]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - net/ipv4/tcp_input.c
tcp: defer SACK compression after DupThresh
[mirror_ubuntu-eoan-kernel.git] / net / ipv4 / tcp_input.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
63 */
64
65 #define pr_fmt(fmt) "TCP: " fmt
66
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/static_key.h>
81 #include <net/busy_poll.h>
82
83 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
84
85 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
86 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
87 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
88 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
89 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
90 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
91 #define FLAG_ECE 0x40 /* ECE in this ACK */
92 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
93 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
94 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
95 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
96 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
97 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
98 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
99 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
100 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
101 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
102
103 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
105 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
106 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
107
108 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
109 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
110
111 #define REXMIT_NONE 0 /* no loss recovery to do */
112 #define REXMIT_LOST 1 /* retransmit packets marked lost */
113 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
114
115 #if IS_ENABLED(CONFIG_TLS_DEVICE)
116 static DEFINE_STATIC_KEY_FALSE(clean_acked_data_enabled);
117
118 void clean_acked_data_enable(struct inet_connection_sock *icsk,
119 void (*cad)(struct sock *sk, u32 ack_seq))
120 {
121 icsk->icsk_clean_acked = cad;
122 static_branch_inc(&clean_acked_data_enabled);
123 }
124 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
125
126 void clean_acked_data_disable(struct inet_connection_sock *icsk)
127 {
128 static_branch_dec(&clean_acked_data_enabled);
129 icsk->icsk_clean_acked = NULL;
130 }
131 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
132 #endif
133
134 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
135 unsigned int len)
136 {
137 static bool __once __read_mostly;
138
139 if (!__once) {
140 struct net_device *dev;
141
142 __once = true;
143
144 rcu_read_lock();
145 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
146 if (!dev || len >= dev->mtu)
147 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
148 dev ? dev->name : "Unknown driver");
149 rcu_read_unlock();
150 }
151 }
152
153 /* Adapt the MSS value used to make delayed ack decision to the
154 * real world.
155 */
156 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
157 {
158 struct inet_connection_sock *icsk = inet_csk(sk);
159 const unsigned int lss = icsk->icsk_ack.last_seg_size;
160 unsigned int len;
161
162 icsk->icsk_ack.last_seg_size = 0;
163
164 /* skb->len may jitter because of SACKs, even if peer
165 * sends good full-sized frames.
166 */
167 len = skb_shinfo(skb)->gso_size ? : skb->len;
168 if (len >= icsk->icsk_ack.rcv_mss) {
169 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
170 tcp_sk(sk)->advmss);
171 /* Account for possibly-removed options */
172 if (unlikely(len > icsk->icsk_ack.rcv_mss +
173 MAX_TCP_OPTION_SPACE))
174 tcp_gro_dev_warn(sk, skb, len);
175 } else {
176 /* Otherwise, we make more careful check taking into account,
177 * that SACKs block is variable.
178 *
179 * "len" is invariant segment length, including TCP header.
180 */
181 len += skb->data - skb_transport_header(skb);
182 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
183 /* If PSH is not set, packet should be
184 * full sized, provided peer TCP is not badly broken.
185 * This observation (if it is correct 8)) allows
186 * to handle super-low mtu links fairly.
187 */
188 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
189 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
190 /* Subtract also invariant (if peer is RFC compliant),
191 * tcp header plus fixed timestamp option length.
192 * Resulting "len" is MSS free of SACK jitter.
193 */
194 len -= tcp_sk(sk)->tcp_header_len;
195 icsk->icsk_ack.last_seg_size = len;
196 if (len == lss) {
197 icsk->icsk_ack.rcv_mss = len;
198 return;
199 }
200 }
201 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
202 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
203 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
204 }
205 }
206
207 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
208 {
209 struct inet_connection_sock *icsk = inet_csk(sk);
210 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
211
212 if (quickacks == 0)
213 quickacks = 2;
214 quickacks = min(quickacks, max_quickacks);
215 if (quickacks > icsk->icsk_ack.quick)
216 icsk->icsk_ack.quick = quickacks;
217 }
218
219 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
220 {
221 struct inet_connection_sock *icsk = inet_csk(sk);
222
223 tcp_incr_quickack(sk, max_quickacks);
224 icsk->icsk_ack.pingpong = 0;
225 icsk->icsk_ack.ato = TCP_ATO_MIN;
226 }
227 EXPORT_SYMBOL(tcp_enter_quickack_mode);
228
229 /* Send ACKs quickly, if "quick" count is not exhausted
230 * and the session is not interactive.
231 */
232
233 static bool tcp_in_quickack_mode(struct sock *sk)
234 {
235 const struct inet_connection_sock *icsk = inet_csk(sk);
236 const struct dst_entry *dst = __sk_dst_get(sk);
237
238 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
239 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
240 }
241
242 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
243 {
244 if (tp->ecn_flags & TCP_ECN_OK)
245 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
246 }
247
248 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
249 {
250 if (tcp_hdr(skb)->cwr) {
251 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
252
253 /* If the sender is telling us it has entered CWR, then its
254 * cwnd may be very low (even just 1 packet), so we should ACK
255 * immediately.
256 */
257 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
258 }
259 }
260
261 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
262 {
263 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
264 }
265
266 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
267 {
268 struct tcp_sock *tp = tcp_sk(sk);
269
270 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
271 case INET_ECN_NOT_ECT:
272 /* Funny extension: if ECT is not set on a segment,
273 * and we already seen ECT on a previous segment,
274 * it is probably a retransmit.
275 */
276 if (tp->ecn_flags & TCP_ECN_SEEN)
277 tcp_enter_quickack_mode(sk, 2);
278 break;
279 case INET_ECN_CE:
280 if (tcp_ca_needs_ecn(sk))
281 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
282
283 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
284 /* Better not delay acks, sender can have a very low cwnd */
285 tcp_enter_quickack_mode(sk, 2);
286 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
287 }
288 tp->ecn_flags |= TCP_ECN_SEEN;
289 break;
290 default:
291 if (tcp_ca_needs_ecn(sk))
292 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
293 tp->ecn_flags |= TCP_ECN_SEEN;
294 break;
295 }
296 }
297
298 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
299 {
300 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
301 __tcp_ecn_check_ce(sk, skb);
302 }
303
304 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
305 {
306 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
307 tp->ecn_flags &= ~TCP_ECN_OK;
308 }
309
310 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
311 {
312 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
313 tp->ecn_flags &= ~TCP_ECN_OK;
314 }
315
316 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
317 {
318 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
319 return true;
320 return false;
321 }
322
323 /* Buffer size and advertised window tuning.
324 *
325 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
326 */
327
328 static void tcp_sndbuf_expand(struct sock *sk)
329 {
330 const struct tcp_sock *tp = tcp_sk(sk);
331 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
332 int sndmem, per_mss;
333 u32 nr_segs;
334
335 /* Worst case is non GSO/TSO : each frame consumes one skb
336 * and skb->head is kmalloced using power of two area of memory
337 */
338 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
339 MAX_TCP_HEADER +
340 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
341
342 per_mss = roundup_pow_of_two(per_mss) +
343 SKB_DATA_ALIGN(sizeof(struct sk_buff));
344
345 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
346 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
347
348 /* Fast Recovery (RFC 5681 3.2) :
349 * Cubic needs 1.7 factor, rounded to 2 to include
350 * extra cushion (application might react slowly to EPOLLOUT)
351 */
352 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
353 sndmem *= nr_segs * per_mss;
354
355 if (sk->sk_sndbuf < sndmem)
356 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
357 }
358
359 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
360 *
361 * All tcp_full_space() is split to two parts: "network" buffer, allocated
362 * forward and advertised in receiver window (tp->rcv_wnd) and
363 * "application buffer", required to isolate scheduling/application
364 * latencies from network.
365 * window_clamp is maximal advertised window. It can be less than
366 * tcp_full_space(), in this case tcp_full_space() - window_clamp
367 * is reserved for "application" buffer. The less window_clamp is
368 * the smoother our behaviour from viewpoint of network, but the lower
369 * throughput and the higher sensitivity of the connection to losses. 8)
370 *
371 * rcv_ssthresh is more strict window_clamp used at "slow start"
372 * phase to predict further behaviour of this connection.
373 * It is used for two goals:
374 * - to enforce header prediction at sender, even when application
375 * requires some significant "application buffer". It is check #1.
376 * - to prevent pruning of receive queue because of misprediction
377 * of receiver window. Check #2.
378 *
379 * The scheme does not work when sender sends good segments opening
380 * window and then starts to feed us spaghetti. But it should work
381 * in common situations. Otherwise, we have to rely on queue collapsing.
382 */
383
384 /* Slow part of check#2. */
385 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
386 {
387 struct tcp_sock *tp = tcp_sk(sk);
388 /* Optimize this! */
389 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
390 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
391
392 while (tp->rcv_ssthresh <= window) {
393 if (truesize <= skb->len)
394 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
395
396 truesize >>= 1;
397 window >>= 1;
398 }
399 return 0;
400 }
401
402 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
403 {
404 struct tcp_sock *tp = tcp_sk(sk);
405
406 /* Check #1 */
407 if (tp->rcv_ssthresh < tp->window_clamp &&
408 (int)tp->rcv_ssthresh < tcp_space(sk) &&
409 !tcp_under_memory_pressure(sk)) {
410 int incr;
411
412 /* Check #2. Increase window, if skb with such overhead
413 * will fit to rcvbuf in future.
414 */
415 if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
416 incr = 2 * tp->advmss;
417 else
418 incr = __tcp_grow_window(sk, skb);
419
420 if (incr) {
421 incr = max_t(int, incr, 2 * skb->len);
422 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
423 tp->window_clamp);
424 inet_csk(sk)->icsk_ack.quick |= 1;
425 }
426 }
427 }
428
429 /* 3. Try to fixup all. It is made immediately after connection enters
430 * established state.
431 */
432 void tcp_init_buffer_space(struct sock *sk)
433 {
434 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
435 struct tcp_sock *tp = tcp_sk(sk);
436 int maxwin;
437
438 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
439 tcp_sndbuf_expand(sk);
440
441 tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
442 tcp_mstamp_refresh(tp);
443 tp->rcvq_space.time = tp->tcp_mstamp;
444 tp->rcvq_space.seq = tp->copied_seq;
445
446 maxwin = tcp_full_space(sk);
447
448 if (tp->window_clamp >= maxwin) {
449 tp->window_clamp = maxwin;
450
451 if (tcp_app_win && maxwin > 4 * tp->advmss)
452 tp->window_clamp = max(maxwin -
453 (maxwin >> tcp_app_win),
454 4 * tp->advmss);
455 }
456
457 /* Force reservation of one segment. */
458 if (tcp_app_win &&
459 tp->window_clamp > 2 * tp->advmss &&
460 tp->window_clamp + tp->advmss > maxwin)
461 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
462
463 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
464 tp->snd_cwnd_stamp = tcp_jiffies32;
465 }
466
467 /* 4. Recalculate window clamp after socket hit its memory bounds. */
468 static void tcp_clamp_window(struct sock *sk)
469 {
470 struct tcp_sock *tp = tcp_sk(sk);
471 struct inet_connection_sock *icsk = inet_csk(sk);
472 struct net *net = sock_net(sk);
473
474 icsk->icsk_ack.quick = 0;
475
476 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
477 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
478 !tcp_under_memory_pressure(sk) &&
479 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
480 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
481 net->ipv4.sysctl_tcp_rmem[2]);
482 }
483 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
484 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
485 }
486
487 /* Initialize RCV_MSS value.
488 * RCV_MSS is an our guess about MSS used by the peer.
489 * We haven't any direct information about the MSS.
490 * It's better to underestimate the RCV_MSS rather than overestimate.
491 * Overestimations make us ACKing less frequently than needed.
492 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
493 */
494 void tcp_initialize_rcv_mss(struct sock *sk)
495 {
496 const struct tcp_sock *tp = tcp_sk(sk);
497 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
498
499 hint = min(hint, tp->rcv_wnd / 2);
500 hint = min(hint, TCP_MSS_DEFAULT);
501 hint = max(hint, TCP_MIN_MSS);
502
503 inet_csk(sk)->icsk_ack.rcv_mss = hint;
504 }
505 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
506
507 /* Receiver "autotuning" code.
508 *
509 * The algorithm for RTT estimation w/o timestamps is based on
510 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
511 * <http://public.lanl.gov/radiant/pubs.html#DRS>
512 *
513 * More detail on this code can be found at
514 * <http://staff.psc.edu/jheffner/>,
515 * though this reference is out of date. A new paper
516 * is pending.
517 */
518 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
519 {
520 u32 new_sample = tp->rcv_rtt_est.rtt_us;
521 long m = sample;
522
523 if (new_sample != 0) {
524 /* If we sample in larger samples in the non-timestamp
525 * case, we could grossly overestimate the RTT especially
526 * with chatty applications or bulk transfer apps which
527 * are stalled on filesystem I/O.
528 *
529 * Also, since we are only going for a minimum in the
530 * non-timestamp case, we do not smooth things out
531 * else with timestamps disabled convergence takes too
532 * long.
533 */
534 if (!win_dep) {
535 m -= (new_sample >> 3);
536 new_sample += m;
537 } else {
538 m <<= 3;
539 if (m < new_sample)
540 new_sample = m;
541 }
542 } else {
543 /* No previous measure. */
544 new_sample = m << 3;
545 }
546
547 tp->rcv_rtt_est.rtt_us = new_sample;
548 }
549
550 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
551 {
552 u32 delta_us;
553
554 if (tp->rcv_rtt_est.time == 0)
555 goto new_measure;
556 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
557 return;
558 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
559 if (!delta_us)
560 delta_us = 1;
561 tcp_rcv_rtt_update(tp, delta_us, 1);
562
563 new_measure:
564 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
565 tp->rcv_rtt_est.time = tp->tcp_mstamp;
566 }
567
568 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
569 const struct sk_buff *skb)
570 {
571 struct tcp_sock *tp = tcp_sk(sk);
572
573 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
574 return;
575 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
576
577 if (TCP_SKB_CB(skb)->end_seq -
578 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
579 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
580 u32 delta_us;
581
582 if (!delta)
583 delta = 1;
584 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
585 tcp_rcv_rtt_update(tp, delta_us, 0);
586 }
587 }
588
589 /*
590 * This function should be called every time data is copied to user space.
591 * It calculates the appropriate TCP receive buffer space.
592 */
593 void tcp_rcv_space_adjust(struct sock *sk)
594 {
595 struct tcp_sock *tp = tcp_sk(sk);
596 u32 copied;
597 int time;
598
599 trace_tcp_rcv_space_adjust(sk);
600
601 tcp_mstamp_refresh(tp);
602 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
603 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
604 return;
605
606 /* Number of bytes copied to user in last RTT */
607 copied = tp->copied_seq - tp->rcvq_space.seq;
608 if (copied <= tp->rcvq_space.space)
609 goto new_measure;
610
611 /* A bit of theory :
612 * copied = bytes received in previous RTT, our base window
613 * To cope with packet losses, we need a 2x factor
614 * To cope with slow start, and sender growing its cwin by 100 %
615 * every RTT, we need a 4x factor, because the ACK we are sending
616 * now is for the next RTT, not the current one :
617 * <prev RTT . ><current RTT .. ><next RTT .... >
618 */
619
620 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
621 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
622 int rcvmem, rcvbuf;
623 u64 rcvwin, grow;
624
625 /* minimal window to cope with packet losses, assuming
626 * steady state. Add some cushion because of small variations.
627 */
628 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
629
630 /* Accommodate for sender rate increase (eg. slow start) */
631 grow = rcvwin * (copied - tp->rcvq_space.space);
632 do_div(grow, tp->rcvq_space.space);
633 rcvwin += (grow << 1);
634
635 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
636 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
637 rcvmem += 128;
638
639 do_div(rcvwin, tp->advmss);
640 rcvbuf = min_t(u64, rcvwin * rcvmem,
641 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
642 if (rcvbuf > sk->sk_rcvbuf) {
643 sk->sk_rcvbuf = rcvbuf;
644
645 /* Make the window clamp follow along. */
646 tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
647 }
648 }
649 tp->rcvq_space.space = copied;
650
651 new_measure:
652 tp->rcvq_space.seq = tp->copied_seq;
653 tp->rcvq_space.time = tp->tcp_mstamp;
654 }
655
656 /* There is something which you must keep in mind when you analyze the
657 * behavior of the tp->ato delayed ack timeout interval. When a
658 * connection starts up, we want to ack as quickly as possible. The
659 * problem is that "good" TCP's do slow start at the beginning of data
660 * transmission. The means that until we send the first few ACK's the
661 * sender will sit on his end and only queue most of his data, because
662 * he can only send snd_cwnd unacked packets at any given time. For
663 * each ACK we send, he increments snd_cwnd and transmits more of his
664 * queue. -DaveM
665 */
666 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
667 {
668 struct tcp_sock *tp = tcp_sk(sk);
669 struct inet_connection_sock *icsk = inet_csk(sk);
670 u32 now;
671
672 inet_csk_schedule_ack(sk);
673
674 tcp_measure_rcv_mss(sk, skb);
675
676 tcp_rcv_rtt_measure(tp);
677
678 now = tcp_jiffies32;
679
680 if (!icsk->icsk_ack.ato) {
681 /* The _first_ data packet received, initialize
682 * delayed ACK engine.
683 */
684 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
685 icsk->icsk_ack.ato = TCP_ATO_MIN;
686 } else {
687 int m = now - icsk->icsk_ack.lrcvtime;
688
689 if (m <= TCP_ATO_MIN / 2) {
690 /* The fastest case is the first. */
691 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
692 } else if (m < icsk->icsk_ack.ato) {
693 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
694 if (icsk->icsk_ack.ato > icsk->icsk_rto)
695 icsk->icsk_ack.ato = icsk->icsk_rto;
696 } else if (m > icsk->icsk_rto) {
697 /* Too long gap. Apparently sender failed to
698 * restart window, so that we send ACKs quickly.
699 */
700 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
701 sk_mem_reclaim(sk);
702 }
703 }
704 icsk->icsk_ack.lrcvtime = now;
705
706 tcp_ecn_check_ce(sk, skb);
707
708 if (skb->len >= 128)
709 tcp_grow_window(sk, skb);
710 }
711
712 /* Called to compute a smoothed rtt estimate. The data fed to this
713 * routine either comes from timestamps, or from segments that were
714 * known _not_ to have been retransmitted [see Karn/Partridge
715 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
716 * piece by Van Jacobson.
717 * NOTE: the next three routines used to be one big routine.
718 * To save cycles in the RFC 1323 implementation it was better to break
719 * it up into three procedures. -- erics
720 */
721 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
722 {
723 struct tcp_sock *tp = tcp_sk(sk);
724 long m = mrtt_us; /* RTT */
725 u32 srtt = tp->srtt_us;
726
727 /* The following amusing code comes from Jacobson's
728 * article in SIGCOMM '88. Note that rtt and mdev
729 * are scaled versions of rtt and mean deviation.
730 * This is designed to be as fast as possible
731 * m stands for "measurement".
732 *
733 * On a 1990 paper the rto value is changed to:
734 * RTO = rtt + 4 * mdev
735 *
736 * Funny. This algorithm seems to be very broken.
737 * These formulae increase RTO, when it should be decreased, increase
738 * too slowly, when it should be increased quickly, decrease too quickly
739 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
740 * does not matter how to _calculate_ it. Seems, it was trap
741 * that VJ failed to avoid. 8)
742 */
743 if (srtt != 0) {
744 m -= (srtt >> 3); /* m is now error in rtt est */
745 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
746 if (m < 0) {
747 m = -m; /* m is now abs(error) */
748 m -= (tp->mdev_us >> 2); /* similar update on mdev */
749 /* This is similar to one of Eifel findings.
750 * Eifel blocks mdev updates when rtt decreases.
751 * This solution is a bit different: we use finer gain
752 * for mdev in this case (alpha*beta).
753 * Like Eifel it also prevents growth of rto,
754 * but also it limits too fast rto decreases,
755 * happening in pure Eifel.
756 */
757 if (m > 0)
758 m >>= 3;
759 } else {
760 m -= (tp->mdev_us >> 2); /* similar update on mdev */
761 }
762 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
763 if (tp->mdev_us > tp->mdev_max_us) {
764 tp->mdev_max_us = tp->mdev_us;
765 if (tp->mdev_max_us > tp->rttvar_us)
766 tp->rttvar_us = tp->mdev_max_us;
767 }
768 if (after(tp->snd_una, tp->rtt_seq)) {
769 if (tp->mdev_max_us < tp->rttvar_us)
770 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
771 tp->rtt_seq = tp->snd_nxt;
772 tp->mdev_max_us = tcp_rto_min_us(sk);
773 }
774 } else {
775 /* no previous measure. */
776 srtt = m << 3; /* take the measured time to be rtt */
777 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
778 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
779 tp->mdev_max_us = tp->rttvar_us;
780 tp->rtt_seq = tp->snd_nxt;
781 }
782 tp->srtt_us = max(1U, srtt);
783 }
784
785 static void tcp_update_pacing_rate(struct sock *sk)
786 {
787 const struct tcp_sock *tp = tcp_sk(sk);
788 u64 rate;
789
790 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
791 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
792
793 /* current rate is (cwnd * mss) / srtt
794 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
795 * In Congestion Avoidance phase, set it to 120 % the current rate.
796 *
797 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
798 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
799 * end of slow start and should slow down.
800 */
801 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
802 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
803 else
804 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
805
806 rate *= max(tp->snd_cwnd, tp->packets_out);
807
808 if (likely(tp->srtt_us))
809 do_div(rate, tp->srtt_us);
810
811 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
812 * without any lock. We want to make sure compiler wont store
813 * intermediate values in this location.
814 */
815 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
816 sk->sk_max_pacing_rate));
817 }
818
819 /* Calculate rto without backoff. This is the second half of Van Jacobson's
820 * routine referred to above.
821 */
822 static void tcp_set_rto(struct sock *sk)
823 {
824 const struct tcp_sock *tp = tcp_sk(sk);
825 /* Old crap is replaced with new one. 8)
826 *
827 * More seriously:
828 * 1. If rtt variance happened to be less 50msec, it is hallucination.
829 * It cannot be less due to utterly erratic ACK generation made
830 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
831 * to do with delayed acks, because at cwnd>2 true delack timeout
832 * is invisible. Actually, Linux-2.4 also generates erratic
833 * ACKs in some circumstances.
834 */
835 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
836
837 /* 2. Fixups made earlier cannot be right.
838 * If we do not estimate RTO correctly without them,
839 * all the algo is pure shit and should be replaced
840 * with correct one. It is exactly, which we pretend to do.
841 */
842
843 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
844 * guarantees that rto is higher.
845 */
846 tcp_bound_rto(sk);
847 }
848
849 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
850 {
851 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
852
853 if (!cwnd)
854 cwnd = TCP_INIT_CWND;
855 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
856 }
857
858 /* Take a notice that peer is sending D-SACKs */
859 static void tcp_dsack_seen(struct tcp_sock *tp)
860 {
861 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
862 tp->rack.dsack_seen = 1;
863 tp->dsack_dups++;
864 }
865
866 /* It's reordering when higher sequence was delivered (i.e. sacked) before
867 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
868 * distance is approximated in full-mss packet distance ("reordering").
869 */
870 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
871 const int ts)
872 {
873 struct tcp_sock *tp = tcp_sk(sk);
874 const u32 mss = tp->mss_cache;
875 u32 fack, metric;
876
877 fack = tcp_highest_sack_seq(tp);
878 if (!before(low_seq, fack))
879 return;
880
881 metric = fack - low_seq;
882 if ((metric > tp->reordering * mss) && mss) {
883 #if FASTRETRANS_DEBUG > 1
884 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
885 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
886 tp->reordering,
887 0,
888 tp->sacked_out,
889 tp->undo_marker ? tp->undo_retrans : 0);
890 #endif
891 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
892 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
893 }
894
895 /* This exciting event is worth to be remembered. 8) */
896 tp->reord_seen++;
897 NET_INC_STATS(sock_net(sk),
898 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
899 }
900
901 /* This must be called before lost_out is incremented */
902 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
903 {
904 if (!tp->retransmit_skb_hint ||
905 before(TCP_SKB_CB(skb)->seq,
906 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
907 tp->retransmit_skb_hint = skb;
908 }
909
910 /* Sum the number of packets on the wire we have marked as lost.
911 * There are two cases we care about here:
912 * a) Packet hasn't been marked lost (nor retransmitted),
913 * and this is the first loss.
914 * b) Packet has been marked both lost and retransmitted,
915 * and this means we think it was lost again.
