]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/ipv4/tcp_input.c
tcp: drop tcp_bound_rto, merge content of it tcp_set_rto
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <net/dst.h>
68 #include <net/tcp.h>
69 #include <net/inet_common.h>
70 #include <linux/ipsec.h>
71 #include <asm/unaligned.h>
72 #include <net/netdma.h>
73
74 int sysctl_tcp_timestamps __read_mostly = 1;
75 int sysctl_tcp_window_scaling __read_mostly = 1;
76 int sysctl_tcp_sack __read_mostly = 1;
77 int sysctl_tcp_fack __read_mostly = 1;
78 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
79 int sysctl_tcp_ecn __read_mostly;
80 int sysctl_tcp_dsack __read_mostly = 1;
81 int sysctl_tcp_app_win __read_mostly = 31;
82 int sysctl_tcp_adv_win_scale __read_mostly = 2;
83
84 int sysctl_tcp_stdurg __read_mostly;
85 int sysctl_tcp_rfc1337 __read_mostly;
86 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
87 int sysctl_tcp_frto __read_mostly = 2;
88 int sysctl_tcp_frto_response __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
90
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
93
94 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
95 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
96 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
98 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
99 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
100 #define FLAG_ECE 0x40 /* ECE in this ACK */
101 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
102 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
103 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
104 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
105 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
106 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
107 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
108
109 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
116 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
117
118 /* Adapt the MSS value used to make delayed ack decision to the
119 * real world.
120 */
121 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
122 {
123 struct inet_connection_sock *icsk = inet_csk(sk);
124 const unsigned int lss = icsk->icsk_ack.last_seg_size;
125 unsigned int len;
126
127 icsk->icsk_ack.last_seg_size = 0;
128
129 /* skb->len may jitter because of SACKs, even if peer
130 * sends good full-sized frames.
131 */
132 len = skb_shinfo(skb)->gso_size ? : skb->len;
133 if (len >= icsk->icsk_ack.rcv_mss) {
134 icsk->icsk_ack.rcv_mss = len;
135 } else {
136 /* Otherwise, we make more careful check taking into account,
137 * that SACKs block is variable.
138 *
139 * "len" is invariant segment length, including TCP header.
140 */
141 len += skb->data - skb_transport_header(skb);
142 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
143 /* If PSH is not set, packet should be
144 * full sized, provided peer TCP is not badly broken.
145 * This observation (if it is correct 8)) allows
146 * to handle super-low mtu links fairly.
147 */
148 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
149 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
150 /* Subtract also invariant (if peer is RFC compliant),
151 * tcp header plus fixed timestamp option length.
152 * Resulting "len" is MSS free of SACK jitter.
153 */
154 len -= tcp_sk(sk)->tcp_header_len;
155 icsk->icsk_ack.last_seg_size = len;
156 if (len == lss) {
157 icsk->icsk_ack.rcv_mss = len;
158 return;
159 }
160 }
161 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
162 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
163 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
164 }
165 }
166
167 static void tcp_incr_quickack(struct sock *sk)
168 {
169 struct inet_connection_sock *icsk = inet_csk(sk);
170 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
171
172 if (quickacks == 0)
173 quickacks = 2;
174 if (quickacks > icsk->icsk_ack.quick)
175 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
176 }
177
178 void tcp_enter_quickack_mode(struct sock *sk)
179 {
180 struct inet_connection_sock *icsk = inet_csk(sk);
181 tcp_incr_quickack(sk);
182 icsk->icsk_ack.pingpong = 0;
183 icsk->icsk_ack.ato = TCP_ATO_MIN;
184 }
185
186 /* Send ACKs quickly, if "quick" count is not exhausted
187 * and the session is not interactive.
188 */
189
190 static inline int tcp_in_quickack_mode(const struct sock *sk)
191 {
192 const struct inet_connection_sock *icsk = inet_csk(sk);
193 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
194 }
195
196 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
197 {
198 if (tp->ecn_flags & TCP_ECN_OK)
199 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
200 }
201
202 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
203 {
204 if (tcp_hdr(skb)->cwr)
205 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
206 }
207
208 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
209 {
210 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
211 }
212
213 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
214 {
215 if (tp->ecn_flags & TCP_ECN_OK) {
216 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
217 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
218 /* Funny extension: if ECT is not set on a segment,
219 * it is surely retransmit. It is not in ECN RFC,
220 * but Linux follows this rule. */
221 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
222 tcp_enter_quickack_mode((struct sock *)tp);
223 }
224 }
225
226 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
227 {
228 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
229 tp->ecn_flags &= ~TCP_ECN_OK;
230 }
231
232 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
233 {
234 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
235 tp->ecn_flags &= ~TCP_ECN_OK;
236 }
237
238 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
239 {
240 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
241 return 1;
242 return 0;
243 }
244
245 /* Buffer size and advertised window tuning.
246 *
247 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
248 */
249
250 static void tcp_fixup_sndbuf(struct sock *sk)
251 {
252 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
253 sizeof(struct sk_buff);
254
255 if (sk->sk_sndbuf < 3 * sndmem)
256 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
257 }
258
259 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
260 *
261 * All tcp_full_space() is split to two parts: "network" buffer, allocated
262 * forward and advertised in receiver window (tp->rcv_wnd) and
263 * "application buffer", required to isolate scheduling/application
264 * latencies from network.
265 * window_clamp is maximal advertised window. It can be less than
266 * tcp_full_space(), in this case tcp_full_space() - window_clamp
267 * is reserved for "application" buffer. The less window_clamp is
268 * the smoother our behaviour from viewpoint of network, but the lower
269 * throughput and the higher sensitivity of the connection to losses. 8)
270 *
271 * rcv_ssthresh is more strict window_clamp used at "slow start"
272 * phase to predict further behaviour of this connection.
273 * It is used for two goals:
274 * - to enforce header prediction at sender, even when application
275 * requires some significant "application buffer". It is check #1.
276 * - to prevent pruning of receive queue because of misprediction
277 * of receiver window. Check #2.
278 *
279 * The scheme does not work when sender sends good segments opening
280 * window and then starts to feed us spaghetti. But it should work
281 * in common situations. Otherwise, we have to rely on queue collapsing.
282 */
283
284 /* Slow part of check#2. */
285 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
286 {
287 struct tcp_sock *tp = tcp_sk(sk);
288 /* Optimize this! */
289 int truesize = tcp_win_from_space(skb->truesize) >> 1;
290 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
291
292 while (tp->rcv_ssthresh <= window) {
293 if (truesize <= skb->len)
294 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
295
296 truesize >>= 1;
297 window >>= 1;
298 }
299 return 0;
300 }
301
302 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
303 {
304 struct tcp_sock *tp = tcp_sk(sk);
305
306 /* Check #1 */
307 if (tp->rcv_ssthresh < tp->window_clamp &&
308 (int)tp->rcv_ssthresh < tcp_space(sk) &&
309 !tcp_memory_pressure) {
310 int incr;
311
312 /* Check #2. Increase window, if skb with such overhead
313 * will fit to rcvbuf in future.
314 */
315 if (tcp_win_from_space(skb->truesize) <= skb->len)
316 incr = 2 * tp->advmss;
317 else
318 incr = __tcp_grow_window(sk, skb);
319
320 if (incr) {
321 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
322 tp->window_clamp);
323 inet_csk(sk)->icsk_ack.quick |= 1;
324 }
325 }
326 }
327
328 /* 3. Tuning rcvbuf, when connection enters established state. */
329
330 static void tcp_fixup_rcvbuf(struct sock *sk)
331 {
332 struct tcp_sock *tp = tcp_sk(sk);
333 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
334
335 /* Try to select rcvbuf so that 4 mss-sized segments
336 * will fit to window and corresponding skbs will fit to our rcvbuf.
337 * (was 3; 4 is minimum to allow fast retransmit to work.)
338 */
339 while (tcp_win_from_space(rcvmem) < tp->advmss)
340 rcvmem += 128;
341 if (sk->sk_rcvbuf < 4 * rcvmem)
342 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
343 }
344
345 /* 4. Try to fixup all. It is made immediately after connection enters
346 * established state.
347 */
348 static void tcp_init_buffer_space(struct sock *sk)
349 {
350 struct tcp_sock *tp = tcp_sk(sk);
351 int maxwin;
352
353 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
354 tcp_fixup_rcvbuf(sk);
355 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
356 tcp_fixup_sndbuf(sk);
357
358 tp->rcvq_space.space = tp->rcv_wnd;
359
360 maxwin = tcp_full_space(sk);
361
362 if (tp->window_clamp >= maxwin) {
363 tp->window_clamp = maxwin;
364
365 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
366 tp->window_clamp = max(maxwin -
367 (maxwin >> sysctl_tcp_app_win),
368 4 * tp->advmss);
369 }
370
371 /* Force reservation of one segment. */
372 if (sysctl_tcp_app_win &&
373 tp->window_clamp > 2 * tp->advmss &&
374 tp->window_clamp + tp->advmss > maxwin)
375 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
376
377 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
378 tp->snd_cwnd_stamp = tcp_time_stamp;
379 }
380
381 /* 5. Recalculate window clamp after socket hit its memory bounds. */
382 static void tcp_clamp_window(struct sock *sk)
383 {
384 struct tcp_sock *tp = tcp_sk(sk);
385 struct inet_connection_sock *icsk = inet_csk(sk);
386
387 icsk->icsk_ack.quick = 0;
388
389 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
390 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
391 !tcp_memory_pressure &&
392 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
393 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
394 sysctl_tcp_rmem[2]);
395 }
396 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
397 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
398 }
399
400 /* Initialize RCV_MSS value.
401 * RCV_MSS is an our guess about MSS used by the peer.
402 * We haven't any direct information about the MSS.
403 * It's better to underestimate the RCV_MSS rather than overestimate.
404 * Overestimations make us ACKing less frequently than needed.
405 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
406 */
407 void tcp_initialize_rcv_mss(struct sock *sk)
408 {
409 struct tcp_sock *tp = tcp_sk(sk);
410 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
411
412 hint = min(hint, tp->rcv_wnd / 2);
413 hint = min(hint, TCP_MIN_RCVMSS);
414 hint = max(hint, TCP_MIN_MSS);
415
416 inet_csk(sk)->icsk_ack.rcv_mss = hint;
417 }
418
419 /* Receiver "autotuning" code.
420 *
421 * The algorithm for RTT estimation w/o timestamps is based on
422 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
423 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
424 *
425 * More detail on this code can be found at
426 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
427 * though this reference is out of date. A new paper
428 * is pending.
429 */
430 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
431 {
432 u32 new_sample = tp->rcv_rtt_est.rtt;
433 long m = sample;
434
435 if (m == 0)
436 m = 1;
437
438 if (new_sample != 0) {
439 /* If we sample in larger samples in the non-timestamp
440 * case, we could grossly overestimate the RTT especially
441 * with chatty applications or bulk transfer apps which
442 * are stalled on filesystem I/O.
443 *
444 * Also, since we are only going for a minimum in the
445 * non-timestamp case, we do not smooth things out
446 * else with timestamps disabled convergence takes too
447 * long.
448 */
449 if (!win_dep) {
450 m -= (new_sample >> 3);
451 new_sample += m;
452 } else if (m < new_sample)
453 new_sample = m << 3;
454 } else {
455 /* No previous measure. */
456 new_sample = m << 3;
457 }
458
459 if (tp->rcv_rtt_est.rtt != new_sample)
460 tp->rcv_rtt_est.rtt = new_sample;
461 }
462
463 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
464 {
465 if (tp->rcv_rtt_est.time == 0)
466 goto new_measure;
467 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
468 return;
469 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
470
471 new_measure:
472 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
473 tp->rcv_rtt_est.time = tcp_time_stamp;
474 }
475
476 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
477 const struct sk_buff *skb)
478 {
479 struct tcp_sock *tp = tcp_sk(sk);
480 if (tp->rx_opt.rcv_tsecr &&
481 (TCP_SKB_CB(skb)->end_seq -
482 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
483 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
484 }
485
486 /*
487 * This function should be called every time data is copied to user space.
488 * It calculates the appropriate TCP receive buffer space.
489 */
490 void tcp_rcv_space_adjust(struct sock *sk)
491 {
492 struct tcp_sock *tp = tcp_sk(sk);
493 int time;
494 int space;
495
496 if (tp->rcvq_space.time == 0)
497 goto new_measure;
498
499 time = tcp_time_stamp - tp->rcvq_space.time;
500 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
501 return;
502
503 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
504
505 space = max(tp->rcvq_space.space, space);
506
507 if (tp->rcvq_space.space != space) {
508 int rcvmem;
509
510 tp->rcvq_space.space = space;
511
512 if (sysctl_tcp_moderate_rcvbuf &&
513 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
514 int new_clamp = space;
515
516 /* Receive space grows, normalize in order to
517 * take into account packet headers and sk_buff
518 * structure overhead.
519 */
520 space /= tp->advmss;
521 if (!space)
522 space = 1;
523 rcvmem = (tp->advmss + MAX_TCP_HEADER +
524 16 + sizeof(struct sk_buff));
525 while (tcp_win_from_space(rcvmem) < tp->advmss)
526 rcvmem += 128;
527 space *= rcvmem;
528 space = min(space, sysctl_tcp_rmem[2]);
529 if (space > sk->sk_rcvbuf) {
530 sk->sk_rcvbuf = space;
531
532 /* Make the window clamp follow along. */
533 tp->window_clamp = new_clamp;
534 }
535 }
536 }
537
538 new_measure:
539 tp->rcvq_space.seq = tp->copied_seq;
540 tp->rcvq_space.time = tcp_time_stamp;
541 }
542
543 /* There is something which you must keep in mind when you analyze the
544 * behavior of the tp->ato delayed ack timeout interval. When a
545 * connection starts up, we want to ack as quickly as possible. The
546 * problem is that "good" TCP's do slow start at the beginning of data
547 * transmission. The means that until we send the first few ACK's the
548 * sender will sit on his end and only queue most of his data, because
549 * he can only send snd_cwnd unacked packets at any given time. For
550 * each ACK we send, he increments snd_cwnd and transmits more of his
551 * queue. -DaveM
552 */
553 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
554 {
555 struct tcp_sock *tp = tcp_sk(sk);
556 struct inet_connection_sock *icsk = inet_csk(sk);
557 u32 now;
558
559 inet_csk_schedule_ack(sk);
560
561 tcp_measure_rcv_mss(sk, skb);
562
563 tcp_rcv_rtt_measure(tp);
564
565 now = tcp_time_stamp;
566
567 if (!icsk->icsk_ack.ato) {
568 /* The _first_ data packet received, initialize
569 * delayed ACK engine.
570 */
571 tcp_incr_quickack(sk);
572 icsk->icsk_ack.ato = TCP_ATO_MIN;
573 } else {
574 int m = now - icsk->icsk_ack.lrcvtime;
575
576 if (m <= TCP_ATO_MIN / 2) {
577 /* The fastest case is the first. */
578 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
579 } else if (m < icsk->icsk_ack.ato) {
580 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
581 if (icsk->icsk_ack.ato > icsk->icsk_rto)
582 icsk->icsk_ack.ato = icsk->icsk_rto;
583 } else if (m > icsk->icsk_rto) {
584 /* Too long gap. Apparently sender failed to
585 * restart window, so that we send ACKs quickly.
586 */
587 tcp_incr_quickack(sk);
588 sk_mem_reclaim(sk);
589 }
590 }
591 icsk->icsk_ack.lrcvtime = now;
592
593 TCP_ECN_check_ce(tp, skb);
594
595 if (skb->len >= 128)
596 tcp_grow_window(sk, skb);
597 }
598
599 static u32 tcp_rto_min(struct sock *sk)
600 {
601 struct dst_entry *dst = __sk_dst_get(sk);
602 u32 rto_min = TCP_RTO_MIN;
603
604 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
605 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
606 return rto_min;
607 }
608
609 /* Called to compute a smoothed rtt estimate. The data fed to this
610 * routine either comes from timestamps, or from segments that were
611 * known _not_ to have been retransmitted [see Karn/Partridge
612 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
613 * piece by Van Jacobson.
614 * NOTE: the next three routines used to be one big routine.
615 * To save cycles in the RFC 1323 implementation it was better to break
616 * it up into three procedures. -- erics
617 */
618 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
619 {
620 struct tcp_sock *tp = tcp_sk(sk);
621 long m = mrtt; /* RTT */
622
623 /* The following amusing code comes from Jacobson's
624 * article in SIGCOMM '88. Note that rtt and mdev
625 * are scaled versions of rtt and mean deviation.
626 * This is designed to be as fast as possible
627 * m stands for "measurement".
628 *
629 * On a 1990 paper the rto value is changed to:
630 * RTO = rtt + 4 * mdev
631 *
632 * Funny. This algorithm seems to be very broken.
633 * These formulae increase RTO, when it should be decreased, increase
634 * too slowly, when it should be increased quickly, decrease too quickly
635 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
636 * does not matter how to _calculate_ it. Seems, it was trap
637 * that VJ failed to avoid. 8)
638 */
639 if (m == 0)
640 m = 1;
641 if (tp->srtt != 0) {
642 m -= (tp->srtt >> 3); /* m is now error in rtt est */
643 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
644 if (m < 0) {
645 m = -m; /* m is now abs(error) */
646 m -= (tp->mdev >> 2); /* similar update on mdev */
647 /* This is similar to one of Eifel findings.
648 * Eifel blocks mdev updates when rtt decreases.
649 * This solution is a bit different: we use finer gain
650 * for mdev in this case (alpha*beta).
651 * Like Eifel it also prevents growth of rto,
652 * but also it limits too fast rto decreases,
653 * happening in pure Eifel.
654 */
655 if (m > 0)
656 m >>= 3;
657 } else {
658 m -= (tp->mdev >> 2); /* similar update on mdev */
659 }
660 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
661 if (tp->mdev > tp->mdev_max) {
662 tp->mdev_max = tp->mdev;
663 if (tp->mdev_max > tp->rttvar)
664 tp->rttvar = tp->mdev_max;
665 }
666 if (after(tp->snd_una, tp->rtt_seq)) {
667 if (tp->mdev_max < tp->rttvar)
668 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
669 tp->rtt_seq = tp->snd_nxt;
670 tp->mdev_max = tcp_rto_min(sk);
671 }
672 } else {
673 /* no previous measure. */
674 tp->srtt = m << 3; /* take the measured time to be rtt */
675 tp->mdev = m << 1; /* make sure rto = 3*rtt */
676 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
677 tp->rtt_seq = tp->snd_nxt;
678 }
679 }
680
681 /* Calculate rto without backoff. This is the second half of Van Jacobson's
682 * routine referred to above.
683 */
684 static inline void tcp_set_rto(struct sock *sk)
685 {
686 const struct tcp_sock *tp = tcp_sk(sk);
687 /* Old crap is replaced with new one. 8)
688 *
689 * More seriously:
690 * 1. If rtt variance happened to be less 50msec, it is hallucination.
691 * It cannot be less due to utterly erratic ACK generation made
692 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
693 * to do with delayed acks, because at cwnd>2 true delack timeout
694 * is invisible. Actually, Linux-2.4 also generates erratic
695 * ACKs in some circumstances.
696 */
697 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
698
699 /* 2. Fixups made earlier cannot be right.
700 * If we do not estimate RTO correctly without them,
701 * all the algo is pure shit and should be replaced
702 * with correct one. It is exactly, which we pretend to do.
703 */
704
705 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
706 * guarantees that rto is higher.
707 */
708 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
709 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
710 }
711
712 /* Save metrics learned by this TCP session.
713 This function is called only, when TCP finishes successfully
714 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
715 */
716 void tcp_update_metrics(struct sock *sk)
717 {
718 struct tcp_sock *tp = tcp_sk(sk);
719 struct dst_entry *dst = __sk_dst_get(sk);
720
721 if (sysctl_tcp_nometrics_save)
722 return;
723
724 dst_confirm(dst);
725
726 if (dst && (dst->flags & DST_HOST)) {
727 const struct inet_connection_sock *icsk = inet_csk(sk);
728 int m;
729 unsigned long rtt;
730
731 if (icsk->icsk_backoff || !tp->srtt) {
732 /* This session failed to estimate rtt. Why?
733 * Probably, no packets returned in time.
734 * Reset our results.
735 */
736 if (!(dst_metric_locked(dst, RTAX_RTT)))
737 dst->metrics[RTAX_RTT - 1] = 0;
738 return;
739 }
740
741 rtt = dst_metric_rtt(dst, RTAX_RTT);
742 m = rtt - tp->srtt;
743
744 /* If newly calculated rtt larger than stored one,
745 * store new one. Otherwise, use EWMA. Remember,
746 * rtt overestimation is always better than underestimation.
747 */
748 if (!(dst_metric_locked(dst, RTAX_RTT))) {
749 if (m <= 0)
750 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
751 else
752 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
753 }
754
755 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
756 unsigned long var;
757 if (m < 0)
758 m = -m;
759
760 /* Scale deviation to rttvar fixed point */
761 m >>= 1;
762 if (m < tp->mdev)
763 m = tp->mdev;
764
765 var = dst_metric_rtt(dst, RTAX_RTTVAR);
766 if (m >= var)
767 var = m;
768 else
769 var -= (var - m) >> 2;
770
771 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
772 }
773
774 if (tp->snd_ssthresh >= 0xFFFF) {
775 /* Slow start still did not finish. */
776 if (dst_metric(dst, RTAX_SSTHRESH) &&
777 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
778 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
779 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
780 if (!dst_metric_locked(dst, RTAX_CWND) &&
781 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
782 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
783 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
784 icsk->icsk_ca_state == TCP_CA_Open) {
785 /* Cong. avoidance phase, cwnd is reliable. */
786 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
787 dst->metrics[RTAX_SSTHRESH-1] =
788 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
789 if (!dst_metric_locked(dst, RTAX_CWND))
790 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
791 } else {
792 /* Else slow start did not finish, cwnd is non-sense,
793 ssthresh may be also invalid.
