]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/ipv4/tcp_bbr.c
selftests: timers: freq-step: fix compile error
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / tcp_bbr.c
1 /* Bottleneck Bandwidth and RTT (BBR) congestion control
2 *
3 * BBR congestion control computes the sending rate based on the delivery
4 * rate (throughput) estimated from ACKs. In a nutshell:
5 *
6 * On each ACK, update our model of the network path:
7 * bottleneck_bandwidth = windowed_max(delivered / elapsed, 10 round trips)
8 * min_rtt = windowed_min(rtt, 10 seconds)
9 * pacing_rate = pacing_gain * bottleneck_bandwidth
10 * cwnd = max(cwnd_gain * bottleneck_bandwidth * min_rtt, 4)
11 *
12 * The core algorithm does not react directly to packet losses or delays,
13 * although BBR may adjust the size of next send per ACK when loss is
14 * observed, or adjust the sending rate if it estimates there is a
15 * traffic policer, in order to keep the drop rate reasonable.
16 *
17 * Here is a state transition diagram for BBR:
18 *
19 * |
20 * V
21 * +---> STARTUP ----+
22 * | | |
23 * | V |
24 * | DRAIN ----+
25 * | | |
26 * | V |
27 * +---> PROBE_BW ----+
28 * | ^ | |
29 * | | | |
30 * | +----+ |
31 * | |
32 * +---- PROBE_RTT <--+
33 *
34 * A BBR flow starts in STARTUP, and ramps up its sending rate quickly.
35 * When it estimates the pipe is full, it enters DRAIN to drain the queue.
36 * In steady state a BBR flow only uses PROBE_BW and PROBE_RTT.
37 * A long-lived BBR flow spends the vast majority of its time remaining
38 * (repeatedly) in PROBE_BW, fully probing and utilizing the pipe's bandwidth
39 * in a fair manner, with a small, bounded queue. *If* a flow has been
40 * continuously sending for the entire min_rtt window, and hasn't seen an RTT
41 * sample that matches or decreases its min_rtt estimate for 10 seconds, then
42 * it briefly enters PROBE_RTT to cut inflight to a minimum value to re-probe
43 * the path's two-way propagation delay (min_rtt). When exiting PROBE_RTT, if
44 * we estimated that we reached the full bw of the pipe then we enter PROBE_BW;
45 * otherwise we enter STARTUP to try to fill the pipe.
46 *
47 * BBR is described in detail in:
48 * "BBR: Congestion-Based Congestion Control",
49 * Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh,
50 * Van Jacobson. ACM Queue, Vol. 14 No. 5, September-October 2016.
51 *
52 * There is a public e-mail list for discussing BBR development and testing:
53 * https://groups.google.com/forum/#!forum/bbr-dev
54 *
55 * NOTE: BBR might be used with the fq qdisc ("man tc-fq") with pacing enabled,
56 * otherwise TCP stack falls back to an internal pacing using one high
57 * resolution timer per TCP socket and may use more resources.
58 */
59 #include <linux/module.h>
60 #include <net/tcp.h>
61 #include <linux/inet_diag.h>
62 #include <linux/inet.h>
63 #include <linux/random.h>
64 #include <linux/win_minmax.h>
65
66 /* Scale factor for rate in pkt/uSec unit to avoid truncation in bandwidth
67 * estimation. The rate unit ~= (1500 bytes / 1 usec / 2^24) ~= 715 bps.
68 * This handles bandwidths from 0.06pps (715bps) to 256Mpps (3Tbps) in a u32.
69 * Since the minimum window is >=4 packets, the lower bound isn't
70 * an issue. The upper bound isn't an issue with existing technologies.
71 */
72 #define BW_SCALE 24
73 #define BW_UNIT (1 << BW_SCALE)
74
75 #define BBR_SCALE 8 /* scaling factor for fractions in BBR (e.g. gains) */
76 #define BBR_UNIT (1 << BBR_SCALE)
77
78 /* BBR has the following modes for deciding how fast to send: */
79 enum bbr_mode {
80 BBR_STARTUP, /* ramp up sending rate rapidly to fill pipe */
81 BBR_DRAIN, /* drain any queue created during startup */
82 BBR_PROBE_BW, /* discover, share bw: pace around estimated bw */
83 BBR_PROBE_RTT, /* cut inflight to min to probe min_rtt */
84 };
85
86 /* BBR congestion control block */
87 struct bbr {
88 u32 min_rtt_us; /* min RTT in min_rtt_win_sec window */
89 u32 min_rtt_stamp; /* timestamp of min_rtt_us */
90 u32 probe_rtt_done_stamp; /* end time for BBR_PROBE_RTT mode */
91 struct minmax bw; /* Max recent delivery rate in pkts/uS << 24 */
92 u32 rtt_cnt; /* count of packet-timed rounds elapsed */
93 u32 next_rtt_delivered; /* scb->tx.delivered at end of round */
94 u64 cycle_mstamp; /* time of this cycle phase start */
95 u32 mode:3, /* current bbr_mode in state machine */
96 prev_ca_state:3, /* CA state on previous ACK */
97 packet_conservation:1, /* use packet conservation? */
98 restore_cwnd:1, /* decided to revert cwnd to old value */
99 round_start:1, /* start of packet-timed tx->ack round? */
100 tso_segs_goal:7, /* segments we want in each skb we send */
101 idle_restart:1, /* restarting after idle? */
102 probe_rtt_round_done:1, /* a BBR_PROBE_RTT round at 4 pkts? */
103 unused:5,
