splice_read(sk, &tss);
793 if (ret < 0)
794 break;
795 else if (!ret) {
796 if (spliced)
797 break;
798 if (sock_flag(sk, SOCK_DONE))
799 break;
800 if (sk->sk_err) {
801 ret = sock_error(sk);
802 break;
803 }
804 if (sk->sk_shutdown & RCV_SHUTDOWN)
805 break;
806 if (sk->sk_state == TCP_CLOSE) {
807 /*
808 * This occurs when user tries to read
809 * from never connected socket.
810 */
811 if (!sock_flag(sk, SOCK_DONE))
812 ret = -ENOTCONN;
813 break;
814 }
815 if (!timeo) {
816 ret = -EAGAIN;
817 break;
818 }
819 /* if __tcp_splice_read() got nothing while we have
820 * an skb in receive queue, we do not want to loop.
821 * This might happen with URG data.
822 */
823 if (!skb_queue_empty(&sk->sk_receive_queue))
824 break;
825 sk_wait_data(sk, &timeo, NULL);
826 if (signal_pending(current)) {
827 ret = sock_intr_errno(timeo);
828 break;
829 }
830 continue;
831 }
832 tss.len -= ret;
833 spliced += ret;
834
835 if (!timeo)
836 break;
837 release_sock(sk);
838 lock_sock(sk);
839
840 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
841 (sk->sk_shutdown & RCV_SHUTDOWN) ||
842 signal_pending(current))
843 break;
844 }
845
846 release_sock(sk);
847
848 if (spliced)
849 return spliced;
850
851 return ret;
852 }
853 EXPORT_SYMBOL(tcp_splice_read);
854
855 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
856 bool force_schedule)
857 {
858 struct sk_buff *skb;
859
860 /* The TCP header must be at least 32-bit aligned. */
861 size = ALIGN(size, 4);
862
863 if (unlikely(tcp_under_memory_pressure(sk)))
864 sk_mem_reclaim_partial(sk);
865
866 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
867 if (likely(skb)) {
868 bool mem_scheduled;
869
870 if (force_schedule) {
871 mem_scheduled = true;
872 sk_forced_mem_schedule(sk, skb->truesize);
873 } else {
874 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
875 }
876 if (likely(mem_scheduled)) {
877 skb_reserve(skb, sk->sk_prot->max_header);
878 /*
879 * Make sure that we have exactly size bytes
880 * available to the caller, no more, no less.
881 */
882 skb->reserved_tailroom = skb->end - skb->tail - size;
883 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
884 return skb;
885 }
886 __kfree_skb(skb);
887 } else {
888 sk->sk_prot->enter_memory_pressure(sk);
889 sk_stream_moderate_sndbuf(sk);
890 }
891 return NULL;
892 }
893
894 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
895 int large_allowed)
896 {
897 struct tcp_sock *tp = tcp_sk(sk);
898 u32 new_size_goal, size_goal;
899
900 if (!large_allowed || !sk_can_gso(sk))
901 return mss_now;
902
903 /* Note : tcp_tso_autosize() will eventually split this later */
904 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
905 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
906
907 /* We try hard to avoid divides here */
908 size_goal = tp->gso_segs * mss_now;
909 if (unlikely(new_size_goal < size_goal ||
910 new_size_goal >= size_goal + mss_now)) {
911 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
912 sk->sk_gso_max_segs);
913 size_goal = tp->gso_segs * mss_now;
914 }
915
916 return max(size_goal, mss_now);
917 }
918
919 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
920 {
921 int mss_now;
922
923 mss_now = tcp_current_mss(sk);
924 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
925
926 return mss_now;
927 }
928
929 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
930 size_t size, int flags)
931 {
932 struct tcp_sock *tp = tcp_sk(sk);
933 int mss_now, size_goal;
934 int err;
935 ssize_t copied;
936 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
937
938 /* Wait for a connection to finish. One exception is TCP Fast Open
939 * (passive side) where data is allowed to be sent before a connection
940 * is fully established.
941 */
942 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
943 !tcp_passive_fastopen(sk)) {
944 err = sk_stream_wait_connect(sk, &timeo);
945 if (err != 0)
946 goto out_err;
947 }
948
949 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
950
951 mss_now = tcp_send_mss(sk, &size_goal, flags);
952 copied = 0;
953
954 err = -EPIPE;
955 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
956 goto out_err;
957
958 while (size > 0) {
959 struct sk_buff *skb = tcp_write_queue_tail(sk);
960 int copy, i;
961 bool can_coalesce;
962
963 if (!skb || (copy = size_goal - skb->len) <= 0 ||
964 !tcp_skb_can_collapse_to(skb)) {
965 new_segment:
966 if (!sk_stream_memory_free(sk))
967 goto wait_for_sndbuf;
968
969 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
970 tcp_rtx_and_write_queues_empty(sk));
971 if (!skb)
972 goto wait_for_memory;
973
974 skb_entail(sk, skb);
975 copy = size_goal;
976 }
977
978 if (copy > size)
979 copy = size;
980
981 i = skb_shinfo(skb)->nr_frags;
982 can_coalesce = skb_can_coalesce(skb, i, page, offset);
983 if (!can_coalesce && i >= sysctl_max_skb_frags) {
984 tcp_mark_push(tp, skb);
985 goto new_segment;
986 }
987 if (!sk_wmem_schedule(sk, copy))
988 goto wait_for_memory;
989
990 if (can_coalesce) {
991 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
992 } else {
993 get_page(page);
994 skb_fill_page_desc(skb, i, page, offset, copy);
995 }
996 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
997
998 skb->len += copy;
999 skb->data_len += copy;
1000 skb->truesize += copy;
1001 sk->sk_wmem_queued += copy;
1002 sk_mem_charge(sk, copy);
1003 skb->ip_summed = CHECKSUM_PARTIAL;
1004 tp->write_seq += copy;
1005 TCP_SKB_CB(skb)->end_seq += copy;
1006 tcp_skb_pcount_set(skb, 0);
1007
1008 if (!copied)
1009 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1010
1011 copied += copy;
1012 offset += copy;
1013 size -= copy;
1014 if (!size)
1015 goto out;
1016
1017 if (skb->len < size_goal || (flags & MSG_OOB))
1018 continue;
1019
1020 if (forced_push(tp)) {
1021 tcp_mark_push(tp, skb);
1022 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1023 } else if (skb == tcp_send_head(sk))
1024 tcp_push_one(sk, mss_now);
1025 continue;
1026
1027 wait_for_sndbuf:
1028 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1029 wait_for_memory:
1030 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1031 TCP_NAGLE_PUSH, size_goal);
1032
1033 err = sk_stream_wait_memory(sk, &timeo);
1034 if (err != 0)
1035 goto do_error;
1036
1037 mss_now = tcp_send_mss(sk, &size_goal, flags);
1038 }
1039
1040 out:
1041 if (copied) {
1042 tcp_tx_timestamp(sk, sk->sk_tsflags);
1043 if (!(flags & MSG_SENDPAGE_NOTLAST))
1044 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1045 }
1046 return copied;
1047
1048 do_error:
1049 if (copied)
1050 goto out;
1051 out_err:
1052 /* make sure we wake any epoll edge trigger waiter */
1053 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1054 err == -EAGAIN)) {
1055 sk->sk_write_space(sk);
1056 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1057 }
1058 return sk_stream_error(sk, flags, err);
1059 }
1060 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1061
1062 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1063 size_t size, int flags)
1064 {
1065 if (!(sk->sk_route_caps & NETIF_F_SG) ||
1066 !sk_check_csum_caps(sk))
1067 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1068
1069 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1070
1071 return do_tcp_sendpages(sk, page, offset, size, flags);
1072 }
1073 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1074
1075 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1076 size_t size, int flags)
1077 {
1078 int ret;
1079
1080 lock_sock(sk);
1081 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1082 release_sock(sk);
1083
1084 return ret;
1085 }
1086 EXPORT_SYMBOL(tcp_sendpage);
1087
1088 /* Do not bother using a page frag for very small frames.
1089 * But use this heuristic only for the first skb in write queue.
1090 *
1091 * Having no payload in skb->head allows better SACK shifting
1092 * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1093 * write queue has less skbs.
1094 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1095 * This also speeds up tso_fragment(), since it wont fallback
1096 * to tcp_fragment().
1097 */
1098 static int linear_payload_sz(bool first_skb)
1099 {
1100 if (first_skb)
1101 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1102 return 0;
1103 }
1104
1105 static int select_size(const struct sock *sk, bool sg, bool first_skb, bool zc)
1106 {
1107 const struct tcp_sock *tp = tcp_sk(sk);
1108 int tmp = tp->mss_cache;
1109
1110 if (sg) {
1111 if (zc)
1112 return 0;
1113
1114 if (sk_can_gso(sk)) {
1115 tmp = linear_payload_sz(first_skb);
1116 } else {
1117 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1118
1119 if (tmp >= pgbreak &&
1120 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1121 tmp = pgbreak;
1122 }
1123 }
1124
1125 return tmp;
1126 }
1127
1128 void tcp_free_fastopen_req(struct tcp_sock *tp)
1129 {
1130 if (tp->fastopen_req) {
1131 kfree(tp->fastopen_req);
1132 tp->fastopen_req = NULL;
1133 }
1134 }
1135
1136 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1137 int *copied, size_t size)
1138 {
1139 struct tcp_sock *tp = tcp_sk(sk);
1140 struct inet_sock *inet = inet_sk(sk);
1141 struct sockaddr *uaddr = msg->msg_name;
1142 int err, flags;
1143
1144 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1145 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1146 uaddr->sa_family == AF_UNSPEC))
1147 return -EOPNOTSUPP;
1148 if (tp->fastopen_req)
1149 return -EALREADY; /* Another Fast Open is in progress */
1150
1151 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1152 sk->sk_allocation);
1153 if (unlikely(!tp->fastopen_req))
1154 return -ENOBUFS;
1155 tp->fastopen_req->data = msg;
1156 tp->fastopen_req->size = size;
1157
1158 if (inet->defer_connect) {
1159 err = tcp_connect(sk);
1160 /* Same failure procedure as in tcp_v4/6_connect */
1161 if (err) {
1162 tcp_set_state(sk, TCP_CLOSE);
1163 inet->inet_dport = 0;
1164 sk->sk_route_caps = 0;
1165 }
1166 }
1167 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1168 err = __inet_stream_connect(sk->sk_socket, uaddr,
1169 msg->msg_namelen, flags, 1);
1170 /* fastopen_req could already be freed in __inet_stream_connect
1171 * if the connection times out or gets rst
1172 */
1173 if (tp->fastopen_req) {
1174 *copied = tp->fastopen_req->copied;
1175 tcp_free_fastopen_req(tp);
1176 inet->defer_connect = 0;
1177 }
1178 return err;
1179 }
1180
1181 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1182 {
1183 struct tcp_sock *tp = tcp_sk(sk);
1184 struct ubuf_info *uarg = NULL;
1185 struct sk_buff *skb;
1186 struct sockcm_cookie sockc;
1187 int flags, err, copied = 0;
1188 int mss_now = 0, size_goal, copied_syn = 0;
1189 bool process_backlog = false;
1190 bool sg, zc = false;
1191 long timeo;
1192
1193 flags = msg->msg_flags;
1194
1195 if (flags & MSG_ZEROCOPY && size) {
1196 if (sk->sk_state != TCP_ESTABLISHED) {
1197 err = -EINVAL;
1198 goto out_err;
1199 }
1200
1201 skb = tcp_write_queue_tail(sk);
1202 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1203 if (!uarg) {
1204 err = -ENOBUFS;
1205 goto out_err;
1206 }
1207
1208 zc = sk_check_csum_caps(sk) && sk->sk_route_caps & NETIF_F_SG;
1209 if (!zc)
1210 uarg->zerocopy = 0;
1211 }
1212
1213 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect)) {
1214 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1215 if (err == -EINPROGRESS && copied_syn > 0)
1216 goto out;
1217 else if (err)
1218 goto out_err;
1219 }
1220
1221 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1222
1223 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1224
1225 /* Wait for a connection to finish. One exception is TCP Fast Open
1226 * (passive side) where data is allowed to be sent before a connection
1227 * is fully established.