916 */
917 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
918 {
919 __u8 sacked = TCP_SKB_CB(skb)->sacked;
920
921 if (!(sacked & TCPCB_LOST) ||
922 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
923 tp->lost += tcp_skb_pcount(skb);
924 }
925
926 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
927 {
928 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
929 tcp_verify_retransmit_hint(tp, skb);
930
931 tp->lost_out += tcp_skb_pcount(skb);
932 tcp_sum_lost(tp, skb);
933 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
934 }
935 }
936
937 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
938 {
939 tcp_verify_retransmit_hint(tp, skb);
940
941 tcp_sum_lost(tp, skb);
942 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
943 tp->lost_out += tcp_skb_pcount(skb);
944 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
945 }
946 }
947
948 /* This procedure tags the retransmission queue when SACKs arrive.
949 *
950 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
951 * Packets in queue with these bits set are counted in variables
952 * sacked_out, retrans_out and lost_out, correspondingly.
953 *
954 * Valid combinations are:
955 * Tag InFlight Description
956 * 0 1 - orig segment is in flight.
957 * S 0 - nothing flies, orig reached receiver.
958 * L 0 - nothing flies, orig lost by net.
959 * R 2 - both orig and retransmit are in flight.
960 * L|R 1 - orig is lost, retransmit is in flight.
961 * S|R 1 - orig reached receiver, retrans is still in flight.
962 * (L|S|R is logically valid, it could occur when L|R is sacked,
963 * but it is equivalent to plain S and code short-curcuits it to S.
964 * L|S is logically invalid, it would mean -1 packet in flight 8))
965 *
966 * These 6 states form finite state machine, controlled by the following events:
967 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
968 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
969 * 3. Loss detection event of two flavors:
970 * A. Scoreboard estimator decided the packet is lost.
971 * A'. Reno "three dupacks" marks head of queue lost.
972 * B. SACK arrives sacking SND.NXT at the moment, when the
973 * segment was retransmitted.
974 * 4. D-SACK added new rule: D-SACK changes any tag to S.
975 *
976 * It is pleasant to note, that state diagram turns out to be commutative,
977 * so that we are allowed not to be bothered by order of our actions,
978 * when multiple events arrive simultaneously. (see the function below).
979 *
980 * Reordering detection.
981 * --------------------
982 * Reordering metric is maximal distance, which a packet can be displaced
983 * in packet stream. With SACKs we can estimate it:
984 *
985 * 1. SACK fills old hole and the corresponding segment was not
986 * ever retransmitted -> reordering. Alas, we cannot use it
987 * when segment was retransmitted.
988 * 2. The last flaw is solved with D-SACK. D-SACK arrives
989 * for retransmitted and already SACKed segment -> reordering..
990 * Both of these heuristics are not used in Loss state, when we cannot
991 * account for retransmits accurately.
992 *
993 * SACK block validation.
994 * ----------------------
995 *
996 * SACK block range validation checks that the received SACK block fits to
997 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
998 * Note that SND.UNA is not included to the range though being valid because
999 * it means that the receiver is rather inconsistent with itself reporting
1000 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1001 * perfectly valid, however, in light of RFC2018 which explicitly states
1002 * that "SACK block MUST reflect the newest segment. Even if the newest
1003 * segment is going to be discarded ...", not that it looks very clever
1004 * in case of head skb. Due to potentional receiver driven attacks, we
1005 * choose to avoid immediate execution of a walk in write queue due to
1006 * reneging and defer head skb's loss recovery to standard loss recovery
1007 * procedure that will eventually trigger (nothing forbids us doing this).
1008 *
1009 * Implements also blockage to start_seq wrap-around. Problem lies in the
1010 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1011 * there's no guarantee that it will be before snd_nxt (n). The problem
1012 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1013 * wrap (s_w):
1014 *
1015 * <- outs wnd -> <- wrapzone ->
1016 * u e n u_w e_w s n_w
1017 * | | | | | | |
1018 * |<------------+------+----- TCP seqno space --------------+---------->|
1019 * ...-- <2^31 ->| |<--------...
1020 * ...---- >2^31 ------>| |<--------...
1021 *
1022 * Current code wouldn't be vulnerable but it's better still to discard such
1023 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1024 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1025 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1026 * equal to the ideal case (infinite seqno space without wrap caused issues).
1027 *
1028 * With D-SACK the lower bound is extended to cover sequence space below
1029 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1030 * again, D-SACK block must not to go across snd_una (for the same reason as
1031 * for the normal SACK blocks, explained above). But there all simplicity
1032 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1033 * fully below undo_marker they do not affect behavior in anyway and can
1034 * therefore be safely ignored. In rare cases (which are more or less
1035 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1036 * fragmentation and packet reordering past skb's retransmission. To consider
1037 * them correctly, the acceptable range must be extended even more though
1038 * the exact amount is rather hard to quantify. However, tp->max_window can
1039 * be used as an exaggerated estimate.
1040 */
1041 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1042 u32 start_seq, u32 end_seq)
1043 {
1044 /* Too far in future, or reversed (interpretation is ambiguous) */
1045 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1046 return false;
1047
1048 /* Nasty start_seq wrap-around check (see comments above) */
1049 if (!before(start_seq, tp->snd_nxt))
1050 return false;
1051
1052 /* In outstanding window? ...This is valid exit for D-SACKs too.
1053 * start_seq == snd_una is non-sensical (see comments above)
1054 */
1055 if (after(start_seq, tp->snd_una))
1056 return true;
1057
1058 if (!is_dsack || !tp->undo_marker)
1059 return false;
1060
1061 /* ...Then it's D-SACK, and must reside below snd_una completely */
1062 if (after(end_seq, tp->snd_una))
1063 return false;
1064
1065 if (!before(start_seq, tp->undo_marker))
1066 return true;
1067
1068 /* Too old */
1069 if (!after(end_seq, tp->undo_marker))
1070 return false;
1071
1072 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1073 * start_seq < undo_marker and end_seq >= undo_marker.
1074 */
1075 return !before(start_seq, end_seq - tp->max_window);
1076 }
1077
1078 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1079 struct tcp_sack_block_wire *sp, int num_sacks,
1080 u32 prior_snd_una)
1081 {
1082 struct tcp_sock *tp = tcp_sk(sk);
1083 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1084 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1085 bool dup_sack = false;
1086
1087 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1088 dup_sack = true;
1089 tcp_dsack_seen(tp);
1090 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1091 } else if (num_sacks > 1) {
1092 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1093 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1094
1095 if (!after(end_seq_0, end_seq_1) &&
1096 !before(start_seq_0, start_seq_1)) {
1097 dup_sack = true;
1098 tcp_dsack_seen(tp);
1099 NET_INC_STATS(sock_net(sk),
1100 LINUX_MIB_TCPDSACKOFORECV);
1101 }
1102 }
1103
1104 /* D-SACK for already forgotten data... Do dumb counting. */
1105 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1106 !after(end_seq_0, prior_snd_una) &&
1107 after(end_seq_0, tp->undo_marker))
1108 tp->undo_retrans--;
1109
1110 return dup_sack;
1111 }
1112
1113 struct tcp_sacktag_state {
1114 u32 reord;
1115 /* Timestamps for earliest and latest never-retransmitted segment
1116 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1117 * but congestion control should still get an accurate delay signal.
1118 */
1119 u64 first_sackt;
1120 u64 last_sackt;
1121 struct rate_sample *rate;
1122 int flag;
1123 unsigned int mss_now;
1124 };
1125
1126 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1127 * the incoming SACK may not exactly match but we can find smaller MSS
1128 * aligned portion of it that matches. Therefore we might need to fragment
1129 * which may fail and creates some hassle (caller must handle error case
1130 * returns).
1131 *
1132 * FIXME: this could be merged to shift decision code
1133 */
1134 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1135 u32 start_seq, u32 end_seq)
1136 {
1137 int err;
1138 bool in_sack;
1139 unsigned int pkt_len;
1140 unsigned int mss;
1141
1142 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1143 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1144
1145 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1146 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1147 mss = tcp_skb_mss(skb);
1148 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1149
1150 if (!in_sack) {
1151 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1152 if (pkt_len < mss)
1153 pkt_len = mss;
1154 } else {
1155 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1156 if (pkt_len < mss)
1157 return -EINVAL;
1158 }
1159
1160 /* Round if necessary so that SACKs cover only full MSSes
1161 * and/or the remaining small portion (if present)
1162 */
1163 if (pkt_len > mss) {
1164 unsigned int new_len = (pkt_len / mss) * mss;
1165 if (!in_sack && new_len < pkt_len)
1166 new_len += mss;
1167 pkt_len = new_len;
1168 }
1169
1170 if (pkt_len >= skb->len && !in_sack)
1171 return 0;
1172
1173 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1174 pkt_len, mss, GFP_ATOMIC);
1175 if (err < 0)
1176 return err;
1177 }
1178
1179 return in_sack;
1180 }
1181
1182 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1183 static u8 tcp_sacktag_one(struct sock *sk,
1184 struct tcp_sacktag_state *state, u8 sacked,
1185 u32 start_seq, u32 end_seq,
1186 int dup_sack, int pcount,
1187 u64 xmit_time)
1188 {
1189 struct tcp_sock *tp = tcp_sk(sk);
1190
1191 /* Account D-SACK for retransmitted packet. */
1192 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1193 if (tp->undo_marker && tp->undo_retrans > 0 &&
1194 after(end_seq, tp->undo_marker))
1195 tp->undo_retrans--;
1196 if ((sacked & TCPCB_SACKED_ACKED) &&
1197 before(start_seq, state->reord))
1198 state->reord = start_seq;
1199 }
1200
1201 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1202 if (!after(end_seq, tp->snd_una))
1203 return sacked;
1204
1205 if (!(sacked & TCPCB_SACKED_ACKED)) {
1206 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1207
1208 if (sacked & TCPCB_SACKED_RETRANS) {
1209 /* If the segment is not tagged as lost,
1210 * we do not clear RETRANS, believing
1211 * that retransmission is still in flight.
1212 */
1213 if (sacked & TCPCB_LOST) {
1214 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1215 tp->lost_out -= pcount;
1216 tp->retrans_out -= pcount;
1217 }
1218 } else {
1219 if (!(sacked & TCPCB_RETRANS)) {
1220 /* New sack for not retransmitted frame,
1221 * which was in hole. It is reordering.
1222 */
1223 if (before(start_seq,
1224 tcp_highest_sack_seq(tp)) &&
1225 before(start_seq, state->reord))
1226 state->reord = start_seq;
1227
1228 if (!after(end_seq, tp->high_seq))
1229 state->flag |= FLAG_ORIG_SACK_ACKED;
1230 if (state->first_sackt == 0)
1231 state->first_sackt = xmit_time;
1232 state->last_sackt = xmit_time;
1233 }
1234
1235 if (sacked & TCPCB_LOST) {
1236 sacked &= ~TCPCB_LOST;
1237 tp->lost_out -= pcount;
1238 }
1239 }
1240
1241 sacked |= TCPCB_SACKED_ACKED;
1242 state->flag |= FLAG_DATA_SACKED;
1243 tp->sacked_out += pcount;
1244 tp->delivered += pcount; /* Out-of-order packets delivered */
1245
1246 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1247 if (tp->lost_skb_hint &&
1248 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1249 tp->lost_cnt_hint += pcount;
1250 }
1251
1252 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1253 * frames and clear it. undo_retrans is decreased above, L|R frames
1254 * are accounted above as well.
1255 */
1256 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1257 sacked &= ~TCPCB_SACKED_RETRANS;
1258 tp->retrans_out -= pcount;
1259 }
1260
1261 return sacked;
1262 }
1263
1264 /* Shift newly-SACKed bytes from this skb to the immediately previous
1265 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1266 */
1267 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1268 struct sk_buff *skb,
1269 struct tcp_sacktag_state *state,
1270 unsigned int pcount, int shifted, int mss,
1271 bool dup_sack)
1272 {
1273 struct tcp_sock *tp = tcp_sk(sk);
1274 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1275 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1276
1277 BUG_ON(!pcount);
1278
1279 /* Adjust counters and hints for the newly sacked sequence
1280 * range but discard the return value since prev is already
1281 * marked. We must tag the range first because the seq
1282 * advancement below implicitly advances
1283 * tcp_highest_sack_seq() when skb is highest_sack.
1284 */
1285 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1286 start_seq, end_seq, dup_sack, pcount,
1287 tcp_skb_timestamp_us(skb));
1288 tcp_rate_skb_delivered(sk, skb, state->rate);
1289
1290 if (skb == tp->lost_skb_hint)
1291 tp->lost_cnt_hint += pcount;
1292
1293 TCP_SKB_CB(prev)->end_seq += shifted;
1294 TCP_SKB_CB(skb)->seq += shifted;
1295
1296 tcp_skb_pcount_add(prev, pcount);
1297 BUG_ON(tcp_skb_pcount(skb) < pcount);
1298 tcp_skb_pcount_add(skb, -pcount);
1299
1300 /* When we're adding to gso_segs == 1, gso_size will be zero,
1301 * in theory this shouldn't be necessary but as long as DSACK
1302 * code can come after this skb later on it's better to keep
1303 * setting gso_size to something.
1304 */
1305 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1306 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1307
1308 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1309 if (tcp_skb_pcount(skb) <= 1)
1310 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1311
1312 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1313 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1314
1315 if (skb->len > 0) {
1316 BUG_ON(!tcp_skb_pcount(skb));
1317 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1318 return false;
1319 }
1320
1321 /* Whole SKB was eaten :-) */
1322
1323 if (skb == tp->retransmit_skb_hint)
1324 tp->retransmit_skb_hint = prev;
1325 if (skb == tp->lost_skb_hint) {
1326 tp->lost_skb_hint = prev;
1327 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1328 }
1329
1330 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1331 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1332 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1333 TCP_SKB_CB(prev)->end_seq++;
1334
1335 if (skb == tcp_highest_sack(sk))
1336 tcp_advance_highest_sack(sk, skb);
1337
1338 tcp_skb_collapse_tstamp(prev, skb);
1339 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1340 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1341
1342 tcp_rtx_queue_unlink_and_free(skb, sk);
1343
1344 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1345
1346 return true;
1347 }
1348
1349 /* I wish gso_size would have a bit more sane initialization than
1350 * something-or-zero which complicates things
1351 */
1352 static int tcp_skb_seglen(const struct sk_buff *skb)
1353 {
1354 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1355 }
1356
1357 /* Shifting pages past head area doesn't work */
1358 static int skb_can_shift(const struct sk_buff *skb)
1359 {
1360 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1361 }
1362
1363 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1364 * skb.
1365 */
1366 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1367 struct tcp_sacktag_state *state,
1368 u32 start_seq, u32 end_seq,
1369 bool dup_sack)
1370 {
1371 struct tcp_sock *tp = tcp_sk(sk);
1372 struct sk_buff *prev;
1373 int mss;
1374 int pcount = 0;
1375 int len;
1376 int in_sack;
1377
1378 /* Normally R but no L won't result in plain S */
1379 if (!dup_sack &&
1380 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1381 goto fallback;
1382 if (!skb_can_shift(skb))
1383 goto fallback;
1384 /* This frame is about to be dropped (was ACKed). */
1385 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1386 goto fallback;
1387
1388 /* Can only happen with delayed DSACK + discard craziness */
1389 prev = skb_rb_prev(skb);
1390 if (!prev)
1391 goto fallback;
1392
1393 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1394 goto fallback;
1395
1396 if (!tcp_skb_can_collapse_to(prev))
1397 goto fallback;
1398
1399 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1400 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1401
1402 if (in_sack) {
1403 len = skb->len;
1404 pcount = tcp_skb_pcount(skb);
1405 mss = tcp_skb_seglen(skb);
1406
1407 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1408 * drop this restriction as unnecessary
1409 */
1410 if (mss != tcp_skb_seglen(prev))
1411 goto fallback;
1412 } else {
1413 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1414 goto noop;
1415 /* CHECKME: This is non-MSS split case only?, this will
1416 * cause skipped skbs due to advancing loop btw, original
1417 * has that feature too
1418 */
1419 if (tcp_skb_pcount(skb) <= 1)
1420 goto noop;
1421
1422 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1423 if (!in_sack) {
1424 /* TODO: head merge to next could be attempted here
1425 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1426 * though it might not be worth of the additional hassle
1427 *
1428 * ...we can probably just fallback to what was done
1429 * previously. We could try merging non-SACKed ones
1430 * as well but it probably isn't going to buy off
1431 * because later SACKs might again split them, and
1432 * it would make skb timestamp tracking considerably
1433 * harder problem.
1434 */
1435 goto fallback;
1436 }
1437
1438 len = end_seq - TCP_SKB_CB(skb)->seq;
1439 BUG_ON(len < 0);
1440 BUG_ON(len > skb->len);
1441
1442 /* MSS boundaries should be honoured or else pcount will
1443 * severely break even though it makes things bit trickier.
1444 * Optimize common case to avoid most of the divides
1445 */
1446 mss = tcp_skb_mss(skb);
1447
1448 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1449 * drop this restriction as unnecessary
1450 */
1451 if (mss != tcp_skb_seglen(prev))
1452 goto fallback;
1453
1454 if (len == mss) {
1455 pcount = 1;
1456 } else if (len < mss) {
1457 goto noop;
1458 } else {
1459 pcount = len / mss;
1460 len = pcount * mss;
1461 }
1462 }
1463
1464 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1465 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1466 goto fallback;
1467
1468 if (!skb_shift(prev, skb, len))
1469 goto fallback;
1470 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1471 goto out;
1472
1473 /* Hole filled allows collapsing with the next as well, this is very
1474 * useful when hole on every nth skb pattern happens
1475 */
1476 skb = skb_rb_next(prev);
1477 if (!skb)
1478 goto out;
1479
1480 if (!skb_can_shift(skb) ||
1481 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1482 (mss != tcp_skb_seglen(skb)))
1483 goto out;
1484
1485 len = skb->len;
1486 if (skb_shift(prev, skb, len)) {
1487 pcount += tcp_skb_pcount(skb);
1488 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1489 len, mss, 0);
1490 }
1491
1492 out:
1493 return prev;
1494
1495 noop:
1496 return skb;
1497
1498 fallback:
1499 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1500 return NULL;
1501 }
1502
1503 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1504 struct tcp_sack_block *next_dup,
1505 struct tcp_sacktag_state *state,
1506 u32 start_seq, u32 end_seq,
1507 bool dup_sack_in)
1508 {
1509 struct tcp_sock *tp = tcp_sk(sk);
1510 struct sk_buff *tmp;
1511
1512 skb_rbtree_walk_from(skb) {
1513 int in_sack = 0;
1514 bool dup_sack = dup_sack_in;
1515
1516 /* queue is in-order => we can short-circuit the walk early */
1517 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1518 break;
1519
1520 if (next_dup &&
1521 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1522 in_sack = tcp_match_skb_to_sack(sk, skb,
1523 next_dup->start_seq,
1524 next_dup->end_seq);
1525 if (in_sack > 0)
1526 dup_sack = true;
1527 }
1528
1529 /* skb reference here is a bit tricky to get right, since
1530 * shifting can eat and free both this skb and the next,
1531 * so not even _safe variant of the loop is enough.
1532 */
1533 if (in_sack <= 0) {
1534 tmp = tcp_shift_skb_data(sk, skb, state,
1535 start_seq, end_seq, dup_sack);
1536 if (tmp) {
1537 if (tmp != skb) {
1538 skb = tmp;
1539 continue;
1540 }
1541
1542 in_sack = 0;
1543 } else {
1544 in_sack = tcp_match_skb_to_sack(sk, skb,
1545 start_seq,
1546 end_seq);
1547 }
1548 }
1549
1550 if (unlikely(in_sack < 0))
1551 break;
1552
1553 if (in_sack) {
1554 TCP_SKB_CB(skb)->sacked =
1555 tcp_sacktag_one(sk,
1556 state,
1557 TCP_SKB_CB(skb)->sacked,
1558 TCP_SKB_CB(skb)->seq,
1559 TCP_SKB_CB(skb)->end_seq,
1560 dup_sack,
1561 tcp_skb_pcount(skb),
1562 tcp_skb_timestamp_us(skb));
1563 tcp_rate_skb_delivered(sk, skb, state->rate);
1564 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1565 list_del_init(&skb->tcp_tsorted_anchor);
1566
1567 if (!before(TCP_SKB_CB(skb)->seq,
1568 tcp_highest_sack_seq(tp)))
1569 tcp_advance_highest_sack(sk, skb);
1570 }
1571 }
1572 return skb;
1573 }
1574
1575 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1576 struct tcp_sacktag_state *state,
1577 u32 seq)
1578 {
1579 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1580 struct sk_buff *skb;
1581
1582 while (*p) {
1583 parent = *p;
1584 skb = rb_to_skb(parent);
1585 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1586 p = &parent->rb_left;
1587 continue;
1588 }
1589 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1590 p = &parent->rb_right;
1591 continue;
1592 }
1593 return skb;
1594 }
1595 return NULL;
1596 }
1597
1598 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1599 struct tcp_sacktag_state *state,
1600 u32 skip_to_seq)
1601 {
1602 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1603 return skb;
1604
1605 return tcp_sacktag_bsearch(sk, state, skip_to_seq);
1606 }
1607
1608 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1609 struct sock *sk,
1610 struct tcp_sack_block *next_dup,
1611 struct tcp_sacktag_state *state,
1612 u32 skip_to_seq)
1613 {
1614 if (!next_dup)
1615 return skb;
1616
1617 if (before(next_dup->start_seq, skip_to_seq)) {
1618 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1619 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1620 next_dup->start_seq, next_dup->end_seq,
1621 1);
1622 }
1623
1624 return skb;
1625 }
1626
1627 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1628 {
1629 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1630 }
1631
1632 static int
1633 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1634 u32 prior_snd_una, struct tcp_sacktag_state *state)
1635 {
1636 struct tcp_sock *tp = tcp_sk(sk);
1637 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1638 TCP_SKB_CB(ack_skb)->sacked);
1639 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1640 struct tcp_sack_block sp[TCP_NUM_SACKS];
1641 struct tcp_sack_block *cache;
1642 struct sk_buff *skb;
1643 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1644 int used_sacks;
1645 bool found_dup_sack = false;
1646 int i, j;
1647 int first_sack_index;
1648
1649 state->flag = 0;
1650 state->reord = tp->snd_nxt;
1651
1652 if (!tp->sacked_out)
1653 tcp_highest_sack_reset(sk);
1654
1655 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1656 num_sacks, prior_snd_una);
1657 if (found_dup_sack) {
1658 state->flag |= FLAG_DSACKING_ACK;
1659 tp->delivered++; /* A spurious retransmission is delivered */
1660 }
1661
1662 /* Eliminate too old ACKs, but take into
1663 * account more or less fresh ones, they can
1664 * contain valid SACK info.