104 lt_is_sampling:1, /* taking long-term ("LT") samples now? */
105 lt_rtt_cnt:7, /* round trips in long-term interval */
106 lt_use_bw:1; /* use lt_bw as our bw estimate? */
107 u32 lt_bw; /* LT est delivery rate in pkts/uS << 24 */
108 u32 lt_last_delivered; /* LT intvl start: tp->delivered */
109 u32 lt_last_stamp; /* LT intvl start: tp->delivered_mstamp */
110 u32 lt_last_lost; /* LT intvl start: tp->lost */
111 u32 pacing_gain:10, /* current gain for setting pacing rate */
112 cwnd_gain:10, /* current gain for setting cwnd */
113 full_bw_cnt:3, /* number of rounds without large bw gains */
114 cycle_idx:3, /* current index in pacing_gain cycle array */
115 unused_b:6;
116 u32 prior_cwnd; /* prior cwnd upon entering loss recovery */
117 u32 full_bw; /* recent bw, to estimate if pipe is full */
118 };
119
120 #define CYCLE_LEN 8 /* number of phases in a pacing gain cycle */
121
122 /* Window length of bw filter (in rounds): */
123 static const int bbr_bw_rtts = CYCLE_LEN + 2;
124 /* Window length of min_rtt filter (in sec): */
125 static const u32 bbr_min_rtt_win_sec = 10;
126 /* Minimum time (in ms) spent at bbr_cwnd_min_target in BBR_PROBE_RTT mode: */
127 static const u32 bbr_probe_rtt_mode_ms = 200;
128 /* Skip TSO below the following bandwidth (bits/sec): */
129 static const int bbr_min_tso_rate = 1200000;
130
131 /* We use a high_gain value of 2/ln(2) because it's the smallest pacing gain
132 * that will allow a smoothly increasing pacing rate that will double each RTT
133 * and send the same number of packets per RTT that an un-paced, slow-starting
134 * Reno or CUBIC flow would:
135 */
136 static const int bbr_high_gain = BBR_UNIT * 2885 / 1000 + 1;
137 /* The pacing gain of 1/high_gain in BBR_DRAIN is calculated to typically drain
138 * the queue created in BBR_STARTUP in a single round:
139 */
140 static const int bbr_drain_gain = BBR_UNIT * 1000 / 2885;
141 /* The gain for deriving steady-state cwnd tolerates delayed/stretched ACKs: */
142 static const int bbr_cwnd_gain = BBR_UNIT * 2;
143 /* The pacing_gain values for the PROBE_BW gain cycle, to discover/share bw: */
144 static const int bbr_pacing_gain[] = {
145 BBR_UNIT * 5 / 4, /* probe for more available bw */
146 BBR_UNIT * 3 / 4, /* drain queue and/or yield bw to other flows */
147 BBR_UNIT, BBR_UNIT, BBR_UNIT, /* cruise at 1.0*bw to utilize pipe, */
148 BBR_UNIT, BBR_UNIT, BBR_UNIT /* without creating excess queue... */
149 };
150 /* Randomize the starting gain cycling phase over N phases: */
151 static const u32 bbr_cycle_rand = 7;
152
153 /* Try to keep at least this many packets in flight, if things go smoothly. For
154 * smooth functioning, a sliding window protocol ACKing every other packet
155 * needs at least 4 packets in flight:
156 */
157 static const u32 bbr_cwnd_min_target = 4;
158
159 /* To estimate if BBR_STARTUP mode (i.e. high_gain) has filled pipe... */
160 /* If bw has increased significantly (1.25x), there may be more bw available: */
161 static const u32 bbr_full_bw_thresh = BBR_UNIT * 5 / 4;
162 /* But after 3 rounds w/o significant bw growth, estimate pipe is full: */
163 static const u32 bbr_full_bw_cnt = 3;
164
165 /* "long-term" ("LT") bandwidth estimator parameters... */
166 /* The minimum number of rounds in an LT bw sampling interval: */
167 static const u32 bbr_lt_intvl_min_rtts = 4;
168 /* If lost/delivered ratio > 20%, interval is "lossy" and we may be policed: */
169 static const u32 bbr_lt_loss_thresh = 50;
170 /* If 2 intervals have a bw ratio <= 1/8, their bw is "consistent": */
171 static const u32 bbr_lt_bw_ratio = BBR_UNIT / 8;
172 /* If 2 intervals have a bw diff <= 4 Kbit/sec their bw is "consistent": */
173 static const u32 bbr_lt_bw_diff = 4000 / 8;
174 /* If we estimate we're policed, use lt_bw for this many round trips: */
175 static const u32 bbr_lt_bw_max_rtts = 48;
176
177 /* Do we estimate that STARTUP filled the pipe? */
178 static bool bbr_full_bw_reached(const struct sock *sk)
179 {
180 const struct bbr *bbr = inet_csk_ca(sk);
181
182 return bbr->full_bw_cnt >= bbr_full_bw_cnt;
183 }
184
185 /* Return the windowed max recent bandwidth sample, in pkts/uS << BW_SCALE. */
186 static u32 bbr_max_bw(const struct sock *sk)
187 {
188 struct bbr *bbr = inet_csk_ca(sk);
189
190 return minmax_get(&bbr->bw);
191 }
192
193 /* Return the estimated bandwidth of the path, in pkts/uS << BW_SCALE. */
194 static u32 bbr_bw(const struct sock *sk)
195 {
196 struct bbr *bbr = inet_csk_ca(sk);
197
198 return bbr->lt_use_bw ? bbr->lt_bw : bbr_max_bw(sk);
199 }
200
201 /* Return rate in bytes per second, optionally with a gain.
202 * The order here is chosen carefully to avoid overflow of u64. This should
203 * work for input rates of up to 2.9Tbit/sec and gain of 2.89x.