1228 */
1229 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1230 !tcp_passive_fastopen(sk)) {
1231 err = sk_stream_wait_connect(sk, &timeo);
1232 if (err != 0)
1233 goto do_error;
1234 }
1235
1236 if (unlikely(tp->repair)) {
1237 if (tp->repair_queue == TCP_RECV_QUEUE) {
1238 copied = tcp_send_rcvq(sk, msg, size);
1239 goto out_nopush;
1240 }
1241
1242 err = -EINVAL;
1243 if (tp->repair_queue == TCP_NO_QUEUE)
1244 goto out_err;
1245
1246 /* 'common' sending to sendq */
1247 }
1248
1249 sockc.tsflags = sk->sk_tsflags;
1250 if (msg->msg_controllen) {
1251 err = sock_cmsg_send(sk, msg, &sockc);
1252 if (unlikely(err)) {
1253 err = -EINVAL;
1254 goto out_err;
1255 }
1256 }
1257
1258 /* This should be in poll */
1259 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1260
1261 /* Ok commence sending. */
1262 copied = 0;
1263
1264 restart:
1265 mss_now = tcp_send_mss(sk, &size_goal, flags);
1266
1267 err = -EPIPE;
1268 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1269 goto do_error;
1270
1271 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1272
1273 while (msg_data_left(msg)) {
1274 int copy = 0;
1275 int max = size_goal;
1276
1277 skb = tcp_write_queue_tail(sk);
1278 if (skb) {
1279 if (skb->ip_summed == CHECKSUM_NONE)
1280 max = mss_now;
1281 copy = max - skb->len;
1282 }
1283
1284 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1285 bool first_skb;
1286 int linear;
1287
1288 new_segment:
1289 /* Allocate new segment. If the interface is SG,
1290 * allocate skb fitting to single page.
1291 */
1292 if (!sk_stream_memory_free(sk))
1293 goto wait_for_sndbuf;
1294
1295 if (process_backlog && sk_flush_backlog(sk)) {
1296 process_backlog = false;
1297 goto restart;
1298 }
1299 first_skb = tcp_rtx_and_write_queues_empty(sk);
1300 linear = select_size(sk, sg, first_skb, zc);
1301 skb = sk_stream_alloc_skb(sk, linear, sk->sk_allocation,
1302 first_skb);
1303 if (!skb)
1304 goto wait_for_memory;
1305
1306 process_backlog = true;
1307 /*
1308 * Check whether we can use HW checksum.
1309 */
1310 if (sk_check_csum_caps(sk))
1311 skb->ip_summed = CHECKSUM_PARTIAL;
1312
1313 skb_entail(sk, skb);
1314 copy = size_goal;
1315 max = size_goal;
1316
1317 /* All packets are restored as if they have
1318 * already been sent. skb_mstamp isn't set to
1319 * avoid wrong rtt estimation.
1320 */
1321 if (tp->repair)
1322 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1323 }
1324
1325 /* Try to append data to the end of skb. */
1326 if (copy > msg_data_left(msg))
1327 copy = msg_data_left(msg);
1328
1329 /* Where to copy to? */
1330 if (skb_availroom(skb) > 0 && !zc) {
1331 /* We have some space in skb head. Superb! */
1332 copy = min_t(int, copy, skb_availroom(skb));
1333 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1334 if (err)
1335 goto do_fault;
1336 } else if (!zc) {
1337 bool merge = true;
1338 int i = skb_shinfo(skb)->nr_frags;
1339 struct page_frag *pfrag = sk_page_frag(sk);
1340
1341 if (!sk_page_frag_refill(sk, pfrag))
1342 goto wait_for_memory;
1343
1344 if (!skb_can_coalesce(skb, i, pfrag->page,
1345 pfrag->offset)) {
1346 if (i >= sysctl_max_skb_frags || !sg) {
1347 tcp_mark_push(tp, skb);
1348 goto new_segment;
1349 }
1350 merge = false;
1351 }
1352
1353 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1354
1355 if (!sk_wmem_schedule(sk, copy))
1356 goto wait_for_memory;
1357
1358 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1359 pfrag->page,
1360 pfrag->offset,
1361 copy);
1362 if (err)
1363 goto do_error;
1364
1365 /* Update the skb. */
1366 if (merge) {
1367 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1368 } else {
1369 skb_fill_page_desc(skb, i, pfrag->page,
1370 pfrag->offset, copy);
1371 page_ref_inc(pfrag->page);
1372 }
1373 pfrag->offset += copy;
1374 } else {
1375 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1376 if (err == -EMSGSIZE || err == -EEXIST) {
1377 tcp_mark_push(tp, skb);
1378 goto new_segment;
1379 }
1380 if (err < 0)
1381 goto do_error;
1382 copy = err;
1383 }
1384
1385 if (!copied)
1386 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1387
1388 tp->write_seq += copy;
1389 TCP_SKB_CB(skb)->end_seq += copy;
1390 tcp_skb_pcount_set(skb, 0);
1391
1392 copied += copy;
1393 if (!msg_data_left(msg)) {
1394 if (unlikely(flags & MSG_EOR))
1395 TCP_SKB_CB(skb)->eor = 1;
1396 goto out;
1397 }
1398
1399 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1400 continue;
1401
1402 if (forced_push(tp)) {
1403 tcp_mark_push(tp, skb);
1404 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1405 } else if (skb == tcp_send_head(sk))
1406 tcp_push_one(sk, mss_now);
1407 continue;
1408
1409 wait_for_sndbuf:
1410 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1411 wait_for_memory:
1412 if (copied)
1413 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1414 TCP_NAGLE_PUSH, size_goal);
1415
1416 err = sk_stream_wait_memory(sk, &timeo);
1417 if (err != 0)
1418 goto do_error;
1419
1420 mss_now = tcp_send_mss(sk, &size_goal, flags);
1421 }
1422
1423 out:
1424 if (copied) {
1425 tcp_tx_timestamp(sk, sockc.tsflags);
1426 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1427 }
1428 out_nopush:
1429 sock_zerocopy_put(uarg);
1430 return copied + copied_syn;
1431
1432 do_fault:
1433 if (!skb->len) {
1434 tcp_unlink_write_queue(skb, sk);
1435 /* It is the one place in all of TCP, except connection
1436 * reset, where we can be unlinking the send_head.
1437 */
1438 tcp_check_send_head(sk, skb);
1439 sk_wmem_free_skb(sk, skb);
1440 }
1441
1442 do_error:
1443 if (copied + copied_syn)
1444 goto out;
1445 out_err:
1446 sock_zerocopy_put_abort(uarg);
1447 err = sk_stream_error(sk, flags, err);
1448 /* make sure we wake any epoll edge trigger waiter */
1449 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1450 err == -EAGAIN)) {
1451 sk->sk_write_space(sk);
1452 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1453 }
1454 return err;
1455 }
1456 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1457
1458 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1459 {
1460 int ret;
1461
1462 lock_sock(sk);
1463 ret = tcp_sendmsg_locked(sk, msg, size);
1464 release_sock(sk);
1465
1466 return ret;
1467 }
1468 EXPORT_SYMBOL(tcp_sendmsg);
1469
1470 /*
1471 * Handle reading urgent data. BSD has very simple semantics for
1472 * this, no blocking and very strange errors 8)
1473 */
1474
1475 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1476 {
1477 struct tcp_sock *tp = tcp_sk(sk);
1478
1479 /* No URG data to read. */
1480 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1481 tp->urg_data == TCP_URG_READ)
1482 return -EINVAL; /* Yes this is right ! */
1483
1484 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1485 return -ENOTCONN;
1486
1487 if (tp->urg_data & TCP_URG_VALID) {
1488 int err = 0;
1489 char c = tp->urg_data;
1490
1491 if (!(flags & MSG_PEEK))
1492 tp->urg_data = TCP_URG_READ;
1493
1494 /* Read urgent data. */
1495 msg->msg_flags |= MSG_OOB;
1496
1497 if (len > 0) {
1498 if (!(flags & MSG_TRUNC))
1499 err = memcpy_to_msg(msg, &c, 1);
1500 len = 1;
1501 } else
1502 msg->msg_flags |= MSG_TRUNC;
1503
1504 return err ? -EFAULT : len;
1505 }
1506
1507 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1508 return 0;
1509
1510 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1511 * the available implementations agree in this case:
1512 * this call should never block, independent of the
1513 * blocking state of the socket.
1514 * Mike <pall@rz.uni-karlsruhe.de>
1515 */
1516 return -EAGAIN;
1517 }
1518
1519 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1520 {
1521 struct sk_buff *skb;
1522 int copied = 0, err = 0;
1523
1524 /* XXX -- need to support SO_PEEK_OFF */
1525
1526 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1527 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1528 if (err)
1529 return err;
1530 copied += skb->len;
1531 }
1532
1533 skb_queue_walk(&sk->sk_write_queue, skb) {
1534 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1535 if (err)
1536 break;
1537
1538 copied += skb->len;
1539 }
1540
1541 return err ?: copied;
1542 }
1543
1544 /* Clean up the receive buffer for full frames taken by the user,
1545 * then send an ACK if necessary. COPIED is the number of bytes
1546 * tcp_recvmsg has given to the user so far, it speeds up the
1547 * calculation of whether or not we must ACK for the sake of
1548 * a window update.
1549 */
1550 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1551 {
1552 struct tcp_sock *tp = tcp_sk(sk);
1553 bool time_to_ack = false;
1554
1555 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1556
1557 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1558 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1559 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1560
1561 if (inet_csk_ack_scheduled(sk)) {
1562 const struct inet_connection_sock *icsk = inet_csk(sk);
1563 /* Delayed ACKs frequently hit locked sockets during bulk
1564 * receive. */
1565 if (icsk->icsk_ack.blocked ||
1566 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1567 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1568 /*
1569 * If this read emptied read buffer, we send ACK, if
1570 * connection is not bidirectional, user drained
1571 * receive buffer and there was a small segment
1572 * in queue.