794 */
795 if (!dst_metric_locked(dst, RTAX_CWND))
796 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
797 if (dst_metric(dst, RTAX_SSTHRESH) &&
798 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
799 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
800 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
801 }
802
803 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
804 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
805 tp->reordering != sysctl_tcp_reordering)
806 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
807 }
808 }
809 }
810
811 /* Numbers are taken from RFC3390.
812 *
813 * John Heffner states:
814 *
815 * The RFC specifies a window of no more than 4380 bytes
816 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
817 * is a bit misleading because they use a clamp at 4380 bytes
818 * rather than use a multiplier in the relevant range.
819 */
820 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
821 {
822 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
823
824 if (!cwnd) {
825 if (tp->mss_cache > 1460)
826 cwnd = 2;
827 else
828 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
829 }
830 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
831 }
832
833 /* Set slow start threshold and cwnd not falling to slow start */
834 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
835 {
836 struct tcp_sock *tp = tcp_sk(sk);
837 const struct inet_connection_sock *icsk = inet_csk(sk);
838
839 tp->prior_ssthresh = 0;
840 tp->bytes_acked = 0;
841 if (icsk->icsk_ca_state < TCP_CA_CWR) {
842 tp->undo_marker = 0;
843 if (set_ssthresh)
844 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
845 tp->snd_cwnd = min(tp->snd_cwnd,
846 tcp_packets_in_flight(tp) + 1U);
847 tp->snd_cwnd_cnt = 0;
848 tp->high_seq = tp->snd_nxt;
849 tp->snd_cwnd_stamp = tcp_time_stamp;
850 TCP_ECN_queue_cwr(tp);
851
852 tcp_set_ca_state(sk, TCP_CA_CWR);
853 }
854 }
855
856 /*
857 * Packet counting of FACK is based on in-order assumptions, therefore TCP
858 * disables it when reordering is detected
859 */
860 static void tcp_disable_fack(struct tcp_sock *tp)
861 {
862 /* RFC3517 uses different metric in lost marker => reset on change */
863 if (tcp_is_fack(tp))
864 tp->lost_skb_hint = NULL;
865 tp->rx_opt.sack_ok &= ~2;
866 }
867
868 /* Take a notice that peer is sending D-SACKs */
869 static void tcp_dsack_seen(struct tcp_sock *tp)
870 {
871 tp->rx_opt.sack_ok |= 4;
872 }
873
874 /* Initialize metrics on socket. */
875
876 static void tcp_init_metrics(struct sock *sk)
877 {
878 struct tcp_sock *tp = tcp_sk(sk);
879 struct dst_entry *dst = __sk_dst_get(sk);
880
881 if (dst == NULL)
882 goto reset;
883
884 dst_confirm(dst);
885
886 if (dst_metric_locked(dst, RTAX_CWND))
887 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
888 if (dst_metric(dst, RTAX_SSTHRESH)) {
889 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
890 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
891 tp->snd_ssthresh = tp->snd_cwnd_clamp;
892 }
893 if (dst_metric(dst, RTAX_REORDERING) &&
894 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
895 tcp_disable_fack(tp);
896 tp->reordering = dst_metric(dst, RTAX_REORDERING);
897 }
898
899 if (dst_metric(dst, RTAX_RTT) == 0)
900 goto reset;
901
902 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
903 goto reset;
904
905 /* Initial rtt is determined from SYN,SYN-ACK.
906 * The segment is small and rtt may appear much
907 * less than real one. Use per-dst memory
908 * to make it more realistic.
909 *
910 * A bit of theory. RTT is time passed after "normal" sized packet
911 * is sent until it is ACKed. In normal circumstances sending small
912 * packets force peer to delay ACKs and calculation is correct too.
913 * The algorithm is adaptive and, provided we follow specs, it
914 * NEVER underestimate RTT. BUT! If peer tries to make some clever
915 * tricks sort of "quick acks" for time long enough to decrease RTT
916 * to low value, and then abruptly stops to do it and starts to delay
917 * ACKs, wait for troubles.
918 */
919 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
920 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
921 tp->rtt_seq = tp->snd_nxt;
922 }
923 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
924 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
925 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
926 }
927 tcp_set_rto(sk);
928 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
929 goto reset;
930 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
931 tp->snd_cwnd_stamp = tcp_time_stamp;
932 return;
933
934 reset:
935 /* Play conservative. If timestamps are not
936 * supported, TCP will fail to recalculate correct
937 * rtt, if initial rto is too small. FORGET ALL AND RESET!
938 */
939 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
940 tp->srtt = 0;
941 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
942 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
943 }
944 }
945
946 static void tcp_update_reordering(struct sock *sk, const int metric,
947 const int ts)
948 {
949 struct tcp_sock *tp = tcp_sk(sk);
950 if (metric > tp->reordering) {
951 int mib_idx;
952
953 tp->reordering = min(TCP_MAX_REORDERING, metric);
954
955 /* This exciting event is worth to be remembered. 8) */
956 if (ts)
957 mib_idx = LINUX_MIB_TCPTSREORDER;
958 else if (tcp_is_reno(tp))
959 mib_idx = LINUX_MIB_TCPRENOREORDER;
960 else if (tcp_is_fack(tp))
961 mib_idx = LINUX_MIB_TCPFACKREORDER;
962 else
963 mib_idx = LINUX_MIB_TCPSACKREORDER;
964
965 NET_INC_STATS_BH(sock_net(sk), mib_idx);
966 #if FASTRETRANS_DEBUG > 1
967 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
968 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
969 tp->reordering,
970 tp->fackets_out,
971 tp->sacked_out,
972 tp->undo_marker ? tp->undo_retrans : 0);
973 #endif
974 tcp_disable_fack(tp);
975 }
976 }
977
978 /* This must be called before lost_out is incremented */
979 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
980 {
981 if ((tp->retransmit_skb_hint == NULL) ||
982 before(TCP_SKB_CB(skb)->seq,
983 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
984 tp->retransmit_skb_hint = skb;
985
986 if (!tp->lost_out ||
987 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
988 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
989 }
990
991 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
992 {
993 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
994 tcp_verify_retransmit_hint(tp, skb);
995
996 tp->lost_out += tcp_skb_pcount(skb);
997 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
998 }
999 }
1000
1001 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1002 struct sk_buff *skb)
1003 {
1004 tcp_verify_retransmit_hint(tp, skb);
1005
1006 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1007 tp->lost_out += tcp_skb_pcount(skb);
1008 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1009 }
1010 }
1011
1012 /* This procedure tags the retransmission queue when SACKs arrive.
1013 *
1014 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1015 * Packets in queue with these bits set are counted in variables
1016 * sacked_out, retrans_out and lost_out, correspondingly.
1017 *
1018 * Valid combinations are:
1019 * Tag InFlight Description
1020 * 0 1 - orig segment is in flight.
1021 * S 0 - nothing flies, orig reached receiver.
1022 * L 0 - nothing flies, orig lost by net.
1023 * R 2 - both orig and retransmit are in flight.
1024 * L|R 1 - orig is lost, retransmit is in flight.
1025 * S|R 1 - orig reached receiver, retrans is still in flight.
1026 * (L|S|R is logically valid, it could occur when L|R is sacked,
1027 * but it is equivalent to plain S and code short-curcuits it to S.
1028 * L|S is logically invalid, it would mean -1 packet in flight 8))
1029 *
1030 * These 6 states form finite state machine, controlled by the following events:
1031 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1032 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1033 * 3. Loss detection event of one of three flavors:
1034 * A. Scoreboard estimator decided the packet is lost.
1035 * A'. Reno "three dupacks" marks head of queue lost.
1036 * A''. Its FACK modfication, head until snd.fack is lost.
1037 * B. SACK arrives sacking data transmitted after never retransmitted
1038 * hole was sent out.
1039 * C. SACK arrives sacking SND.NXT at the moment, when the
1040 * segment was retransmitted.
1041 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1042 *
1043 * It is pleasant to note, that state diagram turns out to be commutative,
1044 * so that we are allowed not to be bothered by order of our actions,
1045 * when multiple events arrive simultaneously. (see the function below).
1046 *
1047 * Reordering detection.
1048 * --------------------
1049 * Reordering metric is maximal distance, which a packet can be displaced
1050 * in packet stream. With SACKs we can estimate it:
1051 *
1052 * 1. SACK fills old hole and the corresponding segment was not
1053 * ever retransmitted -> reordering. Alas, we cannot use it
1054 * when segment was retransmitted.
1055 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1056 * for retransmitted and already SACKed segment -> reordering..
1057 * Both of these heuristics are not used in Loss state, when we cannot
1058 * account for retransmits accurately.
1059 *
1060 * SACK block validation.
1061 * ----------------------
1062 *
1063 * SACK block range validation checks that the received SACK block fits to
1064 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1065 * Note that SND.UNA is not included to the range though being valid because
1066 * it means that the receiver is rather inconsistent with itself reporting
1067 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1068 * perfectly valid, however, in light of RFC2018 which explicitly states
1069 * that "SACK block MUST reflect the newest segment. Even if the newest
1070 * segment is going to be discarded ...", not that it looks very clever
1071 * in case of head skb. Due to potentional receiver driven attacks, we
1072 * choose to avoid immediate execution of a walk in write queue due to
1073 * reneging and defer head skb's loss recovery to standard loss recovery
1074 * procedure that will eventually trigger (nothing forbids us doing this).
1075 *
1076 * Implements also blockage to start_seq wrap-around. Problem lies in the
1077 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1078 * there's no guarantee that it will be before snd_nxt (n). The problem
1079 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1080 * wrap (s_w):
1081 *
1082 * <- outs wnd -> <- wrapzone ->
1083 * u e n u_w e_w s n_w
1084 * | | | | | | |
1085 * |<------------+------+----- TCP seqno space --------------+---------->|
1086 * ...-- <2^31 ->| |<--------...
1087 * ...---- >2^31 ------>| |<--------...
1088 *
1089 * Current code wouldn't be vulnerable but it's better still to discard such
1090 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1091 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1092 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1093 * equal to the ideal case (infinite seqno space without wrap caused issues).
1094 *
1095 * With D-SACK the lower bound is extended to cover sequence space below
1096 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1097 * again, D-SACK block must not to go across snd_una (for the same reason as
1098 * for the normal SACK blocks, explained above). But there all simplicity
1099 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1100 * fully below undo_marker they do not affect behavior in anyway and can
1101 * therefore be safely ignored. In rare cases (which are more or less
1102 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1103 * fragmentation and packet reordering past skb's retransmission. To consider
1104 * them correctly, the acceptable range must be extended even more though
1105 * the exact amount is rather hard to quantify. However, tp->max_window can
1106 * be used as an exaggerated estimate.
1107 */
1108 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1109 u32 start_seq, u32 end_seq)
1110 {
1111 /* Too far in future, or reversed (interpretation is ambiguous) */
1112 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1113 return 0;
1114
1115 /* Nasty start_seq wrap-around check (see comments above) */
1116 if (!before(start_seq, tp->snd_nxt))
1117 return 0;
1118
1119 /* In outstanding window? ...This is valid exit for D-SACKs too.
1120 * start_seq == snd_una is non-sensical (see comments above)
1121 */
1122 if (after(start_seq, tp->snd_una))
1123 return 1;
1124
1125 if (!is_dsack || !tp->undo_marker)
1126 return 0;
1127
1128 /* ...Then it's D-SACK, and must reside below snd_una completely */
1129 if (!after(end_seq, tp->snd_una))
1130 return 0;
1131
1132 if (!before(start_seq, tp->undo_marker))
1133 return 1;
1134
1135 /* Too old */
1136 if (!after(end_seq, tp->undo_marker))
1137 return 0;
1138
1139 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1140 * start_seq < undo_marker and end_seq >= undo_marker.
1141 */
1142 return !before(start_seq, end_seq - tp->max_window);
1143 }
1144
1145 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1146 * Event "C". Later note: FACK people cheated me again 8), we have to account
1147 * for reordering! Ugly, but should help.
1148 *
1149 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1150 * less than what is now known to be received by the other end (derived from
1151 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1152 * retransmitted skbs to avoid some costly processing per ACKs.
1153 */
1154 static void tcp_mark_lost_retrans(struct sock *sk)
1155 {
1156 const struct inet_connection_sock *icsk = inet_csk(sk);
1157 struct tcp_sock *tp = tcp_sk(sk);
1158 struct sk_buff *skb;
1159 int cnt = 0;
1160 u32 new_low_seq = tp->snd_nxt;
1161 u32 received_upto = tcp_highest_sack_seq(tp);
1162
1163 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1164 !after(received_upto, tp->lost_retrans_low) ||
1165 icsk->icsk_ca_state != TCP_CA_Recovery)
1166 return;
1167
1168 tcp_for_write_queue(skb, sk) {
1169 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1170
1171 if (skb == tcp_send_head(sk))
1172 break;
1173 if (cnt == tp->retrans_out)
1174 break;
1175 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1176 continue;
1177
1178 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1179 continue;
1180
1181 if (after(received_upto, ack_seq) &&
1182 (tcp_is_fack(tp) ||
1183 !before(received_upto,
1184 ack_seq + tp->reordering * tp->mss_cache))) {
1185 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1186 tp->retrans_out -= tcp_skb_pcount(skb);
1187
1188 tcp_skb_mark_lost_uncond_verify(tp, skb);
1189 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1190 } else {
1191 if (before(ack_seq, new_low_seq))
1192 new_low_seq = ack_seq;
1193 cnt += tcp_skb_pcount(skb);
1194 }
1195 }
1196
1197 if (tp->retrans_out)
1198 tp->lost_retrans_low = new_low_seq;
1199 }
1200
1201 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1202 struct tcp_sack_block_wire *sp, int num_sacks,
1203 u32 prior_snd_una)
1204 {
1205 struct tcp_sock *tp = tcp_sk(sk);
1206 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1207 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1208 int dup_sack = 0;
1209
1210 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1211 dup_sack = 1;
1212 tcp_dsack_seen(tp);
1213 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1214 } else if (num_sacks > 1) {
1215 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1216 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1217
1218 if (!after(end_seq_0, end_seq_1) &&
1219 !before(start_seq_0, start_seq_1)) {
1220 dup_sack = 1;
1221 tcp_dsack_seen(tp);
1222 NET_INC_STATS_BH(sock_net(sk),
1223 LINUX_MIB_TCPDSACKOFORECV);
1224 }
1225 }
1226
1227 /* D-SACK for already forgotten data... Do dumb counting. */
1228 if (dup_sack &&
1229 !after(end_seq_0, prior_snd_una) &&
1230 after(end_seq_0, tp->undo_marker))
1231 tp->undo_retrans--;
1232
1233 return dup_sack;
1234 }
1235
1236 struct tcp_sacktag_state {
1237 int reord;
1238 int fack_count;
1239 int flag;
1240 };
1241
1242 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1243 * the incoming SACK may not exactly match but we can find smaller MSS
1244 * aligned portion of it that matches. Therefore we might need to fragment
1245 * which may fail and creates some hassle (caller must handle error case
1246 * returns).
1247 *
1248 * FIXME: this could be merged to shift decision code
1249 */
1250 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1251 u32 start_seq, u32 end_seq)
1252 {
1253 int in_sack, err;
1254 unsigned int pkt_len;
1255 unsigned int mss;
1256
1257 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1258 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1259
1260 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1261 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1262 mss = tcp_skb_mss(skb);
1263 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1264
1265 if (!in_sack) {
1266 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1267 if (pkt_len < mss)
1268 pkt_len = mss;
1269 } else {
1270 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1271 if (pkt_len < mss)
1272 return -EINVAL;
1273 }
1274
1275 /* Round if necessary so that SACKs cover only full MSSes
1276 * and/or the remaining small portion (if present)
1277 */
1278 if (pkt_len > mss) {
1279 unsigned int new_len = (pkt_len / mss) * mss;
1280 if (!in_sack && new_len < pkt_len) {
1281 new_len += mss;
1282 if (new_len > skb->len)
1283 return 0;
1284 }
1285 pkt_len = new_len;
1286 }
1287 err = tcp_fragment(sk, skb, pkt_len, mss);
1288 if (err < 0)
1289 return err;
1290 }
1291
1292 return in_sack;
1293 }
1294
1295 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1296 struct tcp_sacktag_state *state,
1297 int dup_sack, int pcount)
1298 {
1299 struct tcp_sock *tp = tcp_sk(sk);
1300 u8 sacked = TCP_SKB_CB(skb)->sacked;
1301 int fack_count = state->fack_count;
1302
1303 /* Account D-SACK for retransmitted packet. */
1304 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1305 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1306 tp->undo_retrans--;
1307 if (sacked & TCPCB_SACKED_ACKED)
1308 state->reord = min(fack_count, state->reord);
1309 }
1310
1311 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1312 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1313 return sacked;
1314
1315 if (!(sacked & TCPCB_SACKED_ACKED)) {
1316 if (sacked & TCPCB_SACKED_RETRANS) {
1317 /* If the segment is not tagged as lost,
1318 * we do not clear RETRANS, believing
1319 * that retransmission is still in flight.
1320 */
1321 if (sacked & TCPCB_LOST) {
1322 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1323 tp->lost_out -= pcount;
1324 tp->retrans_out -= pcount;
1325 }
1326 } else {
1327 if (!(sacked & TCPCB_RETRANS)) {
1328 /* New sack for not retransmitted frame,
1329 * which was in hole. It is reordering.
1330 */
1331 if (before(TCP_SKB_CB(skb)->seq,
1332 tcp_highest_sack_seq(tp)))
1333 state->reord = min(fack_count,
1334 state->reord);
1335
1336 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1337 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1338 state->flag |= FLAG_ONLY_ORIG_SACKED;
1339 }
1340
1341 if (sacked & TCPCB_LOST) {
1342 sacked &= ~TCPCB_LOST;
1343 tp->lost_out -= pcount;
1344 }
1345 }
1346
1347 sacked |= TCPCB_SACKED_ACKED;
1348 state->flag |= FLAG_DATA_SACKED;
1349 tp->sacked_out += pcount;
1350
1351 fack_count += pcount;
1352
1353 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1354 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1355 before(TCP_SKB_CB(skb)->seq,
1356 TCP_SKB_CB(tp->lost_skb_hint)->seq))
1357 tp->lost_cnt_hint += pcount;
1358
1359 if (fack_count > tp->fackets_out)
1360 tp->fackets_out = fack_count;
1361 }
1362
1363 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1364 * frames and clear it. undo_retrans is decreased above, L|R frames
1365 * are accounted above as well.
1366 */
1367 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1368 sacked &= ~TCPCB_SACKED_RETRANS;
1369 tp->retrans_out -= pcount;
1370 }
1371
1372 return sacked;
1373 }
1374
1375 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1376 struct tcp_sacktag_state *state,
1377 unsigned int pcount, int shifted, int mss)
1378 {
1379 struct tcp_sock *tp = tcp_sk(sk);
1380 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1381
1382 BUG_ON(!pcount);
1383
1384 /* Tweak before seqno plays */
1385 if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1386 !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1387 tp->lost_cnt_hint += pcount;
1388
1389 TCP_SKB_CB(prev)->end_seq += shifted;
1390 TCP_SKB_CB(skb)->seq += shifted;
1391
1392 skb_shinfo(prev)->gso_segs += pcount;
1393 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1394 skb_shinfo(skb)->gso_segs -= pcount;
1395
1396 /* When we're adding to gso_segs == 1, gso_size will be zero,
1397 * in theory this shouldn't be necessary but as long as DSACK
1398 * code can come after this skb later on it's better to keep
1399 * setting gso_size to something.
1400 */
1401 if (!skb_shinfo(prev)->gso_size) {
1402 skb_shinfo(prev)->gso_size = mss;
1403 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1404 }
1405
1406 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1407 if (skb_shinfo(skb)->gso_segs <= 1) {
1408 skb_shinfo(skb)->gso_size = 0;
1409 skb_shinfo(skb)->gso_type = 0;
1410 }
1411
1412 /* We discard results */
1413 tcp_sacktag_one(skb, sk, state, 0, pcount);
1414
1415 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1416 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1417
1418 if (skb->len > 0) {
1419 BUG_ON(!tcp_skb_pcount(skb));
1420 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1421 return 0;
1422 }
1423
1424 /* Whole SKB was eaten :-) */
1425
1426 if (skb == tp->retransmit_skb_hint)
1427 tp->retransmit_skb_hint = prev;
1428 if (skb == tp->scoreboard_skb_hint)
1429 tp->scoreboard_skb_hint = prev;
1430 if (skb == tp->lost_skb_hint) {
1431 tp->lost_skb_hint = prev;
1432 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1433 }
1434
1435 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1436 if (skb == tcp_highest_sack(sk))
1437 tcp_advance_highest_sack(sk, skb);
1438
1439 tcp_unlink_write_queue(skb, sk);
1440 sk_wmem_free_skb(sk, skb);
1441
1442 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1443
1444 return 1;
1445 }
1446
1447 /* I wish gso_size would have a bit more sane initialization than
1448 * something-or-zero which complicates things
1449 */
1450 static int tcp_skb_seglen(struct sk_buff *skb)
1451 {
1452 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1453 }
1454
1455 /* Shifting pages past head area doesn't work */
1456 static int skb_can_shift(struct sk_buff *skb)
1457 {
1458 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1459 }
1460
1461 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1462 * skb.