1665 */
1666 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1667 return 0;
1668
1669 if (!tp->packets_out)
1670 goto out;
1671
1672 used_sacks = 0;
1673 first_sack_index = 0;
1674 for (i = 0; i < num_sacks; i++) {
1675 bool dup_sack = !i && found_dup_sack;
1676
1677 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1678 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1679
1680 if (!tcp_is_sackblock_valid(tp, dup_sack,
1681 sp[used_sacks].start_seq,
1682 sp[used_sacks].end_seq)) {
1683 int mib_idx;
1684
1685 if (dup_sack) {
1686 if (!tp->undo_marker)
1687 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1688 else
1689 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1690 } else {
1691 /* Don't count olds caused by ACK reordering */
1692 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1693 !after(sp[used_sacks].end_seq, tp->snd_una))
1694 continue;
1695 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1696 }
1697
1698 NET_INC_STATS(sock_net(sk), mib_idx);
1699 if (i == 0)
1700 first_sack_index = -1;
1701 continue;
1702 }
1703
1704 /* Ignore very old stuff early */
1705 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1706 continue;
1707
1708 used_sacks++;
1709 }
1710
1711 /* order SACK blocks to allow in order walk of the retrans queue */
1712 for (i = used_sacks - 1; i > 0; i--) {
1713 for (j = 0; j < i; j++) {
1714 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1715 swap(sp[j], sp[j + 1]);
1716
1717 /* Track where the first SACK block goes to */
1718 if (j == first_sack_index)
1719 first_sack_index = j + 1;
1720 }
1721 }
1722 }
1723
1724 state->mss_now = tcp_current_mss(sk);
1725 skb = NULL;
1726 i = 0;
1727
1728 if (!tp->sacked_out) {
1729 /* It's already past, so skip checking against it */
1730 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1731 } else {
1732 cache = tp->recv_sack_cache;
1733 /* Skip empty blocks in at head of the cache */
1734 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1735 !cache->end_seq)
1736 cache++;
1737 }
1738
1739 while (i < used_sacks) {
1740 u32 start_seq = sp[i].start_seq;
1741 u32 end_seq = sp[i].end_seq;
1742 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1743 struct tcp_sack_block *next_dup = NULL;
1744
1745 if (found_dup_sack && ((i + 1) == first_sack_index))
1746 next_dup = &sp[i + 1];
1747
1748 /* Skip too early cached blocks */
1749 while (tcp_sack_cache_ok(tp, cache) &&
1750 !before(start_seq, cache->end_seq))
1751 cache++;
1752
1753 /* Can skip some work by looking recv_sack_cache? */
1754 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1755 after(end_seq, cache->start_seq)) {
1756
1757 /* Head todo? */
1758 if (before(start_seq, cache->start_seq)) {
1759 skb = tcp_sacktag_skip(skb, sk, state,
1760 start_seq);
1761 skb = tcp_sacktag_walk(skb, sk, next_dup,
1762 state,
1763 start_seq,
1764 cache->start_seq,
1765 dup_sack);
1766 }
1767
1768 /* Rest of the block already fully processed? */
1769 if (!after(end_seq, cache->end_seq))
1770 goto advance_sp;
1771
1772 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1773 state,
1774 cache->end_seq);
1775
1776 /* ...tail remains todo... */
1777 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1778 /* ...but better entrypoint exists! */
1779 skb = tcp_highest_sack(sk);
1780 if (!skb)
1781 break;
1782 cache++;
1783 goto walk;
1784 }
1785
1786 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1787 /* Check overlap against next cached too (past this one already) */
1788 cache++;
1789 continue;
1790 }
1791
1792 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1793 skb = tcp_highest_sack(sk);
1794 if (!skb)
1795 break;
1796 }
1797 skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1798
1799 walk:
1800 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1801 start_seq, end_seq, dup_sack);
1802
1803 advance_sp:
1804 i++;
1805 }
1806
1807 /* Clear the head of the cache sack blocks so we can skip it next time */
1808 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1809 tp->recv_sack_cache[i].start_seq = 0;
1810 tp->recv_sack_cache[i].end_seq = 0;
1811 }
1812 for (j = 0; j < used_sacks; j++)
1813 tp->recv_sack_cache[i++] = sp[j];
1814
1815 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1816 tcp_check_sack_reordering(sk, state->reord, 0);
1817
1818 tcp_verify_left_out(tp);
1819 out:
1820
1821 #if FASTRETRANS_DEBUG > 0
1822 WARN_ON((int)tp->sacked_out < 0);
1823 WARN_ON((int)tp->lost_out < 0);
1824 WARN_ON((int)tp->retrans_out < 0);
1825 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1826 #endif
1827 return state->flag;
1828 }
1829
1830 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1831 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1832 */
1833 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1834 {
1835 u32 holes;
1836
1837 holes = max(tp->lost_out, 1U);
1838 holes = min(holes, tp->packets_out);
1839
1840 if ((tp->sacked_out + holes) > tp->packets_out) {
1841 tp->sacked_out = tp->packets_out - holes;
1842 return true;
1843 }
1844 return false;
1845 }
1846
1847 /* If we receive more dupacks than we expected counting segments
1848 * in assumption of absent reordering, interpret this as reordering.
1849 * The only another reason could be bug in receiver TCP.
1850 */
1851 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1852 {
1853 struct tcp_sock *tp = tcp_sk(sk);
1854
1855 if (!tcp_limit_reno_sacked(tp))
1856 return;
1857
1858 tp->reordering = min_t(u32, tp->packets_out + addend,
1859 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1860 tp->reord_seen++;
1861 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1862 }
1863
1864 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1865
1866 static void tcp_add_reno_sack(struct sock *sk)
1867 {
1868 struct tcp_sock *tp = tcp_sk(sk);
1869 u32 prior_sacked = tp->sacked_out;
1870
1871 tp->sacked_out++;
1872 tcp_check_reno_reordering(sk, 0);
1873 if (tp->sacked_out > prior_sacked)
1874 tp->delivered++; /* Some out-of-order packet is delivered */
1875 tcp_verify_left_out(tp);
1876 }
1877
1878 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1879
1880 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1881 {
1882 struct tcp_sock *tp = tcp_sk(sk);
1883
1884 if (acked > 0) {
1885 /* One ACK acked hole. The rest eat duplicate ACKs. */
1886 tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1887 if (acked - 1 >= tp->sacked_out)
1888 tp->sacked_out = 0;
1889 else
1890 tp->sacked_out -= acked - 1;
1891 }
1892 tcp_check_reno_reordering(sk, acked);
1893 tcp_verify_left_out(tp);
1894 }
1895
1896 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1897 {
1898 tp->sacked_out = 0;
1899 }
1900
1901 void tcp_clear_retrans(struct tcp_sock *tp)
1902 {
1903 tp->retrans_out = 0;
1904 tp->lost_out = 0;
1905 tp->undo_marker = 0;
1906 tp->undo_retrans = -1;
1907 tp->sacked_out = 0;
1908 }
1909
1910 static inline void tcp_init_undo(struct tcp_sock *tp)
1911 {
1912 tp->undo_marker = tp->snd_una;
1913 /* Retransmission still in flight may cause DSACKs later. */
1914 tp->undo_retrans = tp->retrans_out ? : -1;
1915 }
1916
1917 static bool tcp_is_rack(const struct sock *sk)
1918 {
1919 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1920 }
1921
1922 /* If we detect SACK reneging, forget all SACK information
1923 * and reset tags completely, otherwise preserve SACKs. If receiver
1924 * dropped its ofo queue, we will know this due to reneging detection.
1925 */
1926 static void tcp_timeout_mark_lost(struct sock *sk)
1927 {
1928 struct tcp_sock *tp = tcp_sk(sk);
1929 struct sk_buff *skb, *head;
1930 bool is_reneg; /* is receiver reneging on SACKs? */
1931
1932 head = tcp_rtx_queue_head(sk);
1933 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1934 if (is_reneg) {
1935 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1936 tp->sacked_out = 0;
1937 /* Mark SACK reneging until we recover from this loss event. */
1938 tp->is_sack_reneg = 1;
1939 } else if (tcp_is_reno(tp)) {
1940 tcp_reset_reno_sack(tp);
1941 }
1942
1943 skb = head;
1944 skb_rbtree_walk_from(skb) {
1945 if (is_reneg)
1946 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1947 else if (tcp_is_rack(sk) && skb != head &&
1948 tcp_rack_skb_timeout(tp, skb, 0) > 0)
1949 continue; /* Don't mark recently sent ones lost yet */
1950 tcp_mark_skb_lost(sk, skb);
1951 }
1952 tcp_verify_left_out(tp);
1953 tcp_clear_all_retrans_hints(tp);
1954 }
1955
1956 /* Enter Loss state. */
1957 void tcp_enter_loss(struct sock *sk)
1958 {
1959 const struct inet_connection_sock *icsk = inet_csk(sk);
1960 struct tcp_sock *tp = tcp_sk(sk);
1961 struct net *net = sock_net(sk);
1962 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1963
1964 tcp_timeout_mark_lost(sk);
1965
1966 /* Reduce ssthresh if it has not yet been made inside this window. */
1967 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1968 !after(tp->high_seq, tp->snd_una) ||
1969 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1970 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1971 tp->prior_cwnd = tp->snd_cwnd;
1972 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1973 tcp_ca_event(sk, CA_EVENT_LOSS);
1974 tcp_init_undo(tp);
1975 }
1976 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1;
1977 tp->snd_cwnd_cnt = 0;
1978 tp->snd_cwnd_stamp = tcp_jiffies32;
1979
1980 /* Timeout in disordered state after receiving substantial DUPACKs
1981 * suggests that the degree of reordering is over-estimated.
1982 */
1983 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1984 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1985 tp->reordering = min_t(unsigned int, tp->reordering,
1986 net->ipv4.sysctl_tcp_reordering);
1987 tcp_set_ca_state(sk, TCP_CA_Loss);
1988 tp->high_seq = tp->snd_nxt;
1989 tcp_ecn_queue_cwr(tp);
1990
1991 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1992 * loss recovery is underway except recurring timeout(s) on
1993 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1994 */
1995 tp->frto = net->ipv4.sysctl_tcp_frto &&
1996 (new_recovery || icsk->icsk_retransmits) &&
1997 !inet_csk(sk)->icsk_mtup.probe_size;
1998 }
1999
2000 /* If ACK arrived pointing to a remembered SACK, it means that our
2001 * remembered SACKs do not reflect real state of receiver i.e.
2002 * receiver _host_ is heavily congested (or buggy).
2003 *
2004 * To avoid big spurious retransmission bursts due to transient SACK
2005 * scoreboard oddities that look like reneging, we give the receiver a
2006 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2007 * restore sanity to the SACK scoreboard. If the apparent reneging
2008 * persists until this RTO then we'll clear the SACK scoreboard.
2009 */
2010 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2011 {
2012 if (flag & FLAG_SACK_RENEGING) {
2013 struct tcp_sock *tp = tcp_sk(sk);
2014 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2015 msecs_to_jiffies(10));
2016
2017 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2018 delay, TCP_RTO_MAX);
2019 return true;
2020 }
2021 return false;
2022 }
2023
2024 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2025 * counter when SACK is enabled (without SACK, sacked_out is used for
2026 * that purpose).
2027 *
2028 * With reordering, holes may still be in flight, so RFC3517 recovery
2029 * uses pure sacked_out (total number of SACKed segments) even though
2030 * it violates the RFC that uses duplicate ACKs, often these are equal
2031 * but when e.g. out-of-window ACKs or packet duplication occurs,
2032 * they differ. Since neither occurs due to loss, TCP should really
2033 * ignore them.
2034 */
2035 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2036 {
2037 return tp->sacked_out + 1;
2038 }
2039
2040 /* Linux NewReno/SACK/ECN state machine.
2041 * --------------------------------------
2042 *
2043 * "Open" Normal state, no dubious events, fast path.
2044 * "Disorder" In all the respects it is "Open",
2045 * but requires a bit more attention. It is entered when
2046 * we see some SACKs or dupacks. It is split of "Open"
2047 * mainly to move some processing from fast path to slow one.
2048 * "CWR" CWND was reduced due to some Congestion Notification event.
2049 * It can be ECN, ICMP source quench, local device congestion.
2050 * "Recovery" CWND was reduced, we are fast-retransmitting.
2051 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2052 *
2053 * tcp_fastretrans_alert() is entered:
2054 * - each incoming ACK, if state is not "Open"
2055 * - when arrived ACK is unusual, namely:
2056 * * SACK
2057 * * Duplicate ACK.
2058 * * ECN ECE.
2059 *
2060 * Counting packets in flight is pretty simple.
2061 *
2062 * in_flight = packets_out - left_out + retrans_out
2063 *
2064 * packets_out is SND.NXT-SND.UNA counted in packets.
2065 *
2066 * retrans_out is number of retransmitted segments.
2067 *
2068 * left_out is number of segments left network, but not ACKed yet.
2069 *
2070 * left_out = sacked_out + lost_out
2071 *
2072 * sacked_out: Packets, which arrived to receiver out of order
2073 * and hence not ACKed. With SACKs this number is simply
2074 * amount of SACKed data. Even without SACKs
2075 * it is easy to give pretty reliable estimate of this number,
2076 * counting duplicate ACKs.
2077 *
2078 * lost_out: Packets lost by network. TCP has no explicit
2079 * "loss notification" feedback from network (for now).
2080 * It means that this number can be only _guessed_.
2081 * Actually, it is the heuristics to predict lossage that
2082 * distinguishes different algorithms.
2083 *
2084 * F.e. after RTO, when all the queue is considered as lost,
2085 * lost_out = packets_out and in_flight = retrans_out.
2086 *
2087 * Essentially, we have now a few algorithms detecting
2088 * lost packets.
2089 *
2090 * If the receiver supports SACK:
2091 *
2092 * RFC6675/3517: It is the conventional algorithm. A packet is
2093 * considered lost if the number of higher sequence packets
2094 * SACKed is greater than or equal the DUPACK thoreshold
2095 * (reordering). This is implemented in tcp_mark_head_lost and
2096 * tcp_update_scoreboard.
2097 *
2098 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2099 * (2017-) that checks timing instead of counting DUPACKs.
2100 * Essentially a packet is considered lost if it's not S/ACKed
2101 * after RTT + reordering_window, where both metrics are
2102 * dynamically measured and adjusted. This is implemented in
2103 * tcp_rack_mark_lost.
2104 *
2105 * If the receiver does not support SACK:
2106 *
2107 * NewReno (RFC6582): in Recovery we assume that one segment
2108 * is lost (classic Reno). While we are in Recovery and
2109 * a partial ACK arrives, we assume that one more packet
2110 * is lost (NewReno). This heuristics are the same in NewReno
2111 * and SACK.
2112 *
2113 * Really tricky (and requiring careful tuning) part of algorithm
2114 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2115 * The first determines the moment _when_ we should reduce CWND and,
2116 * hence, slow down forward transmission. In fact, it determines the moment
2117 * when we decide that hole is caused by loss, rather than by a reorder.
2118 *
2119 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2120 * holes, caused by lost packets.
2121 *
2122 * And the most logically complicated part of algorithm is undo
2123 * heuristics. We detect false retransmits due to both too early
2124 * fast retransmit (reordering) and underestimated RTO, analyzing
2125 * timestamps and D-SACKs. When we detect that some segments were
2126 * retransmitted by mistake and CWND reduction was wrong, we undo
2127 * window reduction and abort recovery phase. This logic is hidden
2128 * inside several functions named tcp_try_undo_<something>.
2129 */
2130
2131 /* This function decides, when we should leave Disordered state
2132 * and enter Recovery phase, reducing congestion window.
2133 *
2134 * Main question: may we further continue forward transmission
2135 * with the same cwnd?
2136 */
2137 static bool tcp_time_to_recover(struct sock *sk, int flag)
2138 {
2139 struct tcp_sock *tp = tcp_sk(sk);
2140
2141 /* Trick#1: The loss is proven. */
2142 if (tp->lost_out)
2143 return true;
2144
2145 /* Not-A-Trick#2 : Classic rule... */
2146 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2147 return true;
2148
2149 return false;
2150 }
2151
2152 /* Detect loss in event "A" above by marking head of queue up as lost.
2153 * For non-SACK(Reno) senders, the first "packets" number of segments
2154 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2155 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2156 * the maximum SACKed segments to pass before reaching this limit.
2157 */
2158 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2159 {
2160 struct tcp_sock *tp = tcp_sk(sk);
2161 struct sk_buff *skb;
2162 int cnt, oldcnt, lost;
2163 unsigned int mss;
2164 /* Use SACK to deduce losses of new sequences sent during recovery */
2165 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2166
2167 WARN_ON(packets > tp->packets_out);
2168 skb = tp->lost_skb_hint;
2169 if (skb) {
2170 /* Head already handled? */
2171 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2172 return;
2173 cnt = tp->lost_cnt_hint;
2174 } else {
2175 skb = tcp_rtx_queue_head(sk);
2176 cnt = 0;
2177 }
2178
2179 skb_rbtree_walk_from(skb) {
2180 /* TODO: do this better */
2181 /* this is not the most efficient way to do this... */
2182 tp->lost_skb_hint = skb;
2183 tp->lost_cnt_hint = cnt;
2184
2185 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2186 break;
2187
2188 oldcnt = cnt;
2189 if (tcp_is_reno(tp) ||
2190 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2191 cnt += tcp_skb_pcount(skb);
2192
2193 if (cnt > packets) {
2194 if (tcp_is_sack(tp) ||
2195 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2196 (oldcnt >= packets))
2197 break;
2198
2199 mss = tcp_skb_mss(skb);
2200 /* If needed, chop off the prefix to mark as lost. */
2201 lost = (packets - oldcnt) * mss;
2202 if (lost < skb->len &&
2203 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2204 lost, mss, GFP_ATOMIC) < 0)
2205 break;
2206 cnt = packets;
2207 }
2208
2209 tcp_skb_mark_lost(tp, skb);
2210
2211 if (mark_head)
2212 break;
2213 }
2214 tcp_verify_left_out(tp);
2215 }
2216
2217 /* Account newly detected lost packet(s) */
2218
2219 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2220 {
2221 struct tcp_sock *tp = tcp_sk(sk);
2222
2223 if (tcp_is_sack(tp)) {
2224 int sacked_upto = tp->sacked_out - tp->reordering;
2225 if (sacked_upto >= 0)
2226 tcp_mark_head_lost(sk, sacked_upto, 0);
2227 else if (fast_rexmit)
2228 tcp_mark_head_lost(sk, 1, 1);
2229 }
2230 }
2231
2232 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2233 {
2234 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2235 before(tp->rx_opt.rcv_tsecr, when);
2236 }
2237
2238 /* skb is spurious retransmitted if the returned timestamp echo
2239 * reply is prior to the skb transmission time
2240 */
2241 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2242 const struct sk_buff *skb)
2243 {
2244 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2245 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2246 }
2247
2248 /* Nothing was retransmitted or returned timestamp is less
2249 * than timestamp of the first retransmission.
2250 */
2251 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2252 {
2253 return !tp->retrans_stamp ||
2254 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2255 }
2256
2257 /* Undo procedures. */
2258
2259 /* We can clear retrans_stamp when there are no retransmissions in the
2260 * window. It would seem that it is trivially available for us in
2261 * tp->retrans_out, however, that kind of assumptions doesn't consider
2262 * what will happen if errors occur when sending retransmission for the
2263 * second time. ...It could the that such segment has only
2264 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2265 * the head skb is enough except for some reneging corner cases that
2266 * are not worth the effort.
2267 *
2268 * Main reason for all this complexity is the fact that connection dying
2269 * time now depends on the validity of the retrans_stamp, in particular,
2270 * that successive retransmissions of a segment must not advance
2271 * retrans_stamp under any conditions.
2272 */
2273 static bool tcp_any_retrans_done(const struct sock *sk)
2274 {
2275 const struct tcp_sock *tp = tcp_sk(sk);
2276 struct sk_buff *skb;
2277
2278 if (tp->retrans_out)
2279 return true;
2280
2281 skb = tcp_rtx_queue_head(sk);
2282 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2283 return true;
2284
2285 return false;
2286 }
2287
2288 static void DBGUNDO(struct sock *sk, const char *msg)
2289 {
2290 #if FASTRETRANS_DEBUG > 1
2291 struct tcp_sock *tp = tcp_sk(sk);
2292 struct inet_sock *inet = inet_sk(sk);
2293
2294 if (sk->sk_family == AF_INET) {
2295 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2296 msg,
2297 &inet->inet_daddr, ntohs(inet->inet_dport),
2298 tp->snd_cwnd, tcp_left_out(tp),
2299 tp->snd_ssthresh, tp->prior_ssthresh,
2300 tp->packets_out);
2301 }
2302 #if IS_ENABLED(CONFIG_IPV6)
2303 else if (sk->sk_family == AF_INET6) {
2304 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2305 msg,
2306 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2307 tp->snd_cwnd, tcp_left_out(tp),
2308 tp->snd_ssthresh, tp->prior_ssthresh,
2309 tp->packets_out);
2310 }
2311 #endif
2312 #endif
2313 }
2314
2315 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2316 {
2317 struct tcp_sock *tp = tcp_sk(sk);
2318
2319 if (unmark_loss) {
2320 struct sk_buff *skb;
2321
2322 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2323 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2324 }
2325 tp->lost_out = 0;
2326 tcp_clear_all_retrans_hints(tp);
2327 }
2328
2329 if (tp->prior_ssthresh) {
2330 const struct inet_connection_sock *icsk = inet_csk(sk);
2331
2332 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2333
2334 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2335 tp->snd_ssthresh = tp->prior_ssthresh;
2336 tcp_ecn_withdraw_cwr(tp);
2337 }
2338 }
2339 tp->snd_cwnd_stamp = tcp_jiffies32;
2340 tp->undo_marker = 0;
2341 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2342 }
2343
2344 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2345 {
2346 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2347 }
2348
2349 /* People celebrate: "We love our President!" */
2350 static bool tcp_try_undo_recovery(struct sock *sk)
2351 {
2352 struct tcp_sock *tp = tcp_sk(sk);
2353
2354 if (tcp_may_undo(tp)) {
2355 int mib_idx;
2356
2357 /* Happy end! We did not retransmit anything
2358 * or our original transmission succeeded.
2359 */
2360 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2361 tcp_undo_cwnd_reduction(sk, false);
2362 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2363 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2364 else
2365 mib_idx = LINUX_MIB_TCPFULLUNDO;
2366
2367 NET_INC_STATS(sock_net(sk), mib_idx);
2368 } else if (tp->rack.reo_wnd_persist) {
2369 tp->rack.reo_wnd_persist--;
2370 }
2371 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2372 /* Hold old state until something *above* high_seq
2373 * is ACKed. For Reno it is MUST to prevent false
2374 * fast retransmits (RFC2582). SACK TCP is safe. */
2375 if (!tcp_any_retrans_done(sk))
2376 tp->retrans_stamp = 0;
2377 return true;
2378 }
2379 tcp_set_ca_state(sk, TCP_CA_Open);
2380 tp->is_sack_reneg = 0;
2381 return false;
2382 }
2383
2384 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2385 static bool tcp_try_undo_dsack(struct sock *sk)
2386 {
2387 struct tcp_sock *tp = tcp_sk(sk);
2388
2389 if (tp->undo_marker && !tp->undo_retrans) {
2390 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2391 tp->rack.reo_wnd_persist + 1);
2392 DBGUNDO(sk, "D-SACK");
2393 tcp_undo_cwnd_reduction(sk, false);
2394 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2395 return true;
2396 }
2397 return false;
2398 }
2399
2400 /* Undo during loss recovery after partial ACK or using F-RTO. */
2401 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2402 {
2403 struct tcp_sock *tp = tcp_sk(sk);
2404
2405 if (frto_undo || tcp_may_undo(tp)) {
2406 tcp_undo_cwnd_reduction(sk, true);
2407
2408 DBGUNDO(sk, "partial loss");
2409 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2410 if (frto_undo)
2411 NET_INC_STATS(sock_net(sk),
2412 LINUX_MIB_TCPSPURIOUSRTOS);
2413 inet_csk(sk)->icsk_retransmits = 0;
2414 if (frto_undo || tcp_is_sack(tp)) {
2415 tcp_set_ca_state(sk, TCP_CA_Open);
2416 tp->is_sack_reneg = 0;
2417 }
2418 return true;
2419 }
2420 return false;
2421 }
2422
2423 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2424 * It computes the number of packets to send (sndcnt) based on packets newly
2425 * delivered:
2426 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2427 * cwnd reductions across a full RTT.
2428 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2429 * But when the retransmits are acked without further losses, PRR
2430 * slow starts cwnd up to ssthresh to speed up the recovery.