204 */
205 static u64 bbr_rate_bytes_per_sec(struct sock *sk, u64 rate, int gain)
206 {
207 rate *= tcp_mss_to_mtu(sk, tcp_sk(sk)->mss_cache);
208 rate *= gain;
209 rate >>= BBR_SCALE;
210 rate *= USEC_PER_SEC;
211 return rate >> BW_SCALE;
212 }
213
214 /* Pace using current bw estimate and a gain factor. In order to help drive the
215 * network toward lower queues while maintaining high utilization and low
216 * latency, the average pacing rate aims to be slightly (~1%) lower than the
217 * estimated bandwidth. This is an important aspect of the design. In this
218 * implementation this slightly lower pacing rate is achieved implicitly by not
219 * including link-layer headers in the packet size used for the pacing rate.
220 */
221 static void bbr_set_pacing_rate(struct sock *sk, u32 bw, int gain)
222 {
223 struct bbr *bbr = inet_csk_ca(sk);
224 u64 rate = bw;
225
226 rate = bbr_rate_bytes_per_sec(sk, rate, gain);
227 rate = min_t(u64, rate, sk->sk_max_pacing_rate);
228 if (bbr->mode != BBR_STARTUP || rate > sk->sk_pacing_rate)
229 sk->sk_pacing_rate = rate;
230 }
231
232 /* Return count of segments we want in the skbs we send, or 0 for default. */
233 static u32 bbr_tso_segs_goal(struct sock *sk)
234 {
235 struct bbr *bbr = inet_csk_ca(sk);
236
237 return bbr->tso_segs_goal;
238 }
239
240 static void bbr_set_tso_segs_goal(struct sock *sk)
241 {
242 struct tcp_sock *tp = tcp_sk(sk);
243 struct bbr *bbr = inet_csk_ca(sk);
244 u32 min_segs;
245
246 min_segs = sk->sk_pacing_rate < (bbr_min_tso_rate >> 3) ? 1 : 2;
247 bbr->tso_segs_goal = min(tcp_tso_autosize(sk, tp->mss_cache, min_segs),
248 0x7FU);
249 }
250
251 /* Save "last known good" cwnd so we can restore it after losses or PROBE_RTT */
252 static void bbr_save_cwnd(struct sock *sk)
253 {
254 struct tcp_sock *tp = tcp_sk(sk);
255 struct bbr *bbr = inet_csk_ca(sk);
256
257 if (bbr->prev_ca_state < TCP_CA_Recovery && bbr->mode != BBR_PROBE_RTT)
258 bbr->prior_cwnd = tp->snd_cwnd; /* this cwnd is good enough */
259 else /* loss recovery or BBR_PROBE_RTT have temporarily cut cwnd */
260 bbr->prior_cwnd = max(bbr->prior_cwnd, tp->snd_cwnd);
261 }
262
263 static void bbr_cwnd_event(struct sock *sk, enum tcp_ca_event event)
264 {
265 struct tcp_sock *tp = tcp_sk(sk);
266 struct bbr *bbr = inet_csk_ca(sk);
267
268 if (event == CA_EVENT_TX_START && tp->app_limited) {
269 bbr->idle_restart = 1;
270 /* Avoid pointless buffer overflows: pace at est. bw if we don't
271 * need more speed (we're restarting from idle and app-limited).
272 */
273 if (bbr->mode == BBR_PROBE_BW)
274 bbr_set_pacing_rate(sk, bbr_bw(sk), BBR_UNIT);
275 }
276 }
277
278 /* Find target cwnd. Right-size the cwnd based on min RTT and the
279 * estimated bottleneck bandwidth:
280 *
281 * cwnd = bw * min_rtt * gain = BDP * gain
282 *
283 * The key factor, gain, controls the amount of queue. While a small gain
284 * builds a smaller queue, it becomes more vulnerable to noise in RTT
285 * measurements (e.g., delayed ACKs or other ACK compression effects). This
286 * noise may cause BBR to under-estimate the rate.
287 *
288 * To achieve full performance in high-speed paths, we budget enough cwnd to
289 * fit full-sized skbs in-flight on both end hosts to fully utilize the path:
290 * - one skb in sending host Qdisc,
291 * - one skb in sending host TSO/GSO engine
292 * - one skb being received by receiver host LRO/GRO/delayed-ACK engine
293 * Don't worry, at low rates (bbr_min_tso_rate) this won't bloat cwnd because
294 * in such cases tso_segs_goal is 1. The minimum cwnd is 4 packets,
295 * which allows 2 outstanding 2-packet sequences, to try to keep pipe
296 * full even with ACK-every-other-packet delayed ACKs.
297 */
298 static u32 bbr_target_cwnd(struct sock *sk, u32 bw, int gain)
299 {
300 struct bbr *bbr = inet_csk_ca(sk);
301 u32 cwnd;
302 u64 w;
303
304 /* If we've never had a valid RTT sample, cap cwnd at the initial
305 * default. This should only happen when the connection is not using TCP
306 * timestamps and has retransmitted all of the SYN/SYNACK/data packets
307 * ACKed so far. In this case, an RTO can cut cwnd to 1, in which
308 * case we need to slow-start up toward something safe: TCP_INIT_CWND.
309 */
310 if (unlikely(bbr->min_rtt_us == ~0U)) /* no valid RTT samples yet? */
311 return TCP_INIT_CWND; /* be safe: cap at default initial cwnd*/
312
313 w = (u64)bw * bbr->min_rtt_us;
314
315 /* Apply a gain to the given value, then remove the BW_SCALE shift. */
316 cwnd = (((w * gain) >> BBR_SCALE) + BW_UNIT - 1) / BW_UNIT;
317
318 /* Allow enough full-sized skbs in flight to utilize end systems. */
319 cwnd += 3 * bbr->tso_segs_goal;
320
321 /* Reduce delayed ACKs by rounding up cwnd to the next even number. */
322 cwnd = (cwnd + 1) & ~1U;
323
324 return cwnd;
325 }
326
327 /* An optimization in BBR to reduce losses: On the first round of recovery, we
328 * follow the packet conservation principle: send P packets per P packets acked.
