]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/ipv4/tcp_input.c
tcp: gso: do not generate out of order packets
[mirror_ubuntu-jammy-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 100;
91
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96
97 int sysctl_tcp_thin_dupack __read_mostly;
98
99 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
100 int sysctl_tcp_early_retrans __read_mostly = 3;
101
102 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
103 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
104 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
105 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
106 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
107 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
108 #define FLAG_ECE 0x40 /* ECE in this ACK */
109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
114 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
115
116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
120
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
123
124 /* Adapt the MSS value used to make delayed ack decision to the
125 * real world.
126 */
127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
128 {
129 struct inet_connection_sock *icsk = inet_csk(sk);
130 const unsigned int lss = icsk->icsk_ack.last_seg_size;
131 unsigned int len;
132
133 icsk->icsk_ack.last_seg_size = 0;
134
135 /* skb->len may jitter because of SACKs, even if peer
136 * sends good full-sized frames.
137 */
138 len = skb_shinfo(skb)->gso_size ? : skb->len;
139 if (len >= icsk->icsk_ack.rcv_mss) {
140 icsk->icsk_ack.rcv_mss = len;
141 } else {
142 /* Otherwise, we make more careful check taking into account,
143 * that SACKs block is variable.
144 *
145 * "len" is invariant segment length, including TCP header.
146 */
147 len += skb->data - skb_transport_header(skb);
148 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
149 /* If PSH is not set, packet should be
150 * full sized, provided peer TCP is not badly broken.
151 * This observation (if it is correct 8)) allows
152 * to handle super-low mtu links fairly.
153 */
154 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
155 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
156 /* Subtract also invariant (if peer is RFC compliant),
157 * tcp header plus fixed timestamp option length.
158 * Resulting "len" is MSS free of SACK jitter.
159 */
160 len -= tcp_sk(sk)->tcp_header_len;
161 icsk->icsk_ack.last_seg_size = len;
162 if (len == lss) {
163 icsk->icsk_ack.rcv_mss = len;
164 return;
165 }
166 }
167 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
170 }
171 }
172
173 static void tcp_incr_quickack(struct sock *sk)
174 {
175 struct inet_connection_sock *icsk = inet_csk(sk);
176 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
177
178 if (quickacks == 0)
179 quickacks = 2;
180 if (quickacks > icsk->icsk_ack.quick)
181 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
182 }
183
184 static void tcp_enter_quickack_mode(struct sock *sk)
185 {
186 struct inet_connection_sock *icsk = inet_csk(sk);
187 tcp_incr_quickack(sk);
188 icsk->icsk_ack.pingpong = 0;
189 icsk->icsk_ack.ato = TCP_ATO_MIN;
190 }
191
192 /* Send ACKs quickly, if "quick" count is not exhausted
193 * and the session is not interactive.
194 */
195
196 static inline bool tcp_in_quickack_mode(const struct sock *sk)
197 {
198 const struct inet_connection_sock *icsk = inet_csk(sk);
199
200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 }
202
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 {
205 if (tp->ecn_flags & TCP_ECN_OK)
206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207 }
208
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
210 {
211 if (tcp_hdr(skb)->cwr)
212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 {
217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
221 {
222 if (!(tp->ecn_flags & TCP_ECN_OK))
223 return;
224
225 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226 case INET_ECN_NOT_ECT:
227 /* Funny extension: if ECT is not set on a segment,
228 * and we already seen ECT on a previous segment,
229 * it is probably a retransmit.
230 */
231 if (tp->ecn_flags & TCP_ECN_SEEN)
232 tcp_enter_quickack_mode((struct sock *)tp);
233 break;
234 case INET_ECN_CE:
235 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
236 /* Better not delay acks, sender can have a very low cwnd */
237 tcp_enter_quickack_mode((struct sock *)tp);
238 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
239 }
240 /* fallinto */
241 default:
242 tp->ecn_flags |= TCP_ECN_SEEN;
243 }
244 }
245
246 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
247 {
248 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
249 tp->ecn_flags &= ~TCP_ECN_OK;
250 }
251
252 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
253 {
254 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
255 tp->ecn_flags &= ~TCP_ECN_OK;
256 }
257
258 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
259 {
260 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
261 return true;
262 return false;
263 }
264
265 /* Buffer size and advertised window tuning.
266 *
267 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
268 */
269
270 static void tcp_fixup_sndbuf(struct sock *sk)
271 {
272 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
273
274 sndmem *= TCP_INIT_CWND;
275 if (sk->sk_sndbuf < sndmem)
276 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
277 }
278
279 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
280 *
281 * All tcp_full_space() is split to two parts: "network" buffer, allocated
282 * forward and advertised in receiver window (tp->rcv_wnd) and
283 * "application buffer", required to isolate scheduling/application
284 * latencies from network.
285 * window_clamp is maximal advertised window. It can be less than
286 * tcp_full_space(), in this case tcp_full_space() - window_clamp
287 * is reserved for "application" buffer. The less window_clamp is
288 * the smoother our behaviour from viewpoint of network, but the lower
289 * throughput and the higher sensitivity of the connection to losses. 8)
290 *
291 * rcv_ssthresh is more strict window_clamp used at "slow start"
292 * phase to predict further behaviour of this connection.
293 * It is used for two goals:
294 * - to enforce header prediction at sender, even when application
295 * requires some significant "application buffer". It is check #1.
296 * - to prevent pruning of receive queue because of misprediction
297 * of receiver window. Check #2.
298 *
299 * The scheme does not work when sender sends good segments opening
300 * window and then starts to feed us spaghetti. But it should work
301 * in common situations. Otherwise, we have to rely on queue collapsing.
302 */
303
304 /* Slow part of check#2. */
305 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
306 {
307 struct tcp_sock *tp = tcp_sk(sk);
308 /* Optimize this! */
309 int truesize = tcp_win_from_space(skb->truesize) >> 1;
310 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
311
312 while (tp->rcv_ssthresh <= window) {
313 if (truesize <= skb->len)
314 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
315
316 truesize >>= 1;
317 window >>= 1;
318 }
319 return 0;
320 }
321
322 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
323 {
324 struct tcp_sock *tp = tcp_sk(sk);
325
326 /* Check #1 */
327 if (tp->rcv_ssthresh < tp->window_clamp &&
328 (int)tp->rcv_ssthresh < tcp_space(sk) &&
329 !sk_under_memory_pressure(sk)) {
330 int incr;
331
332 /* Check #2. Increase window, if skb with such overhead
333 * will fit to rcvbuf in future.
334 */
335 if (tcp_win_from_space(skb->truesize) <= skb->len)
336 incr = 2 * tp->advmss;
337 else
338 incr = __tcp_grow_window(sk, skb);
339
340 if (incr) {
341 incr = max_t(int, incr, 2 * skb->len);
342 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
343 tp->window_clamp);
344 inet_csk(sk)->icsk_ack.quick |= 1;
345 }
346 }
347 }
348
349 /* 3. Tuning rcvbuf, when connection enters established state. */
350
351 static void tcp_fixup_rcvbuf(struct sock *sk)
352 {
353 u32 mss = tcp_sk(sk)->advmss;
354 u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
355 int rcvmem;
356
357 /* Limit to 10 segments if mss <= 1460,
358 * or 14600/mss segments, with a minimum of two segments.
359 */
360 if (mss > 1460)
361 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
362
363 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
364 while (tcp_win_from_space(rcvmem) < mss)
365 rcvmem += 128;
366
367 rcvmem *= icwnd;
368
369 if (sk->sk_rcvbuf < rcvmem)
370 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
371 }
372
373 /* 4. Try to fixup all. It is made immediately after connection enters
374 * established state.
375 */
376 void tcp_init_buffer_space(struct sock *sk)
377 {
378 struct tcp_sock *tp = tcp_sk(sk);
379 int maxwin;
380
381 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
382 tcp_fixup_rcvbuf(sk);
383 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
384 tcp_fixup_sndbuf(sk);
385
386 tp->rcvq_space.space = tp->rcv_wnd;
387
388 maxwin = tcp_full_space(sk);
389
390 if (tp->window_clamp >= maxwin) {
391 tp->window_clamp = maxwin;
392
393 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
394 tp->window_clamp = max(maxwin -
395 (maxwin >> sysctl_tcp_app_win),
396 4 * tp->advmss);
397 }
398
399 /* Force reservation of one segment. */
400 if (sysctl_tcp_app_win &&
401 tp->window_clamp > 2 * tp->advmss &&
402 tp->window_clamp + tp->advmss > maxwin)
403 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
404
405 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
406 tp->snd_cwnd_stamp = tcp_time_stamp;
407 }
408
409 /* 5. Recalculate window clamp after socket hit its memory bounds. */
410 static void tcp_clamp_window(struct sock *sk)
411 {
412 struct tcp_sock *tp = tcp_sk(sk);
413 struct inet_connection_sock *icsk = inet_csk(sk);
414
415 icsk->icsk_ack.quick = 0;
416
417 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
418 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
419 !sk_under_memory_pressure(sk) &&
420 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
421 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
422 sysctl_tcp_rmem[2]);
423 }
424 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
425 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
426 }
427
428 /* Initialize RCV_MSS value.
429 * RCV_MSS is an our guess about MSS used by the peer.
430 * We haven't any direct information about the MSS.
431 * It's better to underestimate the RCV_MSS rather than overestimate.
432 * Overestimations make us ACKing less frequently than needed.
433 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
434 */
435 void tcp_initialize_rcv_mss(struct sock *sk)
436 {
437 const struct tcp_sock *tp = tcp_sk(sk);
438 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
439
440 hint = min(hint, tp->rcv_wnd / 2);
441 hint = min(hint, TCP_MSS_DEFAULT);
442 hint = max(hint, TCP_MIN_MSS);
443
444 inet_csk(sk)->icsk_ack.rcv_mss = hint;
445 }
446 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
447
448 /* Receiver "autotuning" code.
449 *
450 * The algorithm for RTT estimation w/o timestamps is based on
451 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
452 * <http://public.lanl.gov/radiant/pubs.html#DRS>
453 *
454 * More detail on this code can be found at
455 * <http://staff.psc.edu/jheffner/>,
456 * though this reference is out of date. A new paper
457 * is pending.
458 */
459 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
460 {
461 u32 new_sample = tp->rcv_rtt_est.rtt;
462 long m = sample;
463
464 if (m == 0)
465 m = 1;
466
467 if (new_sample != 0) {
468 /* If we sample in larger samples in the non-timestamp
469 * case, we could grossly overestimate the RTT especially
470 * with chatty applications or bulk transfer apps which
471 * are stalled on filesystem I/O.
472 *
473 * Also, since we are only going for a minimum in the
474 * non-timestamp case, we do not smooth things out
475 * else with timestamps disabled convergence takes too
476 * long.
477 */
478 if (!win_dep) {
479 m -= (new_sample >> 3);
480 new_sample += m;
481 } else {
482 m <<= 3;
483 if (m < new_sample)
484 new_sample = m;
485 }
486 } else {
487 /* No previous measure. */
488 new_sample = m << 3;
489 }
490
491 if (tp->rcv_rtt_est.rtt != new_sample)
492 tp->rcv_rtt_est.rtt = new_sample;
493 }
494
495 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
496 {
497 if (tp->rcv_rtt_est.time == 0)
498 goto new_measure;
499 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
500 return;
501 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
502
503 new_measure:
504 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
505 tp->rcv_rtt_est.time = tcp_time_stamp;
506 }
507
508 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
509 const struct sk_buff *skb)
510 {
511 struct tcp_sock *tp = tcp_sk(sk);
512 if (tp->rx_opt.rcv_tsecr &&
513 (TCP_SKB_CB(skb)->end_seq -
514 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
515 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
516 }
517
518 /*
519 * This function should be called every time data is copied to user space.
520 * It calculates the appropriate TCP receive buffer space.
521 */
522 void tcp_rcv_space_adjust(struct sock *sk)
523 {
524 struct tcp_sock *tp = tcp_sk(sk);
525 int time;
526 int space;
527
528 if (tp->rcvq_space.time == 0)
529 goto new_measure;
530
531 time = tcp_time_stamp - tp->rcvq_space.time;
532 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
533 return;
534
535 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
536
537 space = max(tp->rcvq_space.space, space);
538
539 if (tp->rcvq_space.space != space) {
540 int rcvmem;
541
542 tp->rcvq_space.space = space;
543
544 if (sysctl_tcp_moderate_rcvbuf &&
545 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
546 int new_clamp = space;
547
548 /* Receive space grows, normalize in order to
549 * take into account packet headers and sk_buff
550 * structure overhead.
551 */
552 space /= tp->advmss;
553 if (!space)
554 space = 1;
555 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
556 while (tcp_win_from_space(rcvmem) < tp->advmss)
557 rcvmem += 128;
558 space *= rcvmem;
559 space = min(space, sysctl_tcp_rmem[2]);
560 if (space > sk->sk_rcvbuf) {
561 sk->sk_rcvbuf = space;
562
563 /* Make the window clamp follow along. */
564 tp->window_clamp = new_clamp;
565 }
566 }
567 }
568
569 new_measure:
570 tp->rcvq_space.seq = tp->copied_seq;
571 tp->rcvq_space.time = tcp_time_stamp;
572 }
573
574 /* There is something which you must keep in mind when you analyze the
575 * behavior of the tp->ato delayed ack timeout interval. When a
576 * connection starts up, we want to ack as quickly as possible. The
577 * problem is that "good" TCP's do slow start at the beginning of data
578 * transmission. The means that until we send the first few ACK's the
579 * sender will sit on his end and only queue most of his data, because
580 * he can only send snd_cwnd unacked packets at any given time. For
581 * each ACK we send, he increments snd_cwnd and transmits more of his
582 * queue. -DaveM
583 */
584 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
585 {
586 struct tcp_sock *tp = tcp_sk(sk);
587 struct inet_connection_sock *icsk = inet_csk(sk);
588 u32 now;
589
590 inet_csk_schedule_ack(sk);
591
592 tcp_measure_rcv_mss(sk, skb);
593
594 tcp_rcv_rtt_measure(tp);
595
596 now = tcp_time_stamp;
597
598 if (!icsk->icsk_ack.ato) {
599 /* The _first_ data packet received, initialize
600 * delayed ACK engine.
601 */
602 tcp_incr_quickack(sk);
603 icsk->icsk_ack.ato = TCP_ATO_MIN;
604 } else {
605 int m = now - icsk->icsk_ack.lrcvtime;
606
607 if (m <= TCP_ATO_MIN / 2) {
608 /* The fastest case is the first. */
609 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
610 } else if (m < icsk->icsk_ack.ato) {
611 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
612 if (icsk->icsk_ack.ato > icsk->icsk_rto)
613 icsk->icsk_ack.ato = icsk->icsk_rto;
614 } else if (m > icsk->icsk_rto) {
615 /* Too long gap. Apparently sender failed to
616 * restart window, so that we send ACKs quickly.
617 */
618 tcp_incr_quickack(sk);
619 sk_mem_reclaim(sk);
620 }
621 }
622 icsk->icsk_ack.lrcvtime = now;
623
624 TCP_ECN_check_ce(tp, skb);
625
626 if (skb->len >= 128)
627 tcp_grow_window(sk, skb);
628 }
629
630 /* Called to compute a smoothed rtt estimate. The data fed to this
631 * routine either comes from timestamps, or from segments that were
632 * known _not_ to have been retransmitted [see Karn/Partridge
633 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
634 * piece by Van Jacobson.
635 * NOTE: the next three routines used to be one big routine.
636 * To save cycles in the RFC 1323 implementation it was better to break
637 * it up into three procedures. -- erics
638 */
639 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
640 {
641 struct tcp_sock *tp = tcp_sk(sk);
642 long m = mrtt; /* RTT */
643
644 /* The following amusing code comes from Jacobson's
645 * article in SIGCOMM '88. Note that rtt and mdev
646 * are scaled versions of rtt and mean deviation.
647 * This is designed to be as fast as possible
648 * m stands for "measurement".
649 *
650 * On a 1990 paper the rto value is changed to:
651 * RTO = rtt + 4 * mdev
652 *
653 * Funny. This algorithm seems to be very broken.
654 * These formulae increase RTO, when it should be decreased, increase
655 * too slowly, when it should be increased quickly, decrease too quickly
656 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
657 * does not matter how to _calculate_ it. Seems, it was trap
658 * that VJ failed to avoid. 8)
659 */
660 if (m == 0)
661 m = 1;
662 if (tp->srtt != 0) {
663 m -= (tp->srtt >> 3); /* m is now error in rtt est */
664 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
665 if (m < 0) {
666 m = -m; /* m is now abs(error) */
667 m -= (tp->mdev >> 2); /* similar update on mdev */
668 /* This is similar to one of Eifel findings.
669 * Eifel blocks mdev updates when rtt decreases.
670 * This solution is a bit different: we use finer gain
671 * for mdev in this case (alpha*beta).
672 * Like Eifel it also prevents growth of rto,
673 * but also it limits too fast rto decreases,
674 * happening in pure Eifel.
675 */
676 if (m > 0)
677 m >>= 3;
678 } else {
679 m -= (tp->mdev >> 2); /* similar update on mdev */
680 }
681 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
682 if (tp->mdev > tp->mdev_max) {
683 tp->mdev_max = tp->mdev;
684 if (tp->mdev_max > tp->rttvar)
685 tp->rttvar = tp->mdev_max;
686 }
687 if (after(tp->snd_una, tp->rtt_seq)) {
688 if (tp->mdev_max < tp->rttvar)
689 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
690 tp->rtt_seq = tp->snd_nxt;
691 tp->mdev_max = tcp_rto_min(sk);
692 }
693 } else {
694 /* no previous measure. */
695 tp->srtt = m << 3; /* take the measured time to be rtt */
696 tp->mdev = m << 1; /* make sure rto = 3*rtt */
697 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
698 tp->rtt_seq = tp->snd_nxt;
699 }
700 }
701
702 /* Calculate rto without backoff. This is the second half of Van Jacobson's
703 * routine referred to above.
704 */
705 void tcp_set_rto(struct sock *sk)
706 {
707 const struct tcp_sock *tp = tcp_sk(sk);
708 /* Old crap is replaced with new one. 8)
709 *
710 * More seriously:
711 * 1. If rtt variance happened to be less 50msec, it is hallucination.
712 * It cannot be less due to utterly erratic ACK generation made
713 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
714 * to do with delayed acks, because at cwnd>2 true delack timeout
715 * is invisible. Actually, Linux-2.4 also generates erratic
716 * ACKs in some circumstances.
717 */
718 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
719
720 /* 2. Fixups made earlier cannot be right.
721 * If we do not estimate RTO correctly without them,
722 * all the algo is pure shit and should be replaced
723 * with correct one. It is exactly, which we pretend to do.
724 */
725
726 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
727 * guarantees that rto is higher.
728 */
729 tcp_bound_rto(sk);
730 }
731
732 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
733 {
734 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
735
736 if (!cwnd)
737 cwnd = TCP_INIT_CWND;
738 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
739 }
740
741 /*
742 * Packet counting of FACK is based on in-order assumptions, therefore TCP
743 * disables it when reordering is detected
744 */
745 void tcp_disable_fack(struct tcp_sock *tp)
746 {
747 /* RFC3517 uses different metric in lost marker => reset on change */
748 if (tcp_is_fack(tp))
749 tp->lost_skb_hint = NULL;
750 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
751 }
752
753 /* Take a notice that peer is sending D-SACKs */
754 static void tcp_dsack_seen(struct tcp_sock *tp)
755 {
756 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
757 }
758
759 static void tcp_update_reordering(struct sock *sk, const int metric,
760 const int ts)
761 {
762 struct tcp_sock *tp = tcp_sk(sk);
763 if (metric > tp->reordering) {
764 int mib_idx;
765
766 tp->reordering = min(TCP_MAX_REORDERING, metric);
767
768 /* This exciting event is worth to be remembered. 8) */
769 if (ts)
770 mib_idx = LINUX_MIB_TCPTSREORDER;
771 else if (tcp_is_reno(tp))
772 mib_idx = LINUX_MIB_TCPRENOREORDER;
773 else if (tcp_is_fack(tp))
774 mib_idx = LINUX_MIB_TCPFACKREORDER;
775 else
776 mib_idx = LINUX_MIB_TCPSACKREORDER;
777
778 NET_INC_STATS_BH(sock_net(sk), mib_idx);
779 #if FASTRETRANS_DEBUG > 1
780 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
781 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
782 tp->reordering,
783 tp->fackets_out,
784 tp->sacked_out,
785 tp->undo_marker ? tp->undo_retrans : 0);
786 #endif
787 tcp_disable_fack(tp);
788 }
789
790 if (metric > 0)
791 tcp_disable_early_retrans(tp);
792 }
793
794 /* This must be called before lost_out is incremented */
795 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
796 {
797 if ((tp->retransmit_skb_hint == NULL) ||
798 before(TCP_SKB_CB(skb)->seq,
799 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
800 tp->retransmit_skb_hint = skb;
801
802 if (!tp->lost_out ||
803 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
804 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
805 }
806
807 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
808 {
809 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
810 tcp_verify_retransmit_hint(tp, skb);
811
812 tp->lost_out += tcp_skb_pcount(skb);
813 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
814 }
815 }
816
817 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
818 struct sk_buff *skb)
819 {
820 tcp_verify_retransmit_hint(tp, skb);
821
822 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
823 tp->lost_out += tcp_skb_pcount(skb);
824 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
825 }
826 }
827
828 /* This procedure tags the retransmission queue when SACKs arrive.
829 *
830 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
831 * Packets in queue with these bits set are counted in variables
832 * sacked_out, retrans_out and lost_out, correspondingly.
833 *
834 * Valid combinations are:
835 * Tag InFlight Description
836 * 0 1 - orig segment is in flight.
837 * S 0 - nothing flies, orig reached receiver.
838 * L 0 - nothing flies, orig lost by net.
839 * R 2 - both orig and retransmit are in flight.
840 * L|R 1 - orig is lost, retransmit is in flight.