2431 */
2432 static void tcp_init_cwnd_reduction(struct sock *sk)
2433 {
2434 struct tcp_sock *tp = tcp_sk(sk);
2435
2436 tp->high_seq = tp->snd_nxt;
2437 tp->tlp_high_seq = 0;
2438 tp->snd_cwnd_cnt = 0;
2439 tp->prior_cwnd = tp->snd_cwnd;
2440 tp->prr_delivered = 0;
2441 tp->prr_out = 0;
2442 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2443 tcp_ecn_queue_cwr(tp);
2444 }
2445
2446 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2447 {
2448 struct tcp_sock *tp = tcp_sk(sk);
2449 int sndcnt = 0;
2450 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2451
2452 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2453 return;
2454
2455 tp->prr_delivered += newly_acked_sacked;
2456 if (delta < 0) {
2457 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2458 tp->prior_cwnd - 1;
2459 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2460 } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2461 !(flag & FLAG_LOST_RETRANS)) {
2462 sndcnt = min_t(int, delta,
2463 max_t(int, tp->prr_delivered - tp->prr_out,
2464 newly_acked_sacked) + 1);
2465 } else {
2466 sndcnt = min(delta, newly_acked_sacked);
2467 }
2468 /* Force a fast retransmit upon entering fast recovery */
2469 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2470 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2471 }
2472
2473 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2474 {
2475 struct tcp_sock *tp = tcp_sk(sk);
2476
2477 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2478 return;
2479
2480 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2481 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2482 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2483 tp->snd_cwnd = tp->snd_ssthresh;
2484 tp->snd_cwnd_stamp = tcp_jiffies32;
2485 }
2486 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2487 }
2488
2489 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2490 void tcp_enter_cwr(struct sock *sk)
2491 {
2492 struct tcp_sock *tp = tcp_sk(sk);
2493
2494 tp->prior_ssthresh = 0;
2495 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2496 tp->undo_marker = 0;
2497 tcp_init_cwnd_reduction(sk);
2498 tcp_set_ca_state(sk, TCP_CA_CWR);
2499 }
2500 }
2501 EXPORT_SYMBOL(tcp_enter_cwr);
2502
2503 static void tcp_try_keep_open(struct sock *sk)
2504 {
2505 struct tcp_sock *tp = tcp_sk(sk);
2506 int state = TCP_CA_Open;
2507
2508 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2509 state = TCP_CA_Disorder;
2510
2511 if (inet_csk(sk)->icsk_ca_state != state) {
2512 tcp_set_ca_state(sk, state);
2513 tp->high_seq = tp->snd_nxt;
2514 }
2515 }
2516
2517 static void tcp_try_to_open(struct sock *sk, int flag)
2518 {
2519 struct tcp_sock *tp = tcp_sk(sk);
2520
2521 tcp_verify_left_out(tp);
2522
2523 if (!tcp_any_retrans_done(sk))
2524 tp->retrans_stamp = 0;
2525
2526 if (flag & FLAG_ECE)
2527 tcp_enter_cwr(sk);
2528
2529 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2530 tcp_try_keep_open(sk);
2531 }
2532 }
2533
2534 static void tcp_mtup_probe_failed(struct sock *sk)
2535 {
2536 struct inet_connection_sock *icsk = inet_csk(sk);
2537
2538 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2539 icsk->icsk_mtup.probe_size = 0;
2540 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2541 }
2542
2543 static void tcp_mtup_probe_success(struct sock *sk)
2544 {
2545 struct tcp_sock *tp = tcp_sk(sk);
2546 struct inet_connection_sock *icsk = inet_csk(sk);
2547
2548 /* FIXME: breaks with very large cwnd */
2549 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2550 tp->snd_cwnd = tp->snd_cwnd *
2551 tcp_mss_to_mtu(sk, tp->mss_cache) /
2552 icsk->icsk_mtup.probe_size;
2553 tp->snd_cwnd_cnt = 0;
2554 tp->snd_cwnd_stamp = tcp_jiffies32;
2555 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2556
2557 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2558 icsk->icsk_mtup.probe_size = 0;
2559 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2560 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2561 }
2562
2563 /* Do a simple retransmit without using the backoff mechanisms in
2564 * tcp_timer. This is used for path mtu discovery.
2565 * The socket is already locked here.
2566 */
2567 void tcp_simple_retransmit(struct sock *sk)
2568 {
2569 const struct inet_connection_sock *icsk = inet_csk(sk);
2570 struct tcp_sock *tp = tcp_sk(sk);
2571 struct sk_buff *skb;
2572 unsigned int mss = tcp_current_mss(sk);
2573
2574 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2575 if (tcp_skb_seglen(skb) > mss &&
2576 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2577 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2578 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2579 tp->retrans_out -= tcp_skb_pcount(skb);
2580 }
2581 tcp_skb_mark_lost_uncond_verify(tp, skb);
2582 }
2583 }
2584
2585 tcp_clear_retrans_hints_partial(tp);
2586
2587 if (!tp->lost_out)
2588 return;
2589
2590 if (tcp_is_reno(tp))
2591 tcp_limit_reno_sacked(tp);
2592
2593 tcp_verify_left_out(tp);
2594
2595 /* Don't muck with the congestion window here.
2596 * Reason is that we do not increase amount of _data_
2597 * in network, but units changed and effective
2598 * cwnd/ssthresh really reduced now.
2599 */
2600 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2601 tp->high_seq = tp->snd_nxt;
2602 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2603 tp->prior_ssthresh = 0;
2604 tp->undo_marker = 0;
2605 tcp_set_ca_state(sk, TCP_CA_Loss);
2606 }
2607 tcp_xmit_retransmit_queue(sk);
2608 }
2609 EXPORT_SYMBOL(tcp_simple_retransmit);
2610
2611 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2612 {
2613 struct tcp_sock *tp = tcp_sk(sk);
2614 int mib_idx;
2615
2616 if (tcp_is_reno(tp))
2617 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2618 else
2619 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2620
2621 NET_INC_STATS(sock_net(sk), mib_idx);
2622
2623 tp->prior_ssthresh = 0;
2624 tcp_init_undo(tp);
2625
2626 if (!tcp_in_cwnd_reduction(sk)) {
2627 if (!ece_ack)
2628 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2629 tcp_init_cwnd_reduction(sk);
2630 }
2631 tcp_set_ca_state(sk, TCP_CA_Recovery);
2632 }
2633
2634 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2635 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2636 */
2637 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2638 int *rexmit)
2639 {
2640 struct tcp_sock *tp = tcp_sk(sk);
2641 bool recovered = !before(tp->snd_una, tp->high_seq);
2642
2643 if ((flag & FLAG_SND_UNA_ADVANCED) &&
2644 tcp_try_undo_loss(sk, false))
2645 return;
2646
2647 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2648 /* Step 3.b. A timeout is spurious if not all data are
2649 * lost, i.e., never-retransmitted data are (s)acked.
2650 */
2651 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2652 tcp_try_undo_loss(sk, true))
2653 return;
2654
2655 if (after(tp->snd_nxt, tp->high_seq)) {
2656 if (flag & FLAG_DATA_SACKED || is_dupack)
2657 tp->frto = 0; /* Step 3.a. loss was real */
2658 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2659 tp->high_seq = tp->snd_nxt;
2660 /* Step 2.b. Try send new data (but deferred until cwnd
2661 * is updated in tcp_ack()). Otherwise fall back to
2662 * the conventional recovery.
2663 */
2664 if (!tcp_write_queue_empty(sk) &&
2665 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2666 *rexmit = REXMIT_NEW;
2667 return;
2668 }
2669 tp->frto = 0;
2670 }
2671 }
2672
2673 if (recovered) {
2674 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2675 tcp_try_undo_recovery(sk);
2676 return;
2677 }
2678 if (tcp_is_reno(tp)) {
2679 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2680 * delivered. Lower inflight to clock out (re)tranmissions.
2681 */
2682 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2683 tcp_add_reno_sack(sk);
2684 else if (flag & FLAG_SND_UNA_ADVANCED)
2685 tcp_reset_reno_sack(tp);
2686 }
2687 *rexmit = REXMIT_LOST;
2688 }
2689
2690 /* Undo during fast recovery after partial ACK. */
2691 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2692 {
2693 struct tcp_sock *tp = tcp_sk(sk);
2694
2695 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2696 /* Plain luck! Hole if filled with delayed
2697 * packet, rather than with a retransmit. Check reordering.
2698 */
2699 tcp_check_sack_reordering(sk, prior_snd_una, 1);
2700
2701 /* We are getting evidence that the reordering degree is higher
2702 * than we realized. If there are no retransmits out then we
2703 * can undo. Otherwise we clock out new packets but do not
2704 * mark more packets lost or retransmit more.
2705 */
2706 if (tp->retrans_out)
2707 return true;
2708
2709 if (!tcp_any_retrans_done(sk))
2710 tp->retrans_stamp = 0;
2711
2712 DBGUNDO(sk, "partial recovery");
2713 tcp_undo_cwnd_reduction(sk, true);
2714 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2715 tcp_try_keep_open(sk);
2716 return true;
2717 }
2718 return false;
2719 }
2720
2721 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2722 {
2723 struct tcp_sock *tp = tcp_sk(sk);
2724
2725 if (tcp_rtx_queue_empty(sk))
2726 return;
2727
2728 if (unlikely(tcp_is_reno(tp))) {
2729 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2730 } else if (tcp_is_rack(sk)) {
2731 u32 prior_retrans = tp->retrans_out;
2732
2733 tcp_rack_mark_lost(sk);
2734 if (prior_retrans > tp->retrans_out)
2735 *ack_flag |= FLAG_LOST_RETRANS;
2736 }
2737 }
2738
2739 static bool tcp_force_fast_retransmit(struct sock *sk)
2740 {
2741 struct tcp_sock *tp = tcp_sk(sk);
2742
2743 return after(tcp_highest_sack_seq(tp),
2744 tp->snd_una + tp->reordering * tp->mss_cache);
2745 }
2746
2747 /* Process an event, which can update packets-in-flight not trivially.
2748 * Main goal of this function is to calculate new estimate for left_out,
2749 * taking into account both packets sitting in receiver's buffer and
2750 * packets lost by network.
2751 *
2752 * Besides that it updates the congestion state when packet loss or ECN
2753 * is detected. But it does not reduce the cwnd, it is done by the
2754 * congestion control later.
2755 *
2756 * It does _not_ decide what to send, it is made in function
2757 * tcp_xmit_retransmit_queue().
2758 */
2759 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2760 bool is_dupack, int *ack_flag, int *rexmit)
2761 {
2762 struct inet_connection_sock *icsk = inet_csk(sk);
2763 struct tcp_sock *tp = tcp_sk(sk);
2764 int fast_rexmit = 0, flag = *ack_flag;
2765 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2766 tcp_force_fast_retransmit(sk));
2767
2768 if (!tp->packets_out && tp->sacked_out)
2769 tp->sacked_out = 0;
2770
2771 /* Now state machine starts.
2772 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2773 if (flag & FLAG_ECE)
2774 tp->prior_ssthresh = 0;
2775
2776 /* B. In all the states check for reneging SACKs. */
2777 if (tcp_check_sack_reneging(sk, flag))
2778 return;
2779
2780 /* C. Check consistency of the current state. */
2781 tcp_verify_left_out(tp);
2782
2783 /* D. Check state exit conditions. State can be terminated
2784 * when high_seq is ACKed. */
2785 if (icsk->icsk_ca_state == TCP_CA_Open) {
2786 WARN_ON(tp->retrans_out != 0);
2787 tp->retrans_stamp = 0;
2788 } else if (!before(tp->snd_una, tp->high_seq)) {
2789 switch (icsk->icsk_ca_state) {
2790 case TCP_CA_CWR:
2791 /* CWR is to be held something *above* high_seq
2792 * is ACKed for CWR bit to reach receiver. */
2793 if (tp->snd_una != tp->high_seq) {
2794 tcp_end_cwnd_reduction(sk);
2795 tcp_set_ca_state(sk, TCP_CA_Open);
2796 }
2797 break;
2798
2799 case TCP_CA_Recovery:
2800 if (tcp_is_reno(tp))
2801 tcp_reset_reno_sack(tp);
2802 if (tcp_try_undo_recovery(sk))
2803 return;
2804 tcp_end_cwnd_reduction(sk);
2805 break;
2806 }
2807 }
2808
2809 /* E. Process state. */
2810 switch (icsk->icsk_ca_state) {
2811 case TCP_CA_Recovery:
2812 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2813 if (tcp_is_reno(tp) && is_dupack)
2814 tcp_add_reno_sack(sk);
2815 } else {
2816 if (tcp_try_undo_partial(sk, prior_snd_una))
2817 return;
2818 /* Partial ACK arrived. Force fast retransmit. */
2819 do_lost = tcp_is_reno(tp) ||
2820 tcp_force_fast_retransmit(sk);
2821 }
2822 if (tcp_try_undo_dsack(sk)) {
2823 tcp_try_keep_open(sk);
2824 return;
2825 }
2826 tcp_identify_packet_loss(sk, ack_flag);
2827 break;
2828 case TCP_CA_Loss:
2829 tcp_process_loss(sk, flag, is_dupack, rexmit);
2830 tcp_identify_packet_loss(sk, ack_flag);
2831 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2832 (*ack_flag & FLAG_LOST_RETRANS)))
2833 return;
2834 /* Change state if cwnd is undone or retransmits are lost */
2835 /* fall through */
2836 default:
2837 if (tcp_is_reno(tp)) {
2838 if (flag & FLAG_SND_UNA_ADVANCED)
2839 tcp_reset_reno_sack(tp);
2840 if (is_dupack)
2841 tcp_add_reno_sack(sk);
2842 }
2843
2844 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2845 tcp_try_undo_dsack(sk);
2846
2847 tcp_identify_packet_loss(sk, ack_flag);
2848 if (!tcp_time_to_recover(sk, flag)) {
2849 tcp_try_to_open(sk, flag);
2850 return;
2851 }
2852
2853 /* MTU probe failure: don't reduce cwnd */
2854 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2855 icsk->icsk_mtup.probe_size &&
2856 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2857 tcp_mtup_probe_failed(sk);
2858 /* Restores the reduction we did in tcp_mtup_probe() */
2859 tp->snd_cwnd++;
2860 tcp_simple_retransmit(sk);
2861 return;
2862 }
2863
2864 /* Otherwise enter Recovery state */
2865 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2866 fast_rexmit = 1;
2867 }
2868
2869 if (!tcp_is_rack(sk) && do_lost)
2870 tcp_update_scoreboard(sk, fast_rexmit);
2871 *rexmit = REXMIT_LOST;
2872 }
2873
2874 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2875 {
2876 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2877 struct tcp_sock *tp = tcp_sk(sk);
2878
2879 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2880 /* If the remote keeps returning delayed ACKs, eventually
2881 * the min filter would pick it up and overestimate the
2882 * prop. delay when it expires. Skip suspected delayed ACKs.
2883 */
2884 return;
2885 }
2886 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2887 rtt_us ? : jiffies_to_usecs(1));
2888 }
2889
2890 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2891 long seq_rtt_us, long sack_rtt_us,
2892 long ca_rtt_us, struct rate_sample *rs)
2893 {
2894 const struct tcp_sock *tp = tcp_sk(sk);
2895
2896 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2897 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2898 * Karn's algorithm forbids taking RTT if some retransmitted data
2899 * is acked (RFC6298).
2900 */
2901 if (seq_rtt_us < 0)
2902 seq_rtt_us = sack_rtt_us;
2903
2904 /* RTTM Rule: A TSecr value received in a segment is used to
2905 * update the averaged RTT measurement only if the segment
2906 * acknowledges some new data, i.e., only if it advances the
2907 * left edge of the send window.
2908 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2909 */
2910 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2911 flag & FLAG_ACKED) {
2912 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2913 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2914
2915 seq_rtt_us = ca_rtt_us = delta_us;
2916 }
2917 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2918 if (seq_rtt_us < 0)
2919 return false;
2920
2921 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2922 * always taken together with ACK, SACK, or TS-opts. Any negative
2923 * values will be skipped with the seq_rtt_us < 0 check above.
2924 */
2925 tcp_update_rtt_min(sk, ca_rtt_us, flag);
2926 tcp_rtt_estimator(sk, seq_rtt_us);
2927 tcp_set_rto(sk);
2928
2929 /* RFC6298: only reset backoff on valid RTT measurement. */
2930 inet_csk(sk)->icsk_backoff = 0;
2931 return true;
2932 }
2933
2934 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2935 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2936 {
2937 struct rate_sample rs;
2938 long rtt_us = -1L;
2939
2940 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2941 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2942
2943 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2944 }
2945
2946
2947 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2948 {
2949 const struct inet_connection_sock *icsk = inet_csk(sk);
2950
2951 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2952 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2953 }
2954
2955 /* Restart timer after forward progress on connection.
2956 * RFC2988 recommends to restart timer to now+rto.
2957 */
2958 void tcp_rearm_rto(struct sock *sk)
2959 {
2960 const struct inet_connection_sock *icsk = inet_csk(sk);
2961 struct tcp_sock *tp = tcp_sk(sk);
2962
2963 /* If the retrans timer is currently being used by Fast Open
2964 * for SYN-ACK retrans purpose, stay put.
2965 */
2966 if (tp->fastopen_rsk)
2967 return;
2968
2969 if (!tp->packets_out) {
2970 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2971 } else {
2972 u32 rto = inet_csk(sk)->icsk_rto;
2973 /* Offset the time elapsed after installing regular RTO */
2974 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2975 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2976 s64 delta_us = tcp_rto_delta_us(sk);
2977 /* delta_us may not be positive if the socket is locked
2978 * when the retrans timer fires and is rescheduled.
2979 */
2980 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
2981 }
2982 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2983 TCP_RTO_MAX, tcp_rtx_queue_head(sk));
2984 }
2985 }
2986
2987 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
2988 static void tcp_set_xmit_timer(struct sock *sk)
2989 {
2990 if (!tcp_schedule_loss_probe(sk, true))
2991 tcp_rearm_rto(sk);
2992 }
2993
2994 /* If we get here, the whole TSO packet has not been acked. */
2995 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2996 {
2997 struct tcp_sock *tp = tcp_sk(sk);
2998 u32 packets_acked;
2999
3000 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3001
3002 packets_acked = tcp_skb_pcount(skb);
3003 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3004 return 0;
3005 packets_acked -= tcp_skb_pcount(skb);
3006
3007 if (packets_acked) {
3008 BUG_ON(tcp_skb_pcount(skb) == 0);
3009 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3010 }
3011
3012 return packets_acked;
3013 }
3014
3015 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3016 u32 prior_snd_una)
3017 {
3018 const struct skb_shared_info *shinfo;
3019
3020 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3021 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3022 return;
3023
3024 shinfo = skb_shinfo(skb);
3025 if (!before(shinfo->tskey, prior_snd_una) &&
3026 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3027 tcp_skb_tsorted_save(skb) {
3028 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3029 } tcp_skb_tsorted_restore(skb);
3030 }
3031 }
3032
3033 /* Remove acknowledged frames from the retransmission queue. If our packet
3034 * is before the ack sequence we can discard it as it's confirmed to have
3035 * arrived at the other end.
3036 */
3037 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3038 u32 prior_snd_una,
3039 struct tcp_sacktag_state *sack)
3040 {
3041 const struct inet_connection_sock *icsk = inet_csk(sk);
3042 u64 first_ackt, last_ackt;
3043 struct tcp_sock *tp = tcp_sk(sk);
3044 u32 prior_sacked = tp->sacked_out;
3045 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3046 struct sk_buff *skb, *next;
3047 bool fully_acked = true;
3048 long sack_rtt_us = -1L;
3049 long seq_rtt_us = -1L;
3050 long ca_rtt_us = -1L;
3051 u32 pkts_acked = 0;
3052 u32 last_in_flight = 0;
3053 bool rtt_update;
3054 int flag = 0;
3055
3056 first_ackt = 0;
3057
3058 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3059 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3060 const u32 start_seq = scb->seq;
3061 u8 sacked = scb->sacked;
3062 u32 acked_pcount;
3063
3064 tcp_ack_tstamp(sk, skb, prior_snd_una);
3065
3066 /* Determine how many packets and what bytes were acked, tso and else */
3067 if (after(scb->end_seq, tp->snd_una)) {
3068 if (tcp_skb_pcount(skb) == 1 ||
3069 !after(tp->snd_una, scb->seq))
3070 break;
3071
3072 acked_pcount = tcp_tso_acked(sk, skb);
3073 if (!acked_pcount)
3074 break;
3075 fully_acked = false;
3076 } else {
3077 acked_pcount = tcp_skb_pcount(skb);
3078 }
3079
3080 if (unlikely(sacked & TCPCB_RETRANS)) {
3081 if (sacked & TCPCB_SACKED_RETRANS)
3082 tp->retrans_out -= acked_pcount;
3083 flag |= FLAG_RETRANS_DATA_ACKED;
3084 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3085 last_ackt = tcp_skb_timestamp_us(skb);
3086 WARN_ON_ONCE(last_ackt == 0);
3087 if (!first_ackt)
3088 first_ackt = last_ackt;
3089
3090 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3091 if (before(start_seq, reord))
3092 reord = start_seq;
3093 if (!after(scb->end_seq, tp->high_seq))
3094 flag |= FLAG_ORIG_SACK_ACKED;
3095 }
3096
3097 if (sacked & TCPCB_SACKED_ACKED) {
3098 tp->sacked_out -= acked_pcount;
3099 } else if (tcp_is_sack(tp)) {
3100 tp->delivered += acked_pcount;
3101 if (!tcp_skb_spurious_retrans(tp, skb))
3102 tcp_rack_advance(tp, sacked, scb->end_seq,
3103 tcp_skb_timestamp_us(skb));
3104 }
3105 if (sacked & TCPCB_LOST)
3106 tp->lost_out -= acked_pcount;
3107
3108 tp->packets_out -= acked_pcount;
3109 pkts_acked += acked_pcount;
3110 tcp_rate_skb_delivered(sk, skb, sack->rate);
3111
3112 /* Initial outgoing SYN's get put onto the write_queue
3113 * just like anything else we transmit. It is not
3114 * true data, and if we misinform our callers that
3115 * this ACK acks real data, we will erroneously exit
3116 * connection startup slow start one packet too
3117 * quickly. This is severely frowned upon behavior.
3118 */
3119 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3120 flag |= FLAG_DATA_ACKED;
3121 } else {
3122 flag |= FLAG_SYN_ACKED;
3123 tp->retrans_stamp = 0;
3124 }
3125
3126 if (!fully_acked)
3127 break;
3128
3129 next = skb_rb_next(skb);
3130 if (unlikely(skb == tp->retransmit_skb_hint))
3131 tp->retransmit_skb_hint = NULL;
3132 if (unlikely(skb == tp->lost_skb_hint))
3133 tp->lost_skb_hint = NULL;
3134 tcp_rtx_queue_unlink_and_free(skb, sk);
3135 }
3136
3137 if (!skb)
3138 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3139
3140 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3141 tp->snd_up = tp->snd_una;
3142
3143 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3144 flag |= FLAG_SACK_RENEGING;
3145
3146 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3147 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3148 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3149
3150 if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3151 last_in_flight && !prior_sacked && fully_acked &&
3152 sack->rate->prior_delivered + 1 == tp->delivered &&
3153 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3154 /* Conservatively mark a delayed ACK. It's typically
3155 * from a lone runt packet over the round trip to
3156 * a receiver w/o out-of-order or CE events.
3157 */
3158 flag |= FLAG_ACK_MAYBE_DELAYED;
3159 }
3160 }
3161 if (sack->first_sackt) {
3162 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3163 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3164 }
3165 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3166 ca_rtt_us, sack->rate);
3167
3168 if (flag & FLAG_ACKED) {
3169 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3170 if (unlikely(icsk->icsk_mtup.probe_size &&
3171 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3172 tcp_mtup_probe_success(sk);
3173 }
3174
3175 if (tcp_is_reno(tp)) {
3176 tcp_remove_reno_sacks(sk, pkts_acked);
3177
3178 /* If any of the cumulatively ACKed segments was
3179 * retransmitted, non-SACK case cannot confirm that
3180 * progress was due to original transmission due to
3181 * lack of TCPCB_SACKED_ACKED bits even if some of
3182 * the packets may have been never retransmitted.
3183 */
3184 if (flag & FLAG_RETRANS_DATA_ACKED)
3185 flag &= ~FLAG_ORIG_SACK_ACKED;
3186 } else {
3187 int delta;
3188
3189 /* Non-retransmitted hole got filled? That's reordering */
3190 if (before(reord, prior_fack))
3191 tcp_check_sack_reordering(sk, reord, 0);
3192
3193 delta = prior_sacked - tp->sacked_out;
3194 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3195 }
3196 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3197 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3198 tcp_skb_timestamp_us(skb))) {
3199 /* Do not re-arm RTO if the sack RTT is measured from data sent
3200 * after when the head was last (re)transmitted. Otherwise the
3201 * timeout may continue to extend in loss recovery.
3202 */
3203 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3204 }
3205
3206 if (icsk->icsk_ca_ops->pkts_acked) {
3207 struct ack_sample sample = { .pkts_acked = pkts_acked,
3208 .rtt_us = sack->rate->rtt_us,
3209 .in_flight = last_in_flight };
3210
3211 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3212 }
3213
3214 #if FASTRETRANS_DEBUG > 0
3215 WARN_ON((int)tp->sacked_out < 0);
3216 WARN_ON((int)tp->lost_out < 0);
3217 WARN_ON((int)tp->retrans_out < 0);
3218 if (!tp->packets_out && tcp_is_sack(tp)) {
3219 icsk = inet_csk(sk);
3220 if (tp->lost_out) {
3221 pr_debug("Leak l=%u %d\n",
3222 tp->lost_out, icsk->icsk_ca_state);
3223 tp->lost_out = 0;
3224 }
3225 if (tp->sacked_out) {
3226 pr_debug("Leak s=%u %d\n",
3227 tp->sacked_out, icsk->icsk_ca_state);
3228 tp->sacked_out = 0;
3229 }
3230 if (tp->retrans_out) {
3231 pr_debug("Leak r=%u %d\n",
3232 tp->retrans_out, icsk->icsk_ca_state);
3233 tp->retrans_out = 0;
3234 }
3235 }
3236 #endif
3237 return flag;
3238 }
3239
3240 static void tcp_ack_probe(struct sock *sk)
3241 {
3242 struct inet_connection_sock *icsk = inet_csk(sk);
3243 struct sk_buff *head = tcp_send_head(sk);
3244 const struct tcp_sock *tp = tcp_sk(sk);
3245
3246 /* Was it a usable window open? */
3247 if (!head)
3248 return;
3249 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3250 icsk->icsk_backoff = 0;
3251 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3252 /* Socket must be waked up by subsequent tcp_data_snd_check().