1573 */
1574 (copied > 0 &&
1575 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1576 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1577 !icsk->icsk_ack.pingpong)) &&
1578 !atomic_read(&sk->sk_rmem_alloc)))
1579 time_to_ack = true;
1580 }
1581
1582 /* We send an ACK if we can now advertise a non-zero window
1583 * which has been raised "significantly".
1584 *
1585 * Even if window raised up to infinity, do not send window open ACK
1586 * in states, where we will not receive more. It is useless.
1587 */
1588 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1589 __u32 rcv_window_now = tcp_receive_window(tp);
1590
1591 /* Optimize, __tcp_select_window() is not cheap. */
1592 if (2*rcv_window_now <= tp->window_clamp) {
1593 __u32 new_window = __tcp_select_window(sk);
1594
1595 /* Send ACK now, if this read freed lots of space
1596 * in our buffer. Certainly, new_window is new window.
1597 * We can advertise it now, if it is not less than current one.
1598 * "Lots" means "at least twice" here.
1599 */
1600 if (new_window && new_window >= 2 * rcv_window_now)
1601 time_to_ack = true;
1602 }
1603 }
1604 if (time_to_ack)
1605 tcp_send_ack(sk);
1606 }
1607
1608 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1609 {
1610 struct sk_buff *skb;
1611 u32 offset;
1612
1613 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1614 offset = seq - TCP_SKB_CB(skb)->seq;
1615 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1616 pr_err_once("%s: found a SYN, please report !\n", __func__);
1617 offset--;
1618 }
1619 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1620 *off = offset;
1621 return skb;
1622 }
1623 /* This looks weird, but this can happen if TCP collapsing
1624 * splitted a fat GRO packet, while we released socket lock
1625 * in skb_splice_bits()
1626 */
1627 sk_eat_skb(sk, skb);
1628 }
1629 return NULL;
1630 }
1631
1632 /*
1633 * This routine provides an alternative to tcp_recvmsg() for routines
1634 * that would like to handle copying from skbuffs directly in 'sendfile'
1635 * fashion.
1636 * Note:
1637 * - It is assumed that the socket was locked by the caller.
1638 * - The routine does not block.
1639 * - At present, there is no support for reading OOB data
1640 * or for 'peeking' the socket using this routine
1641 * (although both would be easy to implement).
1642 */
1643 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1644 sk_read_actor_t recv_actor)
1645 {
1646 struct sk_buff *skb;
1647 struct tcp_sock *tp = tcp_sk(sk);
1648 u32 seq = tp->copied_seq;
1649 u32 offset;
1650 int copied = 0;
1651
1652 if (sk->sk_state == TCP_LISTEN)
1653 return -ENOTCONN;
1654 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1655 if (offset < skb->len) {
1656 int used;
1657 size_t len;
1658
1659 len = skb->len - offset;
1660 /* Stop reading if we hit a patch of urgent data */
1661 if (tp->urg_data) {
1662 u32 urg_offset = tp->urg_seq - seq;
1663 if (urg_offset < len)
1664 len = urg_offset;
1665 if (!len)
1666 break;
1667 }
1668 used = recv_actor(desc, skb, offset, len);
1669 if (used <= 0) {
1670 if (!copied)
1671 copied = used;
1672 break;
1673 } else if (used <= len) {
1674 seq += used;
1675 copied += used;
1676 offset += used;
1677 }
1678 /* If recv_actor drops the lock (e.g. TCP splice
1679 * receive) the skb pointer might be invalid when
1680 * getting here: tcp_collapse might have deleted it
1681 * while aggregating skbs from the socket queue.
1682 */
1683 skb = tcp_recv_skb(sk, seq - 1, &offset);
1684 if (!skb)
1685 break;
1686 /* TCP coalescing might have appended data to the skb.
1687 * Try to splice more frags
1688 */
1689 if (offset + 1 != skb->len)
1690 continue;
1691 }
1692 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1693 sk_eat_skb(sk, skb);
1694 ++seq;
1695 break;
1696 }
1697 sk_eat_skb(sk, skb);
1698 if (!desc->count)
1699 break;
1700 tp->copied_seq = seq;
1701 }
1702 tp->copied_seq = seq;
1703
1704 tcp_rcv_space_adjust(sk);
1705
1706 /* Clean up data we have read: This will do ACK frames. */
1707 if (copied > 0) {
1708 tcp_recv_skb(sk, seq, &offset);
1709 tcp_cleanup_rbuf(sk, copied);
1710 }
1711 return copied;
1712 }
1713 EXPORT_SYMBOL(tcp_read_sock);
1714
1715 int tcp_peek_len(struct socket *sock)
1716 {
1717 return tcp_inq(sock->sk);
1718 }
1719 EXPORT_SYMBOL(tcp_peek_len);
1720
1721 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1722 struct scm_timestamping *tss)
1723 {
1724 if (skb->tstamp)
1725 tss->ts[0] = ktime_to_timespec(skb->tstamp);
1726 else
1727 tss->ts[0] = (struct timespec) {0};
1728
1729 if (skb_hwtstamps(skb)->hwtstamp)
1730 tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp);
1731 else
1732 tss->ts[2] = (struct timespec) {0};
1733 }
1734
1735 /* Similar to __sock_recv_timestamp, but does not require an skb */
1736 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1737 struct scm_timestamping *tss)
1738 {
1739 struct timeval tv;
1740 bool has_timestamping = false;
1741
1742 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1743 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1744 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1745 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
1746 sizeof(tss->ts[0]), &tss->ts[0]);
1747 } else {
1748 tv.tv_sec = tss->ts[0].tv_sec;
1749 tv.tv_usec = tss->ts[0].tv_nsec / 1000;
1750
1751 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
1752 sizeof(tv), &tv);
1753 }
1754 }
1755
1756 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1757 has_timestamping = true;
1758 else
1759 tss->ts[0] = (struct timespec) {0};
1760 }
1761
1762 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1763 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1764 has_timestamping = true;
1765 else
1766 tss->ts[2] = (struct timespec) {0};
1767 }
1768
1769 if (has_timestamping) {
1770 tss->ts[1] = (struct timespec) {0};
1771 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING,
1772 sizeof(*tss), tss);
1773 }
1774 }
1775
1776 /*
1777 * This routine copies from a sock struct into the user buffer.
1778 *
1779 * Technical note: in 2.3 we work on _locked_ socket, so that
1780 * tricks with *seq access order and skb->users are not required.
1781 * Probably, code can be easily improved even more.
1782 */
1783
1784 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1785 int flags, int *addr_len)
1786 {
1787 struct tcp_sock *tp = tcp_sk(sk);
1788 int copied = 0;
1789 u32 peek_seq;
1790 u32 *seq;
1791 unsigned long used;
1792 int err;
1793 int target; /* Read at least this many bytes */
1794 long timeo;
1795 struct sk_buff *skb, *last;
1796 u32 urg_hole = 0;
1797 struct scm_timestamping tss;
1798 bool has_tss = false;
1799
1800 if (unlikely(flags & MSG_ERRQUEUE))
1801 return inet_recv_error(sk, msg, len, addr_len);
1802
1803 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1804 (sk->sk_state == TCP_ESTABLISHED))
1805 sk_busy_loop(sk, nonblock);
1806
1807 lock_sock(sk);
1808
1809 err = -ENOTCONN;
1810 if (sk->sk_state == TCP_LISTEN)
1811 goto out;
1812
1813 timeo = sock_rcvtimeo(sk, nonblock);
1814
1815 /* Urgent data needs to be handled specially. */
1816 if (flags & MSG_OOB)
1817 goto recv_urg;
1818
1819 if (unlikely(tp->repair)) {
1820 err = -EPERM;
1821 if (!(flags & MSG_PEEK))
1822 goto out;
1823
1824 if (tp->repair_queue == TCP_SEND_QUEUE)
1825 goto recv_sndq;
1826
1827 err = -EINVAL;
1828 if (tp->repair_queue == TCP_NO_QUEUE)
1829 goto out;
1830
1831 /* 'common' recv queue MSG_PEEK-ing */
1832 }
1833
1834 seq = &tp->copied_seq;
1835 if (flags & MSG_PEEK) {
1836 peek_seq = tp->copied_seq;
1837 seq = &peek_seq;
1838 }
1839
1840 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1841
1842 do {
1843 u32 offset;
1844
1845 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1846 if (tp->urg_data && tp->urg_seq == *seq) {
1847 if (copied)
1848 break;
1849 if (signal_pending(current)) {
1850 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1851 break;
1852 }
1853 }
1854
1855 /* Next get a buffer. */
1856
1857 last = skb_peek_tail(&sk->sk_receive_queue);
1858 skb_queue_walk(&sk->sk_receive_queue, skb) {
1859 last = skb;
1860 /* Now that we have two receive queues this
1861 * shouldn't happen.
1862 */
1863 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1864 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1865 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1866 flags))
1867 break;
1868
1869 offset = *seq - TCP_SKB_CB(skb)->seq;
1870 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1871 pr_err_once("%s: found a SYN, please report !\n", __func__);
1872 offset--;
1873 }
1874 if (offset < skb->len)
1875 goto found_ok_skb;
1876 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1877 goto found_fin_ok;
1878 WARN(!(flags & MSG_PEEK),
1879 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1880 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1881 }
1882
1883 /* Well, if we have backlog, try to process it now yet. */
1884
1885 if (copied >= target && !sk->sk_backlog.tail)
1886 break;
1887
1888 if (copied) {
1889 if (sk->sk_err ||
1890 sk->sk_state == TCP_CLOSE ||
1891 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1892 !timeo ||
1893 signal_pending(current))
1894 break;
1895 } else {
1896 if (sock_flag(sk, SOCK_DONE))
1897 break;
1898
1899 if (sk->sk_err) {
1900 copied = sock_error(sk);
1901 break;
1902 }
1903
1904 if (sk->sk_shutdown & RCV_SHUTDOWN)
1905 break;
1906
1907 if (sk->sk_state == TCP_CLOSE) {
1908 if (!sock_flag(sk, SOCK_DONE)) {
1909 /* This occurs when user tries to read
1910 * from never connected socket.