841 * S|R 1 - orig reached receiver, retrans is still in flight.
842 * (L|S|R is logically valid, it could occur when L|R is sacked,
843 * but it is equivalent to plain S and code short-curcuits it to S.
844 * L|S is logically invalid, it would mean -1 packet in flight 8))
845 *
846 * These 6 states form finite state machine, controlled by the following events:
847 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
848 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
849 * 3. Loss detection event of two flavors:
850 * A. Scoreboard estimator decided the packet is lost.
851 * A'. Reno "three dupacks" marks head of queue lost.
852 * A''. Its FACK modification, head until snd.fack is lost.
853 * B. SACK arrives sacking SND.NXT at the moment, when the
854 * segment was retransmitted.
855 * 4. D-SACK added new rule: D-SACK changes any tag to S.
856 *
857 * It is pleasant to note, that state diagram turns out to be commutative,
858 * so that we are allowed not to be bothered by order of our actions,
859 * when multiple events arrive simultaneously. (see the function below).
860 *
861 * Reordering detection.
862 * --------------------
863 * Reordering metric is maximal distance, which a packet can be displaced
864 * in packet stream. With SACKs we can estimate it:
865 *
866 * 1. SACK fills old hole and the corresponding segment was not
867 * ever retransmitted -> reordering. Alas, we cannot use it
868 * when segment was retransmitted.
869 * 2. The last flaw is solved with D-SACK. D-SACK arrives
870 * for retransmitted and already SACKed segment -> reordering..
871 * Both of these heuristics are not used in Loss state, when we cannot
872 * account for retransmits accurately.
873 *
874 * SACK block validation.
875 * ----------------------
876 *
877 * SACK block range validation checks that the received SACK block fits to
878 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
879 * Note that SND.UNA is not included to the range though being valid because
880 * it means that the receiver is rather inconsistent with itself reporting
881 * SACK reneging when it should advance SND.UNA. Such SACK block this is
882 * perfectly valid, however, in light of RFC2018 which explicitly states
883 * that "SACK block MUST reflect the newest segment. Even if the newest
884 * segment is going to be discarded ...", not that it looks very clever
885 * in case of head skb. Due to potentional receiver driven attacks, we
886 * choose to avoid immediate execution of a walk in write queue due to
887 * reneging and defer head skb's loss recovery to standard loss recovery
888 * procedure that will eventually trigger (nothing forbids us doing this).
889 *
890 * Implements also blockage to start_seq wrap-around. Problem lies in the
891 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
892 * there's no guarantee that it will be before snd_nxt (n). The problem
893 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
894 * wrap (s_w):
895 *
896 * <- outs wnd -> <- wrapzone ->
897 * u e n u_w e_w s n_w
898 * | | | | | | |
899 * |<------------+------+----- TCP seqno space --------------+---------->|
900 * ...-- <2^31 ->| |<--------...
901 * ...---- >2^31 ------>| |<--------...
902 *
903 * Current code wouldn't be vulnerable but it's better still to discard such
904 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
905 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
906 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
907 * equal to the ideal case (infinite seqno space without wrap caused issues).
908 *
909 * With D-SACK the lower bound is extended to cover sequence space below
910 * SND.UNA down to undo_marker, which is the last point of interest. Yet
911 * again, D-SACK block must not to go across snd_una (for the same reason as
912 * for the normal SACK blocks, explained above). But there all simplicity
913 * ends, TCP might receive valid D-SACKs below that. As long as they reside
914 * fully below undo_marker they do not affect behavior in anyway and can
915 * therefore be safely ignored. In rare cases (which are more or less
916 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
917 * fragmentation and packet reordering past skb's retransmission. To consider
918 * them correctly, the acceptable range must be extended even more though
919 * the exact amount is rather hard to quantify. However, tp->max_window can
920 * be used as an exaggerated estimate.
921 */
922 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
923 u32 start_seq, u32 end_seq)
924 {
925 /* Too far in future, or reversed (interpretation is ambiguous) */
926 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
927 return false;
928
929 /* Nasty start_seq wrap-around check (see comments above) */
930 if (!before(start_seq, tp->snd_nxt))
931 return false;
932
933 /* In outstanding window? ...This is valid exit for D-SACKs too.
934 * start_seq == snd_una is non-sensical (see comments above)
935 */
936 if (after(start_seq, tp->snd_una))
937 return true;
938
939 if (!is_dsack || !tp->undo_marker)
940 return false;
941
942 /* ...Then it's D-SACK, and must reside below snd_una completely */
943 if (after(end_seq, tp->snd_una))
944 return false;
945
946 if (!before(start_seq, tp->undo_marker))
947 return true;
948
949 /* Too old */
950 if (!after(end_seq, tp->undo_marker))
951 return false;
952
953 /* Undo_marker boundary crossing (overestimates a lot). Known already:
954 * start_seq < undo_marker and end_seq >= undo_marker.
955 */
956 return !before(start_seq, end_seq - tp->max_window);
957 }
958
959 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
960 * Event "B". Later note: FACK people cheated me again 8), we have to account
961 * for reordering! Ugly, but should help.
962 *
963 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
964 * less than what is now known to be received by the other end (derived from
965 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
966 * retransmitted skbs to avoid some costly processing per ACKs.
967 */
968 static void tcp_mark_lost_retrans(struct sock *sk)
969 {
970 const struct inet_connection_sock *icsk = inet_csk(sk);
971 struct tcp_sock *tp = tcp_sk(sk);
972 struct sk_buff *skb;
973 int cnt = 0;
974 u32 new_low_seq = tp->snd_nxt;
975 u32 received_upto = tcp_highest_sack_seq(tp);
976
977 if (!tcp_is_fack(tp) || !tp->retrans_out ||
978 !after(received_upto, tp->lost_retrans_low) ||
979 icsk->icsk_ca_state != TCP_CA_Recovery)
980 return;
981
982 tcp_for_write_queue(skb, sk) {
983 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
984
985 if (skb == tcp_send_head(sk))
986 break;
987 if (cnt == tp->retrans_out)
988 break;
989 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
990 continue;
991
992 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
993 continue;
994
995 /* TODO: We would like to get rid of tcp_is_fack(tp) only
996 * constraint here (see above) but figuring out that at
997 * least tp->reordering SACK blocks reside between ack_seq
998 * and received_upto is not easy task to do cheaply with
999 * the available datastructures.
1000 *
1001 * Whether FACK should check here for tp->reordering segs
1002 * in-between one could argue for either way (it would be
1003 * rather simple to implement as we could count fack_count
1004 * during the walk and do tp->fackets_out - fack_count).
1005 */
1006 if (after(received_upto, ack_seq)) {
1007 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1008 tp->retrans_out -= tcp_skb_pcount(skb);
1009
1010 tcp_skb_mark_lost_uncond_verify(tp, skb);
1011 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1012 } else {
1013 if (before(ack_seq, new_low_seq))
1014 new_low_seq = ack_seq;
1015 cnt += tcp_skb_pcount(skb);
1016 }
1017 }
1018
1019 if (tp->retrans_out)
1020 tp->lost_retrans_low = new_low_seq;
1021 }
1022
1023 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1024 struct tcp_sack_block_wire *sp, int num_sacks,
1025 u32 prior_snd_una)
1026 {
1027 struct tcp_sock *tp = tcp_sk(sk);
1028 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1029 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1030 bool dup_sack = false;
1031
1032 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1033 dup_sack = true;
1034 tcp_dsack_seen(tp);
1035 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1036 } else if (num_sacks > 1) {
1037 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1038 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1039
1040 if (!after(end_seq_0, end_seq_1) &&
1041 !before(start_seq_0, start_seq_1)) {
1042 dup_sack = true;
1043 tcp_dsack_seen(tp);
1044 NET_INC_STATS_BH(sock_net(sk),
1045 LINUX_MIB_TCPDSACKOFORECV);
1046 }
1047 }
1048
1049 /* D-SACK for already forgotten data... Do dumb counting. */
1050 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1051 !after(end_seq_0, prior_snd_una) &&
1052 after(end_seq_0, tp->undo_marker))
1053 tp->undo_retrans--;
1054
1055 return dup_sack;
1056 }
1057
1058 struct tcp_sacktag_state {
1059 int reord;
1060 int fack_count;
1061 int flag;
1062 };
1063
1064 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1065 * the incoming SACK may not exactly match but we can find smaller MSS
1066 * aligned portion of it that matches. Therefore we might need to fragment
1067 * which may fail and creates some hassle (caller must handle error case
1068 * returns).
1069 *
1070 * FIXME: this could be merged to shift decision code
1071 */
1072 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1073 u32 start_seq, u32 end_seq)
1074 {
1075 int err;
1076 bool in_sack;
1077 unsigned int pkt_len;
1078 unsigned int mss;
1079
1080 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1081 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1082
1083 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1084 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1085 mss = tcp_skb_mss(skb);
1086 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1087
1088 if (!in_sack) {
1089 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1090 if (pkt_len < mss)
1091 pkt_len = mss;
1092 } else {
1093 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1094 if (pkt_len < mss)
1095 return -EINVAL;
1096 }
1097
1098 /* Round if necessary so that SACKs cover only full MSSes
1099 * and/or the remaining small portion (if present)
1100 */
1101 if (pkt_len > mss) {
1102 unsigned int new_len = (pkt_len / mss) * mss;
1103 if (!in_sack && new_len < pkt_len) {
1104 new_len += mss;
1105 if (new_len > skb->len)
1106 return 0;
1107 }
1108 pkt_len = new_len;
1109 }
1110 err = tcp_fragment(sk, skb, pkt_len, mss);
1111 if (err < 0)
1112 return err;
1113 }
1114
1115 return in_sack;
1116 }
1117
1118 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1119 static u8 tcp_sacktag_one(struct sock *sk,
1120 struct tcp_sacktag_state *state, u8 sacked,
1121 u32 start_seq, u32 end_seq,
1122 bool dup_sack, int pcount)
1123 {
1124 struct tcp_sock *tp = tcp_sk(sk);
1125 int fack_count = state->fack_count;
1126
1127 /* Account D-SACK for retransmitted packet. */
1128 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1129 if (tp->undo_marker && tp->undo_retrans &&
1130 after(end_seq, tp->undo_marker))
1131 tp->undo_retrans--;
1132 if (sacked & TCPCB_SACKED_ACKED)
1133 state->reord = min(fack_count, state->reord);
1134 }
1135
1136 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1137 if (!after(end_seq, tp->snd_una))
1138 return sacked;
1139
1140 if (!(sacked & TCPCB_SACKED_ACKED)) {
1141 if (sacked & TCPCB_SACKED_RETRANS) {
1142 /* If the segment is not tagged as lost,
1143 * we do not clear RETRANS, believing
1144 * that retransmission is still in flight.
1145 */
1146 if (sacked & TCPCB_LOST) {
1147 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1148 tp->lost_out -= pcount;
1149 tp->retrans_out -= pcount;
1150 }
1151 } else {
1152 if (!(sacked & TCPCB_RETRANS)) {
1153 /* New sack for not retransmitted frame,
1154 * which was in hole. It is reordering.
1155 */
1156 if (before(start_seq,
1157 tcp_highest_sack_seq(tp)))
1158 state->reord = min(fack_count,
1159 state->reord);
1160 if (!after(end_seq, tp->high_seq))
1161 state->flag |= FLAG_ORIG_SACK_ACKED;
1162 }
1163
1164 if (sacked & TCPCB_LOST) {
1165 sacked &= ~TCPCB_LOST;
1166 tp->lost_out -= pcount;
1167 }
1168 }
1169
1170 sacked |= TCPCB_SACKED_ACKED;
1171 state->flag |= FLAG_DATA_SACKED;
1172 tp->sacked_out += pcount;
1173
1174 fack_count += pcount;
1175
1176 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1177 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1178 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1179 tp->lost_cnt_hint += pcount;
1180
1181 if (fack_count > tp->fackets_out)
1182 tp->fackets_out = fack_count;
1183 }
1184
1185 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1186 * frames and clear it. undo_retrans is decreased above, L|R frames
1187 * are accounted above as well.
1188 */
1189 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1190 sacked &= ~TCPCB_SACKED_RETRANS;
1191 tp->retrans_out -= pcount;
1192 }
1193
1194 return sacked;
1195 }
1196
1197 /* Shift newly-SACKed bytes from this skb to the immediately previous
1198 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1199 */
1200 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1201 struct tcp_sacktag_state *state,
1202 unsigned int pcount, int shifted, int mss,
1203 bool dup_sack)
1204 {
1205 struct tcp_sock *tp = tcp_sk(sk);
1206 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1207 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1208 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1209
1210 BUG_ON(!pcount);
1211
1212 /* Adjust counters and hints for the newly sacked sequence
1213 * range but discard the return value since prev is already
1214 * marked. We must tag the range first because the seq
1215 * advancement below implicitly advances
1216 * tcp_highest_sack_seq() when skb is highest_sack.
1217 */
1218 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1219 start_seq, end_seq, dup_sack, pcount);
1220
1221 if (skb == tp->lost_skb_hint)
1222 tp->lost_cnt_hint += pcount;
1223
1224 TCP_SKB_CB(prev)->end_seq += shifted;
1225 TCP_SKB_CB(skb)->seq += shifted;
1226
1227 skb_shinfo(prev)->gso_segs += pcount;
1228 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1229 skb_shinfo(skb)->gso_segs -= pcount;
1230
1231 /* When we're adding to gso_segs == 1, gso_size will be zero,
1232 * in theory this shouldn't be necessary but as long as DSACK
1233 * code can come after this skb later on it's better to keep
1234 * setting gso_size to something.
1235 */
1236 if (!skb_shinfo(prev)->gso_size) {
1237 skb_shinfo(prev)->gso_size = mss;
1238 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1239 }
1240
1241 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1242 if (skb_shinfo(skb)->gso_segs <= 1) {
1243 skb_shinfo(skb)->gso_size = 0;
1244 skb_shinfo(skb)->gso_type = 0;
1245 }
1246
1247 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1248 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1249
1250 if (skb->len > 0) {
1251 BUG_ON(!tcp_skb_pcount(skb));
1252 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1253 return false;
1254 }
1255
1256 /* Whole SKB was eaten :-) */
1257
1258 if (skb == tp->retransmit_skb_hint)
1259 tp->retransmit_skb_hint = prev;
1260 if (skb == tp->scoreboard_skb_hint)
1261 tp->scoreboard_skb_hint = prev;
1262 if (skb == tp->lost_skb_hint) {
1263 tp->lost_skb_hint = prev;
1264 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1265 }
1266
1267 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1268 if (skb == tcp_highest_sack(sk))
1269 tcp_advance_highest_sack(sk, skb);
1270
1271 tcp_unlink_write_queue(skb, sk);
1272 sk_wmem_free_skb(sk, skb);
1273
1274 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1275
1276 return true;
1277 }
1278
1279 /* I wish gso_size would have a bit more sane initialization than
1280 * something-or-zero which complicates things
1281 */
1282 static int tcp_skb_seglen(const struct sk_buff *skb)
1283 {
1284 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1285 }
1286
1287 /* Shifting pages past head area doesn't work */
1288 static int skb_can_shift(const struct sk_buff *skb)
1289 {
1290 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1291 }
1292
1293 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1294 * skb.
1295 */
1296 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1297 struct tcp_sacktag_state *state,
1298 u32 start_seq, u32 end_seq,
1299 bool dup_sack)
1300 {
1301 struct tcp_sock *tp = tcp_sk(sk);
1302 struct sk_buff *prev;
1303 int mss;
1304 int pcount = 0;
1305 int len;
1306 int in_sack;
1307
1308 if (!sk_can_gso(sk))
1309 goto fallback;
1310
1311 /* Normally R but no L won't result in plain S */
1312 if (!dup_sack &&
1313 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1314 goto fallback;
1315 if (!skb_can_shift(skb))
1316 goto fallback;
1317 /* This frame is about to be dropped (was ACKed). */
1318 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1319 goto fallback;
1320
1321 /* Can only happen with delayed DSACK + discard craziness */
1322 if (unlikely(skb == tcp_write_queue_head(sk)))
1323 goto fallback;
1324 prev = tcp_write_queue_prev(sk, skb);
1325
1326 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1327 goto fallback;
1328
1329 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1330 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1331
1332 if (in_sack) {
1333 len = skb->len;
1334 pcount = tcp_skb_pcount(skb);
1335 mss = tcp_skb_seglen(skb);
1336
1337 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1338 * drop this restriction as unnecessary
1339 */
1340 if (mss != tcp_skb_seglen(prev))
1341 goto fallback;
1342 } else {
1343 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1344 goto noop;
1345 /* CHECKME: This is non-MSS split case only?, this will
1346 * cause skipped skbs due to advancing loop btw, original
1347 * has that feature too
1348 */
1349 if (tcp_skb_pcount(skb) <= 1)
1350 goto noop;
1351
1352 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1353 if (!in_sack) {
1354 /* TODO: head merge to next could be attempted here
1355 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1356 * though it might not be worth of the additional hassle
1357 *
1358 * ...we can probably just fallback to what was done
1359 * previously. We could try merging non-SACKed ones
1360 * as well but it probably isn't going to buy off
1361 * because later SACKs might again split them, and
1362 * it would make skb timestamp tracking considerably
1363 * harder problem.
1364 */
1365 goto fallback;
1366 }
1367
1368 len = end_seq - TCP_SKB_CB(skb)->seq;
1369 BUG_ON(len < 0);
1370 BUG_ON(len > skb->len);
1371
1372 /* MSS boundaries should be honoured or else pcount will
1373 * severely break even though it makes things bit trickier.
1374 * Optimize common case to avoid most of the divides
1375 */
1376 mss = tcp_skb_mss(skb);
1377
1378 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1379 * drop this restriction as unnecessary
1380 */
1381 if (mss != tcp_skb_seglen(prev))
1382 goto fallback;
1383
1384 if (len == mss) {
1385 pcount = 1;
1386 } else if (len < mss) {
1387 goto noop;
1388 } else {
1389 pcount = len / mss;
1390 len = pcount * mss;
1391 }
1392 }
1393
1394 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1395 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1396 goto fallback;
1397
1398 if (!skb_shift(prev, skb, len))
1399 goto fallback;
1400 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1401 goto out;
1402
1403 /* Hole filled allows collapsing with the next as well, this is very
1404 * useful when hole on every nth skb pattern happens
1405 */
1406 if (prev == tcp_write_queue_tail(sk))
1407 goto out;
1408 skb = tcp_write_queue_next(sk, prev);
1409
1410 if (!skb_can_shift(skb) ||
1411 (skb == tcp_send_head(sk)) ||
1412 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1413 (mss != tcp_skb_seglen(skb)))
1414 goto out;
1415
1416 len = skb->len;
1417 if (skb_shift(prev, skb, len)) {
1418 pcount += tcp_skb_pcount(skb);
1419 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1420 }
1421
1422 out:
1423 state->fack_count += pcount;
1424 return prev;
1425
1426 noop:
1427 return skb;
1428
1429 fallback:
1430 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1431 return NULL;
1432 }
1433
1434 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1435 struct tcp_sack_block *next_dup,
1436 struct tcp_sacktag_state *state,
1437 u32 start_seq, u32 end_seq,
1438 bool dup_sack_in)
1439 {
1440 struct tcp_sock *tp = tcp_sk(sk);
1441 struct sk_buff *tmp;
1442
1443 tcp_for_write_queue_from(skb, sk) {
1444 int in_sack = 0;
1445 bool dup_sack = dup_sack_in;
1446
1447 if (skb == tcp_send_head(sk))
1448 break;
1449
1450 /* queue is in-order => we can short-circuit the walk early */
1451 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1452 break;
1453
1454 if ((next_dup != NULL) &&
1455 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1456 in_sack = tcp_match_skb_to_sack(sk, skb,
1457 next_dup->start_seq,
1458 next_dup->end_seq);
1459 if (in_sack > 0)
1460 dup_sack = true;
1461 }
1462
1463 /* skb reference here is a bit tricky to get right, since
1464 * shifting can eat and free both this skb and the next,
1465 * so not even _safe variant of the loop is enough.
1466 */
1467 if (in_sack <= 0) {
1468 tmp = tcp_shift_skb_data(sk, skb, state,
1469 start_seq, end_seq, dup_sack);
1470 if (tmp != NULL) {
1471 if (tmp != skb) {
1472 skb = tmp;
1473 continue;
1474 }
1475
1476 in_sack = 0;
1477 } else {
1478 in_sack = tcp_match_skb_to_sack(sk, skb,
1479 start_seq,
1480 end_seq);
1481 }
1482 }
1483
1484 if (unlikely(in_sack < 0))
1485 break;
1486
1487 if (in_sack) {
1488 TCP_SKB_CB(skb)->sacked =
1489 tcp_sacktag_one(sk,
1490 state,
1491 TCP_SKB_CB(skb)->sacked,
1492 TCP_SKB_CB(skb)->seq,
1493 TCP_SKB_CB(skb)->end_seq,
1494 dup_sack,
1495 tcp_skb_pcount(skb));
1496
1497 if (!before(TCP_SKB_CB(skb)->seq,
1498 tcp_highest_sack_seq(tp)))
1499 tcp_advance_highest_sack(sk, skb);
1500 }
1501
1502 state->fack_count += tcp_skb_pcount(skb);
1503 }
1504 return skb;
1505 }
1506
1507 /* Avoid all extra work that is being done by sacktag while walking in
1508 * a normal way
1509 */
1510 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1511 struct tcp_sacktag_state *state,
1512 u32 skip_to_seq)
1513 {
1514 tcp_for_write_queue_from(skb, sk) {
1515 if (skb == tcp_send_head(sk))
1516 break;
1517
1518 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1519 break;
1520
1521 state->fack_count += tcp_skb_pcount(skb);
1522 }
1523 return skb;
1524 }
1525
1526 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1527 struct sock *sk,
1528 struct tcp_sack_block *next_dup,
1529 struct tcp_sacktag_state *state,
1530 u32 skip_to_seq)
1531 {
1532 if (next_dup == NULL)
1533 return skb;
1534
1535 if (before(next_dup->start_seq, skip_to_seq)) {
1536 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1537 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1538 next_dup->start_seq, next_dup->end_seq,
1539 1);
1540 }
1541
1542 return skb;
1543 }
1544
1545 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1546 {
1547 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1548 }
1549
1550 static int
1551 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1552 u32 prior_snd_una)
1553 {
1554 struct tcp_sock *tp = tcp_sk(sk);
1555 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1556 TCP_SKB_CB(ack_skb)->sacked);
1557 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1558 struct tcp_sack_block sp[TCP_NUM_SACKS];
1559 struct tcp_sack_block *cache;
1560 struct tcp_sacktag_state state;
1561 struct sk_buff *skb;
1562 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1563 int used_sacks;
1564 bool found_dup_sack = false;
1565 int i, j;
1566 int first_sack_index;
1567
1568 state.flag = 0;
1569 state.reord = tp->packets_out;
1570
1571 if (!tp->sacked_out) {
1572 if (WARN_ON(tp->fackets_out))
1573 tp->fackets_out = 0;
1574 tcp_highest_sack_reset(sk);
1575 }
1576
1577 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1578 num_sacks, prior_snd_una);
1579 if (found_dup_sack)
1580 state.flag |= FLAG_DSACKING_ACK;
1581
1582 /* Eliminate too old ACKs, but take into
1583 * account more or less fresh ones, they can
1584 * contain valid SACK info.