3253 * This function is not for random using!
3254 */
3255 } else {
3256 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3257
3258 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3259 when, TCP_RTO_MAX, NULL);
3260 }
3261 }
3262
3263 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3264 {
3265 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3266 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3267 }
3268
3269 /* Decide wheather to run the increase function of congestion control. */
3270 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3271 {
3272 /* If reordering is high then always grow cwnd whenever data is
3273 * delivered regardless of its ordering. Otherwise stay conservative
3274 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3275 * new SACK or ECE mark may first advance cwnd here and later reduce
3276 * cwnd in tcp_fastretrans_alert() based on more states.
3277 */
3278 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3279 return flag & FLAG_FORWARD_PROGRESS;
3280
3281 return flag & FLAG_DATA_ACKED;
3282 }
3283
3284 /* The "ultimate" congestion control function that aims to replace the rigid
3285 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3286 * It's called toward the end of processing an ACK with precise rate
3287 * information. All transmission or retransmission are delayed afterwards.
3288 */
3289 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3290 int flag, const struct rate_sample *rs)
3291 {
3292 const struct inet_connection_sock *icsk = inet_csk(sk);
3293
3294 if (icsk->icsk_ca_ops->cong_control) {
3295 icsk->icsk_ca_ops->cong_control(sk, rs);
3296 return;
3297 }
3298
3299 if (tcp_in_cwnd_reduction(sk)) {
3300 /* Reduce cwnd if state mandates */
3301 tcp_cwnd_reduction(sk, acked_sacked, flag);
3302 } else if (tcp_may_raise_cwnd(sk, flag)) {
3303 /* Advance cwnd if state allows */
3304 tcp_cong_avoid(sk, ack, acked_sacked);
3305 }
3306 tcp_update_pacing_rate(sk);
3307 }
3308
3309 /* Check that window update is acceptable.
3310 * The function assumes that snd_una<=ack<=snd_next.
3311 */
3312 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3313 const u32 ack, const u32 ack_seq,
3314 const u32 nwin)
3315 {
3316 return after(ack, tp->snd_una) ||
3317 after(ack_seq, tp->snd_wl1) ||
3318 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3319 }
3320
3321 /* If we update tp->snd_una, also update tp->bytes_acked */
3322 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3323 {
3324 u32 delta = ack - tp->snd_una;
3325
3326 sock_owned_by_me((struct sock *)tp);
3327 tp->bytes_acked += delta;
3328 tp->snd_una = ack;
3329 }
3330
3331 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3332 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3333 {
3334 u32 delta = seq - tp->rcv_nxt;
3335
3336 sock_owned_by_me((struct sock *)tp);
3337 tp->bytes_received += delta;
3338 tp->rcv_nxt = seq;
3339 }
3340
3341 /* Update our send window.
3342 *
3343 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3344 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3345 */
3346 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3347 u32 ack_seq)
3348 {
3349 struct tcp_sock *tp = tcp_sk(sk);
3350 int flag = 0;
3351 u32 nwin = ntohs(tcp_hdr(skb)->window);
3352
3353 if (likely(!tcp_hdr(skb)->syn))
3354 nwin <<= tp->rx_opt.snd_wscale;
3355
3356 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3357 flag |= FLAG_WIN_UPDATE;
3358 tcp_update_wl(tp, ack_seq);
3359
3360 if (tp->snd_wnd != nwin) {
3361 tp->snd_wnd = nwin;
3362
3363 /* Note, it is the only place, where
3364 * fast path is recovered for sending TCP.
3365 */
3366 tp->pred_flags = 0;
3367 tcp_fast_path_check(sk);
3368
3369 if (!tcp_write_queue_empty(sk))
3370 tcp_slow_start_after_idle_check(sk);
3371
3372 if (nwin > tp->max_window) {
3373 tp->max_window = nwin;
3374 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3375 }
3376 }
3377 }
3378
3379 tcp_snd_una_update(tp, ack);
3380
3381 return flag;
3382 }
3383
3384 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3385 u32 *last_oow_ack_time)
3386 {
3387 if (*last_oow_ack_time) {
3388 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3389
3390 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3391 NET_INC_STATS(net, mib_idx);
3392 return true; /* rate-limited: don't send yet! */
3393 }
3394 }
3395
3396 *last_oow_ack_time = tcp_jiffies32;
3397
3398 return false; /* not rate-limited: go ahead, send dupack now! */
3399 }
3400
3401 /* Return true if we're currently rate-limiting out-of-window ACKs and
3402 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3403 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3404 * attacks that send repeated SYNs or ACKs for the same connection. To
3405 * do this, we do not send a duplicate SYNACK or ACK if the remote
3406 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3407 */
3408 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3409 int mib_idx, u32 *last_oow_ack_time)
3410 {
3411 /* Data packets without SYNs are not likely part of an ACK loop. */
3412 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3413 !tcp_hdr(skb)->syn)
3414 return false;
3415
3416 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3417 }
3418
3419 /* RFC 5961 7 [ACK Throttling] */
3420 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3421 {
3422 /* unprotected vars, we dont care of overwrites */
3423 static u32 challenge_timestamp;
3424 static unsigned int challenge_count;
3425 struct tcp_sock *tp = tcp_sk(sk);
3426 struct net *net = sock_net(sk);
3427 u32 count, now;
3428
3429 /* First check our per-socket dupack rate limit. */
3430 if (__tcp_oow_rate_limited(net,
3431 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3432 &tp->last_oow_ack_time))
3433 return;
3434
3435 /* Then check host-wide RFC 5961 rate limit. */
3436 now = jiffies / HZ;
3437 if (now != challenge_timestamp) {
3438 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3439 u32 half = (ack_limit + 1) >> 1;
3440
3441 challenge_timestamp = now;
3442 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3443 }
3444 count = READ_ONCE(challenge_count);
3445 if (count > 0) {
3446 WRITE_ONCE(challenge_count, count - 1);
3447 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3448 tcp_send_ack(sk);
3449 }
3450 }
3451
3452 static void tcp_store_ts_recent(struct tcp_sock *tp)
3453 {
3454 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3455 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3456 }
3457
3458 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3459 {
3460 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3461 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3462 * extra check below makes sure this can only happen
3463 * for pure ACK frames. -DaveM
3464 *
3465 * Not only, also it occurs for expired timestamps.
3466 */
3467
3468 if (tcp_paws_check(&tp->rx_opt, 0))
3469 tcp_store_ts_recent(tp);
3470 }
3471 }
3472
3473 /* This routine deals with acks during a TLP episode.
3474 * We mark the end of a TLP episode on receiving TLP dupack or when
3475 * ack is after tlp_high_seq.
3476 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3477 */
3478 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3479 {
3480 struct tcp_sock *tp = tcp_sk(sk);
3481
3482 if (before(ack, tp->tlp_high_seq))
3483 return;
3484
3485 if (flag & FLAG_DSACKING_ACK) {
3486 /* This DSACK means original and TLP probe arrived; no loss */
3487 tp->tlp_high_seq = 0;
3488 } else if (after(ack, tp->tlp_high_seq)) {
3489 /* ACK advances: there was a loss, so reduce cwnd. Reset
3490 * tlp_high_seq in tcp_init_cwnd_reduction()
3491 */
3492 tcp_init_cwnd_reduction(sk);
3493 tcp_set_ca_state(sk, TCP_CA_CWR);
3494 tcp_end_cwnd_reduction(sk);
3495 tcp_try_keep_open(sk);
3496 NET_INC_STATS(sock_net(sk),
3497 LINUX_MIB_TCPLOSSPROBERECOVERY);
3498 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3499 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3500 /* Pure dupack: original and TLP probe arrived; no loss */
3501 tp->tlp_high_seq = 0;
3502 }
3503 }
3504
3505 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3506 {
3507 const struct inet_connection_sock *icsk = inet_csk(sk);
3508
3509 if (icsk->icsk_ca_ops->in_ack_event)
3510 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3511 }
3512
3513 /* Congestion control has updated the cwnd already. So if we're in
3514 * loss recovery then now we do any new sends (for FRTO) or
3515 * retransmits (for CA_Loss or CA_recovery) that make sense.
3516 */
3517 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3518 {
3519 struct tcp_sock *tp = tcp_sk(sk);
3520
3521 if (rexmit == REXMIT_NONE)
3522 return;
3523
3524 if (unlikely(rexmit == 2)) {
3525 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3526 TCP_NAGLE_OFF);
3527 if (after(tp->snd_nxt, tp->high_seq))
3528 return;
3529 tp->frto = 0;
3530 }
3531 tcp_xmit_retransmit_queue(sk);
3532 }
3533
3534 /* Returns the number of packets newly acked or sacked by the current ACK */
3535 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3536 {
3537 const struct net *net = sock_net(sk);
3538 struct tcp_sock *tp = tcp_sk(sk);
3539 u32 delivered;
3540
3541 delivered = tp->delivered - prior_delivered;
3542 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3543 if (flag & FLAG_ECE) {
3544 tp->delivered_ce += delivered;
3545 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3546 }
3547 return delivered;
3548 }
3549
3550 /* This routine deals with incoming acks, but not outgoing ones. */
3551 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3552 {
3553 struct inet_connection_sock *icsk = inet_csk(sk);
3554 struct tcp_sock *tp = tcp_sk(sk);
3555 struct tcp_sacktag_state sack_state;
3556 struct rate_sample rs = { .prior_delivered = 0 };
3557 u32 prior_snd_una = tp->snd_una;
3558 bool is_sack_reneg = tp->is_sack_reneg;
3559 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3560 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3561 bool is_dupack = false;
3562 int prior_packets = tp->packets_out;
3563 u32 delivered = tp->delivered;
3564 u32 lost = tp->lost;
3565 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3566 u32 prior_fack;
3567
3568 sack_state.first_sackt = 0;
3569 sack_state.rate = &rs;
3570
3571 /* We very likely will need to access rtx queue. */
3572 prefetch(sk->tcp_rtx_queue.rb_node);
3573
3574 /* If the ack is older than previous acks
3575 * then we can probably ignore it.
3576 */
3577 if (before(ack, prior_snd_una)) {
3578 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3579 if (before(ack, prior_snd_una - tp->max_window)) {
3580 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3581 tcp_send_challenge_ack(sk, skb);
3582 return -1;
3583 }
3584 goto old_ack;
3585 }
3586
3587 /* If the ack includes data we haven't sent yet, discard
3588 * this segment (RFC793 Section 3.9).
3589 */
3590 if (after(ack, tp->snd_nxt))
3591 goto invalid_ack;
3592
3593 if (after(ack, prior_snd_una)) {
3594 flag |= FLAG_SND_UNA_ADVANCED;
3595 icsk->icsk_retransmits = 0;
3596
3597 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3598 if (static_branch_unlikely(&clean_acked_data_enabled))
3599 if (icsk->icsk_clean_acked)
3600 icsk->icsk_clean_acked(sk, ack);
3601 #endif
3602 }
3603
3604 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3605 rs.prior_in_flight = tcp_packets_in_flight(tp);
3606
3607 /* ts_recent update must be made after we are sure that the packet
3608 * is in window.
3609 */
3610 if (flag & FLAG_UPDATE_TS_RECENT)
3611 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3612
3613 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3614 /* Window is constant, pure forward advance.
3615 * No more checks are required.
3616 * Note, we use the fact that SND.UNA>=SND.WL2.
3617 */
3618 tcp_update_wl(tp, ack_seq);
3619 tcp_snd_una_update(tp, ack);
3620 flag |= FLAG_WIN_UPDATE;
3621
3622 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3623
3624 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3625 } else {
3626 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3627
3628 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3629 flag |= FLAG_DATA;
3630 else
3631 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3632
3633 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3634
3635 if (TCP_SKB_CB(skb)->sacked)
3636 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3637 &sack_state);
3638
3639 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3640 flag |= FLAG_ECE;
3641 ack_ev_flags |= CA_ACK_ECE;
3642 }
3643
3644 if (flag & FLAG_WIN_UPDATE)
3645 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3646
3647 tcp_in_ack_event(sk, ack_ev_flags);
3648 }
3649
3650 /* We passed data and got it acked, remove any soft error
3651 * log. Something worked...
3652 */
3653 sk->sk_err_soft = 0;
3654 icsk->icsk_probes_out = 0;
3655 tp->rcv_tstamp = tcp_jiffies32;
3656 if (!prior_packets)
3657 goto no_queue;
3658
3659 /* See if we can take anything off of the retransmit queue. */
3660 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3661
3662 tcp_rack_update_reo_wnd(sk, &rs);
3663
3664 if (tp->tlp_high_seq)
3665 tcp_process_tlp_ack(sk, ack, flag);
3666 /* If needed, reset TLP/RTO timer; RACK may later override this. */
3667 if (flag & FLAG_SET_XMIT_TIMER)
3668 tcp_set_xmit_timer(sk);
3669
3670 if (tcp_ack_is_dubious(sk, flag)) {
3671 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3672 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3673 &rexmit);
3674 }
3675
3676 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3677 sk_dst_confirm(sk);
3678
3679 delivered = tcp_newly_delivered(sk, delivered, flag);
3680 lost = tp->lost - lost; /* freshly marked lost */
3681 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3682 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3683 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3684 tcp_xmit_recovery(sk, rexmit);
3685 return 1;
3686
3687 no_queue:
3688 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3689 if (flag & FLAG_DSACKING_ACK) {
3690 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3691 &rexmit);
3692 tcp_newly_delivered(sk, delivered, flag);
3693 }
3694 /* If this ack opens up a zero window, clear backoff. It was
3695 * being used to time the probes, and is probably far higher than
3696 * it needs to be for normal retransmission.
3697 */
3698 tcp_ack_probe(sk);
3699
3700 if (tp->tlp_high_seq)
3701 tcp_process_tlp_ack(sk, ack, flag);
3702 return 1;
3703
3704 invalid_ack:
3705 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3706 return -1;
3707
3708 old_ack:
3709 /* If data was SACKed, tag it and see if we should send more data.
3710 * If data was DSACKed, see if we can undo a cwnd reduction.
3711 */
3712 if (TCP_SKB_CB(skb)->sacked) {
3713 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3714 &sack_state);
3715 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3716 &rexmit);
3717 tcp_newly_delivered(sk, delivered, flag);
3718 tcp_xmit_recovery(sk, rexmit);
3719 }
3720
3721 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3722 return 0;
3723 }
3724
3725 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3726 bool syn, struct tcp_fastopen_cookie *foc,
3727 bool exp_opt)
3728 {
3729 /* Valid only in SYN or SYN-ACK with an even length. */
3730 if (!foc || !syn || len < 0 || (len & 1))
3731 return;
3732
3733 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3734 len <= TCP_FASTOPEN_COOKIE_MAX)
3735 memcpy(foc->val, cookie, len);
3736 else if (len != 0)
3737 len = -1;
3738 foc->len = len;
3739 foc->exp = exp_opt;
3740 }
3741
3742 static void smc_parse_options(const struct tcphdr *th,
3743 struct tcp_options_received *opt_rx,
3744 const unsigned char *ptr,
3745 int opsize)
3746 {
3747 #if IS_ENABLED(CONFIG_SMC)
3748 if (static_branch_unlikely(&tcp_have_smc)) {
3749 if (th->syn && !(opsize & 1) &&
3750 opsize >= TCPOLEN_EXP_SMC_BASE &&
3751 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3752 opt_rx->smc_ok = 1;
3753 }
3754 #endif
3755 }
3756
3757 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3758 * But, this can also be called on packets in the established flow when
3759 * the fast version below fails.
3760 */
3761 void tcp_parse_options(const struct net *net,
3762 const struct sk_buff *skb,
3763 struct tcp_options_received *opt_rx, int estab,
3764 struct tcp_fastopen_cookie *foc)
3765 {
3766 const unsigned char *ptr;
3767 const struct tcphdr *th = tcp_hdr(skb);
3768 int length = (th->doff * 4) - sizeof(struct tcphdr);
3769
3770 ptr = (const unsigned char *)(th + 1);
3771 opt_rx->saw_tstamp = 0;
3772
3773 while (length > 0) {
3774 int opcode = *ptr++;
3775 int opsize;
3776
3777 switch (opcode) {
3778 case TCPOPT_EOL:
3779 return;
3780 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3781 length--;
3782 continue;
3783 default:
3784 opsize = *ptr++;
3785 if (opsize < 2) /* "silly options" */
3786 return;
3787 if (opsize > length)
3788 return; /* don't parse partial options */
3789 switch (opcode) {
3790 case TCPOPT_MSS:
3791 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3792 u16 in_mss = get_unaligned_be16(ptr);
3793 if (in_mss) {
3794 if (opt_rx->user_mss &&
3795 opt_rx->user_mss < in_mss)
3796 in_mss = opt_rx->user_mss;
3797 opt_rx->mss_clamp = in_mss;
3798 }
3799 }
3800 break;
3801 case TCPOPT_WINDOW:
3802 if (opsize == TCPOLEN_WINDOW && th->syn &&
3803 !estab && net->ipv4.sysctl_tcp_window_scaling) {
3804 __u8 snd_wscale = *(__u8 *)ptr;
3805 opt_rx->wscale_ok = 1;
3806 if (snd_wscale > TCP_MAX_WSCALE) {
3807 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3808 __func__,
3809 snd_wscale,
3810 TCP_MAX_WSCALE);
3811 snd_wscale = TCP_MAX_WSCALE;
3812 }
3813 opt_rx->snd_wscale = snd_wscale;
3814 }
3815 break;
3816 case TCPOPT_TIMESTAMP:
3817 if ((opsize == TCPOLEN_TIMESTAMP) &&
3818 ((estab && opt_rx->tstamp_ok) ||
3819 (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3820 opt_rx->saw_tstamp = 1;
3821 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3822 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3823 }
3824 break;
3825 case TCPOPT_SACK_PERM:
3826 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3827 !estab && net->ipv4.sysctl_tcp_sack) {
3828 opt_rx->sack_ok = TCP_SACK_SEEN;
3829 tcp_sack_reset(opt_rx);
3830 }
3831 break;
3832
3833 case TCPOPT_SACK:
3834 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3835 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3836 opt_rx->sack_ok) {
3837 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3838 }
3839 break;
3840 #ifdef CONFIG_TCP_MD5SIG
3841 case TCPOPT_MD5SIG:
3842 /*
3843 * The MD5 Hash has already been
3844 * checked (see tcp_v{4,6}_do_rcv()).
3845 */
3846 break;
3847 #endif
3848 case TCPOPT_FASTOPEN:
3849 tcp_parse_fastopen_option(
3850 opsize - TCPOLEN_FASTOPEN_BASE,
3851 ptr, th->syn, foc, false);
3852 break;
3853
3854 case TCPOPT_EXP:
3855 /* Fast Open option shares code 254 using a
3856 * 16 bits magic number.
3857 */
3858 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3859 get_unaligned_be16(ptr) ==
3860 TCPOPT_FASTOPEN_MAGIC)
3861 tcp_parse_fastopen_option(opsize -
3862 TCPOLEN_EXP_FASTOPEN_BASE,
3863 ptr + 2, th->syn, foc, true);
3864 else
3865 smc_parse_options(th, opt_rx, ptr,
3866 opsize);
3867 break;
3868
3869 }
3870 ptr += opsize-2;
3871 length -= opsize;
3872 }
3873 }
3874 }
3875 EXPORT_SYMBOL(tcp_parse_options);
3876
3877 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3878 {
3879 const __be32 *ptr = (const __be32 *)(th + 1);
3880
3881 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3882 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3883 tp->rx_opt.saw_tstamp = 1;
3884 ++ptr;
3885 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3886 ++ptr;
3887 if (*ptr)
3888 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3889 else
3890 tp->rx_opt.rcv_tsecr = 0;
3891 return true;
3892 }
3893 return false;
3894 }
3895
3896 /* Fast parse options. This hopes to only see timestamps.
3897 * If it is wrong it falls back on tcp_parse_options().
3898 */
3899 static bool tcp_fast_parse_options(const struct net *net,
3900 const struct sk_buff *skb,
3901 const struct tcphdr *th, struct tcp_sock *tp)
3902 {
3903 /* In the spirit of fast parsing, compare doff directly to constant
3904 * values. Because equality is used, short doff can be ignored here.
3905 */
3906 if (th->doff == (sizeof(*th) / 4)) {
3907 tp->rx_opt.saw_tstamp = 0;
3908 return false;
3909 } else if (tp->rx_opt.tstamp_ok &&
3910 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3911 if (tcp_parse_aligned_timestamp(tp, th))
3912 return true;
3913 }
3914
3915 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3916 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3917 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3918
3919 return true;
3920 }
3921
3922 #ifdef CONFIG_TCP_MD5SIG
3923 /*
3924 * Parse MD5 Signature option
3925 */
3926 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3927 {
3928 int length = (th->doff << 2) - sizeof(*th);
3929 const u8 *ptr = (const u8 *)(th + 1);
3930
3931 /* If not enough data remaining, we can short cut */
3932 while (length >= TCPOLEN_MD5SIG) {
3933 int opcode = *ptr++;
3934 int opsize;
3935
3936 switch (opcode) {
3937 case TCPOPT_EOL:
3938 return NULL;
3939 case TCPOPT_NOP:
3940 length--;
3941 continue;
3942 default:
3943 opsize = *ptr++;
3944 if (opsize < 2 || opsize > length)
3945 return NULL;
3946 if (opcode == TCPOPT_MD5SIG)
3947 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3948 }
3949 ptr += opsize - 2;
3950 length -= opsize;
3951 }
3952 return NULL;
3953 }
3954 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3955 #endif
3956
3957 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3958 *
3959 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3960 * it can pass through stack. So, the following predicate verifies that
3961 * this segment is not used for anything but congestion avoidance or
3962 * fast retransmit. Moreover, we even are able to eliminate most of such
3963 * second order effects, if we apply some small "replay" window (~RTO)
3964 * to timestamp space.
3965 *
3966 * All these measures still do not guarantee that we reject wrapped ACKs
3967 * on networks with high bandwidth, when sequence space is recycled fastly,
3968 * but it guarantees that such events will be very rare and do not affect
3969 * connection seriously. This doesn't look nice, but alas, PAWS is really
3970 * buggy extension.
3971 *
3972 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3973 * states that events when retransmit arrives after original data are rare.
3974 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3975 * the biggest problem on large power networks even with minor reordering.
3976 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3977 * up to bandwidth of 18Gigabit/sec. 8) ]
3978 */
3979
3980 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3981 {
3982 const struct tcp_sock *tp = tcp_sk(sk);
3983 const struct tcphdr *th = tcp_hdr(skb);
3984 u32 seq = TCP_SKB_CB(skb)->seq;
3985 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3986
3987 return (/* 1. Pure ACK with correct sequence number. */
3988 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3989
3990 /* 2. ... and duplicate ACK. */
3991 ack == tp->snd_una &&
3992
3993 /* 3. ... and does not update window. */
3994 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3995
3996 /* 4. ... and sits in replay window. */
3997 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3998 }
3999
4000 static inline bool tcp_paws_discard(const struct sock *sk,
4001 const struct sk_buff *skb)
4002 {
4003 const struct tcp_sock *tp = tcp_sk(sk);
4004
4005 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4006 !tcp_disordered_ack(sk, skb);
4007 }
4008
4009 /* Check segment sequence number for validity.
4010 *
4011 * Segment controls are considered valid, if the segment
4012 * fits to the window after truncation to the window. Acceptability
4013 * of data (and SYN, FIN, of course) is checked separately.
4014 * See tcp_data_queue(), for example.
4015 *
4016 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4017 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4018 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4019 * (borrowed from freebsd)
4020 */
4021
4022 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4023 {
4024 return !before(end_seq, tp->rcv_wup) &&
4025 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4026 }
4027
4028 /* When we get a reset we do this. */
4029 void tcp_reset(struct sock *sk)
4030 {
4031 trace_tcp_receive_reset(sk);
4032
4033 /* We want the right error as BSD sees it (and indeed as we do). */
4034 switch (sk->sk_state) {
4035 case TCP_SYN_SENT:
4036 sk->sk_err = ECONNREFUSED;
4037 break;
4038 case TCP_CLOSE_WAIT:
4039 sk->sk_err = EPIPE;
4040 break;
4041 case TCP_CLOSE:
4042 return;
4043 default:
4044 sk->sk_err = ECONNRESET;
4045 }
4046 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4047 smp_wmb();
4048
4049 tcp_write_queue_purge(sk);
4050 tcp_done(sk);
4051
4052 if (!sock_flag(sk, SOCK_DEAD))
4053 sk->sk_error_report(sk);
4054 }
4055
4056 /*
4057 * Process the FIN bit. This now behaves as it is supposed to work
4058 * and the FIN takes effect when it is validly part of sequence
4059 * space. Not before when we get holes.
