]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/tcp_bbr.c
tcp_bbr: record "full bw reached" decision in new full_bw_reached bit
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp_bbr.c
1 /* Bottleneck Bandwidth and RTT (BBR) congestion control
2 *
3 * BBR congestion control computes the sending rate based on the delivery
4 * rate (throughput) estimated from ACKs. In a nutshell:
5 *
6 * On each ACK, update our model of the network path:
7 * bottleneck_bandwidth = windowed_max(delivered / elapsed, 10 round trips)
8 * min_rtt = windowed_min(rtt, 10 seconds)
9 * pacing_rate = pacing_gain * bottleneck_bandwidth
10 * cwnd = max(cwnd_gain * bottleneck_bandwidth * min_rtt, 4)
11 *
12 * The core algorithm does not react directly to packet losses or delays,
13 * although BBR may adjust the size of next send per ACK when loss is
14 * observed, or adjust the sending rate if it estimates there is a
15 * traffic policer, in order to keep the drop rate reasonable.
16 *
17 * Here is a state transition diagram for BBR:
18 *
19 * |
20 * V
21 * +---> STARTUP ----+
22 * | | |
23 * | V |
24 * | DRAIN ----+
25 * | | |
26 * | V |
27 * +---> PROBE_BW ----+
28 * | ^ | |
29 * | | | |
30 * | +----+ |
31 * | |
32 * +---- PROBE_RTT <--+
33 *
34 * A BBR flow starts in STARTUP, and ramps up its sending rate quickly.
35 * When it estimates the pipe is full, it enters DRAIN to drain the queue.
36 * In steady state a BBR flow only uses PROBE_BW and PROBE_RTT.
37 * A long-lived BBR flow spends the vast majority of its time remaining
38 * (repeatedly) in PROBE_BW, fully probing and utilizing the pipe's bandwidth
39 * in a fair manner, with a small, bounded queue. *If* a flow has been
40 * continuously sending for the entire min_rtt window, and hasn't seen an RTT
41 * sample that matches or decreases its min_rtt estimate for 10 seconds, then
42 * it briefly enters PROBE_RTT to cut inflight to a minimum value to re-probe
43 * the path's two-way propagation delay (min_rtt). When exiting PROBE_RTT, if
44 * we estimated that we reached the full bw of the pipe then we enter PROBE_BW;
45 * otherwise we enter STARTUP to try to fill the pipe.
46 *
47 * BBR is described in detail in:
48 * "BBR: Congestion-Based Congestion Control",
49 * Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh,
50 * Van Jacobson. ACM Queue, Vol. 14 No. 5, September-October 2016.
51 *
52 * There is a public e-mail list for discussing BBR development and testing:
53 * https://groups.google.com/forum/#!forum/bbr-dev
54 *
55 * NOTE: BBR might be used with the fq qdisc ("man tc-fq") with pacing enabled,
56 * otherwise TCP stack falls back to an internal pacing using one high
57 * resolution timer per TCP socket and may use more resources.
58 */
59 #include <linux/module.h>
60 #include <net/tcp.h>
61 #include <linux/inet_diag.h>
62 #include <linux/inet.h>
63 #include <linux/random.h>
64 #include <linux/win_minmax.h>
65
66 /* Scale factor for rate in pkt/uSec unit to avoid truncation in bandwidth
67 * estimation. The rate unit ~= (1500 bytes / 1 usec / 2^24) ~= 715 bps.
68 * This handles bandwidths from 0.06pps (715bps) to 256Mpps (3Tbps) in a u32.
69 * Since the minimum window is >=4 packets, the lower bound isn't
70 * an issue. The upper bound isn't an issue with existing technologies.
71 */
72 #define BW_SCALE 24
73 #define BW_UNIT (1 << BW_SCALE)
74
75 #define BBR_SCALE 8 /* scaling factor for fractions in BBR (e.g. gains) */
76 #define BBR_UNIT (1 << BBR_SCALE)
77
78 /* BBR has the following modes for deciding how fast to send: */
79 enum bbr_mode {
80 BBR_STARTUP, /* ramp up sending rate rapidly to fill pipe */
81 BBR_DRAIN, /* drain any queue created during startup */
82 BBR_PROBE_BW, /* discover, share bw: pace around estimated bw */
83 BBR_PROBE_RTT, /* cut inflight to min to probe min_rtt */
84 };
85
86 /* BBR congestion control block */
87 struct bbr {
88 u32 min_rtt_us; /* min RTT in min_rtt_win_sec window */
89 u32 min_rtt_stamp; /* timestamp of min_rtt_us */
90 u32 probe_rtt_done_stamp; /* end time for BBR_PROBE_RTT mode */
91 struct minmax bw; /* Max recent delivery rate in pkts/uS << 24 */
92 u32 rtt_cnt; /* count of packet-timed rounds elapsed */
93 u32 next_rtt_delivered; /* scb->tx.delivered at end of round */
94 u64 cycle_mstamp; /* time of this cycle phase start */
95 u32 mode:3, /* current bbr_mode in state machine */
96 prev_ca_state:3, /* CA state on previous ACK */
97 packet_conservation:1, /* use packet conservation? */
98 restore_cwnd:1, /* decided to revert cwnd to old value */
99 round_start:1, /* start of packet-timed tx->ack round? */
100 tso_segs_goal:7, /* segments we want in each skb we send */
101 idle_restart:1, /* restarting after idle? */
102 probe_rtt_round_done:1, /* a BBR_PROBE_RTT round at 4 pkts? */
103 unused:5,
104 lt_is_sampling:1, /* taking long-term ("LT") samples now? */