1585 */
1586 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1587 return 0;
1588
1589 if (!tp->packets_out)
1590 goto out;
1591
1592 used_sacks = 0;
1593 first_sack_index = 0;
1594 for (i = 0; i < num_sacks; i++) {
1595 bool dup_sack = !i && found_dup_sack;
1596
1597 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1598 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1599
1600 if (!tcp_is_sackblock_valid(tp, dup_sack,
1601 sp[used_sacks].start_seq,
1602 sp[used_sacks].end_seq)) {
1603 int mib_idx;
1604
1605 if (dup_sack) {
1606 if (!tp->undo_marker)
1607 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1608 else
1609 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1610 } else {
1611 /* Don't count olds caused by ACK reordering */
1612 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1613 !after(sp[used_sacks].end_seq, tp->snd_una))
1614 continue;
1615 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1616 }
1617
1618 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1619 if (i == 0)
1620 first_sack_index = -1;
1621 continue;
1622 }
1623
1624 /* Ignore very old stuff early */
1625 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1626 continue;
1627
1628 used_sacks++;
1629 }
1630
1631 /* order SACK blocks to allow in order walk of the retrans queue */
1632 for (i = used_sacks - 1; i > 0; i--) {
1633 for (j = 0; j < i; j++) {
1634 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1635 swap(sp[j], sp[j + 1]);
1636
1637 /* Track where the first SACK block goes to */
1638 if (j == first_sack_index)
1639 first_sack_index = j + 1;
1640 }
1641 }
1642 }
1643
1644 skb = tcp_write_queue_head(sk);
1645 state.fack_count = 0;
1646 i = 0;
1647
1648 if (!tp->sacked_out) {
1649 /* It's already past, so skip checking against it */
1650 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1651 } else {
1652 cache = tp->recv_sack_cache;
1653 /* Skip empty blocks in at head of the cache */
1654 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1655 !cache->end_seq)
1656 cache++;
1657 }
1658
1659 while (i < used_sacks) {
1660 u32 start_seq = sp[i].start_seq;
1661 u32 end_seq = sp[i].end_seq;
1662 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1663 struct tcp_sack_block *next_dup = NULL;
1664
1665 if (found_dup_sack && ((i + 1) == first_sack_index))
1666 next_dup = &sp[i + 1];
1667
1668 /* Skip too early cached blocks */
1669 while (tcp_sack_cache_ok(tp, cache) &&
1670 !before(start_seq, cache->end_seq))
1671 cache++;
1672
1673 /* Can skip some work by looking recv_sack_cache? */
1674 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1675 after(end_seq, cache->start_seq)) {
1676
1677 /* Head todo? */
1678 if (before(start_seq, cache->start_seq)) {
1679 skb = tcp_sacktag_skip(skb, sk, &state,
1680 start_seq);
1681 skb = tcp_sacktag_walk(skb, sk, next_dup,
1682 &state,
1683 start_seq,
1684 cache->start_seq,
1685 dup_sack);
1686 }
1687
1688 /* Rest of the block already fully processed? */
1689 if (!after(end_seq, cache->end_seq))
1690 goto advance_sp;
1691
1692 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1693 &state,
1694 cache->end_seq);
1695
1696 /* ...tail remains todo... */
1697 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1698 /* ...but better entrypoint exists! */
1699 skb = tcp_highest_sack(sk);
1700 if (skb == NULL)
1701 break;
1702 state.fack_count = tp->fackets_out;
1703 cache++;
1704 goto walk;
1705 }
1706
1707 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1708 /* Check overlap against next cached too (past this one already) */
1709 cache++;
1710 continue;
1711 }
1712
1713 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1714 skb = tcp_highest_sack(sk);
1715 if (skb == NULL)
1716 break;
1717 state.fack_count = tp->fackets_out;
1718 }
1719 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1720
1721 walk:
1722 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1723 start_seq, end_seq, dup_sack);
1724
1725 advance_sp:
1726 i++;
1727 }
1728
1729 /* Clear the head of the cache sack blocks so we can skip it next time */
1730 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1731 tp->recv_sack_cache[i].start_seq = 0;
1732 tp->recv_sack_cache[i].end_seq = 0;
1733 }
1734 for (j = 0; j < used_sacks; j++)
1735 tp->recv_sack_cache[i++] = sp[j];
1736
1737 tcp_mark_lost_retrans(sk);
1738
1739 tcp_verify_left_out(tp);
1740
1741 if ((state.reord < tp->fackets_out) &&
1742 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1743 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1744
1745 out:
1746
1747 #if FASTRETRANS_DEBUG > 0
1748 WARN_ON((int)tp->sacked_out < 0);
1749 WARN_ON((int)tp->lost_out < 0);
1750 WARN_ON((int)tp->retrans_out < 0);
1751 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1752 #endif
1753 return state.flag;
1754 }
1755
1756 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1757 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1758 */
1759 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1760 {
1761 u32 holes;
1762
1763 holes = max(tp->lost_out, 1U);
1764 holes = min(holes, tp->packets_out);
1765
1766 if ((tp->sacked_out + holes) > tp->packets_out) {
1767 tp->sacked_out = tp->packets_out - holes;
1768 return true;
1769 }
1770 return false;
1771 }
1772
1773 /* If we receive more dupacks than we expected counting segments
1774 * in assumption of absent reordering, interpret this as reordering.
1775 * The only another reason could be bug in receiver TCP.
1776 */
1777 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1778 {
1779 struct tcp_sock *tp = tcp_sk(sk);
1780 if (tcp_limit_reno_sacked(tp))
1781 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1782 }
1783
1784 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1785
1786 static void tcp_add_reno_sack(struct sock *sk)
1787 {
1788 struct tcp_sock *tp = tcp_sk(sk);
1789 tp->sacked_out++;
1790 tcp_check_reno_reordering(sk, 0);
1791 tcp_verify_left_out(tp);
1792 }
1793
1794 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1795
1796 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1797 {
1798 struct tcp_sock *tp = tcp_sk(sk);
1799
1800 if (acked > 0) {
1801 /* One ACK acked hole. The rest eat duplicate ACKs. */
1802 if (acked - 1 >= tp->sacked_out)
1803 tp->sacked_out = 0;
1804 else
1805 tp->sacked_out -= acked - 1;
1806 }
1807 tcp_check_reno_reordering(sk, acked);
1808 tcp_verify_left_out(tp);
1809 }
1810
1811 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1812 {
1813 tp->sacked_out = 0;
1814 }
1815
1816 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1817 {
1818 tp->retrans_out = 0;
1819 tp->lost_out = 0;
1820
1821 tp->undo_marker = 0;
1822 tp->undo_retrans = 0;
1823 }
1824
1825 void tcp_clear_retrans(struct tcp_sock *tp)
1826 {
1827 tcp_clear_retrans_partial(tp);
1828
1829 tp->fackets_out = 0;
1830 tp->sacked_out = 0;
1831 }
1832
1833 /* Enter Loss state. If "how" is not zero, forget all SACK information
1834 * and reset tags completely, otherwise preserve SACKs. If receiver
1835 * dropped its ofo queue, we will know this due to reneging detection.
1836 */
1837 void tcp_enter_loss(struct sock *sk, int how)
1838 {
1839 const struct inet_connection_sock *icsk = inet_csk(sk);
1840 struct tcp_sock *tp = tcp_sk(sk);
1841 struct sk_buff *skb;
1842 bool new_recovery = false;
1843
1844 /* Reduce ssthresh if it has not yet been made inside this window. */
1845 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1846 !after(tp->high_seq, tp->snd_una) ||
1847 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1848 new_recovery = true;
1849 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1850 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1851 tcp_ca_event(sk, CA_EVENT_LOSS);
1852 }
1853 tp->snd_cwnd = 1;
1854 tp->snd_cwnd_cnt = 0;
1855 tp->snd_cwnd_stamp = tcp_time_stamp;
1856
1857 tcp_clear_retrans_partial(tp);
1858
1859 if (tcp_is_reno(tp))
1860 tcp_reset_reno_sack(tp);
1861
1862 tp->undo_marker = tp->snd_una;
1863 if (how) {
1864 tp->sacked_out = 0;
1865 tp->fackets_out = 0;
1866 }
1867 tcp_clear_all_retrans_hints(tp);
1868
1869 tcp_for_write_queue(skb, sk) {
1870 if (skb == tcp_send_head(sk))
1871 break;
1872
1873 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1874 tp->undo_marker = 0;
1875 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1876 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1877 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1878 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1879 tp->lost_out += tcp_skb_pcount(skb);
1880 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1881 }
1882 }
1883 tcp_verify_left_out(tp);
1884
1885 tp->reordering = min_t(unsigned int, tp->reordering,
1886 sysctl_tcp_reordering);
1887 tcp_set_ca_state(sk, TCP_CA_Loss);
1888 tp->high_seq = tp->snd_nxt;
1889 TCP_ECN_queue_cwr(tp);
1890
1891 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1892 * loss recovery is underway except recurring timeout(s) on
1893 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1894 */
1895 tp->frto = sysctl_tcp_frto &&
1896 (new_recovery || icsk->icsk_retransmits) &&
1897 !inet_csk(sk)->icsk_mtup.probe_size;
1898 }
1899
1900 /* If ACK arrived pointing to a remembered SACK, it means that our
1901 * remembered SACKs do not reflect real state of receiver i.e.
1902 * receiver _host_ is heavily congested (or buggy).
1903 *
1904 * Do processing similar to RTO timeout.
1905 */
1906 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1907 {
1908 if (flag & FLAG_SACK_RENEGING) {
1909 struct inet_connection_sock *icsk = inet_csk(sk);
1910 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1911
1912 tcp_enter_loss(sk, 1);
1913 icsk->icsk_retransmits++;
1914 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1915 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1916 icsk->icsk_rto, TCP_RTO_MAX);
1917 return true;
1918 }
1919 return false;
1920 }
1921
1922 static inline int tcp_fackets_out(const struct tcp_sock *tp)
1923 {
1924 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1925 }
1926
1927 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1928 * counter when SACK is enabled (without SACK, sacked_out is used for
1929 * that purpose).
1930 *
1931 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1932 * segments up to the highest received SACK block so far and holes in
1933 * between them.
1934 *
1935 * With reordering, holes may still be in flight, so RFC3517 recovery
1936 * uses pure sacked_out (total number of SACKed segments) even though
1937 * it violates the RFC that uses duplicate ACKs, often these are equal
1938 * but when e.g. out-of-window ACKs or packet duplication occurs,
1939 * they differ. Since neither occurs due to loss, TCP should really
1940 * ignore them.
1941 */
1942 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
1943 {
1944 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1945 }
1946
1947 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
1948 {
1949 struct tcp_sock *tp = tcp_sk(sk);
1950 unsigned long delay;
1951
1952 /* Delay early retransmit and entering fast recovery for
1953 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
1954 * available, or RTO is scheduled to fire first.
1955 */
1956 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
1957 (flag & FLAG_ECE) || !tp->srtt)
1958 return false;
1959
1960 delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
1961 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
1962 return false;
1963
1964 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
1965 TCP_RTO_MAX);
1966 return true;
1967 }
1968
1969 static inline int tcp_skb_timedout(const struct sock *sk,
1970 const struct sk_buff *skb)
1971 {
1972 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
1973 }
1974
1975 static inline int tcp_head_timedout(const struct sock *sk)
1976 {
1977 const struct tcp_sock *tp = tcp_sk(sk);
1978
1979 return tp->packets_out &&
1980 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1981 }
1982
1983 /* Linux NewReno/SACK/FACK/ECN state machine.
1984 * --------------------------------------
1985 *
1986 * "Open" Normal state, no dubious events, fast path.
1987 * "Disorder" In all the respects it is "Open",
1988 * but requires a bit more attention. It is entered when
1989 * we see some SACKs or dupacks. It is split of "Open"
1990 * mainly to move some processing from fast path to slow one.
1991 * "CWR" CWND was reduced due to some Congestion Notification event.
1992 * It can be ECN, ICMP source quench, local device congestion.
1993 * "Recovery" CWND was reduced, we are fast-retransmitting.
1994 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1995 *
1996 * tcp_fastretrans_alert() is entered:
1997 * - each incoming ACK, if state is not "Open"
1998 * - when arrived ACK is unusual, namely:
1999 * * SACK
2000 * * Duplicate ACK.
2001 * * ECN ECE.
2002 *
2003 * Counting packets in flight is pretty simple.
2004 *
2005 * in_flight = packets_out - left_out + retrans_out
2006 *
2007 * packets_out is SND.NXT-SND.UNA counted in packets.
2008 *
2009 * retrans_out is number of retransmitted segments.
2010 *
2011 * left_out is number of segments left network, but not ACKed yet.
2012 *
2013 * left_out = sacked_out + lost_out
2014 *
2015 * sacked_out: Packets, which arrived to receiver out of order
2016 * and hence not ACKed. With SACKs this number is simply
2017 * amount of SACKed data. Even without SACKs
2018 * it is easy to give pretty reliable estimate of this number,
2019 * counting duplicate ACKs.
2020 *
2021 * lost_out: Packets lost by network. TCP has no explicit
2022 * "loss notification" feedback from network (for now).
2023 * It means that this number can be only _guessed_.
2024 * Actually, it is the heuristics to predict lossage that
2025 * distinguishes different algorithms.
2026 *
2027 * F.e. after RTO, when all the queue is considered as lost,
2028 * lost_out = packets_out and in_flight = retrans_out.
2029 *
2030 * Essentially, we have now two algorithms counting
2031 * lost packets.
2032 *
2033 * FACK: It is the simplest heuristics. As soon as we decided
2034 * that something is lost, we decide that _all_ not SACKed
2035 * packets until the most forward SACK are lost. I.e.
2036 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2037 * It is absolutely correct estimate, if network does not reorder
2038 * packets. And it loses any connection to reality when reordering
2039 * takes place. We use FACK by default until reordering
2040 * is suspected on the path to this destination.
2041 *
2042 * NewReno: when Recovery is entered, we assume that one segment
2043 * is lost (classic Reno). While we are in Recovery and
2044 * a partial ACK arrives, we assume that one more packet
2045 * is lost (NewReno). This heuristics are the same in NewReno
2046 * and SACK.
2047 *
2048 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2049 * deflation etc. CWND is real congestion window, never inflated, changes
2050 * only according to classic VJ rules.
2051 *
2052 * Really tricky (and requiring careful tuning) part of algorithm
2053 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2054 * The first determines the moment _when_ we should reduce CWND and,
2055 * hence, slow down forward transmission. In fact, it determines the moment
2056 * when we decide that hole is caused by loss, rather than by a reorder.
2057 *
2058 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2059 * holes, caused by lost packets.
2060 *
2061 * And the most logically complicated part of algorithm is undo
2062 * heuristics. We detect false retransmits due to both too early
2063 * fast retransmit (reordering) and underestimated RTO, analyzing
2064 * timestamps and D-SACKs. When we detect that some segments were
2065 * retransmitted by mistake and CWND reduction was wrong, we undo
2066 * window reduction and abort recovery phase. This logic is hidden
2067 * inside several functions named tcp_try_undo_<something>.
2068 */
2069
2070 /* This function decides, when we should leave Disordered state
2071 * and enter Recovery phase, reducing congestion window.
2072 *
2073 * Main question: may we further continue forward transmission
2074 * with the same cwnd?
2075 */
2076 static bool tcp_time_to_recover(struct sock *sk, int flag)
2077 {
2078 struct tcp_sock *tp = tcp_sk(sk);
2079 __u32 packets_out;
2080
2081 /* Trick#1: The loss is proven. */
2082 if (tp->lost_out)
2083 return true;
2084
2085 /* Not-A-Trick#2 : Classic rule... */
2086 if (tcp_dupack_heuristics(tp) > tp->reordering)
2087 return true;
2088
2089 /* Trick#3 : when we use RFC2988 timer restart, fast
2090 * retransmit can be triggered by timeout of queue head.
2091 */
2092 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2093 return true;
2094
2095 /* Trick#4: It is still not OK... But will it be useful to delay
2096 * recovery more?
2097 */
2098 packets_out = tp->packets_out;
2099 if (packets_out <= tp->reordering &&
2100 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2101 !tcp_may_send_now(sk)) {
2102 /* We have nothing to send. This connection is limited
2103 * either by receiver window or by application.
2104 */
2105 return true;
2106 }
2107
2108 /* If a thin stream is detected, retransmit after first
2109 * received dupack. Employ only if SACK is supported in order
2110 * to avoid possible corner-case series of spurious retransmissions
2111 * Use only if there are no unsent data.
2112 */
2113 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2114 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2115 tcp_is_sack(tp) && !tcp_send_head(sk))
2116 return true;
2117
2118 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2119 * retransmissions due to small network reorderings, we implement
2120 * Mitigation A.3 in the RFC and delay the retransmission for a short
2121 * interval if appropriate.
2122 */
2123 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2124 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2125 !tcp_may_send_now(sk))
2126 return !tcp_pause_early_retransmit(sk, flag);
2127
2128 return false;
2129 }
2130
2131 /* New heuristics: it is possible only after we switched to restart timer
2132 * each time when something is ACKed. Hence, we can detect timed out packets
2133 * during fast retransmit without falling to slow start.
2134 *
2135 * Usefulness of this as is very questionable, since we should know which of
2136 * the segments is the next to timeout which is relatively expensive to find
2137 * in general case unless we add some data structure just for that. The
2138 * current approach certainly won't find the right one too often and when it
2139 * finally does find _something_ it usually marks large part of the window
2140 * right away (because a retransmission with a larger timestamp blocks the
2141 * loop from advancing). -ij
2142 */
2143 static void tcp_timeout_skbs(struct sock *sk)
2144 {
2145 struct tcp_sock *tp = tcp_sk(sk);
2146 struct sk_buff *skb;
2147
2148 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2149 return;
2150
2151 skb = tp->scoreboard_skb_hint;
2152 if (tp->scoreboard_skb_hint == NULL)
2153 skb = tcp_write_queue_head(sk);
2154
2155 tcp_for_write_queue_from(skb, sk) {
2156 if (skb == tcp_send_head(sk))
2157 break;
2158 if (!tcp_skb_timedout(sk, skb))
2159 break;
2160
2161 tcp_skb_mark_lost(tp, skb);
2162 }
2163
2164 tp->scoreboard_skb_hint = skb;
2165
2166 tcp_verify_left_out(tp);
2167 }
2168
2169 /* Detect loss in event "A" above by marking head of queue up as lost.
2170 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2171 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2172 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2173 * the maximum SACKed segments to pass before reaching this limit.
2174 */
2175 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2176 {
2177 struct tcp_sock *tp = tcp_sk(sk);
2178 struct sk_buff *skb;
2179 int cnt, oldcnt;
2180 int err;
2181 unsigned int mss;
2182 /* Use SACK to deduce losses of new sequences sent during recovery */
2183 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2184
2185 WARN_ON(packets > tp->packets_out);
2186 if (tp->lost_skb_hint) {
2187 skb = tp->lost_skb_hint;
2188 cnt = tp->lost_cnt_hint;
2189 /* Head already handled? */
2190 if (mark_head && skb != tcp_write_queue_head(sk))
2191 return;
2192 } else {
2193 skb = tcp_write_queue_head(sk);
2194 cnt = 0;
2195 }
2196
2197 tcp_for_write_queue_from(skb, sk) {
2198 if (skb == tcp_send_head(sk))
2199 break;
2200 /* TODO: do this better */
2201 /* this is not the most efficient way to do this... */
2202 tp->lost_skb_hint = skb;
2203 tp->lost_cnt_hint = cnt;
2204
2205 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2206 break;
2207
2208 oldcnt = cnt;
2209 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2210 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2211 cnt += tcp_skb_pcount(skb);
2212
2213 if (cnt > packets) {
2214 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2215 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2216 (oldcnt >= packets))
2217 break;
2218
2219 mss = skb_shinfo(skb)->gso_size;
2220 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2221 if (err < 0)
2222 break;
2223 cnt = packets;
2224 }
2225
2226 tcp_skb_mark_lost(tp, skb);
2227
2228 if (mark_head)
2229 break;
2230 }
2231 tcp_verify_left_out(tp);
2232 }
2233
2234 /* Account newly detected lost packet(s) */
2235
2236 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2237 {
2238 struct tcp_sock *tp = tcp_sk(sk);
2239
2240 if (tcp_is_reno(tp)) {
2241 tcp_mark_head_lost(sk, 1, 1);
2242 } else if (tcp_is_fack(tp)) {
2243 int lost = tp->fackets_out - tp->reordering;
2244 if (lost <= 0)
2245 lost = 1;
2246 tcp_mark_head_lost(sk, lost, 0);
2247 } else {
2248 int sacked_upto = tp->sacked_out - tp->reordering;
2249 if (sacked_upto >= 0)
2250 tcp_mark_head_lost(sk, sacked_upto, 0);
2251 else if (fast_rexmit)
2252 tcp_mark_head_lost(sk, 1, 1);
2253 }
2254
2255 tcp_timeout_skbs(sk);
2256 }
2257
2258 /* CWND moderation, preventing bursts due to too big ACKs
2259 * in dubious situations.