1911 */
1912 copied = -ENOTCONN;
1913 break;
1914 }
1915 break;
1916 }
1917
1918 if (!timeo) {
1919 copied = -EAGAIN;
1920 break;
1921 }
1922
1923 if (signal_pending(current)) {
1924 copied = sock_intr_errno(timeo);
1925 break;
1926 }
1927 }
1928
1929 tcp_cleanup_rbuf(sk, copied);
1930
1931 if (copied >= target) {
1932 /* Do not sleep, just process backlog. */
1933 release_sock(sk);
1934 lock_sock(sk);
1935 } else {
1936 sk_wait_data(sk, &timeo, last);
1937 }
1938
1939 if ((flags & MSG_PEEK) &&
1940 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1941 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1942 current->comm,
1943 task_pid_nr(current));
1944 peek_seq = tp->copied_seq;
1945 }
1946 continue;
1947
1948 found_ok_skb:
1949 /* Ok so how much can we use? */
1950 used = skb->len - offset;
1951 if (len < used)
1952 used = len;
1953
1954 /* Do we have urgent data here? */
1955 if (tp->urg_data) {
1956 u32 urg_offset = tp->urg_seq - *seq;
1957 if (urg_offset < used) {
1958 if (!urg_offset) {
1959 if (!sock_flag(sk, SOCK_URGINLINE)) {
1960 ++*seq;
1961 urg_hole++;
1962 offset++;
1963 used--;
1964 if (!used)
1965 goto skip_copy;
1966 }
1967 } else
1968 used = urg_offset;
1969 }
1970 }
1971
1972 if (!(flags & MSG_TRUNC)) {
1973 err = skb_copy_datagram_msg(skb, offset, msg, used);
1974 if (err) {
1975 /* Exception. Bailout! */
1976 if (!copied)
1977 copied = -EFAULT;
1978 break;
1979 }
1980 }
1981
1982 *seq += used;
1983 copied += used;
1984 len -= used;
1985
1986 tcp_rcv_space_adjust(sk);
1987
1988 skip_copy:
1989 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1990 tp->urg_data = 0;
1991 tcp_fast_path_check(sk);
1992 }
1993 if (used + offset < skb->len)
1994 continue;
1995
1996 if (TCP_SKB_CB(skb)->has_rxtstamp) {
1997 tcp_update_recv_tstamps(skb, &tss);
1998 has_tss = true;
1999 }
2000 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2001 goto found_fin_ok;
2002 if (!(flags & MSG_PEEK))
2003 sk_eat_skb(sk, skb);
2004 continue;
2005
2006 found_fin_ok:
2007 /* Process the FIN. */
2008 ++*seq;
2009 if (!(flags & MSG_PEEK))
2010 sk_eat_skb(sk, skb);
2011 break;
2012 } while (len > 0);
2013
2014 /* According to UNIX98, msg_name/msg_namelen are ignored
2015 * on connected socket. I was just happy when found this 8) --ANK
2016 */
2017
2018 if (has_tss)
2019 tcp_recv_timestamp(msg, sk, &tss);
2020
2021 /* Clean up data we have read: This will do ACK frames. */
2022 tcp_cleanup_rbuf(sk, copied);
2023
2024 release_sock(sk);
2025 return copied;
2026
2027 out:
2028 release_sock(sk);
2029 return err;
2030
2031 recv_urg:
2032 err = tcp_recv_urg(sk, msg, len, flags);
2033 goto out;
2034
2035 recv_sndq:
2036 err = tcp_peek_sndq(sk, msg, len);
2037 goto out;
2038 }
2039 EXPORT_SYMBOL(tcp_recvmsg);
2040
2041 void tcp_set_state(struct sock *sk, int state)
2042 {
2043 int oldstate = sk->sk_state;
2044
2045 /* We defined a new enum for TCP states that are exported in BPF
2046 * so as not force the internal TCP states to be frozen. The
2047 * following checks will detect if an internal state value ever
2048 * differs from the BPF value. If this ever happens, then we will
2049 * need to remap the internal value to the BPF value before calling
2050 * tcp_call_bpf_2arg.
2051 */
2052 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2053 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2054 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2055 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2056 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2057 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2058 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2059 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2060 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2061 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2062 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2063 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2064 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2065
2066 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2067 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2068
2069 switch (state) {
2070 case TCP_ESTABLISHED:
2071 if (oldstate != TCP_ESTABLISHED)
2072 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2073 break;
2074
2075 case TCP_CLOSE:
2076 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2077 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2078
2079 sk->sk_prot->unhash(sk);
2080 if (inet_csk(sk)->icsk_bind_hash &&
2081 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2082 inet_put_port(sk);
2083 /* fall through */
2084 default:
2085 if (oldstate == TCP_ESTABLISHED)
2086 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2087 }
2088
2089 /* Change state AFTER socket is unhashed to avoid closed
2090 * socket sitting in hash tables.
2091 */
2092 inet_sk_state_store(sk, state);
2093
2094 #ifdef STATE_TRACE
2095 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2096 #endif
2097 }
2098 EXPORT_SYMBOL_GPL(tcp_set_state);
2099
2100 /*
2101 * State processing on a close. This implements the state shift for
2102 * sending our FIN frame. Note that we only send a FIN for some
2103 * states. A shutdown() may have already sent the FIN, or we may be
2104 * closed.
2105 */
2106
2107 static const unsigned char new_state[16] = {
2108 /* current state: new state: action: */
2109 [0 /* (Invalid) */] = TCP_CLOSE,
2110 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2111 [TCP_SYN_SENT] = TCP_CLOSE,
2112 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2113 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2114 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2115 [TCP_TIME_WAIT] = TCP_CLOSE,
2116 [TCP_CLOSE] = TCP_CLOSE,
2117 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2118 [TCP_LAST_ACK] = TCP_LAST_ACK,
2119 [TCP_LISTEN] = TCP_CLOSE,
2120 [TCP_CLOSING] = TCP_CLOSING,
2121 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2122 };
2123
2124 static int tcp_close_state(struct sock *sk)
2125 {
2126 int next = (int)new_state[sk->sk_state];
2127 int ns = next & TCP_STATE_MASK;
2128
2129 tcp_set_state(sk, ns);
2130
2131 return next & TCP_ACTION_FIN;
2132 }
2133
2134 /*
2135 * Shutdown the sending side of a connection. Much like close except
2136 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2137 */
2138
2139 void tcp_shutdown(struct sock *sk, int how)
2140 {
2141 /* We need to grab some memory, and put together a FIN,
2142 * and then put it into the queue to be sent.
2143 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2144 */
2145 if (!(how & SEND_SHUTDOWN))
2146 return;
2147
2148 /* If we've already sent a FIN, or it's a closed state, skip this. */
2149 if ((1 << sk->sk_state) &
2150 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2151 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2152 /* Clear out any half completed packets. FIN if needed. */
2153 if (tcp_close_state(sk))
2154 tcp_send_fin(sk);
2155 }
2156 }
2157 EXPORT_SYMBOL(tcp_shutdown);
2158
2159 bool tcp_check_oom(struct sock *sk, int shift)
2160 {
2161 bool too_many_orphans, out_of_socket_memory;
2162
2163 too_many_orphans = tcp_too_many_orphans(sk, shift);
2164 out_of_socket_memory = tcp_out_of_memory(sk);
2165
2166 if (too_many_orphans)
2167 net_info_ratelimited("too many orphaned sockets\n");
2168 if (out_of_socket_memory)
2169 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2170 return too_many_orphans || out_of_socket_memory;
2171 }
2172
2173 void tcp_close(struct sock *sk, long timeout)
2174 {
2175 struct sk_buff *skb;
2176 int data_was_unread = 0;
2177 int state;
2178
2179 lock_sock(sk);
2180 sk->sk_shutdown = SHUTDOWN_MASK;
2181
2182 if (sk->sk_state == TCP_LISTEN) {
2183 tcp_set_state(sk, TCP_CLOSE);
2184
2185 /* Special case. */
2186 inet_csk_listen_stop(sk);
2187
2188 goto adjudge_to_death;
2189 }
2190
2191 /* We need to flush the recv. buffs. We do this only on the
2192 * descriptor close, not protocol-sourced closes, because the
2193 * reader process may not have drained the data yet!
2194 */
2195 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2196 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2197
2198 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2199 len--;
2200 data_was_unread += len;
2201 __kfree_skb(skb);
2202 }
2203
2204 sk_mem_reclaim(sk);
2205
2206 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2207 if (sk->sk_state == TCP_CLOSE)
2208 goto adjudge_to_death;
2209
2210 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2211 * data was lost. To witness the awful effects of the old behavior of
2212 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2213 * GET in an FTP client, suspend the process, wait for the client to
2214 * advertise a zero window, then kill -9 the FTP client, wheee...
2215 * Note: timeout is always zero in such a case.
2216 */
2217 if (unlikely(tcp_sk(sk)->repair)) {
2218 sk->sk_prot->disconnect(sk, 0);
2219 } else if (data_was_unread) {
2220 /* Unread data was tossed, zap the connection. */
2221 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2222 tcp_set_state(sk, TCP_CLOSE);
2223 tcp_send_active_reset(sk, sk->sk_allocation);
2224 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2225 /* Check zero linger _after_ checking for unread data. */
2226 sk->sk_prot->disconnect(sk, 0);
2227 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2228 } else if (tcp_close_state(sk)) {
2229 /* We FIN if the application ate all the data before
2230 * zapping the connection.
2231 */
2232
2233 /* RED-PEN. Formally speaking, we have broken TCP state
2234 * machine. State transitions:
2235 *
2236 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2237 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2238 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2239 *
2240 * are legal only when FIN has been sent (i.e. in window),
2241 * rather than queued out of window. Purists blame.
2242 *
2243 * F.e. "RFC state" is ESTABLISHED,
2244 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2245 *
2246 * The visible declinations are that sometimes
2247 * we enter time-wait state, when it is not required really
2248 * (harmless), do not send active resets, when they are
2249 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2250 * they look as CLOSING or LAST_ACK for Linux)
2251 * Probably, I missed some more holelets.
2252 * --ANK
2253 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2254 * in a single packet! (May consider it later but will
2255 * probably need API support or TCP_CORK SYN-ACK until
2256 * data is written and socket is closed.)
2257 */
2258 tcp_send_fin(sk);
2259 }
2260
2261 sk_stream_wait_close(sk, timeout);
2262
2263 adjudge_to_death:
2264 state = sk->sk_state;
2265 sock_hold(sk);
2266 sock_orphan(sk);
2267
2268 /* It is the last release_sock in its life. It will remove backlog. */
2269 release_sock(sk);
2270
2271
2272 /* Now socket is owned by kernel and we acquire BH lock
2273 * to finish close. No need to check for user refs.
2274 */
2275 local_bh_disable();
2276 bh_lock_sock(sk);
2277 WARN_ON(sock_owned_by_user(sk));
2278
2279 percpu_counter_inc(sk->sk_prot->orphan_count);
2280
2281 /* Have we already been destroyed by a softirq or backlog? */
2282 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2283 goto out;
2284
2285 /* This is a (useful) BSD violating of the RFC. There is a
2286 * problem with TCP as specified in that the other end could
2287 * keep a socket open forever with no application left this end.
2288 * We use a 1 minute timeout (about the same as BSD) then kill
2289 * our end. If they send after that then tough - BUT: long enough
2290 * that we won't make the old 4*rto = almost no time - whoops
2291 * reset mistake.