105 lt_rtt_cnt:7, /* round trips in long-term interval */
106 lt_use_bw:1; /* use lt_bw as our bw estimate? */
107 u32 lt_bw; /* LT est delivery rate in pkts/uS << 24 */
108 u32 lt_last_delivered; /* LT intvl start: tp->delivered */
109 u32 lt_last_stamp; /* LT intvl start: tp->delivered_mstamp */
110 u32 lt_last_lost; /* LT intvl start: tp->lost */
111 u32 pacing_gain:10, /* current gain for setting pacing rate */
112 cwnd_gain:10, /* current gain for setting cwnd */
113 full_bw_reached:1, /* reached full bw in Startup? */
114 full_bw_cnt:2, /* number of rounds without large bw gains */
115 cycle_idx:3, /* current index in pacing_gain cycle array */
116 has_seen_rtt:1, /* have we seen an RTT sample yet? */
117 unused_b:5;
118 u32 prior_cwnd; /* prior cwnd upon entering loss recovery */
119 u32 full_bw; /* recent bw, to estimate if pipe is full */
120 };
121
122 #define CYCLE_LEN 8 /* number of phases in a pacing gain cycle */
123
124 /* Window length of bw filter (in rounds): */
125 static const int bbr_bw_rtts = CYCLE_LEN + 2;
126 /* Window length of min_rtt filter (in sec): */
127 static const u32 bbr_min_rtt_win_sec = 10;
128 /* Minimum time (in ms) spent at bbr_cwnd_min_target in BBR_PROBE_RTT mode: */
129 static const u32 bbr_probe_rtt_mode_ms = 200;
130 /* Skip TSO below the following bandwidth (bits/sec): */
131 static const int bbr_min_tso_rate = 1200000;
132
133 /* We use a high_gain value of 2/ln(2) because it's the smallest pacing gain
134 * that will allow a smoothly increasing pacing rate that will double each RTT
135 * and send the same number of packets per RTT that an un-paced, slow-starting
136 * Reno or CUBIC flow would:
137 */
138 static const int bbr_high_gain = BBR_UNIT * 2885 / 1000 + 1;
139 /* The pacing gain of 1/high_gain in BBR_DRAIN is calculated to typically drain
140 * the queue created in BBR_STARTUP in a single round:
141 */
142 static const int bbr_drain_gain = BBR_UNIT * 1000 / 2885;
143 /* The gain for deriving steady-state cwnd tolerates delayed/stretched ACKs: */
144 static const int bbr_cwnd_gain = BBR_UNIT * 2;
145 /* The pacing_gain values for the PROBE_BW gain cycle, to discover/share bw: */
146 static const int bbr_pacing_gain[] = {
147 BBR_UNIT * 5 / 4, /* probe for more available bw */
148 BBR_UNIT * 3 / 4, /* drain queue and/or yield bw to other flows */
149 BBR_UNIT, BBR_UNIT, BBR_UNIT, /* cruise at 1.0*bw to utilize pipe, */
150 BBR_UNIT, BBR_UNIT, BBR_UNIT /* without creating excess queue... */
151 };
152 /* Randomize the starting gain cycling phase over N phases: */
153 static const u32 bbr_cycle_rand = 7;
154
155 /* Try to keep at least this many packets in flight, if things go smoothly. For
156 * smooth functioning, a sliding window protocol ACKing every other packet
157 * needs at least 4 packets in flight:
158 */
159 static const u32 bbr_cwnd_min_target = 4;
160
161 /* To estimate if BBR_STARTUP mode (i.e. high_gain) has filled pipe... */
162 /* If bw has increased significantly (1.25x), there may be more bw available: */
163 static const u32 bbr_full_bw_thresh = BBR_UNIT * 5 / 4;
164 /* But after 3 rounds w/o significant bw growth, estimate pipe is full: */
165 static const u32 bbr_full_bw_cnt = 3;
166
167 /* "long-term" ("LT") bandwidth estimator parameters... */
168 /* The minimum number of rounds in an LT bw sampling interval: */
169 static const u32 bbr_lt_intvl_min_rtts = 4;
170 /* If lost/delivered ratio > 20%, interval is "lossy" and we may be policed: */
171 static const u32 bbr_lt_loss_thresh = 50;
172 /* If 2 intervals have a bw ratio <= 1/8, their bw is "consistent": */
173 static const u32 bbr_lt_bw_ratio = BBR_UNIT / 8;
174 /* If 2 intervals have a bw diff <= 4 Kbit/sec their bw is "consistent": */
175 static const u32 bbr_lt_bw_diff = 4000 / 8;
176 /* If we estimate we're policed, use lt_bw for this many round trips: */
177 static const u32 bbr_lt_bw_max_rtts = 48;
178
179 /* Do we estimate that STARTUP filled the pipe? */
180 static bool bbr_full_bw_reached(const struct sock *sk)
181 {
182 const struct bbr *bbr = inet_csk_ca(sk);
183
184 return bbr->full_bw_reached;
185 }
186
187 /* Return the windowed max recent bandwidth sample, in pkts/uS << BW_SCALE. */
188 static u32 bbr_max_bw(const struct sock *sk)
189 {
190 struct bbr *bbr = inet_csk_ca(sk);
191
192 return minmax_get(&bbr->bw);
193 }
194
195 /* Return the estimated bandwidth of the path, in pkts/uS << BW_SCALE. */
196 static u32 bbr_bw(const struct sock *sk)
197 {
198 struct bbr *bbr = inet_csk_ca(sk);
199
200 return bbr->lt_use_bw ? bbr->lt_bw : bbr_max_bw(sk);
201 }
202
203 /* Return rate in bytes per second, optionally with a gain.
204 * The order here is chosen carefully to avoid overflow of u64. This should
205 * work for input rates of up to 2.9Tbit/sec and gain of 2.89x.