2260 */
2261 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2262 {
2263 tp->snd_cwnd = min(tp->snd_cwnd,
2264 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2265 tp->snd_cwnd_stamp = tcp_time_stamp;
2266 }
2267
2268 /* Nothing was retransmitted or returned timestamp is less
2269 * than timestamp of the first retransmission.
2270 */
2271 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2272 {
2273 return !tp->retrans_stamp ||
2274 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2275 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2276 }
2277
2278 /* Undo procedures. */
2279
2280 #if FASTRETRANS_DEBUG > 1
2281 static void DBGUNDO(struct sock *sk, const char *msg)
2282 {
2283 struct tcp_sock *tp = tcp_sk(sk);
2284 struct inet_sock *inet = inet_sk(sk);
2285
2286 if (sk->sk_family == AF_INET) {
2287 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2288 msg,
2289 &inet->inet_daddr, ntohs(inet->inet_dport),
2290 tp->snd_cwnd, tcp_left_out(tp),
2291 tp->snd_ssthresh, tp->prior_ssthresh,
2292 tp->packets_out);
2293 }
2294 #if IS_ENABLED(CONFIG_IPV6)
2295 else if (sk->sk_family == AF_INET6) {
2296 struct ipv6_pinfo *np = inet6_sk(sk);
2297 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2298 msg,
2299 &np->daddr, ntohs(inet->inet_dport),
2300 tp->snd_cwnd, tcp_left_out(tp),
2301 tp->snd_ssthresh, tp->prior_ssthresh,
2302 tp->packets_out);
2303 }
2304 #endif
2305 }
2306 #else
2307 #define DBGUNDO(x...) do { } while (0)
2308 #endif
2309
2310 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2311 {
2312 struct tcp_sock *tp = tcp_sk(sk);
2313
2314 if (tp->prior_ssthresh) {
2315 const struct inet_connection_sock *icsk = inet_csk(sk);
2316
2317 if (icsk->icsk_ca_ops->undo_cwnd)
2318 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2319 else
2320 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2321
2322 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2323 tp->snd_ssthresh = tp->prior_ssthresh;
2324 TCP_ECN_withdraw_cwr(tp);
2325 }
2326 } else {
2327 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2328 }
2329 tp->snd_cwnd_stamp = tcp_time_stamp;
2330 }
2331
2332 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2333 {
2334 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2335 }
2336
2337 /* People celebrate: "We love our President!" */
2338 static bool tcp_try_undo_recovery(struct sock *sk)
2339 {
2340 struct tcp_sock *tp = tcp_sk(sk);
2341
2342 if (tcp_may_undo(tp)) {
2343 int mib_idx;
2344
2345 /* Happy end! We did not retransmit anything
2346 * or our original transmission succeeded.
2347 */
2348 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2349 tcp_undo_cwr(sk, true);
2350 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2351 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2352 else
2353 mib_idx = LINUX_MIB_TCPFULLUNDO;
2354
2355 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2356 tp->undo_marker = 0;
2357 }
2358 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2359 /* Hold old state until something *above* high_seq
2360 * is ACKed. For Reno it is MUST to prevent false
2361 * fast retransmits (RFC2582). SACK TCP is safe. */
2362 tcp_moderate_cwnd(tp);
2363 return true;
2364 }
2365 tcp_set_ca_state(sk, TCP_CA_Open);
2366 return false;
2367 }
2368
2369 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2370 static void tcp_try_undo_dsack(struct sock *sk)
2371 {
2372 struct tcp_sock *tp = tcp_sk(sk);
2373
2374 if (tp->undo_marker && !tp->undo_retrans) {
2375 DBGUNDO(sk, "D-SACK");
2376 tcp_undo_cwr(sk, true);
2377 tp->undo_marker = 0;
2378 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2379 }
2380 }
2381
2382 /* We can clear retrans_stamp when there are no retransmissions in the
2383 * window. It would seem that it is trivially available for us in
2384 * tp->retrans_out, however, that kind of assumptions doesn't consider
2385 * what will happen if errors occur when sending retransmission for the
2386 * second time. ...It could the that such segment has only
2387 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2388 * the head skb is enough except for some reneging corner cases that
2389 * are not worth the effort.
2390 *
2391 * Main reason for all this complexity is the fact that connection dying
2392 * time now depends on the validity of the retrans_stamp, in particular,
2393 * that successive retransmissions of a segment must not advance
2394 * retrans_stamp under any conditions.
2395 */
2396 static bool tcp_any_retrans_done(const struct sock *sk)
2397 {
2398 const struct tcp_sock *tp = tcp_sk(sk);
2399 struct sk_buff *skb;
2400
2401 if (tp->retrans_out)
2402 return true;
2403
2404 skb = tcp_write_queue_head(sk);
2405 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2406 return true;
2407
2408 return false;
2409 }
2410
2411 /* Undo during fast recovery after partial ACK. */
2412
2413 static int tcp_try_undo_partial(struct sock *sk, int acked)
2414 {
2415 struct tcp_sock *tp = tcp_sk(sk);
2416 /* Partial ACK arrived. Force Hoe's retransmit. */
2417 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2418
2419 if (tcp_may_undo(tp)) {
2420 /* Plain luck! Hole if filled with delayed
2421 * packet, rather than with a retransmit.
2422 */
2423 if (!tcp_any_retrans_done(sk))
2424 tp->retrans_stamp = 0;
2425
2426 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2427
2428 DBGUNDO(sk, "Hoe");
2429 tcp_undo_cwr(sk, false);
2430 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2431
2432 /* So... Do not make Hoe's retransmit yet.
2433 * If the first packet was delayed, the rest
2434 * ones are most probably delayed as well.
2435 */
2436 failed = 0;
2437 }
2438 return failed;
2439 }
2440
2441 /* Undo during loss recovery after partial ACK or using F-RTO. */
2442 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2443 {
2444 struct tcp_sock *tp = tcp_sk(sk);
2445
2446 if (frto_undo || tcp_may_undo(tp)) {
2447 struct sk_buff *skb;
2448 tcp_for_write_queue(skb, sk) {
2449 if (skb == tcp_send_head(sk))
2450 break;
2451 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2452 }
2453
2454 tcp_clear_all_retrans_hints(tp);
2455
2456 DBGUNDO(sk, "partial loss");
2457 tp->lost_out = 0;
2458 tcp_undo_cwr(sk, true);
2459 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2460 if (frto_undo)
2461 NET_INC_STATS_BH(sock_net(sk),
2462 LINUX_MIB_TCPSPURIOUSRTOS);
2463 inet_csk(sk)->icsk_retransmits = 0;
2464 tp->undo_marker = 0;
2465 if (frto_undo || tcp_is_sack(tp))
2466 tcp_set_ca_state(sk, TCP_CA_Open);
2467 return true;
2468 }
2469 return false;
2470 }
2471
2472 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2473 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2474 * It computes the number of packets to send (sndcnt) based on packets newly
2475 * delivered:
2476 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2477 * cwnd reductions across a full RTT.
2478 * 2) If packets in flight is lower than ssthresh (such as due to excess
2479 * losses and/or application stalls), do not perform any further cwnd
2480 * reductions, but instead slow start up to ssthresh.
2481 */
2482 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2483 {
2484 struct tcp_sock *tp = tcp_sk(sk);
2485
2486 tp->high_seq = tp->snd_nxt;
2487 tp->tlp_high_seq = 0;
2488 tp->snd_cwnd_cnt = 0;
2489 tp->prior_cwnd = tp->snd_cwnd;
2490 tp->prr_delivered = 0;
2491 tp->prr_out = 0;
2492 if (set_ssthresh)
2493 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2494 TCP_ECN_queue_cwr(tp);
2495 }
2496
2497 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2498 int fast_rexmit)
2499 {
2500 struct tcp_sock *tp = tcp_sk(sk);
2501 int sndcnt = 0;
2502 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2503
2504 tp->prr_delivered += newly_acked_sacked;
2505 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2506 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2507 tp->prior_cwnd - 1;
2508 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2509 } else {
2510 sndcnt = min_t(int, delta,
2511 max_t(int, tp->prr_delivered - tp->prr_out,
2512 newly_acked_sacked) + 1);
2513 }
2514
2515 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2516 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2517 }
2518
2519 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2520 {
2521 struct tcp_sock *tp = tcp_sk(sk);
2522
2523 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2524 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2525 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2526 tp->snd_cwnd = tp->snd_ssthresh;
2527 tp->snd_cwnd_stamp = tcp_time_stamp;
2528 }
2529 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2530 }
2531
2532 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2533 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2534 {
2535 struct tcp_sock *tp = tcp_sk(sk);
2536
2537 tp->prior_ssthresh = 0;
2538 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2539 tp->undo_marker = 0;
2540 tcp_init_cwnd_reduction(sk, set_ssthresh);
2541 tcp_set_ca_state(sk, TCP_CA_CWR);
2542 }
2543 }
2544
2545 static void tcp_try_keep_open(struct sock *sk)
2546 {
2547 struct tcp_sock *tp = tcp_sk(sk);
2548 int state = TCP_CA_Open;
2549
2550 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2551 state = TCP_CA_Disorder;
2552
2553 if (inet_csk(sk)->icsk_ca_state != state) {
2554 tcp_set_ca_state(sk, state);
2555 tp->high_seq = tp->snd_nxt;
2556 }
2557 }
2558
2559 static void tcp_try_to_open(struct sock *sk, int flag, int newly_acked_sacked)
2560 {
2561 struct tcp_sock *tp = tcp_sk(sk);
2562
2563 tcp_verify_left_out(tp);
2564
2565 if (!tcp_any_retrans_done(sk))
2566 tp->retrans_stamp = 0;
2567
2568 if (flag & FLAG_ECE)
2569 tcp_enter_cwr(sk, 1);
2570
2571 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2572 tcp_try_keep_open(sk);
2573 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2574 tcp_moderate_cwnd(tp);
2575 } else {
2576 tcp_cwnd_reduction(sk, newly_acked_sacked, 0);
2577 }
2578 }
2579
2580 static void tcp_mtup_probe_failed(struct sock *sk)
2581 {
2582 struct inet_connection_sock *icsk = inet_csk(sk);
2583
2584 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2585 icsk->icsk_mtup.probe_size = 0;
2586 }
2587
2588 static void tcp_mtup_probe_success(struct sock *sk)
2589 {
2590 struct tcp_sock *tp = tcp_sk(sk);
2591 struct inet_connection_sock *icsk = inet_csk(sk);
2592
2593 /* FIXME: breaks with very large cwnd */
2594 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2595 tp->snd_cwnd = tp->snd_cwnd *
2596 tcp_mss_to_mtu(sk, tp->mss_cache) /
2597 icsk->icsk_mtup.probe_size;
2598 tp->snd_cwnd_cnt = 0;
2599 tp->snd_cwnd_stamp = tcp_time_stamp;
2600 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2601
2602 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2603 icsk->icsk_mtup.probe_size = 0;
2604 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2605 }
2606
2607 /* Do a simple retransmit without using the backoff mechanisms in
2608 * tcp_timer. This is used for path mtu discovery.
2609 * The socket is already locked here.
2610 */
2611 void tcp_simple_retransmit(struct sock *sk)
2612 {
2613 const struct inet_connection_sock *icsk = inet_csk(sk);
2614 struct tcp_sock *tp = tcp_sk(sk);
2615 struct sk_buff *skb;
2616 unsigned int mss = tcp_current_mss(sk);
2617 u32 prior_lost = tp->lost_out;
2618
2619 tcp_for_write_queue(skb, sk) {
2620 if (skb == tcp_send_head(sk))
2621 break;
2622 if (tcp_skb_seglen(skb) > mss &&
2623 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2624 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2625 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2626 tp->retrans_out -= tcp_skb_pcount(skb);
2627 }
2628 tcp_skb_mark_lost_uncond_verify(tp, skb);
2629 }
2630 }
2631
2632 tcp_clear_retrans_hints_partial(tp);
2633
2634 if (prior_lost == tp->lost_out)
2635 return;
2636
2637 if (tcp_is_reno(tp))
2638 tcp_limit_reno_sacked(tp);
2639
2640 tcp_verify_left_out(tp);
2641
2642 /* Don't muck with the congestion window here.
2643 * Reason is that we do not increase amount of _data_
2644 * in network, but units changed and effective
2645 * cwnd/ssthresh really reduced now.
2646 */
2647 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2648 tp->high_seq = tp->snd_nxt;
2649 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2650 tp->prior_ssthresh = 0;
2651 tp->undo_marker = 0;
2652 tcp_set_ca_state(sk, TCP_CA_Loss);
2653 }
2654 tcp_xmit_retransmit_queue(sk);
2655 }
2656 EXPORT_SYMBOL(tcp_simple_retransmit);
2657
2658 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2659 {
2660 struct tcp_sock *tp = tcp_sk(sk);
2661 int mib_idx;
2662
2663 if (tcp_is_reno(tp))
2664 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2665 else
2666 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2667
2668 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2669
2670 tp->prior_ssthresh = 0;
2671 tp->undo_marker = tp->snd_una;
2672 tp->undo_retrans = tp->retrans_out;
2673
2674 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2675 if (!ece_ack)
2676 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2677 tcp_init_cwnd_reduction(sk, true);
2678 }
2679 tcp_set_ca_state(sk, TCP_CA_Recovery);
2680 }
2681
2682 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2683 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2684 */
2685 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2686 {
2687 struct inet_connection_sock *icsk = inet_csk(sk);
2688 struct tcp_sock *tp = tcp_sk(sk);
2689 bool recovered = !before(tp->snd_una, tp->high_seq);
2690
2691 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2692 if (flag & FLAG_ORIG_SACK_ACKED) {
2693 /* Step 3.b. A timeout is spurious if not all data are
2694 * lost, i.e., never-retransmitted data are (s)acked.
2695 */
2696 tcp_try_undo_loss(sk, true);
2697 return;
2698 }
2699 if (after(tp->snd_nxt, tp->high_seq) &&
2700 (flag & FLAG_DATA_SACKED || is_dupack)) {
2701 tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2702 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2703 tp->high_seq = tp->snd_nxt;
2704 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
2705 TCP_NAGLE_OFF);
2706 if (after(tp->snd_nxt, tp->high_seq))
2707 return; /* Step 2.b */
2708 tp->frto = 0;
2709 }
2710 }
2711
2712 if (recovered) {
2713 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2714 icsk->icsk_retransmits = 0;
2715 tcp_try_undo_recovery(sk);
2716 return;
2717 }
2718 if (flag & FLAG_DATA_ACKED)
2719 icsk->icsk_retransmits = 0;
2720 if (tcp_is_reno(tp)) {
2721 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2722 * delivered. Lower inflight to clock out (re)tranmissions.
2723 */
2724 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2725 tcp_add_reno_sack(sk);
2726 else if (flag & FLAG_SND_UNA_ADVANCED)
2727 tcp_reset_reno_sack(tp);
2728 }
2729 if (tcp_try_undo_loss(sk, false))
2730 return;
2731 tcp_xmit_retransmit_queue(sk);
2732 }
2733
2734 /* Process an event, which can update packets-in-flight not trivially.
2735 * Main goal of this function is to calculate new estimate for left_out,
2736 * taking into account both packets sitting in receiver's buffer and
2737 * packets lost by network.
2738 *
2739 * Besides that it does CWND reduction, when packet loss is detected
2740 * and changes state of machine.
2741 *
2742 * It does _not_ decide what to send, it is made in function
2743 * tcp_xmit_retransmit_queue().
2744 */
2745 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
2746 int prior_sacked, bool is_dupack,
2747 int flag)
2748 {
2749 struct inet_connection_sock *icsk = inet_csk(sk);
2750 struct tcp_sock *tp = tcp_sk(sk);
2751 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2752 (tcp_fackets_out(tp) > tp->reordering));
2753 int newly_acked_sacked = 0;
2754 int fast_rexmit = 0;
2755
2756 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2757 tp->sacked_out = 0;
2758 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2759 tp->fackets_out = 0;
2760
2761 /* Now state machine starts.
2762 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2763 if (flag & FLAG_ECE)
2764 tp->prior_ssthresh = 0;
2765
2766 /* B. In all the states check for reneging SACKs. */
2767 if (tcp_check_sack_reneging(sk, flag))
2768 return;
2769
2770 /* C. Check consistency of the current state. */
2771 tcp_verify_left_out(tp);
2772
2773 /* D. Check state exit conditions. State can be terminated
2774 * when high_seq is ACKed. */
2775 if (icsk->icsk_ca_state == TCP_CA_Open) {
2776 WARN_ON(tp->retrans_out != 0);
2777 tp->retrans_stamp = 0;
2778 } else if (!before(tp->snd_una, tp->high_seq)) {
2779 switch (icsk->icsk_ca_state) {
2780 case TCP_CA_CWR:
2781 /* CWR is to be held something *above* high_seq
2782 * is ACKed for CWR bit to reach receiver. */
2783 if (tp->snd_una != tp->high_seq) {
2784 tcp_end_cwnd_reduction(sk);
2785 tcp_set_ca_state(sk, TCP_CA_Open);
2786 }
2787 break;
2788
2789 case TCP_CA_Recovery:
2790 if (tcp_is_reno(tp))
2791 tcp_reset_reno_sack(tp);
2792 if (tcp_try_undo_recovery(sk))
2793 return;
2794 tcp_end_cwnd_reduction(sk);
2795 break;
2796 }
2797 }
2798
2799 /* E. Process state. */
2800 switch (icsk->icsk_ca_state) {
2801 case TCP_CA_Recovery:
2802 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2803 if (tcp_is_reno(tp) && is_dupack)
2804 tcp_add_reno_sack(sk);
2805 } else
2806 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2807 newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
2808 break;
2809 case TCP_CA_Loss:
2810 tcp_process_loss(sk, flag, is_dupack);
2811 if (icsk->icsk_ca_state != TCP_CA_Open)
2812 return;
2813 /* Fall through to processing in Open state. */
2814 default:
2815 if (tcp_is_reno(tp)) {
2816 if (flag & FLAG_SND_UNA_ADVANCED)
2817 tcp_reset_reno_sack(tp);
2818 if (is_dupack)
2819 tcp_add_reno_sack(sk);
2820 }
2821 newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
2822
2823 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2824 tcp_try_undo_dsack(sk);
2825
2826 if (!tcp_time_to_recover(sk, flag)) {
2827 tcp_try_to_open(sk, flag, newly_acked_sacked);
2828 return;
2829 }
2830
2831 /* MTU probe failure: don't reduce cwnd */
2832 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2833 icsk->icsk_mtup.probe_size &&
2834 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2835 tcp_mtup_probe_failed(sk);
2836 /* Restores the reduction we did in tcp_mtup_probe() */
2837 tp->snd_cwnd++;
2838 tcp_simple_retransmit(sk);
2839 return;
2840 }
2841
2842 /* Otherwise enter Recovery state */
2843 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2844 fast_rexmit = 1;
2845 }
2846
2847 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2848 tcp_update_scoreboard(sk, fast_rexmit);
2849 tcp_cwnd_reduction(sk, newly_acked_sacked, fast_rexmit);
2850 tcp_xmit_retransmit_queue(sk);
2851 }
2852
2853 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
2854 {
2855 tcp_rtt_estimator(sk, seq_rtt);
2856 tcp_set_rto(sk);
2857 inet_csk(sk)->icsk_backoff = 0;
2858 }
2859 EXPORT_SYMBOL(tcp_valid_rtt_meas);
2860
2861 /* Read draft-ietf-tcplw-high-performance before mucking
2862 * with this code. (Supersedes RFC1323)
2863 */
2864 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2865 {
2866 /* RTTM Rule: A TSecr value received in a segment is used to
2867 * update the averaged RTT measurement only if the segment
2868 * acknowledges some new data, i.e., only if it advances the
2869 * left edge of the send window.
2870 *
2871 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2872 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2873 *
2874 * Changed: reset backoff as soon as we see the first valid sample.
2875 * If we do not, we get strongly overestimated rto. With timestamps
2876 * samples are accepted even from very old segments: f.e., when rtt=1
2877 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2878 * answer arrives rto becomes 120 seconds! If at least one of segments
2879 * in window is lost... Voila. --ANK (010210)
2880 */
2881 struct tcp_sock *tp = tcp_sk(sk);
2882
2883 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2884 }
2885
2886 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2887 {
2888 /* We don't have a timestamp. Can only use
2889 * packets that are not retransmitted to determine
2890 * rtt estimates. Also, we must not reset the
2891 * backoff for rto until we get a non-retransmitted
2892 * packet. This allows us to deal with a situation
2893 * where the network delay has increased suddenly.
2894 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2895 */
2896
2897 if (flag & FLAG_RETRANS_DATA_ACKED)
2898 return;
2899
2900 tcp_valid_rtt_meas(sk, seq_rtt);
2901 }
2902
2903 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2904 const s32 seq_rtt)
2905 {
2906 const struct tcp_sock *tp = tcp_sk(sk);
2907 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2908 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2909 tcp_ack_saw_tstamp(sk, flag);
2910 else if (seq_rtt >= 0)
2911 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2912 }
2913
2914 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2915 {
2916 const struct inet_connection_sock *icsk = inet_csk(sk);
2917 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2918 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2919 }
2920
2921 /* Restart timer after forward progress on connection.
2922 * RFC2988 recommends to restart timer to now+rto.
2923 */
2924 void tcp_rearm_rto(struct sock *sk)
2925 {
2926 const struct inet_connection_sock *icsk = inet_csk(sk);
2927 struct tcp_sock *tp = tcp_sk(sk);
2928
2929 /* If the retrans timer is currently being used by Fast Open
2930 * for SYN-ACK retrans purpose, stay put.