2292 *
2293 * Nope, it was not mistake. It is really desired behaviour
2294 * f.e. on http servers, when such sockets are useless, but
2295 * consume significant resources. Let's do it with special
2296 * linger2 option. --ANK
2297 */
2298
2299 if (sk->sk_state == TCP_FIN_WAIT2) {
2300 struct tcp_sock *tp = tcp_sk(sk);
2301 if (tp->linger2 < 0) {
2302 tcp_set_state(sk, TCP_CLOSE);
2303 tcp_send_active_reset(sk, GFP_ATOMIC);
2304 __NET_INC_STATS(sock_net(sk),
2305 LINUX_MIB_TCPABORTONLINGER);
2306 } else {
2307 const int tmo = tcp_fin_time(sk);
2308
2309 if (tmo > TCP_TIMEWAIT_LEN) {
2310 inet_csk_reset_keepalive_timer(sk,
2311 tmo - TCP_TIMEWAIT_LEN);
2312 } else {
2313 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2314 goto out;
2315 }
2316 }
2317 }
2318 if (sk->sk_state != TCP_CLOSE) {
2319 sk_mem_reclaim(sk);
2320 if (tcp_check_oom(sk, 0)) {
2321 tcp_set_state(sk, TCP_CLOSE);
2322 tcp_send_active_reset(sk, GFP_ATOMIC);
2323 __NET_INC_STATS(sock_net(sk),
2324 LINUX_MIB_TCPABORTONMEMORY);
2325 } else if (!check_net(sock_net(sk))) {
2326 /* Not possible to send reset; just close */
2327 tcp_set_state(sk, TCP_CLOSE);
2328 }
2329 }
2330
2331 if (sk->sk_state == TCP_CLOSE) {
2332 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2333 /* We could get here with a non-NULL req if the socket is
2334 * aborted (e.g., closed with unread data) before 3WHS
2335 * finishes.
2336 */
2337 if (req)
2338 reqsk_fastopen_remove(sk, req, false);
2339 inet_csk_destroy_sock(sk);
2340 }
2341 /* Otherwise, socket is reprieved until protocol close. */
2342
2343 out:
2344 bh_unlock_sock(sk);
2345 local_bh_enable();
2346 sock_put(sk);
2347 }
2348 EXPORT_SYMBOL(tcp_close);
2349
2350 /* These states need RST on ABORT according to RFC793 */
2351
2352 static inline bool tcp_need_reset(int state)
2353 {
2354 return (1 << state) &
2355 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2356 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2357 }
2358
2359 static void tcp_rtx_queue_purge(struct sock *sk)
2360 {
2361 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2362
2363 while (p) {
2364 struct sk_buff *skb = rb_to_skb(p);
2365
2366 p = rb_next(p);
2367 /* Since we are deleting whole queue, no need to
2368 * list_del(&skb->tcp_tsorted_anchor)
2369 */
2370 tcp_rtx_queue_unlink(skb, sk);
2371 sk_wmem_free_skb(sk, skb);
2372 }
2373 }
2374
2375 void tcp_write_queue_purge(struct sock *sk)
2376 {
2377 struct sk_buff *skb;
2378
2379 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2380 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2381 tcp_skb_tsorted_anchor_cleanup(skb);
2382 sk_wmem_free_skb(sk, skb);
2383 }
2384 tcp_rtx_queue_purge(sk);
2385 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2386 sk_mem_reclaim(sk);
2387 tcp_clear_all_retrans_hints(tcp_sk(sk));
2388 }
2389
2390 int tcp_disconnect(struct sock *sk, int flags)
2391 {
2392 struct inet_sock *inet = inet_sk(sk);
2393 struct inet_connection_sock *icsk = inet_csk(sk);
2394 struct tcp_sock *tp = tcp_sk(sk);
2395 int err = 0;
2396 int old_state = sk->sk_state;
2397
2398 if (old_state != TCP_CLOSE)
2399 tcp_set_state(sk, TCP_CLOSE);
2400
2401 /* ABORT function of RFC793 */
2402 if (old_state == TCP_LISTEN) {
2403 inet_csk_listen_stop(sk);
2404 } else if (unlikely(tp->repair)) {
2405 sk->sk_err = ECONNABORTED;
2406 } else if (tcp_need_reset(old_state) ||
2407 (tp->snd_nxt != tp->write_seq &&
2408 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2409 /* The last check adjusts for discrepancy of Linux wrt. RFC
2410 * states
2411 */
2412 tcp_send_active_reset(sk, gfp_any());
2413 sk->sk_err = ECONNRESET;
2414 } else if (old_state == TCP_SYN_SENT)
2415 sk->sk_err = ECONNRESET;
2416
2417 tcp_clear_xmit_timers(sk);
2418 __skb_queue_purge(&sk->sk_receive_queue);
2419 tcp_write_queue_purge(sk);
2420 tcp_fastopen_active_disable_ofo_check(sk);
2421 skb_rbtree_purge(&tp->out_of_order_queue);
2422
2423 inet->inet_dport = 0;
2424
2425 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2426 inet_reset_saddr(sk);
2427
2428 sk->sk_shutdown = 0;
2429 sock_reset_flag(sk, SOCK_DONE);
2430 tp->srtt_us = 0;
2431 tp->write_seq += tp->max_window + 2;
2432 if (tp->write_seq == 0)
2433 tp->write_seq = 1;
2434 icsk->icsk_backoff = 0;
2435 tp->snd_cwnd = 2;
2436 icsk->icsk_probes_out = 0;
2437 tp->packets_out = 0;
2438 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2439 tp->snd_cwnd_cnt = 0;
2440 tp->window_clamp = 0;
2441 tcp_set_ca_state(sk, TCP_CA_Open);
2442 tp->is_sack_reneg = 0;
2443 tcp_clear_retrans(tp);
2444 inet_csk_delack_init(sk);
2445 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2446 * issue in __tcp_select_window()
2447 */
2448 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2449 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2450 __sk_dst_reset(sk);
2451 dst_release(sk->sk_rx_dst);
2452 sk->sk_rx_dst = NULL;
2453 tcp_saved_syn_free(tp);
2454
2455 /* Clean up fastopen related fields */
2456 tcp_free_fastopen_req(tp);
2457 inet->defer_connect = 0;
2458
2459 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2460
2461 if (sk->sk_frag.page) {
2462 put_page(sk->sk_frag.page);
2463 sk->sk_frag.page = NULL;
2464 sk->sk_frag.offset = 0;
2465 }
2466
2467 sk->sk_error_report(sk);
2468 return err;
2469 }
2470 EXPORT_SYMBOL(tcp_disconnect);
2471
2472 static inline bool tcp_can_repair_sock(const struct sock *sk)
2473 {
2474 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2475 (sk->sk_state != TCP_LISTEN);
2476 }
2477
2478 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2479 {
2480 struct tcp_repair_window opt;
2481
2482 if (!tp->repair)
2483 return -EPERM;
2484
2485 if (len != sizeof(opt))
2486 return -EINVAL;
2487
2488 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2489 return -EFAULT;
2490
2491 if (opt.max_window < opt.snd_wnd)
2492 return -EINVAL;
2493
2494 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2495 return -EINVAL;
2496
2497 if (after(opt.rcv_wup, tp->rcv_nxt))
2498 return -EINVAL;
2499
2500 tp->snd_wl1 = opt.snd_wl1;
2501 tp->snd_wnd = opt.snd_wnd;
2502 tp->max_window = opt.max_window;
2503
2504 tp->rcv_wnd = opt.rcv_wnd;
2505 tp->rcv_wup = opt.rcv_wup;
2506
2507 return 0;
2508 }
2509
2510 static int tcp_repair_options_est(struct sock *sk,
2511 struct tcp_repair_opt __user *optbuf, unsigned int len)
2512 {
2513 struct tcp_sock *tp = tcp_sk(sk);
2514 struct tcp_repair_opt opt;
2515
2516 while (len >= sizeof(opt)) {
2517 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2518 return -EFAULT;
2519
2520 optbuf++;
2521 len -= sizeof(opt);
2522
2523 switch (opt.opt_code) {
2524 case TCPOPT_MSS:
2525 tp->rx_opt.mss_clamp = opt.opt_val;
2526 tcp_mtup_init(sk);
2527 break;
2528 case TCPOPT_WINDOW:
2529 {
2530 u16 snd_wscale = opt.opt_val & 0xFFFF;
2531 u16 rcv_wscale = opt.opt_val >> 16;
2532
2533 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2534 return -EFBIG;
2535
2536 tp->rx_opt.snd_wscale = snd_wscale;
2537 tp->rx_opt.rcv_wscale = rcv_wscale;
2538 tp->rx_opt.wscale_ok = 1;
2539 }
2540 break;
2541 case TCPOPT_SACK_PERM:
2542 if (opt.opt_val != 0)
2543 return -EINVAL;
2544
2545 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2546 break;
2547 case TCPOPT_TIMESTAMP:
2548 if (opt.opt_val != 0)
2549 return -EINVAL;
2550
2551 tp->rx_opt.tstamp_ok = 1;
2552 break;
2553 }
2554 }
2555
2556 return 0;
2557 }
2558
2559 /*
2560 * Socket option code for TCP.
2561 */
2562 static int do_tcp_setsockopt(struct sock *sk, int level,
2563 int optname, char __user *optval, unsigned int optlen)
2564 {
2565 struct tcp_sock *tp = tcp_sk(sk);
2566 struct inet_connection_sock *icsk = inet_csk(sk);
2567 struct net *net = sock_net(sk);
2568 int val;
2569 int err = 0;
2570
2571 /* These are data/string values, all the others are ints */
2572 switch (optname) {
2573 case TCP_CONGESTION: {
2574 char name[TCP_CA_NAME_MAX];
2575
2576 if (optlen < 1)
2577 return -EINVAL;
2578
2579 val = strncpy_from_user(name, optval,
2580 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2581 if (val < 0)
2582 return -EFAULT;
2583 name[val] = 0;
2584
2585 lock_sock(sk);
2586 err = tcp_set_congestion_control(sk, name, true, true);
2587 release_sock(sk);
2588 return err;
2589 }
2590 case TCP_ULP: {
2591 char name[TCP_ULP_NAME_MAX];
2592
2593 if (optlen < 1)
2594 return -EINVAL;
2595
2596 val = strncpy_from_user(name, optval,
2597 min_t(long, TCP_ULP_NAME_MAX - 1,
2598 optlen));
2599 if (val < 0)
2600 return -EFAULT;
2601 name[val] = 0;
2602
2603 lock_sock(sk);
2604 err = tcp_set_ulp(sk, name);
2605 release_sock(sk);
2606 return err;
2607 }
2608 case TCP_FASTOPEN_KEY: {
2609 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
2610
2611 if (optlen != sizeof(key))
2612 return -EINVAL;
2613
2614 if (copy_from_user(key, optval, optlen))
2615 return -EFAULT;
2616
2617 return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key));
2618 }
2619 default:
2620 /* fallthru */
2621 break;
2622 }
2623
2624 if (optlen < sizeof(int))
2625 return -EINVAL;
2626
2627 if (get_user(val, (int __user *)optval))
2628 return -EFAULT;
2629
2630 lock_sock(sk);
2631
2632 switch (optname) {
2633 case TCP_MAXSEG:
2634 /* Values greater than interface MTU won't take effect. However
2635 * at the point when this call is done we typically don't yet
2636 * know which interface is going to be used
2637 */
2638 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2639 err = -EINVAL;
2640 break;
2641 }
2642 tp->rx_opt.user_mss = val;
2643 break;
2644
2645 case TCP_NODELAY:
2646 if (val) {
2647 /* TCP_NODELAY is weaker than TCP_CORK, so that
2648 * this option on corked socket is remembered, but
2649 * it is not activated until cork is cleared.