329 * After that, we slow-start and send at most 2*P packets per P packets acked.
330 * After recovery finishes, or upon undo, we restore the cwnd we had when
331 * recovery started (capped by the target cwnd based on estimated BDP).
332 *
333 * TODO(ycheng/ncardwell): implement a rate-based approach.
334 */
335 static bool bbr_set_cwnd_to_recover_or_restore(
336 struct sock *sk, const struct rate_sample *rs, u32 acked, u32 *new_cwnd)
337 {
338 struct tcp_sock *tp = tcp_sk(sk);
339 struct bbr *bbr = inet_csk_ca(sk);
340 u8 prev_state = bbr->prev_ca_state, state = inet_csk(sk)->icsk_ca_state;
341 u32 cwnd = tp->snd_cwnd;
342
343 /* An ACK for P pkts should release at most 2*P packets. We do this
344 * in two steps. First, here we deduct the number of lost packets.
345 * Then, in bbr_set_cwnd() we slow start up toward the target cwnd.
346 */
347 if (rs->losses > 0)
348 cwnd = max_t(s32, cwnd - rs->losses, 1);
349
350 if (state == TCP_CA_Recovery && prev_state != TCP_CA_Recovery) {
351 /* Starting 1st round of Recovery, so do packet conservation. */
352 bbr->packet_conservation = 1;
353 bbr->next_rtt_delivered = tp->delivered; /* start round now */
354 /* Cut unused cwnd from app behavior, TSQ, or TSO deferral: */
355 cwnd = tcp_packets_in_flight(tp) + acked;
356 } else if (prev_state >= TCP_CA_Recovery && state < TCP_CA_Recovery) {
357 /* Exiting loss recovery; restore cwnd saved before recovery. */
358 bbr->restore_cwnd = 1;
359 bbr->packet_conservation = 0;
360 }
361 bbr->prev_ca_state = state;
362
363 if (bbr->restore_cwnd) {
364 /* Restore cwnd after exiting loss recovery or PROBE_RTT. */
365 cwnd = max(cwnd, bbr->prior_cwnd);
366 bbr->restore_cwnd = 0;
367 }
368
369 if (bbr->packet_conservation) {
370 *new_cwnd = max(cwnd, tcp_packets_in_flight(tp) + acked);
371 return true; /* yes, using packet conservation */
372 }
373 *new_cwnd = cwnd;
374 return false;
375 }
376
377 /* Slow-start up toward target cwnd (if bw estimate is growing, or packet loss
378 * has drawn us down below target), or snap down to target if we're above it.
379 */
380 static void bbr_set_cwnd(struct sock *sk, const struct rate_sample *rs,
381 u32 acked, u32 bw, int gain)
382 {
383 struct tcp_sock *tp = tcp_sk(sk);
384 struct bbr *bbr = inet_csk_ca(sk);
385 u32 cwnd = 0, target_cwnd = 0;
386
387 if (!acked)
388 return;
389
390 if (bbr_set_cwnd_to_recover_or_restore(sk, rs, acked, &cwnd))
391 goto done;
392
393 /* If we're below target cwnd, slow start cwnd toward target cwnd. */
394 target_cwnd = bbr_target_cwnd(sk, bw, gain);
395 if (bbr_full_bw_reached(sk)) /* only cut cwnd if we filled the pipe */
396 cwnd = min(cwnd + acked, target_cwnd);
397 else if (cwnd < target_cwnd || tp->delivered < TCP_INIT_CWND)
398 cwnd = cwnd + acked;
399 cwnd = max(cwnd, bbr_cwnd_min_target);
400
401 done:
402 tp->snd_cwnd = min(cwnd, tp->snd_cwnd_clamp); /* apply global cap */
403 if (bbr->mode == BBR_PROBE_RTT) /* drain queue, refresh min_rtt */
404 tp->snd_cwnd = min(tp->snd_cwnd, bbr_cwnd_min_target);
405 }
406
407 /* End cycle phase if it's time and/or we hit the phase's in-flight target. */
408 static bool bbr_is_next_cycle_phase(struct sock *sk,
409 const struct rate_sample *rs)
410 {
411 struct tcp_sock *tp = tcp_sk(sk);
412 struct bbr *bbr = inet_csk_ca(sk);
413 bool is_full_length =
414 tcp_stamp_us_delta(tp->delivered_mstamp, bbr->cycle_mstamp) >
415 bbr->min_rtt_us;
416 u32 inflight, bw;
417
418 /* The pacing_gain of 1.0 paces at the estimated bw to try to fully
419 * use the pipe without increasing the queue.
420 */
421 if (bbr->pacing_gain == BBR_UNIT)
422 return is_full_length; /* just use wall clock time */
423
424 inflight = rs->prior_in_flight; /* what was in-flight before ACK? */
425 bw = bbr_max_bw(sk);
426
427 /* A pacing_gain > 1.0 probes for bw by trying to raise inflight to at
428 * least pacing_gain*BDP; this may take more than min_rtt if min_rtt is
429 * small (e.g. on a LAN). We do not persist if packets are lost, since
430 * a path with small buffers may not hold that much.
431 */
432 if (bbr->pacing_gain > BBR_UNIT)
433 return is_full_length &&
434 (rs->losses || /* perhaps pacing_gain*BDP won't fit */
435 inflight >= bbr_target_cwnd(sk, bw, bbr->pacing_gain));
436
437 /* A pacing_gain < 1.0 tries to drain extra queue we added if bw
438 * probing didn't find more bw. If inflight falls to match BDP then we
439 * estimate queue is drained; persisting would underutilize the pipe.