2931 */
2932 if (tp->fastopen_rsk)
2933 return;
2934
2935 if (!tp->packets_out) {
2936 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2937 } else {
2938 u32 rto = inet_csk(sk)->icsk_rto;
2939 /* Offset the time elapsed after installing regular RTO */
2940 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2941 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2942 struct sk_buff *skb = tcp_write_queue_head(sk);
2943 const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
2944 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2945 /* delta may not be positive if the socket is locked
2946 * when the retrans timer fires and is rescheduled.
2947 */
2948 if (delta > 0)
2949 rto = delta;
2950 }
2951 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2952 TCP_RTO_MAX);
2953 }
2954 }
2955
2956 /* This function is called when the delayed ER timer fires. TCP enters
2957 * fast recovery and performs fast-retransmit.
2958 */
2959 void tcp_resume_early_retransmit(struct sock *sk)
2960 {
2961 struct tcp_sock *tp = tcp_sk(sk);
2962
2963 tcp_rearm_rto(sk);
2964
2965 /* Stop if ER is disabled after the delayed ER timer is scheduled */
2966 if (!tp->do_early_retrans)
2967 return;
2968
2969 tcp_enter_recovery(sk, false);
2970 tcp_update_scoreboard(sk, 1);
2971 tcp_xmit_retransmit_queue(sk);
2972 }
2973
2974 /* If we get here, the whole TSO packet has not been acked. */
2975 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2976 {
2977 struct tcp_sock *tp = tcp_sk(sk);
2978 u32 packets_acked;
2979
2980 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2981
2982 packets_acked = tcp_skb_pcount(skb);
2983 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2984 return 0;
2985 packets_acked -= tcp_skb_pcount(skb);
2986
2987 if (packets_acked) {
2988 BUG_ON(tcp_skb_pcount(skb) == 0);
2989 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2990 }
2991
2992 return packets_acked;
2993 }
2994
2995 /* Remove acknowledged frames from the retransmission queue. If our packet
2996 * is before the ack sequence we can discard it as it's confirmed to have
2997 * arrived at the other end.
2998 */
2999 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3000 u32 prior_snd_una)
3001 {
3002 struct tcp_sock *tp = tcp_sk(sk);
3003 const struct inet_connection_sock *icsk = inet_csk(sk);
3004 struct sk_buff *skb;
3005 u32 now = tcp_time_stamp;
3006 int fully_acked = true;
3007 int flag = 0;
3008 u32 pkts_acked = 0;
3009 u32 reord = tp->packets_out;
3010 u32 prior_sacked = tp->sacked_out;
3011 s32 seq_rtt = -1;
3012 s32 ca_seq_rtt = -1;
3013 ktime_t last_ackt = net_invalid_timestamp();
3014
3015 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3016 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3017 u32 acked_pcount;
3018 u8 sacked = scb->sacked;
3019
3020 /* Determine how many packets and what bytes were acked, tso and else */
3021 if (after(scb->end_seq, tp->snd_una)) {
3022 if (tcp_skb_pcount(skb) == 1 ||
3023 !after(tp->snd_una, scb->seq))
3024 break;
3025
3026 acked_pcount = tcp_tso_acked(sk, skb);
3027 if (!acked_pcount)
3028 break;
3029
3030 fully_acked = false;
3031 } else {
3032 acked_pcount = tcp_skb_pcount(skb);
3033 }
3034
3035 if (sacked & TCPCB_RETRANS) {
3036 if (sacked & TCPCB_SACKED_RETRANS)
3037 tp->retrans_out -= acked_pcount;
3038 flag |= FLAG_RETRANS_DATA_ACKED;
3039 ca_seq_rtt = -1;
3040 seq_rtt = -1;
3041 } else {
3042 ca_seq_rtt = now - scb->when;
3043 last_ackt = skb->tstamp;
3044 if (seq_rtt < 0) {
3045 seq_rtt = ca_seq_rtt;
3046 }
3047 if (!(sacked & TCPCB_SACKED_ACKED))
3048 reord = min(pkts_acked, reord);
3049 if (!after(scb->end_seq, tp->high_seq))
3050 flag |= FLAG_ORIG_SACK_ACKED;
3051 }
3052
3053 if (sacked & TCPCB_SACKED_ACKED)
3054 tp->sacked_out -= acked_pcount;
3055 if (sacked & TCPCB_LOST)
3056 tp->lost_out -= acked_pcount;
3057
3058 tp->packets_out -= acked_pcount;
3059 pkts_acked += acked_pcount;
3060
3061 /* Initial outgoing SYN's get put onto the write_queue
3062 * just like anything else we transmit. It is not
3063 * true data, and if we misinform our callers that
3064 * this ACK acks real data, we will erroneously exit
3065 * connection startup slow start one packet too
3066 * quickly. This is severely frowned upon behavior.
3067 */
3068 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3069 flag |= FLAG_DATA_ACKED;
3070 } else {
3071 flag |= FLAG_SYN_ACKED;
3072 tp->retrans_stamp = 0;
3073 }
3074
3075 if (!fully_acked)
3076 break;
3077
3078 tcp_unlink_write_queue(skb, sk);
3079 sk_wmem_free_skb(sk, skb);
3080 tp->scoreboard_skb_hint = NULL;
3081 if (skb == tp->retransmit_skb_hint)
3082 tp->retransmit_skb_hint = NULL;
3083 if (skb == tp->lost_skb_hint)
3084 tp->lost_skb_hint = NULL;
3085 }
3086
3087 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3088 tp->snd_up = tp->snd_una;
3089
3090 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3091 flag |= FLAG_SACK_RENEGING;
3092
3093 if (flag & FLAG_ACKED) {
3094 const struct tcp_congestion_ops *ca_ops
3095 = inet_csk(sk)->icsk_ca_ops;
3096
3097 if (unlikely(icsk->icsk_mtup.probe_size &&
3098 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3099 tcp_mtup_probe_success(sk);
3100 }
3101
3102 tcp_ack_update_rtt(sk, flag, seq_rtt);
3103 tcp_rearm_rto(sk);
3104
3105 if (tcp_is_reno(tp)) {
3106 tcp_remove_reno_sacks(sk, pkts_acked);
3107 } else {
3108 int delta;
3109
3110 /* Non-retransmitted hole got filled? That's reordering */
3111 if (reord < prior_fackets)
3112 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3113
3114 delta = tcp_is_fack(tp) ? pkts_acked :
3115 prior_sacked - tp->sacked_out;
3116 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3117 }
3118
3119 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3120
3121 if (ca_ops->pkts_acked) {
3122 s32 rtt_us = -1;
3123
3124 /* Is the ACK triggering packet unambiguous? */
3125 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3126 /* High resolution needed and available? */
3127 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3128 !ktime_equal(last_ackt,
3129 net_invalid_timestamp()))
3130 rtt_us = ktime_us_delta(ktime_get_real(),
3131 last_ackt);
3132 else if (ca_seq_rtt >= 0)
3133 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3134 }
3135
3136 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3137 }
3138 }
3139
3140 #if FASTRETRANS_DEBUG > 0
3141 WARN_ON((int)tp->sacked_out < 0);
3142 WARN_ON((int)tp->lost_out < 0);
3143 WARN_ON((int)tp->retrans_out < 0);
3144 if (!tp->packets_out && tcp_is_sack(tp)) {
3145 icsk = inet_csk(sk);
3146 if (tp->lost_out) {
3147 pr_debug("Leak l=%u %d\n",
3148 tp->lost_out, icsk->icsk_ca_state);
3149 tp->lost_out = 0;
3150 }
3151 if (tp->sacked_out) {
3152 pr_debug("Leak s=%u %d\n",
3153 tp->sacked_out, icsk->icsk_ca_state);
3154 tp->sacked_out = 0;
3155 }
3156 if (tp->retrans_out) {
3157 pr_debug("Leak r=%u %d\n",
3158 tp->retrans_out, icsk->icsk_ca_state);
3159 tp->retrans_out = 0;
3160 }
3161 }
3162 #endif
3163 return flag;
3164 }
3165
3166 static void tcp_ack_probe(struct sock *sk)
3167 {
3168 const struct tcp_sock *tp = tcp_sk(sk);
3169 struct inet_connection_sock *icsk = inet_csk(sk);
3170
3171 /* Was it a usable window open? */
3172
3173 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3174 icsk->icsk_backoff = 0;
3175 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3176 /* Socket must be waked up by subsequent tcp_data_snd_check().
3177 * This function is not for random using!
3178 */
3179 } else {
3180 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3181 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3182 TCP_RTO_MAX);
3183 }
3184 }
3185
3186 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3187 {
3188 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3189 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3190 }
3191
3192 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3193 {
3194 const struct tcp_sock *tp = tcp_sk(sk);
3195 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3196 !tcp_in_cwnd_reduction(sk);
3197 }
3198
3199 /* Check that window update is acceptable.
3200 * The function assumes that snd_una<=ack<=snd_next.
3201 */
3202 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3203 const u32 ack, const u32 ack_seq,
3204 const u32 nwin)
3205 {
3206 return after(ack, tp->snd_una) ||
3207 after(ack_seq, tp->snd_wl1) ||
3208 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3209 }
3210
3211 /* Update our send window.
3212 *
3213 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3214 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3215 */
3216 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3217 u32 ack_seq)
3218 {
3219 struct tcp_sock *tp = tcp_sk(sk);
3220 int flag = 0;
3221 u32 nwin = ntohs(tcp_hdr(skb)->window);
3222
3223 if (likely(!tcp_hdr(skb)->syn))
3224 nwin <<= tp->rx_opt.snd_wscale;
3225
3226 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3227 flag |= FLAG_WIN_UPDATE;
3228 tcp_update_wl(tp, ack_seq);
3229
3230 if (tp->snd_wnd != nwin) {
3231 tp->snd_wnd = nwin;
3232
3233 /* Note, it is the only place, where
3234 * fast path is recovered for sending TCP.
3235 */
3236 tp->pred_flags = 0;
3237 tcp_fast_path_check(sk);
3238
3239 if (nwin > tp->max_window) {
3240 tp->max_window = nwin;
3241 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3242 }
3243 }
3244 }
3245
3246 tp->snd_una = ack;
3247
3248 return flag;
3249 }
3250
3251 /* RFC 5961 7 [ACK Throttling] */
3252 static void tcp_send_challenge_ack(struct sock *sk)
3253 {
3254 /* unprotected vars, we dont care of overwrites */
3255 static u32 challenge_timestamp;
3256 static unsigned int challenge_count;
3257 u32 now = jiffies / HZ;
3258
3259 if (now != challenge_timestamp) {
3260 challenge_timestamp = now;
3261 challenge_count = 0;
3262 }
3263 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3264 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3265 tcp_send_ack(sk);
3266 }
3267 }
3268
3269 static void tcp_store_ts_recent(struct tcp_sock *tp)
3270 {
3271 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3272 tp->rx_opt.ts_recent_stamp = get_seconds();
3273 }
3274
3275 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3276 {
3277 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3278 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3279 * extra check below makes sure this can only happen
3280 * for pure ACK frames. -DaveM
3281 *
3282 * Not only, also it occurs for expired timestamps.
3283 */
3284
3285 if (tcp_paws_check(&tp->rx_opt, 0))
3286 tcp_store_ts_recent(tp);
3287 }
3288 }
3289
3290 /* This routine deals with acks during a TLP episode.
3291 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3292 */
3293 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3294 {
3295 struct tcp_sock *tp = tcp_sk(sk);
3296 bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3297 !(flag & (FLAG_SND_UNA_ADVANCED |
3298 FLAG_NOT_DUP | FLAG_DATA_SACKED));
3299
3300 /* Mark the end of TLP episode on receiving TLP dupack or when
3301 * ack is after tlp_high_seq.
3302 */
3303 if (is_tlp_dupack) {
3304 tp->tlp_high_seq = 0;
3305 return;
3306 }
3307
3308 if (after(ack, tp->tlp_high_seq)) {
3309 tp->tlp_high_seq = 0;
3310 /* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3311 if (!(flag & FLAG_DSACKING_ACK)) {
3312 tcp_init_cwnd_reduction(sk, true);
3313 tcp_set_ca_state(sk, TCP_CA_CWR);
3314 tcp_end_cwnd_reduction(sk);
3315 tcp_set_ca_state(sk, TCP_CA_Open);
3316 NET_INC_STATS_BH(sock_net(sk),
3317 LINUX_MIB_TCPLOSSPROBERECOVERY);
3318 }
3319 }
3320 }
3321
3322 /* This routine deals with incoming acks, but not outgoing ones. */
3323 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3324 {
3325 struct inet_connection_sock *icsk = inet_csk(sk);
3326 struct tcp_sock *tp = tcp_sk(sk);
3327 u32 prior_snd_una = tp->snd_una;
3328 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3329 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3330 bool is_dupack = false;
3331 u32 prior_in_flight;
3332 u32 prior_fackets;
3333 int prior_packets;
3334 int prior_sacked = tp->sacked_out;
3335 int pkts_acked = 0;
3336
3337 /* If the ack is older than previous acks
3338 * then we can probably ignore it.
3339 */
3340 if (before(ack, prior_snd_una)) {
3341 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3342 if (before(ack, prior_snd_una - tp->max_window)) {
3343 tcp_send_challenge_ack(sk);
3344 return -1;
3345 }
3346 goto old_ack;
3347 }
3348
3349 /* If the ack includes data we haven't sent yet, discard
3350 * this segment (RFC793 Section 3.9).
3351 */
3352 if (after(ack, tp->snd_nxt))
3353 goto invalid_ack;
3354
3355 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3356 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3357 tcp_rearm_rto(sk);
3358
3359 if (after(ack, prior_snd_una))
3360 flag |= FLAG_SND_UNA_ADVANCED;
3361
3362 prior_fackets = tp->fackets_out;
3363 prior_in_flight = tcp_packets_in_flight(tp);
3364
3365 /* ts_recent update must be made after we are sure that the packet
3366 * is in window.
3367 */
3368 if (flag & FLAG_UPDATE_TS_RECENT)
3369 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3370
3371 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3372 /* Window is constant, pure forward advance.
3373 * No more checks are required.
3374 * Note, we use the fact that SND.UNA>=SND.WL2.
3375 */
3376 tcp_update_wl(tp, ack_seq);
3377 tp->snd_una = ack;
3378 flag |= FLAG_WIN_UPDATE;
3379
3380 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3381
3382 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3383 } else {
3384 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3385 flag |= FLAG_DATA;
3386 else
3387 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3388
3389 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3390
3391 if (TCP_SKB_CB(skb)->sacked)
3392 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3393
3394 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3395 flag |= FLAG_ECE;
3396
3397 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3398 }
3399
3400 /* We passed data and got it acked, remove any soft error
3401 * log. Something worked...
3402 */
3403 sk->sk_err_soft = 0;
3404 icsk->icsk_probes_out = 0;
3405 tp->rcv_tstamp = tcp_time_stamp;
3406 prior_packets = tp->packets_out;
3407 if (!prior_packets)
3408 goto no_queue;
3409
3410 /* See if we can take anything off of the retransmit queue. */
3411 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3412
3413 pkts_acked = prior_packets - tp->packets_out;
3414
3415 if (tcp_ack_is_dubious(sk, flag)) {
3416 /* Advance CWND, if state allows this. */
3417 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
3418 tcp_cong_avoid(sk, ack, prior_in_flight);
3419 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3420 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3421 is_dupack, flag);
3422 } else {
3423 if (flag & FLAG_DATA_ACKED)
3424 tcp_cong_avoid(sk, ack, prior_in_flight);
3425 }
3426
3427 if (tp->tlp_high_seq)
3428 tcp_process_tlp_ack(sk, ack, flag);
3429
3430 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3431 struct dst_entry *dst = __sk_dst_get(sk);
3432 if (dst)
3433 dst_confirm(dst);
3434 }
3435
3436 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3437 tcp_schedule_loss_probe(sk);
3438 return 1;
3439
3440 no_queue:
3441 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3442 if (flag & FLAG_DSACKING_ACK)
3443 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3444 is_dupack, flag);
3445 /* If this ack opens up a zero window, clear backoff. It was
3446 * being used to time the probes, and is probably far higher than
3447 * it needs to be for normal retransmission.
3448 */
3449 if (tcp_send_head(sk))
3450 tcp_ack_probe(sk);
3451
3452 if (tp->tlp_high_seq)
3453 tcp_process_tlp_ack(sk, ack, flag);
3454 return 1;
3455
3456 invalid_ack:
3457 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3458 return -1;
3459
3460 old_ack:
3461 /* If data was SACKed, tag it and see if we should send more data.
3462 * If data was DSACKed, see if we can undo a cwnd reduction.
3463 */
3464 if (TCP_SKB_CB(skb)->sacked) {
3465 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3466 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3467 is_dupack, flag);
3468 }
3469
3470 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3471 return 0;
3472 }
3473
3474 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3475 * But, this can also be called on packets in the established flow when
3476 * the fast version below fails.
3477 */
3478 void tcp_parse_options(const struct sk_buff *skb,
3479 struct tcp_options_received *opt_rx, int estab,
3480 struct tcp_fastopen_cookie *foc)
3481 {
3482 const unsigned char *ptr;
3483 const struct tcphdr *th = tcp_hdr(skb);
3484 int length = (th->doff * 4) - sizeof(struct tcphdr);
3485
3486 ptr = (const unsigned char *)(th + 1);
3487 opt_rx->saw_tstamp = 0;
3488
3489 while (length > 0) {
3490 int opcode = *ptr++;
3491 int opsize;
3492
3493 switch (opcode) {
3494 case TCPOPT_EOL:
3495 return;
3496 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3497 length--;
3498 continue;
3499 default:
3500 opsize = *ptr++;
3501 if (opsize < 2) /* "silly options" */
3502 return;
3503 if (opsize > length)
3504 return; /* don't parse partial options */
3505 switch (opcode) {
3506 case TCPOPT_MSS:
3507 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3508 u16 in_mss = get_unaligned_be16(ptr);
3509 if (in_mss) {
3510 if (opt_rx->user_mss &&
3511 opt_rx->user_mss < in_mss)
3512 in_mss = opt_rx->user_mss;
3513 opt_rx->mss_clamp = in_mss;
3514 }
3515 }
3516 break;
3517 case TCPOPT_WINDOW:
3518 if (opsize == TCPOLEN_WINDOW && th->syn &&
3519 !estab && sysctl_tcp_window_scaling) {
3520 __u8 snd_wscale = *(__u8 *)ptr;
3521 opt_rx->wscale_ok = 1;
3522 if (snd_wscale > 14) {
3523 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3524 __func__,
3525 snd_wscale);
3526 snd_wscale = 14;
3527 }
3528 opt_rx->snd_wscale = snd_wscale;
3529 }
3530 break;
3531 case TCPOPT_TIMESTAMP:
3532 if ((opsize == TCPOLEN_TIMESTAMP) &&
3533 ((estab && opt_rx->tstamp_ok) ||
3534 (!estab && sysctl_tcp_timestamps))) {
3535 opt_rx->saw_tstamp = 1;
3536 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3537 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3538 }
3539 break;
3540 case TCPOPT_SACK_PERM:
3541 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3542 !estab && sysctl_tcp_sack) {
3543 opt_rx->sack_ok = TCP_SACK_SEEN;
3544 tcp_sack_reset(opt_rx);
3545 }
3546 break;
3547
3548 case TCPOPT_SACK:
3549 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3550 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3551 opt_rx->sack_ok) {
3552 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3553 }
3554 break;
3555 #ifdef CONFIG_TCP_MD5SIG
3556 case TCPOPT_MD5SIG:
3557 /*
3558 * The MD5 Hash has already been
3559 * checked (see tcp_v{4,6}_do_rcv()).
3560 */
3561 break;
3562 #endif
3563 case TCPOPT_EXP:
3564 /* Fast Open option shares code 254 using a
3565 * 16 bits magic number. It's valid only in
3566 * SYN or SYN-ACK with an even size.
3567 */
3568 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3569 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3570 foc == NULL || !th->syn || (opsize & 1))
3571 break;
3572 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3573 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3574 foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3575 memcpy(foc->val, ptr + 2, foc->len);
3576 else if (foc->len != 0)
3577 foc->len = -1;
3578 break;
3579
3580 }
3581 ptr += opsize-2;
3582 length -= opsize;
3583 }
3584 }
3585 }
3586 EXPORT_SYMBOL(tcp_parse_options);
3587
3588 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3589 {
3590 const __be32 *ptr = (const __be32 *)(th + 1);
3591
3592 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3593 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3594 tp->rx_opt.saw_tstamp = 1;
3595 ++ptr;
3596 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3597 ++ptr;
3598 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3599 return true;
3600 }
3601 return false;
3602 }
3603
3604 /* Fast parse options. This hopes to only see timestamps.
3605 * If it is wrong it falls back on tcp_parse_options().
3606 */
3607 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3608 const struct tcphdr *th, struct tcp_sock *tp)
3609 {
3610 /* In the spirit of fast parsing, compare doff directly to constant
3611 * values. Because equality is used, short doff can be ignored here.