2650 *
2651 * However, when TCP_NODELAY is set we make
2652 * an explicit push, which overrides even TCP_CORK
2653 * for currently queued segments.
2654 */
2655 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2656 tcp_push_pending_frames(sk);
2657 } else {
2658 tp->nonagle &= ~TCP_NAGLE_OFF;
2659 }
2660 break;
2661
2662 case TCP_THIN_LINEAR_TIMEOUTS:
2663 if (val < 0 || val > 1)
2664 err = -EINVAL;
2665 else
2666 tp->thin_lto = val;
2667 break;
2668
2669 case TCP_THIN_DUPACK:
2670 if (val < 0 || val > 1)
2671 err = -EINVAL;
2672 break;
2673
2674 case TCP_REPAIR:
2675 if (!tcp_can_repair_sock(sk))
2676 err = -EPERM;
2677 else if (val == 1) {
2678 tp->repair = 1;
2679 sk->sk_reuse = SK_FORCE_REUSE;
2680 tp->repair_queue = TCP_NO_QUEUE;
2681 } else if (val == 0) {
2682 tp->repair = 0;
2683 sk->sk_reuse = SK_NO_REUSE;
2684 tcp_send_window_probe(sk);
2685 } else
2686 err = -EINVAL;
2687
2688 break;
2689
2690 case TCP_REPAIR_QUEUE:
2691 if (!tp->repair)
2692 err = -EPERM;
2693 else if (val < TCP_QUEUES_NR)
2694 tp->repair_queue = val;
2695 else
2696 err = -EINVAL;
2697 break;
2698
2699 case TCP_QUEUE_SEQ:
2700 if (sk->sk_state != TCP_CLOSE)
2701 err = -EPERM;
2702 else if (tp->repair_queue == TCP_SEND_QUEUE)
2703 tp->write_seq = val;
2704 else if (tp->repair_queue == TCP_RECV_QUEUE)
2705 tp->rcv_nxt = val;
2706 else
2707 err = -EINVAL;
2708 break;
2709
2710 case TCP_REPAIR_OPTIONS:
2711 if (!tp->repair)
2712 err = -EINVAL;
2713 else if (sk->sk_state == TCP_ESTABLISHED)
2714 err = tcp_repair_options_est(sk,
2715 (struct tcp_repair_opt __user *)optval,
2716 optlen);
2717 else
2718 err = -EPERM;
2719 break;
2720
2721 case TCP_CORK:
2722 /* When set indicates to always queue non-full frames.
2723 * Later the user clears this option and we transmit
2724 * any pending partial frames in the queue. This is
2725 * meant to be used alongside sendfile() to get properly
2726 * filled frames when the user (for example) must write
2727 * out headers with a write() call first and then use
2728 * sendfile to send out the data parts.
2729 *
2730 * TCP_CORK can be set together with TCP_NODELAY and it is
2731 * stronger than TCP_NODELAY.
2732 */
2733 if (val) {
2734 tp->nonagle |= TCP_NAGLE_CORK;
2735 } else {
2736 tp->nonagle &= ~TCP_NAGLE_CORK;
2737 if (tp->nonagle&TCP_NAGLE_OFF)
2738 tp->nonagle |= TCP_NAGLE_PUSH;
2739 tcp_push_pending_frames(sk);
2740 }
2741 break;
2742
2743 case TCP_KEEPIDLE:
2744 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2745 err = -EINVAL;
2746 else {
2747 tp->keepalive_time = val * HZ;
2748 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2749 !((1 << sk->sk_state) &
2750 (TCPF_CLOSE | TCPF_LISTEN))) {
2751 u32 elapsed = keepalive_time_elapsed(tp);
2752 if (tp->keepalive_time > elapsed)
2753 elapsed = tp->keepalive_time - elapsed;
2754 else
2755 elapsed = 0;
2756 inet_csk_reset_keepalive_timer(sk, elapsed);
2757 }
2758 }
2759 break;
2760 case TCP_KEEPINTVL:
2761 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2762 err = -EINVAL;
2763 else
2764 tp->keepalive_intvl = val * HZ;
2765 break;
2766 case TCP_KEEPCNT:
2767 if (val < 1 || val > MAX_TCP_KEEPCNT)
2768 err = -EINVAL;
2769 else
2770 tp->keepalive_probes = val;
2771 break;
2772 case TCP_SYNCNT:
2773 if (val < 1 || val > MAX_TCP_SYNCNT)
2774 err = -EINVAL;
2775 else
2776 icsk->icsk_syn_retries = val;
2777 break;
2778
2779 case TCP_SAVE_SYN:
2780 if (val < 0 || val > 1)
2781 err = -EINVAL;
2782 else
2783 tp->save_syn = val;
2784 break;
2785
2786 case TCP_LINGER2:
2787 if (val < 0)
2788 tp->linger2 = -1;
2789 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2790 tp->linger2 = 0;
2791 else
2792 tp->linger2 = val * HZ;
2793 break;
2794
2795 case TCP_DEFER_ACCEPT:
2796 /* Translate value in seconds to number of retransmits */
2797 icsk->icsk_accept_queue.rskq_defer_accept =
2798 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2799 TCP_RTO_MAX / HZ);
2800 break;
2801
2802 case TCP_WINDOW_CLAMP:
2803 if (!val) {
2804 if (sk->sk_state != TCP_CLOSE) {
2805 err = -EINVAL;
2806 break;
2807 }
2808 tp->window_clamp = 0;
2809 } else
2810 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2811 SOCK_MIN_RCVBUF / 2 : val;
2812 break;
2813
2814 case TCP_QUICKACK:
2815 if (!val) {
2816 icsk->icsk_ack.pingpong = 1;
2817 } else {
2818 icsk->icsk_ack.pingpong = 0;
2819 if ((1 << sk->sk_state) &
2820 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2821 inet_csk_ack_scheduled(sk)) {
2822 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2823 tcp_cleanup_rbuf(sk, 1);
2824 if (!(val & 1))
2825 icsk->icsk_ack.pingpong = 1;
2826 }
2827 }
2828 break;
2829
2830 #ifdef CONFIG_TCP_MD5SIG
2831 case TCP_MD5SIG:
2832 case TCP_MD5SIG_EXT:
2833 /* Read the IP->Key mappings from userspace */
2834 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
2835 break;
2836 #endif
2837 case TCP_USER_TIMEOUT:
2838 /* Cap the max time in ms TCP will retry or probe the window
2839 * before giving up and aborting (ETIMEDOUT) a connection.
2840 */
2841 if (val < 0)
2842 err = -EINVAL;
2843 else
2844 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2845 break;
2846
2847 case TCP_FASTOPEN:
2848 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2849 TCPF_LISTEN))) {
2850 tcp_fastopen_init_key_once(net);
2851
2852 fastopen_queue_tune(sk, val);
2853 } else {
2854 err = -EINVAL;
2855 }
2856 break;
2857 case TCP_FASTOPEN_CONNECT:
2858 if (val > 1 || val < 0) {
2859 err = -EINVAL;
2860 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
2861 if (sk->sk_state == TCP_CLOSE)
2862 tp->fastopen_connect = val;
2863 else
2864 err = -EINVAL;
2865 } else {
2866 err = -EOPNOTSUPP;
2867 }
2868 break;
2869 case TCP_FASTOPEN_NO_COOKIE:
2870 if (val > 1 || val < 0)
2871 err = -EINVAL;
2872 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2873 err = -EINVAL;
2874 else
2875 tp->fastopen_no_cookie = val;
2876 break;
2877 case TCP_TIMESTAMP:
2878 if (!tp->repair)
2879 err = -EPERM;
2880 else
2881 tp->tsoffset = val - tcp_time_stamp_raw();
2882 break;
2883 case TCP_REPAIR_WINDOW:
2884 err = tcp_repair_set_window(tp, optval, optlen);
2885 break;
2886 case TCP_NOTSENT_LOWAT:
2887 tp->notsent_lowat = val;
2888 sk->sk_write_space(sk);
2889 break;
2890 default:
2891 err = -ENOPROTOOPT;
2892 break;
2893 }
2894
2895 release_sock(sk);
2896 return err;
2897 }
2898
2899 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2900 unsigned int optlen)
2901 {
2902 const struct inet_connection_sock *icsk = inet_csk(sk);
2903
2904 if (level != SOL_TCP)
2905 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2906 optval, optlen);
2907 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2908 }
2909 EXPORT_SYMBOL(tcp_setsockopt);
2910
2911 #ifdef CONFIG_COMPAT
2912 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2913 char __user *optval, unsigned int optlen)
2914 {
2915 if (level != SOL_TCP)
2916 return inet_csk_compat_setsockopt(sk, level, optname,
2917 optval, optlen);
2918 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2919 }
2920 EXPORT_SYMBOL(compat_tcp_setsockopt);
2921 #endif
2922
2923 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
2924 struct tcp_info *info)
2925 {
2926 u64 stats[__TCP_CHRONO_MAX], total = 0;
2927 enum tcp_chrono i;
2928
2929 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
2930 stats[i] = tp->chrono_stat[i - 1];
2931 if (i == tp->chrono_type)
2932 stats[i] += tcp_jiffies32 - tp->chrono_start;
2933 stats[i] *= USEC_PER_SEC / HZ;
2934 total += stats[i];
2935 }
2936
2937 info->tcpi_busy_time = total;
2938 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
2939 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
2940 }
2941
2942 /* Return information about state of tcp endpoint in API format. */
2943 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2944 {
2945 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2946 const struct inet_connection_sock *icsk = inet_csk(sk);
2947 u32 now;
2948 u64 rate64;
2949 bool slow;
2950 u32 rate;
2951
2952 memset(info, 0, sizeof(*info));
2953 if (sk->sk_type != SOCK_STREAM)
2954 return;
2955
2956 info->tcpi_state = inet_sk_state_load(sk);
2957
2958 /* Report meaningful fields for all TCP states, including listeners */
2959 rate = READ_ONCE(sk->sk_pacing_rate);
2960 rate64 = rate != ~0U ? rate : ~0ULL;
2961 info->tcpi_pacing_rate = rate64;
2962
2963 rate = READ_ONCE(sk->sk_max_pacing_rate);
2964 rate64 = rate != ~0U ? rate : ~0ULL;
2965 info->tcpi_max_pacing_rate = rate64;
2966
2967 info->tcpi_reordering = tp->reordering;
2968 info->tcpi_snd_cwnd = tp->snd_cwnd;
2969
2970 if (info->tcpi_state == TCP_LISTEN) {
2971 /* listeners aliased fields :
2972 * tcpi_unacked -> Number of children ready for accept()
2973 * tcpi_sacked -> max backlog
2974 */
2975 info->tcpi_unacked = sk->sk_ack_backlog;
2976 info->tcpi_sacked = sk->sk_max_ack_backlog;
2977 return;
2978 }
2979
2980 slow = lock_sock_fast(sk);
2981
2982 info->tcpi_ca_state = icsk->icsk_ca_state;
2983 info->tcpi_retransmits = icsk->icsk_retransmits;
2984 info->tcpi_probes = icsk->icsk_probes_out;
2985 info->tcpi_backoff = icsk->icsk_backoff;
2986
2987 if (tp->rx_opt.tstamp_ok)
2988 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2989 if (tcp_is_sack(tp))
2990 info->tcpi_options |= TCPI_OPT_SACK;
2991 if (tp->rx_opt.wscale_ok) {
2992 info->tcpi_options |= TCPI_OPT_WSCALE;
2993 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2994 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2995 }
2996
2997 if (tp->ecn_flags & TCP_ECN_OK)
2998 info->tcpi_options |= TCPI_OPT_ECN;
2999 if (tp->ecn_flags & TCP_ECN_SEEN)
3000 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3001 if (tp->syn_data_acked)