440 */
441 return is_full_length ||
442 inflight <= bbr_target_cwnd(sk, bw, BBR_UNIT);
443 }
444
445 static void bbr_advance_cycle_phase(struct sock *sk)
446 {
447 struct tcp_sock *tp = tcp_sk(sk);
448 struct bbr *bbr = inet_csk_ca(sk);
449
450 bbr->cycle_idx = (bbr->cycle_idx + 1) & (CYCLE_LEN - 1);
451 bbr->cycle_mstamp = tp->delivered_mstamp;
452 bbr->pacing_gain = bbr_pacing_gain[bbr->cycle_idx];
453 }
454
455 /* Gain cycling: cycle pacing gain to converge to fair share of available bw. */
456 static void bbr_update_cycle_phase(struct sock *sk,
457 const struct rate_sample *rs)
458 {
459 struct bbr *bbr = inet_csk_ca(sk);
460
461 if ((bbr->mode == BBR_PROBE_BW) && !bbr->lt_use_bw &&
462 bbr_is_next_cycle_phase(sk, rs))
463 bbr_advance_cycle_phase(sk);
464 }
465
466 static void bbr_reset_startup_mode(struct sock *sk)
467 {
468 struct bbr *bbr = inet_csk_ca(sk);
469
470 bbr->mode = BBR_STARTUP;
471 bbr->pacing_gain = bbr_high_gain;
472 bbr->cwnd_gain = bbr_high_gain;
473 }
474
475 static void bbr_reset_probe_bw_mode(struct sock *sk)
476 {
477 struct bbr *bbr = inet_csk_ca(sk);
478
479 bbr->mode = BBR_PROBE_BW;
480 bbr->pacing_gain = BBR_UNIT;
481 bbr->cwnd_gain = bbr_cwnd_gain;
482 bbr->cycle_idx = CYCLE_LEN - 1 - prandom_u32_max(bbr_cycle_rand);
483 bbr_advance_cycle_phase(sk); /* flip to next phase of gain cycle */
484 }
485
486 static void bbr_reset_mode(struct sock *sk)
487 {
488 if (!bbr_full_bw_reached(sk))
489 bbr_reset_startup_mode(sk);
490 else
491 bbr_reset_probe_bw_mode(sk);
492 }
493
494 /* Start a new long-term sampling interval. */
495 static void bbr_reset_lt_bw_sampling_interval(struct sock *sk)
496 {
497 struct tcp_sock *tp = tcp_sk(sk);
498 struct bbr *bbr = inet_csk_ca(sk);
499
500 bbr->lt_last_stamp = div_u64(tp->delivered_mstamp, USEC_PER_MSEC);
501 bbr->lt_last_delivered = tp->delivered;
502 bbr->lt_last_lost = tp->lost;
503 bbr->lt_rtt_cnt = 0;
504 }
505
506 /* Completely reset long-term bandwidth sampling. */
507 static void bbr_reset_lt_bw_sampling(struct sock *sk)
508 {
509 struct bbr *bbr = inet_csk_ca(sk);
510
511 bbr->lt_bw = 0;
512 bbr->lt_use_bw = 0;
513 bbr->lt_is_sampling = false;
514 bbr_reset_lt_bw_sampling_interval(sk);
515 }
516
517 /* Long-term bw sampling interval is done. Estimate whether we're policed. */
518 static void bbr_lt_bw_interval_done(struct sock *sk, u32 bw)
519 {
520 struct bbr *bbr = inet_csk_ca(sk);
521 u32 diff;
522
523 if (bbr->lt_bw) { /* do we have bw from a previous interval? */
524 /* Is new bw close to the lt_bw from the previous interval? */
525 diff = abs(bw - bbr->lt_bw);
526 if ((diff * BBR_UNIT <= bbr_lt_bw_ratio * bbr->lt_bw) ||
527 (bbr_rate_bytes_per_sec(sk, diff, BBR_UNIT) <=
528 bbr_lt_bw_diff)) {
529 /* All criteria are met; estimate we're policed. */
530 bbr->lt_bw = (bw + bbr->lt_bw) >> 1; /* avg 2 intvls */
531 bbr->lt_use_bw = 1;
532 bbr->pacing_gain = BBR_UNIT; /* try to avoid drops */
533 bbr->lt_rtt_cnt = 0;
534 return;
535 }
536 }
537 bbr->lt_bw = bw;
538 bbr_reset_lt_bw_sampling_interval(sk);
539 }
540
541 /* Token-bucket traffic policers are common (see "An Internet-Wide Analysis of
542 * Traffic Policing", SIGCOMM 2016). BBR detects token-bucket policers and
543 * explicitly models their policed rate, to reduce unnecessary losses. We
544 * estimate that we're policed if we see 2 consecutive sampling intervals with
545 * consistent throughput and high packet loss. If we think we're being policed,
546 * set lt_bw to the "long-term" average delivery rate from those 2 intervals.
547 */
548 static void bbr_lt_bw_sampling(struct sock *sk, const struct rate_sample *rs)
549 {
550 struct tcp_sock *tp = tcp_sk(sk);
551 struct bbr *bbr = inet_csk_ca(sk);
552 u32 lost, delivered;
553 u64 bw;
554 u32 t;
555
556 if (bbr->lt_use_bw) { /* already using long-term rate, lt_bw? */
557 if (bbr->mode == BBR_PROBE_BW && bbr->round_start &&
558 ++bbr->lt_rtt_cnt >= bbr_lt_bw_max_rtts) {
559 bbr_reset_lt_bw_sampling(sk); /* stop using lt_bw */
560 bbr_reset_probe_bw_mode(sk); /* restart gain cycling */
561 }
562 return;
563 }
564
565 /* Wait for the first loss before sampling, to let the policer exhaust
566 * its tokens and estimate the steady-state rate allowed by the policer.