1463 */
1464 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1465 struct tcp_sacktag_state *state,
1466 u32 start_seq, u32 end_seq,
1467 int dup_sack)
1468 {
1469 struct tcp_sock *tp = tcp_sk(sk);
1470 struct sk_buff *prev;
1471 int mss;
1472 int pcount = 0;
1473 int len;
1474 int in_sack;
1475
1476 if (!sk_can_gso(sk))
1477 goto fallback;
1478
1479 /* Normally R but no L won't result in plain S */
1480 if (!dup_sack &&
1481 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1482 goto fallback;
1483 if (!skb_can_shift(skb))
1484 goto fallback;
1485 /* This frame is about to be dropped (was ACKed). */
1486 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1487 goto fallback;
1488
1489 /* Can only happen with delayed DSACK + discard craziness */
1490 if (unlikely(skb == tcp_write_queue_head(sk)))
1491 goto fallback;
1492 prev = tcp_write_queue_prev(sk, skb);
1493
1494 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1495 goto fallback;
1496
1497 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1498 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1499
1500 if (in_sack) {
1501 len = skb->len;
1502 pcount = tcp_skb_pcount(skb);
1503 mss = tcp_skb_seglen(skb);
1504
1505 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1506 * drop this restriction as unnecessary
1507 */
1508 if (mss != tcp_skb_seglen(prev))
1509 goto fallback;
1510 } else {
1511 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1512 goto noop;
1513 /* CHECKME: This is non-MSS split case only?, this will
1514 * cause skipped skbs due to advancing loop btw, original
1515 * has that feature too
1516 */
1517 if (tcp_skb_pcount(skb) <= 1)
1518 goto noop;
1519
1520 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1521 if (!in_sack) {
1522 /* TODO: head merge to next could be attempted here
1523 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1524 * though it might not be worth of the additional hassle
1525 *
1526 * ...we can probably just fallback to what was done
1527 * previously. We could try merging non-SACKed ones
1528 * as well but it probably isn't going to buy off
1529 * because later SACKs might again split them, and
1530 * it would make skb timestamp tracking considerably
1531 * harder problem.
1532 */
1533 goto fallback;
1534 }
1535
1536 len = end_seq - TCP_SKB_CB(skb)->seq;
1537 BUG_ON(len < 0);
1538 BUG_ON(len > skb->len);
1539
1540 /* MSS boundaries should be honoured or else pcount will
1541 * severely break even though it makes things bit trickier.
1542 * Optimize common case to avoid most of the divides
1543 */
1544 mss = tcp_skb_mss(skb);
1545
1546 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1547 * drop this restriction as unnecessary
1548 */
1549 if (mss != tcp_skb_seglen(prev))
1550 goto fallback;
1551
1552 if (len == mss) {
1553 pcount = 1;
1554 } else if (len < mss) {
1555 goto noop;
1556 } else {
1557 pcount = len / mss;
1558 len = pcount * mss;
1559 }
1560 }
1561
1562 if (!skb_shift(prev, skb, len))
1563 goto fallback;
1564 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss))
1565 goto out;
1566
1567 /* Hole filled allows collapsing with the next as well, this is very
1568 * useful when hole on every nth skb pattern happens
1569 */
1570 if (prev == tcp_write_queue_tail(sk))
1571 goto out;
1572 skb = tcp_write_queue_next(sk, prev);
1573
1574 if (!skb_can_shift(skb) ||
1575 (skb == tcp_send_head(sk)) ||
1576 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1577 (mss != tcp_skb_seglen(skb)))
1578 goto out;
1579
1580 len = skb->len;
1581 if (skb_shift(prev, skb, len)) {
1582 pcount += tcp_skb_pcount(skb);
1583 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss);
1584 }
1585
1586 out:
1587 state->fack_count += pcount;
1588 return prev;
1589
1590 noop:
1591 return skb;
1592
1593 fallback:
1594 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1595 return NULL;
1596 }
1597
1598 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1599 struct tcp_sack_block *next_dup,
1600 struct tcp_sacktag_state *state,
1601 u32 start_seq, u32 end_seq,
1602 int dup_sack_in)
1603 {
1604 struct tcp_sock *tp = tcp_sk(sk);
1605 struct sk_buff *tmp;
1606
1607 tcp_for_write_queue_from(skb, sk) {
1608 int in_sack = 0;
1609 int dup_sack = dup_sack_in;
1610
1611 if (skb == tcp_send_head(sk))
1612 break;
1613
1614 /* queue is in-order => we can short-circuit the walk early */
1615 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1616 break;
1617
1618 if ((next_dup != NULL) &&
1619 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1620 in_sack = tcp_match_skb_to_sack(sk, skb,
1621 next_dup->start_seq,
1622 next_dup->end_seq);
1623 if (in_sack > 0)
1624 dup_sack = 1;
1625 }
1626
1627 /* skb reference here is a bit tricky to get right, since
1628 * shifting can eat and free both this skb and the next,
1629 * so not even _safe variant of the loop is enough.
1630 */
1631 if (in_sack <= 0) {
1632 tmp = tcp_shift_skb_data(sk, skb, state,
1633 start_seq, end_seq, dup_sack);
1634 if (tmp != NULL) {
1635 if (tmp != skb) {
1636 skb = tmp;
1637 continue;
1638 }
1639
1640 in_sack = 0;
1641 } else {
1642 in_sack = tcp_match_skb_to_sack(sk, skb,
1643 start_seq,
1644 end_seq);
1645 }
1646 }
1647
1648 if (unlikely(in_sack < 0))
1649 break;
1650
1651 if (in_sack) {
1652 TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1653 state,
1654 dup_sack,
1655 tcp_skb_pcount(skb));
1656
1657 if (!before(TCP_SKB_CB(skb)->seq,
1658 tcp_highest_sack_seq(tp)))
1659 tcp_advance_highest_sack(sk, skb);
1660 }
1661
1662 state->fack_count += tcp_skb_pcount(skb);
1663 }
1664 return skb;
1665 }
1666
1667 /* Avoid all extra work that is being done by sacktag while walking in
1668 * a normal way
1669 */
1670 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1671 struct tcp_sacktag_state *state,
1672 u32 skip_to_seq)
1673 {
1674 tcp_for_write_queue_from(skb, sk) {
1675 if (skb == tcp_send_head(sk))
1676 break;
1677
1678 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1679 break;
1680
1681 state->fack_count += tcp_skb_pcount(skb);
1682 }
1683 return skb;
1684 }
1685
1686 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1687 struct sock *sk,
1688 struct tcp_sack_block *next_dup,
1689 struct tcp_sacktag_state *state,
1690 u32 skip_to_seq)
1691 {
1692 if (next_dup == NULL)
1693 return skb;
1694
1695 if (before(next_dup->start_seq, skip_to_seq)) {
1696 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1697 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1698 next_dup->start_seq, next_dup->end_seq,
1699 1);
1700 }
1701
1702 return skb;
1703 }
1704
1705 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1706 {
1707 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1708 }
1709
1710 static int
1711 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1712 u32 prior_snd_una)
1713 {
1714 const struct inet_connection_sock *icsk = inet_csk(sk);
1715 struct tcp_sock *tp = tcp_sk(sk);
1716 unsigned char *ptr = (skb_transport_header(ack_skb) +
1717 TCP_SKB_CB(ack_skb)->sacked);
1718 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1719 struct tcp_sack_block sp[TCP_NUM_SACKS];
1720 struct tcp_sack_block *cache;
1721 struct tcp_sacktag_state state;
1722 struct sk_buff *skb;
1723 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1724 int used_sacks;
1725 int found_dup_sack = 0;
1726 int i, j;
1727 int first_sack_index;
1728
1729 state.flag = 0;
1730 state.reord = tp->packets_out;
1731
1732 if (!tp->sacked_out) {
1733 if (WARN_ON(tp->fackets_out))
1734 tp->fackets_out = 0;
1735 tcp_highest_sack_reset(sk);
1736 }
1737
1738 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1739 num_sacks, prior_snd_una);
1740 if (found_dup_sack)
1741 state.flag |= FLAG_DSACKING_ACK;
1742
1743 /* Eliminate too old ACKs, but take into
1744 * account more or less fresh ones, they can
1745 * contain valid SACK info.
1746 */
1747 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1748 return 0;
1749
1750 if (!tp->packets_out)
1751 goto out;
1752
1753 used_sacks = 0;
1754 first_sack_index = 0;
1755 for (i = 0; i < num_sacks; i++) {
1756 int dup_sack = !i && found_dup_sack;
1757
1758 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1759 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1760
1761 if (!tcp_is_sackblock_valid(tp, dup_sack,
1762 sp[used_sacks].start_seq,
1763 sp[used_sacks].end_seq)) {
1764 int mib_idx;
1765
1766 if (dup_sack) {
1767 if (!tp->undo_marker)
1768 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1769 else
1770 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1771 } else {
1772 /* Don't count olds caused by ACK reordering */
1773 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1774 !after(sp[used_sacks].end_seq, tp->snd_una))
1775 continue;
1776 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1777 }
1778
1779 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1780 if (i == 0)
1781 first_sack_index = -1;
1782 continue;
1783 }
1784
1785 /* Ignore very old stuff early */
1786 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1787 continue;
1788
1789 used_sacks++;
1790 }
1791
1792 /* order SACK blocks to allow in order walk of the retrans queue */
1793 for (i = used_sacks - 1; i > 0; i--) {
1794 for (j = 0; j < i; j++) {
1795 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1796 struct tcp_sack_block tmp;
1797
1798 tmp = sp[j];
1799 sp[j] = sp[j + 1];
1800 sp[j + 1] = tmp;
1801
1802 /* Track where the first SACK block goes to */
1803 if (j == first_sack_index)
1804 first_sack_index = j + 1;
1805 }
1806 }
1807 }
1808
1809 skb = tcp_write_queue_head(sk);
1810 state.fack_count = 0;
1811 i = 0;
1812
1813 if (!tp->sacked_out) {
1814 /* It's already past, so skip checking against it */
1815 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1816 } else {
1817 cache = tp->recv_sack_cache;
1818 /* Skip empty blocks in at head of the cache */
1819 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1820 !cache->end_seq)
1821 cache++;
1822 }
1823
1824 while (i < used_sacks) {
1825 u32 start_seq = sp[i].start_seq;
1826 u32 end_seq = sp[i].end_seq;
1827 int dup_sack = (found_dup_sack && (i == first_sack_index));
1828 struct tcp_sack_block *next_dup = NULL;
1829
1830 if (found_dup_sack && ((i + 1) == first_sack_index))
1831 next_dup = &sp[i + 1];
1832
1833 /* Event "B" in the comment above. */
1834 if (after(end_seq, tp->high_seq))
1835 state.flag |= FLAG_DATA_LOST;
1836
1837 /* Skip too early cached blocks */
1838 while (tcp_sack_cache_ok(tp, cache) &&
1839 !before(start_seq, cache->end_seq))
1840 cache++;
1841
1842 /* Can skip some work by looking recv_sack_cache? */
1843 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1844 after(end_seq, cache->start_seq)) {
1845
1846 /* Head todo? */
1847 if (before(start_seq, cache->start_seq)) {
1848 skb = tcp_sacktag_skip(skb, sk, &state,
1849 start_seq);
1850 skb = tcp_sacktag_walk(skb, sk, next_dup,
1851 &state,
1852 start_seq,
1853 cache->start_seq,
1854 dup_sack);
1855 }
1856
1857 /* Rest of the block already fully processed? */
1858 if (!after(end_seq, cache->end_seq))
1859 goto advance_sp;
1860
1861 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1862 &state,
1863 cache->end_seq);
1864
1865 /* ...tail remains todo... */
1866 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1867 /* ...but better entrypoint exists! */
1868 skb = tcp_highest_sack(sk);
1869 if (skb == NULL)
1870 break;
1871 state.fack_count = tp->fackets_out;
1872 cache++;
1873 goto walk;
1874 }
1875
1876 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1877 /* Check overlap against next cached too (past this one already) */
1878 cache++;
1879 continue;
1880 }
1881
1882 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1883 skb = tcp_highest_sack(sk);
1884 if (skb == NULL)
1885 break;
1886 state.fack_count = tp->fackets_out;
1887 }
1888 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1889
1890 walk:
1891 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1892 start_seq, end_seq, dup_sack);
1893
1894 advance_sp:
1895 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1896 * due to in-order walk
1897 */
1898 if (after(end_seq, tp->frto_highmark))
1899 state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1900
1901 i++;
1902 }
1903
1904 /* Clear the head of the cache sack blocks so we can skip it next time */
1905 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1906 tp->recv_sack_cache[i].start_seq = 0;
1907 tp->recv_sack_cache[i].end_seq = 0;
1908 }
1909 for (j = 0; j < used_sacks; j++)
1910 tp->recv_sack_cache[i++] = sp[j];
1911
1912 tcp_mark_lost_retrans(sk);
1913
1914 tcp_verify_left_out(tp);
1915
1916 if ((state.reord < tp->fackets_out) &&
1917 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1918 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1919 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1920
1921 out:
1922
1923 #if FASTRETRANS_DEBUG > 0
1924 WARN_ON((int)tp->sacked_out < 0);
1925 WARN_ON((int)tp->lost_out < 0);
1926 WARN_ON((int)tp->retrans_out < 0);
1927 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1928 #endif
1929 return state.flag;
1930 }
1931
1932 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1933 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1934 */
1935 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1936 {
1937 u32 holes;
1938
1939 holes = max(tp->lost_out, 1U);
1940 holes = min(holes, tp->packets_out);
1941
1942 if ((tp->sacked_out + holes) > tp->packets_out) {
1943 tp->sacked_out = tp->packets_out - holes;
1944 return 1;
1945 }
1946 return 0;
1947 }
1948
1949 /* If we receive more dupacks than we expected counting segments
1950 * in assumption of absent reordering, interpret this as reordering.
1951 * The only another reason could be bug in receiver TCP.
1952 */
1953 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1954 {
1955 struct tcp_sock *tp = tcp_sk(sk);
1956 if (tcp_limit_reno_sacked(tp))
1957 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1958 }
1959
1960 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1961
1962 static void tcp_add_reno_sack(struct sock *sk)
1963 {
1964 struct tcp_sock *tp = tcp_sk(sk);
1965 tp->sacked_out++;
1966 tcp_check_reno_reordering(sk, 0);
1967 tcp_verify_left_out(tp);
1968 }
1969
1970 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1971
1972 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1973 {
1974 struct tcp_sock *tp = tcp_sk(sk);
1975
1976 if (acked > 0) {
1977 /* One ACK acked hole. The rest eat duplicate ACKs. */
1978 if (acked - 1 >= tp->sacked_out)
1979 tp->sacked_out = 0;
1980 else
1981 tp->sacked_out -= acked - 1;
1982 }
1983 tcp_check_reno_reordering(sk, acked);
1984 tcp_verify_left_out(tp);
1985 }
1986
1987 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1988 {
1989 tp->sacked_out = 0;
1990 }
1991
1992 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1993 {
1994 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1995 }
1996
1997 /* F-RTO can only be used if TCP has never retransmitted anything other than
1998 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1999 */
2000 int tcp_use_frto(struct sock *sk)
2001 {
2002 const struct tcp_sock *tp = tcp_sk(sk);
2003 const struct inet_connection_sock *icsk = inet_csk(sk);
2004 struct sk_buff *skb;
2005
2006 if (!sysctl_tcp_frto)
2007 return 0;
2008
2009 /* MTU probe and F-RTO won't really play nicely along currently */
2010 if (icsk->icsk_mtup.probe_size)
2011 return 0;
2012
2013 if (tcp_is_sackfrto(tp))
2014 return 1;
2015
2016 /* Avoid expensive walking of rexmit queue if possible */
2017 if (tp->retrans_out > 1)
2018 return 0;
2019
2020 skb = tcp_write_queue_head(sk);
2021 if (tcp_skb_is_last(sk, skb))
2022 return 1;
2023 skb = tcp_write_queue_next(sk, skb); /* Skips head */
2024 tcp_for_write_queue_from(skb, sk) {
2025 if (skb == tcp_send_head(sk))
2026 break;
2027 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2028 return 0;
2029 /* Short-circuit when first non-SACKed skb has been checked */
2030 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2031 break;
2032 }
2033 return 1;
2034 }
2035
2036 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2037 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2038 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2039 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2040 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2041 * bits are handled if the Loss state is really to be entered (in
2042 * tcp_enter_frto_loss).
2043 *
2044 * Do like tcp_enter_loss() would; when RTO expires the second time it
2045 * does:
2046 * "Reduce ssthresh if it has not yet been made inside this window."
2047 */
2048 void tcp_enter_frto(struct sock *sk)
2049 {
2050 const struct inet_connection_sock *icsk = inet_csk(sk);
2051 struct tcp_sock *tp = tcp_sk(sk);
2052 struct sk_buff *skb;
2053
2054 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2055 tp->snd_una == tp->high_seq ||
2056 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2057 !icsk->icsk_retransmits)) {
2058 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2059 /* Our state is too optimistic in ssthresh() call because cwnd
2060 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2061 * recovery has not yet completed. Pattern would be this: RTO,
2062 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2063 * up here twice).
2064 * RFC4138 should be more specific on what to do, even though
2065 * RTO is quite unlikely to occur after the first Cumulative ACK
2066 * due to back-off and complexity of triggering events ...
2067 */
2068 if (tp->frto_counter) {
2069 u32 stored_cwnd;
2070 stored_cwnd = tp->snd_cwnd;
2071 tp->snd_cwnd = 2;
2072 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2073 tp->snd_cwnd = stored_cwnd;
2074 } else {
2075 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2076 }
2077 /* ... in theory, cong.control module could do "any tricks" in
2078 * ssthresh(), which means that ca_state, lost bits and lost_out
2079 * counter would have to be faked before the call occurs. We
2080 * consider that too expensive, unlikely and hacky, so modules
2081 * using these in ssthresh() must deal these incompatibility
2082 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2083 */
2084 tcp_ca_event(sk, CA_EVENT_FRTO);
2085 }
2086
2087 tp->undo_marker = tp->snd_una;
2088 tp->undo_retrans = 0;
2089
2090 skb = tcp_write_queue_head(sk);
2091 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2092 tp->undo_marker = 0;
2093 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2094 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2095 tp->retrans_out -= tcp_skb_pcount(skb);
2096 }
2097 tcp_verify_left_out(tp);
2098
2099 /* Too bad if TCP was application limited */
2100 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2101
2102 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2103 * The last condition is necessary at least in tp->frto_counter case.
2104 */
2105 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2106 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2107 after(tp->high_seq, tp->snd_una)) {
2108 tp->frto_highmark = tp->high_seq;
2109 } else {
2110 tp->frto_highmark = tp->snd_nxt;
2111 }
2112 tcp_set_ca_state(sk, TCP_CA_Disorder);
2113 tp->high_seq = tp->snd_nxt;
2114 tp->frto_counter = 1;
2115 }
2116
2117 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2118 * which indicates that we should follow the traditional RTO recovery,
2119 * i.e. mark everything lost and do go-back-N retransmission.
2120 */
2121 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2122 {
2123 struct tcp_sock *tp = tcp_sk(sk);
2124 struct sk_buff *skb;
2125
2126 tp->lost_out = 0;
2127 tp->retrans_out = 0;
2128 if (tcp_is_reno(tp))
2129 tcp_reset_reno_sack(tp);
2130
2131 tcp_for_write_queue(skb, sk) {
2132 if (skb == tcp_send_head(sk))
2133 break;
2134
2135 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2136 /*
2137 * Count the retransmission made on RTO correctly (only when
2138 * waiting for the first ACK and did not get it)...
2139 */
2140 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2141 /* For some reason this R-bit might get cleared? */
2142 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2143 tp->retrans_out += tcp_skb_pcount(skb);
2144 /* ...enter this if branch just for the first segment */
2145 flag |= FLAG_DATA_ACKED;
2146 } else {
2147 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2148 tp->undo_marker = 0;
2149 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2150 }
2151
2152 /* Marking forward transmissions that were made after RTO lost
2153 * can cause unnecessary retransmissions in some scenarios,
2154 * SACK blocks will mitigate that in some but not in all cases.
2155 * We used to not mark them but it was causing break-ups with
2156 * receivers that do only in-order receival.
2157 *
2158 * TODO: we could detect presence of such receiver and select
2159 * different behavior per flow.
2160 */
2161 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2162 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2163 tp->lost_out += tcp_skb_pcount(skb);
2164 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2165 }
2166 }
2167 tcp_verify_left_out(tp);
2168
2169 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2170 tp->snd_cwnd_cnt = 0;
2171 tp->snd_cwnd_stamp = tcp_time_stamp;
2172 tp->frto_counter = 0;
2173 tp->bytes_acked = 0;
2174
2175 tp->reordering = min_t(unsigned int, tp->reordering,
2176 sysctl_tcp_reordering);
2177 tcp_set_ca_state(sk, TCP_CA_Loss);
2178 tp->high_seq = tp->snd_nxt;
2179 TCP_ECN_queue_cwr(tp);
2180
2181 tcp_clear_all_retrans_hints(tp);
2182 }
2183
2184 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2185 {
2186 tp->retrans_out = 0;
2187 tp->lost_out = 0;
2188
2189 tp->undo_marker = 0;
2190 tp->undo_retrans = 0;
2191 }
2192
2193 void tcp_clear_retrans(struct tcp_sock *tp)
2194 {
2195 tcp_clear_retrans_partial(tp);
2196
2197 tp->fackets_out = 0;
2198 tp->sacked_out = 0;
2199 }
2200
2201 /* Enter Loss state. If "how" is not zero, forget all SACK information
2202 * and reset tags completely, otherwise preserve SACKs. If receiver
2203 * dropped its ofo queue, we will know this due to reneging detection.
2204 */
2205 void tcp_enter_loss(struct sock *sk, int how)
2206 {
2207 const struct inet_connection_sock *icsk = inet_csk(sk);
2208 struct tcp_sock *tp = tcp_sk(sk);
2209 struct sk_buff *skb;
2210
2211 /* Reduce ssthresh if it has not yet been made inside this window. */
2212 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2213 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2214 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2215 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2216 tcp_ca_event(sk, CA_EVENT_LOSS);
2217 }
2218 tp->snd_cwnd = 1;
2219 tp->snd_cwnd_cnt = 0;
2220 tp->snd_cwnd_stamp = tcp_time_stamp;
2221
2222 tp->bytes_acked = 0;
2223 tcp_clear_retrans_partial(tp);
2224
2225 if (tcp_is_reno(tp))
2226 tcp_reset_reno_sack(tp);
2227
2228 if (!how) {
2229 /* Push undo marker, if it was plain RTO and nothing
2230 * was retransmitted. */
2231 tp->undo_marker = tp->snd_una;
2232 } else {
2233 tp->sacked_out = 0;
2234 tp->fackets_out = 0;
2235 }
2236 tcp_clear_all_retrans_hints(tp);
2237
2238 tcp_for_write_queue(skb, sk) {
2239 if (skb == tcp_send_head(sk))
2240 break;
2241
2242 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2243 tp->undo_marker = 0;
2244 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2245 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2246 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2247 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2248 tp->lost_out += tcp_skb_pcount(skb);
2249 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2250 }
2251 }
2252 tcp_verify_left_out(tp);
2253
2254 tp->reordering = min_t(unsigned int, tp->reordering,
2255 sysctl_tcp_reordering);
2256 tcp_set_ca_state(sk, TCP_CA_Loss);
2257 tp->high_seq = tp->snd_nxt;
2258 TCP_ECN_queue_cwr(tp);
2259 /* Abort F-RTO algorithm if one is in progress */
2260 tp->frto_counter = 0;
2261 }
2262
2263 /* If ACK arrived pointing to a remembered SACK, it means that our
2264 * remembered SACKs do not reflect real state of receiver i.e.