3002 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3003
3004 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3005 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3006 info->tcpi_snd_mss = tp->mss_cache;
3007 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3008
3009 info->tcpi_unacked = tp->packets_out;
3010 info->tcpi_sacked = tp->sacked_out;
3011
3012 info->tcpi_lost = tp->lost_out;
3013 info->tcpi_retrans = tp->retrans_out;
3014
3015 now = tcp_jiffies32;
3016 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3017 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3018 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3019
3020 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3021 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3022 info->tcpi_rtt = tp->srtt_us >> 3;
3023 info->tcpi_rttvar = tp->mdev_us >> 2;
3024 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3025 info->tcpi_advmss = tp->advmss;
3026
3027 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3028 info->tcpi_rcv_space = tp->rcvq_space.space;
3029
3030 info->tcpi_total_retrans = tp->total_retrans;
3031
3032 info->tcpi_bytes_acked = tp->bytes_acked;
3033 info->tcpi_bytes_received = tp->bytes_received;
3034 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3035 tcp_get_info_chrono_stats(tp, info);
3036
3037 info->tcpi_segs_out = tp->segs_out;
3038 info->tcpi_segs_in = tp->segs_in;
3039
3040 info->tcpi_min_rtt = tcp_min_rtt(tp);
3041 info->tcpi_data_segs_in = tp->data_segs_in;
3042 info->tcpi_data_segs_out = tp->data_segs_out;
3043
3044 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3045 rate64 = tcp_compute_delivery_rate(tp);
3046 if (rate64)
3047 info->tcpi_delivery_rate = rate64;
3048 unlock_sock_fast(sk, slow);
3049 }
3050 EXPORT_SYMBOL_GPL(tcp_get_info);
3051
3052 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
3053 {
3054 const struct tcp_sock *tp = tcp_sk(sk);
3055 struct sk_buff *stats;
3056 struct tcp_info info;
3057 u64 rate64;
3058 u32 rate;
3059
3060 stats = alloc_skb(7 * nla_total_size_64bit(sizeof(u64)) +
3061 3 * nla_total_size(sizeof(u32)) +
3062 2 * nla_total_size(sizeof(u8)), GFP_ATOMIC);
3063 if (!stats)
3064 return NULL;
3065
3066 tcp_get_info_chrono_stats(tp, &info);
3067 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3068 info.tcpi_busy_time, TCP_NLA_PAD);
3069 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3070 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3071 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3072 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3073 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3074 tp->data_segs_out, TCP_NLA_PAD);
3075 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3076 tp->total_retrans, TCP_NLA_PAD);
3077
3078 rate = READ_ONCE(sk->sk_pacing_rate);
3079 rate64 = rate != ~0U ? rate : ~0ULL;
3080 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3081
3082 rate64 = tcp_compute_delivery_rate(tp);
3083 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3084
3085 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3086 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3087 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3088
3089 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3090 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3091 return stats;
3092 }
3093
3094 static int do_tcp_getsockopt(struct sock *sk, int level,
3095 int optname, char __user *optval, int __user *optlen)
3096 {
3097 struct inet_connection_sock *icsk = inet_csk(sk);
3098 struct tcp_sock *tp = tcp_sk(sk);
3099 struct net *net = sock_net(sk);
3100 int val, len;
3101
3102 if (get_user(len, optlen))
3103 return -EFAULT;
3104
3105 len = min_t(unsigned int, len, sizeof(int));
3106
3107 if (len < 0)
3108 return -EINVAL;
3109
3110 switch (optname) {
3111 case TCP_MAXSEG:
3112 val = tp->mss_cache;
3113 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3114 val = tp->rx_opt.user_mss;
3115 if (tp->repair)
3116 val = tp->rx_opt.mss_clamp;
3117 break;
3118 case TCP_NODELAY:
3119 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3120 break;
3121 case TCP_CORK:
3122 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3123 break;
3124 case TCP_KEEPIDLE:
3125 val = keepalive_time_when(tp) / HZ;
3126 break;
3127 case TCP_KEEPINTVL:
3128 val = keepalive_intvl_when(tp) / HZ;
3129 break;
3130 case TCP_KEEPCNT:
3131 val = keepalive_probes(tp);
3132 break;
3133 case TCP_SYNCNT:
3134 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3135 break;
3136 case TCP_LINGER2:
3137 val = tp->linger2;
3138 if (val >= 0)
3139 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3140 break;
3141 case TCP_DEFER_ACCEPT:
3142 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3143 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3144 break;
3145 case TCP_WINDOW_CLAMP:
3146 val = tp->window_clamp;
3147 break;
3148 case TCP_INFO: {
3149 struct tcp_info info;
3150
3151 if (get_user(len, optlen))
3152 return -EFAULT;
3153
3154 tcp_get_info(sk, &info);
3155
3156 len = min_t(unsigned int, len, sizeof(info));
3157 if (put_user(len, optlen))
3158 return -EFAULT;
3159 if (copy_to_user(optval, &info, len))
3160 return -EFAULT;
3161 return 0;
3162 }
3163 case TCP_CC_INFO: {
3164 const struct tcp_congestion_ops *ca_ops;
3165 union tcp_cc_info info;
3166 size_t sz = 0;
3167 int attr;
3168
3169 if (get_user(len, optlen))
3170 return -EFAULT;
3171
3172 ca_ops = icsk->icsk_ca_ops;
3173 if (ca_ops && ca_ops->get_info)
3174 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3175
3176 len = min_t(unsigned int, len, sz);
3177 if (put_user(len, optlen))
3178 return -EFAULT;
3179 if (copy_to_user(optval, &info, len))
3180 return -EFAULT;
3181 return 0;
3182 }
3183 case TCP_QUICKACK:
3184 val = !icsk->icsk_ack.pingpong;
3185 break;
3186
3187 case TCP_CONGESTION:
3188 if (get_user(len, optlen))
3189 return -EFAULT;
3190 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3191 if (put_user(len, optlen))
3192 return -EFAULT;
3193 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3194 return -EFAULT;
3195 return 0;
3196
3197 case TCP_ULP:
3198 if (get_user(len, optlen))
3199 return -EFAULT;
3200 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3201 if (!icsk->icsk_ulp_ops) {
3202 if (put_user(0, optlen))
3203 return -EFAULT;
3204 return 0;
3205 }
3206 if (put_user(len, optlen))
3207 return -EFAULT;
3208 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3209 return -EFAULT;
3210 return 0;
3211
3212 case TCP_FASTOPEN_KEY: {
3213 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
3214 struct tcp_fastopen_context *ctx;
3215
3216 if (get_user(len, optlen))
3217 return -EFAULT;
3218
3219 rcu_read_lock();
3220 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
3221 if (ctx)
3222 memcpy(key, ctx->key, sizeof(key));
3223 else
3224 len = 0;
3225 rcu_read_unlock();
3226
3227 len = min_t(unsigned int, len, sizeof(key));
3228 if (put_user(len, optlen))
3229 return -EFAULT;
3230 if (copy_to_user(optval, key, len))
3231 return -EFAULT;
3232 return 0;
3233 }
3234 case TCP_THIN_LINEAR_TIMEOUTS:
3235 val = tp->thin_lto;
3236 break;
3237
3238 case TCP_THIN_DUPACK:
3239 val = 0;
3240 break;
3241
3242 case TCP_REPAIR:
3243 val = tp->repair;
3244 break;
3245
3246 case TCP_REPAIR_QUEUE:
3247 if (tp->repair)
3248 val = tp->repair_queue;
3249 else
3250 return -EINVAL;
3251 break;
3252
3253 case TCP_REPAIR_WINDOW: {
3254 struct tcp_repair_window opt;
3255
3256 if (get_user(len, optlen))
3257 return -EFAULT;
3258
3259 if (len != sizeof(opt))
3260 return -EINVAL;
3261
3262 if (!tp->repair)
3263 return -EPERM;
3264
3265 opt.snd_wl1 = tp->snd_wl1;
3266 opt.snd_wnd = tp->snd_wnd;
3267 opt.max_window = tp->max_window;
3268 opt.rcv_wnd = tp->rcv_wnd;
3269 opt.rcv_wup = tp->rcv_wup;
3270
3271 if (copy_to_user(optval, &opt, len))
3272 return -EFAULT;
3273 return 0;
3274 }
3275 case TCP_QUEUE_SEQ:
3276 if (tp->repair_queue == TCP_SEND_QUEUE)
3277 val = tp->write_seq;
3278 else if (tp->repair_queue == TCP_RECV_QUEUE)
3279 val = tp->rcv_nxt;
3280 else
3281 return -EINVAL;
3282 break;
3283
3284 case TCP_USER_TIMEOUT:
3285 val = jiffies_to_msecs(icsk->icsk_user_timeout);
3286 break;
3287
3288 case TCP_FASTOPEN:
3289 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3290 break;
3291
3292 case TCP_FASTOPEN_CONNECT:
3293 val = tp->fastopen_connect;
3294 break;
3295
3296 case TCP_FASTOPEN_NO_COOKIE:
3297 val = tp->fastopen_no_cookie;
3298 break;
3299
3300 case TCP_TIMESTAMP:
3301 val = tcp_time_stamp_raw() + tp->tsoffset;
3302 break;
3303 case TCP_NOTSENT_LOWAT:
3304 val = tp->notsent_lowat;
3305 break;
3306 case TCP_SAVE_SYN:
3307 val = tp->save_syn;
3308 break;
3309 case TCP_SAVED_SYN: {
3310 if (get_user(len, optlen))
3311 return -EFAULT;
3312
3313 lock_sock(sk);
3314 if (tp->saved_syn) {
3315 if (len < tp->saved_syn[0]) {
3316 if (put_user(tp->saved_syn[0], optlen)) {
3317 release_sock(sk);
3318 return -EFAULT;
3319 }
3320 release_sock(sk);
3321 return -EINVAL;
3322 }
3323 len = tp->saved_syn[0];
3324 if (put_user(len, optlen)) {
3325 release_sock(sk);
3326 return -EFAULT;
3327 }
3328 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3329 release_sock(sk);
3330 return -EFAULT;
3331 }
3332 tcp_saved_syn_free(tp);
3333 release_sock(sk);
3334 } else {
3335 release_sock(sk);
3336 len = 0;
3337 if (put_user(len, optlen))
3338 return -EFAULT;
3339 }
3340 return 0;
3341 }
3342 default:
3343 return -ENOPROTOOPT;
3344 }
3345
3346 if (put_user(len, optlen))
3347 return -EFAULT;
3348 if (copy_to_user(optval, &val, len))
3349 return -EFAULT;
3350 return 0;
3351 }
3352
3353 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3354 int __user *optlen)