567 * Starting samples earlier includes bursts that over-estimate the bw.
568 */
569 if (!bbr->lt_is_sampling) {
570 if (!rs->losses)
571 return;
572 bbr_reset_lt_bw_sampling_interval(sk);
573 bbr->lt_is_sampling = true;
574 }
575
576 /* To avoid underestimates, reset sampling if we run out of data. */
577 if (rs->is_app_limited) {
578 bbr_reset_lt_bw_sampling(sk);
579 return;
580 }
581
582 if (bbr->round_start)
583 bbr->lt_rtt_cnt++; /* count round trips in this interval */
584 if (bbr->lt_rtt_cnt < bbr_lt_intvl_min_rtts)
585 return; /* sampling interval needs to be longer */
586 if (bbr->lt_rtt_cnt > 4 * bbr_lt_intvl_min_rtts) {
587 bbr_reset_lt_bw_sampling(sk); /* interval is too long */
588 return;
589 }
590
591 /* End sampling interval when a packet is lost, so we estimate the
592 * policer tokens were exhausted. Stopping the sampling before the
593 * tokens are exhausted under-estimates the policed rate.
594 */
595 if (!rs->losses)
596 return;
597
598 /* Calculate packets lost and delivered in sampling interval. */
599 lost = tp->lost - bbr->lt_last_lost;
600 delivered = tp->delivered - bbr->lt_last_delivered;
601 /* Is loss rate (lost/delivered) >= lt_loss_thresh? If not, wait. */
602 if (!delivered || (lost << BBR_SCALE) < bbr_lt_loss_thresh * delivered)
603 return;
604
605 /* Find average delivery rate in this sampling interval. */
606 t = div_u64(tp->delivered_mstamp, USEC_PER_MSEC) - bbr->lt_last_stamp;
607 if ((s32)t < 1)
608 return; /* interval is less than one ms, so wait */
609 /* Check if can multiply without overflow */
610 if (t >= ~0U / USEC_PER_MSEC) {
611 bbr_reset_lt_bw_sampling(sk); /* interval too long; reset */
612 return;
613 }
614 t *= USEC_PER_MSEC;
615 bw = (u64)delivered * BW_UNIT;
616 do_div(bw, t);
617 bbr_lt_bw_interval_done(sk, bw);
618 }
619
620 /* Estimate the bandwidth based on how fast packets are delivered */
621 static void bbr_update_bw(struct sock *sk, const struct rate_sample *rs)
622 {
623 struct tcp_sock *tp = tcp_sk(sk);
624 struct bbr *bbr = inet_csk_ca(sk);
625 u64 bw;
626
627 bbr->round_start = 0;
628 if (rs->delivered < 0 || rs->interval_us <= 0)
629 return; /* Not a valid observation */
630
631 /* See if we've reached the next RTT */
632 if (!before(rs->prior_delivered, bbr->next_rtt_delivered)) {
633 bbr->next_rtt_delivered = tp->delivered;
634 bbr->rtt_cnt++;
635 bbr->round_start = 1;
636 bbr->packet_conservation = 0;
637 }
638
639 bbr_lt_bw_sampling(sk, rs);
640
641 /* Divide delivered by the interval to find a (lower bound) bottleneck
642 * bandwidth sample. Delivered is in packets and interval_us in uS and
643 * ratio will be <<1 for most connections. So delivered is first scaled.
644 */
645 bw = (u64)rs->delivered * BW_UNIT;
646 do_div(bw, rs->interval_us);
647
648 /* If this sample is application-limited, it is likely to have a very
649 * low delivered count that represents application behavior rather than
650 * the available network rate. Such a sample could drag down estimated
651 * bw, causing needless slow-down. Thus, to continue to send at the
652 * last measured network rate, we filter out app-limited samples unless
653 * they describe the path bw at least as well as our bw model.
654 *
655 * So the goal during app-limited phase is to proceed with the best
656 * network rate no matter how long. We automatically leave this
657 * phase when app writes faster than the network can deliver :)
658 */
659 if (!rs->is_app_limited || bw >= bbr_max_bw(sk)) {
660 /* Incorporate new sample into our max bw filter. */
661 minmax_running_max(&bbr->bw, bbr_bw_rtts, bbr->rtt_cnt, bw);
662 }
663 }
664
665 /* Estimate when the pipe is full, using the change in delivery rate: BBR
666 * estimates that STARTUP filled the pipe if the estimated bw hasn't changed by
667 * at least bbr_full_bw_thresh (25%) after bbr_full_bw_cnt (3) non-app-limited
668 * rounds. Why 3 rounds: 1: rwin autotuning grows the rwin, 2: we fill the
669 * higher rwin, 3: we get higher delivery rate samples. Or transient
670 * cross-traffic or radio noise can go away. CUBIC Hystart shares a similar
671 * design goal, but uses delay and inter-ACK spacing instead of bandwidth.