4060 *
4061 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4062 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4063 * TIME-WAIT)
4064 *
4065 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4066 * close and we go into CLOSING (and later onto TIME-WAIT)
4067 *
4068 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4069 */
4070 void tcp_fin(struct sock *sk)
4071 {
4072 struct tcp_sock *tp = tcp_sk(sk);
4073
4074 inet_csk_schedule_ack(sk);
4075
4076 sk->sk_shutdown |= RCV_SHUTDOWN;
4077 sock_set_flag(sk, SOCK_DONE);
4078
4079 switch (sk->sk_state) {
4080 case TCP_SYN_RECV:
4081 case TCP_ESTABLISHED:
4082 /* Move to CLOSE_WAIT */
4083 tcp_set_state(sk, TCP_CLOSE_WAIT);
4084 inet_csk(sk)->icsk_ack.pingpong = 1;
4085 break;
4086
4087 case TCP_CLOSE_WAIT:
4088 case TCP_CLOSING:
4089 /* Received a retransmission of the FIN, do
4090 * nothing.
4091 */
4092 break;
4093 case TCP_LAST_ACK:
4094 /* RFC793: Remain in the LAST-ACK state. */
4095 break;
4096
4097 case TCP_FIN_WAIT1:
4098 /* This case occurs when a simultaneous close
4099 * happens, we must ack the received FIN and
4100 * enter the CLOSING state.
4101 */
4102 tcp_send_ack(sk);
4103 tcp_set_state(sk, TCP_CLOSING);
4104 break;
4105 case TCP_FIN_WAIT2:
4106 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4107 tcp_send_ack(sk);
4108 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4109 break;
4110 default:
4111 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4112 * cases we should never reach this piece of code.
4113 */
4114 pr_err("%s: Impossible, sk->sk_state=%d\n",
4115 __func__, sk->sk_state);
4116 break;
4117 }
4118
4119 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4120 * Probably, we should reset in this case. For now drop them.
4121 */
4122 skb_rbtree_purge(&tp->out_of_order_queue);
4123 if (tcp_is_sack(tp))
4124 tcp_sack_reset(&tp->rx_opt);
4125 sk_mem_reclaim(sk);
4126
4127 if (!sock_flag(sk, SOCK_DEAD)) {
4128 sk->sk_state_change(sk);
4129
4130 /* Do not send POLL_HUP for half duplex close. */
4131 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4132 sk->sk_state == TCP_CLOSE)
4133 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4134 else
4135 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4136 }
4137 }
4138
4139 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4140 u32 end_seq)
4141 {
4142 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4143 if (before(seq, sp->start_seq))
4144 sp->start_seq = seq;
4145 if (after(end_seq, sp->end_seq))
4146 sp->end_seq = end_seq;
4147 return true;
4148 }
4149 return false;
4150 }
4151
4152 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4153 {
4154 struct tcp_sock *tp = tcp_sk(sk);
4155
4156 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4157 int mib_idx;
4158
4159 if (before(seq, tp->rcv_nxt))
4160 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4161 else
4162 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4163
4164 NET_INC_STATS(sock_net(sk), mib_idx);
4165
4166 tp->rx_opt.dsack = 1;
4167 tp->duplicate_sack[0].start_seq = seq;
4168 tp->duplicate_sack[0].end_seq = end_seq;
4169 }
4170 }
4171
4172 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4173 {
4174 struct tcp_sock *tp = tcp_sk(sk);
4175
4176 if (!tp->rx_opt.dsack)
4177 tcp_dsack_set(sk, seq, end_seq);
4178 else
4179 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4180 }
4181
4182 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4183 {
4184 /* When the ACK path fails or drops most ACKs, the sender would
4185 * timeout and spuriously retransmit the same segment repeatedly.
4186 * The receiver remembers and reflects via DSACKs. Leverage the
4187 * DSACK state and change the txhash to re-route speculatively.
4188 */
4189 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq)
4190 sk_rethink_txhash(sk);
4191 }
4192
4193 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4194 {
4195 struct tcp_sock *tp = tcp_sk(sk);
4196
4197 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4198 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4199 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4200 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4201
4202 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4203 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4204
4205 tcp_rcv_spurious_retrans(sk, skb);
4206 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4207 end_seq = tp->rcv_nxt;
4208 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4209 }
4210 }
4211
4212 tcp_send_ack(sk);
4213 }
4214
4215 /* These routines update the SACK block as out-of-order packets arrive or
4216 * in-order packets close up the sequence space.
4217 */
4218 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4219 {
4220 int this_sack;
4221 struct tcp_sack_block *sp = &tp->selective_acks[0];
4222 struct tcp_sack_block *swalk = sp + 1;
4223
4224 /* See if the recent change to the first SACK eats into
4225 * or hits the sequence space of other SACK blocks, if so coalesce.
4226 */
4227 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4228 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4229 int i;
4230
4231 /* Zap SWALK, by moving every further SACK up by one slot.
4232 * Decrease num_sacks.
4233 */
4234 tp->rx_opt.num_sacks--;
4235 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4236 sp[i] = sp[i + 1];
4237 continue;
4238 }
4239 this_sack++, swalk++;
4240 }
4241 }
4242
4243 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4244 {
4245 struct tcp_sock *tp = tcp_sk(sk);
4246 struct tcp_sack_block *sp = &tp->selective_acks[0];
4247 int cur_sacks = tp->rx_opt.num_sacks;
4248 int this_sack;
4249
4250 if (!cur_sacks)
4251 goto new_sack;
4252
4253 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4254 if (tcp_sack_extend(sp, seq, end_seq)) {
4255 /* Rotate this_sack to the first one. */
4256 for (; this_sack > 0; this_sack--, sp--)
4257 swap(*sp, *(sp - 1));
4258 if (cur_sacks > 1)
4259 tcp_sack_maybe_coalesce(tp);
4260 return;
4261 }
4262 }
4263
4264 /* Could not find an adjacent existing SACK, build a new one,
4265 * put it at the front, and shift everyone else down. We
4266 * always know there is at least one SACK present already here.
4267 *
4268 * If the sack array is full, forget about the last one.
4269 */
4270 if (this_sack >= TCP_NUM_SACKS) {
4271 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
4272 tcp_send_ack(sk);
4273 this_sack--;
4274 tp->rx_opt.num_sacks--;
4275 sp--;
4276 }
4277 for (; this_sack > 0; this_sack--, sp--)
4278 *sp = *(sp - 1);
4279
4280 new_sack:
4281 /* Build the new head SACK, and we're done. */
4282 sp->start_seq = seq;
4283 sp->end_seq = end_seq;
4284 tp->rx_opt.num_sacks++;
4285 }
4286
4287 /* RCV.NXT advances, some SACKs should be eaten. */
4288
4289 static void tcp_sack_remove(struct tcp_sock *tp)
4290 {
4291 struct tcp_sack_block *sp = &tp->selective_acks[0];
4292 int num_sacks = tp->rx_opt.num_sacks;
4293 int this_sack;
4294
4295 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4296 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4297 tp->rx_opt.num_sacks = 0;
4298 return;
4299 }
4300
4301 for (this_sack = 0; this_sack < num_sacks;) {
4302 /* Check if the start of the sack is covered by RCV.NXT. */
4303 if (!before(tp->rcv_nxt, sp->start_seq)) {
4304 int i;
4305
4306 /* RCV.NXT must cover all the block! */
4307 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4308
4309 /* Zap this SACK, by moving forward any other SACKS. */
4310 for (i = this_sack+1; i < num_sacks; i++)
4311 tp->selective_acks[i-1] = tp->selective_acks[i];
4312 num_sacks--;
4313 continue;
4314 }
4315 this_sack++;
4316 sp++;
4317 }
4318 tp->rx_opt.num_sacks = num_sacks;
4319 }
4320
4321 /**
4322 * tcp_try_coalesce - try to merge skb to prior one
4323 * @sk: socket
4324 * @dest: destination queue
4325 * @to: prior buffer
4326 * @from: buffer to add in queue
4327 * @fragstolen: pointer to boolean
4328 *
4329 * Before queueing skb @from after @to, try to merge them
4330 * to reduce overall memory use and queue lengths, if cost is small.
4331 * Packets in ofo or receive queues can stay a long time.
4332 * Better try to coalesce them right now to avoid future collapses.
4333 * Returns true if caller should free @from instead of queueing it
4334 */
4335 static bool tcp_try_coalesce(struct sock *sk,
4336 struct sk_buff *to,
4337 struct sk_buff *from,
4338 bool *fragstolen)
4339 {
4340 int delta;
4341
4342 *fragstolen = false;
4343
4344 /* Its possible this segment overlaps with prior segment in queue */
4345 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4346 return false;
4347
4348 #ifdef CONFIG_TLS_DEVICE
4349 if (from->decrypted != to->decrypted)
4350 return false;
4351 #endif
4352
4353 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4354 return false;
4355
4356 atomic_add(delta, &sk->sk_rmem_alloc);
4357 sk_mem_charge(sk, delta);
4358 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4359 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4360 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4361 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4362
4363 if (TCP_SKB_CB(from)->has_rxtstamp) {
4364 TCP_SKB_CB(to)->has_rxtstamp = true;
4365 to->tstamp = from->tstamp;
4366 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4367 }
4368
4369 return true;
4370 }
4371
4372 static bool tcp_ooo_try_coalesce(struct sock *sk,
4373 struct sk_buff *to,
4374 struct sk_buff *from,
4375 bool *fragstolen)
4376 {
4377 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4378
4379 /* In case tcp_drop() is called later, update to->gso_segs */
4380 if (res) {
4381 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4382 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4383
4384 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4385 }
4386 return res;
4387 }
4388
4389 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4390 {
4391 sk_drops_add(sk, skb);
4392 __kfree_skb(skb);
4393 }
4394
4395 /* This one checks to see if we can put data from the
4396 * out_of_order queue into the receive_queue.
4397 */
4398 static void tcp_ofo_queue(struct sock *sk)
4399 {
4400 struct tcp_sock *tp = tcp_sk(sk);
4401 __u32 dsack_high = tp->rcv_nxt;
4402 bool fin, fragstolen, eaten;
4403 struct sk_buff *skb, *tail;
4404 struct rb_node *p;
4405
4406 p = rb_first(&tp->out_of_order_queue);
4407 while (p) {
4408 skb = rb_to_skb(p);
4409 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4410 break;
4411
4412 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4413 __u32 dsack = dsack_high;
4414 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4415 dsack_high = TCP_SKB_CB(skb)->end_seq;
4416 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4417 }
4418 p = rb_next(p);
4419 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4420
4421 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4422 SOCK_DEBUG(sk, "ofo packet was already received\n");
4423 tcp_drop(sk, skb);
4424 continue;
4425 }
4426 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4427 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4428 TCP_SKB_CB(skb)->end_seq);
4429
4430 tail = skb_peek_tail(&sk->sk_receive_queue);
4431 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4432 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4433 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4434 if (!eaten)
4435 __skb_queue_tail(&sk->sk_receive_queue, skb);
4436 else
4437 kfree_skb_partial(skb, fragstolen);
4438
4439 if (unlikely(fin)) {
4440 tcp_fin(sk);
4441 /* tcp_fin() purges tp->out_of_order_queue,
4442 * so we must end this loop right now.
4443 */
4444 break;
4445 }
4446 }
4447 }
4448
4449 static bool tcp_prune_ofo_queue(struct sock *sk);
4450 static int tcp_prune_queue(struct sock *sk);
4451
4452 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4453 unsigned int size)
4454 {
4455 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4456 !sk_rmem_schedule(sk, skb, size)) {
4457
4458 if (tcp_prune_queue(sk) < 0)
4459 return -1;
4460
4461 while (!sk_rmem_schedule(sk, skb, size)) {
4462 if (!tcp_prune_ofo_queue(sk))
4463 return -1;
4464 }
4465 }
4466 return 0;
4467 }
4468
4469 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4470 {
4471 struct tcp_sock *tp = tcp_sk(sk);
4472 struct rb_node **p, *parent;
4473 struct sk_buff *skb1;
4474 u32 seq, end_seq;
4475 bool fragstolen;
4476
4477 tcp_ecn_check_ce(sk, skb);
4478
4479 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4480 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4481 tcp_drop(sk, skb);
4482 return;
4483 }
4484
4485 /* Disable header prediction. */
4486 tp->pred_flags = 0;
4487 inet_csk_schedule_ack(sk);
4488
4489 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4490 seq = TCP_SKB_CB(skb)->seq;
4491 end_seq = TCP_SKB_CB(skb)->end_seq;
4492 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4493 tp->rcv_nxt, seq, end_seq);
4494
4495 p = &tp->out_of_order_queue.rb_node;
4496 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4497 /* Initial out of order segment, build 1 SACK. */
4498 if (tcp_is_sack(tp)) {
4499 tp->rx_opt.num_sacks = 1;
4500 tp->selective_acks[0].start_seq = seq;
4501 tp->selective_acks[0].end_seq = end_seq;
4502 }
4503 rb_link_node(&skb->rbnode, NULL, p);
4504 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4505 tp->ooo_last_skb = skb;
4506 goto end;
4507 }
4508
4509 /* In the typical case, we are adding an skb to the end of the list.
4510 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4511 */
4512 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4513 skb, &fragstolen)) {
4514 coalesce_done:
4515 tcp_grow_window(sk, skb);
4516 kfree_skb_partial(skb, fragstolen);
4517 skb = NULL;
4518 goto add_sack;
4519 }
4520 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4521 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4522 parent = &tp->ooo_last_skb->rbnode;
4523 p = &parent->rb_right;
4524 goto insert;
4525 }
4526
4527 /* Find place to insert this segment. Handle overlaps on the way. */
4528 parent = NULL;
4529 while (*p) {
4530 parent = *p;
4531 skb1 = rb_to_skb(parent);
4532 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4533 p = &parent->rb_left;
4534 continue;
4535 }
4536 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4537 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4538 /* All the bits are present. Drop. */
4539 NET_INC_STATS(sock_net(sk),
4540 LINUX_MIB_TCPOFOMERGE);
4541 tcp_drop(sk, skb);
4542 skb = NULL;
4543 tcp_dsack_set(sk, seq, end_seq);
4544 goto add_sack;
4545 }
4546 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4547 /* Partial overlap. */
4548 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4549 } else {
4550 /* skb's seq == skb1's seq and skb covers skb1.
4551 * Replace skb1 with skb.
4552 */
4553 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4554 &tp->out_of_order_queue);
4555 tcp_dsack_extend(sk,
4556 TCP_SKB_CB(skb1)->seq,
4557 TCP_SKB_CB(skb1)->end_seq);
4558 NET_INC_STATS(sock_net(sk),
4559 LINUX_MIB_TCPOFOMERGE);
4560 tcp_drop(sk, skb1);
4561 goto merge_right;
4562 }
4563 } else if (tcp_ooo_try_coalesce(sk, skb1,
4564 skb, &fragstolen)) {
4565 goto coalesce_done;
4566 }
4567 p = &parent->rb_right;
4568 }
4569 insert:
4570 /* Insert segment into RB tree. */
4571 rb_link_node(&skb->rbnode, parent, p);
4572 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4573
4574 merge_right:
4575 /* Remove other segments covered by skb. */
4576 while ((skb1 = skb_rb_next(skb)) != NULL) {
4577 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4578 break;
4579 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4580 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4581 end_seq);
4582 break;
4583 }
4584 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4585 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4586 TCP_SKB_CB(skb1)->end_seq);
4587 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4588 tcp_drop(sk, skb1);
4589 }
4590 /* If there is no skb after us, we are the last_skb ! */
4591 if (!skb1)
4592 tp->ooo_last_skb = skb;
4593
4594 add_sack:
4595 if (tcp_is_sack(tp))
4596 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4597 end:
4598 if (skb) {
4599 tcp_grow_window(sk, skb);
4600 skb_condense(skb);
4601 skb_set_owner_r(skb, sk);
4602 }
4603 }
4604
4605 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4606 bool *fragstolen)
4607 {
4608 int eaten;
4609 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4610
4611 __skb_pull(skb, hdrlen);
4612 eaten = (tail &&
4613 tcp_try_coalesce(sk, tail,
4614 skb, fragstolen)) ? 1 : 0;
4615 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4616 if (!eaten) {
4617 __skb_queue_tail(&sk->sk_receive_queue, skb);
4618 skb_set_owner_r(skb, sk);
4619 }
4620 return eaten;
4621 }
4622
4623 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4624 {
4625 struct sk_buff *skb;
4626 int err = -ENOMEM;
4627 int data_len = 0;
4628 bool fragstolen;
4629
4630 if (size == 0)
4631 return 0;
4632
4633 if (size > PAGE_SIZE) {
4634 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4635
4636 data_len = npages << PAGE_SHIFT;
4637 size = data_len + (size & ~PAGE_MASK);
4638 }
4639 skb = alloc_skb_with_frags(size - data_len, data_len,
4640 PAGE_ALLOC_COSTLY_ORDER,
4641 &err, sk->sk_allocation);
4642 if (!skb)
4643 goto err;
4644
4645 skb_put(skb, size - data_len);
4646 skb->data_len = data_len;
4647 skb->len = size;
4648
4649 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4650 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4651 goto err_free;
4652 }
4653
4654 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4655 if (err)
4656 goto err_free;
4657
4658 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4659 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4660 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4661
4662 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4663 WARN_ON_ONCE(fragstolen); /* should not happen */
4664 __kfree_skb(skb);
4665 }
4666 return size;
4667
4668 err_free:
4669 kfree_skb(skb);
4670 err:
4671 return err;
4672
4673 }
4674
4675 void tcp_data_ready(struct sock *sk)
4676 {
4677 const struct tcp_sock *tp = tcp_sk(sk);
4678 int avail = tp->rcv_nxt - tp->copied_seq;
4679
4680 if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE))
4681 return;
4682
4683 sk->sk_data_ready(sk);
4684 }
4685
4686 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4687 {
4688 struct tcp_sock *tp = tcp_sk(sk);
4689 bool fragstolen;
4690 int eaten;
4691
4692 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4693 __kfree_skb(skb);
4694 return;
4695 }
4696 skb_dst_drop(skb);
4697 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4698
4699 tcp_ecn_accept_cwr(sk, skb);
4700
4701 tp->rx_opt.dsack = 0;
4702
4703 /* Queue data for delivery to the user.
4704 * Packets in sequence go to the receive queue.
4705 * Out of sequence packets to the out_of_order_queue.
4706 */
4707 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4708 if (tcp_receive_window(tp) == 0) {
4709 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4710 goto out_of_window;
4711 }
4712
4713 /* Ok. In sequence. In window. */
4714 queue_and_out:
4715 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4716 sk_forced_mem_schedule(sk, skb->truesize);
4717 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4718 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4719 goto drop;
4720 }
4721
4722 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4723 if (skb->len)
4724 tcp_event_data_recv(sk, skb);
4725 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4726 tcp_fin(sk);
4727
4728 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4729 tcp_ofo_queue(sk);
4730
4731 /* RFC5681. 4.2. SHOULD send immediate ACK, when
4732 * gap in queue is filled.
4733 */
4734 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4735 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4736 }
4737
4738 if (tp->rx_opt.num_sacks)
4739 tcp_sack_remove(tp);
4740
4741 tcp_fast_path_check(sk);
4742
4743 if (eaten > 0)
4744 kfree_skb_partial(skb, fragstolen);
4745 if (!sock_flag(sk, SOCK_DEAD))
4746 tcp_data_ready(sk);
4747 return;
4748 }
4749
4750 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4751 tcp_rcv_spurious_retrans(sk, skb);
4752 /* A retransmit, 2nd most common case. Force an immediate ack. */
4753 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4754 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4755
4756 out_of_window:
4757 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4758 inet_csk_schedule_ack(sk);
4759 drop:
4760 tcp_drop(sk, skb);
4761 return;
4762 }
4763
4764 /* Out of window. F.e. zero window probe. */
4765 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4766 goto out_of_window;
4767
4768 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4769 /* Partial packet, seq < rcv_next < end_seq */
4770 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4771 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4772 TCP_SKB_CB(skb)->end_seq);
4773
4774 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4775
4776 /* If window is closed, drop tail of packet. But after
4777 * remembering D-SACK for its head made in previous line.
4778 */
4779 if (!tcp_receive_window(tp)) {
4780 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4781 goto out_of_window;
4782 }
4783 goto queue_and_out;
4784 }
4785
4786 tcp_data_queue_ofo(sk, skb);
4787 }
4788
4789 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4790 {
4791 if (list)
4792 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4793
4794 return skb_rb_next(skb);
4795 }
4796
4797 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4798 struct sk_buff_head *list,
4799 struct rb_root *root)
4800 {
4801 struct sk_buff *next = tcp_skb_next(skb, list);
4802
4803 if (list)
4804 __skb_unlink(skb, list);
4805 else
4806 rb_erase(&skb->rbnode, root);
4807
4808 __kfree_skb(skb);
4809 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4810
4811 return next;
4812 }
4813
4814 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4815 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4816 {
4817 struct rb_node **p = &root->rb_node;
4818 struct rb_node *parent = NULL;
4819 struct sk_buff *skb1;
4820
4821 while (*p) {
4822 parent = *p;
4823 skb1 = rb_to_skb(parent);
4824 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4825 p = &parent->rb_left;
4826 else
4827 p = &parent->rb_right;
4828 }
4829 rb_link_node(&skb->rbnode, parent, p);
4830 rb_insert_color(&skb->rbnode, root);
4831 }
4832
4833 /* Collapse contiguous sequence of skbs head..tail with
4834 * sequence numbers start..end.
4835 *
4836 * If tail is NULL, this means until the end of the queue.
4837 *
4838 * Segments with FIN/SYN are not collapsed (only because this
4839 * simplifies code)
4840 */
4841 static void
4842 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4843 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4844 {
4845 struct sk_buff *skb = head, *n;
4846 struct sk_buff_head tmp;
4847 bool end_of_skbs;
4848
4849 /* First, check that queue is collapsible and find
4850 * the point where collapsing can be useful.
4851 */
4852 restart:
4853 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4854 n = tcp_skb_next(skb, list);
4855
4856 /* No new bits? It is possible on ofo queue. */
4857 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4858 skb = tcp_collapse_one(sk, skb, list, root);
4859 if (!skb)
4860 break;
4861 goto restart;
4862 }
4863
4864 /* The first skb to collapse is:
4865 * - not SYN/FIN and
4866 * - bloated or contains data before "start" or
4867 * overlaps to the next one.
4868 */
4869 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4870 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4871 before(TCP_SKB_CB(skb)->seq, start))) {
4872 end_of_skbs = false;
4873 break;
4874 }
4875
4876 if (n && n != tail &&
4877 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4878 end_of_skbs = false;
4879 break;
4880 }
4881
4882 /* Decided to skip this, advance start seq. */
4883 start = TCP_SKB_CB(skb)->end_seq;
4884 }
4885 if (end_of_skbs ||
4886 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4887 return;
4888
4889 __skb_queue_head_init(&tmp);
4890
4891 while (before(start, end)) {
4892 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4893 struct sk_buff *nskb;
4894
4895 nskb = alloc_skb(copy, GFP_ATOMIC);
4896 if (!nskb)
4897 break;
4898
4899 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4900 #ifdef CONFIG_TLS_DEVICE
4901 nskb->decrypted = skb->decrypted;
4902 #endif
4903 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4904 if (list)
4905 __skb_queue_before(list, skb, nskb);
4906 else
4907 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4908 skb_set_owner_r(nskb, sk);
4909
4910 /* Copy data, releasing collapsed skbs. */
4911 while (copy > 0) {
4912 int offset = start - TCP_SKB_CB(skb)->seq;
4913 int size = TCP_SKB_CB(skb)->end_seq - start;
4914
4915 BUG_ON(offset < 0);
4916 if (size > 0) {
4917 size = min(copy, size);
4918 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4919 BUG();
4920 TCP_SKB_CB(nskb)->end_seq += size;
4921 copy -= size;
4922 start += size;
4923 }
4924 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4925 skb = tcp_collapse_one(sk, skb, list, root);
4926 if (!skb ||
4927 skb == tail ||
4928 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4929 goto end;
4930 #ifdef CONFIG_TLS_DEVICE
4931 if (skb->decrypted != nskb->decrypted)
4932 goto end;
4933 #endif
4934 }
4935 }
4936 }
4937 end:
4938 skb_queue_walk_safe(&tmp, skb, n)
4939 tcp_rbtree_insert(root, skb);
4940 }
4941
4942 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4943 * and tcp_collapse() them until all the queue is collapsed.