206 */
207 static u64 bbr_rate_bytes_per_sec(struct sock *sk, u64 rate, int gain)
208 {
209 rate *= tcp_mss_to_mtu(sk, tcp_sk(sk)->mss_cache);
210 rate *= gain;
211 rate >>= BBR_SCALE;
212 rate *= USEC_PER_SEC;
213 return rate >> BW_SCALE;
214 }
215
216 /* Convert a BBR bw and gain factor to a pacing rate in bytes per second. */
217 static u32 bbr_bw_to_pacing_rate(struct sock *sk, u32 bw, int gain)
218 {
219 u64 rate = bw;
220
221 rate = bbr_rate_bytes_per_sec(sk, rate, gain);
222 rate = min_t(u64, rate, sk->sk_max_pacing_rate);
223 return rate;
224 }
225
226 /* Initialize pacing rate to: high_gain * init_cwnd / RTT. */
227 static void bbr_init_pacing_rate_from_rtt(struct sock *sk)
228 {
229 struct tcp_sock *tp = tcp_sk(sk);
230 struct bbr *bbr = inet_csk_ca(sk);
231 u64 bw;
232 u32 rtt_us;
233
234 if (tp->srtt_us) { /* any RTT sample yet? */
235 rtt_us = max(tp->srtt_us >> 3, 1U);
236 bbr->has_seen_rtt = 1;
237 } else { /* no RTT sample yet */
238 rtt_us = USEC_PER_MSEC; /* use nominal default RTT */
239 }
240 bw = (u64)tp->snd_cwnd * BW_UNIT;
241 do_div(bw, rtt_us);
242 sk->sk_pacing_rate = bbr_bw_to_pacing_rate(sk, bw, bbr_high_gain);
243 }
244
245 /* Pace using current bw estimate and a gain factor. In order to help drive the
246 * network toward lower queues while maintaining high utilization and low
247 * latency, the average pacing rate aims to be slightly (~1%) lower than the
248 * estimated bandwidth. This is an important aspect of the design. In this
249 * implementation this slightly lower pacing rate is achieved implicitly by not
250 * including link-layer headers in the packet size used for the pacing rate.
251 */
252 static void bbr_set_pacing_rate(struct sock *sk, u32 bw, int gain)
253 {
254 struct tcp_sock *tp = tcp_sk(sk);
255 struct bbr *bbr = inet_csk_ca(sk);
256 u32 rate = bbr_bw_to_pacing_rate(sk, bw, gain);
257
258 if (unlikely(!bbr->has_seen_rtt && tp->srtt_us))
259 bbr_init_pacing_rate_from_rtt(sk);
260 if (bbr_full_bw_reached(sk) || rate > sk->sk_pacing_rate)
261 sk->sk_pacing_rate = rate;
262 }
263
264 /* Return count of segments we want in the skbs we send, or 0 for default. */
265 static u32 bbr_tso_segs_goal(struct sock *sk)
266 {
267 struct bbr *bbr = inet_csk_ca(sk);
268
269 return bbr->tso_segs_goal;
270 }
271
272 static void bbr_set_tso_segs_goal(struct sock *sk)
273 {
274 struct tcp_sock *tp = tcp_sk(sk);
275 struct bbr *bbr = inet_csk_ca(sk);
276 u32 min_segs;
277
278 min_segs = sk->sk_pacing_rate < (bbr_min_tso_rate >> 3) ? 1 : 2;
279 bbr->tso_segs_goal = min(tcp_tso_autosize(sk, tp->mss_cache, min_segs),
280 0x7FU);
281 }
282
283 /* Save "last known good" cwnd so we can restore it after losses or PROBE_RTT */
284 static void bbr_save_cwnd(struct sock *sk)
285 {
286 struct tcp_sock *tp = tcp_sk(sk);
287 struct bbr *bbr = inet_csk_ca(sk);
288
289 if (bbr->prev_ca_state < TCP_CA_Recovery && bbr->mode != BBR_PROBE_RTT)
290 bbr->prior_cwnd = tp->snd_cwnd; /* this cwnd is good enough */
291 else /* loss recovery or BBR_PROBE_RTT have temporarily cut cwnd */
292 bbr->prior_cwnd = max(bbr->prior_cwnd, tp->snd_cwnd);
293 }
294
295 static void bbr_cwnd_event(struct sock *sk, enum tcp_ca_event event)
296 {
297 struct tcp_sock *tp = tcp_sk(sk);
298 struct bbr *bbr = inet_csk_ca(sk);
299
300 if (event == CA_EVENT_TX_START && tp->app_limited) {
301 bbr->idle_restart = 1;
302 /* Avoid pointless buffer overflows: pace at est. bw if we don't
303 * need more speed (we're restarting from idle and app-limited).
304 */
305 if (bbr->mode == BBR_PROBE_BW)
306 bbr_set_pacing_rate(sk, bbr_bw(sk), BBR_UNIT);
307 }
308 }
309
310 /* Find target cwnd. Right-size the cwnd based on min RTT and the
311 * estimated bottleneck bandwidth:
312 *
313 * cwnd = bw * min_rtt * gain = BDP * gain
314 *
315 * The key factor, gain, controls the amount of queue. While a small gain
316 * builds a smaller queue, it becomes more vulnerable to noise in RTT
317 * measurements (e.g., delayed ACKs or other ACK compression effects). This
318 * noise may cause BBR to under-estimate the rate.
319 *
320 * To achieve full performance in high-speed paths, we budget enough cwnd to
321 * fit full-sized skbs in-flight on both end hosts to fully utilize the path:
322 * - one skb in sending host Qdisc,
323 * - one skb in sending host TSO/GSO engine
324 * - one skb being received by receiver host LRO/GRO/delayed-ACK engine
325 * Don't worry, at low rates (bbr_min_tso_rate) this won't bloat cwnd because
326 * in such cases tso_segs_goal is 1. The minimum cwnd is 4 packets,
327 * which allows 2 outstanding 2-packet sequences, to try to keep pipe
328 * full even with ACK-every-other-packet delayed ACKs.
329 */
330 static u32 bbr_target_cwnd(struct sock *sk, u32 bw, int gain)
331 {
332 struct bbr *bbr = inet_csk_ca(sk);
333 u32 cwnd;
334 u64 w;
335
336 /* If we've never had a valid RTT sample, cap cwnd at the initial
337 * default. This should only happen when the connection is not using TCP
338 * timestamps and has retransmitted all of the SYN/SYNACK/data packets
339 * ACKed so far. In this case, an RTO can cut cwnd to 1, in which
340 * case we need to slow-start up toward something safe: TCP_INIT_CWND.