3612 */
3613 if (th->doff == (sizeof(*th) / 4)) {
3614 tp->rx_opt.saw_tstamp = 0;
3615 return false;
3616 } else if (tp->rx_opt.tstamp_ok &&
3617 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3618 if (tcp_parse_aligned_timestamp(tp, th))
3619 return true;
3620 }
3621
3622 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3623 if (tp->rx_opt.saw_tstamp)
3624 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3625
3626 return true;
3627 }
3628
3629 #ifdef CONFIG_TCP_MD5SIG
3630 /*
3631 * Parse MD5 Signature option
3632 */
3633 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3634 {
3635 int length = (th->doff << 2) - sizeof(*th);
3636 const u8 *ptr = (const u8 *)(th + 1);
3637
3638 /* If the TCP option is too short, we can short cut */
3639 if (length < TCPOLEN_MD5SIG)
3640 return NULL;
3641
3642 while (length > 0) {
3643 int opcode = *ptr++;
3644 int opsize;
3645
3646 switch(opcode) {
3647 case TCPOPT_EOL:
3648 return NULL;
3649 case TCPOPT_NOP:
3650 length--;
3651 continue;
3652 default:
3653 opsize = *ptr++;
3654 if (opsize < 2 || opsize > length)
3655 return NULL;
3656 if (opcode == TCPOPT_MD5SIG)
3657 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3658 }
3659 ptr += opsize - 2;
3660 length -= opsize;
3661 }
3662 return NULL;
3663 }
3664 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3665 #endif
3666
3667 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3668 *
3669 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3670 * it can pass through stack. So, the following predicate verifies that
3671 * this segment is not used for anything but congestion avoidance or
3672 * fast retransmit. Moreover, we even are able to eliminate most of such
3673 * second order effects, if we apply some small "replay" window (~RTO)
3674 * to timestamp space.
3675 *
3676 * All these measures still do not guarantee that we reject wrapped ACKs
3677 * on networks with high bandwidth, when sequence space is recycled fastly,
3678 * but it guarantees that such events will be very rare and do not affect
3679 * connection seriously. This doesn't look nice, but alas, PAWS is really
3680 * buggy extension.
3681 *
3682 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3683 * states that events when retransmit arrives after original data are rare.
3684 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3685 * the biggest problem on large power networks even with minor reordering.
3686 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3687 * up to bandwidth of 18Gigabit/sec. 8) ]
3688 */
3689
3690 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3691 {
3692 const struct tcp_sock *tp = tcp_sk(sk);
3693 const struct tcphdr *th = tcp_hdr(skb);
3694 u32 seq = TCP_SKB_CB(skb)->seq;
3695 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3696
3697 return (/* 1. Pure ACK with correct sequence number. */
3698 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3699
3700 /* 2. ... and duplicate ACK. */
3701 ack == tp->snd_una &&
3702
3703 /* 3. ... and does not update window. */
3704 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3705
3706 /* 4. ... and sits in replay window. */
3707 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3708 }
3709
3710 static inline bool tcp_paws_discard(const struct sock *sk,
3711 const struct sk_buff *skb)
3712 {
3713 const struct tcp_sock *tp = tcp_sk(sk);
3714
3715 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3716 !tcp_disordered_ack(sk, skb);
3717 }
3718
3719 /* Check segment sequence number for validity.
3720 *
3721 * Segment controls are considered valid, if the segment
3722 * fits to the window after truncation to the window. Acceptability
3723 * of data (and SYN, FIN, of course) is checked separately.
3724 * See tcp_data_queue(), for example.
3725 *
3726 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3727 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3728 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3729 * (borrowed from freebsd)
3730 */
3731
3732 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3733 {
3734 return !before(end_seq, tp->rcv_wup) &&
3735 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3736 }
3737
3738 /* When we get a reset we do this. */
3739 void tcp_reset(struct sock *sk)
3740 {
3741 /* We want the right error as BSD sees it (and indeed as we do). */
3742 switch (sk->sk_state) {
3743 case TCP_SYN_SENT:
3744 sk->sk_err = ECONNREFUSED;
3745 break;
3746 case TCP_CLOSE_WAIT:
3747 sk->sk_err = EPIPE;
3748 break;
3749 case TCP_CLOSE:
3750 return;
3751 default:
3752 sk->sk_err = ECONNRESET;
3753 }
3754 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3755 smp_wmb();
3756
3757 if (!sock_flag(sk, SOCK_DEAD))
3758 sk->sk_error_report(sk);
3759
3760 tcp_done(sk);
3761 }
3762
3763 /*
3764 * Process the FIN bit. This now behaves as it is supposed to work
3765 * and the FIN takes effect when it is validly part of sequence
3766 * space. Not before when we get holes.
3767 *
3768 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3769 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3770 * TIME-WAIT)
3771 *
3772 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3773 * close and we go into CLOSING (and later onto TIME-WAIT)
3774 *
3775 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3776 */
3777 static void tcp_fin(struct sock *sk)
3778 {
3779 struct tcp_sock *tp = tcp_sk(sk);
3780
3781 inet_csk_schedule_ack(sk);
3782
3783 sk->sk_shutdown |= RCV_SHUTDOWN;
3784 sock_set_flag(sk, SOCK_DONE);
3785
3786 switch (sk->sk_state) {
3787 case TCP_SYN_RECV:
3788 case TCP_ESTABLISHED:
3789 /* Move to CLOSE_WAIT */
3790 tcp_set_state(sk, TCP_CLOSE_WAIT);
3791 inet_csk(sk)->icsk_ack.pingpong = 1;
3792 break;
3793
3794 case TCP_CLOSE_WAIT:
3795 case TCP_CLOSING:
3796 /* Received a retransmission of the FIN, do
3797 * nothing.
3798 */
3799 break;
3800 case TCP_LAST_ACK:
3801 /* RFC793: Remain in the LAST-ACK state. */
3802 break;
3803
3804 case TCP_FIN_WAIT1:
3805 /* This case occurs when a simultaneous close
3806 * happens, we must ack the received FIN and
3807 * enter the CLOSING state.
3808 */
3809 tcp_send_ack(sk);
3810 tcp_set_state(sk, TCP_CLOSING);
3811 break;
3812 case TCP_FIN_WAIT2:
3813 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3814 tcp_send_ack(sk);
3815 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3816 break;
3817 default:
3818 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3819 * cases we should never reach this piece of code.
3820 */
3821 pr_err("%s: Impossible, sk->sk_state=%d\n",
3822 __func__, sk->sk_state);
3823 break;
3824 }
3825
3826 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3827 * Probably, we should reset in this case. For now drop them.
3828 */
3829 __skb_queue_purge(&tp->out_of_order_queue);
3830 if (tcp_is_sack(tp))
3831 tcp_sack_reset(&tp->rx_opt);
3832 sk_mem_reclaim(sk);
3833
3834 if (!sock_flag(sk, SOCK_DEAD)) {
3835 sk->sk_state_change(sk);
3836
3837 /* Do not send POLL_HUP for half duplex close. */
3838 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3839 sk->sk_state == TCP_CLOSE)
3840 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3841 else
3842 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3843 }
3844 }
3845
3846 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3847 u32 end_seq)
3848 {
3849 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3850 if (before(seq, sp->start_seq))
3851 sp->start_seq = seq;
3852 if (after(end_seq, sp->end_seq))
3853 sp->end_seq = end_seq;
3854 return true;
3855 }
3856 return false;
3857 }
3858
3859 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3860 {
3861 struct tcp_sock *tp = tcp_sk(sk);
3862
3863 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3864 int mib_idx;
3865
3866 if (before(seq, tp->rcv_nxt))
3867 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3868 else
3869 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3870
3871 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3872
3873 tp->rx_opt.dsack = 1;
3874 tp->duplicate_sack[0].start_seq = seq;
3875 tp->duplicate_sack[0].end_seq = end_seq;
3876 }
3877 }
3878
3879 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3880 {
3881 struct tcp_sock *tp = tcp_sk(sk);
3882
3883 if (!tp->rx_opt.dsack)
3884 tcp_dsack_set(sk, seq, end_seq);
3885 else
3886 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3887 }
3888
3889 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3890 {
3891 struct tcp_sock *tp = tcp_sk(sk);
3892
3893 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3894 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3895 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3896 tcp_enter_quickack_mode(sk);
3897
3898 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3899 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3900
3901 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3902 end_seq = tp->rcv_nxt;
3903 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3904 }
3905 }
3906
3907 tcp_send_ack(sk);
3908 }
3909
3910 /* These routines update the SACK block as out-of-order packets arrive or
3911 * in-order packets close up the sequence space.
3912 */
3913 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3914 {
3915 int this_sack;
3916 struct tcp_sack_block *sp = &tp->selective_acks[0];
3917 struct tcp_sack_block *swalk = sp + 1;
3918
3919 /* See if the recent change to the first SACK eats into
3920 * or hits the sequence space of other SACK blocks, if so coalesce.
3921 */
3922 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3923 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3924 int i;
3925
3926 /* Zap SWALK, by moving every further SACK up by one slot.
3927 * Decrease num_sacks.
3928 */
3929 tp->rx_opt.num_sacks--;
3930 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3931 sp[i] = sp[i + 1];
3932 continue;
3933 }
3934 this_sack++, swalk++;
3935 }
3936 }
3937
3938 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3939 {
3940 struct tcp_sock *tp = tcp_sk(sk);
3941 struct tcp_sack_block *sp = &tp->selective_acks[0];
3942 int cur_sacks = tp->rx_opt.num_sacks;
3943 int this_sack;
3944
3945 if (!cur_sacks)
3946 goto new_sack;
3947
3948 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3949 if (tcp_sack_extend(sp, seq, end_seq)) {
3950 /* Rotate this_sack to the first one. */
3951 for (; this_sack > 0; this_sack--, sp--)
3952 swap(*sp, *(sp - 1));
3953 if (cur_sacks > 1)
3954 tcp_sack_maybe_coalesce(tp);
3955 return;
3956 }
3957 }
3958
3959 /* Could not find an adjacent existing SACK, build a new one,
3960 * put it at the front, and shift everyone else down. We
3961 * always know there is at least one SACK present already here.
3962 *
3963 * If the sack array is full, forget about the last one.
3964 */
3965 if (this_sack >= TCP_NUM_SACKS) {
3966 this_sack--;
3967 tp->rx_opt.num_sacks--;
3968 sp--;
3969 }
3970 for (; this_sack > 0; this_sack--, sp--)
3971 *sp = *(sp - 1);
3972
3973 new_sack:
3974 /* Build the new head SACK, and we're done. */
3975 sp->start_seq = seq;
3976 sp->end_seq = end_seq;
3977 tp->rx_opt.num_sacks++;
3978 }
3979
3980 /* RCV.NXT advances, some SACKs should be eaten. */
3981
3982 static void tcp_sack_remove(struct tcp_sock *tp)
3983 {
3984 struct tcp_sack_block *sp = &tp->selective_acks[0];
3985 int num_sacks = tp->rx_opt.num_sacks;
3986 int this_sack;
3987
3988 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3989 if (skb_queue_empty(&tp->out_of_order_queue)) {
3990 tp->rx_opt.num_sacks = 0;
3991 return;
3992 }
3993
3994 for (this_sack = 0; this_sack < num_sacks;) {
3995 /* Check if the start of the sack is covered by RCV.NXT. */
3996 if (!before(tp->rcv_nxt, sp->start_seq)) {
3997 int i;
3998
3999 /* RCV.NXT must cover all the block! */
4000 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4001
4002 /* Zap this SACK, by moving forward any other SACKS. */
4003 for (i=this_sack+1; i < num_sacks; i++)
4004 tp->selective_acks[i-1] = tp->selective_acks[i];
4005 num_sacks--;
4006 continue;
4007 }
4008 this_sack++;
4009 sp++;
4010 }
4011 tp->rx_opt.num_sacks = num_sacks;
4012 }
4013
4014 /* This one checks to see if we can put data from the
4015 * out_of_order queue into the receive_queue.
4016 */
4017 static void tcp_ofo_queue(struct sock *sk)
4018 {
4019 struct tcp_sock *tp = tcp_sk(sk);
4020 __u32 dsack_high = tp->rcv_nxt;
4021 struct sk_buff *skb;
4022
4023 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4024 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4025 break;
4026
4027 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4028 __u32 dsack = dsack_high;
4029 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4030 dsack_high = TCP_SKB_CB(skb)->end_seq;
4031 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4032 }
4033
4034 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4035 SOCK_DEBUG(sk, "ofo packet was already received\n");
4036 __skb_unlink(skb, &tp->out_of_order_queue);
4037 __kfree_skb(skb);
4038 continue;
4039 }
4040 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4041 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4042 TCP_SKB_CB(skb)->end_seq);
4043
4044 __skb_unlink(skb, &tp->out_of_order_queue);
4045 __skb_queue_tail(&sk->sk_receive_queue, skb);
4046 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4047 if (tcp_hdr(skb)->fin)
4048 tcp_fin(sk);
4049 }
4050 }
4051
4052 static bool tcp_prune_ofo_queue(struct sock *sk);
4053 static int tcp_prune_queue(struct sock *sk);
4054
4055 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4056 unsigned int size)
4057 {
4058 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4059 !sk_rmem_schedule(sk, skb, size)) {
4060
4061 if (tcp_prune_queue(sk) < 0)
4062 return -1;
4063
4064 if (!sk_rmem_schedule(sk, skb, size)) {
4065 if (!tcp_prune_ofo_queue(sk))
4066 return -1;
4067
4068 if (!sk_rmem_schedule(sk, skb, size))
4069 return -1;
4070 }
4071 }
4072 return 0;
4073 }
4074
4075 /**
4076 * tcp_try_coalesce - try to merge skb to prior one
4077 * @sk: socket
4078 * @to: prior buffer
4079 * @from: buffer to add in queue
4080 * @fragstolen: pointer to boolean
4081 *
4082 * Before queueing skb @from after @to, try to merge them
4083 * to reduce overall memory use and queue lengths, if cost is small.
4084 * Packets in ofo or receive queues can stay a long time.
4085 * Better try to coalesce them right now to avoid future collapses.
4086 * Returns true if caller should free @from instead of queueing it
4087 */
4088 static bool tcp_try_coalesce(struct sock *sk,
4089 struct sk_buff *to,
4090 struct sk_buff *from,
4091 bool *fragstolen)
4092 {
4093 int delta;
4094
4095 *fragstolen = false;
4096
4097 if (tcp_hdr(from)->fin)
4098 return false;
4099
4100 /* Its possible this segment overlaps with prior segment in queue */
4101 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4102 return false;
4103
4104 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4105 return false;
4106
4107 atomic_add(delta, &sk->sk_rmem_alloc);
4108 sk_mem_charge(sk, delta);
4109 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4110 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4111 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4112 return true;
4113 }
4114
4115 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4116 {
4117 struct tcp_sock *tp = tcp_sk(sk);
4118 struct sk_buff *skb1;
4119 u32 seq, end_seq;
4120
4121 TCP_ECN_check_ce(tp, skb);
4122
4123 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4124 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4125 __kfree_skb(skb);
4126 return;
4127 }
4128
4129 /* Disable header prediction. */
4130 tp->pred_flags = 0;
4131 inet_csk_schedule_ack(sk);
4132
4133 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4134 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4135 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4136
4137 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4138 if (!skb1) {
4139 /* Initial out of order segment, build 1 SACK. */
4140 if (tcp_is_sack(tp)) {
4141 tp->rx_opt.num_sacks = 1;
4142 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4143 tp->selective_acks[0].end_seq =
4144 TCP_SKB_CB(skb)->end_seq;
4145 }
4146 __skb_queue_head(&tp->out_of_order_queue, skb);
4147 goto end;
4148 }
4149
4150 seq = TCP_SKB_CB(skb)->seq;
4151 end_seq = TCP_SKB_CB(skb)->end_seq;
4152
4153 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4154 bool fragstolen;
4155
4156 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4157 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4158 } else {
4159 kfree_skb_partial(skb, fragstolen);
4160 skb = NULL;
4161 }
4162
4163 if (!tp->rx_opt.num_sacks ||
4164 tp->selective_acks[0].end_seq != seq)
4165 goto add_sack;
4166
4167 /* Common case: data arrive in order after hole. */
4168 tp->selective_acks[0].end_seq = end_seq;
4169 goto end;
4170 }
4171
4172 /* Find place to insert this segment. */
4173 while (1) {
4174 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4175 break;
4176 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4177 skb1 = NULL;
4178 break;
4179 }
4180 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4181 }
4182
4183 /* Do skb overlap to previous one? */
4184 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4185 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4186 /* All the bits are present. Drop. */
4187 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4188 __kfree_skb(skb);
4189 skb = NULL;
4190 tcp_dsack_set(sk, seq, end_seq);
4191 goto add_sack;
4192 }
4193 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4194 /* Partial overlap. */
4195 tcp_dsack_set(sk, seq,
4196 TCP_SKB_CB(skb1)->end_seq);
4197 } else {
4198 if (skb_queue_is_first(&tp->out_of_order_queue,
4199 skb1))
4200 skb1 = NULL;
4201 else
4202 skb1 = skb_queue_prev(
4203 &tp->out_of_order_queue,
4204 skb1);
4205 }
4206 }
4207 if (!skb1)
4208 __skb_queue_head(&tp->out_of_order_queue, skb);
4209 else
4210 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4211
4212 /* And clean segments covered by new one as whole. */
4213 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4214 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4215
4216 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4217 break;
4218 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4219 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4220 end_seq);
4221 break;
4222 }
4223 __skb_unlink(skb1, &tp->out_of_order_queue);
4224 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4225 TCP_SKB_CB(skb1)->end_seq);
4226 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4227 __kfree_skb(skb1);
4228 }
4229
4230 add_sack:
4231 if (tcp_is_sack(tp))
4232 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4233 end:
4234 if (skb)
4235 skb_set_owner_r(skb, sk);
4236 }
4237
4238 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4239 bool *fragstolen)
4240 {
4241 int eaten;
4242 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4243
4244 __skb_pull(skb, hdrlen);
4245 eaten = (tail &&
4246 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4247 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4248 if (!eaten) {
4249 __skb_queue_tail(&sk->sk_receive_queue, skb);
4250 skb_set_owner_r(skb, sk);
4251 }
4252 return eaten;
4253 }
4254
4255 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4256 {
4257 struct sk_buff *skb = NULL;
4258 struct tcphdr *th;
4259 bool fragstolen;
4260
4261 if (size == 0)
4262 return 0;
4263
4264 skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4265 if (!skb)
4266 goto err;
4267
4268 if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4269 goto err_free;
4270
4271 th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4272 skb_reset_transport_header(skb);
4273 memset(th, 0, sizeof(*th));
4274
4275 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4276 goto err_free;
4277
4278 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4279 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4280 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4281
4282 if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4283 WARN_ON_ONCE(fragstolen); /* should not happen */
4284 __kfree_skb(skb);
4285 }
4286 return size;
4287
4288 err_free:
4289 kfree_skb(skb);
4290 err:
4291 return -ENOMEM;
4292 }
4293
4294 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4295 {
4296 const struct tcphdr *th = tcp_hdr(skb);
4297 struct tcp_sock *tp = tcp_sk(sk);
4298 int eaten = -1;
4299 bool fragstolen = false;
4300
4301 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4302 goto drop;
4303
4304 skb_dst_drop(skb);
4305 __skb_pull(skb, th->doff * 4);
4306
4307 TCP_ECN_accept_cwr(tp, skb);
4308
4309 tp->rx_opt.dsack = 0;
4310
4311 /* Queue data for delivery to the user.
4312 * Packets in sequence go to the receive queue.
4313 * Out of sequence packets to the out_of_order_queue.
4314 */
4315 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4316 if (tcp_receive_window(tp) == 0)
4317 goto out_of_window;
4318
4319 /* Ok. In sequence. In window. */
4320 if (tp->ucopy.task == current &&
4321 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4322 sock_owned_by_user(sk) && !tp->urg_data) {
4323 int chunk = min_t(unsigned int, skb->len,
4324 tp->ucopy.len);
4325
4326 __set_current_state(TASK_RUNNING);
4327
4328 local_bh_enable();
4329 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4330 tp->ucopy.len -= chunk;
4331 tp->copied_seq += chunk;
4332 eaten = (chunk == skb->len);
4333 tcp_rcv_space_adjust(sk);
4334 }
4335 local_bh_disable();
4336 }
4337
4338 if (eaten <= 0) {
4339 queue_and_out:
4340 if (eaten < 0 &&
4341 tcp_try_rmem_schedule(sk, skb, skb->truesize))
4342 goto drop;
4343
4344 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4345 }
4346 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4347 if (skb->len)
4348 tcp_event_data_recv(sk, skb);
4349 if (th->fin)
4350 tcp_fin(sk);
4351
4352 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4353 tcp_ofo_queue(sk);
4354
4355 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4356 * gap in queue is filled.
4357 */
4358 if (skb_queue_empty(&tp->out_of_order_queue))
4359 inet_csk(sk)->icsk_ack.pingpong = 0;
4360 }
4361
4362 if (tp->rx_opt.num_sacks)
4363 tcp_sack_remove(tp);
4364
4365 tcp_fast_path_check(sk);
4366
4367 if (eaten > 0)
4368 kfree_skb_partial(skb, fragstolen);
4369 if (!sock_flag(sk, SOCK_DEAD))
4370 sk->sk_data_ready(sk, 0);
4371 return;
4372 }
4373
4374 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4375 /* A retransmit, 2nd most common case. Force an immediate ack. */
4376 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4377 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4378
4379 out_of_window:
4380 tcp_enter_quickack_mode(sk);
4381 inet_csk_schedule_ack(sk);
4382 drop:
4383 __kfree_skb(skb);
4384 return;
4385 }
4386
4387 /* Out of window. F.e. zero window probe. */
4388 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4389 goto out_of_window;
4390
4391 tcp_enter_quickack_mode(sk);
4392
4393 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4394 /* Partial packet, seq < rcv_next < end_seq */
4395 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4396 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4397 TCP_SKB_CB(skb)->end_seq);
4398
4399 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4400
4401 /* If window is closed, drop tail of packet. But after
4402 * remembering D-SACK for its head made in previous line.
4403 */
4404 if (!tcp_receive_window(tp))
4405 goto out_of_window;
4406 goto queue_and_out;
4407 }
4408
4409 tcp_data_queue_ofo(sk, skb);
4410 }
4411
4412 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4413 struct sk_buff_head *list)
4414 {
4415 struct sk_buff *next = NULL;
4416
4417 if (!skb_queue_is_last(list, skb))
4418 next = skb_queue_next(list, skb);
4419
4420 __skb_unlink(skb, list);
4421 __kfree_skb(skb);
4422 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4423
4424 return next;
4425 }
4426
4427 /* Collapse contiguous sequence of skbs head..tail with
4428 * sequence numbers start..end.