4944 */
4945 static void tcp_collapse_ofo_queue(struct sock *sk)
4946 {
4947 struct tcp_sock *tp = tcp_sk(sk);
4948 u32 range_truesize, sum_tiny = 0;
4949 struct sk_buff *skb, *head;
4950 u32 start, end;
4951
4952 skb = skb_rb_first(&tp->out_of_order_queue);
4953 new_range:
4954 if (!skb) {
4955 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4956 return;
4957 }
4958 start = TCP_SKB_CB(skb)->seq;
4959 end = TCP_SKB_CB(skb)->end_seq;
4960 range_truesize = skb->truesize;
4961
4962 for (head = skb;;) {
4963 skb = skb_rb_next(skb);
4964
4965 /* Range is terminated when we see a gap or when
4966 * we are at the queue end.
4967 */
4968 if (!skb ||
4969 after(TCP_SKB_CB(skb)->seq, end) ||
4970 before(TCP_SKB_CB(skb)->end_seq, start)) {
4971 /* Do not attempt collapsing tiny skbs */
4972 if (range_truesize != head->truesize ||
4973 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
4974 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4975 head, skb, start, end);
4976 } else {
4977 sum_tiny += range_truesize;
4978 if (sum_tiny > sk->sk_rcvbuf >> 3)
4979 return;
4980 }
4981 goto new_range;
4982 }
4983
4984 range_truesize += skb->truesize;
4985 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4986 start = TCP_SKB_CB(skb)->seq;
4987 if (after(TCP_SKB_CB(skb)->end_seq, end))
4988 end = TCP_SKB_CB(skb)->end_seq;
4989 }
4990 }
4991
4992 /*
4993 * Clean the out-of-order queue to make room.
4994 * We drop high sequences packets to :
4995 * 1) Let a chance for holes to be filled.
4996 * 2) not add too big latencies if thousands of packets sit there.
4997 * (But if application shrinks SO_RCVBUF, we could still end up
4998 * freeing whole queue here)
4999 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5000 *
5001 * Return true if queue has shrunk.
5002 */
5003 static bool tcp_prune_ofo_queue(struct sock *sk)
5004 {
5005 struct tcp_sock *tp = tcp_sk(sk);
5006 struct rb_node *node, *prev;
5007 int goal;
5008
5009 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5010 return false;
5011
5012 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5013 goal = sk->sk_rcvbuf >> 3;
5014 node = &tp->ooo_last_skb->rbnode;
5015 do {
5016 prev = rb_prev(node);
5017 rb_erase(node, &tp->out_of_order_queue);
5018 goal -= rb_to_skb(node)->truesize;
5019 tcp_drop(sk, rb_to_skb(node));
5020 if (!prev || goal <= 0) {
5021 sk_mem_reclaim(sk);
5022 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5023 !tcp_under_memory_pressure(sk))
5024 break;
5025 goal = sk->sk_rcvbuf >> 3;
5026 }
5027 node = prev;
5028 } while (node);
5029 tp->ooo_last_skb = rb_to_skb(prev);
5030
5031 /* Reset SACK state. A conforming SACK implementation will
5032 * do the same at a timeout based retransmit. When a connection
5033 * is in a sad state like this, we care only about integrity
5034 * of the connection not performance.
5035 */
5036 if (tp->rx_opt.sack_ok)
5037 tcp_sack_reset(&tp->rx_opt);
5038 return true;
5039 }
5040
5041 /* Reduce allocated memory if we can, trying to get
5042 * the socket within its memory limits again.
5043 *
5044 * Return less than zero if we should start dropping frames
5045 * until the socket owning process reads some of the data
5046 * to stabilize the situation.
5047 */
5048 static int tcp_prune_queue(struct sock *sk)
5049 {
5050 struct tcp_sock *tp = tcp_sk(sk);
5051
5052 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
5053
5054 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5055
5056 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5057 tcp_clamp_window(sk);
5058 else if (tcp_under_memory_pressure(sk))
5059 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5060
5061 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5062 return 0;
5063
5064 tcp_collapse_ofo_queue(sk);
5065 if (!skb_queue_empty(&sk->sk_receive_queue))
5066 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5067 skb_peek(&sk->sk_receive_queue),
5068 NULL,
5069 tp->copied_seq, tp->rcv_nxt);
5070 sk_mem_reclaim(sk);
5071
5072 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5073 return 0;
5074
5075 /* Collapsing did not help, destructive actions follow.
5076 * This must not ever occur. */
5077
5078 tcp_prune_ofo_queue(sk);
5079
5080 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5081 return 0;
5082
5083 /* If we are really being abused, tell the caller to silently
5084 * drop receive data on the floor. It will get retransmitted
5085 * and hopefully then we'll have sufficient space.
5086 */
5087 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5088
5089 /* Massive buffer overcommit. */
5090 tp->pred_flags = 0;
5091 return -1;
5092 }
5093
5094 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5095 {
5096 const struct tcp_sock *tp = tcp_sk(sk);
5097
5098 /* If the user specified a specific send buffer setting, do
5099 * not modify it.
5100 */
5101 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5102 return false;
5103
5104 /* If we are under global TCP memory pressure, do not expand. */
5105 if (tcp_under_memory_pressure(sk))
5106 return false;
5107
5108 /* If we are under soft global TCP memory pressure, do not expand. */
5109 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5110 return false;
5111
5112 /* If we filled the congestion window, do not expand. */
5113 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5114 return false;
5115
5116 return true;
5117 }
5118
5119 /* When incoming ACK allowed to free some skb from write_queue,
5120 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5121 * on the exit from tcp input handler.
5122 *
5123 * PROBLEM: sndbuf expansion does not work well with largesend.
5124 */
5125 static void tcp_new_space(struct sock *sk)
5126 {
5127 struct tcp_sock *tp = tcp_sk(sk);
5128
5129 if (tcp_should_expand_sndbuf(sk)) {
5130 tcp_sndbuf_expand(sk);
5131 tp->snd_cwnd_stamp = tcp_jiffies32;
5132 }
5133
5134 sk->sk_write_space(sk);
5135 }
5136
5137 static void tcp_check_space(struct sock *sk)
5138 {
5139 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5140 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5141 /* pairs with tcp_poll() */
5142 smp_mb();
5143 if (sk->sk_socket &&
5144 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5145 tcp_new_space(sk);
5146 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5147 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5148 }
5149 }
5150 }
5151
5152 static inline void tcp_data_snd_check(struct sock *sk)
5153 {
5154 tcp_push_pending_frames(sk);
5155 tcp_check_space(sk);
5156 }
5157
5158 /*
5159 * Check if sending an ack is needed.
5160 */
5161 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5162 {
5163 struct tcp_sock *tp = tcp_sk(sk);
5164 unsigned long rtt, delay;
5165
5166 /* More than one full frame received... */
5167 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5168 /* ... and right edge of window advances far enough.
5169 * (tcp_recvmsg() will send ACK otherwise).
5170 * If application uses SO_RCVLOWAT, we want send ack now if
5171 * we have not received enough bytes to satisfy the condition.
5172 */
5173 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5174 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5175 /* We ACK each frame or... */
5176 tcp_in_quickack_mode(sk) ||
5177 /* Protocol state mandates a one-time immediate ACK */
5178 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5179 send_now:
5180 tcp_send_ack(sk);
5181 return;
5182 }
5183
5184 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5185 tcp_send_delayed_ack(sk);
5186 return;
5187 }
5188
5189 if (!tcp_is_sack(tp) ||
5190 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5191 goto send_now;
5192
5193 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5194 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5195 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
5196 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
5197 tp->compressed_ack - TCP_FASTRETRANS_THRESH);
5198 tp->compressed_ack = 0;
5199 }
5200
5201 if (++tp->compressed_ack <= TCP_FASTRETRANS_THRESH)
5202 goto send_now;
5203
5204 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5205 return;
5206
5207 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5208
5209 rtt = tp->rcv_rtt_est.rtt_us;
5210 if (tp->srtt_us && tp->srtt_us < rtt)
5211 rtt = tp->srtt_us;
5212
5213 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5214 rtt * (NSEC_PER_USEC >> 3)/20);
5215 sock_hold(sk);
5216 hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5217 HRTIMER_MODE_REL_PINNED_SOFT);
5218 }
5219
5220 static inline void tcp_ack_snd_check(struct sock *sk)
5221 {
5222 if (!inet_csk_ack_scheduled(sk)) {
5223 /* We sent a data segment already. */
5224 return;
5225 }
5226 __tcp_ack_snd_check(sk, 1);
5227 }
5228
5229 /*
5230 * This routine is only called when we have urgent data
5231 * signaled. Its the 'slow' part of tcp_urg. It could be
5232 * moved inline now as tcp_urg is only called from one
5233 * place. We handle URGent data wrong. We have to - as
5234 * BSD still doesn't use the correction from RFC961.
5235 * For 1003.1g we should support a new option TCP_STDURG to permit
5236 * either form (or just set the sysctl tcp_stdurg).
5237 */
5238
5239 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5240 {
5241 struct tcp_sock *tp = tcp_sk(sk);
5242 u32 ptr = ntohs(th->urg_ptr);
5243
5244 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5245 ptr--;
5246 ptr += ntohl(th->seq);
5247
5248 /* Ignore urgent data that we've already seen and read. */
5249 if (after(tp->copied_seq, ptr))
5250 return;
5251
5252 /* Do not replay urg ptr.
5253 *
5254 * NOTE: interesting situation not covered by specs.
5255 * Misbehaving sender may send urg ptr, pointing to segment,
5256 * which we already have in ofo queue. We are not able to fetch
5257 * such data and will stay in TCP_URG_NOTYET until will be eaten
5258 * by recvmsg(). Seems, we are not obliged to handle such wicked
5259 * situations. But it is worth to think about possibility of some
5260 * DoSes using some hypothetical application level deadlock.
5261 */
5262 if (before(ptr, tp->rcv_nxt))
5263 return;
5264
5265 /* Do we already have a newer (or duplicate) urgent pointer? */
5266 if (tp->urg_data && !after(ptr, tp->urg_seq))
5267 return;
5268
5269 /* Tell the world about our new urgent pointer. */
5270 sk_send_sigurg(sk);
5271
5272 /* We may be adding urgent data when the last byte read was
5273 * urgent. To do this requires some care. We cannot just ignore
5274 * tp->copied_seq since we would read the last urgent byte again
5275 * as data, nor can we alter copied_seq until this data arrives
5276 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5277 *
5278 * NOTE. Double Dutch. Rendering to plain English: author of comment
5279 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5280 * and expect that both A and B disappear from stream. This is _wrong_.
5281 * Though this happens in BSD with high probability, this is occasional.
5282 * Any application relying on this is buggy. Note also, that fix "works"
5283 * only in this artificial test. Insert some normal data between A and B and we will
5284 * decline of BSD again. Verdict: it is better to remove to trap
5285 * buggy users.
5286 */
5287 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5288 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5289 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5290 tp->copied_seq++;
5291 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5292 __skb_unlink(skb, &sk->sk_receive_queue);
5293 __kfree_skb(skb);
5294 }
5295 }
5296
5297 tp->urg_data = TCP_URG_NOTYET;
5298 tp->urg_seq = ptr;
5299
5300 /* Disable header prediction. */
5301 tp->pred_flags = 0;
5302 }
5303
5304 /* This is the 'fast' part of urgent handling. */
5305 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5306 {
5307 struct tcp_sock *tp = tcp_sk(sk);
5308
5309 /* Check if we get a new urgent pointer - normally not. */
5310 if (th->urg)
5311 tcp_check_urg(sk, th);
5312
5313 /* Do we wait for any urgent data? - normally not... */
5314 if (tp->urg_data == TCP_URG_NOTYET) {
5315 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5316 th->syn;
5317
5318 /* Is the urgent pointer pointing into this packet? */
5319 if (ptr < skb->len) {
5320 u8 tmp;
5321 if (skb_copy_bits(skb, ptr, &tmp, 1))
5322 BUG();
5323 tp->urg_data = TCP_URG_VALID | tmp;
5324 if (!sock_flag(sk, SOCK_DEAD))
5325 sk->sk_data_ready(sk);
5326 }
5327 }
5328 }
5329
5330 /* Accept RST for rcv_nxt - 1 after a FIN.
5331 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5332 * FIN is sent followed by a RST packet. The RST is sent with the same
5333 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5334 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5335 * ACKs on the closed socket. In addition middleboxes can drop either the
5336 * challenge ACK or a subsequent RST.
5337 */
5338 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5339 {
5340 struct tcp_sock *tp = tcp_sk(sk);
5341
5342 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5343 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5344 TCPF_CLOSING));
5345 }
5346
5347 /* Does PAWS and seqno based validation of an incoming segment, flags will
5348 * play significant role here.
5349 */
5350 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5351 const struct tcphdr *th, int syn_inerr)
5352 {
5353 struct tcp_sock *tp = tcp_sk(sk);
5354 bool rst_seq_match = false;
5355
5356 /* RFC1323: H1. Apply PAWS check first. */
5357 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5358 tp->rx_opt.saw_tstamp &&
5359 tcp_paws_discard(sk, skb)) {
5360 if (!th->rst) {
5361 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5362 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5363 LINUX_MIB_TCPACKSKIPPEDPAWS,
5364 &tp->last_oow_ack_time))
5365 tcp_send_dupack(sk, skb);
5366 goto discard;
5367 }
5368 /* Reset is accepted even if it did not pass PAWS. */
5369 }
5370
5371 /* Step 1: check sequence number */
5372 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5373 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5374 * (RST) segments are validated by checking their SEQ-fields."
5375 * And page 69: "If an incoming segment is not acceptable,
5376 * an acknowledgment should be sent in reply (unless the RST
5377 * bit is set, if so drop the segment and return)".
5378 */
5379 if (!th->rst) {
5380 if (th->syn)
5381 goto syn_challenge;
5382 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5383 LINUX_MIB_TCPACKSKIPPEDSEQ,
5384 &tp->last_oow_ack_time))
5385 tcp_send_dupack(sk, skb);
5386 } else if (tcp_reset_check(sk, skb)) {
5387 tcp_reset(sk);
5388 }
5389 goto discard;
5390 }
5391
5392 /* Step 2: check RST bit */
5393 if (th->rst) {
5394 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5395 * FIN and SACK too if available):
5396 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5397 * the right-most SACK block,
5398 * then
5399 * RESET the connection
5400 * else
5401 * Send a challenge ACK
5402 */
5403 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5404 tcp_reset_check(sk, skb)) {
5405 rst_seq_match = true;
5406 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5407 struct tcp_sack_block *sp = &tp->selective_acks[0];
5408 int max_sack = sp[0].end_seq;
5409 int this_sack;
5410
5411 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5412 ++this_sack) {
5413 max_sack = after(sp[this_sack].end_seq,
5414 max_sack) ?
5415 sp[this_sack].end_seq : max_sack;
5416 }
5417
5418 if (TCP_SKB_CB(skb)->seq == max_sack)
5419 rst_seq_match = true;
5420 }
5421
5422 if (rst_seq_match)
5423 tcp_reset(sk);
5424 else {
5425 /* Disable TFO if RST is out-of-order
5426 * and no data has been received
5427 * for current active TFO socket
5428 */
5429 if (tp->syn_fastopen && !tp->data_segs_in &&
5430 sk->sk_state == TCP_ESTABLISHED)
5431 tcp_fastopen_active_disable(sk);
5432 tcp_send_challenge_ack(sk, skb);
5433 }
5434 goto discard;
5435 }
5436
5437 /* step 3: check security and precedence [ignored] */
5438
5439 /* step 4: Check for a SYN
5440 * RFC 5961 4.2 : Send a challenge ack
5441 */
5442 if (th->syn) {
5443 syn_challenge:
5444 if (syn_inerr)
5445 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5446 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5447 tcp_send_challenge_ack(sk, skb);
5448 goto discard;
5449 }
5450
5451 return true;
5452
5453 discard:
5454 tcp_drop(sk, skb);
5455 return false;
5456 }
5457
5458 /*
5459 * TCP receive function for the ESTABLISHED state.
5460 *
5461 * It is split into a fast path and a slow path. The fast path is
5462 * disabled when:
5463 * - A zero window was announced from us - zero window probing
5464 * is only handled properly in the slow path.
5465 * - Out of order segments arrived.
5466 * - Urgent data is expected.
5467 * - There is no buffer space left
5468 * - Unexpected TCP flags/window values/header lengths are received
5469 * (detected by checking the TCP header against pred_flags)
5470 * - Data is sent in both directions. Fast path only supports pure senders
5471 * or pure receivers (this means either the sequence number or the ack
5472 * value must stay constant)
5473 * - Unexpected TCP option.
5474 *
5475 * When these conditions are not satisfied it drops into a standard
5476 * receive procedure patterned after RFC793 to handle all cases.
5477 * The first three cases are guaranteed by proper pred_flags setting,
5478 * the rest is checked inline. Fast processing is turned on in
5479 * tcp_data_queue when everything is OK.
5480 */
5481 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5482 {
5483 const struct tcphdr *th = (const struct tcphdr *)skb->data;
5484 struct tcp_sock *tp = tcp_sk(sk);
5485 unsigned int len = skb->len;
5486
5487 /* TCP congestion window tracking */
5488 trace_tcp_probe(sk, skb);
5489
5490 tcp_mstamp_refresh(tp);
5491 if (unlikely(!sk->sk_rx_dst))
5492 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5493 /*
5494 * Header prediction.
5495 * The code loosely follows the one in the famous
5496 * "30 instruction TCP receive" Van Jacobson mail.
5497 *
5498 * Van's trick is to deposit buffers into socket queue
5499 * on a device interrupt, to call tcp_recv function
5500 * on the receive process context and checksum and copy
5501 * the buffer to user space. smart...
5502 *
5503 * Our current scheme is not silly either but we take the
5504 * extra cost of the net_bh soft interrupt processing...
5505 * We do checksum and copy also but from device to kernel.
5506 */
5507
5508 tp->rx_opt.saw_tstamp = 0;
5509
5510 /* pred_flags is 0xS?10 << 16 + snd_wnd
5511 * if header_prediction is to be made
5512 * 'S' will always be tp->tcp_header_len >> 2
5513 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5514 * turn it off (when there are holes in the receive
5515 * space for instance)
5516 * PSH flag is ignored.
5517 */
5518
5519 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5520 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5521 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5522 int tcp_header_len = tp->tcp_header_len;
5523
5524 /* Timestamp header prediction: tcp_header_len
5525 * is automatically equal to th->doff*4 due to pred_flags
5526 * match.
5527 */
5528
5529 /* Check timestamp */
5530 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5531 /* No? Slow path! */
5532 if (!tcp_parse_aligned_timestamp(tp, th))
5533 goto slow_path;
5534
5535 /* If PAWS failed, check it more carefully in slow path */
5536 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5537 goto slow_path;
5538
5539 /* DO NOT update ts_recent here, if checksum fails
5540 * and timestamp was corrupted part, it will result
5541 * in a hung connection since we will drop all
5542 * future packets due to the PAWS test.
5543 */
5544 }
5545
5546 if (len <= tcp_header_len) {
5547 /* Bulk data transfer: sender */
5548 if (len == tcp_header_len) {
5549 /* Predicted packet is in window by definition.
5550 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5551 * Hence, check seq<=rcv_wup reduces to:
5552 */
5553 if (tcp_header_len ==
5554 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5555 tp->rcv_nxt == tp->rcv_wup)
5556 tcp_store_ts_recent(tp);
5557
5558 /* We know that such packets are checksummed
5559 * on entry.
5560 */
5561 tcp_ack(sk, skb, 0);
5562 __kfree_skb(skb);
5563 tcp_data_snd_check(sk);
5564 /* When receiving pure ack in fast path, update
5565 * last ts ecr directly instead of calling
5566 * tcp_rcv_rtt_measure_ts()
5567 */
5568 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5569 return;
5570 } else { /* Header too small */
5571 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5572 goto discard;
5573 }
5574 } else {
5575 int eaten = 0;
5576 bool fragstolen = false;
5577
5578 if (tcp_checksum_complete(skb))
5579 goto csum_error;
5580
5581 if ((int)skb->truesize > sk->sk_forward_alloc)
5582 goto step5;
5583
5584 /* Predicted packet is in window by definition.
5585 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5586 * Hence, check seq<=rcv_wup reduces to:
5587 */
5588 if (tcp_header_len ==
5589 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5590 tp->rcv_nxt == tp->rcv_wup)
5591 tcp_store_ts_recent(tp);
5592
5593 tcp_rcv_rtt_measure_ts(sk, skb);
5594
5595 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5596
5597 /* Bulk data transfer: receiver */
5598 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5599 &fragstolen);
5600
5601 tcp_event_data_recv(sk, skb);
5602
5603 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5604 /* Well, only one small jumplet in fast path... */
5605 tcp_ack(sk, skb, FLAG_DATA);
5606 tcp_data_snd_check(sk);
5607 if (!inet_csk_ack_scheduled(sk))
5608 goto no_ack;
5609 }
5610
5611 __tcp_ack_snd_check(sk, 0);
5612 no_ack:
5613 if (eaten)
5614 kfree_skb_partial(skb, fragstolen);
5615 tcp_data_ready(sk);
5616 return;
5617 }
5618 }
5619
5620 slow_path:
5621 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5622 goto csum_error;
5623
5624 if (!th->ack && !th->rst && !th->syn)
5625 goto discard;
5626
5627 /*
5628 * Standard slow path.
5629 */
5630
5631 if (!tcp_validate_incoming(sk, skb, th, 1))
5632 return;
5633
5634 step5:
5635 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5636 goto discard;
5637
5638 tcp_rcv_rtt_measure_ts(sk, skb);
5639
5640 /* Process urgent data. */
5641 tcp_urg(sk, skb, th);
5642
5643 /* step 7: process the segment text */
5644 tcp_data_queue(sk, skb);
5645
5646 tcp_data_snd_check(sk);
5647 tcp_ack_snd_check(sk);
5648 return;
5649
5650 csum_error:
5651 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5652 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5653
5654 discard:
5655 tcp_drop(sk, skb);
5656 }
5657 EXPORT_SYMBOL(tcp_rcv_established);
5658
5659 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5660 {
5661 struct tcp_sock *tp = tcp_sk(sk);
5662 struct inet_connection_sock *icsk = inet_csk(sk);
5663
5664 tcp_set_state(sk, TCP_ESTABLISHED);
5665 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5666
5667 if (skb) {
5668 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5669 security_inet_conn_established(sk, skb);
5670 sk_mark_napi_id(sk, skb);
5671 }
5672
5673 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5674
5675 /* Prevent spurious tcp_cwnd_restart() on first data
5676 * packet.
5677 */
5678 tp->lsndtime = tcp_jiffies32;
5679
5680 if (sock_flag(sk, SOCK_KEEPOPEN))
5681 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5682
5683 if (!tp->rx_opt.snd_wscale)
5684 __tcp_fast_path_on(tp, tp->snd_wnd);
5685 else
5686 tp->pred_flags = 0;
5687 }
5688
5689 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5690 struct tcp_fastopen_cookie *cookie)
5691 {
5692 struct tcp_sock *tp = tcp_sk(sk);
5693 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5694 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5695 bool syn_drop = false;
5696
5697 if (mss == tp->rx_opt.user_mss) {
5698 struct tcp_options_received opt;
5699
5700 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5701 tcp_clear_options(&opt);
5702 opt.user_mss = opt.mss_clamp = 0;
5703 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5704 mss = opt.mss_clamp;
5705 }
5706
5707 if (!tp->syn_fastopen) {
5708 /* Ignore an unsolicited cookie */
5709 cookie->len = -1;
5710 } else if (tp->total_retrans) {
5711 /* SYN timed out and the SYN-ACK neither has a cookie nor
5712 * acknowledges data. Presumably the remote received only
5713 * the retransmitted (regular) SYNs: either the original
5714 * SYN-data or the corresponding SYN-ACK was dropped.
5715 */
5716 syn_drop = (cookie->len < 0 && data);
5717 } else if (cookie->len < 0 && !tp->syn_data) {
5718 /* We requested a cookie but didn't get it. If we did not use
5719 * the (old) exp opt format then try so next time (try_exp=1).