341 */
342 if (unlikely(bbr->min_rtt_us == ~0U)) /* no valid RTT samples yet? */
343 return TCP_INIT_CWND; /* be safe: cap at default initial cwnd*/
344
345 w = (u64)bw * bbr->min_rtt_us;
346
347 /* Apply a gain to the given value, then remove the BW_SCALE shift. */
348 cwnd = (((w * gain) >> BBR_SCALE) + BW_UNIT - 1) / BW_UNIT;
349
350 /* Allow enough full-sized skbs in flight to utilize end systems. */
351 cwnd += 3 * bbr->tso_segs_goal;
352
353 /* Reduce delayed ACKs by rounding up cwnd to the next even number. */
354 cwnd = (cwnd + 1) & ~1U;
355
356 return cwnd;
357 }
358
359 /* An optimization in BBR to reduce losses: On the first round of recovery, we
360 * follow the packet conservation principle: send P packets per P packets acked.
361 * After that, we slow-start and send at most 2*P packets per P packets acked.
362 * After recovery finishes, or upon undo, we restore the cwnd we had when
363 * recovery started (capped by the target cwnd based on estimated BDP).
364 *
365 * TODO(ycheng/ncardwell): implement a rate-based approach.
366 */
367 static bool bbr_set_cwnd_to_recover_or_restore(
368 struct sock *sk, const struct rate_sample *rs, u32 acked, u32 *new_cwnd)
369 {
370 struct tcp_sock *tp = tcp_sk(sk);
371 struct bbr *bbr = inet_csk_ca(sk);
372 u8 prev_state = bbr->prev_ca_state, state = inet_csk(sk)->icsk_ca_state;
373 u32 cwnd = tp->snd_cwnd;
374
375 /* An ACK for P pkts should release at most 2*P packets. We do this
376 * in two steps. First, here we deduct the number of lost packets.
377 * Then, in bbr_set_cwnd() we slow start up toward the target cwnd.
378 */
379 if (rs->losses > 0)
380 cwnd = max_t(s32, cwnd - rs->losses, 1);
381
382 if (state == TCP_CA_Recovery && prev_state != TCP_CA_Recovery) {
383 /* Starting 1st round of Recovery, so do packet conservation. */
384 bbr->packet_conservation = 1;
385 bbr->next_rtt_delivered = tp->delivered; /* start round now */
386 /* Cut unused cwnd from app behavior, TSQ, or TSO deferral: */
387 cwnd = tcp_packets_in_flight(tp) + acked;
388 } else if (prev_state >= TCP_CA_Recovery && state < TCP_CA_Recovery) {
389 /* Exiting loss recovery; restore cwnd saved before recovery. */
390 bbr->restore_cwnd = 1;
391 bbr->packet_conservation = 0;
392 }
393 bbr->prev_ca_state = state;
394
395 if (bbr->restore_cwnd) {
396 /* Restore cwnd after exiting loss recovery or PROBE_RTT. */
397 cwnd = max(cwnd, bbr->prior_cwnd);
398 bbr->restore_cwnd = 0;
399 }
400
401 if (bbr->packet_conservation) {
402 *new_cwnd = max(cwnd, tcp_packets_in_flight(tp) + acked);
403 return true; /* yes, using packet conservation */
404 }
405 *new_cwnd = cwnd;
406 return false;
407 }
408
409 /* Slow-start up toward target cwnd (if bw estimate is growing, or packet loss
410 * has drawn us down below target), or snap down to target if we're above it.
411 */
412 static void bbr_set_cwnd(struct sock *sk, const struct rate_sample *rs,
413 u32 acked, u32 bw, int gain)
414 {
415 struct tcp_sock *tp = tcp_sk(sk);
416 struct bbr *bbr = inet_csk_ca(sk);
417 u32 cwnd = 0, target_cwnd = 0;
418
419 if (!acked)
420 return;
421
422 if (bbr_set_cwnd_to_recover_or_restore(sk, rs, acked, &cwnd))
423 goto done;
424
425 /* If we're below target cwnd, slow start cwnd toward target cwnd. */
426 target_cwnd = bbr_target_cwnd(sk, bw, gain);
427 if (bbr_full_bw_reached(sk)) /* only cut cwnd if we filled the pipe */
428 cwnd = min(cwnd + acked, target_cwnd);
429 else if (cwnd < target_cwnd || tp->delivered < TCP_INIT_CWND)
430 cwnd = cwnd + acked;
431 cwnd = max(cwnd, bbr_cwnd_min_target);
432
433 done:
434 tp->snd_cwnd = min(cwnd, tp->snd_cwnd_clamp); /* apply global cap */
435 if (bbr->mode == BBR_PROBE_RTT) /* drain queue, refresh min_rtt */
436 tp->snd_cwnd = min(tp->snd_cwnd, bbr_cwnd_min_target);
437 }
438
439 /* End cycle phase if it's time and/or we hit the phase's in-flight target. */
440 static bool bbr_is_next_cycle_phase(struct sock *sk,
441 const struct rate_sample *rs)
442 {
443 struct tcp_sock *tp = tcp_sk(sk);
444 struct bbr *bbr = inet_csk_ca(sk);
445 bool is_full_length =
446 tcp_stamp_us_delta(tp->delivered_mstamp, bbr->cycle_mstamp) >
447 bbr->min_rtt_us;
448 u32 inflight, bw;
449
450 /* The pacing_gain of 1.0 paces at the estimated bw to try to fully
451 * use the pipe without increasing the queue.