2265 * receiver _host_ is heavily congested (or buggy).
2266 *
2267 * Do processing similar to RTO timeout.
2268 */
2269 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2270 {
2271 if (flag & FLAG_SACK_RENEGING) {
2272 struct inet_connection_sock *icsk = inet_csk(sk);
2273 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2274
2275 tcp_enter_loss(sk, 1);
2276 icsk->icsk_retransmits++;
2277 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2278 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2279 icsk->icsk_rto, TCP_RTO_MAX);
2280 return 1;
2281 }
2282 return 0;
2283 }
2284
2285 static inline int tcp_fackets_out(struct tcp_sock *tp)
2286 {
2287 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2288 }
2289
2290 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2291 * counter when SACK is enabled (without SACK, sacked_out is used for
2292 * that purpose).
2293 *
2294 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2295 * segments up to the highest received SACK block so far and holes in
2296 * between them.
2297 *
2298 * With reordering, holes may still be in flight, so RFC3517 recovery
2299 * uses pure sacked_out (total number of SACKed segments) even though
2300 * it violates the RFC that uses duplicate ACKs, often these are equal
2301 * but when e.g. out-of-window ACKs or packet duplication occurs,
2302 * they differ. Since neither occurs due to loss, TCP should really
2303 * ignore them.
2304 */
2305 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2306 {
2307 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2308 }
2309
2310 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2311 {
2312 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2313 }
2314
2315 static inline int tcp_head_timedout(struct sock *sk)
2316 {
2317 struct tcp_sock *tp = tcp_sk(sk);
2318
2319 return tp->packets_out &&
2320 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2321 }
2322
2323 /* Linux NewReno/SACK/FACK/ECN state machine.
2324 * --------------------------------------
2325 *
2326 * "Open" Normal state, no dubious events, fast path.
2327 * "Disorder" In all the respects it is "Open",
2328 * but requires a bit more attention. It is entered when
2329 * we see some SACKs or dupacks. It is split of "Open"
2330 * mainly to move some processing from fast path to slow one.
2331 * "CWR" CWND was reduced due to some Congestion Notification event.
2332 * It can be ECN, ICMP source quench, local device congestion.
2333 * "Recovery" CWND was reduced, we are fast-retransmitting.
2334 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2335 *
2336 * tcp_fastretrans_alert() is entered:
2337 * - each incoming ACK, if state is not "Open"
2338 * - when arrived ACK is unusual, namely:
2339 * * SACK
2340 * * Duplicate ACK.
2341 * * ECN ECE.
2342 *
2343 * Counting packets in flight is pretty simple.
2344 *
2345 * in_flight = packets_out - left_out + retrans_out
2346 *
2347 * packets_out is SND.NXT-SND.UNA counted in packets.
2348 *
2349 * retrans_out is number of retransmitted segments.
2350 *
2351 * left_out is number of segments left network, but not ACKed yet.
2352 *
2353 * left_out = sacked_out + lost_out
2354 *
2355 * sacked_out: Packets, which arrived to receiver out of order
2356 * and hence not ACKed. With SACKs this number is simply
2357 * amount of SACKed data. Even without SACKs
2358 * it is easy to give pretty reliable estimate of this number,
2359 * counting duplicate ACKs.
2360 *
2361 * lost_out: Packets lost by network. TCP has no explicit
2362 * "loss notification" feedback from network (for now).
2363 * It means that this number can be only _guessed_.
2364 * Actually, it is the heuristics to predict lossage that
2365 * distinguishes different algorithms.
2366 *
2367 * F.e. after RTO, when all the queue is considered as lost,
2368 * lost_out = packets_out and in_flight = retrans_out.
2369 *
2370 * Essentially, we have now two algorithms counting
2371 * lost packets.
2372 *
2373 * FACK: It is the simplest heuristics. As soon as we decided
2374 * that something is lost, we decide that _all_ not SACKed
2375 * packets until the most forward SACK are lost. I.e.
2376 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2377 * It is absolutely correct estimate, if network does not reorder
2378 * packets. And it loses any connection to reality when reordering
2379 * takes place. We use FACK by default until reordering
2380 * is suspected on the path to this destination.
2381 *
2382 * NewReno: when Recovery is entered, we assume that one segment
2383 * is lost (classic Reno). While we are in Recovery and
2384 * a partial ACK arrives, we assume that one more packet
2385 * is lost (NewReno). This heuristics are the same in NewReno
2386 * and SACK.
2387 *
2388 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2389 * deflation etc. CWND is real congestion window, never inflated, changes
2390 * only according to classic VJ rules.
2391 *
2392 * Really tricky (and requiring careful tuning) part of algorithm
2393 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2394 * The first determines the moment _when_ we should reduce CWND and,
2395 * hence, slow down forward transmission. In fact, it determines the moment
2396 * when we decide that hole is caused by loss, rather than by a reorder.
2397 *
2398 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2399 * holes, caused by lost packets.
2400 *
2401 * And the most logically complicated part of algorithm is undo
2402 * heuristics. We detect false retransmits due to both too early
2403 * fast retransmit (reordering) and underestimated RTO, analyzing
2404 * timestamps and D-SACKs. When we detect that some segments were
2405 * retransmitted by mistake and CWND reduction was wrong, we undo
2406 * window reduction and abort recovery phase. This logic is hidden
2407 * inside several functions named tcp_try_undo_<something>.
2408 */
2409
2410 /* This function decides, when we should leave Disordered state
2411 * and enter Recovery phase, reducing congestion window.
2412 *
2413 * Main question: may we further continue forward transmission
2414 * with the same cwnd?
2415 */
2416 static int tcp_time_to_recover(struct sock *sk)
2417 {
2418 struct tcp_sock *tp = tcp_sk(sk);
2419 __u32 packets_out;
2420
2421 /* Do not perform any recovery during F-RTO algorithm */
2422 if (tp->frto_counter)
2423 return 0;
2424
2425 /* Trick#1: The loss is proven. */
2426 if (tp->lost_out)
2427 return 1;
2428
2429 /* Not-A-Trick#2 : Classic rule... */
2430 if (tcp_dupack_heurestics(tp) > tp->reordering)
2431 return 1;
2432
2433 /* Trick#3 : when we use RFC2988 timer restart, fast
2434 * retransmit can be triggered by timeout of queue head.
2435 */
2436 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2437 return 1;
2438
2439 /* Trick#4: It is still not OK... But will it be useful to delay
2440 * recovery more?
2441 */
2442 packets_out = tp->packets_out;
2443 if (packets_out <= tp->reordering &&
2444 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2445 !tcp_may_send_now(sk)) {
2446 /* We have nothing to send. This connection is limited
2447 * either by receiver window or by application.
2448 */
2449 return 1;
2450 }
2451
2452 return 0;
2453 }
2454
2455 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2456 * is against sacked "cnt", otherwise it's against facked "cnt"
2457 */
2458 static void tcp_mark_head_lost(struct sock *sk, int packets)
2459 {
2460 struct tcp_sock *tp = tcp_sk(sk);
2461 struct sk_buff *skb;
2462 int cnt, oldcnt;
2463 int err;
2464 unsigned int mss;
2465
2466 WARN_ON(packets > tp->packets_out);
2467 if (tp->lost_skb_hint) {
2468 skb = tp->lost_skb_hint;
2469 cnt = tp->lost_cnt_hint;
2470 } else {
2471 skb = tcp_write_queue_head(sk);
2472 cnt = 0;
2473 }
2474
2475 tcp_for_write_queue_from(skb, sk) {
2476 if (skb == tcp_send_head(sk))
2477 break;
2478 /* TODO: do this better */
2479 /* this is not the most efficient way to do this... */
2480 tp->lost_skb_hint = skb;
2481 tp->lost_cnt_hint = cnt;
2482
2483 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2484 break;
2485
2486 oldcnt = cnt;
2487 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2488 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2489 cnt += tcp_skb_pcount(skb);
2490
2491 if (cnt > packets) {
2492 if (tcp_is_sack(tp) || (oldcnt >= packets))
2493 break;
2494
2495 mss = skb_shinfo(skb)->gso_size;
2496 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2497 if (err < 0)
2498 break;
2499 cnt = packets;
2500 }
2501
2502 tcp_skb_mark_lost(tp, skb);
2503 }
2504 tcp_verify_left_out(tp);
2505 }
2506
2507 /* Account newly detected lost packet(s) */
2508
2509 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2510 {
2511 struct tcp_sock *tp = tcp_sk(sk);
2512
2513 if (tcp_is_reno(tp)) {
2514 tcp_mark_head_lost(sk, 1);
2515 } else if (tcp_is_fack(tp)) {
2516 int lost = tp->fackets_out - tp->reordering;
2517 if (lost <= 0)
2518 lost = 1;
2519 tcp_mark_head_lost(sk, lost);
2520 } else {
2521 int sacked_upto = tp->sacked_out - tp->reordering;
2522 if (sacked_upto < fast_rexmit)
2523 sacked_upto = fast_rexmit;
2524 tcp_mark_head_lost(sk, sacked_upto);
2525 }
2526
2527 /* New heuristics: it is possible only after we switched
2528 * to restart timer each time when something is ACKed.
2529 * Hence, we can detect timed out packets during fast
2530 * retransmit without falling to slow start.
2531 */
2532 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2533 struct sk_buff *skb;
2534
2535 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2536 : tcp_write_queue_head(sk);
2537
2538 tcp_for_write_queue_from(skb, sk) {
2539 if (skb == tcp_send_head(sk))
2540 break;
2541 if (!tcp_skb_timedout(sk, skb))
2542 break;
2543
2544 tcp_skb_mark_lost(tp, skb);
2545 }
2546
2547 tp->scoreboard_skb_hint = skb;
2548
2549 tcp_verify_left_out(tp);
2550 }
2551 }
2552
2553 /* CWND moderation, preventing bursts due to too big ACKs
2554 * in dubious situations.
2555 */
2556 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2557 {
2558 tp->snd_cwnd = min(tp->snd_cwnd,
2559 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2560 tp->snd_cwnd_stamp = tcp_time_stamp;
2561 }
2562
2563 /* Lower bound on congestion window is slow start threshold
2564 * unless congestion avoidance choice decides to overide it.
2565 */
2566 static inline u32 tcp_cwnd_min(const struct sock *sk)
2567 {
2568 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2569
2570 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2571 }
2572
2573 /* Decrease cwnd each second ack. */
2574 static void tcp_cwnd_down(struct sock *sk, int flag)
2575 {
2576 struct tcp_sock *tp = tcp_sk(sk);
2577 int decr = tp->snd_cwnd_cnt + 1;
2578
2579 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2580 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2581 tp->snd_cwnd_cnt = decr & 1;
2582 decr >>= 1;
2583
2584 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2585 tp->snd_cwnd -= decr;
2586
2587 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2588 tp->snd_cwnd_stamp = tcp_time_stamp;
2589 }
2590 }
2591
2592 /* Nothing was retransmitted or returned timestamp is less
2593 * than timestamp of the first retransmission.
2594 */
2595 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2596 {
2597 return !tp->retrans_stamp ||
2598 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2599 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2600 }
2601
2602 /* Undo procedures. */
2603
2604 #if FASTRETRANS_DEBUG > 1
2605 static void DBGUNDO(struct sock *sk, const char *msg)
2606 {
2607 struct tcp_sock *tp = tcp_sk(sk);
2608 struct inet_sock *inet = inet_sk(sk);
2609
2610 if (sk->sk_family == AF_INET) {
2611 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2612 msg,
2613 &inet->daddr, ntohs(inet->dport),
2614 tp->snd_cwnd, tcp_left_out(tp),
2615 tp->snd_ssthresh, tp->prior_ssthresh,
2616 tp->packets_out);
2617 }
2618 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2619 else if (sk->sk_family == AF_INET6) {
2620 struct ipv6_pinfo *np = inet6_sk(sk);
2621 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2622 msg,
2623 &np->daddr, ntohs(inet->dport),
2624 tp->snd_cwnd, tcp_left_out(tp),
2625 tp->snd_ssthresh, tp->prior_ssthresh,
2626 tp->packets_out);
2627 }
2628 #endif
2629 }
2630 #else
2631 #define DBGUNDO(x...) do { } while (0)
2632 #endif
2633
2634 static void tcp_undo_cwr(struct sock *sk, const int undo)
2635 {
2636 struct tcp_sock *tp = tcp_sk(sk);
2637
2638 if (tp->prior_ssthresh) {
2639 const struct inet_connection_sock *icsk = inet_csk(sk);
2640
2641 if (icsk->icsk_ca_ops->undo_cwnd)
2642 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2643 else
2644 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2645
2646 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2647 tp->snd_ssthresh = tp->prior_ssthresh;
2648 TCP_ECN_withdraw_cwr(tp);
2649 }
2650 } else {
2651 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2652 }
2653 tcp_moderate_cwnd(tp);
2654 tp->snd_cwnd_stamp = tcp_time_stamp;
2655 }
2656
2657 static inline int tcp_may_undo(struct tcp_sock *tp)
2658 {
2659 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2660 }
2661
2662 /* People celebrate: "We love our President!" */
2663 static int tcp_try_undo_recovery(struct sock *sk)
2664 {
2665 struct tcp_sock *tp = tcp_sk(sk);
2666
2667 if (tcp_may_undo(tp)) {
2668 int mib_idx;
2669
2670 /* Happy end! We did not retransmit anything
2671 * or our original transmission succeeded.
2672 */
2673 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2674 tcp_undo_cwr(sk, 1);
2675 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2676 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2677 else
2678 mib_idx = LINUX_MIB_TCPFULLUNDO;
2679
2680 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2681 tp->undo_marker = 0;
2682 }
2683 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2684 /* Hold old state until something *above* high_seq
2685 * is ACKed. For Reno it is MUST to prevent false
2686 * fast retransmits (RFC2582). SACK TCP is safe. */
2687 tcp_moderate_cwnd(tp);
2688 return 1;
2689 }
2690 tcp_set_ca_state(sk, TCP_CA_Open);
2691 return 0;
2692 }
2693
2694 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2695 static void tcp_try_undo_dsack(struct sock *sk)
2696 {
2697 struct tcp_sock *tp = tcp_sk(sk);
2698
2699 if (tp->undo_marker && !tp->undo_retrans) {
2700 DBGUNDO(sk, "D-SACK");
2701 tcp_undo_cwr(sk, 1);
2702 tp->undo_marker = 0;
2703 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2704 }
2705 }
2706
2707 /* Undo during fast recovery after partial ACK. */
2708
2709 static int tcp_try_undo_partial(struct sock *sk, int acked)
2710 {
2711 struct tcp_sock *tp = tcp_sk(sk);
2712 /* Partial ACK arrived. Force Hoe's retransmit. */
2713 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2714
2715 if (tcp_may_undo(tp)) {
2716 /* Plain luck! Hole if filled with delayed
2717 * packet, rather than with a retransmit.
2718 */
2719 if (tp->retrans_out == 0)
2720 tp->retrans_stamp = 0;
2721
2722 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2723
2724 DBGUNDO(sk, "Hoe");
2725 tcp_undo_cwr(sk, 0);
2726 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2727
2728 /* So... Do not make Hoe's retransmit yet.
2729 * If the first packet was delayed, the rest
2730 * ones are most probably delayed as well.
2731 */
2732 failed = 0;
2733 }
2734 return failed;
2735 }
2736
2737 /* Undo during loss recovery after partial ACK. */
2738 static int tcp_try_undo_loss(struct sock *sk)
2739 {
2740 struct tcp_sock *tp = tcp_sk(sk);
2741
2742 if (tcp_may_undo(tp)) {
2743 struct sk_buff *skb;
2744 tcp_for_write_queue(skb, sk) {
2745 if (skb == tcp_send_head(sk))
2746 break;
2747 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2748 }
2749
2750 tcp_clear_all_retrans_hints(tp);
2751
2752 DBGUNDO(sk, "partial loss");
2753 tp->lost_out = 0;
2754 tcp_undo_cwr(sk, 1);
2755 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2756 inet_csk(sk)->icsk_retransmits = 0;
2757 tp->undo_marker = 0;
2758 if (tcp_is_sack(tp))
2759 tcp_set_ca_state(sk, TCP_CA_Open);
2760 return 1;
2761 }
2762 return 0;
2763 }
2764
2765 static inline void tcp_complete_cwr(struct sock *sk)
2766 {
2767 struct tcp_sock *tp = tcp_sk(sk);
2768 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2769 tp->snd_cwnd_stamp = tcp_time_stamp;
2770 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2771 }
2772
2773 static void tcp_try_keep_open(struct sock *sk)
2774 {
2775 struct tcp_sock *tp = tcp_sk(sk);
2776 int state = TCP_CA_Open;
2777
2778 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2779 state = TCP_CA_Disorder;
2780
2781 if (inet_csk(sk)->icsk_ca_state != state) {
2782 tcp_set_ca_state(sk, state);
2783 tp->high_seq = tp->snd_nxt;
2784 }
2785 }
2786
2787 static void tcp_try_to_open(struct sock *sk, int flag)
2788 {
2789 struct tcp_sock *tp = tcp_sk(sk);
2790
2791 tcp_verify_left_out(tp);
2792
2793 if (!tp->frto_counter && tp->retrans_out == 0)
2794 tp->retrans_stamp = 0;
2795
2796 if (flag & FLAG_ECE)
2797 tcp_enter_cwr(sk, 1);
2798
2799 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2800 tcp_try_keep_open(sk);
2801 tcp_moderate_cwnd(tp);
2802 } else {
2803 tcp_cwnd_down(sk, flag);
2804 }
2805 }
2806
2807 static void tcp_mtup_probe_failed(struct sock *sk)
2808 {
2809 struct inet_connection_sock *icsk = inet_csk(sk);
2810
2811 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2812 icsk->icsk_mtup.probe_size = 0;
2813 }
2814
2815 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2816 {
2817 struct tcp_sock *tp = tcp_sk(sk);
2818 struct inet_connection_sock *icsk = inet_csk(sk);
2819
2820 /* FIXME: breaks with very large cwnd */
2821 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2822 tp->snd_cwnd = tp->snd_cwnd *
2823 tcp_mss_to_mtu(sk, tp->mss_cache) /
2824 icsk->icsk_mtup.probe_size;
2825 tp->snd_cwnd_cnt = 0;
2826 tp->snd_cwnd_stamp = tcp_time_stamp;
2827 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2828
2829 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2830 icsk->icsk_mtup.probe_size = 0;
2831 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2832 }
2833
2834 /* Do a simple retransmit without using the backoff mechanisms in
2835 * tcp_timer. This is used for path mtu discovery.
2836 * The socket is already locked here.
2837 */
2838 void tcp_simple_retransmit(struct sock *sk)
2839 {
2840 const struct inet_connection_sock *icsk = inet_csk(sk);
2841 struct tcp_sock *tp = tcp_sk(sk);
2842 struct sk_buff *skb;
2843 unsigned int mss = tcp_current_mss(sk, 0);
2844 u32 prior_lost = tp->lost_out;
2845
2846 tcp_for_write_queue(skb, sk) {
2847 if (skb == tcp_send_head(sk))
2848 break;
2849 if (tcp_skb_seglen(skb) > mss &&
2850 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2851 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2852 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2853 tp->retrans_out -= tcp_skb_pcount(skb);
2854 }
2855 tcp_skb_mark_lost_uncond_verify(tp, skb);
2856 }
2857 }
2858
2859 tcp_clear_retrans_hints_partial(tp);
2860
2861 if (prior_lost == tp->lost_out)
2862 return;
2863
2864 if (tcp_is_reno(tp))
2865 tcp_limit_reno_sacked(tp);
2866
2867 tcp_verify_left_out(tp);
2868
2869 /* Don't muck with the congestion window here.
2870 * Reason is that we do not increase amount of _data_
2871 * in network, but units changed and effective
2872 * cwnd/ssthresh really reduced now.
2873 */
2874 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2875 tp->high_seq = tp->snd_nxt;
2876 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2877 tp->prior_ssthresh = 0;
2878 tp->undo_marker = 0;
2879 tcp_set_ca_state(sk, TCP_CA_Loss);
2880 }
2881 tcp_xmit_retransmit_queue(sk);
2882 }
2883
2884 /* Process an event, which can update packets-in-flight not trivially.
2885 * Main goal of this function is to calculate new estimate for left_out,
2886 * taking into account both packets sitting in receiver's buffer and
2887 * packets lost by network.
2888 *
2889 * Besides that it does CWND reduction, when packet loss is detected
2890 * and changes state of machine.
2891 *
2892 * It does _not_ decide what to send, it is made in function
2893 * tcp_xmit_retransmit_queue().
2894 */
2895 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2896 {
2897 struct inet_connection_sock *icsk = inet_csk(sk);
2898 struct tcp_sock *tp = tcp_sk(sk);
2899 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2900 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2901 (tcp_fackets_out(tp) > tp->reordering));
2902 int fast_rexmit = 0, mib_idx;
2903
2904 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2905 tp->sacked_out = 0;
2906 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2907 tp->fackets_out = 0;
2908
2909 /* Now state machine starts.