4429 *
4430 * If tail is NULL, this means until the end of the list.
4431 *
4432 * Segments with FIN/SYN are not collapsed (only because this
4433 * simplifies code)
4434 */
4435 static void
4436 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4437 struct sk_buff *head, struct sk_buff *tail,
4438 u32 start, u32 end)
4439 {
4440 struct sk_buff *skb, *n;
4441 bool end_of_skbs;
4442
4443 /* First, check that queue is collapsible and find
4444 * the point where collapsing can be useful. */
4445 skb = head;
4446 restart:
4447 end_of_skbs = true;
4448 skb_queue_walk_from_safe(list, skb, n) {
4449 if (skb == tail)
4450 break;
4451 /* No new bits? It is possible on ofo queue. */
4452 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4453 skb = tcp_collapse_one(sk, skb, list);
4454 if (!skb)
4455 break;
4456 goto restart;
4457 }
4458
4459 /* The first skb to collapse is:
4460 * - not SYN/FIN and
4461 * - bloated or contains data before "start" or
4462 * overlaps to the next one.
4463 */
4464 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4465 (tcp_win_from_space(skb->truesize) > skb->len ||
4466 before(TCP_SKB_CB(skb)->seq, start))) {
4467 end_of_skbs = false;
4468 break;
4469 }
4470
4471 if (!skb_queue_is_last(list, skb)) {
4472 struct sk_buff *next = skb_queue_next(list, skb);
4473 if (next != tail &&
4474 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4475 end_of_skbs = false;
4476 break;
4477 }
4478 }
4479
4480 /* Decided to skip this, advance start seq. */
4481 start = TCP_SKB_CB(skb)->end_seq;
4482 }
4483 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4484 return;
4485
4486 while (before(start, end)) {
4487 struct sk_buff *nskb;
4488 unsigned int header = skb_headroom(skb);
4489 int copy = SKB_MAX_ORDER(header, 0);
4490
4491 /* Too big header? This can happen with IPv6. */
4492 if (copy < 0)
4493 return;
4494 if (end - start < copy)
4495 copy = end - start;
4496 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4497 if (!nskb)
4498 return;
4499
4500 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4501 skb_set_network_header(nskb, (skb_network_header(skb) -
4502 skb->head));
4503 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4504 skb->head));
4505 skb_reserve(nskb, header);
4506 memcpy(nskb->head, skb->head, header);
4507 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4508 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4509 __skb_queue_before(list, skb, nskb);
4510 skb_set_owner_r(nskb, sk);
4511
4512 /* Copy data, releasing collapsed skbs. */
4513 while (copy > 0) {
4514 int offset = start - TCP_SKB_CB(skb)->seq;
4515 int size = TCP_SKB_CB(skb)->end_seq - start;
4516
4517 BUG_ON(offset < 0);
4518 if (size > 0) {
4519 size = min(copy, size);
4520 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4521 BUG();
4522 TCP_SKB_CB(nskb)->end_seq += size;
4523 copy -= size;
4524 start += size;
4525 }
4526 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4527 skb = tcp_collapse_one(sk, skb, list);
4528 if (!skb ||
4529 skb == tail ||
4530 tcp_hdr(skb)->syn ||
4531 tcp_hdr(skb)->fin)
4532 return;
4533 }
4534 }
4535 }
4536 }
4537
4538 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4539 * and tcp_collapse() them until all the queue is collapsed.
4540 */
4541 static void tcp_collapse_ofo_queue(struct sock *sk)
4542 {
4543 struct tcp_sock *tp = tcp_sk(sk);
4544 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4545 struct sk_buff *head;
4546 u32 start, end;
4547
4548 if (skb == NULL)
4549 return;
4550
4551 start = TCP_SKB_CB(skb)->seq;
4552 end = TCP_SKB_CB(skb)->end_seq;
4553 head = skb;
4554
4555 for (;;) {
4556 struct sk_buff *next = NULL;
4557
4558 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4559 next = skb_queue_next(&tp->out_of_order_queue, skb);
4560 skb = next;
4561
4562 /* Segment is terminated when we see gap or when
4563 * we are at the end of all the queue. */
4564 if (!skb ||
4565 after(TCP_SKB_CB(skb)->seq, end) ||
4566 before(TCP_SKB_CB(skb)->end_seq, start)) {
4567 tcp_collapse(sk, &tp->out_of_order_queue,
4568 head, skb, start, end);
4569 head = skb;
4570 if (!skb)
4571 break;
4572 /* Start new segment */
4573 start = TCP_SKB_CB(skb)->seq;
4574 end = TCP_SKB_CB(skb)->end_seq;
4575 } else {
4576 if (before(TCP_SKB_CB(skb)->seq, start))
4577 start = TCP_SKB_CB(skb)->seq;
4578 if (after(TCP_SKB_CB(skb)->end_seq, end))
4579 end = TCP_SKB_CB(skb)->end_seq;
4580 }
4581 }
4582 }
4583
4584 /*
4585 * Purge the out-of-order queue.
4586 * Return true if queue was pruned.
4587 */
4588 static bool tcp_prune_ofo_queue(struct sock *sk)
4589 {
4590 struct tcp_sock *tp = tcp_sk(sk);
4591 bool res = false;
4592
4593 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4594 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4595 __skb_queue_purge(&tp->out_of_order_queue);
4596
4597 /* Reset SACK state. A conforming SACK implementation will
4598 * do the same at a timeout based retransmit. When a connection
4599 * is in a sad state like this, we care only about integrity
4600 * of the connection not performance.
4601 */
4602 if (tp->rx_opt.sack_ok)
4603 tcp_sack_reset(&tp->rx_opt);
4604 sk_mem_reclaim(sk);
4605 res = true;
4606 }
4607 return res;
4608 }
4609
4610 /* Reduce allocated memory if we can, trying to get
4611 * the socket within its memory limits again.
4612 *
4613 * Return less than zero if we should start dropping frames
4614 * until the socket owning process reads some of the data
4615 * to stabilize the situation.
4616 */
4617 static int tcp_prune_queue(struct sock *sk)
4618 {
4619 struct tcp_sock *tp = tcp_sk(sk);
4620
4621 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4622
4623 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4624
4625 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4626 tcp_clamp_window(sk);
4627 else if (sk_under_memory_pressure(sk))
4628 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4629
4630 tcp_collapse_ofo_queue(sk);
4631 if (!skb_queue_empty(&sk->sk_receive_queue))
4632 tcp_collapse(sk, &sk->sk_receive_queue,
4633 skb_peek(&sk->sk_receive_queue),
4634 NULL,
4635 tp->copied_seq, tp->rcv_nxt);
4636 sk_mem_reclaim(sk);
4637
4638 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4639 return 0;
4640
4641 /* Collapsing did not help, destructive actions follow.
4642 * This must not ever occur. */
4643
4644 tcp_prune_ofo_queue(sk);
4645
4646 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4647 return 0;
4648
4649 /* If we are really being abused, tell the caller to silently
4650 * drop receive data on the floor. It will get retransmitted
4651 * and hopefully then we'll have sufficient space.
4652 */
4653 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4654
4655 /* Massive buffer overcommit. */
4656 tp->pred_flags = 0;
4657 return -1;
4658 }
4659
4660 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4661 * As additional protections, we do not touch cwnd in retransmission phases,
4662 * and if application hit its sndbuf limit recently.
4663 */
4664 void tcp_cwnd_application_limited(struct sock *sk)
4665 {
4666 struct tcp_sock *tp = tcp_sk(sk);
4667
4668 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4669 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4670 /* Limited by application or receiver window. */
4671 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4672 u32 win_used = max(tp->snd_cwnd_used, init_win);
4673 if (win_used < tp->snd_cwnd) {
4674 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4675 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4676 }
4677 tp->snd_cwnd_used = 0;
4678 }
4679 tp->snd_cwnd_stamp = tcp_time_stamp;
4680 }
4681
4682 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4683 {
4684 const struct tcp_sock *tp = tcp_sk(sk);
4685
4686 /* If the user specified a specific send buffer setting, do
4687 * not modify it.
4688 */
4689 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4690 return false;
4691
4692 /* If we are under global TCP memory pressure, do not expand. */
4693 if (sk_under_memory_pressure(sk))
4694 return false;
4695
4696 /* If we are under soft global TCP memory pressure, do not expand. */
4697 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4698 return false;
4699
4700 /* If we filled the congestion window, do not expand. */
4701 if (tp->packets_out >= tp->snd_cwnd)
4702 return false;
4703
4704 return true;
4705 }
4706
4707 /* When incoming ACK allowed to free some skb from write_queue,
4708 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4709 * on the exit from tcp input handler.
4710 *
4711 * PROBLEM: sndbuf expansion does not work well with largesend.
4712 */
4713 static void tcp_new_space(struct sock *sk)
4714 {
4715 struct tcp_sock *tp = tcp_sk(sk);
4716
4717 if (tcp_should_expand_sndbuf(sk)) {
4718 int sndmem = SKB_TRUESIZE(max_t(u32,
4719 tp->rx_opt.mss_clamp,
4720 tp->mss_cache) +
4721 MAX_TCP_HEADER);
4722 int demanded = max_t(unsigned int, tp->snd_cwnd,
4723 tp->reordering + 1);
4724 sndmem *= 2 * demanded;
4725 if (sndmem > sk->sk_sndbuf)
4726 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4727 tp->snd_cwnd_stamp = tcp_time_stamp;
4728 }
4729
4730 sk->sk_write_space(sk);
4731 }
4732
4733 static void tcp_check_space(struct sock *sk)
4734 {
4735 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4736 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4737 if (sk->sk_socket &&
4738 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4739 tcp_new_space(sk);
4740 }
4741 }
4742
4743 static inline void tcp_data_snd_check(struct sock *sk)
4744 {
4745 tcp_push_pending_frames(sk);
4746 tcp_check_space(sk);
4747 }
4748
4749 /*
4750 * Check if sending an ack is needed.
4751 */
4752 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4753 {
4754 struct tcp_sock *tp = tcp_sk(sk);
4755
4756 /* More than one full frame received... */
4757 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4758 /* ... and right edge of window advances far enough.
4759 * (tcp_recvmsg() will send ACK otherwise). Or...
4760 */
4761 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4762 /* We ACK each frame or... */
4763 tcp_in_quickack_mode(sk) ||
4764 /* We have out of order data. */
4765 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4766 /* Then ack it now */
4767 tcp_send_ack(sk);
4768 } else {
4769 /* Else, send delayed ack. */
4770 tcp_send_delayed_ack(sk);
4771 }
4772 }
4773
4774 static inline void tcp_ack_snd_check(struct sock *sk)
4775 {
4776 if (!inet_csk_ack_scheduled(sk)) {
4777 /* We sent a data segment already. */
4778 return;
4779 }
4780 __tcp_ack_snd_check(sk, 1);
4781 }
4782
4783 /*
4784 * This routine is only called when we have urgent data
4785 * signaled. Its the 'slow' part of tcp_urg. It could be
4786 * moved inline now as tcp_urg is only called from one
4787 * place. We handle URGent data wrong. We have to - as
4788 * BSD still doesn't use the correction from RFC961.
4789 * For 1003.1g we should support a new option TCP_STDURG to permit
4790 * either form (or just set the sysctl tcp_stdurg).
4791 */
4792
4793 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4794 {
4795 struct tcp_sock *tp = tcp_sk(sk);
4796 u32 ptr = ntohs(th->urg_ptr);
4797
4798 if (ptr && !sysctl_tcp_stdurg)
4799 ptr--;
4800 ptr += ntohl(th->seq);
4801
4802 /* Ignore urgent data that we've already seen and read. */
4803 if (after(tp->copied_seq, ptr))
4804 return;
4805
4806 /* Do not replay urg ptr.
4807 *
4808 * NOTE: interesting situation not covered by specs.
4809 * Misbehaving sender may send urg ptr, pointing to segment,
4810 * which we already have in ofo queue. We are not able to fetch
4811 * such data and will stay in TCP_URG_NOTYET until will be eaten
4812 * by recvmsg(). Seems, we are not obliged to handle such wicked
4813 * situations. But it is worth to think about possibility of some
4814 * DoSes using some hypothetical application level deadlock.
4815 */
4816 if (before(ptr, tp->rcv_nxt))
4817 return;
4818
4819 /* Do we already have a newer (or duplicate) urgent pointer? */
4820 if (tp->urg_data && !after(ptr, tp->urg_seq))
4821 return;
4822
4823 /* Tell the world about our new urgent pointer. */
4824 sk_send_sigurg(sk);
4825
4826 /* We may be adding urgent data when the last byte read was
4827 * urgent. To do this requires some care. We cannot just ignore
4828 * tp->copied_seq since we would read the last urgent byte again
4829 * as data, nor can we alter copied_seq until this data arrives
4830 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4831 *
4832 * NOTE. Double Dutch. Rendering to plain English: author of comment
4833 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4834 * and expect that both A and B disappear from stream. This is _wrong_.
4835 * Though this happens in BSD with high probability, this is occasional.
4836 * Any application relying on this is buggy. Note also, that fix "works"
4837 * only in this artificial test. Insert some normal data between A and B and we will
4838 * decline of BSD again. Verdict: it is better to remove to trap
4839 * buggy users.
4840 */
4841 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4842 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4843 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4844 tp->copied_seq++;
4845 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4846 __skb_unlink(skb, &sk->sk_receive_queue);
4847 __kfree_skb(skb);
4848 }
4849 }
4850
4851 tp->urg_data = TCP_URG_NOTYET;
4852 tp->urg_seq = ptr;
4853
4854 /* Disable header prediction. */
4855 tp->pred_flags = 0;
4856 }
4857
4858 /* This is the 'fast' part of urgent handling. */
4859 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4860 {
4861 struct tcp_sock *tp = tcp_sk(sk);
4862
4863 /* Check if we get a new urgent pointer - normally not. */
4864 if (th->urg)
4865 tcp_check_urg(sk, th);
4866
4867 /* Do we wait for any urgent data? - normally not... */
4868 if (tp->urg_data == TCP_URG_NOTYET) {
4869 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4870 th->syn;
4871
4872 /* Is the urgent pointer pointing into this packet? */
4873 if (ptr < skb->len) {
4874 u8 tmp;
4875 if (skb_copy_bits(skb, ptr, &tmp, 1))
4876 BUG();
4877 tp->urg_data = TCP_URG_VALID | tmp;
4878 if (!sock_flag(sk, SOCK_DEAD))
4879 sk->sk_data_ready(sk, 0);
4880 }
4881 }
4882 }
4883
4884 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4885 {
4886 struct tcp_sock *tp = tcp_sk(sk);
4887 int chunk = skb->len - hlen;
4888 int err;
4889
4890 local_bh_enable();
4891 if (skb_csum_unnecessary(skb))
4892 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4893 else
4894 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4895 tp->ucopy.iov);
4896
4897 if (!err) {
4898 tp->ucopy.len -= chunk;
4899 tp->copied_seq += chunk;
4900 tcp_rcv_space_adjust(sk);
4901 }
4902
4903 local_bh_disable();
4904 return err;
4905 }
4906
4907 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4908 struct sk_buff *skb)
4909 {
4910 __sum16 result;
4911
4912 if (sock_owned_by_user(sk)) {
4913 local_bh_enable();
4914 result = __tcp_checksum_complete(skb);
4915 local_bh_disable();
4916 } else {
4917 result = __tcp_checksum_complete(skb);
4918 }
4919 return result;
4920 }
4921
4922 static inline bool tcp_checksum_complete_user(struct sock *sk,
4923 struct sk_buff *skb)
4924 {
4925 return !skb_csum_unnecessary(skb) &&
4926 __tcp_checksum_complete_user(sk, skb);
4927 }
4928
4929 #ifdef CONFIG_NET_DMA
4930 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4931 int hlen)
4932 {
4933 struct tcp_sock *tp = tcp_sk(sk);
4934 int chunk = skb->len - hlen;
4935 int dma_cookie;
4936 bool copied_early = false;
4937
4938 if (tp->ucopy.wakeup)
4939 return false;
4940
4941 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4942 tp->ucopy.dma_chan = net_dma_find_channel();
4943
4944 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4945
4946 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4947 skb, hlen,
4948 tp->ucopy.iov, chunk,
4949 tp->ucopy.pinned_list);
4950
4951 if (dma_cookie < 0)
4952 goto out;
4953
4954 tp->ucopy.dma_cookie = dma_cookie;
4955 copied_early = true;
4956
4957 tp->ucopy.len -= chunk;
4958 tp->copied_seq += chunk;
4959 tcp_rcv_space_adjust(sk);
4960
4961 if ((tp->ucopy.len == 0) ||
4962 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4963 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4964 tp->ucopy.wakeup = 1;
4965 sk->sk_data_ready(sk, 0);
4966 }
4967 } else if (chunk > 0) {
4968 tp->ucopy.wakeup = 1;
4969 sk->sk_data_ready(sk, 0);
4970 }
4971 out:
4972 return copied_early;
4973 }
4974 #endif /* CONFIG_NET_DMA */
4975
4976 /* Does PAWS and seqno based validation of an incoming segment, flags will
4977 * play significant role here.
4978 */
4979 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
4980 const struct tcphdr *th, int syn_inerr)
4981 {
4982 struct tcp_sock *tp = tcp_sk(sk);
4983
4984 /* RFC1323: H1. Apply PAWS check first. */
4985 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4986 tcp_paws_discard(sk, skb)) {
4987 if (!th->rst) {
4988 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
4989 tcp_send_dupack(sk, skb);
4990 goto discard;
4991 }
4992 /* Reset is accepted even if it did not pass PAWS. */
4993 }
4994
4995 /* Step 1: check sequence number */
4996 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4997 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4998 * (RST) segments are validated by checking their SEQ-fields."
4999 * And page 69: "If an incoming segment is not acceptable,
5000 * an acknowledgment should be sent in reply (unless the RST
5001 * bit is set, if so drop the segment and return)".
5002 */
5003 if (!th->rst) {
5004 if (th->syn)
5005 goto syn_challenge;
5006 tcp_send_dupack(sk, skb);
5007 }
5008 goto discard;
5009 }
5010
5011 /* Step 2: check RST bit */
5012 if (th->rst) {
5013 /* RFC 5961 3.2 :
5014 * If sequence number exactly matches RCV.NXT, then
5015 * RESET the connection
5016 * else
5017 * Send a challenge ACK
5018 */
5019 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5020 tcp_reset(sk);
5021 else
5022 tcp_send_challenge_ack(sk);
5023 goto discard;
5024 }
5025
5026 /* step 3: check security and precedence [ignored] */
5027
5028 /* step 4: Check for a SYN
5029 * RFC 5691 4.2 : Send a challenge ack
5030 */
5031 if (th->syn) {
5032 syn_challenge:
5033 if (syn_inerr)
5034 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5035 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5036 tcp_send_challenge_ack(sk);
5037 goto discard;
5038 }
5039
5040 return true;
5041
5042 discard:
5043 __kfree_skb(skb);
5044 return false;
5045 }
5046
5047 /*
5048 * TCP receive function for the ESTABLISHED state.
5049 *
5050 * It is split into a fast path and a slow path. The fast path is
5051 * disabled when:
5052 * - A zero window was announced from us - zero window probing
5053 * is only handled properly in the slow path.
5054 * - Out of order segments arrived.
5055 * - Urgent data is expected.
5056 * - There is no buffer space left
5057 * - Unexpected TCP flags/window values/header lengths are received
5058 * (detected by checking the TCP header against pred_flags)
5059 * - Data is sent in both directions. Fast path only supports pure senders
5060 * or pure receivers (this means either the sequence number or the ack
5061 * value must stay constant)
5062 * - Unexpected TCP option.
5063 *
5064 * When these conditions are not satisfied it drops into a standard
5065 * receive procedure patterned after RFC793 to handle all cases.
5066 * The first three cases are guaranteed by proper pred_flags setting,
5067 * the rest is checked inline. Fast processing is turned on in
5068 * tcp_data_queue when everything is OK.
5069 */
5070 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5071 const struct tcphdr *th, unsigned int len)
5072 {
5073 struct tcp_sock *tp = tcp_sk(sk);
5074
5075 if (unlikely(sk->sk_rx_dst == NULL))
5076 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5077 /*
5078 * Header prediction.
5079 * The code loosely follows the one in the famous
5080 * "30 instruction TCP receive" Van Jacobson mail.
5081 *
5082 * Van's trick is to deposit buffers into socket queue
5083 * on a device interrupt, to call tcp_recv function
5084 * on the receive process context and checksum and copy
5085 * the buffer to user space. smart...
5086 *
5087 * Our current scheme is not silly either but we take the
5088 * extra cost of the net_bh soft interrupt processing...
5089 * We do checksum and copy also but from device to kernel.
5090 */
5091
5092 tp->rx_opt.saw_tstamp = 0;
5093
5094 /* pred_flags is 0xS?10 << 16 + snd_wnd
5095 * if header_prediction is to be made
5096 * 'S' will always be tp->tcp_header_len >> 2
5097 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5098 * turn it off (when there are holes in the receive
5099 * space for instance)
5100 * PSH flag is ignored.
5101 */
5102
5103 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5104 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5105 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5106 int tcp_header_len = tp->tcp_header_len;
5107
5108 /* Timestamp header prediction: tcp_header_len
5109 * is automatically equal to th->doff*4 due to pred_flags
5110 * match.
5111 */
5112
5113 /* Check timestamp */
5114 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5115 /* No? Slow path! */
5116 if (!tcp_parse_aligned_timestamp(tp, th))
5117 goto slow_path;
5118
5119 /* If PAWS failed, check it more carefully in slow path */
5120 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5121 goto slow_path;
5122
5123 /* DO NOT update ts_recent here, if checksum fails
5124 * and timestamp was corrupted part, it will result
5125 * in a hung connection since we will drop all
5126 * future packets due to the PAWS test.
5127 */
5128 }
5129
5130 if (len <= tcp_header_len) {
5131 /* Bulk data transfer: sender */
5132 if (len == tcp_header_len) {
5133 /* Predicted packet is in window by definition.