452 */
453 if (bbr->pacing_gain == BBR_UNIT)
454 return is_full_length; /* just use wall clock time */
455
456 inflight = rs->prior_in_flight; /* what was in-flight before ACK? */
457 bw = bbr_max_bw(sk);
458
459 /* A pacing_gain > 1.0 probes for bw by trying to raise inflight to at
460 * least pacing_gain*BDP; this may take more than min_rtt if min_rtt is
461 * small (e.g. on a LAN). We do not persist if packets are lost, since
462 * a path with small buffers may not hold that much.
463 */
464 if (bbr->pacing_gain > BBR_UNIT)
465 return is_full_length &&
466 (rs->losses || /* perhaps pacing_gain*BDP won't fit */
467 inflight >= bbr_target_cwnd(sk, bw, bbr->pacing_gain));
468
469 /* A pacing_gain < 1.0 tries to drain extra queue we added if bw
470 * probing didn't find more bw. If inflight falls to match BDP then we
471 * estimate queue is drained; persisting would underutilize the pipe.
472 */
473 return is_full_length ||
474 inflight <= bbr_target_cwnd(sk, bw, BBR_UNIT);
475 }
476
477 static void bbr_advance_cycle_phase(struct sock *sk)
478 {
479 struct tcp_sock *tp = tcp_sk(sk);
480 struct bbr *bbr = inet_csk_ca(sk);
481
482 bbr->cycle_idx = (bbr->cycle_idx + 1) & (CYCLE_LEN - 1);
483 bbr->cycle_mstamp = tp->delivered_mstamp;
484 bbr->pacing_gain = bbr_pacing_gain[bbr->cycle_idx];
485 }
486
487 /* Gain cycling: cycle pacing gain to converge to fair share of available bw. */
488 static void bbr_update_cycle_phase(struct sock *sk,
489 const struct rate_sample *rs)
490 {
491 struct bbr *bbr = inet_csk_ca(sk);
492
493 if ((bbr->mode == BBR_PROBE_BW) && !bbr->lt_use_bw &&
494 bbr_is_next_cycle_phase(sk, rs))
495 bbr_advance_cycle_phase(sk);
496 }
497
498 static void bbr_reset_startup_mode(struct sock *sk)
499 {
500 struct bbr *bbr = inet_csk_ca(sk);
501
502 bbr->mode = BBR_STARTUP;
503 bbr->pacing_gain = bbr_high_gain;
504 bbr->cwnd_gain = bbr_high_gain;
505 }
506
507 static void bbr_reset_probe_bw_mode(struct sock *sk)
508 {
509 struct bbr *bbr = inet_csk_ca(sk);
510
511 bbr->mode = BBR_PROBE_BW;
512 bbr->pacing_gain = BBR_UNIT;
513 bbr->cwnd_gain = bbr_cwnd_gain;
514 bbr->cycle_idx = CYCLE_LEN - 1 - prandom_u32_max(bbr_cycle_rand);
515 bbr_advance_cycle_phase(sk); /* flip to next phase of gain cycle */
516 }
517
518 static void bbr_reset_mode(struct sock *sk)
519 {
520 if (!bbr_full_bw_reached(sk))
521 bbr_reset_startup_mode(sk);
522 else
523 bbr_reset_probe_bw_mode(sk);
524 }
525
526 /* Start a new long-term sampling interval. */
527 static void bbr_reset_lt_bw_sampling_interval(struct sock *sk)
528 {
529 struct tcp_sock *tp = tcp_sk(sk);
530 struct bbr *bbr = inet_csk_ca(sk);
531
532 bbr->lt_last_stamp = div_u64(tp->delivered_mstamp, USEC_PER_MSEC);
533 bbr->lt_last_delivered = tp->delivered;
534 bbr->lt_last_lost = tp->lost;
535 bbr->lt_rtt_cnt = 0;
536 }
537
538 /* Completely reset long-term bandwidth sampling. */
539 static void bbr_reset_lt_bw_sampling(struct sock *sk)
540 {
541 struct bbr *bbr = inet_csk_ca(sk);
542
543 bbr->lt_bw = 0;
544 bbr->lt_use_bw = 0;
545 bbr->lt_is_sampling = false;
546 bbr_reset_lt_bw_sampling_interval(sk);
547 }
548
549 /* Long-term bw sampling interval is done. Estimate whether we're policed. */
550 static void bbr_lt_bw_interval_done(struct sock *sk, u32 bw)
551 {
552 struct bbr *bbr = inet_csk_ca(sk);
553 u32 diff;
554
555 if (bbr->lt_bw) { /* do we have bw from a previous interval? */
556 /* Is new bw close to the lt_bw from the previous interval? */
557 diff = abs(bw - bbr->lt_bw);
558 if ((diff * BBR_UNIT <= bbr_lt_bw_ratio * bbr->lt_bw) ||
559 (bbr_rate_bytes_per_sec(sk, diff, BBR_UNIT) <=
560 bbr_lt_bw_diff)) {
561 /* All criteria are met; estimate we're policed. */
562 bbr->lt_bw = (bw + bbr->lt_bw) >> 1; /* avg 2 intvls */
563 bbr->lt_use_bw = 1;
564 bbr->pacing_gain = BBR_UNIT; /* try to avoid drops */
565 bbr->lt_rtt_cnt = 0;
566 return;
567 }
568 }
569 bbr->lt_bw = bw;
570 bbr_reset_lt_bw_sampling_interval(sk);
571 }
572
573 /* Token-bucket traffic policers are common (see "An Internet-Wide Analysis of
574 * Traffic Policing", SIGCOMM 2016). BBR detects token-bucket policers and
575 * explicitly models their policed rate, to reduce unnecessary losses. We
576 * estimate that we're policed if we see 2 consecutive sampling intervals with
577 * consistent throughput and high packet loss. If we think we're being policed,
578 * set lt_bw to the "long-term" average delivery rate from those 2 intervals.