2910 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2911 if (flag & FLAG_ECE)
2912 tp->prior_ssthresh = 0;
2913
2914 /* B. In all the states check for reneging SACKs. */
2915 if (tcp_check_sack_reneging(sk, flag))
2916 return;
2917
2918 /* C. Process data loss notification, provided it is valid. */
2919 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2920 before(tp->snd_una, tp->high_seq) &&
2921 icsk->icsk_ca_state != TCP_CA_Open &&
2922 tp->fackets_out > tp->reordering) {
2923 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2924 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2925 }
2926
2927 /* D. Check consistency of the current state. */
2928 tcp_verify_left_out(tp);
2929
2930 /* E. Check state exit conditions. State can be terminated
2931 * when high_seq is ACKed. */
2932 if (icsk->icsk_ca_state == TCP_CA_Open) {
2933 WARN_ON(tp->retrans_out != 0);
2934 tp->retrans_stamp = 0;
2935 } else if (!before(tp->snd_una, tp->high_seq)) {
2936 switch (icsk->icsk_ca_state) {
2937 case TCP_CA_Loss:
2938 icsk->icsk_retransmits = 0;
2939 if (tcp_try_undo_recovery(sk))
2940 return;
2941 break;
2942
2943 case TCP_CA_CWR:
2944 /* CWR is to be held something *above* high_seq
2945 * is ACKed for CWR bit to reach receiver. */
2946 if (tp->snd_una != tp->high_seq) {
2947 tcp_complete_cwr(sk);
2948 tcp_set_ca_state(sk, TCP_CA_Open);
2949 }
2950 break;
2951
2952 case TCP_CA_Disorder:
2953 tcp_try_undo_dsack(sk);
2954 if (!tp->undo_marker ||
2955 /* For SACK case do not Open to allow to undo
2956 * catching for all duplicate ACKs. */
2957 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2958 tp->undo_marker = 0;
2959 tcp_set_ca_state(sk, TCP_CA_Open);
2960 }
2961 break;
2962
2963 case TCP_CA_Recovery:
2964 if (tcp_is_reno(tp))
2965 tcp_reset_reno_sack(tp);
2966 if (tcp_try_undo_recovery(sk))
2967 return;
2968 tcp_complete_cwr(sk);
2969 break;
2970 }
2971 }
2972
2973 /* F. Process state. */
2974 switch (icsk->icsk_ca_state) {
2975 case TCP_CA_Recovery:
2976 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2977 if (tcp_is_reno(tp) && is_dupack)
2978 tcp_add_reno_sack(sk);
2979 } else
2980 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2981 break;
2982 case TCP_CA_Loss:
2983 if (flag & FLAG_DATA_ACKED)
2984 icsk->icsk_retransmits = 0;
2985 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2986 tcp_reset_reno_sack(tp);
2987 if (!tcp_try_undo_loss(sk)) {
2988 tcp_moderate_cwnd(tp);
2989 tcp_xmit_retransmit_queue(sk);
2990 return;
2991 }
2992 if (icsk->icsk_ca_state != TCP_CA_Open)
2993 return;
2994 /* Loss is undone; fall through to processing in Open state. */
2995 default:
2996 if (tcp_is_reno(tp)) {
2997 if (flag & FLAG_SND_UNA_ADVANCED)
2998 tcp_reset_reno_sack(tp);
2999 if (is_dupack)
3000 tcp_add_reno_sack(sk);
3001 }
3002
3003 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3004 tcp_try_undo_dsack(sk);
3005
3006 if (!tcp_time_to_recover(sk)) {
3007 tcp_try_to_open(sk, flag);
3008 return;
3009 }
3010
3011 /* MTU probe failure: don't reduce cwnd */
3012 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3013 icsk->icsk_mtup.probe_size &&
3014 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3015 tcp_mtup_probe_failed(sk);
3016 /* Restores the reduction we did in tcp_mtup_probe() */
3017 tp->snd_cwnd++;
3018 tcp_simple_retransmit(sk);
3019 return;
3020 }
3021
3022 /* Otherwise enter Recovery state */
3023
3024 if (tcp_is_reno(tp))
3025 mib_idx = LINUX_MIB_TCPRENORECOVERY;
3026 else
3027 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3028
3029 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3030
3031 tp->high_seq = tp->snd_nxt;
3032 tp->prior_ssthresh = 0;
3033 tp->undo_marker = tp->snd_una;
3034 tp->undo_retrans = tp->retrans_out;
3035
3036 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3037 if (!(flag & FLAG_ECE))
3038 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3039 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3040 TCP_ECN_queue_cwr(tp);
3041 }
3042
3043 tp->bytes_acked = 0;
3044 tp->snd_cwnd_cnt = 0;
3045 tcp_set_ca_state(sk, TCP_CA_Recovery);
3046 fast_rexmit = 1;
3047 }
3048
3049 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3050 tcp_update_scoreboard(sk, fast_rexmit);
3051 tcp_cwnd_down(sk, flag);
3052 tcp_xmit_retransmit_queue(sk);
3053 }
3054
3055 /* Read draft-ietf-tcplw-high-performance before mucking
3056 * with this code. (Supersedes RFC1323)
3057 */
3058 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3059 {
3060 /* RTTM Rule: A TSecr value received in a segment is used to
3061 * update the averaged RTT measurement only if the segment
3062 * acknowledges some new data, i.e., only if it advances the
3063 * left edge of the send window.
3064 *
3065 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3066 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3067 *
3068 * Changed: reset backoff as soon as we see the first valid sample.
3069 * If we do not, we get strongly overestimated rto. With timestamps
3070 * samples are accepted even from very old segments: f.e., when rtt=1
3071 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3072 * answer arrives rto becomes 120 seconds! If at least one of segments
3073 * in window is lost... Voila. --ANK (010210)
3074 */
3075 struct tcp_sock *tp = tcp_sk(sk);
3076 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
3077 tcp_rtt_estimator(sk, seq_rtt);
3078 tcp_set_rto(sk);
3079 inet_csk(sk)->icsk_backoff = 0;
3080 }
3081
3082 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3083 {
3084 /* We don't have a timestamp. Can only use
3085 * packets that are not retransmitted to determine
3086 * rtt estimates. Also, we must not reset the
3087 * backoff for rto until we get a non-retransmitted
3088 * packet. This allows us to deal with a situation
3089 * where the network delay has increased suddenly.
3090 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3091 */
3092
3093 if (flag & FLAG_RETRANS_DATA_ACKED)
3094 return;
3095
3096 tcp_rtt_estimator(sk, seq_rtt);
3097 tcp_set_rto(sk);
3098 inet_csk(sk)->icsk_backoff = 0;
3099 }
3100
3101 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3102 const s32 seq_rtt)
3103 {
3104 const struct tcp_sock *tp = tcp_sk(sk);
3105 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3106 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3107 tcp_ack_saw_tstamp(sk, flag);
3108 else if (seq_rtt >= 0)
3109 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3110 }
3111
3112 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3113 {
3114 const struct inet_connection_sock *icsk = inet_csk(sk);
3115 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3116 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3117 }
3118
3119 /* Restart timer after forward progress on connection.
3120 * RFC2988 recommends to restart timer to now+rto.
3121 */
3122 static void tcp_rearm_rto(struct sock *sk)
3123 {
3124 struct tcp_sock *tp = tcp_sk(sk);
3125
3126 if (!tp->packets_out) {
3127 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3128 } else {
3129 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3130 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3131 }
3132 }
3133
3134 /* If we get here, the whole TSO packet has not been acked. */
3135 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3136 {
3137 struct tcp_sock *tp = tcp_sk(sk);
3138 u32 packets_acked;
3139
3140 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3141
3142 packets_acked = tcp_skb_pcount(skb);
3143 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3144 return 0;
3145 packets_acked -= tcp_skb_pcount(skb);
3146
3147 if (packets_acked) {
3148 BUG_ON(tcp_skb_pcount(skb) == 0);
3149 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3150 }
3151
3152 return packets_acked;
3153 }
3154
3155 /* Remove acknowledged frames from the retransmission queue. If our packet
3156 * is before the ack sequence we can discard it as it's confirmed to have
3157 * arrived at the other end.
3158 */
3159 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3160 u32 prior_snd_una)
3161 {
3162 struct tcp_sock *tp = tcp_sk(sk);
3163 const struct inet_connection_sock *icsk = inet_csk(sk);
3164 struct sk_buff *skb;
3165 u32 now = tcp_time_stamp;
3166 int fully_acked = 1;
3167 int flag = 0;
3168 u32 pkts_acked = 0;
3169 u32 reord = tp->packets_out;
3170 u32 prior_sacked = tp->sacked_out;
3171 s32 seq_rtt = -1;
3172 s32 ca_seq_rtt = -1;
3173 ktime_t last_ackt = net_invalid_timestamp();
3174
3175 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3176 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3177 u32 end_seq;
3178 u32 acked_pcount;
3179 u8 sacked = scb->sacked;
3180
3181 /* Determine how many packets and what bytes were acked, tso and else */
3182 if (after(scb->end_seq, tp->snd_una)) {
3183 if (tcp_skb_pcount(skb) == 1 ||
3184 !after(tp->snd_una, scb->seq))
3185 break;
3186
3187 acked_pcount = tcp_tso_acked(sk, skb);
3188 if (!acked_pcount)
3189 break;
3190
3191 fully_acked = 0;
3192 end_seq = tp->snd_una;
3193 } else {
3194 acked_pcount = tcp_skb_pcount(skb);
3195 end_seq = scb->end_seq;
3196 }
3197
3198 /* MTU probing checks */
3199 if (fully_acked && icsk->icsk_mtup.probe_size &&
3200 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
3201 tcp_mtup_probe_success(sk, skb);
3202 }
3203
3204 if (sacked & TCPCB_RETRANS) {
3205 if (sacked & TCPCB_SACKED_RETRANS)
3206 tp->retrans_out -= acked_pcount;
3207 flag |= FLAG_RETRANS_DATA_ACKED;
3208 ca_seq_rtt = -1;
3209 seq_rtt = -1;
3210 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3211 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3212 } else {
3213 ca_seq_rtt = now - scb->when;
3214 last_ackt = skb->tstamp;
3215 if (seq_rtt < 0) {
3216 seq_rtt = ca_seq_rtt;
3217 }
3218 if (!(sacked & TCPCB_SACKED_ACKED))
3219 reord = min(pkts_acked, reord);
3220 }
3221
3222 if (sacked & TCPCB_SACKED_ACKED)
3223 tp->sacked_out -= acked_pcount;
3224 if (sacked & TCPCB_LOST)
3225 tp->lost_out -= acked_pcount;
3226
3227 tp->packets_out -= acked_pcount;
3228 pkts_acked += acked_pcount;
3229
3230 /* Initial outgoing SYN's get put onto the write_queue
3231 * just like anything else we transmit. It is not
3232 * true data, and if we misinform our callers that
3233 * this ACK acks real data, we will erroneously exit
3234 * connection startup slow start one packet too
3235 * quickly. This is severely frowned upon behavior.
3236 */
3237 if (!(scb->flags & TCPCB_FLAG_SYN)) {
3238 flag |= FLAG_DATA_ACKED;
3239 } else {
3240 flag |= FLAG_SYN_ACKED;
3241 tp->retrans_stamp = 0;
3242 }
3243
3244 if (!fully_acked)
3245 break;
3246
3247 tcp_unlink_write_queue(skb, sk);
3248 sk_wmem_free_skb(sk, skb);
3249 tp->scoreboard_skb_hint = NULL;
3250 if (skb == tp->retransmit_skb_hint)
3251 tp->retransmit_skb_hint = NULL;
3252 if (skb == tp->lost_skb_hint)
3253 tp->lost_skb_hint = NULL;
3254 }
3255
3256 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3257 tp->snd_up = tp->snd_una;
3258
3259 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3260 flag |= FLAG_SACK_RENEGING;
3261
3262 if (flag & FLAG_ACKED) {
3263 const struct tcp_congestion_ops *ca_ops
3264 = inet_csk(sk)->icsk_ca_ops;
3265
3266 tcp_ack_update_rtt(sk, flag, seq_rtt);
3267 tcp_rearm_rto(sk);
3268
3269 if (tcp_is_reno(tp)) {
3270 tcp_remove_reno_sacks(sk, pkts_acked);
3271 } else {
3272 /* Non-retransmitted hole got filled? That's reordering */
3273 if (reord < prior_fackets)
3274 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3275
3276 /* No need to care for underflows here because
3277 * the lost_skb_hint gets NULLed if we're past it
3278 * (or something non-trivial happened)
3279 */
3280 if (tcp_is_fack(tp))
3281 tp->lost_cnt_hint -= pkts_acked;
3282 else
3283 tp->lost_cnt_hint -= prior_sacked - tp->sacked_out;
3284 }
3285
3286 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3287
3288 if (ca_ops->pkts_acked) {
3289 s32 rtt_us = -1;
3290
3291 /* Is the ACK triggering packet unambiguous? */
3292 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3293 /* High resolution needed and available? */
3294 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3295 !ktime_equal(last_ackt,
3296 net_invalid_timestamp()))
3297 rtt_us = ktime_us_delta(ktime_get_real(),
3298 last_ackt);
3299 else if (ca_seq_rtt > 0)
3300 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3301 }
3302
3303 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3304 }
3305 }
3306
3307 #if FASTRETRANS_DEBUG > 0
3308 WARN_ON((int)tp->sacked_out < 0);
3309 WARN_ON((int)tp->lost_out < 0);
3310 WARN_ON((int)tp->retrans_out < 0);
3311 if (!tp->packets_out && tcp_is_sack(tp)) {
3312 icsk = inet_csk(sk);
3313 if (tp->lost_out) {
3314 printk(KERN_DEBUG "Leak l=%u %d\n",
3315 tp->lost_out, icsk->icsk_ca_state);
3316 tp->lost_out = 0;
3317 }
3318 if (tp->sacked_out) {
3319 printk(KERN_DEBUG "Leak s=%u %d\n",
3320 tp->sacked_out, icsk->icsk_ca_state);
3321 tp->sacked_out = 0;
3322 }
3323 if (tp->retrans_out) {
3324 printk(KERN_DEBUG "Leak r=%u %d\n",
3325 tp->retrans_out, icsk->icsk_ca_state);
3326 tp->retrans_out = 0;
3327 }
3328 }
3329 #endif
3330 return flag;
3331 }
3332
3333 static void tcp_ack_probe(struct sock *sk)
3334 {
3335 const struct tcp_sock *tp = tcp_sk(sk);
3336 struct inet_connection_sock *icsk = inet_csk(sk);
3337
3338 /* Was it a usable window open? */
3339
3340 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3341 icsk->icsk_backoff = 0;
3342 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3343 /* Socket must be waked up by subsequent tcp_data_snd_check().
3344 * This function is not for random using!
3345 */
3346 } else {
3347 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3348 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3349 TCP_RTO_MAX);
3350 }
3351 }
3352
3353 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3354 {
3355 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3356 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3357 }
3358
3359 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3360 {
3361 const struct tcp_sock *tp = tcp_sk(sk);
3362 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3363 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3364 }
3365
3366 /* Check that window update is acceptable.
3367 * The function assumes that snd_una<=ack<=snd_next.
3368 */
3369 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3370 const u32 ack, const u32 ack_seq,
3371 const u32 nwin)
3372 {
3373 return (after(ack, tp->snd_una) ||
3374 after(ack_seq, tp->snd_wl1) ||
3375 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3376 }
3377
3378 /* Update our send window.
3379 *
3380 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3381 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3382 */
3383 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3384 u32 ack_seq)
3385 {
3386 struct tcp_sock *tp = tcp_sk(sk);
3387 int flag = 0;
3388 u32 nwin = ntohs(tcp_hdr(skb)->window);
3389
3390 if (likely(!tcp_hdr(skb)->syn))
3391 nwin <<= tp->rx_opt.snd_wscale;
3392
3393 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3394 flag |= FLAG_WIN_UPDATE;
3395 tcp_update_wl(tp, ack, ack_seq);
3396
3397 if (tp->snd_wnd != nwin) {
3398 tp->snd_wnd = nwin;
3399
3400 /* Note, it is the only place, where
3401 * fast path is recovered for sending TCP.
3402 */
3403 tp->pred_flags = 0;
3404 tcp_fast_path_check(sk);
3405
3406 if (nwin > tp->max_window) {
3407 tp->max_window = nwin;
3408 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3409 }
3410 }
3411 }
3412
3413 tp->snd_una = ack;
3414
3415 return flag;
3416 }
3417
3418 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3419 * continue in congestion avoidance.
3420 */
3421 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3422 {
3423 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3424 tp->snd_cwnd_cnt = 0;
3425 tp->bytes_acked = 0;
3426 TCP_ECN_queue_cwr(tp);
3427 tcp_moderate_cwnd(tp);
3428 }
3429
3430 /* A conservative spurious RTO response algorithm: reduce cwnd using
3431 * rate halving and continue in congestion avoidance.
3432 */
3433 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3434 {
3435 tcp_enter_cwr(sk, 0);
3436 }
3437
3438 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3439 {
3440 if (flag & FLAG_ECE)
3441 tcp_ratehalving_spur_to_response(sk);
3442 else
3443 tcp_undo_cwr(sk, 1);
3444 }
3445
3446 /* F-RTO spurious RTO detection algorithm (RFC4138)
3447 *
3448 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3449 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3450 * window (but not to or beyond highest sequence sent before RTO):
3451 * On First ACK, send two new segments out.
3452 * On Second ACK, RTO was likely spurious. Do spurious response (response
3453 * algorithm is not part of the F-RTO detection algorithm
3454 * given in RFC4138 but can be selected separately).
3455 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3456 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3457 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3458 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3459 *
3460 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3461 * original window even after we transmit two new data segments.
3462 *
3463 * SACK version:
3464 * on first step, wait until first cumulative ACK arrives, then move to
3465 * the second step. In second step, the next ACK decides.
3466 *
3467 * F-RTO is implemented (mainly) in four functions:
3468 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3469 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3470 * called when tcp_use_frto() showed green light
3471 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3472 * - tcp_enter_frto_loss() is called if there is not enough evidence
3473 * to prove that the RTO is indeed spurious. It transfers the control
3474 * from F-RTO to the conventional RTO recovery
3475 */
3476 static int tcp_process_frto(struct sock *sk, int flag)
3477 {
3478 struct tcp_sock *tp = tcp_sk(sk);
3479
3480 tcp_verify_left_out(tp);
3481
3482 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3483 if (flag & FLAG_DATA_ACKED)
3484 inet_csk(sk)->icsk_retransmits = 0;
3485
3486 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3487 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3488 tp->undo_marker = 0;
3489
3490 if (!before(tp->snd_una, tp->frto_highmark)) {
3491 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3492 return 1;
3493 }
3494
3495 if (!tcp_is_sackfrto(tp)) {
3496 /* RFC4138 shortcoming in step 2; should also have case c):
3497 * ACK isn't duplicate nor advances window, e.g., opposite dir
3498 * data, winupdate
3499 */
3500 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3501 return 1;
3502
3503 if (!(flag & FLAG_DATA_ACKED)) {
3504 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3505 flag);
3506 return 1;
3507 }
3508 } else {
3509 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3510 /* Prevent sending of new data. */
3511 tp->snd_cwnd = min(tp->snd_cwnd,
3512 tcp_packets_in_flight(tp));
3513 return 1;
3514 }
3515
3516 if ((tp->frto_counter >= 2) &&
3517 (!(flag & FLAG_FORWARD_PROGRESS) ||
3518 ((flag & FLAG_DATA_SACKED) &&
3519 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3520 /* RFC4138 shortcoming (see comment above) */
3521 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3522 (flag & FLAG_NOT_DUP))
3523 return 1;
3524
3525 tcp_enter_frto_loss(sk, 3, flag);
3526 return 1;
3527 }
3528 }
3529
3530 if (tp->frto_counter == 1) {
3531 /* tcp_may_send_now needs to see updated state */
3532 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3533 tp->frto_counter = 2;
3534
3535 if (!tcp_may_send_now(sk))
3536 tcp_enter_frto_loss(sk, 2, flag);
3537
3538 return 1;
3539 } else {
3540 switch (sysctl_tcp_frto_response) {
3541 case 2:
3542 tcp_undo_spur_to_response(sk, flag);
3543 break;
3544 case 1:
3545 tcp_conservative_spur_to_response(tp);
3546 break;
3547 default:
3548 tcp_ratehalving_spur_to_response(sk);
3549 break;
3550 }
3551 tp->frto_counter = 0;
3552 tp->undo_marker = 0;
3553 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3554 }
3555 return 0;
3556 }
3557
3558 /* This routine deals with incoming acks, but not outgoing ones. */
3559 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3560 {
3561 struct inet_connection_sock *icsk = inet_csk(sk);
3562 struct tcp_sock *tp = tcp_sk(sk);
3563 u32 prior_snd_una = tp->snd_una;
3564 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3565 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3566 u32 prior_in_flight;
3567 u32 prior_fackets;
3568 int prior_packets;
3569 int frto_cwnd = 0;
3570
3571 /* If the ack is newer than sent or older than previous acks
3572 * then we can probably ignore it.
3573 */
3574 if (after(ack, tp->snd_nxt))
3575 goto uninteresting_ack;
3576
3577 if (before(ack, prior_snd_una))
3578 goto old_ack;
3579
3580 if (after(ack, prior_snd_una))
3581 flag |= FLAG_SND_UNA_ADVANCED;
3582
3583 if (sysctl_tcp_abc) {
3584 if (icsk->icsk_ca_state < TCP_CA_CWR)
3585 tp->bytes_acked += ack - prior_snd_una;
3586 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3587 /* we assume just one segment left network */
3588 tp->bytes_acked += min(ack - prior_snd_una,
3589 tp->mss_cache);
3590 }
3591
3592 prior_fackets = tp->fackets_out;
3593 prior_in_flight = tcp_packets_in_flight(tp);
3594
3595 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3596 /* Window is constant, pure forward advance.
3597 * No more checks are required.
3598 * Note, we use the fact that SND.UNA>=SND.WL2.
3599 */
3600 tcp_update_wl(tp, ack, ack_seq);
3601 tp->snd_una = ack;
3602 flag |= FLAG_WIN_UPDATE;
3603
3604 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3605
3606 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3607 } else {
3608 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3609 flag |= FLAG_DATA;
3610 else
3611 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3612
3613 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3614
3615 if (TCP_SKB_CB(skb)->sacked)
3616 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3617
3618 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3619 flag |= FLAG_ECE;
3620
3621 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3622 }
3623
3624 /* We passed data and got it acked, remove any soft error
3625 * log. Something worked...