672 */
673 static void bbr_check_full_bw_reached(struct sock *sk,
674 const struct rate_sample *rs)
675 {
676 struct bbr *bbr = inet_csk_ca(sk);
677 u32 bw_thresh;
678
679 if (bbr_full_bw_reached(sk) || !bbr->round_start || rs->is_app_limited)
680 return;
681
682 bw_thresh = (u64)bbr->full_bw * bbr_full_bw_thresh >> BBR_SCALE;
683 if (bbr_max_bw(sk) >= bw_thresh) {
684 bbr->full_bw = bbr_max_bw(sk);
685 bbr->full_bw_cnt = 0;
686 return;
687 }
688 ++bbr->full_bw_cnt;
689 }
690
691 /* If pipe is probably full, drain the queue and then enter steady-state. */
692 static void bbr_check_drain(struct sock *sk, const struct rate_sample *rs)
693 {
694 struct bbr *bbr = inet_csk_ca(sk);
695
696 if (bbr->mode == BBR_STARTUP && bbr_full_bw_reached(sk)) {
697 bbr->mode = BBR_DRAIN; /* drain queue we created */
698 bbr->pacing_gain = bbr_drain_gain; /* pace slow to drain */
699 bbr->cwnd_gain = bbr_high_gain; /* maintain cwnd */
700 } /* fall through to check if in-flight is already small: */
701 if (bbr->mode == BBR_DRAIN &&
702 tcp_packets_in_flight(tcp_sk(sk)) <=
703 bbr_target_cwnd(sk, bbr_max_bw(sk), BBR_UNIT))
704 bbr_reset_probe_bw_mode(sk); /* we estimate queue is drained */
705 }
706
707 /* The goal of PROBE_RTT mode is to have BBR flows cooperatively and
708 * periodically drain the bottleneck queue, to converge to measure the true
709 * min_rtt (unloaded propagation delay). This allows the flows to keep queues
710 * small (reducing queuing delay and packet loss) and achieve fairness among
711 * BBR flows.
712 *
713 * The min_rtt filter window is 10 seconds. When the min_rtt estimate expires,
714 * we enter PROBE_RTT mode and cap the cwnd at bbr_cwnd_min_target=4 packets.
715 * After at least bbr_probe_rtt_mode_ms=200ms and at least one packet-timed
716 * round trip elapsed with that flight size <= 4, we leave PROBE_RTT mode and
717 * re-enter the previous mode. BBR uses 200ms to approximately bound the
718 * performance penalty of PROBE_RTT's cwnd capping to roughly 2% (200ms/10s).
719 *
720 * Note that flows need only pay 2% if they are busy sending over the last 10
721 * seconds. Interactive applications (e.g., Web, RPCs, video chunks) often have
722 * natural silences or low-rate periods within 10 seconds where the rate is low
723 * enough for long enough to drain its queue in the bottleneck. We pick up
724 * these min RTT measurements opportunistically with our min_rtt filter. :-)
725 */
726 static void bbr_update_min_rtt(struct sock *sk, const struct rate_sample *rs)
727 {
728 struct tcp_sock *tp = tcp_sk(sk);
729 struct bbr *bbr = inet_csk_ca(sk);
730 bool filter_expired;
731
732 /* Track min RTT seen in the min_rtt_win_sec filter window: */
733 filter_expired = after(tcp_jiffies32,
734 bbr->min_rtt_stamp + bbr_min_rtt_win_sec * HZ);
735 if (rs->rtt_us >= 0 &&
736 (rs->rtt_us <= bbr->min_rtt_us || filter_expired)) {
737 bbr->min_rtt_us = rs->rtt_us;
738 bbr->min_rtt_stamp = tcp_jiffies32;
739 }
740
741 if (bbr_probe_rtt_mode_ms > 0 && filter_expired &&
742 !bbr->idle_restart && bbr->mode != BBR_PROBE_RTT) {
743 bbr->mode = BBR_PROBE_RTT; /* dip, drain queue */
744 bbr->pacing_gain = BBR_UNIT;
745 bbr->cwnd_gain = BBR_UNIT;
746 bbr_save_cwnd(sk); /* note cwnd so we can restore it */
747 bbr->probe_rtt_done_stamp = 0;
748 }
749
750 if (bbr->mode == BBR_PROBE_RTT) {
751 /* Ignore low rate samples during this mode. */
752 tp->app_limited =
753 (tp->delivered + tcp_packets_in_flight(tp)) ? : 1;
754 /* Maintain min packets in flight for max(200 ms, 1 round). */
755 if (!bbr->probe_rtt_done_stamp &&
756 tcp_packets_in_flight(tp) <= bbr_cwnd_min_target) {
757 bbr->probe_rtt_done_stamp = tcp_jiffies32 +
758 msecs_to_jiffies(bbr_probe_rtt_mode_ms);
759 bbr->probe_rtt_round_done = 0;
760 bbr->next_rtt_delivered = tp->delivered;
761 } else if (bbr->probe_rtt_done_stamp) {
762 if (bbr->round_start)
763 bbr->probe_rtt_round_done = 1;
764 if (bbr->probe_rtt_round_done &&
765 after(tcp_jiffies32, bbr->probe_rtt_done_stamp)) {
766 bbr->min_rtt_stamp = tcp_jiffies32;
767 bbr->restore_cwnd = 1; /* snap to prior_cwnd */
768 bbr_reset_mode(sk);
769 }
770 }
771 }
772 bbr->idle_restart = 0;
773 }
774
775 static void bbr_update_model(struct sock *sk, const struct rate_sample *rs)
776 {
777 bbr_update_bw(sk, rs);
778 bbr_update_cycle_phase(sk, rs);
779 bbr_check_full_bw_reached(sk, rs);
780 bbr_check_drain(sk, rs);
781 bbr_update_min_rtt(sk, rs);
782 }
783