5720 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5721 */
5722 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5723 }
5724
5725 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5726
5727 if (data) { /* Retransmit unacked data in SYN */
5728 skb_rbtree_walk_from(data) {
5729 if (__tcp_retransmit_skb(sk, data, 1))
5730 break;
5731 }
5732 tcp_rearm_rto(sk);
5733 NET_INC_STATS(sock_net(sk),
5734 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5735 return true;
5736 }
5737 tp->syn_data_acked = tp->syn_data;
5738 if (tp->syn_data_acked) {
5739 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5740 /* SYN-data is counted as two separate packets in tcp_ack() */
5741 if (tp->delivered > 1)
5742 --tp->delivered;
5743 }
5744
5745 tcp_fastopen_add_skb(sk, synack);
5746
5747 return false;
5748 }
5749
5750 static void smc_check_reset_syn(struct tcp_sock *tp)
5751 {
5752 #if IS_ENABLED(CONFIG_SMC)
5753 if (static_branch_unlikely(&tcp_have_smc)) {
5754 if (tp->syn_smc && !tp->rx_opt.smc_ok)
5755 tp->syn_smc = 0;
5756 }
5757 #endif
5758 }
5759
5760 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5761 const struct tcphdr *th)
5762 {
5763 struct inet_connection_sock *icsk = inet_csk(sk);
5764 struct tcp_sock *tp = tcp_sk(sk);
5765 struct tcp_fastopen_cookie foc = { .len = -1 };
5766 int saved_clamp = tp->rx_opt.mss_clamp;
5767 bool fastopen_fail;
5768
5769 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5770 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5771 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5772
5773 if (th->ack) {
5774 /* rfc793:
5775 * "If the state is SYN-SENT then
5776 * first check the ACK bit
5777 * If the ACK bit is set
5778 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5779 * a reset (unless the RST bit is set, if so drop
5780 * the segment and return)"
5781 */
5782 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5783 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5784 goto reset_and_undo;
5785
5786 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5787 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5788 tcp_time_stamp(tp))) {
5789 NET_INC_STATS(sock_net(sk),
5790 LINUX_MIB_PAWSACTIVEREJECTED);
5791 goto reset_and_undo;
5792 }
5793
5794 /* Now ACK is acceptable.
5795 *
5796 * "If the RST bit is set
5797 * If the ACK was acceptable then signal the user "error:
5798 * connection reset", drop the segment, enter CLOSED state,
5799 * delete TCB, and return."
5800 */
5801
5802 if (th->rst) {
5803 tcp_reset(sk);
5804 goto discard;
5805 }
5806
5807 /* rfc793:
5808 * "fifth, if neither of the SYN or RST bits is set then
5809 * drop the segment and return."
5810 *
5811 * See note below!
5812 * --ANK(990513)
5813 */
5814 if (!th->syn)
5815 goto discard_and_undo;
5816
5817 /* rfc793:
5818 * "If the SYN bit is on ...
5819 * are acceptable then ...
5820 * (our SYN has been ACKed), change the connection
5821 * state to ESTABLISHED..."
5822 */
5823
5824 tcp_ecn_rcv_synack(tp, th);
5825
5826 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5827 tcp_ack(sk, skb, FLAG_SLOWPATH);
5828
5829 /* Ok.. it's good. Set up sequence numbers and
5830 * move to established.
5831 */
5832 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5833 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5834
5835 /* RFC1323: The window in SYN & SYN/ACK segments is
5836 * never scaled.
5837 */
5838 tp->snd_wnd = ntohs(th->window);
5839
5840 if (!tp->rx_opt.wscale_ok) {
5841 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5842 tp->window_clamp = min(tp->window_clamp, 65535U);
5843 }
5844
5845 if (tp->rx_opt.saw_tstamp) {
5846 tp->rx_opt.tstamp_ok = 1;
5847 tp->tcp_header_len =
5848 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5849 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5850 tcp_store_ts_recent(tp);
5851 } else {
5852 tp->tcp_header_len = sizeof(struct tcphdr);
5853 }
5854
5855 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5856 tcp_initialize_rcv_mss(sk);
5857
5858 /* Remember, tcp_poll() does not lock socket!
5859 * Change state from SYN-SENT only after copied_seq
5860 * is initialized. */
5861 tp->copied_seq = tp->rcv_nxt;
5862
5863 smc_check_reset_syn(tp);
5864
5865 smp_mb();
5866
5867 tcp_finish_connect(sk, skb);
5868
5869 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5870 tcp_rcv_fastopen_synack(sk, skb, &foc);
5871
5872 if (!sock_flag(sk, SOCK_DEAD)) {
5873 sk->sk_state_change(sk);
5874 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5875 }
5876 if (fastopen_fail)
5877 return -1;
5878 if (sk->sk_write_pending ||
5879 icsk->icsk_accept_queue.rskq_defer_accept ||
5880 icsk->icsk_ack.pingpong) {
5881 /* Save one ACK. Data will be ready after
5882 * several ticks, if write_pending is set.
5883 *
5884 * It may be deleted, but with this feature tcpdumps
5885 * look so _wonderfully_ clever, that I was not able
5886 * to stand against the temptation 8) --ANK
5887 */
5888 inet_csk_schedule_ack(sk);
5889 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5890 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5891 TCP_DELACK_MAX, TCP_RTO_MAX);
5892
5893 discard:
5894 tcp_drop(sk, skb);
5895 return 0;
5896 } else {
5897 tcp_send_ack(sk);
5898 }
5899 return -1;
5900 }
5901
5902 /* No ACK in the segment */
5903
5904 if (th->rst) {
5905 /* rfc793:
5906 * "If the RST bit is set
5907 *
5908 * Otherwise (no ACK) drop the segment and return."
5909 */
5910
5911 goto discard_and_undo;
5912 }
5913
5914 /* PAWS check. */
5915 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5916 tcp_paws_reject(&tp->rx_opt, 0))
5917 goto discard_and_undo;
5918
5919 if (th->syn) {
5920 /* We see SYN without ACK. It is attempt of
5921 * simultaneous connect with crossed SYNs.
5922 * Particularly, it can be connect to self.
5923 */
5924 tcp_set_state(sk, TCP_SYN_RECV);
5925
5926 if (tp->rx_opt.saw_tstamp) {
5927 tp->rx_opt.tstamp_ok = 1;
5928 tcp_store_ts_recent(tp);
5929 tp->tcp_header_len =
5930 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5931 } else {
5932 tp->tcp_header_len = sizeof(struct tcphdr);
5933 }
5934
5935 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5936 tp->copied_seq = tp->rcv_nxt;
5937 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5938
5939 /* RFC1323: The window in SYN & SYN/ACK segments is
5940 * never scaled.
5941 */
5942 tp->snd_wnd = ntohs(th->window);
5943 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5944 tp->max_window = tp->snd_wnd;
5945
5946 tcp_ecn_rcv_syn(tp, th);
5947
5948 tcp_mtup_init(sk);
5949 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5950 tcp_initialize_rcv_mss(sk);
5951
5952 tcp_send_synack(sk);
5953 #if 0
5954 /* Note, we could accept data and URG from this segment.
5955 * There are no obstacles to make this (except that we must
5956 * either change tcp_recvmsg() to prevent it from returning data
5957 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5958 *
5959 * However, if we ignore data in ACKless segments sometimes,
5960 * we have no reasons to accept it sometimes.
5961 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5962 * is not flawless. So, discard packet for sanity.
5963 * Uncomment this return to process the data.
5964 */
5965 return -1;
5966 #else
5967 goto discard;
5968 #endif
5969 }
5970 /* "fifth, if neither of the SYN or RST bits is set then
5971 * drop the segment and return."
5972 */
5973
5974 discard_and_undo:
5975 tcp_clear_options(&tp->rx_opt);
5976 tp->rx_opt.mss_clamp = saved_clamp;
5977 goto discard;
5978
5979 reset_and_undo:
5980 tcp_clear_options(&tp->rx_opt);
5981 tp->rx_opt.mss_clamp = saved_clamp;
5982 return 1;
5983 }
5984
5985 /*
5986 * This function implements the receiving procedure of RFC 793 for
5987 * all states except ESTABLISHED and TIME_WAIT.
5988 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5989 * address independent.
5990 */
5991
5992 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5993 {
5994 struct tcp_sock *tp = tcp_sk(sk);
5995 struct inet_connection_sock *icsk = inet_csk(sk);
5996 const struct tcphdr *th = tcp_hdr(skb);
5997 struct request_sock *req;
5998 int queued = 0;
5999 bool acceptable;
6000
6001 switch (sk->sk_state) {
6002 case TCP_CLOSE:
6003 goto discard;
6004
6005 case TCP_LISTEN:
6006 if (th->ack)
6007 return 1;
6008
6009 if (th->rst)
6010 goto discard;
6011
6012 if (th->syn) {
6013 if (th->fin)
6014 goto discard;
6015 /* It is possible that we process SYN packets from backlog,
6016 * so we need to make sure to disable BH and RCU right there.
6017 */
6018 rcu_read_lock();
6019 local_bh_disable();
6020 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6021 local_bh_enable();
6022 rcu_read_unlock();
6023
6024 if (!acceptable)
6025 return 1;
6026 consume_skb(skb);
6027 return 0;
6028 }
6029 goto discard;
6030
6031 case TCP_SYN_SENT:
6032 tp->rx_opt.saw_tstamp = 0;
6033 tcp_mstamp_refresh(tp);
6034 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6035 if (queued >= 0)
6036 return queued;
6037
6038 /* Do step6 onward by hand. */
6039 tcp_urg(sk, skb, th);
6040 __kfree_skb(skb);
6041 tcp_data_snd_check(sk);
6042 return 0;
6043 }
6044
6045 tcp_mstamp_refresh(tp);
6046 tp->rx_opt.saw_tstamp = 0;
6047 req = tp->fastopen_rsk;
6048 if (req) {
6049 bool req_stolen;
6050
6051 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6052 sk->sk_state != TCP_FIN_WAIT1);
6053
6054 if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6055 goto discard;
6056 }
6057
6058 if (!th->ack && !th->rst && !th->syn)
6059 goto discard;
6060
6061 if (!tcp_validate_incoming(sk, skb, th, 0))
6062 return 0;
6063
6064 /* step 5: check the ACK field */
6065 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6066 FLAG_UPDATE_TS_RECENT |
6067 FLAG_NO_CHALLENGE_ACK) > 0;
6068
6069 if (!acceptable) {
6070 if (sk->sk_state == TCP_SYN_RECV)
6071 return 1; /* send one RST */
6072 tcp_send_challenge_ack(sk, skb);
6073 goto discard;
6074 }
6075 switch (sk->sk_state) {
6076 case TCP_SYN_RECV:
6077 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6078 if (!tp->srtt_us)
6079 tcp_synack_rtt_meas(sk, req);
6080
6081 /* Once we leave TCP_SYN_RECV, we no longer need req
6082 * so release it.
6083 */
6084 if (req) {
6085 inet_csk(sk)->icsk_retransmits = 0;
6086 reqsk_fastopen_remove(sk, req, false);
6087 /* Re-arm the timer because data may have been sent out.
6088 * This is similar to the regular data transmission case
6089 * when new data has just been ack'ed.
6090 *
6091 * (TFO) - we could try to be more aggressive and
6092 * retransmitting any data sooner based on when they
6093 * are sent out.
6094 */
6095 tcp_rearm_rto(sk);
6096 } else {
6097 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6098 tp->copied_seq = tp->rcv_nxt;
6099 }
6100 smp_mb();
6101 tcp_set_state(sk, TCP_ESTABLISHED);
6102 sk->sk_state_change(sk);
6103
6104 /* Note, that this wakeup is only for marginal crossed SYN case.
6105 * Passively open sockets are not waked up, because
6106 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6107 */
6108 if (sk->sk_socket)
6109 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6110
6111 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6112 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6113 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6114
6115 if (tp->rx_opt.tstamp_ok)
6116 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6117
6118 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6119 tcp_update_pacing_rate(sk);
6120
6121 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6122 tp->lsndtime = tcp_jiffies32;
6123
6124 tcp_initialize_rcv_mss(sk);
6125 tcp_fast_path_on(tp);
6126 break;
6127
6128 case TCP_FIN_WAIT1: {
6129 int tmo;
6130
6131 /* If we enter the TCP_FIN_WAIT1 state and we are a
6132 * Fast Open socket and this is the first acceptable
6133 * ACK we have received, this would have acknowledged
6134 * our SYNACK so stop the SYNACK timer.
6135 */
6136 if (req) {
6137 /* We no longer need the request sock. */
6138 reqsk_fastopen_remove(sk, req, false);
6139 tcp_rearm_rto(sk);
6140 }
6141 if (tp->snd_una != tp->write_seq)
6142 break;
6143
6144 tcp_set_state(sk, TCP_FIN_WAIT2);
6145 sk->sk_shutdown |= SEND_SHUTDOWN;
6146
6147 sk_dst_confirm(sk);
6148
6149 if (!sock_flag(sk, SOCK_DEAD)) {
6150 /* Wake up lingering close() */
6151 sk->sk_state_change(sk);
6152 break;
6153 }
6154
6155 if (tp->linger2 < 0) {
6156 tcp_done(sk);
6157 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6158 return 1;
6159 }
6160 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6161 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6162 /* Receive out of order FIN after close() */
6163 if (tp->syn_fastopen && th->fin)
6164 tcp_fastopen_active_disable(sk);
6165 tcp_done(sk);
6166 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6167 return 1;
6168 }
6169
6170 tmo = tcp_fin_time(sk);
6171 if (tmo > TCP_TIMEWAIT_LEN) {
6172 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6173 } else if (th->fin || sock_owned_by_user(sk)) {
6174 /* Bad case. We could lose such FIN otherwise.
6175 * It is not a big problem, but it looks confusing
6176 * and not so rare event. We still can lose it now,
6177 * if it spins in bh_lock_sock(), but it is really
6178 * marginal case.
6179 */
6180 inet_csk_reset_keepalive_timer(sk, tmo);
6181 } else {
6182 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6183 goto discard;
6184 }
6185 break;
6186 }
6187
6188 case TCP_CLOSING:
6189 if (tp->snd_una == tp->write_seq) {
6190 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6191 goto discard;
6192 }
6193 break;
6194
6195 case TCP_LAST_ACK:
6196 if (tp->snd_una == tp->write_seq) {
6197 tcp_update_metrics(sk);
6198 tcp_done(sk);
6199 goto discard;
6200 }
6201 break;
6202 }
6203
6204 /* step 6: check the URG bit */
6205 tcp_urg(sk, skb, th);
6206
6207 /* step 7: process the segment text */
6208 switch (sk->sk_state) {
6209 case TCP_CLOSE_WAIT:
6210 case TCP_CLOSING:
6211 case TCP_LAST_ACK:
6212 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6213 break;
6214 /* fall through */
6215 case TCP_FIN_WAIT1:
6216 case TCP_FIN_WAIT2:
6217 /* RFC 793 says to queue data in these states,
6218 * RFC 1122 says we MUST send a reset.
6219 * BSD 4.4 also does reset.
6220 */
6221 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6222 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6223 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6224 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6225 tcp_reset(sk);
6226 return 1;
6227 }
6228 }
6229 /* Fall through */
6230 case TCP_ESTABLISHED:
6231 tcp_data_queue(sk, skb);
6232 queued = 1;
6233 break;
6234 }
6235
6236 /* tcp_data could move socket to TIME-WAIT */
6237 if (sk->sk_state != TCP_CLOSE) {
6238 tcp_data_snd_check(sk);
6239 tcp_ack_snd_check(sk);
6240 }
6241
6242 if (!queued) {
6243 discard:
6244 tcp_drop(sk, skb);
6245 }
6246 return 0;
6247 }
6248 EXPORT_SYMBOL(tcp_rcv_state_process);
6249
6250 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6251 {
6252 struct inet_request_sock *ireq = inet_rsk(req);
6253
6254 if (family == AF_INET)
6255 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6256 &ireq->ir_rmt_addr, port);
6257 #if IS_ENABLED(CONFIG_IPV6)
6258 else if (family == AF_INET6)
6259 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6260 &ireq->ir_v6_rmt_addr, port);
6261 #endif
6262 }
6263
6264 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6265 *
6266 * If we receive a SYN packet with these bits set, it means a
6267 * network is playing bad games with TOS bits. In order to
6268 * avoid possible false congestion notifications, we disable
6269 * TCP ECN negotiation.
6270 *
6271 * Exception: tcp_ca wants ECN. This is required for DCTCP
6272 * congestion control: Linux DCTCP asserts ECT on all packets,
6273 * including SYN, which is most optimal solution; however,
6274 * others, such as FreeBSD do not.
6275 */
6276 static void tcp_ecn_create_request(struct request_sock *req,
6277 const struct sk_buff *skb,
6278 const struct sock *listen_sk,
6279 const struct dst_entry *dst)
6280 {
6281 const struct tcphdr *th = tcp_hdr(skb);
6282 const struct net *net = sock_net(listen_sk);
6283 bool th_ecn = th->ece && th->cwr;
6284 bool ect, ecn_ok;
6285 u32 ecn_ok_dst;
6286
6287 if (!th_ecn)
6288 return;
6289
6290 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6291 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6292 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6293
6294 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6295 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6296 tcp_bpf_ca_needs_ecn((struct sock *)req))
6297 inet_rsk(req)->ecn_ok = 1;
6298 }
6299
6300 static void tcp_openreq_init(struct request_sock *req,
6301 const struct tcp_options_received *rx_opt,
6302 struct sk_buff *skb, const struct sock *sk)
6303 {
6304 struct inet_request_sock *ireq = inet_rsk(req);
6305
6306 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6307 req->cookie_ts = 0;
6308 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6309 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6310 tcp_rsk(req)->snt_synack = tcp_clock_us();
6311 tcp_rsk(req)->last_oow_ack_time = 0;
6312 req->mss = rx_opt->mss_clamp;
6313 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6314 ireq->tstamp_ok = rx_opt->tstamp_ok;
6315 ireq->sack_ok = rx_opt->sack_ok;
6316 ireq->snd_wscale = rx_opt->snd_wscale;
6317 ireq->wscale_ok = rx_opt->wscale_ok;
6318 ireq->acked = 0;
6319 ireq->ecn_ok = 0;
6320 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6321 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6322 ireq->ir_mark = inet_request_mark(sk, skb);
6323 #if IS_ENABLED(CONFIG_SMC)
6324 ireq->smc_ok = rx_opt->smc_ok;
6325 #endif
6326 }
6327
6328 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6329 struct sock *sk_listener,
6330 bool attach_listener)
6331 {
6332 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6333 attach_listener);
6334
6335 if (req) {
6336 struct inet_request_sock *ireq = inet_rsk(req);
6337
6338 ireq->ireq_opt = NULL;
6339 #if IS_ENABLED(CONFIG_IPV6)
6340 ireq->pktopts = NULL;
6341 #endif
6342 atomic64_set(&ireq->ir_cookie, 0);
6343 ireq->ireq_state = TCP_NEW_SYN_RECV;
6344 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6345 ireq->ireq_family = sk_listener->sk_family;
6346 }
6347
6348 return req;
6349 }
6350 EXPORT_SYMBOL(inet_reqsk_alloc);
6351
6352 /*
6353 * Return true if a syncookie should be sent
6354 */
6355 static bool tcp_syn_flood_action(const struct sock *sk,
6356 const struct sk_buff *skb,
6357 const char *proto)
6358 {
6359 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6360 const char *msg = "Dropping request";
6361 bool want_cookie = false;
6362 struct net *net = sock_net(sk);
6363
6364 #ifdef CONFIG_SYN_COOKIES
6365 if (net->ipv4.sysctl_tcp_syncookies) {
6366 msg = "Sending cookies";
6367 want_cookie = true;
6368 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6369 } else
6370 #endif
6371 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6372
6373 if (!queue->synflood_warned &&
6374 net->ipv4.sysctl_tcp_syncookies != 2 &&
6375 xchg(&queue->synflood_warned, 1) == 0)
6376 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6377 proto, ntohs(tcp_hdr(skb)->dest), msg);
6378
6379 return want_cookie;
6380 }
6381
6382 static void tcp_reqsk_record_syn(const struct sock *sk,
6383 struct request_sock *req,
6384 const struct sk_buff *skb)
6385 {
6386 if (tcp_sk(sk)->save_syn) {
6387 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6388 u32 *copy;
6389
6390 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6391 if (copy) {
6392 copy[0] = len;
6393 memcpy(&copy[1], skb_network_header(skb), len);
6394 req->saved_syn = copy;
6395 }
6396 }
6397 }
6398
6399 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6400 const struct tcp_request_sock_ops *af_ops,
6401 struct sock *sk, struct sk_buff *skb)
6402 {
6403 struct tcp_fastopen_cookie foc = { .len = -1 };
6404 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6405 struct tcp_options_received tmp_opt;
6406 struct tcp_sock *tp = tcp_sk(sk);
6407 struct net *net = sock_net(sk);
6408 struct sock *fastopen_sk = NULL;
6409 struct request_sock *req;
6410 bool want_cookie = false;
6411 struct dst_entry *dst;
6412 struct flowi fl;
6413
6414 /* TW buckets are converted to open requests without
6415 * limitations, they conserve resources and peer is
6416 * evidently real one.
6417 */
6418 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6419 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6420 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6421 if (!want_cookie)
6422 goto drop;
6423 }
6424
6425 if (sk_acceptq_is_full(sk)) {
6426 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6427 goto drop;
6428 }
6429
6430 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6431 if (!req)
6432 goto drop;
6433
6434 tcp_rsk(req)->af_specific = af_ops;
6435 tcp_rsk(req)->ts_off = 0;
6436
6437 tcp_clear_options(&tmp_opt);
6438 tmp_opt.mss_clamp = af_ops->mss_clamp;
6439 tmp_opt.user_mss = tp->rx_opt.user_mss;
6440 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6441 want_cookie ? NULL : &foc);
6442
6443 if (want_cookie && !tmp_opt.saw_tstamp)
6444 tcp_clear_options(&tmp_opt);
6445
6446 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6447 tmp_opt.smc_ok = 0;
6448
6449 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6450 tcp_openreq_init(req, &tmp_opt, skb, sk);
6451 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6452
6453 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6454 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6455
6456 af_ops->init_req(req, sk, skb);
6457
6458 if (security_inet_conn_request(sk, skb, req))
6459 goto drop_and_free;
6460
6461 if (tmp_opt.tstamp_ok)
6462 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6463
6464 dst = af_ops->route_req(sk, &fl, req);
6465 if (!dst)
6466 goto drop_and_free;
6467
6468 if (!want_cookie && !isn) {
6469 /* Kill the following clause, if you dislike this way. */
6470 if (!net->ipv4.sysctl_tcp_syncookies &&
6471 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6472 (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6473 !tcp_peer_is_proven(req, dst)) {
6474 /* Without syncookies last quarter of
6475 * backlog is filled with destinations,
6476 * proven to be alive.
6477 * It means that we continue to communicate
6478 * to destinations, already remembered
6479 * to the moment of synflood.
6480 */
6481 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6482 rsk_ops->family);
6483 goto drop_and_release;
6484 }
6485
6486 isn = af_ops->init_seq(skb);
6487 }
6488
6489 tcp_ecn_create_request(req, skb, sk, dst);
6490
6491 if (want_cookie) {
6492 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6493 req->cookie_ts = tmp_opt.tstamp_ok;
6494 if (!tmp_opt.tstamp_ok)
6495 inet_rsk(req)->ecn_ok = 0;
6496 }
6497
6498 tcp_rsk(req)->snt_isn = isn;
6499 tcp_rsk(req)->txhash = net_tx_rndhash();
6500 tcp_openreq_init_rwin(req, sk, dst);
6501 sk_rx_queue_set(req_to_sk(req), skb);
6502 if (!want_cookie) {
6503 tcp_reqsk_record_syn(sk, req, skb);
6504 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6505 }
6506 if (fastopen_sk) {
6507 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6508 &foc, TCP_SYNACK_FASTOPEN);
6509 /* Add the child socket directly into the accept queue */
6510 inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6511 sk->sk_data_ready(sk);
6512 bh_unlock_sock(fastopen_sk);
6513 sock_put(fastopen_sk);
6514 } else {
6515 tcp_rsk(req)->tfo_listener = false;
6516 if (!want_cookie)
6517 inet_csk_reqsk_queue_hash_add(sk, req,
6518 tcp_timeout_init((struct sock *)req));
6519 af_ops->send_synack(sk, dst, &fl, req, &foc,
6520 !want_cookie ? TCP_SYNACK_NORMAL :
6521 TCP_SYNACK_COOKIE);
6522 if (want_cookie) {
6523 reqsk_free(req);
6524 return 0;
6525 }
6526 }
6527 reqsk_put(req);
6528 return 0;
6529
6530 drop_and_release:
6531 dst_release(dst);
6532 drop_and_free:
6533 reqsk_free(req);
6534 drop:
6535 tcp_listendrop(sk);
6536 return 0;
6537 }
6538 EXPORT_SYMBOL(tcp_conn_request);