3626 */
3627 sk->sk_err_soft = 0;
3628 icsk->icsk_probes_out = 0;
3629 tp->rcv_tstamp = tcp_time_stamp;
3630 prior_packets = tp->packets_out;
3631 if (!prior_packets)
3632 goto no_queue;
3633
3634 /* See if we can take anything off of the retransmit queue. */
3635 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3636
3637 if (tp->frto_counter)
3638 frto_cwnd = tcp_process_frto(sk, flag);
3639 /* Guarantee sacktag reordering detection against wrap-arounds */
3640 if (before(tp->frto_highmark, tp->snd_una))
3641 tp->frto_highmark = 0;
3642
3643 if (tcp_ack_is_dubious(sk, flag)) {
3644 /* Advance CWND, if state allows this. */
3645 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3646 tcp_may_raise_cwnd(sk, flag))
3647 tcp_cong_avoid(sk, ack, prior_in_flight);
3648 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3649 flag);
3650 } else {
3651 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3652 tcp_cong_avoid(sk, ack, prior_in_flight);
3653 }
3654
3655 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3656 dst_confirm(sk->sk_dst_cache);
3657
3658 return 1;
3659
3660 no_queue:
3661 /* If this ack opens up a zero window, clear backoff. It was
3662 * being used to time the probes, and is probably far higher than
3663 * it needs to be for normal retransmission.
3664 */
3665 if (tcp_send_head(sk))
3666 tcp_ack_probe(sk);
3667 return 1;
3668
3669 old_ack:
3670 if (TCP_SKB_CB(skb)->sacked) {
3671 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3672 if (icsk->icsk_ca_state == TCP_CA_Open)
3673 tcp_try_keep_open(sk);
3674 }
3675
3676 uninteresting_ack:
3677 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3678 return 0;
3679 }
3680
3681 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3682 * But, this can also be called on packets in the established flow when
3683 * the fast version below fails.
3684 */
3685 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3686 int estab)
3687 {
3688 unsigned char *ptr;
3689 struct tcphdr *th = tcp_hdr(skb);
3690 int length = (th->doff * 4) - sizeof(struct tcphdr);
3691
3692 ptr = (unsigned char *)(th + 1);
3693 opt_rx->saw_tstamp = 0;
3694
3695 while (length > 0) {
3696 int opcode = *ptr++;
3697 int opsize;
3698
3699 switch (opcode) {
3700 case TCPOPT_EOL:
3701 return;
3702 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3703 length--;
3704 continue;
3705 default:
3706 opsize = *ptr++;
3707 if (opsize < 2) /* "silly options" */
3708 return;
3709 if (opsize > length)
3710 return; /* don't parse partial options */
3711 switch (opcode) {
3712 case TCPOPT_MSS:
3713 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3714 u16 in_mss = get_unaligned_be16(ptr);
3715 if (in_mss) {
3716 if (opt_rx->user_mss &&
3717 opt_rx->user_mss < in_mss)
3718 in_mss = opt_rx->user_mss;
3719 opt_rx->mss_clamp = in_mss;
3720 }
3721 }
3722 break;
3723 case TCPOPT_WINDOW:
3724 if (opsize == TCPOLEN_WINDOW && th->syn &&
3725 !estab && sysctl_tcp_window_scaling) {
3726 __u8 snd_wscale = *(__u8 *)ptr;
3727 opt_rx->wscale_ok = 1;
3728 if (snd_wscale > 14) {
3729 if (net_ratelimit())
3730 printk(KERN_INFO "tcp_parse_options: Illegal window "
3731 "scaling value %d >14 received.\n",
3732 snd_wscale);
3733 snd_wscale = 14;
3734 }
3735 opt_rx->snd_wscale = snd_wscale;
3736 }
3737 break;
3738 case TCPOPT_TIMESTAMP:
3739 if ((opsize == TCPOLEN_TIMESTAMP) &&
3740 ((estab && opt_rx->tstamp_ok) ||
3741 (!estab && sysctl_tcp_timestamps))) {
3742 opt_rx->saw_tstamp = 1;
3743 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3744 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3745 }
3746 break;
3747 case TCPOPT_SACK_PERM:
3748 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3749 !estab && sysctl_tcp_sack) {
3750 opt_rx->sack_ok = 1;
3751 tcp_sack_reset(opt_rx);
3752 }
3753 break;
3754
3755 case TCPOPT_SACK:
3756 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3757 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3758 opt_rx->sack_ok) {
3759 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3760 }
3761 break;
3762 #ifdef CONFIG_TCP_MD5SIG
3763 case TCPOPT_MD5SIG:
3764 /*
3765 * The MD5 Hash has already been
3766 * checked (see tcp_v{4,6}_do_rcv()).
3767 */
3768 break;
3769 #endif
3770 }
3771
3772 ptr += opsize-2;
3773 length -= opsize;
3774 }
3775 }
3776 }
3777
3778 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3779 {
3780 __be32 *ptr = (__be32 *)(th + 1);
3781
3782 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3783 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3784 tp->rx_opt.saw_tstamp = 1;
3785 ++ptr;
3786 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3787 ++ptr;
3788 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3789 return 1;
3790 }
3791 return 0;
3792 }
3793
3794 /* Fast parse options. This hopes to only see timestamps.
3795 * If it is wrong it falls back on tcp_parse_options().
3796 */
3797 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3798 struct tcp_sock *tp)
3799 {
3800 if (th->doff == sizeof(struct tcphdr) >> 2) {
3801 tp->rx_opt.saw_tstamp = 0;
3802 return 0;
3803 } else if (tp->rx_opt.tstamp_ok &&
3804 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3805 if (tcp_parse_aligned_timestamp(tp, th))
3806 return 1;
3807 }
3808 tcp_parse_options(skb, &tp->rx_opt, 1);
3809 return 1;
3810 }
3811
3812 #ifdef CONFIG_TCP_MD5SIG
3813 /*
3814 * Parse MD5 Signature option
3815 */
3816 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3817 {
3818 int length = (th->doff << 2) - sizeof (*th);
3819 u8 *ptr = (u8*)(th + 1);
3820
3821 /* If the TCP option is too short, we can short cut */
3822 if (length < TCPOLEN_MD5SIG)
3823 return NULL;
3824
3825 while (length > 0) {
3826 int opcode = *ptr++;
3827 int opsize;
3828
3829 switch(opcode) {
3830 case TCPOPT_EOL:
3831 return NULL;
3832 case TCPOPT_NOP:
3833 length--;
3834 continue;
3835 default:
3836 opsize = *ptr++;
3837 if (opsize < 2 || opsize > length)
3838 return NULL;
3839 if (opcode == TCPOPT_MD5SIG)
3840 return ptr;
3841 }
3842 ptr += opsize - 2;
3843 length -= opsize;
3844 }
3845 return NULL;
3846 }
3847 #endif
3848
3849 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3850 {
3851 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3852 tp->rx_opt.ts_recent_stamp = get_seconds();
3853 }
3854
3855 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3856 {
3857 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3858 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3859 * extra check below makes sure this can only happen
3860 * for pure ACK frames. -DaveM
3861 *
3862 * Not only, also it occurs for expired timestamps.
3863 */
3864
3865 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3866 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3867 tcp_store_ts_recent(tp);
3868 }
3869 }
3870
3871 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3872 *
3873 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3874 * it can pass through stack. So, the following predicate verifies that
3875 * this segment is not used for anything but congestion avoidance or
3876 * fast retransmit. Moreover, we even are able to eliminate most of such
3877 * second order effects, if we apply some small "replay" window (~RTO)
3878 * to timestamp space.
3879 *
3880 * All these measures still do not guarantee that we reject wrapped ACKs
3881 * on networks with high bandwidth, when sequence space is recycled fastly,
3882 * but it guarantees that such events will be very rare and do not affect
3883 * connection seriously. This doesn't look nice, but alas, PAWS is really
3884 * buggy extension.
3885 *
3886 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3887 * states that events when retransmit arrives after original data are rare.
3888 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3889 * the biggest problem on large power networks even with minor reordering.
3890 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3891 * up to bandwidth of 18Gigabit/sec. 8) ]
3892 */
3893
3894 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3895 {
3896 struct tcp_sock *tp = tcp_sk(sk);
3897 struct tcphdr *th = tcp_hdr(skb);
3898 u32 seq = TCP_SKB_CB(skb)->seq;
3899 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3900
3901 return (/* 1. Pure ACK with correct sequence number. */
3902 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3903
3904 /* 2. ... and duplicate ACK. */
3905 ack == tp->snd_una &&
3906
3907 /* 3. ... and does not update window. */
3908 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3909
3910 /* 4. ... and sits in replay window. */
3911 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3912 }
3913
3914 static inline int tcp_paws_discard(const struct sock *sk,
3915 const struct sk_buff *skb)
3916 {
3917 const struct tcp_sock *tp = tcp_sk(sk);
3918 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3919 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3920 !tcp_disordered_ack(sk, skb));
3921 }
3922
3923 /* Check segment sequence number for validity.
3924 *
3925 * Segment controls are considered valid, if the segment
3926 * fits to the window after truncation to the window. Acceptability
3927 * of data (and SYN, FIN, of course) is checked separately.
3928 * See tcp_data_queue(), for example.
3929 *
3930 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3931 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3932 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3933 * (borrowed from freebsd)
3934 */
3935
3936 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3937 {
3938 return !before(end_seq, tp->rcv_wup) &&
3939 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3940 }
3941
3942 /* When we get a reset we do this. */
3943 static void tcp_reset(struct sock *sk)
3944 {
3945 /* We want the right error as BSD sees it (and indeed as we do). */
3946 switch (sk->sk_state) {
3947 case TCP_SYN_SENT:
3948 sk->sk_err = ECONNREFUSED;
3949 break;
3950 case TCP_CLOSE_WAIT:
3951 sk->sk_err = EPIPE;
3952 break;
3953 case TCP_CLOSE:
3954 return;
3955 default:
3956 sk->sk_err = ECONNRESET;
3957 }
3958
3959 if (!sock_flag(sk, SOCK_DEAD))
3960 sk->sk_error_report(sk);
3961
3962 tcp_done(sk);
3963 }
3964
3965 /*
3966 * Process the FIN bit. This now behaves as it is supposed to work
3967 * and the FIN takes effect when it is validly part of sequence
3968 * space. Not before when we get holes.
3969 *
3970 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3971 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3972 * TIME-WAIT)
3973 *
3974 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3975 * close and we go into CLOSING (and later onto TIME-WAIT)
3976 *
3977 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3978 */
3979 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3980 {
3981 struct tcp_sock *tp = tcp_sk(sk);
3982
3983 inet_csk_schedule_ack(sk);
3984
3985 sk->sk_shutdown |= RCV_SHUTDOWN;
3986 sock_set_flag(sk, SOCK_DONE);
3987
3988 switch (sk->sk_state) {
3989 case TCP_SYN_RECV:
3990 case TCP_ESTABLISHED:
3991 /* Move to CLOSE_WAIT */
3992 tcp_set_state(sk, TCP_CLOSE_WAIT);
3993 inet_csk(sk)->icsk_ack.pingpong = 1;
3994 break;
3995
3996 case TCP_CLOSE_WAIT:
3997 case TCP_CLOSING:
3998 /* Received a retransmission of the FIN, do
3999 * nothing.
4000 */
4001 break;
4002 case TCP_LAST_ACK:
4003 /* RFC793: Remain in the LAST-ACK state. */
4004 break;
4005
4006 case TCP_FIN_WAIT1:
4007 /* This case occurs when a simultaneous close
4008 * happens, we must ack the received FIN and
4009 * enter the CLOSING state.
4010 */
4011 tcp_send_ack(sk);
4012 tcp_set_state(sk, TCP_CLOSING);
4013 break;
4014 case TCP_FIN_WAIT2:
4015 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4016 tcp_send_ack(sk);
4017 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4018 break;
4019 default:
4020 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4021 * cases we should never reach this piece of code.
4022 */
4023 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4024 __func__, sk->sk_state);
4025 break;
4026 }
4027
4028 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4029 * Probably, we should reset in this case. For now drop them.
4030 */
4031 __skb_queue_purge(&tp->out_of_order_queue);
4032 if (tcp_is_sack(tp))
4033 tcp_sack_reset(&tp->rx_opt);
4034 sk_mem_reclaim(sk);
4035
4036 if (!sock_flag(sk, SOCK_DEAD)) {
4037 sk->sk_state_change(sk);
4038
4039 /* Do not send POLL_HUP for half duplex close. */
4040 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4041 sk->sk_state == TCP_CLOSE)
4042 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4043 else
4044 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4045 }
4046 }
4047
4048 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4049 u32 end_seq)
4050 {
4051 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4052 if (before(seq, sp->start_seq))
4053 sp->start_seq = seq;
4054 if (after(end_seq, sp->end_seq))
4055 sp->end_seq = end_seq;
4056 return 1;
4057 }
4058 return 0;
4059 }
4060
4061 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4062 {
4063 struct tcp_sock *tp = tcp_sk(sk);
4064
4065 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4066 int mib_idx;
4067
4068 if (before(seq, tp->rcv_nxt))
4069 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4070 else
4071 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4072
4073 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4074
4075 tp->rx_opt.dsack = 1;
4076 tp->duplicate_sack[0].start_seq = seq;
4077 tp->duplicate_sack[0].end_seq = end_seq;
4078 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 1;
4079 }
4080 }
4081
4082 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4083 {
4084 struct tcp_sock *tp = tcp_sk(sk);
4085
4086 if (!tp->rx_opt.dsack)
4087 tcp_dsack_set(sk, seq, end_seq);
4088 else
4089 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4090 }
4091
4092 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4093 {
4094 struct tcp_sock *tp = tcp_sk(sk);
4095
4096 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4097 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4098 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4099 tcp_enter_quickack_mode(sk);
4100
4101 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4102 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4103
4104 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4105 end_seq = tp->rcv_nxt;
4106 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4107 }
4108 }
4109
4110 tcp_send_ack(sk);
4111 }
4112
4113 /* These routines update the SACK block as out-of-order packets arrive or
4114 * in-order packets close up the sequence space.
4115 */
4116 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4117 {
4118 int this_sack;
4119 struct tcp_sack_block *sp = &tp->selective_acks[0];
4120 struct tcp_sack_block *swalk = sp + 1;
4121
4122 /* See if the recent change to the first SACK eats into
4123 * or hits the sequence space of other SACK blocks, if so coalesce.
4124 */
4125 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4126 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4127 int i;
4128
4129 /* Zap SWALK, by moving every further SACK up by one slot.
4130 * Decrease num_sacks.
4131 */
4132 tp->rx_opt.num_sacks--;
4133 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
4134 tp->rx_opt.dsack;
4135 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4136 sp[i] = sp[i + 1];
4137 continue;
4138 }
4139 this_sack++, swalk++;
4140 }
4141 }
4142
4143 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
4144 struct tcp_sack_block *sack2)
4145 {
4146 __u32 tmp;
4147
4148 tmp = sack1->start_seq;
4149 sack1->start_seq = sack2->start_seq;
4150 sack2->start_seq = tmp;
4151
4152 tmp = sack1->end_seq;
4153 sack1->end_seq = sack2->end_seq;
4154 sack2->end_seq = tmp;
4155 }
4156
4157 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4158 {
4159 struct tcp_sock *tp = tcp_sk(sk);
4160 struct tcp_sack_block *sp = &tp->selective_acks[0];
4161 int cur_sacks = tp->rx_opt.num_sacks;
4162 int this_sack;
4163
4164 if (!cur_sacks)
4165 goto new_sack;
4166
4167 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4168 if (tcp_sack_extend(sp, seq, end_seq)) {
4169 /* Rotate this_sack to the first one. */
4170 for (; this_sack > 0; this_sack--, sp--)
4171 tcp_sack_swap(sp, sp - 1);
4172 if (cur_sacks > 1)
4173 tcp_sack_maybe_coalesce(tp);
4174 return;
4175 }
4176 }
4177
4178 /* Could not find an adjacent existing SACK, build a new one,
4179 * put it at the front, and shift everyone else down. We
4180 * always know there is at least one SACK present already here.
4181 *
4182 * If the sack array is full, forget about the last one.
4183 */
4184 if (this_sack >= TCP_NUM_SACKS) {
4185 this_sack--;
4186 tp->rx_opt.num_sacks--;
4187 sp--;
4188 }
4189 for (; this_sack > 0; this_sack--, sp--)
4190 *sp = *(sp - 1);
4191
4192 new_sack:
4193 /* Build the new head SACK, and we're done. */
4194 sp->start_seq = seq;
4195 sp->end_seq = end_seq;
4196 tp->rx_opt.num_sacks++;
4197 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
4198 }
4199
4200 /* RCV.NXT advances, some SACKs should be eaten. */
4201
4202 static void tcp_sack_remove(struct tcp_sock *tp)
4203 {
4204 struct tcp_sack_block *sp = &tp->selective_acks[0];
4205 int num_sacks = tp->rx_opt.num_sacks;
4206 int this_sack;
4207
4208 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4209 if (skb_queue_empty(&tp->out_of_order_queue)) {
4210 tp->rx_opt.num_sacks = 0;
4211 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
4212 return;
4213 }
4214
4215 for (this_sack = 0; this_sack < num_sacks;) {
4216 /* Check if the start of the sack is covered by RCV.NXT. */
4217 if (!before(tp->rcv_nxt, sp->start_seq)) {
4218 int i;
4219
4220 /* RCV.NXT must cover all the block! */
4221 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4222
4223 /* Zap this SACK, by moving forward any other SACKS. */
4224 for (i=this_sack+1; i < num_sacks; i++)
4225 tp->selective_acks[i-1] = tp->selective_acks[i];
4226 num_sacks--;
4227 continue;
4228 }
4229 this_sack++;
4230 sp++;
4231 }
4232 if (num_sacks != tp->rx_opt.num_sacks) {
4233 tp->rx_opt.num_sacks = num_sacks;
4234 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
4235 tp->rx_opt.dsack;
4236 }
4237 }
4238
4239 /* This one checks to see if we can put data from the
4240 * out_of_order queue into the receive_queue.
4241 */
4242 static void tcp_ofo_queue(struct sock *sk)
4243 {
4244 struct tcp_sock *tp = tcp_sk(sk);
4245 __u32 dsack_high = tp->rcv_nxt;
4246 struct sk_buff *skb;
4247
4248 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4249 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4250 break;
4251
4252 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4253 __u32 dsack = dsack_high;
4254 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4255 dsack_high = TCP_SKB_CB(skb)->end_seq;
4256 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4257 }
4258
4259 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4260 SOCK_DEBUG(sk, "ofo packet was already received \n");
4261 __skb_unlink(skb, &tp->out_of_order_queue);
4262 __kfree_skb(skb);
4263 continue;
4264 }
4265 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4266 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4267 TCP_SKB_CB(skb)->end_seq);
4268
4269 __skb_unlink(skb, &tp->out_of_order_queue);
4270 __skb_queue_tail(&sk->sk_receive_queue, skb);
4271 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4272 if (tcp_hdr(skb)->fin)
4273 tcp_fin(skb, sk, tcp_hdr(skb));
4274 }
4275 }
4276
4277 static int tcp_prune_ofo_queue(struct sock *sk);
4278 static int tcp_prune_queue(struct sock *sk);
4279
4280 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4281 {
4282 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4283 !sk_rmem_schedule(sk, size)) {
4284
4285 if (tcp_prune_queue(sk) < 0)
4286 return -1;
4287
4288 if (!sk_rmem_schedule(sk, size)) {
4289 if (!tcp_prune_ofo_queue(sk))
4290 return -1;
4291
4292 if (!sk_rmem_schedule(sk, size))
4293 return -1;
4294 }
4295 }
4296 return 0;
4297 }
4298
4299 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4300 {
4301 struct tcphdr *th = tcp_hdr(skb);
4302 struct tcp_sock *tp = tcp_sk(sk);
4303 int eaten = -1;
4304
4305 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4306 goto drop;
4307
4308 __skb_pull(skb, th->doff * 4);
4309
4310 TCP_ECN_accept_cwr(tp, skb);
4311
4312 if (tp->rx_opt.dsack) {
4313 tp->rx_opt.dsack = 0;
4314 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks;
4315 }
4316
4317 /* Queue data for delivery to the user.
4318 * Packets in sequence go to the receive queue.
4319 * Out of sequence packets to the out_of_order_queue.
4320 */
4321 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4322 if (tcp_receive_window(tp) == 0)
4323 goto out_of_window;
4324
4325 /* Ok. In sequence. In window. */
4326 if (tp->ucopy.task == current &&
4327 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4328 sock_owned_by_user(sk) && !tp->urg_data) {
4329 int chunk = min_t(unsigned int, skb->len,
4330 tp->ucopy.len);
4331
4332 __set_current_state(TASK_RUNNING);
4333
4334 local_bh_enable();
4335 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4336 tp->ucopy.len -= chunk;
4337 tp->copied_seq += chunk;
4338 eaten = (chunk == skb->len && !th->fin);
4339 tcp_rcv_space_adjust(sk);
4340 }
4341 local_bh_disable();
4342 }
4343
4344 if (eaten <= 0) {
4345 queue_and_out:
4346 if (eaten < 0 &&
4347 tcp_try_rmem_schedule(sk, skb->truesize))
4348 goto drop;
4349
4350 skb_set_owner_r(skb, sk);
4351 __skb_queue_tail(&sk->sk_receive_queue, skb);
4352 }
4353 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4354 if (skb->len)
4355 tcp_event_data_recv(sk, skb);
4356 if (th->fin)
4357 tcp_fin(skb, sk, th);
4358
4359 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4360 tcp_ofo_queue(sk);
4361
4362 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4363 * gap in queue is filled.