784 static void bbr_main(struct sock *sk, const struct rate_sample *rs)
785 {
786 struct bbr *bbr = inet_csk_ca(sk);
787 u32 bw;
788
789 bbr_update_model(sk, rs);
790
791 bw = bbr_bw(sk);
792 bbr_set_pacing_rate(sk, bw, bbr->pacing_gain);
793 bbr_set_tso_segs_goal(sk);
794 bbr_set_cwnd(sk, rs, rs->acked_sacked, bw, bbr->cwnd_gain);
795 }
796
797 static void bbr_init(struct sock *sk)
798 {
799 struct tcp_sock *tp = tcp_sk(sk);
800 struct bbr *bbr = inet_csk_ca(sk);
801 u64 bw;
802
803 bbr->prior_cwnd = 0;
804 bbr->tso_segs_goal = 0; /* default segs per skb until first ACK */
805 bbr->rtt_cnt = 0;
806 bbr->next_rtt_delivered = 0;
807 bbr->prev_ca_state = TCP_CA_Open;
808 bbr->packet_conservation = 0;
809
810 bbr->probe_rtt_done_stamp = 0;
811 bbr->probe_rtt_round_done = 0;
812 bbr->min_rtt_us = tcp_min_rtt(tp);
813 bbr->min_rtt_stamp = tcp_jiffies32;
814
815 minmax_reset(&bbr->bw, bbr->rtt_cnt, 0); /* init max bw to 0 */
816
817 /* Initialize pacing rate to: high_gain * init_cwnd / RTT. */
818 bw = (u64)tp->snd_cwnd * BW_UNIT;
819 do_div(bw, (tp->srtt_us >> 3) ? : USEC_PER_MSEC);
820 sk->sk_pacing_rate = 0; /* force an update of sk_pacing_rate */
821 bbr_set_pacing_rate(sk, bw, bbr_high_gain);
822
823 bbr->restore_cwnd = 0;
824 bbr->round_start = 0;
825 bbr->idle_restart = 0;
826 bbr->full_bw = 0;
827 bbr->full_bw_cnt = 0;
828 bbr->cycle_mstamp = 0;
829 bbr->cycle_idx = 0;
830 bbr_reset_lt_bw_sampling(sk);
831 bbr_reset_startup_mode(sk);
832
833 cmpxchg(&sk->sk_pacing_status, SK_PACING_NONE, SK_PACING_NEEDED);
834 }
835
836 static u32 bbr_sndbuf_expand(struct sock *sk)
837 {
838 /* Provision 3 * cwnd since BBR may slow-start even during recovery. */
839 return 3;
840 }
841
842 /* In theory BBR does not need to undo the cwnd since it does not
843 * always reduce cwnd on losses (see bbr_main()). Keep it for now.
844 */
845 static u32 bbr_undo_cwnd(struct sock *sk)
846 {
847 return tcp_sk(sk)->snd_cwnd;
848 }
849
850 /* Entering loss recovery, so save cwnd for when we exit or undo recovery. */
851 static u32 bbr_ssthresh(struct sock *sk)
852 {
853 bbr_save_cwnd(sk);
854 return TCP_INFINITE_SSTHRESH; /* BBR does not use ssthresh */
855 }
856
857 static size_t bbr_get_info(struct sock *sk, u32 ext, int *attr,
858 union tcp_cc_info *info)
859 {
860 if (ext & (1 << (INET_DIAG_BBRINFO - 1)) ||
861 ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
862 struct tcp_sock *tp = tcp_sk(sk);
863 struct bbr *bbr = inet_csk_ca(sk);
864 u64 bw = bbr_bw(sk);
865
866 bw = bw * tp->mss_cache * USEC_PER_SEC >> BW_SCALE;
867 memset(&info->bbr, 0, sizeof(info->bbr));
868 info->bbr.bbr_bw_lo = (u32)bw;
869 info->bbr.bbr_bw_hi = (u32)(bw >> 32);
870 info->bbr.bbr_min_rtt = bbr->min_rtt_us;
871 info->bbr.bbr_pacing_gain = bbr->pacing_gain;
872 info->bbr.bbr_cwnd_gain = bbr->cwnd_gain;
873 *attr = INET_DIAG_BBRINFO;
874 return sizeof(info->bbr);
875 }
876 return 0;
877 }
878
879 static void bbr_set_state(struct sock *sk, u8 new_state)
880 {
881 struct bbr *bbr = inet_csk_ca(sk);
882
883 if (new_state == TCP_CA_Loss) {
884 struct rate_sample rs = { .losses = 1 };
885
886 bbr->prev_ca_state = TCP_CA_Loss;
887 bbr->full_bw = 0;
888 bbr->round_start = 1; /* treat RTO like end of a round */
889 bbr_lt_bw_sampling(sk, &rs);
890 }
891 }
892
893 static struct tcp_congestion_ops tcp_bbr_cong_ops __read_mostly = {
894 .flags = TCP_CONG_NON_RESTRICTED,
895 .name = "bbr",
896 .owner = THIS_MODULE,
897 .init = bbr_init,
898 .cong_control = bbr_main,
899 .sndbuf_expand = bbr_sndbuf_expand,
900 .undo_cwnd = bbr_undo_cwnd,
901 .cwnd_event = bbr_cwnd_event,
902 .ssthresh = bbr_ssthresh,
903 .tso_segs_goal = bbr_tso_segs_goal,
904 .get_info = bbr_get_info,
905 .set_state = bbr_set_state,
906 };
907
908 static int __init bbr_register(void)
909 {
910 BUILD_BUG_ON(sizeof(struct bbr) > ICSK_CA_PRIV_SIZE);
911 return tcp_register_congestion_control(&tcp_bbr_cong_ops);
912 }
913
914 static void __exit bbr_unregister(void)
915 {
916 tcp_unregister_congestion_control(&tcp_bbr_cong_ops);
917 }
918
919 module_init(bbr_register);
920 module_exit(bbr_unregister);
921
922 MODULE_AUTHOR("Van Jacobson <vanj@google.com>");
923 MODULE_AUTHOR("Neal Cardwell <ncardwell@google.com>");
924 MODULE_AUTHOR("Yuchung Cheng <ycheng@google.com>");
925 MODULE_AUTHOR("Soheil Hassas Yeganeh <soheil@google.com>");
926 MODULE_LICENSE("Dual BSD/GPL");
927 MODULE_DESCRIPTION("TCP BBR (Bottleneck Bandwidth and RTT)");