579 */
580 static void bbr_lt_bw_sampling(struct sock *sk, const struct rate_sample *rs)
581 {
582 struct tcp_sock *tp = tcp_sk(sk);
583 struct bbr *bbr = inet_csk_ca(sk);
584 u32 lost, delivered;
585 u64 bw;
586 u32 t;
587
588 if (bbr->lt_use_bw) { /* already using long-term rate, lt_bw? */
589 if (bbr->mode == BBR_PROBE_BW && bbr->round_start &&
590 ++bbr->lt_rtt_cnt >= bbr_lt_bw_max_rtts) {
591 bbr_reset_lt_bw_sampling(sk); /* stop using lt_bw */
592 bbr_reset_probe_bw_mode(sk); /* restart gain cycling */
593 }
594 return;
595 }
596
597 /* Wait for the first loss before sampling, to let the policer exhaust
598 * its tokens and estimate the steady-state rate allowed by the policer.
599 * Starting samples earlier includes bursts that over-estimate the bw.
600 */
601 if (!bbr->lt_is_sampling) {
602 if (!rs->losses)
603 return;
604 bbr_reset_lt_bw_sampling_interval(sk);
605 bbr->lt_is_sampling = true;
606 }
607
608 /* To avoid underestimates, reset sampling if we run out of data. */
609 if (rs->is_app_limited) {
610 bbr_reset_lt_bw_sampling(sk);
611 return;
612 }
613
614 if (bbr->round_start)
615 bbr->lt_rtt_cnt++; /* count round trips in this interval */
616 if (bbr->lt_rtt_cnt < bbr_lt_intvl_min_rtts)
617 return; /* sampling interval needs to be longer */
618 if (bbr->lt_rtt_cnt > 4 * bbr_lt_intvl_min_rtts) {
619 bbr_reset_lt_bw_sampling(sk); /* interval is too long */
620 return;
621 }
622
623 /* End sampling interval when a packet is lost, so we estimate the
624 * policer tokens were exhausted. Stopping the sampling before the
625 * tokens are exhausted under-estimates the policed rate.
626 */
627 if (!rs->losses)
628 return;
629
630 /* Calculate packets lost and delivered in sampling interval. */
631 lost = tp->lost - bbr->lt_last_lost;
632 delivered = tp->delivered - bbr->lt_last_delivered;
633 /* Is loss rate (lost/delivered) >= lt_loss_thresh? If not, wait. */
634 if (!delivered || (lost << BBR_SCALE) < bbr_lt_loss_thresh * delivered)
635 return;
636
637 /* Find average delivery rate in this sampling interval. */
638 t = div_u64(tp->delivered_mstamp, USEC_PER_MSEC) - bbr->lt_last_stamp;
639 if ((s32)t < 1)
640 return; /* interval is less than one ms, so wait */
641 /* Check if can multiply without overflow */
642 if (t >= ~0U / USEC_PER_MSEC) {
643 bbr_reset_lt_bw_sampling(sk); /* interval too long; reset */
644 return;
645 }
646 t *= USEC_PER_MSEC;
647 bw = (u64)delivered * BW_UNIT;
648 do_div(bw, t);
649 bbr_lt_bw_interval_done(sk, bw);
650 }
651
652 /* Estimate the bandwidth based on how fast packets are delivered */
653 static void bbr_update_bw(struct sock *sk, const struct rate_sample *rs)
654 {
655 struct tcp_sock *tp = tcp_sk(sk);
656 struct bbr *bbr = inet_csk_ca(sk);
657 u64 bw;
658
659 bbr->round_start = 0;
660 if (rs->delivered < 0 || rs->interval_us <= 0)
661 return; /* Not a valid observation */
662
663 /* See if we've reached the next RTT */
664 if (!before(rs->prior_delivered, bbr->next_rtt_delivered)) {
665 bbr->next_rtt_delivered = tp->delivered;
666 bbr->rtt_cnt++;
667 bbr->round_start = 1;
668 bbr->packet_conservation = 0;
669 }
670
671 bbr_lt_bw_sampling(sk, rs);
672
673 /* Divide delivered by the interval to find a (lower bound) bottleneck
674 * bandwidth sample. Delivered is in packets and interval_us in uS and
675 * ratio will be <<1 for most connections. So delivered is first scaled.
676 */
677 bw = (u64)rs->delivered * BW_UNIT;
678 do_div(bw, rs->interval_us);
679
680 /* If this sample is application-limited, it is likely to have a very
681 * low delivered count that represents application behavior rather than
682 * the available network rate. Such a sample could drag down estimated
683 * bw, causing needless slow-down. Thus, to continue to send at the
684 * last measured network rate, we filter out app-limited samples unless
685 * they describe the path bw at least as well as our bw model.
686 *
687 * So the goal during app-limited phase is to proceed with the best
688 * network rate no matter how long. We automatically leave this
689 * phase when app writes faster than the network can deliver :)
690 */
691 if (!rs->is_app_limited || bw >= bbr_max_bw(sk)) {
692 /* Incorporate new sample into our max bw filter. */
693 minmax_running_max(&bbr->bw, bbr_bw_rtts, bbr->rtt_cnt, bw);
694 }
695 }
696
697 /* Estimate when the pipe is full, using the change in delivery rate: BBR
698 * estimates that STARTUP filled the pipe if the estimated bw hasn't changed by
699 * at least bbr_full_bw_thresh (25%) after bbr_full_bw_cnt (3) non-app-limited
700 * rounds. Why 3 rounds: 1: rwin autotuning grows the rwin, 2: we fill the
701 * higher rwin, 3: we get higher delivery rate samples. Or transient
702 * cross-traffic or radio noise can go away. CUBIC Hystart shares a similar
703 * design goal, but uses delay and inter-ACK spacing instead of bandwidth.