4364 */
4365 if (skb_queue_empty(&tp->out_of_order_queue))
4366 inet_csk(sk)->icsk_ack.pingpong = 0;
4367 }
4368
4369 if (tp->rx_opt.num_sacks)
4370 tcp_sack_remove(tp);
4371
4372 tcp_fast_path_check(sk);
4373
4374 if (eaten > 0)
4375 __kfree_skb(skb);
4376 else if (!sock_flag(sk, SOCK_DEAD))
4377 sk->sk_data_ready(sk, 0);
4378 return;
4379 }
4380
4381 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4382 /* A retransmit, 2nd most common case. Force an immediate ack. */
4383 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4384 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4385
4386 out_of_window:
4387 tcp_enter_quickack_mode(sk);
4388 inet_csk_schedule_ack(sk);
4389 drop:
4390 __kfree_skb(skb);
4391 return;
4392 }
4393
4394 /* Out of window. F.e. zero window probe. */
4395 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4396 goto out_of_window;
4397
4398 tcp_enter_quickack_mode(sk);
4399
4400 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4401 /* Partial packet, seq < rcv_next < end_seq */
4402 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4403 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4404 TCP_SKB_CB(skb)->end_seq);
4405
4406 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4407
4408 /* If window is closed, drop tail of packet. But after
4409 * remembering D-SACK for its head made in previous line.
4410 */
4411 if (!tcp_receive_window(tp))
4412 goto out_of_window;
4413 goto queue_and_out;
4414 }
4415
4416 TCP_ECN_check_ce(tp, skb);
4417
4418 if (tcp_try_rmem_schedule(sk, skb->truesize))
4419 goto drop;
4420
4421 /* Disable header prediction. */
4422 tp->pred_flags = 0;
4423 inet_csk_schedule_ack(sk);
4424
4425 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4426 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4427
4428 skb_set_owner_r(skb, sk);
4429
4430 if (!skb_peek(&tp->out_of_order_queue)) {
4431 /* Initial out of order segment, build 1 SACK. */
4432 if (tcp_is_sack(tp)) {
4433 tp->rx_opt.num_sacks = 1;
4434 tp->rx_opt.dsack = 0;
4435 tp->rx_opt.eff_sacks = 1;
4436 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4437 tp->selective_acks[0].end_seq =
4438 TCP_SKB_CB(skb)->end_seq;
4439 }
4440 __skb_queue_head(&tp->out_of_order_queue, skb);
4441 } else {
4442 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4443 u32 seq = TCP_SKB_CB(skb)->seq;
4444 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4445
4446 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4447 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4448
4449 if (!tp->rx_opt.num_sacks ||
4450 tp->selective_acks[0].end_seq != seq)
4451 goto add_sack;
4452
4453 /* Common case: data arrive in order after hole. */
4454 tp->selective_acks[0].end_seq = end_seq;
4455 return;
4456 }
4457
4458 /* Find place to insert this segment. */
4459 do {
4460 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4461 break;
4462 } while ((skb1 = skb1->prev) !=
4463 (struct sk_buff *)&tp->out_of_order_queue);
4464
4465 /* Do skb overlap to previous one? */
4466 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4467 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4468 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4469 /* All the bits are present. Drop. */
4470 __kfree_skb(skb);
4471 tcp_dsack_set(sk, seq, end_seq);
4472 goto add_sack;
4473 }
4474 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4475 /* Partial overlap. */
4476 tcp_dsack_set(sk, seq,
4477 TCP_SKB_CB(skb1)->end_seq);
4478 } else {
4479 skb1 = skb1->prev;
4480 }
4481 }
4482 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4483
4484 /* And clean segments covered by new one as whole. */
4485 while ((skb1 = skb->next) !=
4486 (struct sk_buff *)&tp->out_of_order_queue &&
4487 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4488 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4489 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4490 end_seq);
4491 break;
4492 }
4493 __skb_unlink(skb1, &tp->out_of_order_queue);
4494 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4495 TCP_SKB_CB(skb1)->end_seq);
4496 __kfree_skb(skb1);
4497 }
4498
4499 add_sack:
4500 if (tcp_is_sack(tp))
4501 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4502 }
4503 }
4504
4505 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4506 struct sk_buff_head *list)
4507 {
4508 struct sk_buff *next = skb->next;
4509
4510 __skb_unlink(skb, list);
4511 __kfree_skb(skb);
4512 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4513
4514 return next;
4515 }
4516
4517 /* Collapse contiguous sequence of skbs head..tail with
4518 * sequence numbers start..end.
4519 * Segments with FIN/SYN are not collapsed (only because this
4520 * simplifies code)
4521 */
4522 static void
4523 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4524 struct sk_buff *head, struct sk_buff *tail,
4525 u32 start, u32 end)
4526 {
4527 struct sk_buff *skb;
4528
4529 /* First, check that queue is collapsible and find
4530 * the point where collapsing can be useful. */
4531 for (skb = head; skb != tail;) {
4532 /* No new bits? It is possible on ofo queue. */
4533 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4534 skb = tcp_collapse_one(sk, skb, list);
4535 continue;
4536 }
4537
4538 /* The first skb to collapse is:
4539 * - not SYN/FIN and
4540 * - bloated or contains data before "start" or
4541 * overlaps to the next one.
4542 */
4543 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4544 (tcp_win_from_space(skb->truesize) > skb->len ||
4545 before(TCP_SKB_CB(skb)->seq, start) ||
4546 (skb->next != tail &&
4547 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4548 break;
4549
4550 /* Decided to skip this, advance start seq. */
4551 start = TCP_SKB_CB(skb)->end_seq;
4552 skb = skb->next;
4553 }
4554 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4555 return;
4556
4557 while (before(start, end)) {
4558 struct sk_buff *nskb;
4559 unsigned int header = skb_headroom(skb);
4560 int copy = SKB_MAX_ORDER(header, 0);
4561
4562 /* Too big header? This can happen with IPv6. */
4563 if (copy < 0)
4564 return;
4565 if (end - start < copy)
4566 copy = end - start;
4567 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4568 if (!nskb)
4569 return;
4570
4571 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4572 skb_set_network_header(nskb, (skb_network_header(skb) -
4573 skb->head));
4574 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4575 skb->head));
4576 skb_reserve(nskb, header);
4577 memcpy(nskb->head, skb->head, header);
4578 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4579 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4580 __skb_queue_before(list, skb, nskb);
4581 skb_set_owner_r(nskb, sk);
4582
4583 /* Copy data, releasing collapsed skbs. */
4584 while (copy > 0) {
4585 int offset = start - TCP_SKB_CB(skb)->seq;
4586 int size = TCP_SKB_CB(skb)->end_seq - start;
4587
4588 BUG_ON(offset < 0);
4589 if (size > 0) {
4590 size = min(copy, size);
4591 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4592 BUG();
4593 TCP_SKB_CB(nskb)->end_seq += size;
4594 copy -= size;
4595 start += size;
4596 }
4597 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4598 skb = tcp_collapse_one(sk, skb, list);
4599 if (skb == tail ||
4600 tcp_hdr(skb)->syn ||
4601 tcp_hdr(skb)->fin)
4602 return;
4603 }
4604 }
4605 }
4606 }
4607
4608 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4609 * and tcp_collapse() them until all the queue is collapsed.
4610 */
4611 static void tcp_collapse_ofo_queue(struct sock *sk)
4612 {
4613 struct tcp_sock *tp = tcp_sk(sk);
4614 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4615 struct sk_buff *head;
4616 u32 start, end;
4617
4618 if (skb == NULL)
4619 return;
4620
4621 start = TCP_SKB_CB(skb)->seq;
4622 end = TCP_SKB_CB(skb)->end_seq;
4623 head = skb;
4624
4625 for (;;) {
4626 skb = skb->next;
4627
4628 /* Segment is terminated when we see gap or when
4629 * we are at the end of all the queue. */
4630 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4631 after(TCP_SKB_CB(skb)->seq, end) ||
4632 before(TCP_SKB_CB(skb)->end_seq, start)) {
4633 tcp_collapse(sk, &tp->out_of_order_queue,
4634 head, skb, start, end);
4635 head = skb;
4636 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4637 break;
4638 /* Start new segment */
4639 start = TCP_SKB_CB(skb)->seq;
4640 end = TCP_SKB_CB(skb)->end_seq;
4641 } else {
4642 if (before(TCP_SKB_CB(skb)->seq, start))
4643 start = TCP_SKB_CB(skb)->seq;
4644 if (after(TCP_SKB_CB(skb)->end_seq, end))
4645 end = TCP_SKB_CB(skb)->end_seq;
4646 }
4647 }
4648 }
4649
4650 /*
4651 * Purge the out-of-order queue.
4652 * Return true if queue was pruned.
4653 */
4654 static int tcp_prune_ofo_queue(struct sock *sk)
4655 {
4656 struct tcp_sock *tp = tcp_sk(sk);
4657 int res = 0;
4658
4659 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4660 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4661 __skb_queue_purge(&tp->out_of_order_queue);
4662
4663 /* Reset SACK state. A conforming SACK implementation will
4664 * do the same at a timeout based retransmit. When a connection
4665 * is in a sad state like this, we care only about integrity
4666 * of the connection not performance.
4667 */
4668 if (tp->rx_opt.sack_ok)
4669 tcp_sack_reset(&tp->rx_opt);
4670 sk_mem_reclaim(sk);
4671 res = 1;
4672 }
4673 return res;
4674 }
4675
4676 /* Reduce allocated memory if we can, trying to get
4677 * the socket within its memory limits again.
4678 *
4679 * Return less than zero if we should start dropping frames
4680 * until the socket owning process reads some of the data
4681 * to stabilize the situation.
4682 */
4683 static int tcp_prune_queue(struct sock *sk)
4684 {
4685 struct tcp_sock *tp = tcp_sk(sk);
4686
4687 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4688
4689 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4690
4691 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4692 tcp_clamp_window(sk);
4693 else if (tcp_memory_pressure)
4694 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4695
4696 tcp_collapse_ofo_queue(sk);
4697 tcp_collapse(sk, &sk->sk_receive_queue,
4698 sk->sk_receive_queue.next,
4699 (struct sk_buff *)&sk->sk_receive_queue,
4700 tp->copied_seq, tp->rcv_nxt);
4701 sk_mem_reclaim(sk);
4702
4703 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4704 return 0;
4705
4706 /* Collapsing did not help, destructive actions follow.
4707 * This must not ever occur. */
4708
4709 tcp_prune_ofo_queue(sk);
4710
4711 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4712 return 0;
4713
4714 /* If we are really being abused, tell the caller to silently
4715 * drop receive data on the floor. It will get retransmitted
4716 * and hopefully then we'll have sufficient space.
4717 */
4718 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4719
4720 /* Massive buffer overcommit. */
4721 tp->pred_flags = 0;
4722 return -1;
4723 }
4724
4725 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4726 * As additional protections, we do not touch cwnd in retransmission phases,
4727 * and if application hit its sndbuf limit recently.
4728 */
4729 void tcp_cwnd_application_limited(struct sock *sk)
4730 {
4731 struct tcp_sock *tp = tcp_sk(sk);
4732
4733 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4734 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4735 /* Limited by application or receiver window. */
4736 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4737 u32 win_used = max(tp->snd_cwnd_used, init_win);
4738 if (win_used < tp->snd_cwnd) {
4739 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4740 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4741 }
4742 tp->snd_cwnd_used = 0;
4743 }
4744 tp->snd_cwnd_stamp = tcp_time_stamp;
4745 }
4746
4747 static int tcp_should_expand_sndbuf(struct sock *sk)
4748 {
4749 struct tcp_sock *tp = tcp_sk(sk);
4750
4751 /* If the user specified a specific send buffer setting, do
4752 * not modify it.
4753 */
4754 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4755 return 0;
4756
4757 /* If we are under global TCP memory pressure, do not expand. */
4758 if (tcp_memory_pressure)
4759 return 0;
4760
4761 /* If we are under soft global TCP memory pressure, do not expand. */
4762 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4763 return 0;
4764
4765 /* If we filled the congestion window, do not expand. */
4766 if (tp->packets_out >= tp->snd_cwnd)
4767 return 0;
4768
4769 return 1;
4770 }
4771
4772 /* When incoming ACK allowed to free some skb from write_queue,
4773 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4774 * on the exit from tcp input handler.
4775 *
4776 * PROBLEM: sndbuf expansion does not work well with largesend.
4777 */
4778 static void tcp_new_space(struct sock *sk)
4779 {
4780 struct tcp_sock *tp = tcp_sk(sk);
4781
4782 if (tcp_should_expand_sndbuf(sk)) {
4783 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4784 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4785 int demanded = max_t(unsigned int, tp->snd_cwnd,
4786 tp->reordering + 1);
4787 sndmem *= 2 * demanded;
4788 if (sndmem > sk->sk_sndbuf)
4789 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4790 tp->snd_cwnd_stamp = tcp_time_stamp;
4791 }
4792
4793 sk->sk_write_space(sk);
4794 }
4795
4796 static void tcp_check_space(struct sock *sk)
4797 {
4798 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4799 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4800 if (sk->sk_socket &&
4801 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4802 tcp_new_space(sk);
4803 }
4804 }
4805
4806 static inline void tcp_data_snd_check(struct sock *sk)
4807 {
4808 tcp_push_pending_frames(sk);
4809 tcp_check_space(sk);
4810 }
4811
4812 /*
4813 * Check if sending an ack is needed.
4814 */
4815 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4816 {
4817 struct tcp_sock *tp = tcp_sk(sk);
4818
4819 /* More than one full frame received... */
4820 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4821 /* ... and right edge of window advances far enough.
4822 * (tcp_recvmsg() will send ACK otherwise). Or...
4823 */
4824 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4825 /* We ACK each frame or... */
4826 tcp_in_quickack_mode(sk) ||
4827 /* We have out of order data. */
4828 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4829 /* Then ack it now */
4830 tcp_send_ack(sk);
4831 } else {
4832 /* Else, send delayed ack. */
4833 tcp_send_delayed_ack(sk);
4834 }
4835 }
4836
4837 static inline void tcp_ack_snd_check(struct sock *sk)
4838 {
4839 if (!inet_csk_ack_scheduled(sk)) {
4840 /* We sent a data segment already. */
4841 return;
4842 }
4843 __tcp_ack_snd_check(sk, 1);
4844 }
4845
4846 /*
4847 * This routine is only called when we have urgent data
4848 * signaled. Its the 'slow' part of tcp_urg. It could be
4849 * moved inline now as tcp_urg is only called from one
4850 * place. We handle URGent data wrong. We have to - as
4851 * BSD still doesn't use the correction from RFC961.
4852 * For 1003.1g we should support a new option TCP_STDURG to permit
4853 * either form (or just set the sysctl tcp_stdurg).
4854 */
4855
4856 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4857 {
4858 struct tcp_sock *tp = tcp_sk(sk);
4859 u32 ptr = ntohs(th->urg_ptr);
4860
4861 if (ptr && !sysctl_tcp_stdurg)
4862 ptr--;
4863 ptr += ntohl(th->seq);
4864
4865 /* Ignore urgent data that we've already seen and read. */
4866 if (after(tp->copied_seq, ptr))
4867 return;
4868
4869 /* Do not replay urg ptr.
4870 *
4871 * NOTE: interesting situation not covered by specs.
4872 * Misbehaving sender may send urg ptr, pointing to segment,
4873 * which we already have in ofo queue. We are not able to fetch
4874 * such data and will stay in TCP_URG_NOTYET until will be eaten
4875 * by recvmsg(). Seems, we are not obliged to handle such wicked
4876 * situations. But it is worth to think about possibility of some
4877 * DoSes using some hypothetical application level deadlock.
4878 */
4879 if (before(ptr, tp->rcv_nxt))
4880 return;
4881
4882 /* Do we already have a newer (or duplicate) urgent pointer? */
4883 if (tp->urg_data && !after(ptr, tp->urg_seq))
4884 return;
4885
4886 /* Tell the world about our new urgent pointer. */
4887 sk_send_sigurg(sk);
4888
4889 /* We may be adding urgent data when the last byte read was
4890 * urgent. To do this requires some care. We cannot just ignore
4891 * tp->copied_seq since we would read the last urgent byte again
4892 * as data, nor can we alter copied_seq until this data arrives
4893 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4894 *
4895 * NOTE. Double Dutch. Rendering to plain English: author of comment
4896 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4897 * and expect that both A and B disappear from stream. This is _wrong_.
4898 * Though this happens in BSD with high probability, this is occasional.
4899 * Any application relying on this is buggy. Note also, that fix "works"
4900 * only in this artificial test. Insert some normal data between A and B and we will
4901 * decline of BSD again. Verdict: it is better to remove to trap
4902 * buggy users.
4903 */
4904 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4905 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4906 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4907 tp->copied_seq++;
4908 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4909 __skb_unlink(skb, &sk->sk_receive_queue);
4910 __kfree_skb(skb);
4911 }
4912 }
4913
4914 tp->urg_data = TCP_URG_NOTYET;
4915 tp->urg_seq = ptr;
4916
4917 /* Disable header prediction. */
4918 tp->pred_flags = 0;
4919 }
4920
4921 /* This is the 'fast' part of urgent handling. */
4922 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4923 {
4924 struct tcp_sock *tp = tcp_sk(sk);
4925
4926 /* Check if we get a new urgent pointer - normally not. */
4927 if (th->urg)
4928 tcp_check_urg(sk, th);
4929
4930 /* Do we wait for any urgent data? - normally not... */
4931 if (tp->urg_data == TCP_URG_NOTYET) {
4932 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4933 th->syn;
4934
4935 /* Is the urgent pointer pointing into this packet? */
4936 if (ptr < skb->len) {
4937 u8 tmp;
4938 if (skb_copy_bits(skb, ptr, &tmp, 1))
4939 BUG();
4940 tp->urg_data = TCP_URG_VALID | tmp;
4941 if (!sock_flag(sk, SOCK_DEAD))
4942 sk->sk_data_ready(sk, 0);
4943 }
4944 }
4945 }
4946
4947 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4948 {
4949 struct tcp_sock *tp = tcp_sk(sk);
4950 int chunk = skb->len - hlen;
4951 int err;
4952
4953 local_bh_enable();
4954 if (skb_csum_unnecessary(skb))
4955 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4956 else
4957 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4958 tp->ucopy.iov);
4959
4960 if (!err) {
4961 tp->ucopy.len -= chunk;
4962 tp->copied_seq += chunk;
4963 tcp_rcv_space_adjust(sk);
4964 }
4965
4966 local_bh_disable();
4967 return err;
4968 }
4969
4970 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4971 struct sk_buff *skb)
4972 {
4973 __sum16 result;
4974
4975 if (sock_owned_by_user(sk)) {
4976 local_bh_enable();
4977 result = __tcp_checksum_complete(skb);
4978 local_bh_disable();
4979 } else {
4980 result = __tcp_checksum_complete(skb);
4981 }
4982 return result;
4983 }
4984
4985 static inline int tcp_checksum_complete_user(struct sock *sk,
4986 struct sk_buff *skb)
4987 {
4988 return !skb_csum_unnecessary(skb) &&
4989 __tcp_checksum_complete_user(sk, skb);
4990 }
4991
4992 #ifdef CONFIG_NET_DMA
4993 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4994 int hlen)
4995 {
4996 struct tcp_sock *tp = tcp_sk(sk);
4997 int chunk = skb->len - hlen;
4998 int dma_cookie;
4999 int copied_early = 0;
5000
5001 if (tp->ucopy.wakeup)
5002 return 0;
5003
5004 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5005 tp->ucopy.dma_chan = get_softnet_dma();
5006
5007 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5008
5009 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5010 skb, hlen,
5011 tp->ucopy.iov, chunk,
5012 tp->ucopy.pinned_list);
5013
5014 if (dma_cookie < 0)
5015 goto out;
5016
5017 tp->ucopy.dma_cookie = dma_cookie;
5018 copied_early = 1;
5019
5020 tp->ucopy.len -= chunk;
5021 tp->copied_seq += chunk;
5022 tcp_rcv_space_adjust(sk);
5023
5024 if ((tp->ucopy.len == 0) ||
5025 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5026 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5027 tp->ucopy.wakeup = 1;
5028 sk->sk_data_ready(sk, 0);
5029 }
5030 } else if (chunk > 0) {
5031 tp->ucopy.wakeup = 1;
5032 sk->sk_data_ready(sk, 0);
5033 }
5034 out:
5035 return copied_early;
5036 }
5037 #endif /* CONFIG_NET_DMA */
5038
5039 /* Does PAWS and seqno based validation of an incoming segment, flags will
5040 * play significant role here.
5041 */
5042 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5043 struct tcphdr *th, int syn_inerr)
5044 {
5045 struct tcp_sock *tp = tcp_sk(sk);
5046
5047 /* RFC1323: H1. Apply PAWS check first. */
5048 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5049 tcp_paws_discard(sk, skb)) {
5050 if (!th->rst) {
5051 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5052 tcp_send_dupack(sk, skb);
5053 goto discard;
5054 }
5055 /* Reset is accepted even if it did not pass PAWS. */
5056 }
5057
5058 /* Step 1: check sequence number */
5059 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5060 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5061 * (RST) segments are validated by checking their SEQ-fields."
5062 * And page 69: "If an incoming segment is not acceptable,
5063 * an acknowledgment should be sent in reply (unless the RST
5064 * bit is set, if so drop the segment and return)".
5065 */
5066 if (!th->rst)
5067 tcp_send_dupack(sk, skb);
5068 goto discard;
5069 }
5070
5071 /* Step 2: check RST bit */
5072 if (th->rst) {
5073 tcp_reset(sk);
5074 goto discard;
5075 }
5076
5077 /* ts_recent update must be made after we are sure that the packet
5078 * is in window.
5079 */
5080 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5081
5082 /* step 3: check security and precedence [ignored] */
5083
5084 /* step 4: Check for a SYN in window. */
5085 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5086 if (syn_inerr)
5087 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5088 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5089 tcp_reset(sk);
5090 return -1;
5091 }
5092
5093 return 1;
5094
5095 discard:
5096 __kfree_skb(skb);
5097 return 0;
5098 }
5099
5100 /*
5101 * TCP receive function for the ESTABLISHED state.