5134 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5135 * Hence, check seq<=rcv_wup reduces to:
5136 */
5137 if (tcp_header_len ==
5138 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5139 tp->rcv_nxt == tp->rcv_wup)
5140 tcp_store_ts_recent(tp);
5141
5142 /* We know that such packets are checksummed
5143 * on entry.
5144 */
5145 tcp_ack(sk, skb, 0);
5146 __kfree_skb(skb);
5147 tcp_data_snd_check(sk);
5148 return 0;
5149 } else { /* Header too small */
5150 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5151 goto discard;
5152 }
5153 } else {
5154 int eaten = 0;
5155 int copied_early = 0;
5156 bool fragstolen = false;
5157
5158 if (tp->copied_seq == tp->rcv_nxt &&
5159 len - tcp_header_len <= tp->ucopy.len) {
5160 #ifdef CONFIG_NET_DMA
5161 if (tp->ucopy.task == current &&
5162 sock_owned_by_user(sk) &&
5163 tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5164 copied_early = 1;
5165 eaten = 1;
5166 }
5167 #endif
5168 if (tp->ucopy.task == current &&
5169 sock_owned_by_user(sk) && !copied_early) {
5170 __set_current_state(TASK_RUNNING);
5171
5172 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5173 eaten = 1;
5174 }
5175 if (eaten) {
5176 /* Predicted packet is in window by definition.
5177 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5178 * Hence, check seq<=rcv_wup reduces to:
5179 */
5180 if (tcp_header_len ==
5181 (sizeof(struct tcphdr) +
5182 TCPOLEN_TSTAMP_ALIGNED) &&
5183 tp->rcv_nxt == tp->rcv_wup)
5184 tcp_store_ts_recent(tp);
5185
5186 tcp_rcv_rtt_measure_ts(sk, skb);
5187
5188 __skb_pull(skb, tcp_header_len);
5189 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5190 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5191 }
5192 if (copied_early)
5193 tcp_cleanup_rbuf(sk, skb->len);
5194 }
5195 if (!eaten) {
5196 if (tcp_checksum_complete_user(sk, skb))
5197 goto csum_error;
5198
5199 if ((int)skb->truesize > sk->sk_forward_alloc)
5200 goto step5;
5201
5202 /* Predicted packet is in window by definition.
5203 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5204 * Hence, check seq<=rcv_wup reduces to:
5205 */
5206 if (tcp_header_len ==
5207 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5208 tp->rcv_nxt == tp->rcv_wup)
5209 tcp_store_ts_recent(tp);
5210
5211 tcp_rcv_rtt_measure_ts(sk, skb);
5212
5213 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5214
5215 /* Bulk data transfer: receiver */
5216 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5217 &fragstolen);
5218 }
5219
5220 tcp_event_data_recv(sk, skb);
5221
5222 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5223 /* Well, only one small jumplet in fast path... */
5224 tcp_ack(sk, skb, FLAG_DATA);
5225 tcp_data_snd_check(sk);
5226 if (!inet_csk_ack_scheduled(sk))
5227 goto no_ack;
5228 }
5229
5230 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5231 __tcp_ack_snd_check(sk, 0);
5232 no_ack:
5233 #ifdef CONFIG_NET_DMA
5234 if (copied_early)
5235 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5236 else
5237 #endif
5238 if (eaten)
5239 kfree_skb_partial(skb, fragstolen);
5240 sk->sk_data_ready(sk, 0);
5241 return 0;
5242 }
5243 }
5244
5245 slow_path:
5246 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5247 goto csum_error;
5248
5249 if (!th->ack && !th->rst)
5250 goto discard;
5251
5252 /*
5253 * Standard slow path.
5254 */
5255
5256 if (!tcp_validate_incoming(sk, skb, th, 1))
5257 return 0;
5258
5259 step5:
5260 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5261 goto discard;
5262
5263 tcp_rcv_rtt_measure_ts(sk, skb);
5264
5265 /* Process urgent data. */
5266 tcp_urg(sk, skb, th);
5267
5268 /* step 7: process the segment text */
5269 tcp_data_queue(sk, skb);
5270
5271 tcp_data_snd_check(sk);
5272 tcp_ack_snd_check(sk);
5273 return 0;
5274
5275 csum_error:
5276 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5277 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5278
5279 discard:
5280 __kfree_skb(skb);
5281 return 0;
5282 }
5283 EXPORT_SYMBOL(tcp_rcv_established);
5284
5285 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5286 {
5287 struct tcp_sock *tp = tcp_sk(sk);
5288 struct inet_connection_sock *icsk = inet_csk(sk);
5289
5290 tcp_set_state(sk, TCP_ESTABLISHED);
5291
5292 if (skb != NULL) {
5293 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5294 security_inet_conn_established(sk, skb);
5295 }
5296
5297 /* Make sure socket is routed, for correct metrics. */
5298 icsk->icsk_af_ops->rebuild_header(sk);
5299
5300 tcp_init_metrics(sk);
5301
5302 tcp_init_congestion_control(sk);
5303
5304 /* Prevent spurious tcp_cwnd_restart() on first data
5305 * packet.
5306 */
5307 tp->lsndtime = tcp_time_stamp;
5308
5309 tcp_init_buffer_space(sk);
5310
5311 if (sock_flag(sk, SOCK_KEEPOPEN))
5312 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5313
5314 if (!tp->rx_opt.snd_wscale)
5315 __tcp_fast_path_on(tp, tp->snd_wnd);
5316 else
5317 tp->pred_flags = 0;
5318
5319 if (!sock_flag(sk, SOCK_DEAD)) {
5320 sk->sk_state_change(sk);
5321 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5322 }
5323 }
5324
5325 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5326 struct tcp_fastopen_cookie *cookie)
5327 {
5328 struct tcp_sock *tp = tcp_sk(sk);
5329 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5330 u16 mss = tp->rx_opt.mss_clamp;
5331 bool syn_drop;
5332
5333 if (mss == tp->rx_opt.user_mss) {
5334 struct tcp_options_received opt;
5335
5336 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5337 tcp_clear_options(&opt);
5338 opt.user_mss = opt.mss_clamp = 0;
5339 tcp_parse_options(synack, &opt, 0, NULL);
5340 mss = opt.mss_clamp;
5341 }
5342
5343 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
5344 cookie->len = -1;
5345
5346 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5347 * the remote receives only the retransmitted (regular) SYNs: either
5348 * the original SYN-data or the corresponding SYN-ACK is lost.
5349 */
5350 syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5351
5352 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5353
5354 if (data) { /* Retransmit unacked data in SYN */
5355 tcp_for_write_queue_from(data, sk) {
5356 if (data == tcp_send_head(sk) ||
5357 __tcp_retransmit_skb(sk, data))
5358 break;
5359 }
5360 tcp_rearm_rto(sk);
5361 return true;
5362 }
5363 tp->syn_data_acked = tp->syn_data;
5364 return false;
5365 }
5366
5367 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5368 const struct tcphdr *th, unsigned int len)
5369 {
5370 struct inet_connection_sock *icsk = inet_csk(sk);
5371 struct tcp_sock *tp = tcp_sk(sk);
5372 struct tcp_fastopen_cookie foc = { .len = -1 };
5373 int saved_clamp = tp->rx_opt.mss_clamp;
5374
5375 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5376 if (tp->rx_opt.saw_tstamp)
5377 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5378
5379 if (th->ack) {
5380 /* rfc793:
5381 * "If the state is SYN-SENT then
5382 * first check the ACK bit
5383 * If the ACK bit is set
5384 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5385 * a reset (unless the RST bit is set, if so drop
5386 * the segment and return)"
5387 */
5388 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5389 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5390 goto reset_and_undo;
5391
5392 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5393 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5394 tcp_time_stamp)) {
5395 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5396 goto reset_and_undo;
5397 }
5398
5399 /* Now ACK is acceptable.
5400 *
5401 * "If the RST bit is set
5402 * If the ACK was acceptable then signal the user "error:
5403 * connection reset", drop the segment, enter CLOSED state,
5404 * delete TCB, and return."
5405 */
5406
5407 if (th->rst) {
5408 tcp_reset(sk);
5409 goto discard;
5410 }
5411
5412 /* rfc793:
5413 * "fifth, if neither of the SYN or RST bits is set then
5414 * drop the segment and return."
5415 *
5416 * See note below!
5417 * --ANK(990513)
5418 */
5419 if (!th->syn)
5420 goto discard_and_undo;
5421
5422 /* rfc793:
5423 * "If the SYN bit is on ...
5424 * are acceptable then ...
5425 * (our SYN has been ACKed), change the connection
5426 * state to ESTABLISHED..."
5427 */
5428
5429 TCP_ECN_rcv_synack(tp, th);
5430
5431 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5432 tcp_ack(sk, skb, FLAG_SLOWPATH);
5433
5434 /* Ok.. it's good. Set up sequence numbers and
5435 * move to established.
5436 */
5437 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5438 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5439
5440 /* RFC1323: The window in SYN & SYN/ACK segments is
5441 * never scaled.
5442 */
5443 tp->snd_wnd = ntohs(th->window);
5444
5445 if (!tp->rx_opt.wscale_ok) {
5446 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5447 tp->window_clamp = min(tp->window_clamp, 65535U);
5448 }
5449
5450 if (tp->rx_opt.saw_tstamp) {
5451 tp->rx_opt.tstamp_ok = 1;
5452 tp->tcp_header_len =
5453 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5454 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5455 tcp_store_ts_recent(tp);
5456 } else {
5457 tp->tcp_header_len = sizeof(struct tcphdr);
5458 }
5459
5460 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5461 tcp_enable_fack(tp);
5462
5463 tcp_mtup_init(sk);
5464 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5465 tcp_initialize_rcv_mss(sk);
5466
5467 /* Remember, tcp_poll() does not lock socket!
5468 * Change state from SYN-SENT only after copied_seq
5469 * is initialized. */
5470 tp->copied_seq = tp->rcv_nxt;
5471
5472 smp_mb();
5473
5474 tcp_finish_connect(sk, skb);
5475
5476 if ((tp->syn_fastopen || tp->syn_data) &&
5477 tcp_rcv_fastopen_synack(sk, skb, &foc))
5478 return -1;
5479
5480 if (sk->sk_write_pending ||
5481 icsk->icsk_accept_queue.rskq_defer_accept ||
5482 icsk->icsk_ack.pingpong) {
5483 /* Save one ACK. Data will be ready after
5484 * several ticks, if write_pending is set.
5485 *
5486 * It may be deleted, but with this feature tcpdumps
5487 * look so _wonderfully_ clever, that I was not able
5488 * to stand against the temptation 8) --ANK
5489 */
5490 inet_csk_schedule_ack(sk);
5491 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5492 tcp_enter_quickack_mode(sk);
5493 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5494 TCP_DELACK_MAX, TCP_RTO_MAX);
5495
5496 discard:
5497 __kfree_skb(skb);
5498 return 0;
5499 } else {
5500 tcp_send_ack(sk);
5501 }
5502 return -1;
5503 }
5504
5505 /* No ACK in the segment */
5506
5507 if (th->rst) {
5508 /* rfc793:
5509 * "If the RST bit is set
5510 *
5511 * Otherwise (no ACK) drop the segment and return."
5512 */
5513
5514 goto discard_and_undo;
5515 }
5516
5517 /* PAWS check. */
5518 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5519 tcp_paws_reject(&tp->rx_opt, 0))
5520 goto discard_and_undo;
5521
5522 if (th->syn) {
5523 /* We see SYN without ACK. It is attempt of
5524 * simultaneous connect with crossed SYNs.
5525 * Particularly, it can be connect to self.
5526 */
5527 tcp_set_state(sk, TCP_SYN_RECV);
5528
5529 if (tp->rx_opt.saw_tstamp) {
5530 tp->rx_opt.tstamp_ok = 1;
5531 tcp_store_ts_recent(tp);
5532 tp->tcp_header_len =
5533 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5534 } else {
5535 tp->tcp_header_len = sizeof(struct tcphdr);
5536 }
5537
5538 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5539 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5540
5541 /* RFC1323: The window in SYN & SYN/ACK segments is
5542 * never scaled.
5543 */
5544 tp->snd_wnd = ntohs(th->window);
5545 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5546 tp->max_window = tp->snd_wnd;
5547
5548 TCP_ECN_rcv_syn(tp, th);
5549
5550 tcp_mtup_init(sk);
5551 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5552 tcp_initialize_rcv_mss(sk);
5553
5554 tcp_send_synack(sk);
5555 #if 0
5556 /* Note, we could accept data and URG from this segment.
5557 * There are no obstacles to make this (except that we must
5558 * either change tcp_recvmsg() to prevent it from returning data
5559 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5560 *
5561 * However, if we ignore data in ACKless segments sometimes,
5562 * we have no reasons to accept it sometimes.
5563 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5564 * is not flawless. So, discard packet for sanity.
5565 * Uncomment this return to process the data.
5566 */
5567 return -1;
5568 #else
5569 goto discard;
5570 #endif
5571 }
5572 /* "fifth, if neither of the SYN or RST bits is set then
5573 * drop the segment and return."
5574 */
5575
5576 discard_and_undo:
5577 tcp_clear_options(&tp->rx_opt);
5578 tp->rx_opt.mss_clamp = saved_clamp;
5579 goto discard;
5580
5581 reset_and_undo:
5582 tcp_clear_options(&tp->rx_opt);
5583 tp->rx_opt.mss_clamp = saved_clamp;
5584 return 1;
5585 }
5586
5587 /*
5588 * This function implements the receiving procedure of RFC 793 for
5589 * all states except ESTABLISHED and TIME_WAIT.
5590 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5591 * address independent.
5592 */
5593
5594 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5595 const struct tcphdr *th, unsigned int len)
5596 {
5597 struct tcp_sock *tp = tcp_sk(sk);
5598 struct inet_connection_sock *icsk = inet_csk(sk);
5599 struct request_sock *req;
5600 int queued = 0;
5601
5602 tp->rx_opt.saw_tstamp = 0;
5603
5604 switch (sk->sk_state) {
5605 case TCP_CLOSE:
5606 goto discard;
5607
5608 case TCP_LISTEN:
5609 if (th->ack)
5610 return 1;
5611
5612 if (th->rst)
5613 goto discard;
5614
5615 if (th->syn) {
5616 if (th->fin)
5617 goto discard;
5618 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5619 return 1;
5620
5621 /* Now we have several options: In theory there is
5622 * nothing else in the frame. KA9Q has an option to
5623 * send data with the syn, BSD accepts data with the
5624 * syn up to the [to be] advertised window and
5625 * Solaris 2.1 gives you a protocol error. For now
5626 * we just ignore it, that fits the spec precisely
5627 * and avoids incompatibilities. It would be nice in
5628 * future to drop through and process the data.
5629 *
5630 * Now that TTCP is starting to be used we ought to
5631 * queue this data.
5632 * But, this leaves one open to an easy denial of
5633 * service attack, and SYN cookies can't defend
5634 * against this problem. So, we drop the data
5635 * in the interest of security over speed unless
5636 * it's still in use.
5637 */
5638 kfree_skb(skb);
5639 return 0;
5640 }
5641 goto discard;
5642
5643 case TCP_SYN_SENT:
5644 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5645 if (queued >= 0)
5646 return queued;
5647
5648 /* Do step6 onward by hand. */
5649 tcp_urg(sk, skb, th);
5650 __kfree_skb(skb);
5651 tcp_data_snd_check(sk);
5652 return 0;
5653 }
5654
5655 req = tp->fastopen_rsk;
5656 if (req != NULL) {
5657 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5658 sk->sk_state != TCP_FIN_WAIT1);
5659
5660 if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5661 goto discard;
5662 }
5663
5664 if (!th->ack && !th->rst)
5665 goto discard;
5666
5667 if (!tcp_validate_incoming(sk, skb, th, 0))
5668 return 0;
5669
5670 /* step 5: check the ACK field */
5671 if (true) {
5672 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5673 FLAG_UPDATE_TS_RECENT) > 0;
5674
5675 switch (sk->sk_state) {
5676 case TCP_SYN_RECV:
5677 if (acceptable) {
5678 /* Once we leave TCP_SYN_RECV, we no longer
5679 * need req so release it.
5680 */
5681 if (req) {
5682 tcp_synack_rtt_meas(sk, req);
5683 tp->total_retrans = req->num_retrans;
5684
5685 reqsk_fastopen_remove(sk, req, false);
5686 } else {
5687 /* Make sure socket is routed, for
5688 * correct metrics.
5689 */
5690 icsk->icsk_af_ops->rebuild_header(sk);
5691 tcp_init_congestion_control(sk);
5692
5693 tcp_mtup_init(sk);
5694 tcp_init_buffer_space(sk);
5695 tp->copied_seq = tp->rcv_nxt;
5696 }
5697 smp_mb();
5698 tcp_set_state(sk, TCP_ESTABLISHED);
5699 sk->sk_state_change(sk);
5700
5701 /* Note, that this wakeup is only for marginal
5702 * crossed SYN case. Passively open sockets
5703 * are not waked up, because sk->sk_sleep ==
5704 * NULL and sk->sk_socket == NULL.
5705 */
5706 if (sk->sk_socket)
5707 sk_wake_async(sk,
5708 SOCK_WAKE_IO, POLL_OUT);
5709
5710 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5711 tp->snd_wnd = ntohs(th->window) <<
5712 tp->rx_opt.snd_wscale;
5713 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5714
5715 if (tp->rx_opt.tstamp_ok)
5716 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5717
5718 if (req) {
5719 /* Re-arm the timer because data may
5720 * have been sent out. This is similar
5721 * to the regular data transmission case
5722 * when new data has just been ack'ed.
5723 *
5724 * (TFO) - we could try to be more
5725 * aggressive and retranmitting any data
5726 * sooner based on when they were sent
5727 * out.
5728 */
5729 tcp_rearm_rto(sk);
5730 } else
5731 tcp_init_metrics(sk);
5732
5733 /* Prevent spurious tcp_cwnd_restart() on
5734 * first data packet.
5735 */
5736 tp->lsndtime = tcp_time_stamp;
5737
5738 tcp_initialize_rcv_mss(sk);
5739 tcp_fast_path_on(tp);
5740 } else {
5741 return 1;
5742 }
5743 break;
5744
5745 case TCP_FIN_WAIT1:
5746 /* If we enter the TCP_FIN_WAIT1 state and we are a
5747 * Fast Open socket and this is the first acceptable
5748 * ACK we have received, this would have acknowledged
5749 * our SYNACK so stop the SYNACK timer.
5750 */
5751 if (req != NULL) {
5752 /* Return RST if ack_seq is invalid.
5753 * Note that RFC793 only says to generate a
5754 * DUPACK for it but for TCP Fast Open it seems
5755 * better to treat this case like TCP_SYN_RECV
5756 * above.
5757 */
5758 if (!acceptable)
5759 return 1;
5760 /* We no longer need the request sock. */
5761 reqsk_fastopen_remove(sk, req, false);
5762 tcp_rearm_rto(sk);
5763 }
5764 if (tp->snd_una == tp->write_seq) {
5765 struct dst_entry *dst;
5766
5767 tcp_set_state(sk, TCP_FIN_WAIT2);
5768 sk->sk_shutdown |= SEND_SHUTDOWN;
5769
5770 dst = __sk_dst_get(sk);
5771 if (dst)
5772 dst_confirm(dst);
5773
5774 if (!sock_flag(sk, SOCK_DEAD))
5775 /* Wake up lingering close() */
5776 sk->sk_state_change(sk);
5777 else {
5778 int tmo;
5779
5780 if (tp->linger2 < 0 ||
5781 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5782 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5783 tcp_done(sk);
5784 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5785 return 1;
5786 }
5787
5788 tmo = tcp_fin_time(sk);
5789 if (tmo > TCP_TIMEWAIT_LEN) {
5790 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5791 } else if (th->fin || sock_owned_by_user(sk)) {
5792 /* Bad case. We could lose such FIN otherwise.
5793 * It is not a big problem, but it looks confusing
5794 * and not so rare event. We still can lose it now,
5795 * if it spins in bh_lock_sock(), but it is really
5796 * marginal case.
5797 */
5798 inet_csk_reset_keepalive_timer(sk, tmo);
5799 } else {
5800 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5801 goto discard;
5802 }
5803 }
5804 }
5805 break;
5806
5807 case TCP_CLOSING:
5808 if (tp->snd_una == tp->write_seq) {
5809 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5810 goto discard;
5811 }
5812 break;
5813
5814 case TCP_LAST_ACK:
5815 if (tp->snd_una == tp->write_seq) {
5816 tcp_update_metrics(sk);
5817 tcp_done(sk);
5818 goto discard;
5819 }
5820 break;
5821 }
5822 }
5823
5824 /* step 6: check the URG bit */
5825 tcp_urg(sk, skb, th);
5826
5827 /* step 7: process the segment text */
5828 switch (sk->sk_state) {
5829 case TCP_CLOSE_WAIT:
5830 case TCP_CLOSING:
5831 case TCP_LAST_ACK:
5832 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5833 break;
5834 case TCP_FIN_WAIT1:
5835 case TCP_FIN_WAIT2:
5836 /* RFC 793 says to queue data in these states,
5837 * RFC 1122 says we MUST send a reset.
5838 * BSD 4.4 also does reset.
5839 */
5840 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5841 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5842 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5843 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5844 tcp_reset(sk);
5845 return 1;
5846 }
5847 }
5848 /* Fall through */
5849 case TCP_ESTABLISHED:
5850 tcp_data_queue(sk, skb);
5851 queued = 1;
5852 break;
5853 }
5854
5855 /* tcp_data could move socket to TIME-WAIT */
5856 if (sk->sk_state != TCP_CLOSE) {
5857 tcp_data_snd_check(sk);
5858 tcp_ack_snd_check(sk);
5859 }
5860
5861 if (!queued) {
5862 discard:
5863 __kfree_skb(skb);
5864 }
5865 return 0;
5866 }
5867 EXPORT_SYMBOL(tcp_rcv_state_process);