704 */
705 static void bbr_check_full_bw_reached(struct sock *sk,
706 const struct rate_sample *rs)
707 {
708 struct bbr *bbr = inet_csk_ca(sk);
709 u32 bw_thresh;
710
711 if (bbr_full_bw_reached(sk) || !bbr->round_start || rs->is_app_limited)
712 return;
713
714 bw_thresh = (u64)bbr->full_bw * bbr_full_bw_thresh >> BBR_SCALE;
715 if (bbr_max_bw(sk) >= bw_thresh) {
716 bbr->full_bw = bbr_max_bw(sk);
717 bbr->full_bw_cnt = 0;
718 return;
719 }
720 ++bbr->full_bw_cnt;
721 bbr->full_bw_reached = bbr->full_bw_cnt >= bbr_full_bw_cnt;
722 }
723
724 /* If pipe is probably full, drain the queue and then enter steady-state. */
725 static void bbr_check_drain(struct sock *sk, const struct rate_sample *rs)
726 {
727 struct bbr *bbr = inet_csk_ca(sk);
728
729 if (bbr->mode == BBR_STARTUP && bbr_full_bw_reached(sk)) {
730 bbr->mode = BBR_DRAIN; /* drain queue we created */
731 bbr->pacing_gain = bbr_drain_gain; /* pace slow to drain */
732 bbr->cwnd_gain = bbr_high_gain; /* maintain cwnd */
733 } /* fall through to check if in-flight is already small: */
734 if (bbr->mode == BBR_DRAIN &&
735 tcp_packets_in_flight(tcp_sk(sk)) <=
736 bbr_target_cwnd(sk, bbr_max_bw(sk), BBR_UNIT))
737 bbr_reset_probe_bw_mode(sk); /* we estimate queue is drained */
738 }
739
740 /* The goal of PROBE_RTT mode is to have BBR flows cooperatively and
741 * periodically drain the bottleneck queue, to converge to measure the true
742 * min_rtt (unloaded propagation delay). This allows the flows to keep queues
743 * small (reducing queuing delay and packet loss) and achieve fairness among
744 * BBR flows.
745 *
746 * The min_rtt filter window is 10 seconds. When the min_rtt estimate expires,
747 * we enter PROBE_RTT mode and cap the cwnd at bbr_cwnd_min_target=4 packets.
748 * After at least bbr_probe_rtt_mode_ms=200ms and at least one packet-timed
749 * round trip elapsed with that flight size <= 4, we leave PROBE_RTT mode and
750 * re-enter the previous mode. BBR uses 200ms to approximately bound the
751 * performance penalty of PROBE_RTT's cwnd capping to roughly 2% (200ms/10s).
752 *
753 * Note that flows need only pay 2% if they are busy sending over the last 10
754 * seconds. Interactive applications (e.g., Web, RPCs, video chunks) often have
755 * natural silences or low-rate periods within 10 seconds where the rate is low
756 * enough for long enough to drain its queue in the bottleneck. We pick up
757 * these min RTT measurements opportunistically with our min_rtt filter. :-)
758 */
759 static void bbr_update_min_rtt(struct sock *sk, const struct rate_sample *rs)
760 {
761 struct tcp_sock *tp = tcp_sk(sk);
762 struct bbr *bbr = inet_csk_ca(sk);
763 bool filter_expired;
764
765 /* Track min RTT seen in the min_rtt_win_sec filter window: */
766 filter_expired = after(tcp_jiffies32,
767 bbr->min_rtt_stamp + bbr_min_rtt_win_sec * HZ);
768 if (rs->rtt_us >= 0 &&
769 (rs->rtt_us <= bbr->min_rtt_us || filter_expired)) {
770 bbr->min_rtt_us = rs->rtt_us;
771 bbr->min_rtt_stamp = tcp_jiffies32;
772 }
773
774 if (bbr_probe_rtt_mode_ms > 0 && filter_expired &&
775 !bbr->idle_restart && bbr->mode != BBR_PROBE_RTT) {
776 bbr->mode = BBR_PROBE_RTT; /* dip, drain queue */
777 bbr->pacing_gain = BBR_UNIT;
778 bbr->cwnd_gain = BBR_UNIT;
779 bbr_save_cwnd(sk); /* note cwnd so we can restore it */
780 bbr->probe_rtt_done_stamp = 0;
781 }
782
783 if (bbr->mode == BBR_PROBE_RTT) {
784 /* Ignore low rate samples during this mode. */
785 tp->app_limited =
786 (tp->delivered + tcp_packets_in_flight(tp)) ? : 1;
787 /* Maintain min packets in flight for max(200 ms, 1 round). */
788 if (!bbr->probe_rtt_done_stamp &&
789 tcp_packets_in_flight(tp) <= bbr_cwnd_min_target) {
790 bbr->probe_rtt_done_stamp = tcp_jiffies32 +
791 msecs_to_jiffies(bbr_probe_rtt_mode_ms);
792 bbr->probe_rtt_round_done = 0;
793 bbr->next_rtt_delivered = tp->delivered;
794 } else if (bbr->probe_rtt_done_stamp) {
795 if (bbr->round_start)
796 bbr->probe_rtt_round_done = 1;
797 if (bbr->probe_rtt_round_done &&
798 after(tcp_jiffies32, bbr->probe_rtt_done_stamp)) {
799 bbr->min_rtt_stamp = tcp_jiffies32;
800 bbr->restore_cwnd = 1; /* snap to prior_cwnd */
801 bbr_reset_mode(sk);
802 }
803 }
804 }
805 bbr->idle_restart = 0;
806 }
807
808 static void bbr_update_model(struct sock *sk, const struct rate_sample *rs)
809 {
810 bbr_update_bw(sk, rs);
811 bbr_update_cycle_phase(sk, rs);