5102 *
5103 * It is split into a fast path and a slow path. The fast path is
5104 * disabled when:
5105 * - A zero window was announced from us - zero window probing
5106 * is only handled properly in the slow path.
5107 * - Out of order segments arrived.
5108 * - Urgent data is expected.
5109 * - There is no buffer space left
5110 * - Unexpected TCP flags/window values/header lengths are received
5111 * (detected by checking the TCP header against pred_flags)
5112 * - Data is sent in both directions. Fast path only supports pure senders
5113 * or pure receivers (this means either the sequence number or the ack
5114 * value must stay constant)
5115 * - Unexpected TCP option.
5116 *
5117 * When these conditions are not satisfied it drops into a standard
5118 * receive procedure patterned after RFC793 to handle all cases.
5119 * The first three cases are guaranteed by proper pred_flags setting,
5120 * the rest is checked inline. Fast processing is turned on in
5121 * tcp_data_queue when everything is OK.
5122 */
5123 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5124 struct tcphdr *th, unsigned len)
5125 {
5126 struct tcp_sock *tp = tcp_sk(sk);
5127 int res;
5128
5129 /*
5130 * Header prediction.
5131 * The code loosely follows the one in the famous
5132 * "30 instruction TCP receive" Van Jacobson mail.
5133 *
5134 * Van's trick is to deposit buffers into socket queue
5135 * on a device interrupt, to call tcp_recv function
5136 * on the receive process context and checksum and copy
5137 * the buffer to user space. smart...
5138 *
5139 * Our current scheme is not silly either but we take the
5140 * extra cost of the net_bh soft interrupt processing...
5141 * We do checksum and copy also but from device to kernel.
5142 */
5143
5144 tp->rx_opt.saw_tstamp = 0;
5145
5146 /* pred_flags is 0xS?10 << 16 + snd_wnd
5147 * if header_prediction is to be made
5148 * 'S' will always be tp->tcp_header_len >> 2
5149 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5150 * turn it off (when there are holes in the receive
5151 * space for instance)
5152 * PSH flag is ignored.
5153 */
5154
5155 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5156 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5157 int tcp_header_len = tp->tcp_header_len;
5158
5159 /* Timestamp header prediction: tcp_header_len
5160 * is automatically equal to th->doff*4 due to pred_flags
5161 * match.
5162 */
5163
5164 /* Check timestamp */
5165 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5166 /* No? Slow path! */
5167 if (!tcp_parse_aligned_timestamp(tp, th))
5168 goto slow_path;
5169
5170 /* If PAWS failed, check it more carefully in slow path */
5171 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5172 goto slow_path;
5173
5174 /* DO NOT update ts_recent here, if checksum fails
5175 * and timestamp was corrupted part, it will result
5176 * in a hung connection since we will drop all
5177 * future packets due to the PAWS test.
5178 */
5179 }
5180
5181 if (len <= tcp_header_len) {
5182 /* Bulk data transfer: sender */
5183 if (len == tcp_header_len) {
5184 /* Predicted packet is in window by definition.
5185 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5186 * Hence, check seq<=rcv_wup reduces to:
5187 */
5188 if (tcp_header_len ==
5189 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5190 tp->rcv_nxt == tp->rcv_wup)
5191 tcp_store_ts_recent(tp);
5192
5193 /* We know that such packets are checksummed
5194 * on entry.
5195 */
5196 tcp_ack(sk, skb, 0);
5197 __kfree_skb(skb);
5198 tcp_data_snd_check(sk);
5199 return 0;
5200 } else { /* Header too small */
5201 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5202 goto discard;
5203 }
5204 } else {
5205 int eaten = 0;
5206 int copied_early = 0;
5207
5208 if (tp->copied_seq == tp->rcv_nxt &&
5209 len - tcp_header_len <= tp->ucopy.len) {
5210 #ifdef CONFIG_NET_DMA
5211 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5212 copied_early = 1;
5213 eaten = 1;
5214 }
5215 #endif
5216 if (tp->ucopy.task == current &&
5217 sock_owned_by_user(sk) && !copied_early) {
5218 __set_current_state(TASK_RUNNING);
5219
5220 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5221 eaten = 1;
5222 }
5223 if (eaten) {
5224 /* Predicted packet is in window by definition.
5225 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5226 * Hence, check seq<=rcv_wup reduces to:
5227 */
5228 if (tcp_header_len ==
5229 (sizeof(struct tcphdr) +
5230 TCPOLEN_TSTAMP_ALIGNED) &&
5231 tp->rcv_nxt == tp->rcv_wup)
5232 tcp_store_ts_recent(tp);
5233
5234 tcp_rcv_rtt_measure_ts(sk, skb);
5235
5236 __skb_pull(skb, tcp_header_len);
5237 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5238 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5239 }
5240 if (copied_early)
5241 tcp_cleanup_rbuf(sk, skb->len);
5242 }
5243 if (!eaten) {
5244 if (tcp_checksum_complete_user(sk, skb))
5245 goto csum_error;
5246
5247 /* Predicted packet is in window by definition.
5248 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5249 * Hence, check seq<=rcv_wup reduces to:
5250 */
5251 if (tcp_header_len ==
5252 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5253 tp->rcv_nxt == tp->rcv_wup)
5254 tcp_store_ts_recent(tp);
5255
5256 tcp_rcv_rtt_measure_ts(sk, skb);
5257
5258 if ((int)skb->truesize > sk->sk_forward_alloc)
5259 goto step5;
5260
5261 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5262
5263 /* Bulk data transfer: receiver */
5264 __skb_pull(skb, tcp_header_len);
5265 __skb_queue_tail(&sk->sk_receive_queue, skb);
5266 skb_set_owner_r(skb, sk);
5267 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5268 }
5269
5270 tcp_event_data_recv(sk, skb);
5271
5272 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5273 /* Well, only one small jumplet in fast path... */
5274 tcp_ack(sk, skb, FLAG_DATA);
5275 tcp_data_snd_check(sk);
5276 if (!inet_csk_ack_scheduled(sk))
5277 goto no_ack;
5278 }
5279
5280 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5281 __tcp_ack_snd_check(sk, 0);
5282 no_ack:
5283 #ifdef CONFIG_NET_DMA
5284 if (copied_early)
5285 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5286 else
5287 #endif
5288 if (eaten)
5289 __kfree_skb(skb);
5290 else
5291 sk->sk_data_ready(sk, 0);
5292 return 0;
5293 }
5294 }
5295
5296 slow_path:
5297 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5298 goto csum_error;
5299
5300 /*
5301 * Standard slow path.
5302 */
5303
5304 res = tcp_validate_incoming(sk, skb, th, 1);
5305 if (res <= 0)
5306 return -res;
5307
5308 step5:
5309 if (th->ack)
5310 tcp_ack(sk, skb, FLAG_SLOWPATH);
5311
5312 tcp_rcv_rtt_measure_ts(sk, skb);
5313
5314 /* Process urgent data. */
5315 tcp_urg(sk, skb, th);
5316
5317 /* step 7: process the segment text */
5318 tcp_data_queue(sk, skb);
5319
5320 tcp_data_snd_check(sk);
5321 tcp_ack_snd_check(sk);
5322 return 0;
5323
5324 csum_error:
5325 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5326
5327 discard:
5328 __kfree_skb(skb);
5329 return 0;
5330 }
5331
5332 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5333 struct tcphdr *th, unsigned len)
5334 {
5335 struct tcp_sock *tp = tcp_sk(sk);
5336 struct inet_connection_sock *icsk = inet_csk(sk);
5337 int saved_clamp = tp->rx_opt.mss_clamp;
5338
5339 tcp_parse_options(skb, &tp->rx_opt, 0);
5340
5341 if (th->ack) {
5342 /* rfc793:
5343 * "If the state is SYN-SENT then
5344 * first check the ACK bit
5345 * If the ACK bit is set
5346 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5347 * a reset (unless the RST bit is set, if so drop
5348 * the segment and return)"
5349 *
5350 * We do not send data with SYN, so that RFC-correct
5351 * test reduces to:
5352 */
5353 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5354 goto reset_and_undo;
5355
5356 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5357 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5358 tcp_time_stamp)) {
5359 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5360 goto reset_and_undo;
5361 }
5362
5363 /* Now ACK is acceptable.
5364 *
5365 * "If the RST bit is set
5366 * If the ACK was acceptable then signal the user "error:
5367 * connection reset", drop the segment, enter CLOSED state,
5368 * delete TCB, and return."
5369 */
5370
5371 if (th->rst) {
5372 tcp_reset(sk);
5373 goto discard;
5374 }
5375
5376 /* rfc793:
5377 * "fifth, if neither of the SYN or RST bits is set then
5378 * drop the segment and return."
5379 *
5380 * See note below!
5381 * --ANK(990513)
5382 */
5383 if (!th->syn)
5384 goto discard_and_undo;
5385
5386 /* rfc793:
5387 * "If the SYN bit is on ...
5388 * are acceptable then ...
5389 * (our SYN has been ACKed), change the connection
5390 * state to ESTABLISHED..."
5391 */
5392
5393 TCP_ECN_rcv_synack(tp, th);
5394
5395 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5396 tcp_ack(sk, skb, FLAG_SLOWPATH);
5397
5398 /* Ok.. it's good. Set up sequence numbers and
5399 * move to established.
5400 */
5401 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5402 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5403
5404 /* RFC1323: The window in SYN & SYN/ACK segments is
5405 * never scaled.
5406 */
5407 tp->snd_wnd = ntohs(th->window);
5408 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5409
5410 if (!tp->rx_opt.wscale_ok) {
5411 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5412 tp->window_clamp = min(tp->window_clamp, 65535U);
5413 }
5414
5415 if (tp->rx_opt.saw_tstamp) {
5416 tp->rx_opt.tstamp_ok = 1;
5417 tp->tcp_header_len =
5418 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5419 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5420 tcp_store_ts_recent(tp);
5421 } else {
5422 tp->tcp_header_len = sizeof(struct tcphdr);
5423 }
5424
5425 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5426 tcp_enable_fack(tp);
5427
5428 tcp_mtup_init(sk);
5429 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5430 tcp_initialize_rcv_mss(sk);
5431
5432 /* Remember, tcp_poll() does not lock socket!
5433 * Change state from SYN-SENT only after copied_seq
5434 * is initialized. */
5435 tp->copied_seq = tp->rcv_nxt;
5436 smp_mb();
5437 tcp_set_state(sk, TCP_ESTABLISHED);
5438
5439 security_inet_conn_established(sk, skb);
5440
5441 /* Make sure socket is routed, for correct metrics. */
5442 icsk->icsk_af_ops->rebuild_header(sk);
5443
5444 tcp_init_metrics(sk);
5445
5446 tcp_init_congestion_control(sk);
5447
5448 /* Prevent spurious tcp_cwnd_restart() on first data
5449 * packet.
5450 */
5451 tp->lsndtime = tcp_time_stamp;
5452
5453 tcp_init_buffer_space(sk);
5454
5455 if (sock_flag(sk, SOCK_KEEPOPEN))
5456 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5457
5458 if (!tp->rx_opt.snd_wscale)
5459 __tcp_fast_path_on(tp, tp->snd_wnd);
5460 else
5461 tp->pred_flags = 0;
5462
5463 if (!sock_flag(sk, SOCK_DEAD)) {
5464 sk->sk_state_change(sk);
5465 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5466 }
5467
5468 if (sk->sk_write_pending ||
5469 icsk->icsk_accept_queue.rskq_defer_accept ||
5470 icsk->icsk_ack.pingpong) {
5471 /* Save one ACK. Data will be ready after
5472 * several ticks, if write_pending is set.
5473 *
5474 * It may be deleted, but with this feature tcpdumps
5475 * look so _wonderfully_ clever, that I was not able
5476 * to stand against the temptation 8) --ANK
5477 */
5478 inet_csk_schedule_ack(sk);
5479 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5480 icsk->icsk_ack.ato = TCP_ATO_MIN;
5481 tcp_incr_quickack(sk);
5482 tcp_enter_quickack_mode(sk);
5483 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5484 TCP_DELACK_MAX, TCP_RTO_MAX);
5485
5486 discard:
5487 __kfree_skb(skb);
5488 return 0;
5489 } else {
5490 tcp_send_ack(sk);
5491 }
5492 return -1;
5493 }
5494
5495 /* No ACK in the segment */
5496
5497 if (th->rst) {
5498 /* rfc793:
5499 * "If the RST bit is set
5500 *
5501 * Otherwise (no ACK) drop the segment and return."
5502 */
5503
5504 goto discard_and_undo;
5505 }
5506
5507 /* PAWS check. */
5508 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5509 tcp_paws_check(&tp->rx_opt, 0))
5510 goto discard_and_undo;
5511
5512 if (th->syn) {
5513 /* We see SYN without ACK. It is attempt of
5514 * simultaneous connect with crossed SYNs.
5515 * Particularly, it can be connect to self.
5516 */
5517 tcp_set_state(sk, TCP_SYN_RECV);
5518
5519 if (tp->rx_opt.saw_tstamp) {
5520 tp->rx_opt.tstamp_ok = 1;
5521 tcp_store_ts_recent(tp);
5522 tp->tcp_header_len =
5523 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5524 } else {
5525 tp->tcp_header_len = sizeof(struct tcphdr);
5526 }
5527
5528 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5529 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5530
5531 /* RFC1323: The window in SYN & SYN/ACK segments is
5532 * never scaled.
5533 */
5534 tp->snd_wnd = ntohs(th->window);
5535 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5536 tp->max_window = tp->snd_wnd;
5537
5538 TCP_ECN_rcv_syn(tp, th);
5539
5540 tcp_mtup_init(sk);
5541 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5542 tcp_initialize_rcv_mss(sk);
5543
5544 tcp_send_synack(sk);
5545 #if 0
5546 /* Note, we could accept data and URG from this segment.
5547 * There are no obstacles to make this.
5548 *
5549 * However, if we ignore data in ACKless segments sometimes,
5550 * we have no reasons to accept it sometimes.
5551 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5552 * is not flawless. So, discard packet for sanity.
5553 * Uncomment this return to process the data.
5554 */
5555 return -1;
5556 #else
5557 goto discard;
5558 #endif
5559 }
5560 /* "fifth, if neither of the SYN or RST bits is set then
5561 * drop the segment and return."
5562 */
5563
5564 discard_and_undo:
5565 tcp_clear_options(&tp->rx_opt);
5566 tp->rx_opt.mss_clamp = saved_clamp;
5567 goto discard;
5568
5569 reset_and_undo:
5570 tcp_clear_options(&tp->rx_opt);
5571 tp->rx_opt.mss_clamp = saved_clamp;
5572 return 1;
5573 }
5574
5575 /*
5576 * This function implements the receiving procedure of RFC 793 for
5577 * all states except ESTABLISHED and TIME_WAIT.
5578 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5579 * address independent.
5580 */
5581
5582 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5583 struct tcphdr *th, unsigned len)
5584 {
5585 struct tcp_sock *tp = tcp_sk(sk);
5586 struct inet_connection_sock *icsk = inet_csk(sk);
5587 int queued = 0;
5588 int res;
5589
5590 tp->rx_opt.saw_tstamp = 0;
5591
5592 switch (sk->sk_state) {
5593 case TCP_CLOSE:
5594 goto discard;
5595
5596 case TCP_LISTEN:
5597 if (th->ack)
5598 return 1;
5599
5600 if (th->rst)
5601 goto discard;
5602
5603 if (th->syn) {
5604 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5605 return 1;
5606
5607 /* Now we have several options: In theory there is
5608 * nothing else in the frame. KA9Q has an option to
5609 * send data with the syn, BSD accepts data with the
5610 * syn up to the [to be] advertised window and
5611 * Solaris 2.1 gives you a protocol error. For now
5612 * we just ignore it, that fits the spec precisely
5613 * and avoids incompatibilities. It would be nice in
5614 * future to drop through and process the data.
5615 *
5616 * Now that TTCP is starting to be used we ought to
5617 * queue this data.
5618 * But, this leaves one open to an easy denial of
5619 * service attack, and SYN cookies can't defend
5620 * against this problem. So, we drop the data
5621 * in the interest of security over speed unless
5622 * it's still in use.
5623 */
5624 kfree_skb(skb);
5625 return 0;
5626 }
5627 goto discard;
5628
5629 case TCP_SYN_SENT:
5630 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5631 if (queued >= 0)
5632 return queued;
5633
5634 /* Do step6 onward by hand. */
5635 tcp_urg(sk, skb, th);
5636 __kfree_skb(skb);
5637 tcp_data_snd_check(sk);
5638 return 0;
5639 }
5640
5641 res = tcp_validate_incoming(sk, skb, th, 0);
5642 if (res <= 0)
5643 return -res;
5644
5645 /* step 5: check the ACK field */
5646 if (th->ack) {
5647 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5648
5649 switch (sk->sk_state) {
5650 case TCP_SYN_RECV:
5651 if (acceptable) {
5652 tp->copied_seq = tp->rcv_nxt;
5653 smp_mb();
5654 tcp_set_state(sk, TCP_ESTABLISHED);
5655 sk->sk_state_change(sk);
5656
5657 /* Note, that this wakeup is only for marginal
5658 * crossed SYN case. Passively open sockets
5659 * are not waked up, because sk->sk_sleep ==
5660 * NULL and sk->sk_socket == NULL.
5661 */
5662 if (sk->sk_socket)
5663 sk_wake_async(sk,
5664 SOCK_WAKE_IO, POLL_OUT);
5665
5666 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5667 tp->snd_wnd = ntohs(th->window) <<
5668 tp->rx_opt.snd_wscale;
5669 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5670 TCP_SKB_CB(skb)->seq);
5671
5672 /* tcp_ack considers this ACK as duplicate
5673 * and does not calculate rtt.
5674 * Fix it at least with timestamps.
5675 */
5676 if (tp->rx_opt.saw_tstamp &&
5677 tp->rx_opt.rcv_tsecr && !tp->srtt)
5678 tcp_ack_saw_tstamp(sk, 0);
5679
5680 if (tp->rx_opt.tstamp_ok)
5681 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5682
5683 /* Make sure socket is routed, for
5684 * correct metrics.
5685 */
5686 icsk->icsk_af_ops->rebuild_header(sk);
5687
5688 tcp_init_metrics(sk);
5689
5690 tcp_init_congestion_control(sk);
5691
5692 /* Prevent spurious tcp_cwnd_restart() on
5693 * first data packet.
5694 */
5695 tp->lsndtime = tcp_time_stamp;
5696
5697 tcp_mtup_init(sk);
5698 tcp_initialize_rcv_mss(sk);
5699 tcp_init_buffer_space(sk);
5700 tcp_fast_path_on(tp);
5701 } else {
5702 return 1;
5703 }
5704 break;
5705
5706 case TCP_FIN_WAIT1:
5707 if (tp->snd_una == tp->write_seq) {
5708 tcp_set_state(sk, TCP_FIN_WAIT2);
5709 sk->sk_shutdown |= SEND_SHUTDOWN;
5710 dst_confirm(sk->sk_dst_cache);
5711
5712 if (!sock_flag(sk, SOCK_DEAD))
5713 /* Wake up lingering close() */
5714 sk->sk_state_change(sk);
5715 else {
5716 int tmo;
5717
5718 if (tp->linger2 < 0 ||
5719 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5720 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5721 tcp_done(sk);
5722 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5723 return 1;
5724 }
5725
5726 tmo = tcp_fin_time(sk);
5727 if (tmo > TCP_TIMEWAIT_LEN) {
5728 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5729 } else if (th->fin || sock_owned_by_user(sk)) {
5730 /* Bad case. We could lose such FIN otherwise.
5731 * It is not a big problem, but it looks confusing
5732 * and not so rare event. We still can lose it now,
5733 * if it spins in bh_lock_sock(), but it is really
5734 * marginal case.
5735 */
5736 inet_csk_reset_keepalive_timer(sk, tmo);
5737 } else {
5738 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5739 goto discard;
5740 }
5741 }
5742 }
5743 break;
5744
5745 case TCP_CLOSING:
5746 if (tp->snd_una == tp->write_seq) {
5747 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5748 goto discard;
5749 }
5750 break;
5751
5752 case TCP_LAST_ACK:
5753 if (tp->snd_una == tp->write_seq) {
5754 tcp_update_metrics(sk);
5755 tcp_done(sk);
5756 goto discard;
5757 }
5758 break;
5759 }
5760 } else
5761 goto discard;
5762
5763 /* step 6: check the URG bit */
5764 tcp_urg(sk, skb, th);
5765
5766 /* step 7: process the segment text */
5767 switch (sk->sk_state) {
5768 case TCP_CLOSE_WAIT:
5769 case TCP_CLOSING:
5770 case TCP_LAST_ACK:
5771 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5772 break;
5773 case TCP_FIN_WAIT1:
5774 case TCP_FIN_WAIT2:
5775 /* RFC 793 says to queue data in these states,
5776 * RFC 1122 says we MUST send a reset.
5777 * BSD 4.4 also does reset.
5778 */
5779 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5780 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5781 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5782 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5783 tcp_reset(sk);
5784 return 1;
5785 }
5786 }
5787 /* Fall through */
5788 case TCP_ESTABLISHED:
5789 tcp_data_queue(sk, skb);
5790 queued = 1;
5791 break;
5792 }
5793
5794 /* tcp_data could move socket to TIME-WAIT */
5795 if (sk->sk_state != TCP_CLOSE) {
5796 tcp_data_snd_check(sk);
5797 tcp_ack_snd_check(sk);
5798 }
5799
5800 if (!queued) {
5801 discard:
5802 __kfree_skb(skb);
5803 }
5804 return 0;
5805 }
5806
5807 EXPORT_SYMBOL(sysctl_tcp_ecn);
5808 EXPORT_SYMBOL(sysctl_tcp_reordering);
5809 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5810 EXPORT_SYMBOL(tcp_parse_options);
5811 #ifdef CONFIG_TCP_MD5SIG
5812 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5813 #endif
5814 EXPORT_SYMBOL(tcp_rcv_established);
5815 EXPORT_SYMBOL(tcp_rcv_state_process);
5816 EXPORT_SYMBOL(tcp_initialize_rcv_mss);