3355 {
3356 struct inet_connection_sock *icsk = inet_csk(sk);
3357
3358 if (level != SOL_TCP)
3359 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3360 optval, optlen);
3361 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3362 }
3363 EXPORT_SYMBOL(tcp_getsockopt);
3364
3365 #ifdef CONFIG_COMPAT
3366 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3367 char __user *optval, int __user *optlen)
3368 {
3369 if (level != SOL_TCP)
3370 return inet_csk_compat_getsockopt(sk, level, optname,
3371 optval, optlen);
3372 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3373 }
3374 EXPORT_SYMBOL(compat_tcp_getsockopt);
3375 #endif
3376
3377 #ifdef CONFIG_TCP_MD5SIG
3378 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3379 static DEFINE_MUTEX(tcp_md5sig_mutex);
3380 static bool tcp_md5sig_pool_populated = false;
3381
3382 static void __tcp_alloc_md5sig_pool(void)
3383 {
3384 struct crypto_ahash *hash;
3385 int cpu;
3386
3387 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3388 if (IS_ERR(hash))
3389 return;
3390
3391 for_each_possible_cpu(cpu) {
3392 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3393 struct ahash_request *req;
3394
3395 if (!scratch) {
3396 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3397 sizeof(struct tcphdr),
3398 GFP_KERNEL,
3399 cpu_to_node(cpu));
3400 if (!scratch)
3401 return;
3402 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3403 }
3404 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3405 continue;
3406
3407 req = ahash_request_alloc(hash, GFP_KERNEL);
3408 if (!req)
3409 return;
3410
3411 ahash_request_set_callback(req, 0, NULL, NULL);
3412
3413 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3414 }
3415 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3416 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3417 */
3418 smp_wmb();
3419 tcp_md5sig_pool_populated = true;
3420 }
3421
3422 bool tcp_alloc_md5sig_pool(void)
3423 {
3424 if (unlikely(!tcp_md5sig_pool_populated)) {
3425 mutex_lock(&tcp_md5sig_mutex);
3426
3427 if (!tcp_md5sig_pool_populated)
3428 __tcp_alloc_md5sig_pool();
3429
3430 mutex_unlock(&tcp_md5sig_mutex);
3431 }
3432 return tcp_md5sig_pool_populated;
3433 }
3434 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3435
3436
3437 /**
3438 * tcp_get_md5sig_pool - get md5sig_pool for this user
3439 *
3440 * We use percpu structure, so if we succeed, we exit with preemption
3441 * and BH disabled, to make sure another thread or softirq handling
3442 * wont try to get same context.
3443 */
3444 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3445 {
3446 local_bh_disable();
3447
3448 if (tcp_md5sig_pool_populated) {
3449 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3450 smp_rmb();
3451 return this_cpu_ptr(&tcp_md5sig_pool);
3452 }
3453 local_bh_enable();
3454 return NULL;
3455 }
3456 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3457
3458 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3459 const struct sk_buff *skb, unsigned int header_len)
3460 {
3461 struct scatterlist sg;
3462 const struct tcphdr *tp = tcp_hdr(skb);
3463 struct ahash_request *req = hp->md5_req;
3464 unsigned int i;
3465 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3466 skb_headlen(skb) - header_len : 0;
3467 const struct skb_shared_info *shi = skb_shinfo(skb);
3468 struct sk_buff *frag_iter;
3469
3470 sg_init_table(&sg, 1);
3471
3472 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3473 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3474 if (crypto_ahash_update(req))
3475 return 1;
3476
3477 for (i = 0; i < shi->nr_frags; ++i) {
3478 const struct skb_frag_struct *f = &shi->frags[i];
3479 unsigned int offset = f->page_offset;
3480 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3481
3482 sg_set_page(&sg, page, skb_frag_size(f),
3483 offset_in_page(offset));
3484 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3485 if (crypto_ahash_update(req))
3486 return 1;
3487 }
3488
3489 skb_walk_frags(skb, frag_iter)
3490 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3491 return 1;
3492
3493 return 0;
3494 }
3495 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3496
3497 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3498 {
3499 struct scatterlist sg;
3500
3501 sg_init_one(&sg, key->key, key->keylen);
3502 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3503 return crypto_ahash_update(hp->md5_req);
3504 }
3505 EXPORT_SYMBOL(tcp_md5_hash_key);
3506
3507 #endif
3508
3509 void tcp_done(struct sock *sk)
3510 {
3511 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3512
3513 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3514 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3515
3516 tcp_set_state(sk, TCP_CLOSE);
3517 tcp_clear_xmit_timers(sk);
3518 if (req)
3519 reqsk_fastopen_remove(sk, req, false);
3520
3521 sk->sk_shutdown = SHUTDOWN_MASK;
3522
3523 if (!sock_flag(sk, SOCK_DEAD))
3524 sk->sk_state_change(sk);
3525 else
3526 inet_csk_destroy_sock(sk);
3527 }
3528 EXPORT_SYMBOL_GPL(tcp_done);
3529
3530 int tcp_abort(struct sock *sk, int err)
3531 {
3532 if (!sk_fullsock(sk)) {
3533 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3534 struct request_sock *req = inet_reqsk(sk);
3535
3536 local_bh_disable();
3537 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3538 req);
3539 local_bh_enable();
3540 return 0;
3541 }
3542 return -EOPNOTSUPP;
3543 }
3544
3545 /* Don't race with userspace socket closes such as tcp_close. */
3546 lock_sock(sk);
3547
3548 if (sk->sk_state == TCP_LISTEN) {
3549 tcp_set_state(sk, TCP_CLOSE);
3550 inet_csk_listen_stop(sk);
3551 }
3552
3553 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3554 local_bh_disable();
3555 bh_lock_sock(sk);
3556
3557 if (!sock_flag(sk, SOCK_DEAD)) {
3558 sk->sk_err = err;
3559 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3560 smp_wmb();
3561 sk->sk_error_report(sk);
3562 if (tcp_need_reset(sk->sk_state))
3563 tcp_send_active_reset(sk, GFP_ATOMIC);
3564 tcp_done(sk);
3565 }
3566
3567 bh_unlock_sock(sk);
3568 local_bh_enable();
3569 release_sock(sk);
3570 return 0;
3571 }
3572 EXPORT_SYMBOL_GPL(tcp_abort);
3573
3574 extern struct tcp_congestion_ops tcp_reno;
3575
3576 static __initdata unsigned long thash_entries;
3577 static int __init set_thash_entries(char *str)
3578 {
3579 ssize_t ret;
3580
3581 if (!str)
3582 return 0;
3583
3584 ret = kstrtoul(str, 0, &thash_entries);
3585 if (ret)
3586 return 0;
3587
3588 return 1;
3589 }
3590 __setup("thash_entries=", set_thash_entries);
3591
3592 static void __init tcp_init_mem(void)
3593 {
3594 unsigned long limit = nr_free_buffer_pages() / 16;
3595
3596 limit = max(limit, 128UL);
3597 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3598 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3599 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3600 }
3601
3602 void __init tcp_init(void)
3603 {
3604 int max_rshare, max_wshare, cnt;
3605 unsigned long limit;
3606 unsigned int i;
3607
3608 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3609 FIELD_SIZEOF(struct sk_buff, cb));
3610
3611 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3612 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3613 inet_hashinfo_init(&tcp_hashinfo);
3614 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
3615 thash_entries, 21, /* one slot per 2 MB*/
3616 0, 64 * 1024);
3617 tcp_hashinfo.bind_bucket_cachep =
3618 kmem_cache_create("tcp_bind_bucket",
3619 sizeof(struct inet_bind_bucket), 0,
3620 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3621
3622 /* Size and allocate the main established and bind bucket
3623 * hash tables.
3624 *
3625 * The methodology is similar to that of the buffer cache.
3626 */
3627 tcp_hashinfo.ehash =
3628 alloc_large_system_hash("TCP established",
3629 sizeof(struct inet_ehash_bucket),
3630 thash_entries,
3631 17, /* one slot per 128 KB of memory */
3632 0,
3633 NULL,
3634 &tcp_hashinfo.ehash_mask,
3635 0,
3636 thash_entries ? 0 : 512 * 1024);
3637 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3638 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3639
3640 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3641 panic("TCP: failed to alloc ehash_locks");
3642 tcp_hashinfo.bhash =
3643 alloc_large_system_hash("TCP bind",
3644 sizeof(struct inet_bind_hashbucket),
3645 tcp_hashinfo.ehash_mask + 1,
3646 17, /* one slot per 128 KB of memory */
3647 0,
3648 &tcp_hashinfo.bhash_size,
3649 NULL,
3650 0,
3651 64 * 1024);
3652 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3653 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3654 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3655 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3656 }
3657
3658
3659 cnt = tcp_hashinfo.ehash_mask + 1;
3660 sysctl_tcp_max_orphans = cnt / 2;
3661
3662 tcp_init_mem();
3663 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3664 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3665 max_wshare = min(4UL*1024*1024, limit);
3666 max_rshare = min(6UL*1024*1024, limit);
3667
3668 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3669 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
3670 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3671
3672 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3673 init_net.ipv4.sysctl_tcp_rmem[1] = 87380;
3674 init_net.ipv4.sysctl_tcp_rmem[2] = max(87380, max_rshare);
3675
3676 pr_info("Hash tables configured (established %u bind %u)\n",
3677 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3678
3679 tcp_v4_init();
3680 tcp_metrics_init();
3681 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3682 tcp_tasklet_init();
3683 }