812 bbr_check_full_bw_reached(sk, rs);
813 bbr_check_drain(sk, rs);
814 bbr_update_min_rtt(sk, rs);
815 }
816
817 static void bbr_main(struct sock *sk, const struct rate_sample *rs)
818 {
819 struct bbr *bbr = inet_csk_ca(sk);
820 u32 bw;
821
822 bbr_update_model(sk, rs);
823
824 bw = bbr_bw(sk);
825 bbr_set_pacing_rate(sk, bw, bbr->pacing_gain);
826 bbr_set_tso_segs_goal(sk);
827 bbr_set_cwnd(sk, rs, rs->acked_sacked, bw, bbr->cwnd_gain);
828 }
829
830 static void bbr_init(struct sock *sk)
831 {
832 struct tcp_sock *tp = tcp_sk(sk);
833 struct bbr *bbr = inet_csk_ca(sk);
834
835 bbr->prior_cwnd = 0;
836 bbr->tso_segs_goal = 0; /* default segs per skb until first ACK */
837 bbr->rtt_cnt = 0;
838 bbr->next_rtt_delivered = 0;
839 bbr->prev_ca_state = TCP_CA_Open;
840 bbr->packet_conservation = 0;
841
842 bbr->probe_rtt_done_stamp = 0;
843 bbr->probe_rtt_round_done = 0;
844 bbr->min_rtt_us = tcp_min_rtt(tp);
845 bbr->min_rtt_stamp = tcp_jiffies32;
846
847 minmax_reset(&bbr->bw, bbr->rtt_cnt, 0); /* init max bw to 0 */
848
849 bbr->has_seen_rtt = 0;
850 bbr_init_pacing_rate_from_rtt(sk);
851
852 bbr->restore_cwnd = 0;
853 bbr->round_start = 0;
854 bbr->idle_restart = 0;
855 bbr->full_bw_reached = 0;
856 bbr->full_bw = 0;
857 bbr->full_bw_cnt = 0;
858 bbr->cycle_mstamp = 0;
859 bbr->cycle_idx = 0;
860 bbr_reset_lt_bw_sampling(sk);
861 bbr_reset_startup_mode(sk);
862
863 cmpxchg(&sk->sk_pacing_status, SK_PACING_NONE, SK_PACING_NEEDED);
864 }
865
866 static u32 bbr_sndbuf_expand(struct sock *sk)
867 {
868 /* Provision 3 * cwnd since BBR may slow-start even during recovery. */
869 return 3;
870 }
871
872 /* In theory BBR does not need to undo the cwnd since it does not
873 * always reduce cwnd on losses (see bbr_main()). Keep it for now.
874 */
875 static u32 bbr_undo_cwnd(struct sock *sk)
876 {
877 return tcp_sk(sk)->snd_cwnd;
878 }
879
880 /* Entering loss recovery, so save cwnd for when we exit or undo recovery. */
881 static u32 bbr_ssthresh(struct sock *sk)
882 {
883 bbr_save_cwnd(sk);
884 return TCP_INFINITE_SSTHRESH; /* BBR does not use ssthresh */
885 }
886
887 static size_t bbr_get_info(struct sock *sk, u32 ext, int *attr,
888 union tcp_cc_info *info)
889 {
890 if (ext & (1 << (INET_DIAG_BBRINFO - 1)) ||
891 ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
892 struct tcp_sock *tp = tcp_sk(sk);
893 struct bbr *bbr = inet_csk_ca(sk);
894 u64 bw = bbr_bw(sk);
895
896 bw = bw * tp->mss_cache * USEC_PER_SEC >> BW_SCALE;
897 memset(&info->bbr, 0, sizeof(info->bbr));
898 info->bbr.bbr_bw_lo = (u32)bw;
899 info->bbr.bbr_bw_hi = (u32)(bw >> 32);
900 info->bbr.bbr_min_rtt = bbr->min_rtt_us;
901 info->bbr.bbr_pacing_gain = bbr->pacing_gain;
902 info->bbr.bbr_cwnd_gain = bbr->cwnd_gain;
903 *attr = INET_DIAG_BBRINFO;
904 return sizeof(info->bbr);
905 }
906 return 0;
907 }
908
909 static void bbr_set_state(struct sock *sk, u8 new_state)
910 {
911 struct bbr *bbr = inet_csk_ca(sk);
912
913 if (new_state == TCP_CA_Loss) {
914 struct rate_sample rs = { .losses = 1 };
915
916 bbr->prev_ca_state = TCP_CA_Loss;
917 bbr->full_bw = 0;
918 bbr->round_start = 1; /* treat RTO like end of a round */
919 bbr_lt_bw_sampling(sk, &rs);
920 }
921 }
922
923 static struct tcp_congestion_ops tcp_bbr_cong_ops __read_mostly = {
924 .flags = TCP_CONG_NON_RESTRICTED,
925 .name = "bbr",
926 .owner = THIS_MODULE,
927 .init = bbr_init,
928 .cong_control = bbr_main,
929 .sndbuf_expand = bbr_sndbuf_expand,
930 .undo_cwnd = bbr_undo_cwnd,
931 .cwnd_event = bbr_cwnd_event,
932 .ssthresh = bbr_ssthresh,
933 .tso_segs_goal = bbr_tso_segs_goal,
934 .get_info = bbr_get_info,
935 .set_state = bbr_set_state,
936 };
937
938 static int __init bbr_register(void)
939 {
940 BUILD_BUG_ON(sizeof(struct bbr) > ICSK_CA_PRIV_SIZE);
941 return tcp_register_congestion_control(&tcp_bbr_cong_ops);
942 }
943
944 static void __exit bbr_unregister(void)
945 {
946 tcp_unregister_congestion_control(&tcp_bbr_cong_ops);
947 }
948
949 module_init(bbr_register);
950 module_exit(bbr_unregister);
951
952 MODULE_AUTHOR("Van Jacobson <vanj@google.com>");
953 MODULE_AUTHOR("Neal Cardwell <ncardwell@google.com>");
954 MODULE_AUTHOR("Yuchung Cheng <ycheng@google.com>");
955 MODULE_AUTHOR("Soheil Hassas Yeganeh <soheil@google.com>");
956 MODULE_LICENSE("Dual BSD/GPL");
957 MODULE_DESCRIPTION("TCP BBR (Bottleneck Bandwidth and RTT)");